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ABSTRACT

The Variation Moments Equilibrium Code (VMEC)' written by Steve Hirshman outputs data for plasma
in a stellarator geometry. The visualization of such data is of use to theorists working on improving
codes, engineers designing antennas, and also in papers to explain the geometry of a physics problem.
Visualization of the VMEC output requires a coordinate transformation from the curvilinear coordinates
of the VMEC code into cylindrical coordinates. A Fortran code had been written (by Fred Jaeger) to
perform such a transformation and output data in cylindrical coordinates for visualization (vmec_setup.f),
but the code was in need of improvement. Inputs into vmec_setup.f were not compatible with the latest
VMEC release, vmec_setup.f did not use a generalized grid, and outputs from vmec_setup.f were in an
obsolete two-dimensional format. Magnetic fields and streamlines were visualized, but for general use,
transformation of the magnetic fields needed to be improved. The original implementation did not
preserve divergence-free magnetic fields. A possible solution to the problem of preserving the
divergence-free magnetic fields has been found, but not yet implemented. A final problem with the
original code was the runtime. These problems of updating the code and improving the runtime have
been solved. The purpose of this paper is to detail the steps taken in solving problems in the
vmec_setup.f code and to offer ideas for the future improvement of the code.

1. OVERVIEW OF THE ORIGNAL CODE

The vmec_setup.f code was written by Fred Jaeger to transform the data from VMEC output in
curvilinear coordinates to cylindrical coordinates. The original code was about 2000 lines long,
containing a main program, and subroutines transform, deriv_psi, and deriv_theta.

The main program reads data values for the magnetic fields and for the y values from the VMEC output
file. It then sums the Fourier harmonics for the major radius (R), the elevation (Z), and the magnitude of
the magnetic fields at specific y, 0, and ¢. Then, because the VMEC magnetic field data uses a staggered
mesh, it interpolates the magnetic field data onto a whole mesh. This interpolation step was not
recognized as a problem until late in the project, and it is a likely source of difficulty in maintaining
divergence-free properties as will be discussed in section 3.2. It then calls the transform subroutine to
perform the coordinate transformation and output the data in a two-dimensional (the old code) or three-
dimensional (the newest code) visualization.

The subroutine transform creates a grid based on user defined values for the number of nodes in the 1, z,
and ¢ directions. Then it calls the subroutines deriv_psi and deriv_theta to calculate derivatives (on the
VMEC grid). The subroutines deriv_psi and deriv_theta calculate derivatives with respect to y and 6
using a second order centered finite differencing method. Once the derivatives are calculated, the code
creates a table of values from VMEC for visualization. First, it finds the VMEC coordinates (R and Z)
nearest neighbor to each mesh point on the user defined grid (x and y). This nearest neighbor value is
used as the first guess to the data value at each particular mesh point. To get a second guess, the R and Z
functions of y and 0 were Taylor expanded (only to the first derivative term in the original code) about
the particular point (nearest neighbor) Wy and 6,. Then the Taylor expanded equations are solved for
and 6. This is the second guess. If the Jacobian of R and Z is equal to zero, then the nearest neighbor (W
, 6) is used for the second guess. Once a value of y and 6 is found at a particular r, z location, the data
is found at that r, z location for the bx, by, and bz component of the magnetic fields. This is done by
Taylor expansion. Then the magnitude of the magnetic field at each point is calculated, and the data is
visualized. The original code visualized data using a program called PLplot.



2. UPDATING THE CODE

2.1 GENERALIZED CODE INPUTS

The vmec_setup.f code used inputs from an old release of VMEC that was no longer standard. The latest
version of VMEC outputs data in a standard "netcdf" data format. The vmec_setup.f code read data in a
user defined data format called a "wout" file. Don Spong has written some libraries of functions to read
the netcdf data format and create arrays of the data in Fortran. These functions were implemented in the
vmec_setup.f code to make it read the new netcdf format. One problem created by this change is that
now data contained in old "wout" files cannot be read by the newest version of vmec_setup.f, but such
improvements have been made to the VMEC code that data contained in wout files is relatively obsolete.
If there is a need to visualize old data sets, this can be solved by rerunning the VMEC code on the data
set to create a new netcdf data file instead of a wout file. One can also use outdated files by running an
old version of vmec_setup.f which has the updated generalized grid and Opendx output but not the
updated netcdf input capability.

2.2 GENERALIZED THE GRID

The original vmec_setup.f code also read inputs from a file called aorsa3d.in. The purpose of these inputs
was to setup an exact match to the grid used in the All Orders Spectral Algorithm (AORSA) code.
However, not all users of VMEC will want to use the AORSA grid, and it would be useful to have to grid
defined by the user in a less complex file format than the aorsa3d.in file. So the module modeparams.f
was written. This module is only 8 lines long, and it allows the user to input values for the number of
nodes in the x, y, and ¢ direction that they would like in their final output. Since this code is a module, it
can be included with other libraries needed to run the code.

2.3 MODERNIZED AND VISUALIZED CODE OUTPUTS

The original vmec_setup.f code visualized the transformed data using a program called PLplot. The
program was useful for visualization of contour lines of y and the magnitude of the magnetic fields, but
the version being used only visualized in two dimensions, and it only used eight-bit color. The eight-bit
color was a problem for users using monitors made in the last few years. Many are set to a default of 256
colors or more, and PLplot would not run under such settings. There are newer versions of Plplot
available, but OpenDx is becoming more widely used in the Fusion Energy Division.

The decision was made to use OpenDx, a visualization package developed by IBM and now an open
source package. OpenDx has the capability of visualizing data in three dimensions, or four dimensions if
series data is taken over time. It also had none of the color problems associated with PLplot. Another
reason for choosing the OpenDx package was an already existing module (dxdump.f) written by myself
which takes data from a Fortran code and outputs it in a native OpenDx format which made importing
data into OpenDx much easier.

The vmec_setup.f code now makes calls to the subroutines contained in the dxdump module and writes
out native OpenDx files of data for y and the magnetic fields. Programs have been written in the
OpenDx visual program editor which visualize flux surfaces, magnetic fields, and streamlines.



3. IMPROVING THE ACCURACY OF THE CODE
3.1 ADDING TAYLOR SERIES TERMS

While visualizing streamlines and magnetic vector fields it was discovered that the data for the magnetic
fields was not accurate enough to make reasonable streamlines for a divergence free field. The
divergence of the magnetic field data was not sufficiently close to zero. It was thought that a way to fix
this might be to make the code more accurate by adding second order terms of the Taylor series

expansion. (The data values for each node on the grid are found by Taylor expanding R and Z about the
nearest neighbor on the VMEC grid).

All of the Taylor series expansions were extended to include second order terms, using Maple®. So, it
was necessary to write subroutines to calculate the second order derivatives, so deriv_psi2 and
deriv_theta2 were written. They take the resulting arrays from deriv_psi or deriv_theta and again use a
second order centered finite differencing method to calculate the derivative.

Figure 1 Streamline comparison at y=0.8.
The resulting data using the second order Taylor series expansions was slightly better than the previous
data. Streamlines visualized did not appear to diverge completely from the flux surface, but they were
still not a reasonable output for a divergence free field. Figure 1 shows a comparison of streamlines on
the flux surface y equals 0.7. The divergence of the field using the second order Taylor series expansion
was inaccurate as well. For the most part, the data was improved or the same compared to the first order
Taylor series expansion, but on the inside of the torus there were some significantly high and low
numbers in the field. Figure 2 shows the divergence of a section of the torus using first order Taylor
series data (on the left) and a section of the torus using second order Taylor series data (on the right).
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Figure 2 Divergence comparison at y=0.8.

Clearly, the second order terms of the Taylor series, based on the original mesh, did not significantly
improve the behavior of the magnetic field lines. However, this visualization result led to the
identification of the loss of divergence properties in the interpolation step in the main program (as
described in section 1).

3.2 STAGGERED MESH SOLUTION

After it was found that adding second order Taylor series terms and invalidating extrapolated data were
not enough to improve the streamline visualizations, the magnetic field data was traced through code. It
had been thought that the data was not accurate enough after transformation in the transform subroutine,
but now the idea was explored that the data might be corrupted prior to entering the transform subroutine.

While tracing through the code it was discovered that the magnetic field data was being interpolated onto
the user defined grid using a linear interpolation method. Therefore, all terms other than the first order
terms of the Taylor series of the magnetic field were inaccurate. This explained the high divergence for
the data using the second order terms (shown in Figure 4). Adding in the second order terms for the
magnetic field data resulted in adding in more erroneous data.

This problem was discovered too late to correct it before the writing of this paper, but it does give new
insight in how to improve the visualization of magnetic field data. Because the magnetic field data is on
a staggered mesh, new differentiation subroutines must be written to take derivatives of the data. Once



the derivatives are corrected, the Taylor series expansions can be corrected, and the the final result should
have a magnetic field divergence of almost zero.

3.3 INVALIDATING DATA

Regardless of the accuracy of the interpolation, the issue of extrapolation beyond the last closed flux
surface (y=1), must also be addressed. VMEC output is only accurate for those values within the y=1
flux surface, but the generic grid that vmec_setup.f outputs on has values outside that surface. Data
values for those positions outside Wy=1 are extrapolated from the data on the last flux surface. So it was
thought that another way to improve the streamlines would be to mask the bad data gained from
extrapolating outside the y=1 flux surface. Figure 3 shows a picture of valid and invalid positions. The
gray area is all of the data, but only the purple area contains valid positions. So, for the magnetic field
visualizations, the position data for y can be marked invalid for every point for which the data value is

greater than one, and then the magnetic field data can be mapped onto the grid with some positions
marked as invalid.

Figure 3 Valid and Invalid positions at y=0.7.

Figure 4 below shows magnetic field data with values outside y=1 marked as invalid. On the left the
divergence of the magnetic field is calculated on the flux surface y=0.7, and on the right streamlines are
visualized beginning each streamline on the flux surface. This data uses the second order terms of the
Taylor expansion. As the picture shows, the streamlines stay within the bounds of y=1 as they should,
but they do not extend very far. Basically, the streamlines are still wrong, but the visualization is
improved because the erroneous data is not visualized. This shows that the main problem in the
visualization of the magnetic fields is overall accuracy. The data outside y=1 is bad due to the
extrapolation, but, even within the y =1 boundary, there are still some problems with the magnetic field
data. Streamlines should extend all the way around the inside of the torus, and they do not even extend



through one field period (half the torus). This means that the divergence of the magnetic field is not 0
inside the bounds of y=1.
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Figure 4 Improved streamlines with invalidated data at y=0.7,

4. IMPROVING THE RUNTIME OF THE CODE

The vmec_setup.f code varies in the amount of time to run dependent on the size of the VMEC output file
that is being used and on the user specified grid for the final output. Within the code, one of the parts that
takes the greatest percentage of runtime is the nearest neighbor routine. In order to put the VMEC
gridded data onto the user specified grid, the code runs through every single point on the user specified
grid and calculates the distance between that point and all the data values on the VMEC grid. When it
finds the shortest distance, it assigns that value from the VMEC grid to the data value for the user
specified grid. In order to have greater resolution in the visualization, a user must input more nodes in

the x, y, and ¢ directions, resulting in significantly increased runtime for a small increase in resolution.

One way to improve this method is to restrict the search for the closest VMEC grid point. Rather than
running through the entire grid for every node, simply search a specified distance on either side of the last
found value in the 1, z, and ¢ direction. This method was tried, but it has not been fully tested at this



time. Preliminary testing shows a large improvement in run time with virtually no loss of accuracy.
Searching the entire grid for an 80x81x32 grid the subroutine transform ran in 652.87 seconds, but

restricting the search in one direction, the subroutine transform ran in 206.50 seconds—Iess than a third
of the previous run time.

Another way to improve this method is to make sure that the loops searching the grid are in the most
effective order (the inner most loop should be that of the fastest varying variable). An attempt was made
to do this using the intrinsic Fortran function "minloc.” Minloc takes an array and a specified value and
returns the location in the array of the value closest to the specified value. The newest version of
vmec_setup.f uses the minloc function rather than nested loops, but no improvement was seen in the
runtime of the code. This could be due to the fact that the Lahey Fortran 95 compiler detects out of order
loops and switches them, or it could be that the loops were already in correct order. Since the runtime is
effectively the same, the only improvement that using the minloc function gives is improved readability
of the code.

5. SUGGESTED FURTHER IMPROVEMENTS

The magnetic field visualizations can still be improved. The staggered mesh solution to the visualization
problem needs to be implemented and tested. The problem also needs further work with regard to
invalidating positions based on data. As some improvement was shown in the visualization of
streamlines (Figure 4), this method might be used in addition to the staggered mesh solution for
improving accuracy of the data. However, invalidating the positions within the visualization program,
OpenDx can be expensive time wise. It is possible to invalidate the positions before the OpenDx data
sets are written out, but then one would need to know how to write an OpenDx native format data set
with invalidated positions. The writing out of the invalid data file could be an option in the dxdump
module. Another way to invalidate data is to use the modules in OpenDx to mark the data outside y=1 as
bad, and then use the 'export' module in the visual program editor to write out a native dx file with the
positions outside y=1 marked as invalid. Then the new data files with invalid positions can be visualized
in a separate OpenDx program.

The runtime can be further improved by continuing the work of searching a smaller area rather than the
entire grid when finding the nearest neighbor. It could also be improved by employing linked list
techniques, or perhaps other data structures to gain a better perspective of where the best candidates for a
nearest neighbor match are, and thus searching an even smaller range of values.

Eventually, the code should be modularized so that it can be included as an option with the VMEC code.
[t could be written as an optional interface of functions which could be called at the end of the VMEC
code to output native OpenDx files. Additionally, if the code is included in a VMEC release, it would be
useful to include several example OpenDx programs which visualize data output from vmec_setup.f.
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program vmec_setup
To compile this code you must have the appropriate VMEC
module and library files present.
Compilation script:

x1f -gnolm -o xXxrf -04 -1 read_wout_mod.mod stell_rf data.f libstopt.

use
use

modeparams
read_wout_mod, rmnc_w=>rmnc,
XIN_W=>Xm, XN_w=>Xn,
ntor_w=>ntor,

phip_w=>phip,
nfp_w=>nfp,

implicit none

ns_w=>ns,

ZIMNS_W=>ZzZmns,

integer,
integer,
integer,
integer,
integer,
integer,
integer,
integer,
integer,
integer,
integer,

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

nthetad
nzetad =
mpolld =
ntorld =
mnmx =
nmodesxmax =
nmodesymax =
nmodesphimax =

360

mpold

modesphi

-1

1l + ntord
ntorld + mpolld* (1 + 2*ntord)
modesx
modesy

modesphi

1

2

4

lmns
mnmax,
ierr

dimension (mnmx*nsd)
integer ns, mpol, ntor,
nstart, j, i, k., nfp,
integer nzeta, ntheta
real FHtimel, FHtime2
real, dimension (nsd, mnmx)
real, dimension(mnmx*nsd)
real, dimension (mnmx)
real, dimension (nsd)
real unit, file,
twopi, zmin,
rmaj, zz, bb,
drdth, dzdth,

integer,

bigr,

rmnc,
Xm, xn

hiota,
status,
zmax, thet, zeta,
arg, fl, bmin,
zetav

phip

bu,
bmax,

real capr (nsd,
capz(nsd,

nthetad, nzetad),
nthetad, nzetad),
bmod (nsd, nthetad, nzetad),
br (nsd, nthetad, nzetad),
bz (nsd, nthetad, nzetad),
bzeta(nsd, nthetad, nzetad),
drdtheta (nsd, nthetad, nzetad),
dzdtheta(nsd, nthetad, nzetad)
real bmodh(nsd),

buh (nsd), bvhi(nsd)

character argl*20,wargl*25,bozout*25

integer nargs, numargs, numchars
integer iargc, getarg
integer nmodesx, nmodesy, nmodesphi

10

1jmn,

zeq,
zmns,

bv,
r0,

is,

mn,

bmodeq,
bsuptmn,

buij,

rmin,

lmns_w=>1mns,
mpol_w=>mpol,

mnmax_w=>mnmax

ipsi,

bsupu,

bvj, bmj,
rmax,

bsupv
bsupzmn,

bmodmn
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real rwleft, rwright, awally,
rt, signbz

real gavg0, ymax, zetal, phistart

_____ set default values
phistart = 0.0

nzeta = nmodesphimax
ntheta = nthetad

numargs = iargc()

numchars = getarg(l,argl)

if{ numargs.ne.l }then
print *,' MUST ENTER FILENAME ON COMMAND LINE'
stop

endif

wargl = argl
call read wout_file(wargl,ierr)

mnmax = mnmx total number of modes (toroidal and poloidal)
Note: This may not be simply mpold*ntord since m = 0 may not
have both + and - n's (due to symmetry) whereas m > 0 will
have + and - n's.
nsdd = nsd = ns = number of radial (flux-coordinate) grid points
mpold = number of poloidal modes used
ntord = number of toroidal modes used
ntor0, mn0, nit, ifsqg = not used here
xm, xn = poloidal and toroidal mode number pairs
rmnc, zmns = Fourier decomposition of major radius and z-elevation on
a flux surface (rmnc - cos series, zmns - sin series)
bmod = Fourier decomposition of |B| on flux surface
Quantities read from VMEC wout file:
mpol = mpol_w
ntor = ntor_w
nfp = nfp_w
ns = ns_w ! must have this for transform (kate)
mnmax = mnmax_w
ljmn = 0
do js = 1,ns
hiota(js) = iotas(js)
phip(js) = phip w(js)

do mn=1, mnmax
ljmn = ljmn + 1
xm({mn) = xm_w(mn)
xn{mn) = xn_w(mn)
rmnc (1jmn) rmnc_w(mn, js)
zmns (1ljmn) zmns_w(mn, js)
lmns(ljmn) lmns_w(mn, js)
bmodmn (1jmn) = bmnc{mn, js)
bsuptmn (1jmn) bsupumnc (mn, js)
bsupzmn (1jmn) bsupvmne (mn, js)

oo

fon
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do i =1, n

theta

thet = (1 - 1l)*twopi/float(ntheta - 1)
do k = 1, nzeta
zetav = (k - 1)*twopi/float(nzeta) / float(nfp) + zetal
change direction of zeta to match aorsa coordinate system
zeta = - zetav
zeta = zetav
if(i .eq. 1)
do j = 1, ns
rmaj = 0.
zz = 0.
bb = 0.
bu = 0.
bv = 0
drdth = 0.
dzdth = 0.
Add up Fourier harmonics for R (major radius), z(elevation),
and |B| at specific psi, theta, phi
do mn = 1, mnmax
arg = xm(mn)*thet - xn(mn)*zeta
rmaj = rmaj + bigr(j,mn)*cos(arg)
zz = zz + zedg(j,mn})*sin(arg)
bb = bb + bmodeqg(j,mn) *cos (arg)
bu = bu + bsupu(j,mn) *cos (arg)
bv = bv + bsupv(j,mn) *cos(arg)
drdth = drdth - xm(mn) * bigr(j,mn) * sin(arg)
dzdth = dzdth + xm(mn) * zeq(j,mn) * cos(arg)
end do
zmin = min(zmin, zz)
bmin = min(bmin, bb)
rmin = min({rmin,rmaj)
zmax = max(zmax,zz)
bmax = max(bmax, bb)
rmax = max(rmax,rmaj)
r0=(rmax-rmin) *nfp
capr(j, i, k) = rmaj
capz(j. 1, K = 2z
bmodh(j) = bb
buh(j) = bu
bvh(j) = bv
drdtheta(j, i, k) = drdth
dzdtheta(j, i, k) = dzdth
end do

do j = 1, ns

if

(j .eq. 1l)then
bmj = bmodh(j+1)
buj = buh(j+1)

13
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C

subroutine transform(dxname, ns, ntheta, nzeta, capr_vmec,
capz_vmec,
bmod_vmec, bx_vmec, by_vmec, bz_vmec,
drdth_vmec, dzdth_vmec, nsd, nthetad, nzetad, nfp,
r0, rmin, rmax, zmin, zmax)

use modeparams
use dxdump
implicit none

real TransformTimel, TransformTime2, totaltime
real r0, rmin, rmax, zmin, zmax ! KATE
character dxname*20

integer nxmx, nymx, nphimx, ieq, jcol

integer ier, 1

i ninteg, nd

integer nrow, ncol, norder

integer
nkyl, nky2,
nphil, nphi2

real tmem, tsys, tio, ttotal, timel, time, dummy, secondl
real tmin, gflops, gflopsp, ops

real psi_lim, dpsi, dtheta, dzeta

real diffx, diffy, diff, diffmin, tsurf

integer jvmec, ivmec, jvmec_min, ivmec_min, jk, ik
integer ns, ntheta, nzeta, nsd, nthetad, nzetad

real capa, capx, capy, 2z, hz, coshz, sinhz, r2,
becapx, bcapy, bcapz, xkh

integer nmodesmax, mmodesmax, lmodesmax, nrhomax
real epsl, r, angle, sinang, cosang

parameter (nmodesmax = modesx)
parameter (mmodesmax = modesy)
parameter (lmodesmax = modesphi)

parameter (nxmx = nmodesmax)
parameter (nymx = mmodesmax)
parameter (nphimx = lmodesmax)

parameter (nrhomax = nmodesmax)

c***  YMEC arraysS:
real capr_vmec (nsd, nthetad, nzetad),
capz_vmec (nsd, nthetad, nzetad),
bmod_vmec (nsd, nthetad, nzetad)

real bx_wvmec(nsd, nthetad, nzetad),
by_wvmec (nsd, nthetad, nzetad),
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real

bz_vmec (nsd, nthetad, nzetad),
drdth_vmec (nsd, nthetad, nzetad),
dzdth_vmec (nsd, nthetad, nzetad)

psi_vmec (nsd),
theta_vmec (nthetad)

real zeta_vmec (nzetad)

real

real

real

real

real

dzdpsi(nsd, nthetad),
dzdth (nsd, nthetad),
drdpsi(nsd, nthetad),
drdth (nsd, nthetad),
diodpsi (nsd, nthetad),
dbdth (nsd, nthetad),
dbxdth (nsd, nthetad),
dbydth (nsd, nthetad),
dbzdth (nsd, nthetad),
dbxdpsi(nsd, nthetad),
dbydpsi (nsd, nthetad),
dbzdpsi (nsd, nthetad)

! Partial Derivatives
drdpsidpsi (nsd, nthetad),
drdthdth (nsd, nthetad),
drdthdpsi (nsd, nthetad),
dzdpsidpsi (nsd, nthetad),
dzdthdth (nsd, nthetad),
dzdthdpsi (nsd, nthetad),
dbxdpsidpsi (nsd, nthetad),
dbxdthdth (nsd, nthetad),
dbxdthdpsi (nsd, nthetad),
dbydpsidpsi (nsd, nthetad),
dbydthdth (nsd, nthetad),
dbydthdpsi (nsd, nthetad),
dbzdpsidpsi (nsd, nthetad),
dbzdthdth (nsd, nthetad),
dbzdthdpsi (nsd, nthetad)

dzdpsik, dzdthk, drdpsik, drdthk,

! Partial Derivatives computed
drdpsidpsik,
drdthdthk,
drdthdpsik,
dzdpsidpsik,
dzdthdthk,
dzdthdpsik,
dbxdpsidpsik,
dbxdthdthk,
dbxdthdpsik,
dbydpsidpsik,
dbydthdthk,
dbydthdpsik,
dbzdpsidpsik,
dbzdthdthk,
dbzdthdpsik

dbdpsik, dbdthk,

dbxdpsik, dbxdthk,
dbydpsik, dbydthk,
dbzdpsik, dbzdthk
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real capr(nxmx),
xprime (nxmx), x(nxmx), dx

real rhon({nrhomax), wdotilavg(nrhomax), wdoti2avg(nrhomax),

wdoteavg (nrhomax), drho
real xnavg(nrhomax), ghat

real theta(nxmx, nymx), thetal(nxmx, nymx),
bx, by, bz,
bx_fred, by_fred, bz_fred,
bzeta (nxmx, nymx),
dxdth (nxmx, nymx), xntau(nxmx, nymx),
xiota (nxmx, nymx), gsafety(nxmx, nymx)

real bphi, bth, br

real rhomtot (nxmx, nymx), rhome, rhomil, rhomi2, rhomi3

real xnupil (nxmx, nymx), prod

real dbxdx, dbydx, dbzdx,

3 dbxdy, dbydy, dbzdy,
dbxdphi, dbydphi, dbzdphi

real wdote(nxmx, nymx), wdotil (nxmx, nymx),

wdoti2 (nxmx, nymx), wdoti3 (nxmx, nymx), wdot (nxmx, nymx)

‘real fye, fyil, fyi2, fyi3, fy

real fype(nxmx, nymx), fypil (nxmx, nymx),

fypi2 (nxmx, nymx), fypi3(nxmx, nymx), fyp(nxmx, nymx)

real denom
real p, pil, pi2, pit, pi3, pe

real
yprime (nymx), y(nymx), dy

real phiprimec (nphimx), phicourse(nphimx),
phiprime (nphimx), phi (nphimx), phiO(nphimx),
phitot {(nphimx*nfp),
dphi, dphic, phistart, phi_nfp(nphimx)

integer RelErrorCount, BxErrorCount, ByErrorCount,
integer vecindex(2)

write(*,*)"Entered subroutine transform." ! KATE
totaltime=0.0
c--set default values of input data:

nmodesx = nmodesmax
nmodesy = mmodesmax
nmodesphi = lmodesmax
phistart = 0.0

rt = r0

rwleft =rmin !.70

rwright = rmax !2.5

ymax=0 ! default--later this is set to 2*awally
awally max (abs(zmin) , abs (zmax) )

signbz 1.0000E+00

gavgl = 1.0

"o

write(*,*)"rt=",rt
write(*,*)"rwleft=",6 rwleft," rwright=",rwright
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write(*,*) "awally=",awally

————— nmodesx=nunpber of modes used in the x direction

----- nmodesy=number of modes used in the y direction

————— nmodesphi=number of modes used in the phi direction

————— nnodecx = number of radial mesh points used for wdot calculation
————— nnodecy = number of vertical mesh points used for wdot calculation
————— phistart = starting position in phi for VMEC magnetic field

————— rt= major radius of torus

————— rwleft = major radius of the left conducting wall

————— rwright = major radius of the right conducting wall

————— awally = vertical location of the conducting wall

————— ymax = radius in vertical (y) direction- in default it is set to awallx

if(abs(signbz).lt.1.0e-05)signbz = +1.0
————— gavg0 is the rotational transform on axis

nnodex = nmodesx
nnoderhc = nnodex

nky2 = nmodesy / 2
nkyl = - nmodesy / 2 + 1
nnodey = nmodesy

nphi2 = nmodesphi / 2
nphil = - nmodesphi / 2 + 1
nnodephi = nmodesphi

jequat = nnodey / 2
icenter = nnodex / 2

if (gqavg0 .ne. 0.0) xiotal = 1./gavg0
g = 1.6e-19

teedge = 400.0

ghat = gavg0

teedge = teedge * g

ge = -gq
2i = cmplx(0.0,1.0)}
pi = 3.141592654
xlnlam = 20..0
xmax = rwright - rwleft
awright = rwright - rt
ymax = 2.0 * awally

xwleft = rwleft - rt
xwright = rwright - rt

write(*, *) "xwleft=",6xwleft, " xwright", xwright
write(*, *) "About to define x mesh..." | KATE
write(*, *) "nnodex=", nnodex, "nnodey=",nnodey ! KATE

Define x mesh: x(i), xprime(i), capr(i)

c-- xprime: 0 to xmax

c-- x{i) » =xmax / 2.0 to xmax / 2.0
dx = xmax / nnodex

do i = 1, nnodex

xprime(i) = (i-1) * dx + dx / 2.0
c-- Note: the code gives slightly smoother results with dx/2.0 added
x(i) = xprime(i) + xwleft
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capr(i) = rt + x(1i)
end do

write(*,*) "About to define y mesh..." ! KATE
write (*, *) "nnodex=",nnodex, "nnodey=",nnodey ! KATE

Define y mesh: y(j), yprime(3J)
yprime: 0 to ymax

yv(j) : -ymax / 2.0 to ymax / 2.0
dy = ymax / nnodey

do j = 1, nnodey

yprime(j) = (j-1) * dy + dy / 2.0
Note: the code gives slightly smoother results with dy/2.0 added
v(j) = yprime(j) - awally

end do

np = 1

np = nfp

phimax = 2.0 * pi / nfp

write(*,*) "About to define phi mesh..." ! KATE

write(*, *) "nnodephi=", nnodephi ! KATE

Define phi mesh: phi(k), phiprime(k)

phiprime: 0 to phimax

phi(k) : -phimax / 2.0 to phimax / 2.0

phiO(k): 0 to phimax / 2.0 and 0 to -phimax / 2.0

dphi = phimax / nnodephi

do k = 1, nnodephi
phiprime (k) = (k-1) * dphi

1 + dphi / 2.0
Note: the code gives worse results with dz/2.0 added
phi (k) = phiprime(k) - phimax / 2.0

if(phi(k) .le. 0.0) phiO(k)
if(phi(k) .gt. 0.0) phiO(k)

phi(k) + phimax / 2.0
phi(k) - phimax / 2.0

1nn

phi_nfp(k) = phiprime(k) * nfp
end do
do 1 = 1, nnodex
do j = 1, nnodey
if(x(i) .ne. 0.
thetal (i, 3j)
if(thetal (1
if(thetal(
end if
end do
end do

7
’

1

write(*,*)"About to define rho mesh..." ! KATE
Define rho mesh: rhon(n)
rhon: 0 to rhomax
rhomax = 1.0
drho = rhomax / (nnoderho - 1)
do n = 1, nnoderho
rhon(n) = (n-1) * drho
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end do

psi_lim = float (ns)

dpsi = psi_lim / float(ns - 1)
dtheta = 2.0 * pi / float(ntheta - 1)
dzeta = 2.0 * pi / float(nzeta) / float (nfp)

do j =1, ns
psi_vmec(3j)

(j-1) * dpsi

end do
do i = 1, ntheta

theta_vmec (i) = (i-1) * dtheta
end do

RelErrorCount=0
BxErrorCount=0
ByErrorCount=0
BzErrorCounkt=0
do k = 1, nnodephi

de jvmec = 1, ns
do ivmec = 1, ntheta

ik jvmec

ik ivmec

call deriv_psi(capz_vmec, nsd, nthetad, nzetad,
jk, ik, k, ns, ntheta, dpsi, dzdpsi(jk, ik))

call deriv_psi(capr_vmec, nsd, nthetad, nzetad,
jk, ik, k, ns, ntheta, dpsi, drdpsi(jk, ik))

call deriv_psi (bmod_vmec, nsd, nthetad, nzetad,
jk, ik, k, ns, ntheta, dpsi, dbdpsi(jk, ik))

call deriv_psi(bx_vmec, nsd, nthetad, nzetad,
jk, ik, k, ns, ntheta, dpsi, dbxdpsi(ik, ik})

call deriv_psi(by_vmec, nsd, nthetad, nzetad,
jk: ik, k, ns, ntiieca, dpsi, dbydpsi(jk, ik))

call deriv_psi(bz_vmec, nsd, nthetad, nzetad,
jk, ik, k, ns, ntheta, dpsi, dbzdpsi(ik, ik))

call deriv_theta(bmod_vmec, nsd, nthetad, nzetad,
jk, ik, k, ns, ntheta, dtheta, dbdth(jk, 1ik))
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call deriv_theta(bx_vmec, nsd, nthetad, nzetad,
ik, ik, k, ns, ntheta, dtheta, dbxdth(jk, ik))
call deriv_theta(by_vmec, nsd, nthetad, nzetad,
ik, ik, k, ns, ntheta, dtheta, dbydth(jk, ik))
call deriv_theta(bz_vmec, nsd, nthetad, nzetad,
ik, ik, k., ns, ntheta, dtheta, dbzdth(jk, ik))
dzdth(jk, ik) = dzdcth_vmec(ik, ik, k)
drdcth(jk, ik) = drdth_vmec(jk., ik, k)
end do
end do
*kxxxxk*xxkkxk% Dartijal derivatives (KATE)
! Partials (capr)
do jvmec = 1, ns
do ivmec = 1, ntheta
jk = jvmec
ik = ivmec
call deriv_psi2(drdpsi, nsd, nthetad,
jk, ik, ns, ntheta, dpsi, drdpsidpsi(jk, ik))
call deriv_psi2(drdth, nsd, nthetad,
jk, ik, ns, ntheta, dpsi, drdthdpsi(jk, ik))
call deriv_theta?2(drdth, nsd, nthetad,
jk, ik, ns, ntheta, dpsi, drdthdth(jk, ik))
! Partials (capz)
call deriv_psi2(dzdpsi, nsd, nthetad,
jk, ik, ns, ntheta, dpsi, dzdpsidpsi(jk, ik})
call deriv_psi2(dzdth, nsd, nthetad,
jk, ik, ns, ntheta, dpsi, dzdthdpsi(jk, ik))
call deriv_theta2 (dzdth, nsd, nthetad,
ik, ik, ns, ntheta, dpsi, dzdthdth(jk, ik) )
{ Partials (bx)
call deriv_psi2(dbxdpsi, nsd, nthetad,
ik, ik, ns, ntheta, dpsi, dbxdpsidpsi(jk, ik))
call deriv_psi2(dbxdth, nsd, nthetad,
jk, ik, ns, ntheta, dpsi, dbxdthdpsi{jk, ik))
call deriv_theta?2 (dbxdth, nsd, nthetad,
jk, ik, ns, ntheta, dpsi, dbxdthdth(jk, ik))
! Partials (by)
call deriv_psi2(dbydpsi, nsd, nthetad,
jk, ik, ns, ntheta, dpsi, dbydpsidpsi(jk, ik))
cal. deriv_psi2(dbydth, nsd, nthetad,
ik, 1k, ns, ntheta, dpsi, dbydthdpsi(jk, ik))
call deriv_theta2 (dbydth, nsd, nthetad,
jk, ik, ns, ntheta, dpsi, dbydthdth(jk, ik))
! Partials (bz)
call deriv_psi2(dbzdpsi, nsd, nthetad,
jk, ik, ns, ntheta, dpsi, dbzdpsidpsi(jk, ik))
call deriv_psi2(dbzdth, nsd, nthetad,
jk, ik, ns, ntheta, dpsi, dbzdthdpsi({jk, ik))
call deriv_theta2(dbzdth, nsd, nthetad,
jk, ik, ns, ntheta, dpsi, dbzdthdth(jk, ik))
end do
end do
* Create a table of walues from VMEC

I~
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endif

if (abs (theprm-theta2) /abs (theprm) > .5) then
theta2=theprm

endif

psil=psi2
theprm=theta?2
ipsil=psil

' theprm=theprm

bmod_vmeck = bmodk + dbdthk * (theprm - thetak)
+ dbdpsik * (psil - psik)

bx_fred = bxk + dbxdthk * (theprm - thetak)

+ dbxdpsik * (psil - psik)
bx = bxk + dbxdthk * (theprm - thetak)
+ dbxdpsik * (psil - psik)
+ dbxdpsidpsik* (psil-psik)* (psil-psik)
+ dbxdthdpsik* (psil-psik) * (theprm-thetak)
+ dbxdthdthk* (theprm-thetak) * (theprm-thetak)

by_fred = byk + dbydthk * (theprm - thetak)

+ dbydpsik * (psil - psik)
by = byk + dbydthk * (theprm - thetak)
+ dbydpsik * (psil - psik)
+ dbydpsidpsik* (psil-psik) *(psil-psik)
+ dbydthdpsik* (psil-psik)* (theprm-thetak)
+ dbydthdthk* (theprm-thetak) * (theprm-thetak)

bz_fred = bzk + dbzdthk * (theprm - thetak)

+ dbzdpsik * (psil - psik)

+ dbzdthk * (theprm - thetak)

+ dbzdpsik * (psil - psik)

+ dbzdpsidpsik* (psil-psik)*(psil-psik)

+ dbzdthdpsik* (psil-psik) * (theprm-thetak)

+ dbzdthdthk* (theprm-thetak) * (theprm-thetak)

if(abs(bx_£fred-bx)/abs(bx_fred) > .2 .AND. psil<l) then
BxErrorCount=BxErrorCount+1

endif

if (abs (by_fred-by)/abs(by_fred) > .2 .AND. psil<l) then
ByErrorCount=ByErrorCount+1l

endif

if (abs(bz_fred-bz)/abs(bz_fred) > .2 .AND. psil<l) then
BzErrorCount=BzErrorCount+1l

endif

bmod (i, j, k) = sgrt(bx**2 + by**2 + bz**2)

11f(psil<=1) then
1

! write(*,*)"bmod(",i,",",3.",",k,")=",bmod(i,]j, k)
tendif

bxn(i,j,k) = bx / bmod(i,]j., k)

byn(i,j,k) = by / bmod(i,], k)

bzn(i,j, k) = bz / bmodl(i,j, k)
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psi(i,j.,k) = psil / psi_lim
thetap(i,j, k) = theprm
! rho(i,j,k) = sqrt(psi(i,j,k))

end do
end do
end do
write(*,*)"Finished creating table of values." ! KATE
write(*, *)"RelErrorCount (>.5) = ", RelErrorCount
write(*,*) "BxErrorCount (>.2) = ", BxErrorCount
write(*, *) "ByErrorCount (>.2) = ", ByErrorCount
write(*, *) "BzErrorCount (>.2) = ", BzErrorCount
rt = capr_vmec(1l,1,1)
c----switch the phi and y coordinates and use dx polar

do 1 = 1, nnodex
do j = 1, nnodey
do k = 1, nnodephi
psi_dx(i,k,3j) = psi(i,j, k)
bmod_dx(i,k,3j) = bmod(i,j,k)
bxn_dx (i, k,J) bxn (i, j, k)
byn_dx(i,k,3) byn(i,j. k)
bzn_dx(i,k,j) Bzn(i,;3.kK)

I mwn

enddo
enddo
enddo

do 1l =0, nfp-1
phitot (1+1*nnodephi:nnodephi+l*nnodephi)=
+phi (:)+1* (2*pi/ (nfp))
enddo

do 1 = 0, nfp-1
FULL_psi_dx(:,l+l*nnodephi:nnodephi+l*nnodephi, :)=

psi_dx (s, s, )
FULL_bmod_dx(:,l+1l*nnodephi :nnodephi+l*nnodephi, :)=
bmod_dx(:,:,:)
FULL_bxn_dx(:,1l+l*nnodephi:nnodephi+l*nnodephi, :)=
bxn_dx(:,:,:)
FULL_byn_dx(:, 1+1*nnodephi:nnodephi+l*nnodephi, :)=
Byn_dx(:,2, )
FULL_bzn_dx(:,l1+l*nnodephi:nnodephi+1*nnodephi, :)=
BEn da i o &)
enddo
write(*, *) "Switched coordinates and made FULL mesh." ! KATE

dxname=trim(dxname)
dxname=dxname (5: (len (dxname) -4) )
c----dx calls for 3 dimensional output
write{*,*)"Calling dxPolar for PSI..." ! KATE
call dxPol_scalar_dp
(psi_dx(l:nnodex, 1: (nnodephi) , l:nnodey),
capr(l:nnodex)
,phitot (1l: (nnodephi)), y(l:nnodey),
. 'PSI2nd' //dxname)
call dxPol_scalar_dp
. (FULL_psi_dx(1l:nnodex, 1: (nnodephi*nfp), l:nnodey),
capr (1:nnodex)
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,phitot(1l: (nnodephi*nfp)), y(l:nnodey),
'FULL_PSI2nd'//dxname)
write(*,*)"Calling dxPolar for BMOD..." ! KATE

call dxPol_scalar_dp

. {(bmod_dx (1:nnodex, 1: (nnodephi), l:nnodey),
capr (1l:nnodex)
,phitot (1: (nnodephi})), y(l:nnodey),

. 'BMOD2nd' //dxname)

call dxPol_vector_dp
(bxn_dx (1:nnodex, 1: (nnedephi), l:nnodey),
-bzn_dx (1 :nnodex, 1: (nnodephi),l:nnodey),
byn_dx (1:nnodex, 1: (nnodephi), 1:nnodey),
capr (1:nnodex)
,phitot (1l: (nnodephi)), v(l:nnodey),

. '"VEC2nd'//dxname)

call dxPol_vector_dp
(FULL_bxn_dx (1l:nnodex, 1l: (nnodephi*nfp),1l:nnodey),
-FULL_bzn_dx(l:nnodex,1l: (nnodephi*nfp),1l:nnodey),
FULL_byn_dx(1:nnodex,1: (nnodephi*nfp), 1l:nnodey),
capr (1:nnodex)

. ,phitot (1: (nnodephi*nfp)), y(l:nnodey),

: 'FULL_VEC2nd'//dxname)

310 format (1p6el2.4)
309 format(10i1l0)

B o o e e Y e A e PR
* stop parallel environment
K LEmmL s e memn | Seepeseieni Sepesomeiegy
c call blacs_gridexit( icontxt )
c call blacs_exitc(0)
write(*,*)"total time for search=",totaltime
stop
end subroutine transform
c

C****I’****t*****i***i‘**i**********t********i***i*\\'***l‘**\l—i*****t************
C

subroutine deriv_psi(f, jd, id, k4, j, i, k, jmax, imax,
dpsi, dfdpsi)

implicit none

integer jd, id, k4, j, i, k, jmax, imax
real f(jd, id, kd), dpsi, dfdpsi

if(j .ne. 1 .and. j .ne. jmax)
dfdpsi = (f(j+1, i, k) - £(j-1, i, k)) / (2.0 * dpsi)
if(] .eq. 1)
dfdpsi = (£(j+1, i, k) - £(3, i, k)) / dpsi
1£(] .eq. jmax)
dfdpsi = (f(j, i, k) - £(j-1, i, k)) / dpsi
return
end

e
C*****i#tw*#**********x***ti**k*tka*w*’******kt********t****t******wi*****t
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subroutine deriv_psi2(f, jd, id, j, i, jmax, imax,
dpsi, dfdpsi)

implicit none

integer jd, id, j, i, jmax, imax
real £(jd, id), dpsi, dfdpsi

if(j .ne. 1 .and. j .ne. jmax)
dfdpsi = (£(3+1, i) - £(j-1, 1)) / (2.0 * dpsi)
if(j .eqg. 1)
dfdpsi = (£(3+1, i) - £(j, 1)) / dpsi
if(j .eg. jmax)
dfdpsi = (£(j, i) - £(j-1, i)) / dpsi
recurn
end

&

Cx*wi'x'x*****'k******!‘ti—**i***w****#****\\'*\I'************************\l’*t*******w

c
subroutine deriv_theta(f, jd, id, kd, J, i, k, Jmax, imax,
dtheta, dfdth)

implicit none

integer jd, id, kd, j, i, k, jmax, imax, ipl, iml
real f(jd, id, kd), dtheta, dfdth

ipl = 1 + 1

iml =1 - 1

if(i .eq. 1) iml = imax - 1
if(i .eq. imax) ipl = 2

dfdth = (£(j, ipl, k) - £(j, iml, k)) / (2.0 * dtheta)

return
end
C*at********rt**************i‘**i’*****l'*5\'k*********it***************i********
C
subroutine deriv_theta2(f, jd, id, j, i, jmax, imax,
dtheta, dfdth)

implicit none

integer jd, id, j, i, jmax, imax, ipl, iml
real £(jd, id), dtheta, dfdth

ipl = 1 + 1

iml = 14 - 1

if({i .eq. 1) iml = imax - 1
if(i .eqg. imax) ipl = 2

dfdth = (£(j, ipl) - £(3, iml)) / (2.0 * dtheta)

return
end
C***k***************1{*********H****\l‘*\k****i********'\I‘************ﬁ****t!*****
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