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Functional Analysis of Bub! 

The ability of an organism to live and grow is dependent upon cellular division. 

A cell contains all of the genetic information necessary for cellular function and 

propagation. To maintain homeostasis, it is essential for an organism to accurately 

transmit its genetic material during every cell division. The cell division also referred as 

the "cell cycle" consists of a sequence of distinct events that culminates in cellular 

division. The cell cycle consists of regulatory steps known as "checkpoints" that ensure 

the completion of earlier events before the initiation of later events in the cell cycle. One 

such regulation is the spindle checkpoint. The spindle checkpoint consists of a cascade 

of protein interactions, including Bub 1, that serve to ensure the proper and equal 

distribution of chromatids, or genetic information, during the process of cell division. 

Inactivation of cell cycle regulatory proteins via genetic mutations or deletions usually 

leads to aberrant regulation of the cell cycle. Deregulated cell cycle can in tum lead to 

uncontrolled cell division cycles that result in pathological conditions like cancer. 

The Cell Cycle 

An organism's genetic information is encoded by DNA found on its 

chromosomes. Correct cellular division requires that each chromosome exactly replicate 

and segregate its genetic information in order that the two resulting daughter cells might 

be genetically identical. This process is regulated by the cell cycle. 

The cell cycle consists of four phases, G 1 (gap 1), S phase (synthetic), G2 (gap 2), 

and mitosis. A cell enters G 1 phase immediately following the end of the previous cell 

cycle, and can spend anywhere from a few hours to a few years at this stage. G 1 phase is 
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followed by S phase during which DNA replication occurs. The S phase refers to the 

synthesis of each DNA molecule, or chromosome, resulting in sister chromatids that 

contain identical genetic information. The sister chromatids are physically linked at a 

structure known as the centromere. It is at the centromere that a proteinaceous complex 

called the kinetochore forms. The kinetochore serves as the attachment point for the 

microtubules that govern chromosome movement during mitosis. However, before 

mitosis occurs, the cell proceeds through G2 phase, by the end of which the cell's mass 

has doubled in size. 

Mitosis is the process of actual cell division. If all goes well, mitosis results in 

two daughter cells genetically identical to the parent cell. Mitosis is an elaborate process 

consisting of five distinct but continuous stages: prophase, prometaphase, metaphase, 

anaphase, and telophase. Prophase, the initial stage of mitosis, is marked by chromosome 

condensation, the beginning formation of the mitotic spindle, and the formation of 

centrosomes, or microtubule organizing centers that are positioned at opposite poles of 

the cell. The breaking of the nuclear membrane signals the beginning of prometaphase. 

In this stage, chromosomes attach at their kinetochores to microtubules of the mitotic 

spindle and begin to migrate to a point midway between the two spindle poles. In 

metaphase, the chromosomes are aligned at the equatorial plane of the cell. The sister 

chromatids are attached at their kinetochores to microtubules emanating from opposite 

poles. It is at this stage that the spindle checkpoint comes into play. 

Ifthe chromosomes are properly aligned and attached to opposing microtubules, 

as regulated by the spindle checkpoint, mitosis proceeds into anaphase. During anaphase, 

the sister chromatids separate at their centromere, becoming independent daughter 
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chromosomes. These daughter chromosomes move to opposite poles ofthe cell. The 

final stage of mitosis, telophase, is marked by the reformation of the nuclear membrane. 

Cell division is completed by the cleaving of cytoplasm, or cytokinesis, resulting in two 

complete, identical daughter cells. 

The Spindle Checkpoint 

The spindle checkpoint ensures the fidelity of chromosome segregation in mitosis. 

The correct segregation of chromosomes is of utmost importance to the life of both the 

cell and the organism. Incorrect segregation of chromosomes can lead to aneuploidy and 

genomic instability, both of which are hallmarks of cancer. 

The spindle checkpoint ensures the correct segregation of sister chromatids during 

mitosis by monitoring and ascertaining the correct attachment of chromosomes, at their 

kinetochores, to microtubules during metaphase. In the event of an unattached 

kinetochore, or lack of tension across a kinetochore, the spindle checkpoint is activated 

and arrests the cell cycle during the metaphase to anaphase transition. 

The presence of a kinetochore is necessary for spindle checkpoint activation. In 

studies involving yeast it was found the chromosomes whose centromeres lacked 

kinetochores did not arrest in mitosis, even in the presence of spindle damage. It is clear 

that if there is no kinetochore present, there will be no attachment of microtubules, or 

tension across chromosome. That the spindle checkpoint did not cause mitotic arrest in 

the absence of kinetochore, suggests that either a kinetochore or the components of the 

kinetochore are required for a functional checkpoint (Lew and Burke, 2003). Though the 

consequences of a failed checkpoint and incorrect chromosome segregation are quite 
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detrimental to proper cell division, the biological processes underlying this checkpoint 

are not completely understood, making the spindle checkpoint a hot topic of current 

molecular biology research. 

The spindle checkpoint is made up of a plethora of proteins that interact to affect 

the activity of the anaphase promoting complex. Though much has been elucidated about 

the activity of the spindle checkpoint, the exact workings of the checkpoint are still a 

matter of study and debate. At the top of this debate is the question, what activates the 

spindle checkpoint? 

Two major models exist as to what causes the activation of the spindle 

checkpoint. One model holds that the checkpoint is activated in response to an absence 

of tension across the kinetochore. The other model maintains that the checkpoint is 

active only in response to unattached kinetochores. The activation of the spindle 

checkpoint in response to a lack of tension across the kinetochore is supported by 

research in mantid spermatocytes (Amon, 1999). Mantid spermatocytes are 

genotypically XXY. In 10% of meioses, one of the X chromosomes is unpaired. These 

cells become permanently arrested in meiosis. However, if tension is applied on the 

unpaired X chromosome by external sources, a microneedle for example, the cell will 

enter anaphase (Lew and Burke, 2003). This data clearly supports the theory that a lack 

of tension across the kinetochore is sufficient to activate the spindle checkpoint and arrest 

the cell cycle. 

Research in budding yeast supports the second model of checkpoint activation. In 

budding yeast, if all kinetochores are attached, but tension is missing, anaphase still 

proceeds (Amon, 1999). In light of research supporting both models, one should not 
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assume that this is an either/or situation. Perhaps two different pathways of spindle 

checkpoint activation exist. Or perhaps the spindle checkpoint is activated by either 

unattached kinetochores, lack of tension, or both. 

Though a spindle checkpoint pathway is found in most eukaryotic organisms; 

however, the components and methods of the pathways, though similar, are not always 

the same. Nonetheless, research points to a protein signaling cascade being at the basis 

of the spindle checkpoint. 

Spindle Checkpoint Proteins 

The spindle checkpoint, and in fact, the entire cell cycle, is made up of a series of 

phosphorylation and dephosphorylation events. Phosphorylation serves as a signal for 

either the activation or deactivation of the proteins that regulate the cell cycle 

(Vanoosthuyse and Hardwick, 2003). Discerning the events involved in the spindle 

checkpoint requires an understanding of the proteins involved. One must discover the 

sequence of protein interactions that together achieve arrest of the cell before anaphase. 

Studies into the order and complexities of spindle protein interactions have not yet 

elucidated a clear set of events that affect mitotic cell arrest in the presence of unattached 

chromatids. 

Bub 1 is one of many proteins that make up the spindle checkpoint cascade. 

Research in yeast, Xenopus, mouse, and human cells has led to the discovery of many 

proteins that are involved in the spindle checkpoint. These proteins include Madl, Mad2, 

Mpsl, Bubl, BubRl, Bub3, ZwlO, Rod, Cdc2 and Cdc20. The exact role each of these 

proteins play in the spindle checkpoint has yet to be completely discerned. 
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While it is known that the activator of the signaling cascade is either an 

unattached kinetochore or lack of tension across a kinetochore, it is not yet known what 

protein senses the defect. Similarly, it is known that the target of the signal cascade is the 

anaphase promoting complex (APC), which exists in a complex with the protein Cdc20 

and has ubiquitin ligase activity (Arnon, 1999). However, the mechanism by which the 

signal gets to and inhibits this complex is still under consideration. In recent years, much 

has been discovered about the workings of the mitotic spindle checkpoint. 

Sister chromatids are held together by cohesin proteins. In order for sister 

chromatids to separate in anaphase, these cohesins must be cleaved. When all chromatids 

are properly aligned, the cohesin proteins are cleaved by the protease separase. However, 

until the cell is ready to proceed through this step, separase is inhibited by the protein 

securin. Securin is ubiquitinated and degraded by the APC-Cdc20, allowing the onset of 

anaphase (Lew and Burke, 2003). 

The spindle checkpoint is activated upon improper chromosome attachment at 

metaphase by an as yet undetermined method. It is known, however, that the spindle 

checkpoint delays anaphase by blocking the APC-Cdc20 degradation of securin. It is 

thought that the action of the APC-Cdc20 is inhibited by the binding of Mad2 to Cdc20. 

One hypothesis suggests that Mad2 exists in complex with Mad 1 and, in response to 

spindle damage Mad2 dissociates from the Mad1/Mad2 complex to form a new complex 

with Cdc20, thereby inhibiting the APC and blocking securin degradation and sister 

chromatid separation. It is also known that APC inhibition is spatially limited. In cells 

containing two mitotic spindles, a defect in one spindle does not inhibit the second 



Gentry 8 

spindle from proceeding to anaphase. This suggests that the proteins involved in the 

spindle checkpoint work only within a limited distance (Lew and Burke, 2003). 

While it is known that the spindle checkpoint blocks the APC and, therefore, 

sister chromatid separation, it is not known how the spindle checkpoint is dismantled. As 

the spindle checkpoint is responsible for inhibiting APC in response to spindle damage, it 

follows that the spindle checkpoint must be dismantled in order to remove APC 

inhibition and allow anaphase. One theory suggests that upon correction of chromosome 

alignment, spindle checkpoint proteins diffuse away from the kinetochore. However, it is 

just as likely that there is motor-assisted transport of checkpoint proteins away from the 

kinetochore (Yu, 2002). More research is needed in order to discover the method of 

checkpoint disassembly. 

The Role of Bub! 

The role of Bub I in the spindle checkpoint cascade is not completely understood. 

Much of what is known about the role of Bub 1 in the spindle checkpoint comes from 

studies of budding and fission yeast and the frog Xenopus. Findings involving Bubl in 

these organisms are not always consistent; therefore, the role of Bub 1 in higher mammals 

must be further studied. 

Bub 1 is known to be a checkpoint kinase that localizes to the kinetochore during 

mitosis. Bub 1 is needed for the localization of other spindle checkpoint components in 

mitosis as well as for maintaining sister chromatid cohesion during meiosis I. In studying 

fission yeast, Bub 1 was found to have both phosphorylation and kinase domains 

(Vanoosthuyse and Hardwick, 2003). The kinase activity ofBubl is on the protein's C-
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terminus. Bub1 kinase activity is required for spindle checkpoint function. This was 

shown by generating point mutations in a critical lysine residue of the Bub 1 kinase 

domain. These mutants did not exhibit kinase activity and showed improper spindle 

checkpoint function (Yamaguchi, 2003). 

The phosphorylation domain ofBubl, found on the protein's N-terminus, 

contains four phosphorylation sites for the protein Cdc2, a cyclin dependent kinase 

which, in fission yeast, exists in complex with the APC. In fission yeast, Bub 1 must be 

hyperphosphorylated for full checkpoint response; however, hyperphosphorylation is not 

necessary for localization ofBubl to the kinetochore. Interestingly, fission yeast strains 

that harbor Bub 1 mutations at the four consensus Cdc2 phosphorylation sites are still 

phosphorylated to some extent. This tells us that Bub 1 is also a substrate for one, if not 

several, other kinases and that there are other potential phosphorylation sites within the 

Bub1 protein (Vanoosthuyse and Hardwick, 2003). In fission yeast as well as in human 

cells, Bub1 is phosphorylated only in response to spindle damage. Contrastingly, 

Xenopus Bub1 is constitutively phosphorylated, and Bub1 in budding yeast is 

phosphorylated only during mitosis (Vanoosthuyse and Hardwick, 2003). 

Bub l' s exact position in the spindle checkpoint cascade is a matter of much 

speculation. Bub 1 is thought to act upstream of the Mad proteins and the APC-Cdc20 

complex (Amon, 1999). Evidence suggests that at some point in the cascade Bub 1 

physically associates with and phosphorylates Bub3 and Mad 1; however, many theories 

also support Bub1 being in complex with Bub3 and Mad 1 , Mad2, and Mad3. And in 

Xenopus, Bubl is thought to recruit Madl, Mad2, and Bub3 to the kinetochore 

(Yamaguchi, 2003). A simplified view ofthe spindle checkpoint has Bubl 
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phosphorylating Mad 1. The phosphorylation event triggers the separation of Mad 1 from 

the MadllMad2 complex. Mad2 then binds to the protein Cdc20. This binding 

inactivates the APC, effectively blocking the onset of anaphase. 

Taylor et al. (2001) studied Bubl in human cell lines. They found that Bubl 

localizes to the kinetochore during prometaphase. However, this localization can be 

asymmetrical depending on microtubule attachment. If, of a pair of sister chromatids, 

one is properly attached to microtubules and the other is not, Bub 1 stains weaker at the 

kinetochore closer to the spindle, suggesting that Bub 1 localizes in higher concentrations 

at the unattached chromatid. After a 30 minute treatment with the microtubule 

depolymerizing drug nocodazole, the amount of Bub 1 localizing at kinetochores 

increases. This is expected, as Bub 1 is known to localize to kinetochores in response to 

spindle damage. Interestingly, levels of Bub 1 at kinetochores also increased after 

treatment with Taxol, a drug which causes loss of microtubule tension. This data 

supports the idea that the spindle checkpoint is activated in response to either, or both, 

improper microtubule attachment or lack of tension across the kinetochore. 

Taylor et al. (2001) also examined the localization of Bub 1 at various stages of 

the cell cycle. They found that Bub 1 localized to kinetochores during prophase, 

prometaphase, and metaphase, but not during anaphase. This suggests that, in humans, 

Bub 1 dissociates from the kinetochore once chromosomes are properly aligned. 

Though Bub l' s role in the cell cycle is not completely understood, its importance 

is unquestionable. Bub 1 is necessary for an active spindle checkpoint. Without an active 

checkpoint, cells are susceptible to chromosomal instability and aneuploidy which can 

lead to cancer. In light of this, the role that Bub 1 plays in cancer formation and 
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proliferation is currently under investigation. A drastically simplified view ofthe spindle 

checkpoint and the role of Bub 1 is shown. 

Attached kinetochore 

===:::::>-

(MT) 

Active 

Bubl and Cancer 

Unattached 
kinetochore Inactive APe complex 

Mitotic exit & 
Cytokinesis 
regulators? 

Chromosomal 
instability ->Cancer? rIll 

Bub1 

Inactive 
Active 

Cancer is, by definition, uncontrolled growth of abnormal cells. Many cancers 

spring from improper cell division. Inappropriate segregation of chromosomes during 

mitosis can lead to a loss or gain of chromosomes in the daughter cells. This promotes 
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genomic instability, a well known phenotype of cancer. Therefore, the role of the spindle 

checkpoint in ensuring the fidelity of genetic transmission is imperative. 

Genomic instability is often the result of chromosomal instability, a phenomenon 

that leads to aneuploidy, or abnormal chromosome number in a cell (Cahill et aI., 1998). 

Aneuploidy can result from many different chromosomal aberrations including gains or 

losses of entire chromosomes or chromosomal parts, rearrangements of chromosomes or 

parts of chromosome, or translocations, deletions, or amplifications of the nucleotide 

bases that make up chromosomes (Jallepalli and Lengauer, 2001). Chromosomal 

instability is often the result of a non-functioning mitotic checkpoint (Cahill, 1998). 

Cancer cells often show mutations in, or irregular expression of, mitotic 

checkpoint proteins. Checkpoint proteins that have been implicated in cancers include 

p53, A TM, CHK2, MAD 1, MAD2, securin, and, of course, Bub 1 (J allepalli and 

Lengauer, 2001). Recent research has explored the prevelance and role of Bub 1 in 

colorectal cancers. In one study, human colorectal cancer cell lines were treated with 

nocodazole, a drug that disrupts microtubules. Treatment of normal cells with 

nocodazole leads to activation of the spindle checkpoint and mitotic arrest at metaphase. 

However, in colorectal cell lines that exhibit chromosomal instability, mitotic arrest did 

not occur. Cells continued through the cell cycle, leading to aneuploidy. The same 

results occurred when the cell lines were treated with co1cemid, another microtubule 

blocking drug (Cahill et aI., 1998). 

The abovementioned study showed that the colon cancer cell lines deficient for 

mitotic arrest were also mutant for the Bub1 gene. One cell line contained a 197 base 

pair deletion that spanned codons 76-141 of the Bub1 gene. This deletion further led to a 
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frameshift mutation of the following codons (Cahill et aI., 1998). This mutation affected 

codons of the kinetochore localization domain of Bub 1, shedding light on the 

chromosomal instability that is characteristic of these colon cancers. As previously 

discussed, Bub 1 localization to the kinetochore is necessary not only for localization of 

other checkpoint proteins, but also for an active mitotic checkpoint. 

Another study into the role of Bub 1 in human colorectal cancers found that cell 

lines containing a Bub 1 mutation were heterozygous. In other words, these cancer cells 

contained one wild-type, or normal, copy of Bub 1, and one mutated form of the gene. 

The Bubl mutations were isolated and cloned. Later, the cloned mutations were 

introduced into mitotic checkpoint proficient cells. In this situation, the mutated form 

was able to inactivate the spindle checkpoint. As two wild-type copies of Bub 1 were also 

present in the cell, this data suggests that Bub 1 mutations have a dominant negative effect 

(Jallepalli and Lenguaer, 2001). 

Chromosomal instability is also typical of breast, prostate oropharynx, lung, and 

pancreatic cancers (Jallipalli and Lengauer, 2001). Hempen et at. (2003) found Bubl 

mutations in pancreatic cancer cells that did not have an active mitotic checkpoint. These 

mutations included two separate amino acid substitutions in exon 8 of the same allele. 

Exon 8 of Bub 1 is involved in the region of the gene that serves as a nuclear-localization 

signal. As before, these mutations were heterozygous, providing further support for 

Bubl mutations' behaving in a dominant negative fashion. 

Cancer rarely results from a single genetic mutation. Instead, a cancer phenotype 

usually involves several gene mutations or the abrogation of several genetic pathways. 

Hence, these studies, while implicating Bubl in cancer, must be taken in context. The 
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studies were done on cancer lines which may include various other gene mutations in 

addition to mutations in Bub 1. Therefore, more research into the role of Bub 1 in cancer 

is necessary. 

A Murine Bubl Model 

In order to further study the role of Bub 1 in the spindle checkpoint and cancer 

formation in higher organisms, a Bub 1 knockout mouse model was generated by the 

laboratory of Sundaresan Venkatachalm here at the University of Tennessee. 

Generation of Bubl deficient mice: 

In order to study the role of Bub 1 in cancer formation, we have generated Bub 1 

deficient mice using the Baygenomics genetrap embryonic stem (ES) cell resource 

(Stryke et al., 2003). One of the ES cell clones that had been characterized to have a 

gene trap insertion within the Bub 1 gene was represented in the Baygenomics ES cell 

library. The Bubl trapped ES cells were obtained from Baygenomics and analyzed by 

peR to confirm Bub 1 disruption by using primers that were specific for bub 1 and the 

gene-trap sequences. Figure 2 shows the insertion site of the gene-trap vector within the 

bub 1 gene and the primer positions. The validated ES cells were used for blastocyst 

injections and chimeric founder mice were generated by microinjection services provided 

under a subcontract from the University of Massachusetts Medical School transgenic 

core. Out of the seven high degree chimeras obtained from the blastocyst injections, our 

initial analysis of the first two litters from founder males indicate that three of the 
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chimeric founders have produced agouti germ line litters for Bub 1 deletion. Genotype 

analyses of tail clips from the first two litters of F 1 agouti mice indicate an equal 

distribution of wild type and heterozygous offspring with no obvious developmental 

defects in the heterozygous mice. The peR based genotype analysis of five Fl 

heterozygous and wildtype offspring is also shown below the targeting scheme. 

... Gene-trap primer 

~-Geo Gene trap 

Bub1 gene 

\ 
Exon 8 Exon 9 Exon 10 ... 

Bub1 primers 

En2: Engrailed 2 intron sequence SA: Splice Acceptor site 
~-Geo: ~-gal-neomycin fusion gene SV40pA: SV40 poly A 

Trap+ Bub1 primers 

M 1 2 3 4 5 <samples> 

Bub1 primers 

M 1 2 3 4 5 

Figure Schematic representation of Bub 1 disruption in ES cells and genotype analysis of 
Fl agouti germline offspring. An example of the genotype analysis ofFl offspring by 
peR is shown below the scheme. 
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The Effect of Bubl mutation on Cell Cycle Progression 

To study the effect of Bubl deficiency on cell cycle progression, experiments 

were performed on mouse embryonic fibroblasts (MEFs) that were wild-type (+1+) and 

heterozygous (+/-) for Bubl. 

Hypothesis: Bub] plays a principal role in regulating the spindle checkpoint pathway. 

Deletion of Bub] will lead to an improper mitotic spindle checkpoint. 

The reasoning behind this hypothesis has its basis in the role that Bub 1 has been 

assigned in the spindle checkpoint. From previous studies in yeast, Bub 1 was 

characterized to be necessary for proper mitotic checkpoint functioning. Heterozygous 

MEF cells are haplo-insufficient; they contain only one functioning copy of the Bubl 

protein whereas wild-type MEFs contain two functional copies. It follows that the cells 

with only one functioning copy of Bub 1 will be less proficient at arresting the cell at the 

metaphase-anaphase transition in response to spindle damage than will wild-type cells 

with two functioning Bub] genes. 

To test this hypothesis, wild-type and heterozygous MEFs were generated by 

mating a founder knockout male to a wild-type female. The pregnant female was 

sacrificed 13.5 days post coitus and her embryos cultured to generate Bub! +/+ and 

Bubl+/- MEFs. 

The MEF cells were cultured through two passages. Both wild-type and 

heterozygous passage two cells were then treated with lOOng/mL of the microtubule 
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depolymerizing drug nocodazole for a period of 24 hours. Nocodazole was diluted in the 

chemical DMSO to arrive at a concentration of 100ng/mL. Therefore, a set of control 

cell plates were treated with an equal volume ofDMSO (0.1 %) to standardize the 

experiment. Cells from plates not treated with nocodazole were also cultured to serve as 

a control. 

Untreated cells (Ohr) and cells treated for 24 hours with DMSO and nocodazole 

were collected and fixed with 70% ethanol. Then, cells were stained with propidium 

iodide and analyzed for DNA content using a Coulter EPICS flow cytometer. 10,000 

cells of each treatment and cell type were analyzed. 

Flow Cytometry Results 
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Results 

Flow cytometry provides data on the percentage of cells that are in the different 

phases of the cell cycle. Both untreated and DMSO treated wild-type and heterozygous 

cells showed the majority of their cells in the G 1 phase. This data is consistent of a 

normal cell cycle that does not encounter spindle damage. 

Contrastingly, cells treated with nocodazole show the majority of their cells in the 

G21M phase. This data is consistent with a functioning spindle checkpoint. Upon 

damage of microtubules, as would occur in the prescence of nocodazole, cells with a 

proper spindle checkpoint should arrest in mitosis at the metaphase-anaphase transition to 

ensure that improper chromosome segregation does not occur. 

However, while both wild-type and heterozygous cells treated with nocodazole 

tended to accumulate in G2/M, wild-type cells did so to a greater extent than did 

heterozygous cells (50% as compared to 42%). Put another way, wild-type cells had a 

lower percentage of cells in the G 1 phase than did heterozygous cells (9%-13%). These 

data indicate a limited ability of Bub 1 heterozygous cells to evade the spindle checkpoint 

and proceed to G 1 phase of the cell cycle and provides preliminary support for the 

hypothesis that Bub 1 plays a pivotal role in the spindle checkpoint. 

The Future 

The information presented here provides only a basic background into the 

research that has been done thus far on the spindle checkpoint in general, and, more 

specifically, the role of Bub 1 in the spindle checkpoint. Future research in murine Bub1 

knockouts should provide further insight into Bub1 's role in regulating mitosis in higher 
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vertebrates. We plan to generate cell lines that are completely lacking the Bubl protein 

to further unravel the effects of Bub 1 deficiency on cell cycle progression. In addition, 

heterozygous mice will also be monitored for cancer susceptibility over a period of two 

years. 
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