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Abstract 

The ability to manipulate individual molecules is of fundamental 
importance in the development of the next generation of nanoscale devices. One 
of the major difficulties encountered in the fabrication of such devices is the 
creation of the interface between macroscopic structures and individual 
molecules. This project involved the fabrication of nanoelectrodes by precise 
electrolytic deposition of metal onto a substrate. The substrate consisted of two 
gold electrodes separated by a distance of approximately one micron, fabricated 
using electron beam lithography. Metal was then deposited on the tip of one of 
the electrodes by applying a potential across the gap using a programmable 
pulse current source while under an electrolytic solution containing metal 
compounds. The focused electric field generated across the gap between the 
two electrodes theoretically allows for deposition of metal only at the tip of the 
negative electrode. The amount and location of the deposition was monitored in 
situ using an Atomic Force Microscope (AFM). The goal of this project was to 
demonstrate the ability to create a nanometer-scale gap suitable for molecular 
applications. 
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Introduction 

The goal of this project was to develop a repeatable and precisely 

controlled method to create electrodes with molecular scale (1-10 nanometers) 

distance between terminals. Even with the most precise lithographic techniques 

it is very difficult, expensive, and time consuming to produce electrodes 

separated by distances of less around 25 nm 1. This type of device is expected to 

be useful primarily because it provides new opportunities and abilities to 

manipulate and measure single molecules, nanoparticles, and possibly even 

atoms. The basic techniques used to fabricate these electrodes (electron-beam 

lithography and electrochemical deposition) are well suited to large scale 

fabrication processes, suggesting that such electrodes could be produced in bulk 

quantities and used to aid in a variety of nanoscale experiments and devices. 
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Methods and Materials 

The initial structure was constructed using electron beam lithography to 

create gold electrodes on a silicon oxide substrate. The gold was deposited in 

the shape of large gold contact pads connected to the smaller microelectrodes. 

The electrodes and gold pads were constructed by depositing 10 nanometers of 

titanium followed by 40 nanometers of gold onto the silicon oxide surface using 

chemical vapor deposition. Initially the microelectrodes were approximately 50 

microns long and 1.5 microns wide, with a distance of 1 micron between the tips 

of the electrodes. Conductive silver adhesive was used to connect wires to the 

gold contact pads. The device was then mounted on an AFM puck using torr 

sealant. Figure 1 depicts the basic structure and scale of the microelectrodes 

before any deposition was attempted. 

Initially 100 mL solutions of 10 mM Ni(1I )CI2, 10mM Pt(NH3)4Cb, 10 mM 

Co(II)Cb, 10mM Cu(II)Cb, and 10mM KAu(CNh were prepared, with the 

KAu(CN)2 also containing 1 M KHC03 and 0.2 M KOH to buffer the solution to a 

basic pH (approximately 10). The 10 mM Ni(II)CI2 solution was later buffered to 

basic pH also. Deposition was accomplished by using an HP-72J programmable 

voltage source to apply a potential across the gap between the electrodes while 

the device was under one of the above electrolyte solutions. During the 

deposition reaction the metal ion accepts an electron from the negative electrode 

and forms a neutral, stable metal atom on the surface of the electrode. For 
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deposition a negative potential was applied at one electrode with the other 

electrode being set up as ground. Although the focus for this experiment was 

deposition, it is obviously possible to deplete the electrodes by applying a 

positive potential across the gap in a suitable solution. A digital oscilloscope and 

counter were used to monitor the output from the pulse generator and ensure 

that it was functioning properly and as programmed. A Digital Instruments 

multimode AFM, operating in contact mode, was used in concert with a liquid cell 

sample holder to monitor the electrodes during deposition. 
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Results and Discussion 

Initially the deposition of gold, platinum, nickel, and cobalt was verified 

using the 10 mM solutions described earlier and potentials of approximately -1.0 

to -1.5 V, with pulse durations of 100-300 rnicroseconds and pulse frequencies 

on the order of 3 kHz. The results obtained using nickel, of interest because of 

its use as a catalyst for nanotube growth, are of particular interest and are 

discussed in greater detail later on. While initial deposition attempts were 

successful in depositing metal onto the negative electrode, the deposition 

occurred all along the electrode in a nearly equal amount, as opposed to the 

desired goal of depositing only on the tip of the electrode axially towards the 

opposing (ground) electrode. An example of this type of deposition is given in 

figure 2. Several possible reasons for this were explored. 

First was the possibility that the connection between the macrostructure 

and microelectrodes was not complete for one of the electrodes. If, for instance, 

the circuit between the negative wire and negative electrode was not connected 

all the way out to the tip of the electrode the electric field generated by the 

voltage source would extend from the area of the disconnect to the ground 

electrode. Ideally this electric field should extend axially from the tip of one 

electrode to the tip of another. It was found to be possible to measure the 

impedance of the connection between the connecting wire and the 

macrostructure directly beside the microelectrode using a multimeter and a small 

wire. Using this measurement it was then possible to determine whether or not 
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the bulk connection was faulty, with an impedance (including some contact loss 

due to poor measuring wire connection) of between 5-150 ohms expected for an 

intact half-circuit (from one wire to a corresponding gold pad right before the 

microelectrode). Inspection with the AFM could then be used to verify that the 

actual microelectrode structure was intact and not suffering from a gross defect 

(see Figure 3). Using these techniques several macro-structural defects created 

during initial fabrication or during post-lithographic handling were found, and, 

when possible, repaired with a conductive silver liquid. 

Although inspecting the macro- and micro- structures carefully for defect 

helped to insure that no gross connection failure was causing irregular 

deposition, even structures verified to be intact in every way still exhibited 

deposition all along the electrode, although usually in greater amount at the tip of 

the electrode. One possible explanation for this behavior was that deposition of 

material at the gap quickly depleted the surrounding solution of metal ions, 

resulting in a deficit of ions in the vicinity of the gap. Therefore deposition all 

along the electrode could occur in order to equalize the charge building up on it. 

To account for this effect pulse times were shortened to 5-20 microseconds and 

pulse frequencies moved to 500-1000 Hz. As seen in Figures 4 and 5 these 

modifications resulted in deposition occurring primarily at the tip of the electrode 

but still also somewhat on the sides and top of the electrode. In addition to this 

problem, it was also noticed that as many consecutive experiments were 

performed with the NiCI2 solution the ground electrode was being depleted (see 

Tables 1 and 2 and Figures 6,7, and 8). 
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One possible explanation is that the voltage source was not perfectly 

grounded. Even a slightly positive potential occurring at the 'ground' terminal 

could have, over a long period of time (in comparison with the very short time­

frame for negative potential application), caused gradual depletion of the ground 

electrode. This was easily corrected by simply grounding the voltage generator's 

'ground' terminal to a true earth ground. One consequence of this depletion is 

that as experiments were performed to determine the optimum settings for the 

voltage source to maximize the precision of the deposition the ground electrode 

was being slowly depleted, changing the characteristics of the electric field 

between the two electrodes. Experiments to verify that this depletion problem 

has been solved by grounding the voltage source are still ongoing. 

When the 10 mM NiCb solution was used to deposit nickel onto an 

electrode it was observed that almost immediately the deposited nickel was 

reabsorbed into solution. Figures 9 and 10 demonstrate this process. Typically 

within 30 seconds of the deposition of a similar amount as in Figure 9 all Ni 

would have dissolved away, leaving the electrode in essentially the same 

condition it was in pre-deposition. It was determined that the cause of this solid 

Ni instability in solution was due to the slightly acidic pH (about 6.85) of the 

solution. By changing the pH to approximately 9.9 using a buffer solution it was 

possible to get the Ni to remain stable after deposited on an electrode. Despite 

the eventual undesirability of having unstable nickel, it proved extremely useful 

experimentally because it allowed one to test voltage source settings or solution 
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concentrations repeatable using the same expensive-to-fabricate electrode 

structure. 
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Conclusion 

The deposition process definitely functions with a variety of metal ions, 

and can be shown to be fairly selectively on the tip of the electrodes, but the 

desired precision deposition on the tip of the electrode only has not been 

demonstrated so far. Some problems with the deposition setup and process 

have been found and presumadely corrected but further experimentation is 

needed to insure that with an intact and 'functional macrostructure, adequate time 

given for diffusion to occur between pulses, and grounding problems solved that 

reproducible deposition occurs only axially out from the tip of the negative 

electrode, not on the sides that has occurred previously_ Having shown that it is 

possible to deposit nickel, and, by nl0difying the pH of the solution make the 

nickel remain on the electrode, if precise deposition on the tip of the electrode 

could be achieved these electrodes could be used for one of the many potential 

applications for nanoelectrodes, nanotube growth. 
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Figures 

Figure 1: Overall geometry of the microelectrodes and connecting gold structure 
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Figure 2: Initial Deposition Attempt (using 10 mM Pt(NH3)4CI2) 
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Figure 3: Defective microelectrode. Gap approximately 20 microns across 
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Figure 4: Pre-deposition condition of device #6 
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Figure 5: Deposition of Ni in 10 mM NiCI2 using 150020 microsecond pulses at 1 KHz 
(Device #6) 



16 

Figure 6: Pre-experiment condition of device #4 



Figure 7: Condition of device #4 after multiple deposition and dissolution of Ni (top 
electrode negative, bottom electrode ground) 
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Figure 8: Condition of device #6 after multiple deposition and dissolution of Ni (top 
electrode negative, bottom electrode positive) 
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Figure 9: Massive Ni deposition onto device #2 (20,000 100 microsecond pulses at -1.SV) 
Time = 0 seconds 
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Figure 10: Device 2 at Time = 10 seconds 
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Tables 

I Ground Electrode Depletion 
Device 4 

I Negative Electrode Height 

[pre-deposition (nm) post-deposition (nm) Difference (nm) % Diff 
I 68.114 82.66 14.546 21% 
i 72.431 74.748 2.317 3% 
i 66.046 84.507 18.461 28% 
! 

69.331 84.098 14.767 21% i 

67.388 83.417 16.029 24% 

70.904 90.21 19.306 27% 
67.974 92.18 24.206 36% 

70.827 82.417 11.59 16% 

67.509 83.419 15.91 24% 

70.657 86.523 15.866 22% 

STDEV 2.0230904 4.725118704 5.67407 8% 
MEAN 69.1181 84.4179 15.2998 22% 

95% Conf. 1.253899523 2.928600763 3.516755 5% 
Ground Electrode Height 

pre-deposition (nm) Ipost-deposition {nm' Difference (nm \ % Diff 

67.112 25.51 -41.602 -62% 

67.897 23.076 -44.821 -66% 

67.65 17.79 -49.86 -74% 
68.236 25.51 -42.726 -63% 

68.653 26.183 -42.47 -62% 

67.481 25.843 -41.638 -62% 

67.388 23.833 -43.555 -65% 

68.653 25.093 -43.56 -63% 

72.193 21.399 -50.794 -70% 

65.954 24.258 -41.696 -63% 

STDEV 1.636165168 2.581300587 3.356993 4% 

MEAN 68.1217 23.8495 -44.2722 -65% 
95% Conf. 1.014085541 1.599874912 2.080644 3% 

Table 1: Change in height of ground and negative electrodes (deposition on negative, 
depletion on ground) for device #4 
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Ground Electrode Depletion 
I Device 6 

Negative Electrode Height 

pre-deposition (nm) post-deposition (nm) Difference (nm) % Diff 

54.966 96.425 41.459 75% 

57.773 102.113 44.34 77% 

62.092 80.733 18.641 30% 

62.186 88.116 25.93 42% 

53.284 88.284 35 66% 

58.673 81.574 22.901 39% 

58.004 83.587 25.583 44% 

60.428 86.945 26.517 44% 

64.118 87.951 23.833 37% 

58.33 90.717 32.387 56% 

STDEV 3.332353563 6.567365043 8.380801943 17% 

MEAN 58.9854 88.6445 29.6591 51% 

95% Conf. 2.065373126 4.070414202 5.19437172 10% 

Ground Electrode Height 
pre-deposition (nm) post-deposition (nm) Difference (nm) % Diff 

54.803 23.917 -30.886 -56% 

59.831 33.905 -25.926 -43% 

60.265 25.26 -35.005 -58% 

55.291 23.247 -32.044 -58% 
I 

56.648 22.991 -33.657 -59% 

64.027 25.344 -38.683 -60% 

52.126 27.861 -24.265 -47% 

47.839 20.726 -27.113 -57% 

62.684 28.716 -33.968 -54% 

55.978 25.344 -30.634 -55% 

STDEV 4.909528599 3.693857618 4.446132763 6% 

MEAN 56.9492 25.7311 -31.2181 -55% 

95% Conf. 3.042896931 2.289431211 2.755686919 3% 

Table 2: Change in height of ground and negative electrodes (deposition on negative, 
depletion on ground) for device #6 
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• A set of gold electrodes is fabricated on a silicon 
oxide substrate using electron-beam lithography and 
vapor deposition with an initial distance between 
electrodes of approximately 1 micron. 

• While under a metal-containing electrolyte solution 
such as NiCI2, a potential is applied between the 
electrodes, setting up a strongly localized electric 
field between the tips of the electrodes. 

• If a negative potential is used, deposition will occur 
only on the tip of the negative terminal as electrons 
are donated to the Pt ion in solution, likewise a 
positive potential results in depletion at the positive 
terminal. 
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Applications 

• Controllable nanotube placement at specific 
sites by deposition of Nickel, a catalyst for 
nanotuoe growth. 

NA sequencing (LDRD proposal already 
suomitted). 

olecular applications. 
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