
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative

Exchange

University of Tennessee Honors Thesis Projects University of Tennessee Honors Program

Spring 5-2001

Modeling of a Two-Dimensional Airfoil Using
Boundary Element Method
Brent Derek Weinberg
University of Tennessee-Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj

This is brought to you for free and open access by the University of Tennessee Honors Program at Trace: Tennessee Research and Creative Exchange. It
has been accepted for inclusion in University of Tennessee Honors Thesis Projects by an authorized administrator of Trace: Tennessee Research and
Creative Exchange. For more information, please contact trace@utk.edu.

Recommended Citation
Weinberg, Brent Derek, "Modeling of a Two-Dimensional Airfoil Using Boundary Element Method" (2001). University of Tennessee
Honors Thesis Projects.
https://trace.tennessee.edu/utk_chanhonoproj/503

https://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu/utk_chanhonoproj?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu/utk_chanhono?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu/utk_chanhonoproj?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F503&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

., , UNIVERSITY HONORS PROGRAM

SENIOR PROJECT - APPROVAL

Name: Bre '"-T We,' '" b....1
College: E.~iV\~~ V" ~~

PROJECT TITLE: Mociell'V:; 0+ ~ Two-O,'"",-.f!."'-'("ol'to.-/ A,'rh,,'f IA.J'7 8ollt~JQ7

E/~W\.~ VI... f Meft..oJ

I have reviewed this completed senior honors thesis with this student and certify that it
is a project commensur e with honors level undergraduate research in this field.

Comments (Optional):

Modeling of a Two-Dimensional Airfoil using Boundary Elenlent Method

Brent D. Weinberg

Mentor: Dr. Joe Iannelli

Senior Honors Project

May 7,2001

Table of Contents

Abstract ... 3

Introduction ... 4

Basic Considerations ... 6

Specific Considerations .. 9

Procedure .. 14

"c" Code ... 15

Joukowski Transfof111ation .. 1 7

Works Cited .. 31

Appendix A: Code .. 32

Weinberg 3

Abstract

Most external flow situations, specifically that of air around a thin airfoil with a low

mach number, can be specified as irrotational and inviscid flow fields. Since for all such fields

Laplace's equation is always satisfied, a system of partial differential equations describing the

flow can be solved for a solution that is both useful and unique. Sin1ulating the desired cross

section as a series of nodes and boundary elements and then manipulating the results into a

desired form elucidates the pressure distribution across the airfoil as well as the coefficent of lift.

However, solution of the system is nonunique unless Kutta's condition is observed on the trailing

edge of the airfoil; in other words, the velocity of the fluid at the trailing edge of the airfoil is

equal to zero. By observing this condition the solution becomes unique. One method that can be

used to evaluate this technique is by selecting specific 10ukowski airfoil profiles that have been

solved analytically and comparing the computational solution to the analytical result. Once the

technique and differential equation solver have been proven to be accurate, it can then be applied

to any variety of internal or external flows that are irrotational and inviscid. This project uses a

boundary element differential equation solver written in C to solve for this unique solution and

then determine the corresponding pressures and lift coefficient for the configuration and velocity

field. Some difficulties in obtaining and evaluating correct results occurred, and they are

presented here along with some the results of the project.

Weinberg 4

Introduction

In the solution of fluid mechanics problems, analytical solutions are very difficult and

often impossible to obtain directly. For this reason, empirical analysis and numerical techniques

allow for analysis of situations far more complex than would be otherwise achievable. In the

numerical analysis of fluid situations, two main approaches exist: the finite element method or

the boundary element method.

The finite element consists of dividing the entire flow field (or the portion which is to be

analyzed) into small but finite elen1ents over which the flow can be approximated. These finite

elements can then be assembled into a mesh and the desired variables solved for by assembling a

large number of simultaneous equations. The solution of these simultaneous equations then

yields a numerically approxin1ated value at each node of the generated mesh. This solution

involves very intricate mesh generation and arrives at a solution in much the same method that

would be used in a solid finite element modeling analysis. Finite element modeling of flow

fields can be done in either two or three dimensions and tailored to suit the complexity of the

problem.

The second analysis method is the boundary element method, in which only the boundary

of the flow field is considered. In this technique, this boundary is broken up into small segments

which each contribute some effect to the entire flow field. By selecting appropriate boundary

conditions and solving for the values on each of the boundary elements, the entire state of the

boundary is then known. To calculate values of the flow field at positions that are not along the

boundary, each boundary elen1ent can be taken as contributing to the state of the flow depending

on its position. In this method, the determination of the entire flow field is accomplished by

solving for the values only along the flow boundary. In many situations, such as in the flow of

Weinberg 5

air over an airfoil, flow along the boundary is the most important consideration (Munson 373).

The use of the boundary element method is quite useful and is the procedure considered in this

project.

In the use of the boundary element method, two main methods exist in solving for the

flow field. One method involves considering "'boundary sources, doublets and vortices of

appropriate intensity (Iannelli 1)," while the method in this paper uses the value of the potential

functions and the normal derivatives of these potential functions on these boundaries. This

project investigates the use of this second method, or use ofpotential function values along the

boundary of an airfoil in order to solve for the flow field around an airfoil. After solving the

flow field in this manner, associated values of interest, such as the pressure distribution across

the airfoil and the associated coefficient of lift can also be determined.

This paper uses two main elements, enforcement of Laplace's equation along the

boundary in conjunction with Kutta's condition along the trailing edge of an airfoil to determine

the velocity at each point along the airfoil. From the velocity, associated values for pressure and

lift are then evaluated.

Weinberg 6

Background

Basic Considerations

In the consideration of the use of the boundary element method (BEM) to determine air

flow around an airfoil, two major conditions are enforced in this method. First, the flow is

considered to be a true "potential flow." This assumption is a fairly drastic one in that few fluid

mechanics situations are entirely incompressible, irrotational, and inviscid. Second, Kutta's

condition is taken to hold true for the flow as it is considered in this simulation. This condition

specifies that the velocity of the flow along the trailing edge be zero, or stated otherwise, that the

stagnation point along the airfoil coincides with the rear edge of the airfoil.

The assumption that the flow around an airfoil is a "potential flow" means that the flow

can be considered incompressible, irrotational, and inviscid. Incon1pressibility states that the

density of the fluid remains constant in all situations that are considered.

p = constant

Liquids and solids are most often considered incompressible because a change in density

requires a very high change in pressure, and for most situations the pressure change is not

significant to affect the density. While density changes in a gas require much smaller pressure

changes than solids or liquids, gases can also be considered incompressible if changes for small

changes in pressure. Generally, this assumption will hold true within a reasonable accuracy for

any flow with a Mach number less than 0.3 (Munson 141). For flows with Ma < 0.3, the

incompressible solutions most often differs from the compressible solution by < 2%. Assuming

that the fluid is inviscid is a similar simplification. Although no real fluids have a zero viscosity,

fluids can often be considered to have zero viscosity because pressure effects so thoroughly

dominate viscosity forces. In the consideration of an airfoil at low velocities, this assumption is

Weinberg 7

quite valid. The last main assumption is that of irrotational flow. In order for a flow to be

irrotational, the derivative of the y-component of the velocity in the x-direction must be equal to

the derivative of the x-component of the velocity in the y-direction.

d d
-v =-u
dx dy

x component of velocity u

y component of velocity v

Again, while most flows are not irrotational, they can be considered irrotational when the

rotation generated by viscous effects is small. For most flows, the flow is largely irrotational

outside of sonle boundary layer in which viscous effects dominate. In this paper, all flows are

considered to be ideal, i.e. incompressible, irrotational, and inviscid.

Application of Kutta's condition along the trailing edge completes the general conditions

that make solution of the flow field using the BEM possible. Enforcement of Kutta's condition

along the trailing edge of the boundary makes the solution both unique and meaningful, which is

necessary for the successful solution of the flow field around an airfoil. Without successful

implementation of this stipulation, the solution is neither. As was shown by 10ukowski, a

rounded airfoil with a pointed trailing edge has only one possible irrotational solution, and

successful implementation of the Kutta condition ensures that the code arrives at that solution

rather than a generally uninformative arbitrary solution. In his famous book, Theory of Flight,

Richard von Mises explains the essential elenlents of Kutta's condition in terms of the surface

vorticity:

It can easily be proved, also, that when the cross section of the sheet is curved

and if the vorticity is not uniformly distributed, the velocity at the ends

Weinberg 8

becomes infinite unless the vortex density here is zero Kutta's condition

stipulating a finite velocity at the trailing end therefore implies that the vortex

density r' is zero here (von Mises 210).

While Kutta's condition directly states that the velocity at the trailing edge must be

finite, in order for the vorticity to be equal to zero at this point the velocity must be equal

to zero. This statement completes the condition that the velocity is equal to zero at the

trailing edge and is shown in the following figure.

v2

a=
r

as r ~O, a ~ 00

unless V =0

Figure 1 Graphical representation of Kutta's condition

Since the radius of curvature goes to zero at the sharp point on the trailing edge, then the velocity

of the fluid at the trailing edge goes to zero. While this brief explanation only touches the

subject, the main idea that the velocity at the trailing edge must be zero is essential.

In the use ofpotential functions to detennine the flow field around an airfoil, the function

specifically referred to in this fonnulation is the stream function, \V (x,y). This function is

specifically defined in tenns of the velocity components such that

o
\V u \V -v

ox

Weinberg 9

The boundary element formulation described in later portions of this paper applies, either

directly or indirectly, all of the stipulations specified in this section as an integral part of the

formulation of the solution.

Specific Considerations

The specific formulation of the method used to solve for the velocities at the boundary

nodes is as exactly as shown by Iannelli, Grillo, and Tulumello. The treatment of the solution of

the potential function through the boundary element model in this introduction is by no means

complete and is intended to serve only as a general overview, and it is of note that the following

description is neither novel nor the original work of the author.

As described in the introduction, "potential flows" are flows that can be described as

inviscid, irrotational, and incompressible. When these three characteristics are met, the main

governing equation is determined by the Laplacian operator \72 taken on the potential function.

When expressed in two dimensions, this relationship is seen as

It follows from this relationship that if the potential function is known, then the velocity

can be determined by taking the partial derivatives of\V (Munson 337). One additional

characteristic of the stream function \V is that it is constant along a streamline, and since the

boundary of an airfoil forms a streamline, the value of \V along the boundary is equal to a

constant. By dividing the stream function into two components, a component that exists due to

the free-stream flow and a component due to the perturbation generated by the airfoil,

superposition allows that

\jJ tot = \jJ pert + \jJ freestream

Weinberg 10

Additionally, by integrating the values of the velocity, the value of \lffreestream in a uniform

velocity field at an angle of attack a is

\11 freestream = Vinf (y. cos (a) - x· sin (a))

Substitution in the previous equation gives a general equation for \lfpert in terms of the free stream

velocity and the constant value of \If across the airfoil surface, which is taken to be \lfTE' This

value of the stream function on the boundary of the airfoil is not allowed to have an arbitrary

value, but is solved for

\I1tot = \I1TE

\11 pert = \11 tot - \11 freestream

\I1pert ~ \I1TE - Vinf(y·cos(a) - x.sin(a))

This slight alteration of the total stream function allows for the setup of the numerical

system to solve for the perturbation velocity at each point on the boundary. Since it is not the

value of \If specifically that is of interest, the derivative of the stream function is taken with

respect to 0, an outward pointing unit vector. Because the derivative of the stream function is

velocity, the derivative of \If with respect to n give the velocity of the flow along the surface of

the airfoil.

1\0

Figure 2 Schematic of the outward normal vector, n

Weinberg 11

Application of the Kutta condition at the trailing edge yields two equations that are

solved simultaneously along with the rest of the linear system, the derivative of \If with respect to

the positive outward derivative, and the derivative of \If with respect to the negative outward

derivative.

n+

n-

Figure 3 The two outward pointing normal vectors at the trailing edge

Since the derivative of \If at the trailing edge must equal zero, this yields two equations:

(a~OI Lon; _[a~~OI Lon, =0
TE

- (aIf/tot J+ n; - [aIf/tot J+ • n.: o0 =
cry axTE TE

After some mathematical manipulations and the use of Green's Identity (Iannelli 4), the

system of partial differential equations can be converted into a boundary integral along the

boundary of the airfoil, which is denoted by the Greek letter, Q. This boundary integral indicates

that the integrals to be taken are line integrals evaluated across the entire surface of the airfoil.

Weinberg 12

2 1 a¢ 1 aIf/ . V . ¢ . dQ = 'j If/ . - . dr - 'j ¢ . f o dO an an
where

¢ (a , b) In Ia - bI
and

a (X1'Yl)

b (X 2'Y2)

After the fonnulation of this integral that is continuous along the boundary of the airfoil, the

system can be discretized by defining a number of boundary nodes at which each of the specific

values can be solved. Various other mathematical manipulations and the summation of all the

simultaneous equations yields a single system of linear equations with N unknowns. While the

final steps of the derivation are not shown here, the system is shown in summation notation:

N-I ..."'"'G .. (alflJi lfI TE ~H... = G~ r(a lflillf IN- +G.+. (a lfl illf IN+
N

7:: 1./ an TOT L...t 1./ I,A a I.N a L Hi.ilfli~f
i=1 n n j=1

The coefficients denoted by the capital letters G and H represent the tenns of the integral

fonnulation for solution in a linear system. All of the coefficients denoted by these letters can be

detennined numerically using known infonnation. This system yields N equations, where N is

the number of discrete nodes placed on the boundary of the airfoil, with N unknowns. The

unknown values to be calculated in the system are

a I a N-\and th- \jJpert ru - \jJpert

an an

The additional desired values, velocity, pressure, and lift, are all detennined solely by the values

of the stream function at the discrete locations, a process which is described further in the

procedure section. Additionally, values at locations other than the locations chosen is possible

by combining the contributions of all of the different nodes. Further infonnation about the

Weinberg 13

mathematics behind this discretization process is available in the references found at the end of

this paper.

Weinberg 14

Procedure

Since the numerical techniques of the system described above were provided above in a

C program graciously provided by Dr. Joe Iannelli, University of Tennessee, Department of

Engineering Science and Mechanics, for use in this project, additional steps were taken to apply

these numerical methods to the solution of a flow field about an airfoil. This problem consisted

of altering and adapting the code provided in such a way as to implement the correct boundary

conditions for the airfoil and then extracting the desired velocity, pressure, and ultimately, lift

infonnation about a given airfoil profile. Using the software provided, the additional

programming and analysis was done using Metrowerks Codewarrior version 3.0 on a Toshiba

475MHz PC. The actual code used is presented in

Weinberg 15

Appendix A: Code, with the software as provided printed in small Courier font and the

adaptations and additions made by the author in larger, bold Times Roman font to more

emphasize the changes that were necessary to implement the code in this circumstance.

"C" Code

The C code used in this project was written using a modular approach, where each

particular function performed a specific task and could be called from any location in the

program. A typical progression of the program is listed in 4, and the purpose of each

function is listed in Table 1. The processes that are highlighted are those that were either written

entirely or changed significantly for this project. Specifically, the added function funcdefO used

the 10ukowski transformation to determine the boundary nodes along a 10ukowski airfoil, and

calculateO determined the values of pressure and lift associated with each airfoil profile.

Additionally, the code was designed such that it could easily be adapted to use any number of

nodes, but values less than or around 1000 were typically used to limit computation time.

Weinberg 16

mainO

foildefO

sgdataO

gauinO

functO

bouinO

gauinO

Figure 4 Flowchart of the processes in a typical run of the BEM code

Weinberg 17

Table 1 List of the programs functions and their designated task

Function Task

bcoorO defines the location of the boundary coordinates

bdataO assigns boundary conditions along the boundary

bouinO integrates all along the boundary at each node

calculateO determines velocities, pressures, and lift from the output data

disolO sorts the solved values and outputs them

dngeoO checks boundary conditions and sets up solution method

dovalO determines the values of velocity at points not on the boundary

foildefO defines the airfoil using the Joukowski transformation

functO determines the values hand g that are summed for Hand G

gauinO performs the Gaussian integral function

intgrO determines the values of the integral coefficients Hand G

rsetmO resets the linear system a*b=c

sgdataO defines the weights for the Gaussian integration function

solveO solves the linear system with Gaussian elimination

supsyO sets up linear system for solution

After computation, the results were output to MATLAB 5.0 to generate all visual

presentation of data.

Joukowski Transformation

To generate an airfoil for the desired analysis, the widely understood loukowski profile

was chosen because it has analytical solutions available and provides an excellent method of

generating any arbitrary number of points on an airfoil by simply transforming the coordinates of

Weinberg 18

a circle. For this transformation, a circle of radius, R = 1.0 was chosen, and for the

transformation the circle was offset from the origin by Xc = 0.1 . Using the transformation

')..2

z'= z+

z

where z is the coordinates of the circle in complex form and A is a value depending on the offset

value of the center of the circle, the new airfoil z' was generated. A variety of different airfoil

profiles can be generated based on the displacement of the center of the circle. As the x

displacement of the center increases, the thickness of the foil increases; a similar increase in the

y coordinate of the center of the circle increases the camber of the airfoil ("Conformational

Mapping"). Each airfoil was generated using points evenly spaced around the original circle,

which does not place them evenly around the airfoil. Some sample circles and their

corresponding airfoils are displayed in Figure 5 as an example of how the cross sections are

2

~

S
r:

0
'T
>

-1

-2

0

2

4)

1;;

++++ ++ ++++++~S
r:

0 -fIH++cI:::l::t +++ ++ ++++++

l
-1

-2
-2 -1 0 2 -2 -1 0 2

2

4)

iii c

~ 0

>-
u

-1

-2

X-coordinate

0

2

4)

1;;
c

] 0

~
-1

-2

X-coordinate

++++++++++++-t-++
~++-t'+ + + + + + + ~
.., + ++

-2 -1 0 2 -2 -1 0 2
X-coordinate X-coordinate

Figure 5 Sample Joukowski profiles generated from the circles in complex coordinates on the left

Weinberg 19

generated. The referenced web page from the University Genoa contains an excellent J avaScript

tool which allows interaction with the profiles in an instructive way. Another valuable

advantage of using a complex transform to generate the airfoil is that rotation is accomplished

quite easily by merely multiplying the complex variable by the associated complex variable in

exponential form.

In this case, Zo is an umotated airfoil in complex form, and the angle of rotation is a. The

corresponding values Za represent an airfoil that has been rotated to have an angle of attack of a

radians. Figure 6 displays four different Joukowski airfoils at varying angles of attack, the

smallest being 0° and the largest being 15°. These figures merely act as an example of the

advantages of using complex transforms to generate the coordinates of the airfoil. One

disadvantage of using the Joukowski airfoil is that it is typically thicker than airfoils that are

actually used. However, the lift values have been theoretically determined for these profiles,

which is advantageous when investigating computational fluid dynamics.

All of the airfoils investigated in this proj ect were generated using a Xc of 0.1 and a Yc of

0.0. This transformation generates an airfoil that is symmetric about the x-axis and relatively

thin, both ofwhich are useful for the simulation. The symmetry of the airfoil proves especially

useful because at a zero angle of attack, the computed lift coefficient should be very nearly zero.

This check provides an excellent method of determining whether lift coefficient calculations are

valid. A sample of this airfoil is shown in Figure 7.

Weinberg 20

2

0

-1

-2

~ ~ -

-2 -1 a

2

-1

-2
-2 -1 a

o

~--~----~--~----~

2

~ 0

-1

-2
2 -2 -1 a 2

2

o

-1

2
-

-2 -1 o 2
2 L---~----~----~--~

Figure 6 A Joukowski airfoil at various angles of attack: UL (0 deg), UR (5 deg), LL (10 deg), LR (15 deg)

2 ~----~----~----~----~------~----~----~----~

1.5

0.5

~ 0 0 0 0 0 0 0 0 0 0 0 0 0 o~
C oO -~
"i5 0 A~ ('\ () 0 0 0 0)oSf

000~ ""'""" '" "'" '-' v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

>
-0.5

-1

-1 .5

_2 L-----~----~-----L----~------L-----~-----L----~
-2 -1.5 -1 -0.5 0 0.5 1.5 2

X-coordinate

Figure 7 The profile of the Joukowski profile used in this project, shown with a 2.8 degree angle of attack

Weinberg 21

Pressure and Lift Calculations

After the computations were run, pressure and lift values were calculated to determine the

effect of changing angle of attack on the airfoil. While the program output the perturbation

velocities at each of the points, addition of the tangential components of the free stream velocity

allowed determination of the total velocity at all of the boundary elements. From this velocity,

pressure was determined through the use of Bernoulli ' s equation in the form

After pressure was determined using this equation, pressures were summed to get the total force

on the airfoil, and the dimensionless coefficient of lift was determined to be

L
C1 =---

1 2

-p .y. f· A2 In

with the density of air taken to be 1.23 kg/m/\3, which is the approximate standard value at

atmospheric pressure. To check the calculated values for C1 they were recalculated by using the

values for the pressure coefficient Cpo In addition to the values of the lift coefficient, the values

of \jfTE were tabulated to determine if the solution converged to the correct value. Additionally,

pressures and velocities were recorded for comparison values. The BEM results are presented in

the following section.

Weinberg 22

Results

Boundary Data

In the first set of results, the data presented compares the coefficient of lift for angles of

attack varying from 0° to almost 15°. The data was tabulated using a simplistic model with only

16 nodes.

8fect of angle of attack

0.500

0.480

0.460

0.440

~
0.42015

'E 0.400Q)
'0
:e
Q) 0.3800

<..)

0.360

0.340

0.320

0.300
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Angle of attack (degrees)

Figure 8 Graph presenting angle of attack's effect on lift

Angle of attack Lift coefficient
0.0 0.398
2.9 0.428
5.7 0.452
8.6 0.471

11.5 0.483
14.3 0.489

As would be expected, the lift coefficient values increase as the angle of attack increases,

but a couple of problems appear from within this data, the main one being that at angle 0° the lift

• •

Weinberg 23

coefficient is not zero. Since the airfoil is symmetrical on the x-axis, the theoretical lift is zero.

This result suggests that these values are largely invalid.

To check the validity of the BEM technique, the values for C1 were calculated using a

variety of different numbers of nodes. This technique was changed slightly by changing the

position of the initial point Xi, but unfortunately the lift coefficient climbs steadily as the node

number increases.

Lift coefficient

4.5

•4

3.5

3

C
Q)

'0 2.5:e •Q)
0
() 2

oi:!
::J 1.5 •

0.5 •
~0

0 200 400 600 800 1000 1200

Number of nodes

Figure 9 Graph showing instability of the lift coefficient

Nodes Lift coefficient
8 0.107

16 0.084
32 0.554
64 0.766

128 0.979
256 1.475
512 2.439

1024 4.190

Weinberg 24

Since lift coefficient depending so strongly on the number of nodes suggested that the

solution mechanism being used was unstable and had errors, the next results present the values of

'VTE as the number of nodes in the BEM model changes. Contradicting strongly with the results

taken from the lift coefficient, the value of the stream function along the boundary of the airfoil

converges nicely with the increase in nodes, as is seen in the following graph and table.

Psi at trailing edge

0.4

0.3

0.2

'en
a.. 0.1

0
00100 1000 10

-0.1

-0.2

Number of nodes

Figure 10 Fluctuation of psi along the trailing edge with the number of nodes

Nodes Psi at trailing edge
8 0.36878883

16 -0.14705403
32 -0.10760685
64 -0.09931629
96 -0.09817919

128 -0.09794198
256 -0.09810054
512 -0.09851623

1024 -0.098746

These two somewhat contradictory results suggest errors in the boundary element

formulation or in the application of the boundary conditions. The following results shed some

Weinberg 25

light on this subject by displaying the pressure profile across the top of the airfoil as a percentage

of the total chord length. On this graph, the leading edge of the airfoil would lie at zero on the x-

axis and the trailing edge at one.

A-essure change

o ~y " ~~~ ~~~ x~x~

~ ~ 0.2 0.4 0.6 0.8 (

-200

-400

-600 -+- 8 nodes

32 nodes

-800 ~64nodes

-1000

)-1200

-1400

Figure 11 Pressure spike seen close to the trailing edge

From the data in Figure 11, the pressure experiences a very high drop at the nodes

immediately adjacent to the trailing edge. This drop indicates an extremely large velocity very

near the trailing edge, where the velocity has been necessarily set to equal zero. Such an error is

indicative of computational errors or problems with the solution method.

External Data

To completely utilize the abilities of the computational code, the velocity values at a

variety of points external to the airfoil were generated to determine the pressure field external to

the airfoil. A matrix of values was generated at the points plotted in Figure 12.

Weinberg 26

0.5

0.4 + + + + + + + + +

+ t + t + + t t +0.3

+ +

+ +

+ +

-0.1 + +

-0.2 + +

-0.3 + t + t + + + + +

-0.4 + + + + + + + + +

-0.
-2,5 -2 -1 ,5 -1 -0,5 0 0.5 1.5 2 2.5

Figure 12 External points at which pressure was determined

Then, when the pressures were generated at each point they were plotted in a variety of

ways. On the linear scale of the contour plot in Figure 13, seeing pressure differences is

somewhat difficult because the differences are quite small. Changing the color scale would most

likely make the task somewhat simpler, while an increase in the number of points plotted would

also increase the accuracy of the plots. Figure 14 and Figure 15 present the same data, with the

first being a contour plot in two dimensions and the latter being a surface plot showing higher

pressure decreases with raised surfaces in three dimensions. Both of these graphs make the data

more visible as well as illuminate the low pressure regions that are found over the rear portion of

the airfoil. After solving for the boundary conditions, these external pressures were easily

determined by the BEM program.

Weinberg 27

0.5

0.4

0.3

0.2

0.1

~
c

:-
~ 0

-0.1

-0.2

-0.3

-0.4

-2 -1 .5 -1 -0.5 o 0.5 1.5 2 2.5
X-coordinate

Figure 13 Color plot of the pressure drop around the airfoil.

0.5

0.4

0.3

0.2

0.1
4)

~ c
0 ~

>
-0.1

-0.2

-0.3

-0.4

-0.5
-2.5 -2 -1 .5 -1

X-coordinate

Figure 14 Contour plot of the same pressures found in Figure 13

Weinberg 28

4

3.5

3

~2. 5
-0
~ 2
:::l
III£1.5

1

0.5

0
0.5

3

-0.5 -3 Y-coordinate X-coordinate

Figure 15 Surface plot of pressure drop around the airfoil surface

Weinberg 29

Conclusions

In conclusion, several main items stand out as important in the results of this proj ect.

While the boundary element method (BEM) is a fast and effective method for computationally

determining the flow field around an airfoil, some problems exist that are evident in this paper.

The instability of the lift coefficient as the number of nodes changes brings out a very subtle

problem. What problems exist that could have generated this problem? Three possible solutions

exist.

First, the boundary element solution method could be fundamentally corrupted with an

error that was not found. In the amount of code involved in this type analysis, a simple mistake

can create large errors in the results and lead to this type of instability. The fact that the value of

\V at the trailing edge stably approaches a single value as the number of nodes increases speaks

strongly against this explanation. Second, the lift calculations could be incorrect. While each

coefficient of lift was calculated twice, a simple error in both of the calculations could have

corrupted the results. This explanation seems to be the most likely. Last, enforcement of the

Kutta condition very close to the trailing edge could lead to a glitch in the results. von Mises

states that when enforcing Kutta's condition, unless the vortex density along the entire surface of

the airfoil equals zero, then a singularity must exist in the profile for the condition to hold true.

Since the BEM artificially holds the trailing edge velocity equal to zero, this explanation,

although unlikely, could explain the large increase in pressure drop at the trailing edge of the

airfoil.

Despite difficulties with the results, however, the robust nature and ability of the BEM is

quite evident in the wide variety of results presented. Lift coefficients, flow velocities, and

pressure distributions are all easily within the scope of boundary element modeling. With some

Weinberg 30

adjustments, the modeling tool used in this project could quite effectively predict the lift

coefficients for airfoils, and then be extended to include other con1putations, such as internal

flows and external flows around objects other than an airfoil.

Weinberg 31

Works Cited

Codewarrior IDE. Vers.3.0. Computer software. Metrowerks, 1998. Microsoft Windows

2000, 398 MB.

"Conformal Mapping." University of Genoa, Hydraulic Institute. Online. 20 April 2001.

Available lTRL http://www.dian1.unige.itl-,irro/conformi_e.html

Grillo, C., G. Iannelli, and L. Tulumello. "An Alternative Boundary Element Method Approach

to the 2D Potential Problem around Airfoils." European Journal of Mechanics: Vol. B,

Fluids. 1990, Vol. 9, no. 6. 527-543.

Iannelli, G. Boundary Element Method System Solver. Verso 1.0. Computer software. 2000.

Microsoft Windows 2000 Professional, C, 118 KB.

Iannelli, G. Professor of Engineering Science and Mechanics,University of Tennessee

Knoxville. Personal Con1munication. January to March 2001.

Iannelli, G., C. Grillo, and L. Tulumello. "A Kutta Condition Enforcing BEM Technology for

Airfoil Aerodynamics." Unpublished results.

Munson, Bruce R., Donald Young, and Theodore Okiishi. Fundamentals of Fluid Mechanics.

New York: Wiley, 1998.

von Mises, Richard. Theory of Flight. New York: Dover, 1959.

http://www.dian1.unige.itl-,irro/conformi_e.html

Weinberg 32

Appendix A: Code

In this appendix, all the code was written by Dr. Joe Iannelli, Department ofEngineering

Science and Mechanics, University of Tennessee-Knoxville, with the exception of those portions

in bold and larger typeface.

main.c

include <stdio.h>
include <stdlib.h>
include <time.h>
include <math.h>

include "ParamDef.h"
include "Funct.h"

/* - */

void main (void) {
int i,j,n, np
int bc[N 1
int extpr ;

long double x[N], y[N 1 ;
long double h [N] [3 1, g [N 1 [3
static long double a[N] [N], b[N
long double ps[N 1, dpsdn[N 1 [3 1
int dnd, pdnd[N 1
long double psi[4

long double xi, yi

/* defines the 	number of nodes */
n 64;
np n

extpr 0

/* defines the 	coordinates of the boundary */
bcoor(n, x, y) ;

/* sets up the 	boundary conditions for each node */
bdata(n, x, y, bc, ps, dpsdn)

/* determines conditions necessary for solving the system */
dngeo(n, bc, pdnd, &dnd, &np)

/* defines matrices a and b with all 0 values */
rsetm(np, a, b)

/* (external pressure, number of elements, x-coor, y-coor, h?,g? */

/* bc, ps, dpsidn, b, a*/

/* within sys.c */

supsy(extpr, n, x, y, h, g, bc, ps, dpsdn, b, a)

/* executes the function only if bc>4 for any elements */

if (dnd > 0) 	 {

doneq(n, dnd, 	 pdnd, x, y, h, g, bc, ps, dpsdn, b, a)

/* Gaussian elimination linear solver */

Weinberg 33

solve (np, a, b);

1* returns the 	desired values of dpsdn and psi *1
disol(extpr, n, be, b, ps, dpsdn);

/* Gellerates a matrix over which the pressure drop is then determined */

for (i=-5; i<=5; i++){

for (j=-5; j<=5,. j++)[

xi=i/2.0,.

yi=j/JO.O;

/* evaluates the pressure values at these points */

doval(n, xi, yi, x, y, h, 9, ps, dpsdn, psi) ;

printjtr\1I %2.8f %2.8f %2.8f %2.8f',xi,yi,psi/2j,psi/3]),.
}}
printjt'\11 \11 ''),.

/* calculates the lift forces based 011 predetermined pressures */

calculate(n, x, y, dpsdn, ps);

return

}

-- ------------------- *11*

--

Weinberg 34

boundata.c

include <stdio.h>

include <stdlib.h>

include <time.h>

include <math.h>

include "ParamDef.h"

include "Funct.h"

/* */
void bcoor(int n, long double x[] long double y[]) { I

/* calls the function that defines the airfoil based on the Joukowski profile */
foildef(n, x, y);

return; }

/* */

/* - */
void bdata(int n , long double x[], long double y[] lint bc[] I \

long double ps [] I long double dpsdn [] [3]) {

int i ;

long double Ilx,ny,dx,dy;
/* -- */

for (i 1; i <= n ; i = i + 1) {

bc [i] 1;

H(i>1){

bc [i] = 1 ;

/* defines a fimction for psi (free stream) */
pst i} cos(angle) *y[iJ - sin (angle) *x[i} "

dpsdn [i] [1] = -1 . 0 ;

for (i = 2 ; i < n ; i i + 1) {

if (xl i J > xl i+ 1 J) (

if(xl iJ > x/i-IJ)(

bcl i J = 2;

Ilx=O;

IlY=O;

dx=xliJ-xli-IJ;

dy=yliJ-yli-IJ;

nx=-dy/sqrt(dx*dx +dy *dy),

ny=dxisqrt(dx*dx +dy *dy),

Weinberg 35

dpsdnl i }Il} = - (nx * cos(angle) - ny * sin(angle));

nx=O;

ny=O;

dx=xli+l}-xli};

dy=yli+1}-yli};

nx=-dylsqrt(dx*dx +dy *dy);

ny=dxlsqrt(dx*dx +dy *dy);

dpsdnl i }12 j = - (nx * cos(angle) - ny * sin(angle));
}

}

}

/* - */

printf("Boundary conditions. \n ");

printf("x y ps bc\n ");

for (i = 1 ,. i <= n ; i = i + 1)(

prilltf("%2.5f %2.5f %.8Lf %.d\I1", xl ii, yl i}, psI i j, bel i
}) ;

}

printf("\11 \11 ");

return; }

/* --- - - */
/* -- --- */

void dngeo(int n, int be[], int pdnd[], int *dnd, int *np)

int i

/* -- -- */

*dnd = 0 ;

for (i = 1 i < = n ; i = i + 1) {

if (be [i] > 4) {

*dnd = *dnd + 1

pdnd[*dnd] i;

*np n + *dnd;

/* -- -- -- -- - */

Weinberg 36

return ;

/* - */

Weinberg 37

airfoil.c

include <stdio.h>

include <stdlib.h>

include <time.h>

include <math.h>

include "ParamDef.h"

include "Funct.h"

define pi 3.14159265359

void foildef(int n, long double x{},long double y{}) {

int i;

long double xc,yc,r,a,theta;

long double x1{N},y1{N};

/* sets up the Joukowski profile parameters */

xc=O.l;

yc=O.O;

r=l;

a=O;

/* determines necessary values to use the Joukowski profile */

if (yc==O){
if(xc==O){

a r;}
else {a=r-xc;}

}

if(yc !=O){
if (xc==O){

a=sqrt(r*r-yc*yc);}
else (

a=-xc+sqrt(r*r-yc*yc);}
}

/* Joukowski transform (without rotation) */

for (i=1 ,. i<=n; i++){
theta=2*piln *i;
x{i}=r *cos(theta)+xc;

Weinberg 38

YliJ=r*sin(theta)+yc;

x1IiJ=xliJ+a*a*xliJ / (xliJ*xliJ+yliJ*yliJ);

y1IiJ=yliJ-a*a*yliJ / (xliJ*xliJ+yliJ*YliJ);

xliJ=- x1liJ;

yliJ=y11iJ;

}

return;
}

/*---*/

void calculate(int n,long double xlJ, long double ylJ, \
long double dpsdnlJI3 J, long double pslJ) {

int i,j;
long double

pressureINJ,chord,psiconstant, cl, c12,cpINJ,force, rhoai r, vpert, vinj,vtotINJ,dx,dy,dx2,dy2,nx,ny;

/* sets the density ofair for use in pressure determinations */

rhoair=1.23,.

force=O;

cl=O,.

/* calculates the chord length ofthe airfoil */

chord=xln/2J-xlnJ;

/* determines the contribution ofthe free stream velocity */

for (i=l; i<=n; i++){

vpert=dpsdnliJ11J;

dx=O;

dy=O;

dx2=O,.

dy2=O;

if(i==l) (

nx=O,.

ny=O;

dx=xli+1J-xliJ;

dy=yli+ 1J-yliJ;

nX=-dy/sqrt(dx*dx +dy *dy);

Weinberg 39

ny=dxlsqrt(dx*dx +dy *dy);

dx2=xli}-xln};

dy2=yli}-yln};

nx=(nx-dy2/sqrt(dx2*dx2 +dy2 *dy2))/2;

ny=(ny+dx2/sqrt(dx2*dx2 +dy2 *dy2))/2;

}

else if(i==n) {

nx=O;

ny=O;

dx=xll}-xli};

dy=yll }-yli};

nx=-dy/sqrt(dx*dx +dy *dy);

ny=dxlsqrt(dx*dx +dy *dy);

dx2=xli}-xli-l};

dy2=yli}-yli-l};

nx=(nx-dy2/sqrt(dx2*dx2 +dy2 *dy2))/2;

ny=(ny+dx2/sqrt(dx2*dx2 +dy2 *dy2))/2;

}

else {

nx=O;

ny=O;

dx=xli+ 1 }-xli};

dy=yli+1}-yli};

nx=-dy/sqrt(dx*dx +dy *dy);

ny=dxlsqrt(dx*dx +dy *dy);

dx2=xli}-xli-l} ;

dy2=yli}-yli-l};

nx=(nx-dy2/sqrt(dx2*dx2 +dy2 *dy2))/2;

ny=(ny+dx2/sqrt(dx2*dx2 +dy2 *dy2))/2;

}

vinf= cos (angle) * ny - sin (angle) * nx;

/* adds the perturbation alldfree stream velocities */

vtotli}=vinf+ vpert;

/* sets the velocity equal to zero at the trailing edge */

if0 == 1l/2){

vtotli}=O.O;

psicon stan t=psli};

}

Weinberg 40

1* uses two different methods to determine the lift coefficient *1

pressure[iJ=-. 5*rhoair *vtot/iJ *vtot/iJ;

cp/iJ= 1-vtot/iJ*vtot[iJ;

}

for (i=l; i<=(nI2-2); i++){

j=i-1;

if(i==l){

j=n;}

cl=cl+(cpUJ+cp[iJ) *0.5*(x/iJ-xUJ);

force=force-(pressureUj+pressure[iJ) *0. 5*(x[ij-xUj);

printf("%1.8f %1.8f %1.8f %1.8jln ",x/ij,y[ij,pressure/ij,force);

}

for 0=nI2+2; i<=n; i++){

j=i-1;

if (i==l){

j=n;}

cl=cl+(CPUJ+cp[iJ) *0. 5*(x/iJ-xUJ);

force=force-(pressureUJ+pressure[iJ) *0. 5*(x/iJ-xUj);

printf("%1.8f %1.8f %1.8f %1.8jln ",x[ij,y/iJ,pressure[ij,force);

}

cl=cllchord;

cI2=forcel(0.5*rhoair*chord);

printf("tn The coefficient oflift is %1.8f ",cl);

printf("ln The recalculated value is %1.8f ",cI2);

printf("ln The value ofpsi at the trailing edge is %2.8f ",psiconstant);

printf("ln The number ofnodes is %4.0d ",n);

}

http:printf("%1.8f
http:printf("%1.8f

Weinberg 41

sys.c

include <stdio.h>

include <stdlib.h>

include <time.h>

include <math.h>

include "ParamDef.h"

include "Funct.h"

/* - ----- */

void rsetm (int n, long double a [) [N), long double bel) {

int i, j i

for i = 1 i n i i = i + 1

for 1 i j <= n i j j + 1) {

a[i] [j] 0.0

b [i 0.0

return
/* ---------- */

/* - - ------ --------- -- */
void supsy(int extpr, int n, long double x[J, long double y[], long double h[] [3],\

long double g [] [3J, int bc [], long double ps [], long double
dpsdn [) [3] , \

long double b[], long double a[] [N]) {

long double xg[6], wg[6

int i, j 1, j2, j, il, i2

int idnd i

long double xi, yi ;

long double xl, y1, x2, y2

long double dx, dy, dl i

long double h1, h2, gl, g2

long double ci ;

/* */

sgdta(wg, xg) ;

/* ----- */

for i = 1 ; i <= n i i + 1) {

idnd = 0 ;

/* defines the point xi and yi from which you want to integrate */
xi x[i]
yi y[i] ;

j 2 i i

j1 i 1;

if j1 < 1

jl n;

Weinberg 42

/* */

for (1 ; j n ; j + 1)

i1
i2
if

+ 1

i2 l'
i2 > n) {

xl
y1
x2
y2
dx
dy
dl

x [i1
y[i1
x [i2
Y [i2
x2 - xl
y2 - y1
sqrt(dx * dx + dy * dy) ;

intgr(xg, wg,
dx,

j,
dy,

j1,
dl,

j2, xi, yi, xl,
&h1, &h2, &gl,

yl,
&g2)

x2,
;

y2, \

h[
h[
9 [
g[

J [1
] [2
] [1
] [2

hI
h2
gl
g2

/* */

/*
ei = 0.0

*/

for (1 ; n . + 1)

ei ei + h [j] [1] + h [j] [2]

if extpr > 0)
ei = 1.0 + ei

/* */

/*

if (i 1) {

if (be [i

*/

b [i] b [i 1 ei * pst 1 1 + ei * ps[2) / 2.0

else if (be[i == 2

a [i 1 [1 a [i] [+ ei / 2.0

else
a [i] [2 a [i 1 [2 + ei / 2.0 ;}

b [i b [i] - (ei * ps [1] + ei * ps [2 1) / 2.0

} }

else {

if (be [i I)

Weinberg 43

b [i 1 = b [i 1 ~ ei * ps [i

else if (be[i 1 == 2

a[i 1 [i 1 = a[i 1 [i 1 + ei

else

b [i b [i 1 ~ ei * ps [i

for (j = 1 ; j <= n + 1) {

il j;

if be[il 1 == 1)

a [i 1 [il 1 = a [i 1 [il 1 + 9 [j 1 [1 1 ;

b[i = b[i 1 + ps[il 1 * h[j 1 [1 1 ; }

else if (be[il 1 == 2)

a [i 1 [il 1 = a [i 1 [il 1 ~ h [1 [1

b [i = b [i 1 ~ dpsdn [il 1 [2 * 9 [1 [1 1

else if (be [il 1 == 3) {

b [i 1 b [i 1 ~ dpsdn [il 1 [2 1 * 9 [j 1 [1 1
b [i 1 b [i 1 + ps [il 1 * h [j 1 [1 1 ; }

else if (be [il 1 == 4) {

a [i 1 [il 1 = a [i 1 [il 1 + 9 [j 1 [1 1 ;
b[i 1 = b[i 1 + ps[il 1 * h[j 1 [1 1 ;

else if (be[il 1 == 5)
idnd = idnd + 1 ;

a [i 1 [n + idnd 1 = a [i 1 [n + idnd 1 + 9 [1 [1 1

b[i 1 = b[i 1 + ps[il 1 * h[j 1 [1 1 ;

i2 j + 1 ;
if i2 > n)

i2 = 1 ;

if be[i2 1 == 1)

a [i 1 [i2 1 = a [i 1 [i2 1 + 9 [j 1 [2 1 ;

b[i = b[i 1 + ps[i2 1 * h[j 1 [2 1 ; }

else if (be[i2 1 == 2)

a [i 1 [i2 1 = a [i 1 [i2 1 ~ h [1 [2

b [i = b [i 1 ~ dpsdn [i2 1 [1 * 9 [1 [2 1

else if (be [i2 1 == 3) {

a [i 1 [i2 1 = a [i 1 [i2 1 + 9 [j 1 [2 1 ;
b[i 1 = b[i 1 + ps[i2 1 * h[j 1 [2 1 ; }

Weinberg 44

else if (be [i2] == 4) {

b [i b [i - dpsdn [i2] [1] * g [j] [2]
b [i b [i + ps [i2] * h [j] [2] ; }

el se if (be [i2] == 5)

a [i] [i2 1 = a [i] [i2] g [j 1 [2 1 ;

b [i] == b [i] + ps [i2] * h [j] [2] ;

/* */

if extpr == 2)

for (i = 1 i <= n ; i i + 1) {

b[i] = b[i + a[i] [1]
a[i][l] 1.0

/* */

return
/* */

/* ------------------- */
void doneq(int n, int dnd, int pdnd[], long double x[], long double y[], \

long double h [] [3], long double g] [3], int be [], long double ps [] ,
\

long double dpsdn[] [3], long double b[], long double all [N]) {

long double xg[6], wg[6

int i, j 1, j 2, j, i1, i2

int ii, iint, idnd ;

long double xi, yi ;

long double xl, y1, x2, y2

long double dx, dy, dl ;

long double h1, h2, gl, g2

/* */

sgdta(wg, xg) ;

Hnt 1;
/* *1

1* *1

for (i 1 ; i <= dnd i i + 1) {

idnd 0== ;

ii pdnd[i

xi x[ii

Weinberg 45

yi Y [ii] ;

j1 ii l'

if j1 < 1)

j1 '" n ;

i1 j1
i2 j1 + 1
if i2 > n) {

i2 1 ;

xl x[i1
y1 y[il

x2 x[i2
y2 y[i2

dx x2 xl
dy y2 y1
dl sqrt{ dx * dx + dy * dy) ;

xi xi + 0.5 * y2 - yl / 2.0 dl*
yi yi + 0.5 * xl - x2 / 2.0 dl*

j2 ii ;

il j2

i2 j2 + 1 ;

if i2 > n) {

i2 1'"

xl x[i1
yl y[i1

x2 x[i2
y2 y[i2

dx x2 - xl
dy y2 - yl
dl sqrt (dx * dx + dy * dy) ;

xi xi + 0.5 * y2 - yl / 2.0 * dl) ;

yi yi + 0.5 * xl x2 / 2.0 * dl) ;

-/* - - */

for (j = 1 <= n j + 1)

il j

i2 j + 1 ;

if i2 > n) {

i2 = 1

xl x[il
y1 y[il

x2 x[i2
y2 y[i2

dx x2 - xl
dy y2 - y1
dl sqrt (dx * dx + dy * dy) ;

bouin{ xg, wg, iint, xi, yi, xl, yl, x2, y2, dx, dy, dl, &h1, &h2,
&gl, &g2)

h[J [1] hI

Weinberg 46

h[] [2 h2
g[] [1 gl
g[] [2 9 2

/* */

/* */

for (== 1 <= n ; j = j + 1) {

i1 j;

if be [i1] == 1) {

a [n + i :I [i1 1 = a [n + i] [i1 1 + 9 [j 1 [1

b n + i = b [n + i + ps [i1] * h [j 1 [1 1 ; }

else if (be [i1 1 == 2

a [n + i] [i1] = a [n + i] [i1] - h [] [1

b[n + i b[n + i dpsdn [i1 1 [2 * 9 [1 [1]

else if (be[i1 1 == 3)

b [n + i] b [n + i 1 dpsdn [i1] [2] * 9 [j 1 1
b [n + i] = b [n + i 1 + ps [i1] * h [j] [1] ;

else if (be[i1] == 4

a [n + i] [i1] == a [n + i] [i1] + 9 [j] [1] ;
b [n + i 1 = b [n + i + ps [i1] * h [j] [1 1 ;

else if (be [i1] == 5) {
idnd idnd + 1
a [n + i] [n + idnd] = a [n + i] [n + idnd] + 9 [] [1

b[n + i b [n + i] + ps i1] * h [] [1]

i2 j + 1 i

if i2 n)
i2 1;

if be[i2 1 1) {

a [n + i 1 [i2 1 = a [n + i] [i2] + 9 [j 1 [2] i

b [n + i b [n + i] + ps [i2] * h [j] [2] ; }

else if (be [i2] == 2) {

a [n + i 1 [i2] = a [n + i 1 [i2 1 - h [1 [2

b[n + i b[n + i dpsdn [i2 1 [1 * 9 [] [2]

else if (be [i2] === 3) {

a [n + i] [i2] = a [n + i] [i2] + 9 [j] [2] ;
b [n + i] b [n + i + ps i2] * h [j] [2] ; }

Weinberg 47

else if (be [i2] 4)

b[n + i b [n + i] dpsdn [i 2] [1] * g [j] [2]
b[n + i b [n + i] + ps [i2] * h [j] [2] ; }

else if (be [i2] 5)

a[n + i] [i2] = a[n + i] [i2] + g[j] [2] ;

b[n + i] = b[n + i + ps [i2] * h [j] [2] ;

/* - */

/* ----- ---- */

return
/* */

/* ------- */
void disol(int extpr, int n, int be[], long double b[], long double ps[], long double

dpsdn [] [3]) {

int i, idnd ;

long double psito, psite

/* - */

idnd 0;

prilltj'("The value ofextpr is %d. ",extpr);

for (i = 1 ; i <= n j i i + 1) {

if (be[i] -- 1

dpsdn [i] [1] = b [i
dpsdn [i] [2] b[i

else if be[i) -- 2 {
ps[i 1 b[i

else if (be i 1 3)

dpsdn [i } [1] = b [i

else if (be[i] -- 4) {

dpsdn [i] [2] = b [i

else if (be[i] -- 5)

idnd = idnd + 1
dpsdn [i] [1] b[i
dpsdn [i] [2 b [n + idnd

Weinberg 48

printf (H\ntt);

if (extpr == 2) {

dpsdn [1) [1) - 1 . 0

psito b [1) ;

for (i = 1 i in; i =: i + 1

ps[i psito + ps[i]

psite 2.0 * 1. 0 * log (.0) i

printf (H\n")

printf (H%. 8Lf %.8Lf\n", psito, psite

printf("\n tt

printf("\n"

for (1 i i <= n i i + 1)(

psite 2.0 + ps [i) psito) 1 1. 0 ;

psite)
printf("%.8Lf %.8Lf % • 8Lf\n" , ps[i J. dpsdn [i) [1 J.

else {
} }

printf(
printf(
printf (
for (i

"\n 11

"\n"
"ps

1 ; <= n
dpsdn

i = i + 1
dpsdn2 \n ") ;

l{

dpsdn [i) [2] }

printf("%.8Lf %.8Lf . 8Lf\n" , ps[i), dpsdn [i] [1),

printf("\n"
printf("\n"

1* --- ------ *1

return i

1* -- - ---- *1

1* -------- --------- ------- ------- *1
void doval(int n, long double xi, long double yi, long double x[], long double y[], \
long double h[] [3], long double g[] [3], long double ps[J, long double dpsdn[] [3J, long

double psi[)) {

long double xg[6], wg[6 1

int ii, j i1, i2 ;

long double xl, y1, x2, y2
long double dx, dy, dl ;

long double h1, h2, gl, g2

I

Weinberg 49

sgdta(wg, xg) ;

for (ii 1; ii 3 ; ii ii + 1)

/* */

for (1 ; <= n + 1 } {

i1
i2 + 1 ;

if i2 > n) {
i2 = 1

xl x[i1
y1 y[i1

x2 x[i2
y2 y[i2

dx x2 xl
dy y2 - y1
dl sqrt (dx * dx + dy * dy)

bouin(xg, wg, ii, xi, yi, xl, y1, x2, y2, dx, dy, dl, &h1, &h2, &gl, &g2)

h [j] [1 hI
h [j] [2 h2
9 [j] [1 gl
9 [j] [2 g2

psi[ii 0.0

for (1 i j <= n + 1)

i1
i2 + 1 ;
if i2 > n } {

i2 = 1

psi[ii psi[ii] + ps[i1 * h[] [1] + ps[i2
* h [] [2

psi[ii psi [ii dpsdn [i1] [2] * 9 [j] [1 dpsdn [i2] [1]

* 9 [] [2

/* */

return
/* - */

Weinberg 50

gaussint.c

include
include
include
include

<stdio.h>
<stdlib.h>
<time.h>
<math.h>

include
include

"ParamDef.h"
"Funct.hl!

/* -
void sgdta(long double wg[], long double xg[]) {

*/

/* sets the weight values for Gaussian integration */

xg[
xg[
xg[
xg[
xg[

1
2
3
4
5

0.906179845938664
- 0.538469310105683
- 0.0 ;

0.538469310105683
0.906179845938664

wg[
wg[
wg[
wg[
wg[

1
2
3
4
5

0.236926885056189
0.478628670499366
0.568888888888889
0.478628670499366
0.236926885056189

return

/* - */

/*
void gauin(int ifu,long double xg[], long double wg[J, int ii,

long double xi, long double yi,
long double x2, long double y2,
long double dl, long double *gi

long double xl,
long double dx,
) {

*/

long double
long double

\
yl,
dy,

\
\

/* performs the Gaussian integration */

long double xn, f, fl, f2, f3, f4, f5

xn xg[1 1 i

funct (ii, ifu, xi, yi, xl, yl, x2, y2, dx, dy, dL xn, &f)

fl f

xn xg[2] i

funct (ii, ifu, xi, yi, xl, yl, x2, y2, dx, dy, dl, xn, &f)

f2 = f

xn = xg[3] ;

funct (ii, ifu, xi, yi, xl, yl, x2, y2, dx, dy, dl, xn, &f)

f3 f

xn = xg[4] ;

funct (ii, ifu, xi, yi, xl, yl, x2, y2, dx, dy, dl, xn, &f)

Weinberg 51

f4 f

xn xg [S] ;

funct(ii, ifu, xi, yi, xl, yl, x2, y2, dx, dy, dl, xn, &f)

fS = f

*gi = wg[1 J * fl + wg[2] * f2 + wg 3] * f3 + wg[2) * f4 + wg[S)
* fS

return

1* ----- - *1

Weinberg 52

integrals.c

include <stdio.h>

include <stdlib .h>

include <time.h>

include <math.h>

include IParamDef.h"

include "Funct.h"

/* - ------------------- */
void intgr(long double xg[] , long double wg[] , int j, int j1, int j2,

\
long double xi, long double yi, long double xl, long double y1,

\
long double x2, long double y2, long double dx, long double dy,

\
long double dl, long double *h1, long double *h2, long double

*gl, \
long double *g2}

int ii

if -- j1 } {

*h1 0.0
*h2 0.0
*gl dl * log(dl - 0.5 / .5663706144
*g2 dl * (log (dl 1.5 / 12.5663706144

else if (j -- j2

*h1 0.0
*h2 0.0
*gl dl * log (dl - 1. 5 / 12.5663706144
*g2 dl * (log (dl 0.5 / 12.5663706144

else {

ii = 1
bouin(xg, wg, ii, xi, yi, xl, y1, x2, y2, dx, dy, dl, h1, h2, gl,

g2 }

if (j2 -- I) {

if (j -- j2) {

*h1 0.0 ;

*h2 0.0 ;

*gl dl * (log(dl / 2.0 2.0 / 12.5663706144

*g2 dl * (log(dl / 2.0 2.0 / 12.5663706144

else {
ii = 1

bouin(xg, wg, ii, xi, yi, xl, yl, x2, y2, dx, dy, dl, h1, h2, gl,
g2)

return

/* - */

/* */

Weinberg 53

void bouin(double xg [] , long double wg[], int ii,

long double xi, long double yi, long double xl, long double y1,
\

long double x2, long double y2, long double dx, long double dy,
\

long double dl, long double *h1, long double *h2, long double
*gl,\

long double *g2)

int ifu ;

long double gi

ifu = 1 ;

gauin(xg, wg, ii, ifu, xi, yi, xl, y1, x2, y2, dx, dy, dl, &gi) ;

*h1 gi * dl / 2.0 ;

ifu 2 ;

gauin(xg, wg, ii, ifu, xi, yi, xl, y1, x2, y2, dx, dy, dl, &gi) ;

*h2 gi * dl / 2.0 ;

ifu 3 ;

gauin(xg, wg, ii, ifu, xi, yi, xl, y1, x2, y2, dx, dy, dl, &gi) ;

*gl gi * dl / 2.0 ;

ifu 4;

gauin(xg, wg, 11, ifu, xi, yi, xl, y1, x2, y2, dx, dy, dl, &gi);

*g2 = gi * dl / 2.0 ;

return
/* */

/* ------ - */

void funct(int ii, int i, long double xi, long double yi, long double xl, \
long double y1, long double x2, long double y2, long double dx, \
long double dy, long double dl, long double s, long double *f) {

long double x, y, r2, fi, dfidn, dfidx, dfidy, dfndx, dfndy

if (ii 1)

if (i == 1

x 1.0 - s * xl + 1.0 + s * x2 / 2.0
Y 1.0 s * y1 + 1.0 + s * y2 / 2.0

r2 = (x - xi * (x xi) + (y - yi) * (y yi)

dfidn = ((x xi) * dy (Y - yi) * dx / .28318530718 * dl *

*f

r2)

::; (1 - s) * dfidn / 2.0

else if i -- 2) {

x 1.0 s * xl + 1.0 + s * x2 / 2.0
Y 1.0 s * y1 + 1.0 + s * y2 / 2.0

r2 = (x - xi * (x xi) + (y - yi) * y yi)

dfidn = ((x xi) * dy (Y - yi) * dx / 6.28318530718 * dl *
r2)

*f = 1 + s) * dfidn / 2.0

else if i == 3) {

x = ((1.0 s) * xl + (1. 0 + s) * x2) / 2. 0

Weinberg 54

y = ((1.0 s) * y1 + (1.0 + s) * y2) / 2.0

r2 (x xi) * (x xi) + y - yi) * (y - yi)

fi log(r2 / 12.5663706144

*f (1 s) * fi / 2.0 ;

else if i -- 4) {

x 1.0 - s) * xl + 1.0 + s * x2 / 2.0

Y 1.0 - s) * y1 + 1.0 + s * y2 / 2.0

r2 (x xi) * (x - xi) + y yi) * (y yi)

fi log (r2 / 12.5663706144

*f (1 + s * fi / 2.0 ; } }

else if (ii == 2)

if (i == 1

x lOs) * xl + 1 0 + s * x2 / 2.0
y 1.0 - s) * y1 + 1. 0 + S * y2 / 2.0

r2 == (x xi * (x xi + (y - yi) * (y yi

dfndx = (2.0 * (x xi) * (x xi * dy (y - yi) * dx) / r2
- dy) / (6.28318530718 * dl * r2)

* f (1 - s) * dfndx / 2. 0

else if i 2) {

x 1.0 s xl + 1.0 + s * x2 / 2.0
y 1.0 s * y1 + 1.0 + s * y2 / 2.0

r2 == (x - xi) * (x xi + (y yi) * (y - yi

*

dfndx = (2.0 * (x xi) * (x - xi * dy (Y yi) * dx) / r2
dy) / (6.28318530718 * * r2)

*f 1 + s) * dfndx / 2.0

else if i === 3) {

x 1.0 s * xl + 1.0 + s * x2 / 2.0

Y 1.0 - s * y1 + 1.0 + s * y2 / 2.0

r2 == (x xi) * (x xi) + (y - yi) * y yi

dfidx -2.0 * (x xi) / (12.5663706144 * r2) ;

*f 1 - s) * dfidx / 2.0 ;

else if i 4) {

x 1.0 s) * xl + 1.0 + s * x2 / 2.0

Y 1.0 s) * y1 + 1.0 + s * y2 / 2.0

-r2 (x xi) * (x xi) + (y yi) y yi*

dfidx -2 0 * x - xi) / (12.5663706144 * r2) ;

*f = (1 + s * dfidx / 2.0 ; } }

else if (ii 3) {

Weinberg 55

if (i 1

x 1.0 s) xl + 1.0 + s x2 / 2.0
) * / 2.0

* 	 *
Y 1.0 s y1 + 1.0 + s y2*

r2 (x xi 	 * (x xi + (y - yi) (y - yi*

dfndy (2.0 * Y yi) * (x - xi dy - (y yi) * dx) r2* /
/ * *+ 	 dx) (6.28318530718 dl r2)

*f 1 s) * dfndy / 2.0

else if i 2) {

x 1.0 s) * xl + 1.0 + s) * x2 / 2.0
y 1.0 s) * y1 + 1.0 + s) * y2 / 2.0

r2 (x xi) * (x xi + (y yi) * (y - yi

dfndy 2.0 * y yi * (x - xi * dy - (Y - yi) * dx) / r2
+ 	 dx) / (6.28318530718 * dl * r2)

*f 1 + s) * dfndy / 2.0

else if i 3) {

x 	 1.0 s * xl + 1.0 + s * x2 / 2.0

* *Y 1.0 s y1 + 1.0 + s y2 / 2.0

*r2 x xi) x xi) + (y yi) * y - yi

dfidy = -2.0 * Y yi) / (12.5663706144 * r2) ;

*f (1 s) * dfidy / 2.0 ;

else if i 4) {

x 1.0 s) * xl + 1.0 + s * x2 / 2.0
Y 1.0 s) * y1 + 1.0 + s * y2 / 2.0

r2 = (x - xi) * (x xi) + (y yi) * y yi

dfidy -2.0 * y yi) / (12.5663706144 * r2) ;

*f = (1 + S * dfidy / 2 0 ;

return ; }
/* ----------------------------- */

Weinberg 56

Iinsolv.c

include <stdio.h>
include <stdlib.h>
include <time.h>
include <math.h>

include "ParamDef.h"
include "Funct.h"

/* -- */
void solve (int n, long double a [] [N], long double b []) {

int i, j, k, nm, ip;

double pi, c, eps;

nm n - 1 ;

eps 0.00000001;

/* Gaussian solver */

/* --- */

for (i = 1 ; i <= nm ; i = i + 1) {

/* -- */
pi fabs(a[i] [i]);
ip = 0 ;

for (k = i + 1 ; k <= n ; k k + 1) {

c = fabs (a [k] [i])

if (c > pi) {
ip = k ;

if ip > 0

for k = i ; k <= n ; k k + 1) {

c=a[i][k]
a [i] [k] = a [ip] [k]
a [ip] [k] = c ;

c = b [i J ;
b [i] = b [ip];
b [ip J = c ; }

e 1 s e i f (pi < ep s) {

printf ("singular matrix\n");

/* -- */

pi = 1.0 / a[i] [i]

for (k = i + 1 k <= n ; k = k + 1) {

c = a [k] [i] * pi ;
a[k] [i] = 0.0

for (j = i + 1 ; j <= n ; j + 1) {

Weinberg 57

a [k] [a [k] [a [i] [] * c;

b[k] b[k] - b[i] * c

/*

/*

for (i

b[

n 1 ;

c 0.0

for

c

n] b[n] /a[n][n]

i >= 1 ; i i 1) {

i + 1 ; j <= n j + 1)

c + a[i] [j * b[] ;

*/

*/

b [i (b [i c) /a[i][i

return

/* -- */

Weinberg 58

Paramdef.h

/* appears to define the number of elements in the arrays x and y */

define N 100

define angle 0.05

Funct.h

void beoor(int n, long double x[], long double y[]) ;

void bdata(int n, long double xl:], long double y[], int be[], long double ps[], long
double dpsdn[] [3])

void foildef(int n, long double x[j,long double y/]);

void calculate(int n,long double x[j, long double y/], long double dpsdn/] / 3], long
double ps[j);

void dngeo(int n, int be[], int pdnd[], int *dnd, int *np

void rsetm (int n, long double a [] [N], long double b [])

void supsy(int extpr, int n, long double x[] , long double y [], long doub1 e h [] [3] , \
long double g 1:] [3] , int be [] , long double psl:], long double

dpsdn[] [3], \
long double b[] , long double a [] [N])

void doneq(int n, int dnd, int pdnd[], long double x[] , long double y[] , long double
h [] [3] , \

long double g [] [3] , int be [] , long double ps [] , long double
dpsdn[] [3], \

long double b [], long double a [] [N]) ;

void sgdta(long double wg[] , long double xg[]) ;

void gauin(long double xg[], long double wg[], int ii, int ifu, \
long double xi, long double yi, long double xl, long double yl, \
long double x2, long double y2, long double dx, long double dy, \
long double dl, long double *gi)

void intgr(long double xg[], long double wg[], int j , int j 1, int j2,
\

long double xi, long double yi, long double xl, long double yl,
\

long double x2, long double y2, long double dx, long double dy,
\

long double dl, long double *hl, long double *h2, long double
*gl, long double *g2) ;

void bouin(long double xg [] , long double wg[], int ii,
\

long double xi, long double yi, long double xl, long double yl,
\

long double x2, long double y2, long double dx, long double dy,

\
long double dl, long double *hl, long double *h2, long double

*gl, \
long double *g2)

void funet (int ii, int i, long double xi, long double yi, long double xl, \
long double yl, long double x2, long double y2, long double dx, \

Weinberg 59

long double dy, long double dl, long double s, long double *f)

void solve (int n, long double a [] [N], long double b []) i

void disol(int extpr, int n, int be[], long double b[], long double ps[], long double
dpsdn[] [3])

void doval(int n, long double xi, long double yi, long double x[], long double y[], \
long double h [] [3], long double g [] [3] ,

\
long double ps[], long double dpsdn [] [3], long double

psi [])

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	Spring 5-2001

	Modeling of a Two-Dimensional Airfoil Using Boundary Element Method
	Brent Derek Weinberg
	Recommended Citation

	tmp.1281626643.pdf.PUFeh

