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Abstract: Multiunit recording experiments on the suprachiasmatic nucleus located in 

the hypothalamus have revealed some of the direct relationships between drug 

application and cell firing rate. This nucleus is associated with entrainment and 

maintenance of circadian rhythms in mammals. A neural network might help to predict 

and better understand the reaction a drug or drug combination will produce on this 

population of cells. Two drugs were isolated for this experiment, NMDA, which acts as 

an agonist on a subset of glutamate receptors, and (+) DPAT has been shown to interact 

with 5-hydroxytryptamine receptors, more specifically the subset of 5-HT1A and 5-HT7 

receptors. 

Data were taken from five different days of recordings and used to train a 

multilayer perceptron. Input data consisted of the time of day in minutes, a predicted 

output ten minutes in the future, NMDA drug concentrations, (+) DPAT drug 

concentrations, time since end of last NMDA application and time since last (+) DPAT 

application. Levenberg Marquardt training was used, due to its speed in training the large 

input/output files. It also consistently performed best in simulating the network against 

other training algorithms such as backpropagation. Once the network was trained in this 

manner, it was tested against a previously untrained data. The new data were still within 

the range of the network. The simulation appeared to be successful in predicting 

expected responses to certain drugs and contained an acceptable error compared to the 

observed output for that day. Two-drug interactions may not have been completely and 

properly mapped due to a lack of input data for those situations. 
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Introduction: Neural networks came about through the application of a biological model 

in order to solve problems. It seems almost fitting that this field is applied back towards 

better understanding biology. Biological systems are inherently filled with complex 

interactions on a very small scale. Recent research into neuroscience has attempted to cut 

through much of this complexity. The brain is still a big black box system, which is far 

from well understood. Current research has delved into the black box to pull out specific 

components to attempt to ascertain what that component does on its own. Recordings 

from these components tend to contain a great deal of noise that can interfere with a clean 

interpretation of any data gathered. By running many experiments certain trends tend to 

emerge from the data. Usually it is easiest to interpret simple 1 to 1 relationships: drug X 

causes excitation. Still, even after numerous applications and trials, certain drugs and 

drug combinations fail to reveal any noticeable input/output correlation. 

Chronobiologists have focused their energy on studying specific areas of the brain 

responsible for generating biological rhythms. Biological rhythms are "recurrent events 

within a biological system (usually an organism) (Aschoff 1981)." Those internal 

biological rhythms running on roughly a daily cycle, such as body temperature 

fluctuations, are called circadian rhythms (Refinetti 2000). The pacemaker that controls 

the operation of the circadian rhythms within mammals was discovered in the early 1970s 

via lesioning of experiments carried out on rats (Moore and Eichler 1972). It was 

discovered that upon lesioning the suprachiasmatic nucleus (SCN), located in the 

hypothalamus, previously rhythmic behaviors and rhythmic biological functions ceased 

to be rhythmic (Moore and Eichler 1972). This collection of neurons in the brain is the 

primary center responsible for controlling the biological rhythms of mammals. It 
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receives inputs from a variety of sources to adjust itself as conditions change. One 

example of such control comes from the optic nerve; light and dark cycles are very 

important for controlling the internal rhythms of an animal. 

In our lab studies different drugs were applied in vitro to a 500 /lm slice 

containing rat SCN. The experiments singled out for this project used NMDA and (+) 

DPAT. Limiting the scope seemed essential for early modeling and testing of the system. 

NMDA is an excitatory drug. It is not found in the body on its own, but it is an agonist 

for a neurotransmitter, glutamate, which is found in the body (Colwell et a11990, 

Vindlacheruvu et al 1992). The acute effects of (+) DPAT remain unknown, however it 

is thought to act as an agonist at the 5-HTIA receptor (Pauwels 2000). 

In the lab it became apparent that NMDA applications led to reliable increases in 

activity for the SCN. The application of (+) DPAT, however, did not produce consistent 

effects. The combination of the two drugs at the 100 J.1M level usually resulted in a 

marked excitation immediately followed by a large inhibition of the firing rate. Often the 

system would recover from the inhibition over the course of a few hours. This response 

is both puzzling and difficult to explain. These relationships are unexplainable using 

linear models, therefore leading one to use a neural network to try to determine an 

approximating function. One major concern was whether this response was merely due 

to random noise. 

By taking the lab data and training it into a neural network one could potentially 

filter through some of the noise and reveal the underlying relationship between the drug 

applications and the SCN firing rate. In addition, one could determine the feasibility for 
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future and more extensive system modeling using various algorithms. Potential 

applications of this technique are limitless in scope. 

Objectives: The goal for this project was to partially simulate the acute actions of 

neurotransmitters on the electrical activity of the seN through a neural network. Only 

two different types of drugs were used to train the network. The training period included 

only a small portion of the day. By giving the trained network an input matrix with time 

in minutes as well as the concentration of drug application as well as time since the last 

drug application it is hoped that it will provide an accurate output of SeN firing activity. 

Methodology: Initially data from lab experiments were examined to single out 

those experiments with the fewest errors inherent in them due to noise and other 

externally caused events. A clean experiment with clear input data and relatively clear 

output data was sought. In the end five particular experiments were used to train the 

neural network. They all had similar ranges for their times and all used only two 

different drugs, NMDA and (+) DPAT. 

To best train the network, the input matrix was constructed to have size different 

input types. First the time of day was entered in minute intervals. Time zero 

corresponded to the beginning of the day for the rat, 7 AM. Time 60 would then be 8 

AM, and so on until time 1439, which would correspond to 6:59 AM. For this set of data 

though no time exceeded 720 minutes. 

The second input was the predicted value for y (SeN activity) 10 minutes after 

the current time. This is one input, which could be adjusted to attempt to better map the 
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inputs and outputs. Maybe a larger or smaller prediction step-size would be ideal. The 

initial results were within an acceptable range to not warrant the added time to adjust this 

variable although at some point it would be wise to experiment with this value (Uhrig and 

Tsoukalas 1997). 

The third and fourth inputs were both drug concentration values applied at the 

time given by the time input. The concentrations were based on a micro molar scale: 100 

= 100 J..l.M. The third input corresponds to the NMDA concentration and the fourth input 

corresponds to the (+) DPAT concentration. 

The fifth and sixth inputs are again times. These inputs are also in minutes, just 

as the first. The times correspond to the time since the application of the drug and are 

reset whenever the drug is applied again. This input is included because some of the 

influences of these drugs on the system seem to take place long after their application. It 

seemed necessary to provide the network with inputs as to how long ago a treatment was 

applied. Especially if training is to occur with a non-time based network, one without 

memory, then the inputs would need to provide the necessary information as to past 

events (Uhrig and Tsoukalas 1997). 

Another set of inputs considered was a pair that would relate the concentration of 

drug just applied. This would maybe help in the delayed response recognition. The time 

since an application is an input but will the network know to respond differently to a 10 

J..l.M vs a 100 J..l.M application of (+) DPAT? These inputs were not considered since most 

of the input data were at a single concentration. Only a very few situations were used 

that had an input different from 100 J..l.M for the drug concentration. 

7 



The output was in the form of average cell firing rate for a minute interval. This 

output was scaled to a 0 to 1 scale, since the firing rate could vary from day to day based 

on different factors and no one day's firing rate should have anymore weight than another 

day's rate. The values used for the prediction input were also scaled in a similar way to 

provide a standard scale for the SeN activity. No other input values were scaled at all 

since most of them were time values. 

At first the different days were placed in their own individual input and output 

matrices. This was done so that each could be trained and then tested against expected 

values. This process helped to figure out which type of network to best use with the 

system. The types of input and output matrices were well suited to training with a 

multilayer perceptron. A time delay neural network or even a recurrent network may 

have worked for training these data. But the MLP seemed the most reliable and best

understood option in this situation. Something was needed that could approximate a very 

complex nonlinear function (Uhrig and Tsoukalas 1997). 

The data were trained using the Levenberg Marquardt training algorithm. It is a 

fast and fairly reliable method for training data. With the large output/input matrices it 

seemed ideal to pick a faster training method. Some attempts were made at training with 

backpropagation. These attempts never matched the accuracy of the LM training when 

the network was simulated. 

Training took place assuming an SSE based off of a 10% error per output value. 

For a single day's worth of data, the SSE was typically around 5 or less. For the total 

merged matrix the SSE was around 23 typically. There was always a danger of training 
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too much noise while also not allowing the network to miss important relationships. The 

SSE had to be able to pick up trends but not too much noise (Uhrig and Tsoukalas 1997). 

The number of neurons in the neural network seemed to have little influence on 

the training so long as the number was typically kept between two and six. As long as 

the error goal was kept the same the simulation seemed to stay generalized. Still, the 

network was typically trained with either two or three hidden neurons. Hidden neurons 

do the majority of the work within the neural network as opposed to input and output 

neurons, which merely feed data to and from the hidden neurons (Uhrig and Tsoukalas 

1997). The fewer neurons did seem in the end to best generalize for unseen data. 

During training the momentum and learning rate were left unaltered from their 

default values in the lmtrain program: lr=0.03 and momentum=0.9. The maximum 

number of epochs was kept to within 200. There never seemed to be any drastic changes 

in SSE above this point. If the network was going to train the data it was usually below 

this value. It was set as the ceiling to save time. The hidden layer was a logsig layer and 

the output layer was linear. The difference between logsig and tansig would have 

probably been negligible, but it seems that logsig would have an advantage since it 

operates between 0 and 1 and the outputs are also scaled between 0 and 1. It is doubtful 

that the choice of logsig or tansig would have made any major difference (Uhrig and 

Tsoukalas 1997). 

Once a few of the network input and output matrices were tested and the best 

training and simulation method were developed for known data, all of the input matrices 

were merged into one large input matrix as were the output matrices. The total number of 

data points per input or output column numbered about 2300. These merged matrices 
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were tested with known data using lmtrain and the networks were subsequently simulated 

using simuff. 

For situations where the outputs were supposed to be known it was easy to test the 

simulation of the network because an input matrix could be used that contained known 

predicted values of the output. However, in simulating the network for an unknown, 

these predicted values were completely unavailable. In the final testing of the network, 

these predictions were simply random numbers and as the network trained these random 

values were replaced with simulated values based on the random values. The network 

was then trained again and the simulated values were tested against the predicted values 

used for the training. If there was a large discrepancy then the predicted values were 

replaced with the simulated values and the network was tested again. This process 

looped until the error between predicted and simulated values was reduced below a 

certain level. This simulation approach worked fairly well for this network, but it could 

be modified to find the least error more quickly using different techniques, such as 

Newton's method. In the end though a very simple error-testing algorithm got the 

network to approximate the actual data to within an acceptable error range. Once the 

simulated and predicted values matched closely the simulated outputs were checked 

against the actual output values. 

Results: The earliest results obtained from the network were in training the first 

inputs and testing those against the expected outputs. These results were used to 

primarily judge the effectiveness of the various network properties: learning method, 

number of neurons and SSE (Fig. 1, 2 & 3). 
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Figure 1: An example of training with too high as SSE-23. The red line represents predicted values while 
the blue line represents the actual data. 
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Figure 2: Training took place with 3 hidden neurons and an SSE of 5. The red represents the predicted 
value while the blue represents the actual data. 
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Figure 3: The same network as before only trained with 2 hidden neurons and an SSE of 5. Red represents 
predicted values and blue represents actual data. 

In the data shown above it seems that the network trained best with a SSE around 

5 and with as few as two or three hidden neurons (Fig. 1,2 & 3). Among these examples 

the three-neuron run looks best when comparing the simulation to the actual data. Some 

of the actual SeN responses to drug applications were filtered out in the two neuron run 

(Fig. 3). During the 500 and 600-minute time intervals, there were two drug applications 

that were not simulated at all in the two-neuron run (Fig. 3). Still, this was not always 

observed to occur. Only in a few runs did the two-neuron system not work as well as the 

three-neuron network. For the most part there was little noticeable difference between 

the networks operating with 2, 3 or 4 hidden neurons (Fig. 2 & 3). Another observation 

about these data is that the simulated network seems to lead the actual data by about a 

minute (Fig. 2 & 3). This is probably due to the drug not having a directly noticeable 
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response from the brain slice. Usually it takes a minute for the drug to cause a noticeable 

effect. 

Next, the individual inputs were combined into a single large input matrix. The 

known outputs were also combined into a large single output matrix. The merged data 

were trained and then tested against a known input/output pair that had been included in 

the training set (Fig. 4 &5). 

Simulated SCN 100 urn 100 um 100 um 10 lim 10 urn NMDA & 100 urn 
Merged Data Set NMDA NMDA (I) DI)AT NMDA 100 um (t) DPAI" NMDA 

1.-----_,----"_.--,,--,,.-----~.__."._----_,rr----_, 

0.9 

0.8 

0.4 

0.3 

0.2L-----~~--~~--~--~~--__ ~L__L_LL_ ____ ~LL ____ ~ 
100 200 300 400 500 SOO 700 800 

Time in minutes 

Figure 4: Merged data has been used to simulate a single day previously trained into the network: SSE=23 
N=20. Red represents predicted values and blue represents actual data. 
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Simulated SCN 100 um 100 um 100 um 10 um 10 um NMDA & 100 lim 
Merged Data Set NMDA NMDA (t) Ol'Ar NMDA 100 lUll ( t) DPAI" NMDA 
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0.4 
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Time in minutes 

Figure 5: Merged data simulate a single recording day: SSE=23 N=3. Red represents predicted values and 
blue represents actual data. 

There was little difference visibly between training the network with 20 neurons 

versus the standard 3 or 2 in this situation (Fig. 4 &5). This is probably due to the fact 

that the network has seen these data before and the SSE is at the same value for both 

training sessions, hindering the network from training too closely even when more 

neurons are present. It would be expected that the number of neurons has a larger 

influence on the network when it sees data for the first time. 

Finally, the network was trained with the merged input/output matrix at an SSE of 

23, and then was introduced to new data (Fig. 6 & 7). The data were still within the 

range of the network. It was necessary to loop the output as described previously so that 
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the network could reduce the error of the simulation and generate better predicted firing 

rate values to feed back into the network. 

100 urn 
NMDA 

SimulatedSCN Activity NMD100 um
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0:: 

~ 
if 0.5 

I 
~ 0.4 

0.3 

0.2 
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Figure 6: Graph showing Simulated SCN vs. actual SCN output: SSE=23 N=2 LM training. Red 
represents predicted output and blue represents the actual data. 

This output from the simulated network looks very promising (Fig. 6). The 

training seems to have been successful in both generalization and preventing overfitting. 

The simulation does not follow the actual data exactly and it really shouldn't do that. 

There is always short-term noise inherent in these signals that could never be trained or 

predicted from day to day. It is good to see that the signals seem to follow the same base 

line; output scaling had something to do with that as well. The network responds in this 

run to the proper drug inputs. No response is really expected from DP AT although at 
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times it does seem to excite the SeN. One fault in the simulation that seemed 

unavoidable is in the randomization of the predicted outputs. Initially all of the predicted 

outputs are set to random values and are later replaced as the simulation generates its own 

predicted values. The way the simulation is designed, the last ten predicted values are 

always random. The simulation cannot generate these values so they must always be 

random values. This would cause the last ten data points to maybe be erratic. The 

simulation overall was a success. 

On a side note, it became clear when simulating the network that the Levenberg 

Marquardt training algorithm was better suited to these data compared to 

backpropagation. 

Simulated SeN Activity lOOum IOOum lOOum DPAT & lOOum 
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7
..J

OO 
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Figure 7: Simulation of the SeN when trained with BP: SSE=45 N=2. Red represents predicted values 
and blue represents the actual data. 
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It was nearly impossible to train the backpropagation network to an acceptable 

SSE. In the end an SSE of 45 was the lowest it could train to. Admittedly this is 

probably the reason for the poor matching of actual SCN versus simulated SCN outputs. 

Still, if the network cannot train to an acceptable level then it is not useful in simulating 

an output (Uhrig and Tsoukalas 1997). 

Conclusion: The multilayer preceptron was able to successfully model the SCN in a 

limited capacity. The limitation in this situation was that only two types of drugs were 

trained into the network. Also the drugs were really trained in at primarily a single 

concentration: 100 /-LM. On a very small scale this network modeled a part of the brain. 

In order to create a full model of this or any part of the brain, tremendous amounts of data 

would need to be trained into a network. All the different types of neurotransmitters and 

other inputs would need to be trained at all the different concentrations that could 

conceivably be delivered to that part of the brain. One would also need to map the 

specific sites where these inputs were received by the particular brain component. The 

same drug applied to a different part of a slice could cause a different response. 

The results from this project helped to more clearly show the SCN's response to 

input from NMDA and DPAT. It was hoped that a clear relationship between the 

interaction of these drugs in combination could be revealed. With more training data 

focusing on the combination of these two drugs, that interaction could be better realized. 

Overall that seemed to be the biggest downfall of this project, a lack of clear and good 

data. There were only five experiment days that were clear enough and also used a 
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limited number of drugs. A sixth day was withheld so it could be used in testing the 

simulation of the network. 

Limiting the drug inputs to train to only two drug varieties probably helped in 

more quickly training the network and in helping to better analyze the results (Uhrig and 

Tsoukalas 1997). This project is more of a first step than it is the definitive solution to 

whether a part of the brain can be modeled with a neural network. 

Scaling the outputs helped to keep all the input and output pairs equally weighted. 

Having the simulated output match the actual output so closely on their baselines was 

probably due to the scaling of the outputs. It is still unknown why the backpropagation 

failed to match as closely as Levenberg Marquardt when it came to the baseline of the 

simulation and the actual data. Both training algorithms seemed to match when they 

expected excitations, but they were on different baselines. Certainly by tweaking 

different properties of bptrain it would be possible to both speed up the training and 

increase its accuracy. Given time constraints it was easiest to stick with lmtrain, 

especially after looking at early simulation results, which indicated it was most accurate 

(Uhrig and Tsoukalas 1997). 

Generating the final network simulation was the most telling part of the 

experiment by far. All of the work depends on how well the network can generate those 

outputs without having seen those specific data before. The Matlab program used in that 

portion of the experiment is very simple and slow acting, but it did generate a decent 

simulation. Alternative programs should be looked into for generating the best-simulated 

output. A genetic algorithm is one possibility. The SSE for the simulation compared to 

the actual was typically around 45. With more inputs for the network to observe it is 
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hoped this might be reduced. Also tweaking the simulation program could help to reduce 

this error (Uhrig and Tsoukalas 1997). 

Fully translating a component of the brain to a series of computer algorithms, 

even if that site were incredibly small, would take a great deal of time and effort. This 

project was a small step towards a larger goal of better understanding the components of 

the brain and their interactions with each other. Creating a completely functional 

artificial brain component seems like an achievable goal. 
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Appendix: 

%Generates the simulated network outputs for data collected on 
10130100. 
%The program then test the simulated against the actual output. 
load datl030 
xl=x7' ; 
a=size(xl,2) ; 
xl(2, :)=rands(l,l:a); 
err=lOO; 
a=O; 
hold off 
while err>=O.OOl; 

a=l+a; 
ysim=simuff(xl,W1,B1,F1,W2,B2,F2); 
yp=x1(2, :); 
errc=O; 
for i=1:427; 

k=i+10; 
errc=((ysim(1,k)-yp(1,i))/ysim(1,k))A2+errc; 

end 
x1(2,1:437)=ysim(11:447); 
x1(2,438:447)=rands(1,1:10); 
err=errc; 

erro(a,l)=errc; 
end 
ytst=ysim' ; 
plot(x7(1:427,1) ,yans(1:427,1), 
x7(1:427,1) ,ytst(1:427,1), 'r' ,304,0.75, 'x' ,327,0.75, 'x' ,371,0.75, '0' ,39 
4, 0 . 75, , 0' , 537,0.75, ' x' , 537,0.75, ' 0' , 564, 0.75, , x' ,564,0.75, ' 0' ,641,0.75 
,'x' ,663,0.75, 'x') 
erra=O; 
for i=1:427 

erra=((yans(i,1)-ysim(1,i))/yans(i,1))A2+erra; 
end 
errc 
erra 
title('Actual SCN Against Simulated SCN'); 
xlabel('Time in minutes'); 
ylabel('Scaled Firing Rate'); 
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Figure 8: Graph for LM training with the merged data: SSE=23 N=3. 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

~oo 200 300 400 500 800 700 

Figure 9: Final simulated output using two neurons for training. Red represents predicted output and blue 
represents the actual data. 
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Figure 10: Final Simulated output using three neurons for training. Red represents predicted values and 
blue represents actual data. 
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Figure 11: Final simulated output using four neurons for training. Red represents predicted values and blue 
represents actual data. 
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