
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Chancellor’s Honors Program Projects Supervised Undergraduate Student Research
and Creative Work

Spring 4-2001

Swim Search: An Online Sports Management Information Swim Search: An Online Sports Management Information

Retrieval System Retrieval System

Kevin Erich Heinrich
University of Tennessee-Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj

Recommended Citation Recommended Citation
Heinrich, Kevin Erich, "Swim Search: An Online Sports Management Information Retrieval System" (2001).
Chancellor’s Honors Program Projects.
https://trace.tennessee.edu/utk_chanhonoproj/465

This is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative
Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s
Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange.
For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_chanhonoproj
https://trace.tennessee.edu/utk_supug
https://trace.tennessee.edu/utk_supug
https://trace.tennessee.edu/utk_chanhonoproj?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

AppendixD- UNIVERSITY HONORS PROGRAM
SENIOR PROJECT - APPROVAL

Name: JSf:::ILl.r.l_J1~~0J-1'£..lL ____________________________________ _

Colle ge: __ f1! .. :b_~_S.~~______ Dep artmen t: ___ C..~'1Ll{..s~;!!2'l~ _____ _

Fa cuI ty Men tor: --~!!J..~ej-~:..2..!!Y-1-------------------------------
PR 0 JE C T TITLE: -~~~~.?~~Cf:.~-; __ 4~ __ Q.J~'l.f......_...sf...D£i2 ___ 0il!1~9-tlJ!l~'1..t __ _

_ 1~1~~~&t~D ___ ~d~~~v31 ___ ~~1~ ____________________________ _

I have reviewed this completed senior honors thesis with this student and certify
that it is a project commensurate with honors level undergraduate research in this
field.

Signed: __ ~_id~ ____________________ , Faculty Mentor

Date: ------1i~Ql~LI--------
Comments (Optional):

SwimSearch:
An Online Sports Management Information Retrieval System

by Kevin Heinrich

Senior Honors Project

May 2,2001

Abstract
Information is vital to success and excitement in sports. Often success in sports is

heavily dependent upon the information a team has about its opponents. Analyzing an
opponent's abilities and preparing to best an opponent contributes greatly to the
excitement of watching many sporting events by adding to the anticipation of that event.
Especially when an opponent's abilities are comparable to those of another, the better
informed team often has a considerable advantage over the other. Thus, competitors and
spectators alike seek information to further enhance the excitement of competition.

The objective of this project is to further the information available to those
interested in swimming. In particular, this project will focus on swimming in the Greater
Knoxville Area Interclub Swimming Association (GKAISA). Information is most easily
accessible through the Internet; thus, this project utilizes the Internet to disseminate
GKAISA swimming information. Through the use of scripts written in Perl and PHP,
CGI (Common Gateway Interface), and both a MySQL and a PostgreSQL (Structured
Query Language) database, this project will present information in a need-based
manner-only specific, needed information will be returned to the user to avoid pushing
excessive material to the user and detracting from the user's original information retrieval
goal. This project is more than just an exercise in data mining/retrieval in that some
query options require further processing of retrieved data before they are returned to the
user-functions such as predicting future results and customizing views by team will be
querying options that are useful to meet many ofthe needs of the swimming world.

Needs
Approximately two thousand swimmers belonging to roughly thirty teams divided

into five or six leagues compete every summer as a part of GKAISA. GKAISA is a
competitive league, and the top teams are constantly looking for an advantage over other
teams whether by scouting, keeping previous years' lineups, etc. Coaches are always
trying to gain a competitive edge over each other, since winning meets is often a big
morale boost to all of their team's swimmers. Coaches that can guess opposing teams'
lineups have an invaluable edge over teams that enter a meet blindly. Many parents, too,
often want to know how well their child will do against each team and how likely it is
that their team will beat the other in a dual meet competition. Swimmers also would like
to know whom they have to swim against at each meet so they will know what to expect
and how much they should train, rest, etc. Thus, nearly every person who has an interest
in a swimmer has a distinct information need about the opposing teams.

Test Data
The two major meets of GKAISA swimming are the Smokey Mountain

Invitational (SMI) and City Meet. The City Meet competition is split into preliminaries
and finals, each of which I considered a separate meet. The initial data given to me
included eleven years' worth of results. I obtained the 1999 SMI and 2000 City Meet
Preliminaries and Finals from the Web. The 2000 SMI was given to me directly through

Heinrich, 2

Hy-Tek Meet Manager, the swimming software used to run the swim meets. All other
results were exported from Hy-Tek into a text file. The results given to me were both the
SMI and City Meet Preliminaries and Finals for years 1999 and 2000; I was only able to
obtain results from the City Meet Finals for years 1990 to 1998. Hy-Tek Meet Manager
was DOS-based prior to 1999, so the results prior to 1999 are in a different format from
the files from 1999 and 2000. Since some of the results were copied from the Web, those
results are also in another different format. After parsing and eliminating duplicate
swimmers, I found that there were approximately four thousand swimmers with slightly
greater than 24,000 swims representing thirty-five different teams.

Project Goals
The goal I have for this project is to meet the needs of the swimming community

and to further my knowledge of database management systems and scripting languages.
To satisfy the competitive nature ofthe coaches' needs, I created a view of results that is
grouped by event so that each swimmer is matched up against every other within
constraints. To satisfy the personal nature of the swimmers' and parents' needs, I created
a view of results that is grouped by swimmer which shows all times on record for each
swimmer.

Initial Attempt
Initially, I only had possession of the 1999 and 2000 results that I stored in a

MySQL database. I used Perl scripts to normalize the results into a standard, semicolon
delimited format. Once formatted, I used the Perl Database Interface module (DBI) to
read the results into the database [1]. At that point, my database consisted ofa swimmers
table and a table for each of the meets. The swimmer table only contained an integer
identifier as a primary key as well as each swimmer's first and last name. Each meet
table contained the appropriate swimmer's identifier as well as the team, age, time, and
event. I used a hash based on the swimmer's name, sex, and team to ensure that an
identifier represented a unique swimmer. Due to the nature of the results files, most all
the fields were text fields. Searching through my first database was done either by first
or last name only. Many problems existed with my database structure as well as the
integrity of my data.

As my knowledge of database design increased, I redefined my tables into the
third normal form. I changed the swimmers table to contain an identifier, first and last
name, team, gender, and birth year. The meet tables were reduced to contain only a
swimmer's identifier, the stroke, distance, and time. Since the results files only contain
each swimmer's age, I calculated each swimmer's birth year as the difference between
the meet year and the age of each swimmer listed. Since the age for each swimmer for
the swim season is based on his or her age as of May 31 st ofthat year, the birth year
should be consistent for each swimmer across meets. Searching could be done over any
of the fields in either the meets tables or the swimmers table. All Web interfaces were
done with the Perl DBI and CGI.

Heinrich,3

Revisions
Once a PostgreSQL database was available through the Computer Science

Department [2], two classmates assisted me with working on this project. Justin Giles
primarily converted all the Perl scripts I wrote into PHP scripts [3], while Patrick Lynn
developed a better interface (see figures 1 & 2). Meanwhile, I was able to obtain the
results from 1990 to 1998.

With the increased amount of data, swimmers that swam for different teams over
the years became more of a concern. As a result, I made several more tables. I created
the teams table which contained a team's unique code as well as their name. Along with
the teams table came the team_lookup table that matches a team's code with the spelling
of the team's name within a given year. Thus, different spellings for the same team could
be mapped to the same unique code. For example, the Maryville-Alcoa Flying Dolphins
had several different spellings throughout the years to accommodate length constraints on
the team name. These spellings include MAFD, MaryvilleAlcoa Flying Dolphins,
Maryville-Alcoa Flying Dolphin, etc.

To accommodate the swimmers who swam for different teams over different
years, I migrated the team field from the swimmers table to a new table named
swimmer_team. In this table, I matched each swimmer's identifier with a team code and
a year. Since swimmers are not allowed to switch teams within a year, this method
should be sufficient. To accommodate the growing number of meets, I created a meets
table that contained the table names of the meets as well as the name of the meets
themselves and the year in which they were swum.

One alternative to having a separate table for each meet is to have one large table
named results. The drawbacks against this, however, are many. In were to combine all
results into one large table, every query of the database would be over all swims for all
years. On the other hand, my method, while making the SQL query more complex [4],
has the potential to save many comparisons by only querying over selected meets.

After the initial pass through the results with my Perl scripts to load all the
swimmers data into the database, I found two main problems. First, many swimmers had
their names spelled differently over the years, causing them to be indexed as two separate
people. Second, birth years for the same swimmer did not match up. For example, some
swimmers were listed as 17 years of age during both 1999 and 2000, causing them to
have corresponding birth years of 1982 and 1983. Also, from one year to the next, a
swimmer's listed name may change from Matt to Matthew. To remedy this, several
automatic procedures were considered, but in the end manual verification could not be
avoided.

Prior to manually combining many swimmers into one record, there were over
4,800 records. After manual passes through the database, that number was reduced to
4,000. In other words, with respect to the swimmers, approximately seventeen percent of
the data given to me was bad data. Upon inspection of the types of misspellings and birth
year mismatches that caused a swimmer to be multiply indexed, I have concluded that

Heinrich, 4

any type of automatic correction method would have produced as many errors as it would
have fixed. Once the records were properly merged, I made one final pass through the
database to fix any obvious name misspellings.

Storing the database in its new, properly normalized form also caused queries to
become much more complex. To extract data from the database, the meets table must
first be queried over to determine which meet tables to query. After that information has
been determined, a union is done over all the appropriate meet tables. Obviously, queries
over all meets will take a much longer time to process. However, our interface
discourages use of broad queries over all years by placing the "all years" option last in
the drop-down menu.

One of the most useful functions of our portal, SwimSearch, is the automatic age
up of each swimmer. This is useful for coaches trying to determine what lineup to expect
from each team and is easy to implement with a slight modification to the query sent to
the database.

Another function I found both interesting and somewhat useful is the "predict
future results" function. This function predicts each swimmer's results for next year for
each event that he or she swam in this year. The predictions are based on the average
improvement for every swimmer who swam that event in the previous year. Thus, the
prediction is equivalent to saying "if your swimmer improves as much as every other
swimmer did last year on average, then he or she will swim this." For a more in depth
explanation on this function, visit the help section of our portal. A link to our portal can
be found off ofhttp://www.thextus.com.

Future Extensions
This portal, in its current state, meets most of the needs of the swimming

community. However, there are always more extensions possible. One obvious
extension other than obtaining more results is to make the prediction function better.
That is, predict future results based on previous performances of an individual swimmer
rather than the aggregate performance the age that the swimmer is.

Another modification I plan to make soon is to change the birth year field into a
birth date using PostgreSQL's Date data type. Adding a Web-accessible administration
page would make this extension much more feasible by allowing coaches to enter in their
swimmers' birth dates online. Also, since this project has sparked much interest, I may
be able to obtain swimmers' birth dates from GKAISA records. If! can obtain birth
dates, then birth year discrepancies mentioned before would no longer exist.

Unfortunately, I did not learn too much about SQL until much of the project was
already implemented and the data already entered into the database. In the future, I plan
to change the time field in each of the meet tables to a Time data type, while I allow DQ
and NS swims to be indexed under some pre-determined, unobtainable time. To find DQ
and NS swims, I could then use a CASE statement within the SQL.

Heinrich, 5

Some people are interested in relay finishes; however, the usefulness of relay
finishes and times is miniscule compared to the usefulness of individual swims. One
possible extension would be to add a best relay finder. That is, within a given year (and
other constraints), find the best relay based on the results in the database. Such a
function, if implemented correctly, would enable coaches and swimmers alike to be able
to completely size up their opponent before swimming them.

Acknowledgements
I would like to thank Dale Montgomery for providing me with the resuhs from

1990 to 1998, Keith Lambert for his constant feedback of my portal, Dr. Michael Berry
for his encouragement and advice, and Dr. Peiling Wang for her advice with SQL
statements. I would also like to express my appreciation to Justin Giles for writing most
of the PHP scripts for the portal and to Patrick Lynn for designing the layout and
JavaScripts used by the portal.

Heinrich, 6

Figures

Figure 1: The Basic Search Screen.

Figure 2: The Advanced Search Screen.

Heinrich, 7

References

[1] Alligator Descartes and Tim Bunce, Programming the Perl DBI, Cambridge: O'Reilly &
Associates, 2000.

[2] The PostgreSQL Global Development Group, PostgreSQL 7.1 Reference Manual, [online]
2001, http://postgresql.readysetnet.comlusers-lounge/docsl7.lIreferencel (Accessed: 3 April
2001).

[3] Anne-Scott Whitmire, Creating Database-Enabled Web Pages Using PostgreSQL and PHP,
[online] 2001, http://yoho.cs.utk.edul-cs494/ (Accessed: 2 April 2001).

[4] James R. Groff and Paul N. Weinberg, SQL: The Complete Reference, Berkeley:
OsbomelMcGraw-Hill, 1999.

	Swim Search: An Online Sports Management Information Retrieval System
	Recommended Citation

	tmp.1281626643.pdf.C8Pi0

