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ABSTRACT 

This paper presents an abbreviated history of cryptography. The paper begins with an 

introduction that defines cryptography and establishes the context and purpose of the 

report. The second section focuses on early ciphers, such as the Caesar cipher and 

Vigenere cipher. This is followed by a discussion of ciphers used during the two World 

Wars, including Enigma and the Navajo code talkers. The last section examines 

computerized ciphers such as Lucifer and RSA. The report ends with concluding 

remarks. 
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GLOSSARY 

cipher - a process that scrambles the letters of a message. 

code - a process that scrambles the words of a message. 

ciphertext - the message that results after encryption. 

cryptography - the science of rendering a message unintelligible to any but sender and 

intended recipient, according to a specific protocol. 

cryptographer - one who specializes in enciphering messages. 

cryptanalyst - one who specializes in breaking codes and ciphers. 

decryption - undoing the scrambling process to render the ciphertext legible. 

encryption - using a cipher to scramble the meaning of a message. 

plaintext - the message to be encrypted 

steganography - the process of concealing the existance of a message. 
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INTRODUCTION 

The modem usage of the word cryptography evokes images of spies and espionage, of 

secret messages sent back and forth between agent and government, and of secret panels 

in briefcases to conceal stolen documents. For those who lurk in the dark comers of the 

Internet, the word "encrypted" represents an unbreakable wall that prevents tampering. 

The science of cryptography is all of these things, but few of those who banter the word 

about know the actual definition of cryptography. Cryptography is the science of 

rendering a message unintelligible to any but sender and intended recipient, according to 

a specific protocol. The process of concealing a secret message through cryptography is 

called encryption. This does not include the process of hiding of the existence of a 

message, which is known as steganography. The Greeks used steganography to transmit 

important information without their enemies knowing. The historian Herodotus wrote of 

an exiled Greek Demeratus who wrote a message on a pair of wooden tablets about the 

intention of the Persian King Xerxes to attack Greece. He covered these tablets with 

wax, so they would appear blank to any Persian guards who may encounter them. The 

Greeks received the tablets, scraped off the wax, and prepared to meet Xerxes at the Bay 

of Salamis, where they won a great victory. Cryptography and steganography have been 

used over the centuries to conceal secret messages, yet it is cryptography that offers the 

better security. If the secret message is intercepted, steganography does not prevent the 

finder from reading the message, while an encrypted message is still unreadable by the 

"enemy". While independent, encrypting and hiding secret messages does add more 

security (Singh 5 - 6). 
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The purpose of this report is to provide the reader with a brief history of cryptography, the 

more powerful branch of secret writing. This report will first discuss early ciphers such as 

the Caesar cipher, then it will discuss the advent of polyalphabetic ciphers, the 

mechanization of encryption with machines such as ENIGMA, the development of public 

key encryption, and a look at the future of cryptography. 
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CODES AND CIPHERS 

The two main requirements of any cryptographic undertaking are the method and the key. 

The method is the general procedure of encryption, such as exchanging one letter for 

another, or scrambling the existing letters around. The key defines the specifics of the 

method. The security of a particular cryptographic method depends on the number of 

possible keys a method can generate. If the number of keys is large, it becomes 

impractical for an enemy to test all possible keys in an attempt to decrypt the message. 

THE BRANCHES OF CRYPTOGRAPHY 

Cryptography can be broken into two branches: transposition and substitution. 

Transposition involves a scrambling of the order ofthe plaintext. Substitution involves 

exchanging one set of symbols for another, rendering the resulting text unreadable. If a 

transposition or substitution scrambles words it is called a code, and if it scrambles letters 

it is called a cipher. Transposition ciphers change the position of a letter while retaining 

its identity. An example of a simple transposition cipher is the two-line "rail fence" 

cipher. Take a short message, such as "Meet in the courtyard at five". Then write each 

letter of the message on alternating lines, as shown below: 

Meiteoryrafv 
etnhcutadtie 

Finally, the text is rewritten, reading each line from right to left, with the encrypted 

message being "Meiteoryrafv etnhcutadtie" (Gardner 11 - 12). Transposition ciphers 
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seem to offer a high level of security. As the number of letters grows, the number of 

letter combinations also grows. With ten distinct letters, there are 3, 628, 800 different 

ways of arranging them. Most messages of importance will be longer than ten letters. 

The flaw in this is that the transposition must be done in a straightforward way so the 

receiver can quickly unscramble the letters, as can anyone else who knows the key. 

Anyone who figures out the key will be able to easily decipher the messages. 

EARLY CIPHERS 

One of the earliest ciphers to be used on a large scale was a transposition cipher known as 

the scytale cipher, used by the Spartans in the fifth century B.c. The scytale was a 

wooden staff, around which a strip of leather or parchment was wound. The message was 

written on the strip and the strip was unwound, scrambling the letters. To recover the 

message the strip would have to be wound around a scytale of the same diameter of the 

one used to encrypt the original message (Smith 16). Julius Caesar used ciphers 

extensively, but we only have detailed records of one of these, in which Caesar would 

write down the letter three places down from the actual letter of the message. This type 

of cipher alphabet became known as the Caesar shift cipher. Originally applied only to 

the actual cipher used by Julius Caesar, it now represents a family of ciphers where the 

cipher alphabet is shifted a fixed number of places down from the plain alphabet. As an 
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example, the English alphabet is given, with a three-place Caesar shift alphabet 

underneath: 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
DEFGHIJKLMNOPQRSTUVWXYZABC 

A Caesar shift can be between one and twenty-five, thus providing twenty-five different 

keys. This type of cipher does not offer very much security. However, if we allow any 

permutation of letters to be used as a cipher alphabet, the number rises to over 1025 

different possible keys. The keys are also simple arrangements of the twenty-six letters of 

the alphabet. By sacrificing just a few of the possible keys, the generation of the keys 

could be made even easier by selecting a code word to form the first part of the cipher 

alphabet, with the remaining letters following the key phrase, in their normal order. Thus 

a cipher using the word MILK as the keyword would look like this: 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
MILKNOPQRSTUVWXYZABCDEFGHJ 

This type of cipher is called a mono alphabetic substitution cipher. This cipher was 

considered unbreakable for a millennium. 

THE ADVENT OF FREQUENCY ANALYSIS 

While the European world wallowed in its Dark Ages, the Arab world was reaching a 

pinnacle of intellectual achievement. The fields of mathematics and linguistics were very 

advanced, mainly for the purpose of discovering the chronological order of the 
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revelations in the Koran. As a side effect, Arab scholars discovered that the letters of the 

Arabic alphabet have different frequencies of usage. For example, the letter 'L' is used, 

on average, ten times as much as the letter 'J'. These frequencies can be exploited to 

determine the cipher alphabet used to encrypt a message by matching frequencies of 

letters in the cipher text with the frequencies of the letters in the alphabet of the language 

that the plain text was written. This procedure, known as frequency analysis, was first 

documented by the scholar Abu YusufYa'qub ibn Is-haq ibn as-Sabbah ibn 'omran ibn 

Ismail al-Kindi in the ninth century AD. It is possible for a skilled cryptanalyst to 

decipher a message in minutes if the message is more than a line or two, and the language 

of the plain text is known. This technique does not automatically make ciphered messages 

simple exercises in letter replacement. Messages that have a high percentage of normally 

seldom used letters would be extremely difficult to decipher if the frequencies are applied 

mechanically (Singh 10 - 20). It still requires intuition and guile to be a cryptanalyst. 

This technique has been a primary tool of cryptanalysts for hundreds of years, but it 

would take a Renaissance to bring this technique to the Western world. 

Ciphers in Europe 

During the Dark Ages, cryptography was rarely practiced. Only monasteries encouraged 

the study of cryptography, mainly for the purpose of deciphering encrypted messages 

found in the Bible. These monks developed cryptography into a workable science, and 

gradually reintroduced it to European society. By the fifteenth century, it was a part of 

the daily politics of Europe, particularly in Italy. Italy during the early Renaissance was 
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full of independent city-states. Diplomacy and a need for secure communication required 

that all ambassadors have cipher secretaries and every nation have a cipher office. The 

technique of frequency analysis made its way from the Middle East to Europe, and the 

once unbreakable codes began to be broken at an alarming rate. Those ignorant of the 

power of frequency analysis had faith in monoalphabetic substitution ciphers, while their 

secure communications were transparent to crypt analysts (Singh 26 - 28). The Spanish 

cipher office was one such case. When they discovered the French cryptanalyst Francois 

Viete had been breaking their ciphers for years, they thought him in league with dark 

powers. King Philip II petitioned the Vatican to try him before a Cardinal's Court. The 

Pope rejected the petition (Smith 22). The search was on for a way to confound this new 

codebreaking tool. 

A Better Cipher? 

In an effort to increase the security of the mono alphabetic substitution cipher, a few 

simple improvements were added. The first of these was the introduction of nulls, or 

symbols in the cipher text that would have no meaning in the plain text. The intended 

recipient, who has the key, would know to ignore these symbols, but an enemy trying to 

decipher the message could not ignore them. Another technique used was to misspell the 

plain text before encryption, so that the message "this is a secret" would be written as 

"thys es uh sikret." It was hoped that these methods would change the frequencies of the 

symbols used in the cipher text, and defeat the frequency analysis. Nomenclatures, or a 

cipher alphabet with a few distinct code words, were also used to confound the 
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cryptanalysts of the day. Unfortunately for the cryptographers most skilled cryptanalysts 

could get around these innovations and secret messages were not very secret (Singh 29 -

32). 

VIGENERE'S CIPHER 

In the mid-sixteenth century, a French diplomat turned scholar named Blaise de Vigenere 

came up with the first truly innovative new cipher since the advent of the Caesar cipher. 

By carefully examining earlier cryptographic works and making some educated leaps of 

intuition, Vigenere developed a powerful new means of encryption. Named for its 

creator, the Vigenere cipher makes use of twenty-six distinct cipher alphabets to encrypt a 

message. The cipher alphabets are all simple Caesar shifts of one to twenty-six arranged 

in a square, as shown in Figure 1. Each letter of the plain text message is encrypted using 

a different row of the Vigenere Square as the cipher alphabet. To choose which rows will 

be used, a keyword is chosen. This word is then written above each line to be encrypted, 

and repeated until all the letters of the line have a corresponding letter in the code word. 

Using the code word SMILE, the results look something like this: 

smi lesmil esmi Ie sm iles 
The attack will be at dawn 

Then each letter ofthe message is encrypted using the row of the Vigenere Square that 

begins with the letter of the keyword above the plaintext letter. With this key word, five 

cipher alphabets are used to encrypt a message. With longer key words and key phrases, 

more alphabets can be used. The Vigenere cipher completely confounds frequency 
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analysis because each letter of the cipher text can represent several different letters in the 

plain text. The number of keys is also very large, because the number of possible key 

words and phrases is very large. Blaise de Vigenere published an account of this cipher 

in 1586, but the world of cryptography did not embrace this new cipher until almost two 

hundred years later (Singh 46 - 51). 
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Figure 1. A Vigen ere Square. 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
BCDEFGHIJKLMNOPQRSTUVWXYZA 
CDEFGHIJKLMNOPQRSTUVWXYZAB 
DEFGHIJKLMNOPQRSTUVWXYZABC 
EFGHIJKLMNOPQRSTUVWXYZABCD 
FGHIJKLMNOPQRSTUVWXYZABCDE 
GHIJKLMNOPQRSTUVWXYZABCDEF 
HIJKLMNOPQRSTUVWXYZABCDEFG 
IJKLMNOPQRSTUVWXYZABCDEFGH 
JKLMNOPQRSTUVWXYZABCDEFGHI 
KLMNOPQRSTUVWXYZABCDEFGHIJ 
LMNOPQRSTUVWXYZABCDEFGHIJK 
MNOPQRSTUVWXYZABCDEFGHIJKL 
NOPQRS TUVWXYZAB CDEFGHIJKLM 
OPQRSTUVWXYZABCDEFGHIJKLMN 
PQRSTUVWXYZABCDEFGHIJKLMNO 
QRSTUVWXYZABCDEFGHIJKLMNOP 
RSTUVWXYZABCDEFGHIJKLMNOPQ 
STUVWXYZABCDEFGHIJKLMNOPQR 
TUVWXYZABCDEFGHIJKLMNOPQRS 
UVWXYZABCDEFGHIJKLMNOPQRST 
VWXYZABCDEFGHIJKLMNOPQRSTU 
WXYZABCDEFGHIJKLMNOPQRSTUV 
XYZABCDEFGHIJKLMNOPQRSTUVW 
YZABCDEFGHIJKLMNOPQRSTUVWX 
ZABCDEFGHIJKLMNOPQRSTUVWXY 
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Intermediate Efforts 

The Vigenere cipher was impregnable to conventional cryptanalysis because of its 

complexity. Ciphers that use multiple cipher alphabets are called polyalphabetic 

substitution ciphers. They are much more secure, and much more complex. This makes 

them difficult and time consuming to use. This discouraged many people from using the 

Vigenere cipher and others of its kind. The simpler mono alphabetic substitution ciphers 

are fast and easy to use, making them perfect for concealing one's diary from a spouse and 

other civilian applications. Military and political cryptographers needed something more 

secure, but also required something that was fast so that urgent communications could be 

encrypted with little delay. Thus the quest to improve the monoalphabetic cipher 

continued. One method was the homophone substitution cipher. This cipher used 

multiple symbols to represent the same letter, with the number of symbols used 

proportional to the frequency of the letter. In ciphers for English the letter 'e' would have 

the most symbols that could represent it, while the letter 'z' would have only one. Using 

this method the frequencies of the symbols would all be approximately the same, 

defeating frequency analysis. Other permutations of the mono alphabetic substitution 

cipher arose; the greatest of which was the Great Cipher of Louis XIV, developed by 

Antoine and Bonaventure Rossignol in the seventeenth century. This cipher was used to 

conceal all sorts of important French documents, and resisted the attempts of 

cryptanalysts to break it for two hundred years. Instead of using a homophone substitution 

to encrypt letters, the Great Cipher used it to encrypt syllables. These variations were 
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much more secure than straightforward monoalphabetic substitution, and there was no 

need to adopt the bulky Vigenere cipher. 

The Black Chambers 

By the eighteenth century, these enhanced ciphers were beginning to fall prey to skilled 

teams of crypt analysts who pooled their resources for the various governments of the 

times in secret cryptographic offices known as the Black Chambers. Letters that passed 

between embassies and their respective home countries were often first routed through 

these Black Chambers, where they were opened, copied, resealed, and sent on their way. 

The copies would then be turned over to the cryptanalysts, who would puzzle out the 

meanings ofthe messages, and each Chamber's respective government would use the 

information. The greatest of these was the Viennese Black Chamber, which sold much of 

the information it collected to other governments. These exploits horrified the 

cryptographers of the day, and eventually they were forced to adopt the Vigenere cipher 

to insure security. Another push to insure security of messages was the advent of the 

telegraph. To send a message by telegraph, one must provide the telegraph operator with 

a copy of the message. It was possible that a company's operators could be bribed to 

reveal the contents of these messages, which was a breach of security. The solution was 

to encrypt a message before giving it to the operator, who would be unable to read it but 

could transmit it across the telegraph lines. The Vigenere cipher offered perfect security 

in all respects, and was considered unbreakable (Singh 52 - 63). 
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The Fall of the Vigen ere Cipher 

The Vigenere cipher was the bastion of cryptography. The Black Chamber of London, 

feared as it was, could not crack it. It would take a genius to discover the hidden 

weakness of the Vigenere cipher, and that genius was Charles Babbage. Charles Babbage 

was a nineteenth century scientist and eccentric who is most famous for his 'difference 

engines', the forerunners oftoday's modem computers, but he was also well known in 

London circles as an exceptional cryptanalyst. In 1854 he became embroiled in an 

argument about a cipher developed by John Hall Brook Thwaites, a dentist who claimed 

his cipher was new, when in fact it was merely a repeat of the Vigenere cipher. When 

Babbage pointed this out to Thwaites in correspondence, Thwaites challenged Babbage to 

break his cipher. Babbage set to work to find a weakness in the Vigenere cipher. 

Babbage noticed that some sequences of letters would repeat themselves after a set 

number of letters. He hypothesized that perhaps these were common words encoded 

using the same sequence of cipher alphabets. This proved to be the key to cracking the 

Vigenere cipher. By studying the numbers of letters between repeated sequences of 

letters, and performing a little statistical magic, Babbage was able to divine the length of 

the keyword. Babbage then broke the cipher text down into several parts, each one 

corresponding to a message encrypted by a cipher alphabet defined by a letter of the 

keyword. These alphabets are Caesar shift alphabets and using frequency analysis to find 

the alphabets, Babbage could figure out the letters of the key word. Once the keyword 

was found, it was a simple matter to decode Thwaites' cipher. This would have been 

wonderful news for the cryptanalyitic community if Babbage had ever published his 
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work. He did not, and Friedrich Wilhelm Kasiski , who published his results in 1863, 

independently discovered his technique. This technique has hereafter been known as the 

Kasiski Test, and Babbage's contribution was unknown until twentieth century scholars 

examined his personal notes (Singh 67 - 78). Even so, these developments proved that 

the unbreakable cipher was indeed breakable thanks to human ingenuity. 

CIPHERS IN THE PUBLIC EYE 

From the nineteenth century to the dawn of the twentieth, public interest in ciphers grew. 

The popularity of telegraph service showed the need to protect sensitive personal 

correspondence from the prying eyes of the telegraph operator. This cost more money, 

because it would take a telegraph operator longer to send jumbles of letters than words 

and phrases, but it was better than having gossip spread by nosy operators. The public 

embraced this way of hiding information and began to show off their skills. Victorian 

lovers would write long encrypted passages and publish them in the personal columns of 

the local newspapers. These columns would come to be known as 'agony columns'. 

Cryptographers would challenge their colleagues with blocks of cipher text in the 

newspapers. This familiarity with cryptography found its way into the literature of the 

time. Author Jules Verne's novel Journey to the Center of the Earth begins with the 

decipherment of a parchment. Edger Allen Poe wrote a story called The Gold Bug that 

contains an example of frequency analysis. Other cryptographic puzzles were devised 

during this period. In 1885 a small pamphlet was published that detailed the story of 

Thomas J. Beale. This pamphlet outlined a tale concerning one of Beale's trips out west, 
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and his discovery of a gold mine. Upon his return he and his companions decided it 

would be better to conceal the gold so that they could go and increase their wealth. The 

second time they returned Beale entrusted some curious instructions with Robert Morris . 

Beale disappeared and never returned to Lynchburg, where Morris lived. After many 

years Morris opened the box and found an account of Beale's adventures. The box also 

contained three sheets detailing the location of the treasure. The problem is that the 

sheets are encrypted. The author of the pamphlet, a friend of Morris' had deciphered the 

second sheet of Beale's ciphered instructions and revealed the amount of treasure, which 

in today's money is worth about twenty million dollars. Beale's second page was 

encrypted with a book cipher. A book cipher uses a text as a key for the encryption. The 

words of the key text are numbered, and the first letter of each word can be associated 

with the number of the word. The result is similar to a homophone cipher, but with 

many, many more symbols for each letter. The key text for the second sheet was the 

Declaration of Independence. The other two sheets have never been deciphered (Singh 

79 - 98). 

The Vigenere cipher had been broken. With a few notable exceptions, it was up to the 

cryptographers to regain the upper hand in the never-ending struggle between those who 

conceal and those who reveal. The next big breakthrough for cryptographers would come 

during the twentieth century, and the fate of the world would rest upon defeating it. 
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CIPHERS AT WAR 

During the First World War, cryptography was struggling to defeat the efforts of 

cryptanalysts on both sides. Many new ciphers were developed, but they were 

permutations or combinations of older ciphers that had already been broken. Their 

security could be measured in days, as cryptographers would break them almost as fast as 

they were developed. The main problem facing cryptographers was the volume of 

material to be decrypted. Radio had made communication fast, easy, and wireless. This 

ease of use dramatically increased the number of messages sent and intercepted each day. 

Several intelligence techniques were developed to provide information about messages 

without actually decrypting them. One of these was traffic analysis. By studying where 

messages come from and who sent them, it was possible to trace particular units of troops 

as they moved. This information could be used to guess their objectives. The Allied 

cryptographers were unparalleled during World War I. The Germans entered the war 

with little cryptographic expertise, and did not develop a cryptography department until 

two years into the war. The contribution of cryptographers during this time can best be 

shown by the story of the Zimmerman telegram. 

ZIMMERMAN'S FOLLY 

Arthur Zimmerman was appointed Germany's Foreign Minister in 1916. President 

Woodrow Wilson hoped this would bring about a peaceful resolution to the War since the 
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United States had taken a neutral stance. This was not to be the case. In January 1917 

the Supreme High Command was trying to convince the Kaiser to forgo his promise that 

German U-boats would surface before attacking to insure that a civilian ship would not be 

sunk. The Command had determined that such an act would enable German U-boats to 

tighten their blockade of Britain and bring about swift German victory. The sinking of 

US civilian ships would occur, and draw the US into the war. The Kaiser decided that 

victory would come before the US could mobilize its forces, and approved the action. 

Zimmerman devised a way to insure the US would not enter the war, even if victory did 

not come as rapidly as promised. He proposed an alliance with Mexico and to give the 

Mexican President encouragement to invade the US to reclaim Texas and other 

territories. He also suggested that Mexico encourage Japan to attack the US at the same 

time. The resulting multi-front invasion would distract American troops and guarantee 

no US involvement in the European arena. Zimmerman sent a telegram to the German 

ambassador in Washington outlining his plan with instructions to send a copy to the 

German ambassador in Mexico, who would in tum give it to the Mexican president. He 

encrypted this message, because he knew the Allies were intercepting all diplomatic 

communications. The British cryptographers were presented with the message the day it 

was sent, and by the next day had puzzled out its message. However, it was not presented 

to President Wilson until after its Mexican equivalent had also been intercepted. This 

was to fool the Germans into believing there was a break in security at the Mexican end 

of the transmission route, and not that their cipher had been broken. After reading the 
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Zimmerman telegram and Zimmerman's confession of its authenticity, President Wilson 

brought the United States into the War to End all Wars (Singh 104 - 115). 

THE UNBREAKABLE CIPHER - AGAIN 

Charles Babbage was able to break the Vigenere cipher because the key to the Vigenere 

cipher was made up of one word repeated over and over again. Longer keys as long as 

the message itself were also tried, and failed to provide additional security. Most of these 

message length keys were lists of things, or lyrics to songs. In each case, with a few deft 

leaps of intuition, a skilled cryptanalyst could piece together the key because he was able 

to find meaningful words that would suggest the next step. Major Joseph Mauborgne 

introduced the concept of the random key for use in ciphering messages using a Vigenere 

square. Mauborgne' s system involved producing two pads of randomly generated keys, 

one for the sender and one for the receiver. The message is encrypted with the first key in 

the pad. The receiver uses that same key to decrypt the message and both sender and 

receiver destroy their keys. This cipher is known as the one-time pad cipher. It is 

absolutely secure. Babbage's method of decryption relies on repetition within the key to 

crack the cipher. With the one-time pad cipher, there is no repetition in the key. The 

keys are random strings of letters and contain no meaningful words to guide a shrewd 

cryptanalyst in the right directions to solve the key. The number of keys is enormous as 

well. These factors combine to make a truly unbreakable cipher. 
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Theoretically, the one-time pad cipher was perfect. In practice, there are more problems 

associated with encryption than the security of the cipher. So much so that the one-time 

pad cipher is hardly ever used. Generating truly random sequences of letters is a difficult 

undertaking. Unless one uses a truly random event as a basis for generation, random 

sequences will not be truly random sequences. Humans who try to generate random 

sequences will invariably leave patterns in their sequences that cryptanalysts can exploit 

for decryption. Harnessing natural processes for generating random numbers is slow 

compared to the number of random sequences a radio operator might need as keys during 

a war. Distribution of all these random keys is also a large problem. Everyone has to be 

using the same key for particular messages or encrypted communications become 

meaningless. Enemy interception of a cipher pad would render all further 

communications transparent. With all these problems, Mauborgne's one-time pad cipher 

was impractical for modem battlefield use (Singh 120 - 123). Only the most vital 

communications sent by people with enormous resources could be encrypted properly in 

this fashion. The search continued for a better cipher. 

ENIGMA 

Mechanical aids to encryption have been around since Sparta's heroes used the scytale. 

In the fifteenth century, Leon Alberti, who helped develop the Vigenere cipher, placed 

two disks with the alphabet carved on them together. The inner disk could be rotated so 

that the letters of the inner and outer alphabets could be matched up in various ways, 

generating the different Caesar ciphers. By changing the alphabet for each letter, one 
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encrypts a message using the Vigenere cipher. This is a cipher disc, and it has been used 

in various forms for hundreds of years. These devices merely made the encryption easier 

to accomplish, but the methods were still the standard ciphers of the day. In 1918, a 

machine was developed than not only aided encryption, but also was the basis for a whole 

series of secure ciphers. 

Frustration and Success 

Arthur Scherbius was a German inventor and businessman looking for new business 

opportunities. A personal project of his was to correct the inadequacies of World War 

One's cryptographic methods. In 1918, Scherbius took out a patent on what he called his 

Enigma machine. There are several parts to the Enigma machine that make up its 

complex cipher. The first portion is the scrambler. The scrambler was a rubber disc with 

wires embedded inside. This scrambler was connected to a keyboard and a series of 

lamps that would light up in response to a letter pressed. The scrambler took an electric 

signal from the keyboard and transferred the signal to the lampboard, causing a letter to 

light up. By placing the wires along different paths, the scrambler created a 

mono alphabetic cipher. In the Enigma plans, this scrambler rotated one twenty-sixth of a 

revolution between each keystroke. The scrambler and rotation created a polyalphabetic 

cipher with twenty-six cipher alphabets. Scherbius used three standard scramblers in his 

Enigma machine, with the convention that the second scrambler would rotate one twenty

sixth of a full tum after the first scrambler completed one full rotation. The third 

scrambler would only rotate one twenty-sixth after the second scrambler completed one 
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full rotation. This brought the number of cipher alphabets to 17, 576. Deciding that his 

machine needed more security, Scherbius added a reflector that would send a signal 

through the reflectors a second time and made the three scramblers interchangeable. He 

also added a plugboard. The plugboard would switch the signals oftwo letters if a special 

cable connected the two plugs on the plugboard. By itself, this only produces a simple 

monosubstitution cipher, but combined with the other security measures, the total number 

of keys rises to over 1015
. The Enigma machine cipher was resistant to all the techniques 

used to crack ciphers at this time, and it was easy to use and generated encrypted 

messages very quickly. Scherbius thought his creation would be impossible to crack, and 

began to market his machine to both military and business alike. Absolute security did 

not come cheap. Each Enigma unit would cost thousands of dollars in today's money. 

Many businesses shied away from this hefty price tag. The German military was also not 

interested, confident that their cryptographers were doing their job well. Other inventors 

were developing similar machines and ran into similar frustrations. 

Revelation and Revolution 

In 1923, two documents were published that would change the course of Scherb ius' 

Enigma business from failing to thriving. Winston Churchill's The World Crisis and the 

British Royal Navy's official history of the First World War both stated that Allied 

cryptanalysis had cracked German codes and provided valuable information to the Allied 

war effort. The German military sought to avoid these mistakes a second time, and in 

1925 the Enigma was in mass production, to enter service in 1926. By the start of the 
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Second World War, 30,000 Enigma machines were in use by the Nazi forces, providing 

them with absolute security for their communications. The race was on to crack the 

Enigma cipher, a race to be won by an unexpected participant. 

At the end of the First World War, Poland was in a terrible predicament. Sandwiched 

between an ambitious Russia and a desperate Germany, an independent Poland had to be 

vigilant if it wanted to retain its freedom. The Biuro Szyfrow was the most successful 

cipher bureau during the time between World War One and World War Two. Its baptism 

of fire came during the Russo-Polish War of 1919-1920, and it continued to monitor 

German communications as well. In 1926, the Biuro Szyfrow began receiving Enigma 

messages, and German communications became indecipherable. The Biuro Szyfrow 

worked tirelessly to find a way to break Enigma' s cipher. The French Secret Service 

provided much needed information regarding the internal workings of the military version 

of Enigma by providing documents about the operation of the machine to the Biuro. The 

French cipher bureau had given up breaking the Enigma cipher, and cheerfully handed 

over all their collected information. Using these documents it was possible to construct a 

replica of the Enigma machine. An unexpected bonus that came with this information 

was how the Germans provided a key for Enigma's use. German Enigma operators 

would receive a new codebook every month that listed a key for every day. These keys 

were made up of plugboard arrangements, scrambler orientations, and scrambler settings. 

These day keys would be used to encode a message key that was the same as the day key 

except for the scrambler settings. Then the text would be enciphered using the message 

key. Deciphering these keys seemed next to impossible, but the Biuro was undaunted. 

They recruited several mathematicians to become cryptanalysts in the hopes that a 
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scientific mind would be more apt at cracking a mechanical cipher. The star of the group 

was Marian Rejewski. 

A Chink in the Armor 

The Germans followed a strict procedure to encrypt their messages. First the operator 

would pick a random scrambler arrangement to serve as the message key. This key 

would be encrypted twice using the day key, and then the message would be encrypted 

using the message key. This repetition of the message key was to prevent 

miscommunication by radio interference or human error. It would prove to be the weak 

spot in Enigma's security. 

Marion Rejewski was given the task of cracking Enigma. Having studied mathematics 

for a career in insurance, his logical mind attacked the problem by focusing on the 

repetition ofthe message key. With some intuitive leaps, Rejewski discovered that he 

could form a table of letter relationships for a day key, similar to a cipher alphabet. Each 

day key had a different table of relationships. Rejewski began to look for patterns in the 

tables, and finally settled on letter chains. Rejewski formed these chains by picking a 

letter and then alternating between the lines of a relationship table until he returned to the 

starting letter, as in Figure 2. With another leap of intuition, Rejewski concluded that the 

number of links in the chains was only determined by the scrambler settings. The total 

number of day keys for Enigma is roughly 1015
, but the number of scrambler settings is 

only 105,456. This is a considerably simpler problem to solve. Rejewski and his team 
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Figure 2. Chains of Letters 

Source: Singh 151 - 152 

Table of Relationships 

15t letter: ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z 
4th letter: F Q H P L W 0 G B M V R X U Y C ZIT N J E A SDK 

This table reveals the following letter chains: 

3 links 

9 links 

C=>H=>G=>O=>Y=>D=>P=>C 7 links 

J=>M=>X=>S=>T=>N=>U=>J 7 links 
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proceeded to check each scrambler setting and catalogue the chain lengths determined by 

each one. After a year their catalogue was complete. Rejewski could now take a series of 

messages, find the patterns of chain length, and then look up a matching pattern in his 

catalogue to find the day key's scrambler settings. Now all that remained was to find the 

plugboard settings. This was accomplished by removing all plugs from the Enigma 

machine replica, setting the scramblers according to the deciphered settings, and typing in 

some cipher text. Most of what was returned was gibberish, but recognizable phrases 

would appear occasionally, with just a couple of letters mismatched. These mismatches 

would reveal a particular plugboard setting, and with enough phrases the entirety of the 

plugboard settings would be revealed. Rejewski would then have the complete day key, 

and have no trouble deciphering messages. The Enigma cipher was broken, but Rejewski 

did not sit idle after his triumph. When the Germans modified their message transmission 

protocols, Rejewski automated his cataloguing process into a machine he called a bombe. 

This machine would rapidly check the 17,576 settings for a particular scrambler 

arrangement. With six of them working together, the bombes were able to reveal a day 

key in approximately two hours. 

At the end of 1938, the Germans introduced some new procedures for their Enigma 

operators. Two new scramblers were added to the original three, and the number of 

plugboard settings was raised from six to ten. These new additions to the day key 

increased the number of possible keys to 1.59 x 1020
. Worse, the original catalogues and 

bombes were also rendered useless. The Biuro knew the Enigma cipher could be broken, 

but the task would require sixty bombes instead of six, even if the internal wiring of the 
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new scramblers were known. The Biuro had neither the resources nor the time to crack 

this new Enigma cipher. Hitler had introduced the concept of blitzkrieg, and the German 

military was gearing up for the invasion of Poland. The Biuro was determined that the 

Allies know about their work, and in the weeks before the invasion transferred replicas of 

the Enigma machine and blueprints for the bombes, along with an explanation of 

Rej ewski' s technique. 

Turing's Marvelous Machine 

The British cipher bureau, Room 40, had given up any hope that the Enigma cipher could 

be broken. With the revelation of the Polish breakthrough, Room 40 regained hope. 

Armed with a new resolve and new techniques, the crypt analysts of Room 40 embarked 

on a struggle that would playa vital role in the Allied war effort. To begin, they gathered 

up scientists and mathematicians to add to the compliment of linguists, and moved to 

Bletchley Park to form the Government Code and Cipher School (GC&CS). This new 

organization mastered Rejewski's techniques and went on to discover other shortcuts to 

finding Enigma keys (Singh 124 - 162). The Germans frequently updated their machine, 

so new shortcuts were always needed. The Bletchley Park members were dreading the 

day that the Germans changed their transmission of the message key from twice to once 

before encrypting the message, because all oftheir techniques exploited this concept. 

The task of figuring out how to solve this problem was given over to Alan Turing. 
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Alan Turing was a mathematician at Cambridge before being recruited to work at 

Bletchley Park. Though only twenty-six in 1937, Turing published a paper called 'On 

Computable Numbers' which would form the basis for all modem computing theory. In 

1939 he began work on a method to crack Enigma without relying on the repeated 

message key. Turing looked for structure in the vast library of decrypted messages at his 

disposal. He began to see that sometimes the contents of an enciphered message could be 

predicted, based on the time of interception and the source of the message. These bits of 

plaintext that can be associated with ciphertext are called cribs. These cribs could be 

used to find patterns in the relationships between letters similar to the letter chains 

Rejewski used in his work. Many of the breakthroughs following this discovery are 

beyond the scope of this paper, but these achievements allowed Turing to construct a 

machine that could find an Enigma key in under an hour under perfect conditions. These 

were also called bombes, in honor of the achievements of the Biuro (Singh 165 - 177). 

Using these bombes, and their top-notch team of cryptanalysts, the GC&CS provided 

valuable wartime intelligence to the Allies. They had cracked another 'unbreakable 

cipher'. The GC&CS also decrypted Japanese and Italian messages, providing 

information for the African and Pacific efforts. Unfortunately, the marvelous 

breakthroughs in cryptanalysis made at Bletchley Park would not be revealed until 1974, 

when Captain F. W. Winterbotham published The Ultra Secret, a book about the 

successes of the GC&CS (Singh 188). It should be noted that the true weakness of the 

mechanical cipher is not the machine, but in the way the machine is used. If Enigma 

operators had not used repetition in their message keys, sufficiently randomized the day 

keys, and avoided messages that resulted in easily identifiable cribs, their ciphers would 
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have been much more difficult to break, maybe even impossible. There is one important 

drawback to mechanical ciphers, and that flaw is that they take time to use properly. It 

takes a fair amount of time to type each letter of a message into the cipher machine and 

write down the enciphered letter before the message can be given to a radio operator to 

transmit. Deciphering a message requires a like amount of time. Under heavy combat 

conditions, this type of encryption is too slow to be practical. The American forces of the 

allies were faced with just such a problem in the Pacific Theater of World War Two. 

Their solution created a code that remains unbroken to this day. 

NAVAJO CODE TALKERS 

Before 1942, U.S. forces in the Pacific were letting valuable tactical information fall into 

Japanese hands because they had no rapid means of encryption and decryption for their 

communications during combat conditions. In such cases, radio operators resorted to 

using slang English, sprinkled with as many expletives as possible. Many soldiers have 

resorted to this during battle, as related by William E. Kotas, a squad leader during the 

Vietnam War. Sgt. Kotas states that "We were given code books every month or so, but 

some months the codes didn' t come, and we resorted to our own hack code, called the 

motherfuck code. A radio operator would say 'Motherfuck, motherfuck' to indicate he 

was using the code, and then say the message using that code. It changed every now and 

then, and was easy to break, but it gave us some security during a firefight (Kotas)." 
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In 1942, a man named Philip Johnston did not meet the age limit for military service but 

still wanted to contribute to the war effort. He began to develop an encryption system 

that could be used rapidly while in the field, and he was inspired by his youth spent on a 

Native American reservation, specifically with the Navajo tribe. The Navajo language is 

incomprehensible to almost anyone who is not closely affiliated with the tribe. Johnston 

thought if each radio unit used Navajo tribesmen to translate messages into the Navajo 

language, it would be an unbreakable code and provide secure communications. Johnston 

took his idea to Lieutenant Colonel James E. Jones, and after a small demonstration to 

senior marine officers, began the task of recruiting and training Navajo men and boys. 

The tribal council fully supported these efforts, and tribe members were so eager to join 

that they lied about their ages and gorged to meet military requirements. Ultimately, four 

hundred and twenty Navajos would join the ranks ofthe U.S. Armed Forces as code 

talkers. There were some problems with Johnston' s code that had to be overcome before 

the Navajos could be used in real combat. Many of these came from the fact that the 

Navajo language did not have terms for most technical and military jargon. Johnston and 

other Navajos developed a code that assigned common Navajo words and phrases to the 

most common of these terms. For example, military planes were given the names of 

birds. Names and places were spelled out, using Navajo words in place ofletters. The 

Navajo recruits memorized this code so that codebooks would not be needed. During the 

first months of real combat, the Navajos were pitted against the portable encryption 

machines the military used. The machines could encrypt and decrypt in an hour or two, 

while the Navajos could do the same task in less than five minutes. Demand for these 

specialists increased. The Navajo code was improved, adding more common terms and 
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alternate words for each letter. This new code removed the few flaws in the original, and 

the Japanese intelligence was never able to break it, giving the U.S . forces the upper hand 

in the war of communication (Singh 193 - 201). The Navajo code is one of the few that 

remains unbroken today. 

After the Second World War, cryptographers and cryptanalysts began to use a new device 

to aid them in their ongoing struggle to make and break ciphers. This tool was the 

computer. The first computers were room-sized machines that were costly to build and 

maintain, so that only government agencies would have the resources to keep one of them 

around. As computers became smaller, faster, and less expensive, they became more 

common in the workplace. They would also give rise to some potent new ideas in 

cryptography. 

CIPHERS AND COMPUTERS 

Computer ciphers are essentially the same as the mechanical ciphers embodied by 

Enigma, with three major differences. First, a computer is not limited by what can be 

practically built, and can emulate a mechanical cipher machine that would be far to 

expensive and complicated to actually construct. Second, a computer can encrypt and 

decrypt long messages very quickly, much faster than an Enigma machine. Third, a 

computer only encrypts binary numbers. Using conversion codes such as the ASCII, text 

messages are converted into binary numbers before encryption, and converted back to text 
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after decryption. Despite these differences, computers still use forms of transposition and 

substitution to perform encryption and decryption. 

LUCIFER 

In the 1960's, when computer technology was becoming more powerful and less 

expensive, businesses began to use computerized encryption to protect important 

messages, such as money transfers. As computer encryption spread, problems with 

standardization began to arise. In May of 1973, America's National Bureau of Standards 

began accepting proposals for a standard encryption system. A prime candidate for the 

standard was an IBM product known as Lucifer. Horst Feistel, a German immigrant, 

developed the Lucifer cipher at IBM's Thomas J. Watson Laboratory in the early 1970's 

(Singh 245 - 249). The details of the Lucifer cipher are as follows : 

"First, the message is translated into a long string of binary digits. 
Second, the string is split into blocks of 64 digits, and encryption is 
performed separately on each of the blocks. Third, focusing onjust one 
block, the 64 digits are shuffled, and then split into two half-blocks of 
32, labeled Left° and Righto. The digits in RightO are then put through a 
'mangler function' , which changes the digits according to a complex 
substitution. The mangled RightO is then added to Left° to create a new 
half-block of 32 digits called Right). The original RightO is relabeled 
Left). This set of operations is called a 'round' .... This process is 
repeated until there have been 16 rounds in total. ... The exact details 
of the mangler function can change, and are determined by a key . .. 
(Singh 249)" 

Lucifer was lauded as one of the strongest commercial ciphers available. So strong that 

the National Security Agency thought there was a chance they would not be able to break 

the encryption. Thus, the NSA lobbied to have Lucifer weakened by reducing the number 

of possible keys to approximately 1016
• This is known as 56-bit encryption because 56 is 
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the number of bits required to represent a number as large as 1016
. This limitation made 

Lucifer impossible to break by civilian businesses and their limited access to powerful 

computers, but still allow the NSA to crack it with their tremendous amounts of 

computing power. In November of 1976, the 56-bit Lucifer cipher was adopted as the 

United States' official encryption standard and renamed Data Encryption Standard (DES). 

DES is still the official standard (Singh 250). 

With DES, the problem of standardization was solved, but there was still one major 

hurdle to overcome for businesses: key distribution. DES users must still agree on a key 

for messages and all recipients must have a copy of that key. For international business 

communications, this can be very troublesome because the only truly secure way to 

deliver a key is in person. Couriers were employed by many businesses to deliver keys to 

their networks of contacts, but as the number of contacts grew, the overhead associated 

with key distribution grew exponentially. The problem of how to get around distributing 

keys was deemed impossible to solve, and indeed had remained unsolved since ciphers 

were originally developed. The answer to the solution would be the next great 

cryptographic step. 

ALICE, BOB, AND EVE 

The reason key distribution is such a difficult constraint to resolve is that the sender and 

receiver must agree on a key before any encrypted messages can be sent back and forth. 

The key is what allows the recipient to reverse the encryption algorithm and retrieve the 
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text message. In September 1974, three mathematicians, Whitfield Diffie, Martin 

Hellman, and Ralph Merkle began to explore ways to get around the key exchange 

problem. After several failed ideas, they began to explore one-way functions. One-way 

functions are easy to do, but very difficult to reverse. Modular arithmetic is an area of 

mathematics that has many one-way functions, so Diffie, Hellman, and Merkle 

concentrated their efforts in that area. Modular arithmetic has many of the same 

operations as normal arithmetic (addition, subtraction, etc.), but adds an extra step to find 

the answer. First, one picks a number. This number is the modulus of the operation. 

Then, one performs the operation as normal on two arguments. Finally, you divide the 

answer of the operation by the modulus and note the remainder. The remainder is the 

answer of the modulus function. For example, suppose we choose the modulus to be 7. 

The operation we want to perform is addition (mod 7), and the arguments are 4 and 13. 

First, we perform the addition: 4 + 13 = 18. Then we perform the modulus: 18/7 = 2 

remainder 4. Thus, 4 + 13 = 4 (mod 7). Two years after starting the project, Hellman had 

a flash of insight. He envisioned the following hypothetical situation, involving Alice, 

Bob, and Eve; the imaginary people referred to when discussing cryptographic puzzles. 

Alice and Bob wish to exchange secret information. They agree on an encryption method 

that uses numbers as a key while talking over the phone. Eve, an ' enemy' of Alice and 

Bob, is listening in on their phone conversation. How is it possible for Alice and Bob to 

agree on a key using the phone if Eve is listening in? Hellman focused on a function of 

the form MX mod N. Using his idea, Alice and Bob agree on values for M and N, so that 

M is less than N. Then Alice and Bob pick secret numbers, called A and B respectively. 

For this example, Alice and Bob have picked M = 7 and N = 11. Eve knows these 
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numbers because they were transmitted over the phone. Alice' s secret number A = 3, and 

Bob's secret number B = 6. The next step has Alice and Bob run their secret numbers 

through the one-way function. Alice ends up with the following results : 

73 mod 11 = 343 mod 11 = 2 or a 

Bob ends up with these results : 

76 mod 11 = 117,649 mod 11 = 4 or ~ 

Alice and Bob exchange these numbers via phone, and Eve also knows them. Alice 

calculates the equation ~A mod N and gets the following: 

43 mod 11 = 64 mod 11 = 9 

Bob calculates the equation a B mod N and receives this result: 

26 mod 11 = 64 mod 11 = 9 

At this point, both Alice and Bob have the same number, and that number can now be 

used as a key. Eve, who has listened to every exchange knows the one-way function, a 

and~ . Unfortunately, she does not know A and B. While it is possible to work out A 

and B from the information Eve knows, it is very difficult because Alice and Bob are 

using a one-way function. If the numbers are very large, the task of reversing the function 

becomes even more difficult. Thus, a key was agreed upon and Alice and Bob did not 

have to meet in person to exchange it. Hellman explained his discovery to his two 

partners, and in June of 1976 the Diffie-HeIlman-Merkle key exchange scheme was 

demonstrated at the National Computer Conference (Singh 255 - 267). The problem of 

key distribution had been solved. 
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RSA 

The Diffie-HeIlman-Merkle key exchange scheme is a solution to the key distribution 

problem, but not the best solution. Alice and Bob must still communicate to establish a 

key before encryption can begin. This can be a hassle if Alice and Bob live on opposite 

sides of the world. One person is going to lose sleep waiting to agree on a key, or the key 

exchange will take place through a series of e-mails that arrive every 12 hours. E-mail is 

instantaneous, and these restrictions slow e-mail communications to a crawl, if security is 

desired. A more efficient solution was needed, one that would allow communications to 

occur at any time. Whitfield Diffie approached the key distribution problem from a 

different angle than Hellman. Though Diffie still concentrated on one-way functions, he 

began to look at the fact that all encryption techniques developed so far were symmetric, 

or that the same operation was used for both encryption and decryption, so the same key 

is used. With a flash of insight, Diffie came up with the idea of the asymmetric cipher. 

This cipher would require two keys, one for encryption and one for decryption. Using an 

asymmetric cipher would make things much easier for Alice and Bob. Alice could 

generate two keys, one for encryption and one for decryption. Alice keeps the key for 

decryption secret. This is also known as Alice's private key. She then publishes the 

encryption key publicly, and it is known as Alice's public key. If Bob wants to send a 

secure message to Alice, he does not need to contact her to do so. Bob just looks up 

Alice's public key, encrypts a message with it, and sends it to Alice. When Alice 

receives the message, she decrypts it using her private key and reads it. This is much 

more efficient than the Diffie-Henman-Merkle key exchange scheme. Unfortunately, 
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while Diffie had conceptually created a better solution to the key distribution problem, he 

did not have a specific asymmetric cipher algorithm in mind. In 1975, Diffie published 

an outline of this idea, and other researchers joined in the search for a practical, 

asymmetric function. 

At the Massachusetts Institute of Technology's Laboratory for Computer Science, a trio 

of researchers began to explore ideas for an asymmetric function that met the 

requirements of Diffie's idea. Ron Rivest, Leonard Ad1eman, and Adi Shamir spent a 

year developing functions and discarding them when flaws emerged, until April 1977, 

when Rivest had a breakthrough. He worked through an entire night writing a paper 

describing his new function, and credited all three men with the discovery. Ad1eman 

tried to find a flaw in Rivest's work, but his only complaint was the listing of authors. 

After some deliberation, the authors were listed as Rivest, Shamir, and Adleman. This 

paper described the cipher that would eventually be named the RSA cipher (Singh 269 -

273). 

The RSA cipher is not very difficult to use. Suppose Alice wants to use the RSA cipher 

to encrypt her personal messages. She would begin by choosing two prime numbers p 

and q. Then Alice would calculate n = p x q and ~(n) = (p - 1) x (q - 1). She chooses a 

prime number d such that d > p, d > q, and the greatest common denominator of d and 

~(n) is 1. Alice can now calculate the number e = dol mod ~(n). Alice' s public key is 

made up of the numbers e and n, which she publishes. Bob now wants to send Alice a 

message. Bob finds Alice's public key. After converting the text message into a number, 
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he calculates the cipher text C = Me mod n. When Alice receives the message, she then 

converts the cipher text into plain text M = Cd mod n (Vose). In practice, the message is 

broken up into blocks of binary numbers and each one encrypted or decrypted separately. 

For strong security p and q should be very large prime numbers, because it is those values 

which ultimately determine the public and secret keys. If Eve is attempting to find out 

Alice's secret key, she must factor the number n in Alice's public key. Finding prime 

factors is a very difficult problem, so for sufficiently large prime numbers, the problem 

would be impractical to solve. This is the strength of the RSA cipher. 

Alternative History 

Rivest, Shamir, and Adleman have been hailed as some of this century's greatest 

cryptographers for their development of the RSA cipher, but recent events have revealed 

that public-key encryption was developed earlier, by researchers working at the 

Government Communications Headquarters (GCHQ), the top secret British agency that 

succeeded Bletchley Park. James Ellis was working for GCHQ under an oath of secrecy 

when he was given the task of creating a solution for the key distribution problem in the 

early months of 1969. By the end of the year, Ellis had developed ideas very like those 

Diffie, Hellman, and Merkle would discover independently years later, and was stymied 

by the same problem. Ellis knew public-key encryption was feasible, but he could not 

find a function that would satisfy the requirements. Ellis was not a mathematician by 

trade, so he showed his discoveries to his bosses. Three years later, GCHQ's top minds 

were hard at work trying to discover a function that would make Ellis' ideas practical. In 
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September of 1973, Clifford Cocks, a specialist in number theory, was recruited to work 

for GCHQ and assigned a mentor named Nick Patterson to "show him the ropes." During 

the course of Cocks' introduction to the routine at GCHQ Patterson outlined Ellis' theory 

on public-key encryption. Not realizing the significance of this theory, Cocks' began to 

search for a solution and echoed many of the same insights that led Rivest, Shamir, and 

Adleman to their cipher (Singh 279 - 285). In his own words, Cocks ' states: "From start 

to finish, it took me no longer than half an hour. I was quite pleased with myself. I 

thought 'Ooh that's nice. I've been given a problem and I've solved it. ' (Singh 285)" 

Cocks reported this to his mentor, and Patterson reported it to his supervisors. Cocks 

showed his discovery to his close friend and fellow GCHQ employee Malcolm 

Williamson the following year. Williamson was skeptical, and spent the next day trying 

to find the flaw in Cocks' idea. He failed, but he came up with another solution, which 

would later be called the Diffie-Hellman-Merkle key exchange scheme. Ellis, Cocks, and 

Williamson were ahead of their time, but these discoveries would go unnoticed because 

their oaths of secrecy regarding their work. It was not until 1997, when Cocks was 

allowed to present a paper at the Institute of Mathematics and its Applications Conference 

that began with a history of his work at GCHQ, that Ellis, Cocks, and Williamson would 

be recognized for their achievements (Singh 285 - 292). 

Another Zimmermann's Folly 

Phil Zimmennann is a fonner anti-nuclear activist who has turned his attentions toward 

encouraging the use of encryption to secure privacy. Zimmennann believes that the 
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proliferation of electronic communications has made it much easier for those 

communications to be monitored. Zimmermann states, "Unlike paper mail, e-mail 

messages are just too easy to intercept and scan for interesting keywords. This can be 

done easily, routinely, automatically, and undetectably on a grand scale. (Singh 295)" 

RSA seemed to be the perfect solution to this problem in 1977, but RSA encryption and 

decryption requires much more computing power than DES or other symmetric 

encryption methods. Thus only government, large businesses and the military had the 

computing power to use RSA encryption. Zimmermann decided everyone should have 

this level of security for their communications, and set about to create a product that 

would offer an easy to use encryption interface with the security ofRSA for the personal 

computer. He called his project Pretty Good Privacy (PGP), and began working on it 

during the 1980's (Singh 298). 

In 1991, PGP was almost ready for market. PGP encrypts a message using the following 

procedure. First, it encrypts a message using the symmetric IDEA cipher, which is 

similar to DES but provides more security. Second, the key used to encrypt the message 

is then encrypted with RSA using the intended recipient's public key. Finally, a digital 

signature is added to the message, and the message is sent to the recipient, who uses PGP 

to undo the encryption process and verify the digital signature. This procedure would be 

complicated, but the PGP program does all the work automatically. By only using the 

processor intensive RSA cipher to encrypt a small message (the IDEA key), and using the 

IDEA cipher to encrypt the actual message, Zimmermann was able to make PGP secure, 

but without the computing power costs associated with full RSA encryption 
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(Zimmermann 76 - 81). However, some concerns remained for Zimmermann before he 

could market PGP. Zimmermann would need a license to use RSA, because RSA is a 

patented product. Also, an anti-crime bill that would, among other things, require 

electronic communication equipment manufacturers to allow law enforcement officials to 

obtain plain text copies of all electronic communications was almost passed in the U.S. 

Senate. Zimmermann felt the public had a right to PGP before it was banned, and he felt 

that such a ban was only a matter oftime. In June of 1991, Zimmermann had PGP posted 

to a Usenet newsgroup. PGP began to spread across the world, but now Zimmermann 

had other worries. In 1993, RSA Data Security, Inc. sued for patent infringement, and the 

FBI began prosecuting him for illegal weapons exportation (Singh 301 - 303). With PGP 

available on the Internet, everyone in the world has access to strong encryption. This 

includes organized crime, terrorist groups, drug dealers, and other criminal elements. For 

decades, law enforcement has used wiretaps and other surveillance techniques to monitor 

electronic communications. If these communications are encrypted strongly they are 

impossible to decipher, so intercepting them would be useless and make wiretaps 

ineffective. The Internet is also a worldwide communications network. Since PGP was 

released on the Internet, anyone in the world is able to download the program. PGP is a 

strong encryption program. The U. S. Government classifies all strong encryption 

software as munitions (Dam 415). In 1996, the FBI dropped all charges, and 

Zimmermann received his license after an out of court settlement, but his story touched 

off a heated debate about the privacy of the individual over the ability of law enforcement 

agencies to perform effective surveillance on suspected criminals (Singh 315). This 

debate is still heatedly discussed on web pages, newsgroups, and in Congress. 
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CONCLUSION 

From Julius Caesar to Phil Zimmermann, cryptographers have struggled to keep messages 

secret and cryptanalysts have struggled to read secret messages. With the advent of 

public-key encryption and the RSA cipher, it would seem that the cryptographers have 

won the ancient war of words, but future discoveries may render the RSA cipher obsolete. 

The Vigenere cipher was thought to be unbreakable until Babbage discovered its 

weakness. The same is true for the Enigma cipher. With new advances in the field of 

quantum computing, it may be that RSA's days of absolute security are numbered. While 

modem computers operate on the classical laws of physics, quantum computers operate 

using quantum laws of physics that allow them to do billions of calculations 

simultaneously. This would make factoring large prime numbers trivial, thus making it 

easy to break the RSA cipher. Currently, researchers are unable to build a quantum 

computer, and may never be able to build one. Only time will reveal the true winner in 

the secret war of cryptography. 
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APPENDIX 1: README AND SOURCE CODE FOR A MODIFIED RSA 

IMPLEMENTATION 
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Program: rsa2.c 
Description: This program will implement an encryption system based on RSA 

WARNING! This program is for demonstration purposes only, so it 
utilizes 32-bit keys. For true security, longer keys 
should be chosen. 

Notes: The random number generation and bigint codes were written by 
Dr. Michael Vose. Dr. Vose also assisted with the input/output 
portion of the code. 

Usage: 
Compile with: gcc -g -0 mycrypt rsa2.c 
Run with: 

mycrypt pub key seckey c /*Creates public and secret keys */ 
mycrypt <file> pubkey e /*Encrypts <file> to cfile*/ 
mycrypt <file> seckey d /*Decrypts <file> to output*/ 



#include <stdio.h> 
#include <malloc.h> 

typedef long 
typedef unsigned 
typedef unsigned 
typedef Unsigned 
typedef digit 

Int; 
long Unsigned; 
char uchar; 

digit ; 
*digits; 

typedef struct tag { 
int s; 
int 1; 
int u; 
digits d; 
bigintStruct; 

typedef bigintStruct *bigint; 

bigint ZERO, ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, 
TENk, BILLION; 
bigint Tmp, Tmq, Tmr; 
bigint TmpO, Tmpl, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8, Tmp9, Tmpl0 
, Tmpll , Tmp12; 
bigint I, F, R, convert [256] ; 
Int Equal, atoi[256] , m13[256], p13[30030]; 
char itoa [10], str [1233], ptr [1233] ; 
int sqcheck; 

#define S (x) ((x) «16) 
#define M (S (1) -1) 
#define H(x) ( (x) »16) 
#define L(x) ((x) &M) 
#define Abs(n) (( (n) <O)? (- (n)) : (n) ) 
#define Max(x,y) ( ( (x) > (y) ) ? (x) : (y) ) 

char *print(bigint, char *); 
#define show(s,x) printf("%s%s\n",s,print(x,str)) 

/**************************** arithmetic ******************************* 
*/ 

char *print(bigint,char *); 

void error(char *m) 
{ 

printf("\n%s\n",m) ; 
exit (0) ; 

bigint getVar(int n) 
{ 

int i; bigint new (bigint)malloc(sizeof(struct tag)); 

new->s 
new->l 
new->u 
new->d 

0; 
n; 
0; 
(digits)malloc((n+l)*sizeof(digit)) ; 

forti = 0; i< n; new->d[i++] = 0); 
return new; 



bigint getDigit(int n) 

bigint new = (bigint)malloc(sizeof(struct tag»; 

new-> s 
new-> l 
new- >u 
* (new- >d 

return new; 

(n >O)? 1: ((n<O)? -1 : 0); 
1; 
Abs (new->s) ; 
(digits)malloc(2*sizeof(digit») Abs (n) i 

void init(Unsigned s) 
{ 

Unsigned h,i,j,k; 

initrand(s) ; 

convert(itoa(atoi('O'] 0] , 0 ' ] ZERO getDigit(O) ; 
convert (itoa(atoi ('1'] 1] , I' ] ONE getDigit (1) ; 
convert (itoa(atoi ('2'] 2] '2' ] TWO getDigit(2) ; 
convert (itoa (atoi ('3'] 3] '3' ] THREE getDigit(3) ; 
convert(itoa(atoi('4'] 4] , 4' ] FOUR getDigit(4) ; 
conv ert(itoa(atoi('5'] 5] , 5 ' ] FIVE getDigit (5) ; 
convert (itoa(atoi ('6'] 6] , 6 ' ] SIX getDigit(6) ; 
convert (itoa [atoi ['7'] 7] '7 '] SEVEN getDigit(7) ; 
convert (itoa[atoi ['8'] 8] , 8 ' ] EIGHT getDigit(8) ; 
convert (itoa[atoi ['9'] 9] , 9 ' ] NINE getDigit(9) ; 

TEN = getDigit(10); 
(TENk = getDigit(I»- >d(O] = L(10000); 
(BILLION = getDigit(I» ->d(O] = L(1000000000), 

BILLION- >d(l] = H(1000000000); BILLION- >u = 2; 

F 
R 
I 
Tmp 
Tmq 
Tmr 
TmpO 
Tmpl 
Tmp2 
Tmp3 
Tmp4 
Tmp5 
Tmp6 
Tmp7 
Tmp8 
Tmp9 
TmplO 
Tmpll 
Tmp12 

for (j 
for (i 

getVar(256) ; 
getVar(256) ; 
getVar(256) ; 
getVar(256) ; 
getVar(256) ; 
getVar(256) ; 
getVar(256) ; 
getVar (256) ; 
getVar(256) ; 
getVar (256) ; 
getVar(256) ; 
getVar (256) ; 
getVar(256) ; 
getVar(256) ; 
getVar (256) ; 
getVar(256) ; 
getVar(256) ; 
getVar(256) ; 
getVar(256) ; 

I, i = 0; i < 
0; i < 30030; 

p13 (i] 
p13 [i] &= 
p13 (i] &= 
p13 [iJ &= 

i&l; 
(i%3 
(i%5 
(i %7 

> 0); 
> 0); 
> 0); 

256; m13 [i++] 
i++) { 

j j%30030, j « = 16); 



} 

p13 [iJ &= (i%l1 > 0); 
p13 [iJ &= (i%13 > 0); 

for (i = j = k = 0; i < 30030; i++){ 
if ((h p13[iJ &= p13[(1+(i«1))%30030J)&&!k) k i; 
j += h; 

for (j = 30030/j, i = h = 0; i < 30030; i++) 
if (!p13[iJ){ 

p13 [iJ = S ( (30030+k-i) %30030) ; 
if (++h > j) 

for (h = 0; ! L (p13 [++kJ ); ); 

for (i = 0; i < 30030; p13 [iJ »= 16, i++); 

void release (bigint x) 
{ 

free (x->d); 
free (x); 

bigint ass (bigint x, bigint y) 
{ 

int i; 

for(y->s 
return y; 

x->s, y->u x->u, i 0; i< X->U; i++) y->d[iJ 

int gtr(bigint x, bigint y) /* assumes no garbage */ 
{ 

int i; 

if (y->s > x->s) return Equal = 0-, 
if (x->s > y->s) { Equal 0; return 1-, } 
if (x->u > y->u) { Equal 0-, return ( (x->s > 0) ? 1: 0) ; 
if (y->u > x->u) { Equal 0; return ( (x->s > 0) ? 0: 1) ; 

for (Equal = 1, i X->U; i--; ) { 

x->d [iJ ; 

if (x->d [iJ > y->d [iJ) { Equal 
if (y->d [iJ > x->d [iJ) { Equal 

0; return ((x->s > OJ? 1: 0); 
0; return ((x->s > OJ? 0: 1); 

return 0; 

#define les (x, y) (1 A (gtr ( (x) , (y) ) I Equal) ) 
#define equ(x,y) ((gtr( (x), (y)) I Equal) &Equal) 

bigint neg(bigint x) 
{ 

x->s *= -1; 
return x; 

bigint mul(bigint x, bigint y, bigint z) 
{ 

int i,j,k = 0; Unsigned q,r; 

if (z->s = (x->s) * (y->s)) { 



for (k = x->u+y->u, i = 0; i <= k; z->d[i++] 0); 
for(*(z->d) = i = 0; i < x->u; i++) 

for(j = 0; j < y->u; j++) 
z->d[j+i] = L(r = z->d[j+i] + L(q x->d[i]*y->d[j])), 

z- >d [j +i+1] += H (q) + H (r) ; 

while (!z->d[k]) k--; 

z->u = k+li 
return Z; 

bigint sub (bigint,bigint,bigint) ; 

bigint add(bigint x, bigint y, bigint z) 
{ 

int i,k = Max(x->u,y->u); Unsigned q,r; 

if (! (x->s) ) return ass(y,z) ; 
if (! (y->s)) return ass(x,z) ; 
if (y->s > x->s) { x->s *= -1; sub (y , x, z) ; x->s *= -1; return 
if (x->s > y->s) { y->s *= -1; sub(x,y,z) ; y->s *= -1; return 

for(*(z->d) = i = 0; i < k; i++) 
q = ((i<x->u)? x->d [i): 0) + ((i<y->u)? y->d [i): 0), 

z->d [i) = L (r = z->d [i) + L (q) ), z->d [i+1] = H (q) + H (r) ; 

while (!z->d[k]) k--; 
z->u = k+1, z->s = x->s; 
return Z; 

z· , 
z· , 

bigint sub(bigint x, bigint y, bigint z) 
{ 

) , 

int a,b,i,k; Int q,r; bigint p; 

return ass(x,z); if (! (y->s)) 
if (!(x->s)) ass(y,z); z->s *= -1; return z; 
if (y->s != x->s) y->s *= -1; add(x,y,z); y->s *= -1; return z; } 

a = x->s, b = y->s, x->s = y->s = 1; 
if (gtr(y,x)) 

x->s 
else 

x->s 

a, y->s 

a, y->s 

b, p = y, y = x, x 

b; 

if (Equal) return ass(ZERO,z); 

0; i < x->u; i++) 

p, a -a; 

for(*(z->d) 
z->d [i) 

= 1, i 
= L(r z->d[i] + L(q = x->d[i]+((i<y->u)? y->d[i]AM: M)) 

z->d [i+1] = H (q) + H (r) ; 

for (z->d[k x->u] = 0; !z->d[--k]; ); 
z->u = k+1, z->s = a; 
return Zi 

bigint div(bigint x, bigint y, bigint z) /* assumes no garbage */ 
{ 

int a,b,i,k,q; bigint t; 



if (! (b 
if (! (a 

y->s) ) 
x->s) ) 

Z->s = a*b, x->s 

error("zero divide"); 
ass(ZERO,R); return ass(ZERO,z); 

y->s = 1; ass(x,R); 

if (gtr(y,x)) { R->s = x->s = a, y->s = b; return ass(ZERO,z); } 

TmpO->s = TmpO->u = 1, k = x->u - y->u, i = k+1, R->d += i, R->u i; 
while (i) { 

z->d[--i) = 0, R->d--, R->u++, R->s 1= (*R->d > 0); 
while (!gtr(y,R)) { 

if (Equal) 
q = 1; 

else if (R->u > y->u) 
q = (S(R->d[R->u-1)) IR->d[R->u-2))/((y->u>1) + y->d[y->u-1)); 

else if (R->u > 1) 
q = (S(R->d[R->u-1)) IR->d[R->u-2))/((y->u>2) + (S(y->d[y->u-1)) 

y->d [y->u-2))) ; 
else 

q = R->d[R->u-1)/y->d[y->u-1); 

z->d[i) += * (TmpO->d) = Max(q,l); 
sub(R,mul(TmpO,y,Tmp1) ,Tmp2); 
ass (Tmp2,R) ; 

} 
while (!z->d[k)) k--; 
z->u = k+1, R->s *= x->s 
return Z; 

a, y->s b· , 

bigint mod(bigint x, bigint y, bigint z) 
{ 

div(x,y,z) ; 
if (R->s < 0) return add(y,R,z); 
return ass(R,z); 

bigint pwr(bigint w, bigint x, bigint y, bigint z) /* WAX mod y */ 
{ 

lnt i,j,k; 

if (x->s) { 
ass(ONE,z) ; 
ass (w, Tmp4) ; 
for (i = 0; i < x->u; i++) 

for (j = x->d[i), k 0; k++ < 16; j »= 1) { 
if (j&l) { 

mul(z,Tmp4,Tmp3) ; 
mod(Tmp3,y,z) ; 

} 
mul(Tmp4,Tmp4,Tmp3) ; 
mod(Tmp3,y,Tmp4) ; 

else ass(ONE,z); 
return z; 

bigint gcd(bigint x, bigint y, bigint z) 
{ 



bigint Pi 

ass (x,Tmp3) ; 
ass(y,R) i 

ass(ONE,l) ; 
ass (ZERO,Tmp6) i 

do { 
ass(R,z); 
div(Tmp3,z,Tmp5) ; 
ass(z,Tmp3) ; 
mul(Tmp6,Tmp5,Tmp4) ; 
sub(l,Tmp4,Tmp5) ; 
ass(Tmp6,l) ; 
ass (Tmp5,Tmp6) ; 
while (R->s); 

return Zi 

bigint inv(bigint x, bigint y, bigint z) /* x A -l mod y */ 
{ 

if (equ(gcd(x,y,z) ,ONE)) return mod(l,y,z); 
return ass(ZERO,z); 

/****************************** input / output ************************* 
*****/ 

void binary(FlLE *f) 
{ 

lnt c,i; 

while ((c=getc (f)) ! = EOF) for (i 
putchar(itoa[c&I]) ; 
} 

bigint scan(char *s, bigint z) 
{ 

int i,j,k; Unsigned t; 

if (*s == '-') S++, k = -1; else k 

ass(ZERO,z) ; 
for (Tmpl->s Tmpl->u = 1, t = i 

if(i>3){ 
Tmpl->d[O] = t, i = t = 0; 
mul (TENk, z,TmpO) ; 
add(TmpO,Tmpl,z) ; 

t = 10*t + atoi [* (s++)] ; 

0; i < 8; i++, c »= 1) 

(*s '0' )? 0: 1; 

0; *s; i++) { 

for (Tmp2->s = Tmp2->u = j 
Tmpl->d[O] = t, Tmp2->d[0] 
mul(Tmp2,z,TmpO) i 
add(TmpO,Tmpl,z) ; 

1; i--; j *= 10); 
j; 

z->s = k; 
return Z; 

char *print(bigint x, char *s) /* assumes no garbage */ 
{ 



int h,i,j 0, k X->Si Unsigned ti char *r 

if (!k) {s[O] = '0', s[l] = '\O'i return Si } 

ass (x,Tmp) i ass (R,Tmr) i 
for (Tmp - >s = Ii gtr(Tmp,ZERO) i) { 

if (Tmp->u > 2) { 
div(Tmp,BlLLlON,Tmq) i 

S· , 

t = (R->s)? ((R->u > I)? S(R->d[l]) I*R->d: *R->d): 0i 
for (i = 9i i--i ptr[j++] = itoa[t%10], t /= 10) i 

} 
else if (Tmp->u > 1) { 

div(Tmp,TENk,Tmq) i 

t = (R->s)? *R->d: Oi 
for (i = 4i i--i ptr[j++] 

} 
else { 

div(Tmp,TEN,Tmq) i 

itoa[t%10], t /= 10) i 

ptr[j++] = (R->s)? itoa[*R->d]: 'O'i 
} 
ass (Tmq, Tmp) i 

} 
if (k < 0) *(s++) = '-'i 
while (j--) *(s++) = ptr[jli *s 
ass (Tmr,R) i 

return ri 

'\0' i 

/***************************** random numbers ************************** 
*/ 

Unsigned rtab[55] i 

lnt rndxi 

#define TWO 32 
#define rndm () 
#define UOI () 
#define rnd(n) 

(4294967296.0) 
((++rndx>54)?rtab[rndx=nrndm()] :rtab[rndx]) 
(rndm () /TWO_32) 

nrndm() 
{ 

for (i 
for (i 
return Oi 

( (int) (U01 () * (n)) ) 

Oi i < 24i i++) rtab[i] 
24i i < 55i i++) rtab[i] 

initrand(unsigned s) 
{ 

int h,ii Unsigned j sll, k 1· , 

rtab[54] = Si 

rtab[i+31] i 
rtab [i-24] i 

for (i = Ii i < 55i h = (21*i++)%55, rtab[--h] 
h] ) i 

nrndm() i nrndm() i nrndm() i nrndm() i rndx = Oi 

bigint prandom(int u, bigint y) 
{ 

k, k j -k, j rtab [ 



lnt i,j; 

for (TmpB->u = u, Tmp8->s = 1, j = i = 0; i < U; i++, j 
j += (( (Tmp8->d [i] = rnd (M)) *m13 [i] ) %30030) ; 

while (i && lTmp8->d[--i]) Tmp8->u- - ; 

if (!p13[j]) return ass (Tmp8,y) ; 
Tmp1->s = 1, Tmp1->u = 2, *Tmp1->d 

return add(Tmp8,Tmp1,y); 

L (p13 [j] ), Tmp1->d [1] 

j%30030) 

H (p13 [j] ) 

bigint random(bigint x, bigint y) /* y is sort of random and < x */ 
{ 

int i; 

if (lx->s) return ass (ZERO,y) ; 
if (1 == (i = x->u)) 

*y->d = rnd(*x->d); 
else 

for (i--, y->d[i] = rnd(x->d[i]); i--; y->d[i] 

for (i = x->u; i-- && ly->d [i]; ); y->s = ((y->u 
return y; 

rnd (S (1) ) ) ; 

i+1) >0) ; 

/********************** finding / testing "primes" 
*************************/ 

int miller(bigint x, bigint b) 
{ 

int i,j,k,l; 

ass (sub (x,ONE,Tmp5) , Tmp7) ; 

for (Tmp6->s = 1, Tmp6->u = Tmp5->u, i = k = 0; !Tmp5->d[i]; i++, Tmp6 
->u--) ; 

while (1 (Tmp5->d[i]&1)) k++, Tmp5->d[i] »= 1; *Tmp6->d = Tmp5->d[i]; 
for (j = (i«4)+k, 1 = 0; ++i < x->u; ) 

Tmp6->d[1++] 1= L(S(Tmp5->d[i]»>k), Tmp6->d[1] = Tmp5->d[i]»k; 

if (equ(pwr(b,Tmp6,x,Tmp5) ,ONE)) return 1; 
while (j--){ 

if (equ(Tmp5,Tmp7)) return 1; 
mul(Tmp5,Tmp5,Tmp6) ; 
mod (Tmp6,x,Tmp5) ; 

return 0; 

int rabin(int i, bigint x) 
{ 

while (i--) if (gtr (random (x, Tmp8) ,ONE) && lmiller(x,Tmp8)) return 0; 
return 1; 

bigint prime (int u, bigint y) /* y 2q+1 and q are probably prime */ 
{ 
top: 

do random (prandom(u, Tmp9) ,Tmp8); while (!miller(Tmp9,Tmp8)); 
add (ONE,mul (TWO, Tmp9,TmpO) ,y); 



if (lequ(pwr(FOUR,Tmp9,y,Tmp8) ,ONE)) goto top; 
if (lrabin(31,Tmp9)) goto top; 
return y; 

/********************** simple minded factoring 
*************************/ 

int factor(bigint x) /* might not return in your lifetime */ 
{ 

unsigned i = 0; 

if (lrabin(32,x)) { 
ass (ONE, Tmp7) ; 
ass (TWO,Tmp8) ; 
while (++i) { 

add (ONE, Tmp7, Tmp6) ; 
ass (Tmp6, Tmp7) ; 
pwr(Tmp8,Tmp7,x,Tmp6) ; 
ass (Tmp6, Tmp8) ; 
if ( l (i&1023)) { 
sub (Tmp8,ONE, Tmp9) ; 
gcd (Tmp9, x, F) ; 
if (gtr(F,ONE)&&les(F,x)) return 1; 
else printf ("not yet ... \n") ; 
} 

return 0 ; 

bigint proot(bigint p, bigint r) 
{ 

bigint tempO, tempI; 

tempO 
tempI 

getVar(256) ; 
getVar(256) ; 

/* Assume p is a prime such that p */ 
/* 2q+l where q is prime */ 

sub(p, TWO, tempO); 
mul(tempO, tempO, tempI); 
sub(p, tempI, tempO); 
mod (tempO, p, r); 

return r; 

void rsa(bigint n, bigint d, bigint e) 
{ 

bigint tempO, tempI, phi_n, a, b; 
bigint test; 

tempO getVar(256); 
tempI getVar(256); 
phi n getVar(256); 
a = getVar(256); 
b = getVar(256); 
test = getVar(256); 



prime(2,a) ; 
prime(2,b) ; 

sub (a, ONE, tempO) i 
sub(b, ONE, tempI); 
muI(tempO, tempI, phi_n); 

do prandom(2, d); while (equ(ZERO,inv(d, phi_n, e))); 

void rsa2(bigint n, bigint d, bigint e, bigint b) 
{ 

bigint tempO, tempI, pI, p2; 
bigint test; 

tempO = getVar(256); 
tempI = getVar(256); 
pI = getVar(256); 
p2 = getVar(256); 
test = getVar(256); 

ass (ZERO, test); 
while(!equ(test, THREE)) 

{ 
prime (2, pI); 
mod (pI, FOUR, test); 

ass (ZERO, test); 
while(!equ(test, THREE)) 

{ 
prime(2, p2); 
mod(p2, FOUR, test); 

ass(pI, d); 
ass(p2, e); 
mul(pl, p2, n); 
prime(2, test); 
mod (test, n, b); 

void getkey(bigint n, bigint key, char *newkey) 
{ 

FILE *keyfile; 
char skey[lOOO] , sn[lOOO]; 
int i; 

keyfile = fopen(newkey, "r"); 

fscanf (keyfile, "%S", sn); 
fscanf(keyfile, "%s", skey); 

scan (skey, key); 
scan(sn, n); 

fclose(keyfile) ; 



void squareroot(bigint x, bigint n, bigint z) 
{ 

bigint n-plus_one, tempI; 
char s4 [1000], snl [1000], sx [1000], sz [1000] ; 

n-plus_one = getVar(256); 
tempI = getVar(256); 

add(n, ONE, n-plus_one); 

div(n-plus_one, FOUR, tempI); 
pwr(x, tempI, n, z); 

/*print(n-plus_one, snl); 
print (x, sx); 
print(z, sz); 

printf ("n+l %s\n", snl); 
printf("x %s\n", sx); 
printf("z = %s\n", sz);*/ 

void encrypt (bigint m, bigint b, bigint n, bigint c) 
{ 

bigint tempI, temp2; 
char s [1000] ; 

tempI 
temp2 

getVar(256) ; 
getVar (256) ; 

add(m, b, tempI); 
mul(m, tempI, temp2); 
mod (temp2, n, c); 

/*print(m, s); 
printf("m = %s\n", s); 
print (b, s); 
printf("b = %s\n", s); 
print(n, s); 
printf ("n = %s\n", s); 
print (tempI, s); 
printf("templ = %s\n", s); 
print (temp2, s); 
printf("temp2 = %s\n", s); 
print(c, s); 
printf("c = %s\n", s) ;*/ 

void decrypt (bigint c, bigint pI, bigint p2, bigint m) 
{ 

bigint b, b-pl, b-p2, c-pl, c-p2, tempI, x-pl, x-p2, two_inv; 
bigint four_inv, temp2, ni 

char s [1000] i 

b = getVar(256) i 

n = getVar(256) i 

b-pl = getVar(256) i 

b-p2 = getVar(256); 
tempI = getVar(256) i 



temp2 = getVar(256); 
C-pl getVar(256); 
c-p2 getVar(256); 
x-pl getVar(256); 
x-p2 getVar(256); 
two inv = getVar(256); 
four inv = getVar(256); 
getkey (n, b, "pubkey"); 
inv(TWO, n, two_inv); 
inv(FOUR, n, four_inv); 
mod(b, pl, b-pl); 
mod(c, pl, c-pl); 
mod(b, p2, b-p2); 
mod(c, p2, c-p2); 
release (b) ; 

/* (x + B/2)A 2 = C + (B A2/4) mod p */ 
mul(b-pl, b-pl, templ); 
mul(templ, four_inv, temp2); 
add (temp2, c-pl, x-pl); 
square root (x-pl, pl, templ); 
if (sqcheck&l) /* negative */ 

{ 

} 

sub(pl, templ, x-pl); 
ass (x-pl, templ); 

mul(b-pl, two_inv, temp2); 
sub (templ, temp2, x-pl); 
mod (x-pl, pl, templ); 
ass (templ, x-pl); 

mul(b-p2, b-p2, templ); 
mul(templ, four_inv, temp2); 
add(temp2, c-p2, x-p2); 
squareroot(x-p2, p2, templ); 
if (sqcheck&2) /* negative */ 

{ 

} 

sub(p2, templ, x-p2); 
ass (x-p2, templ); 

mul(b-p2, two_inv, temp2); 
sub (templ, temp2, x-p2); 
mod (x-p2, p2, templ); 
ass (templ, x-p2); 

inv(pl, p2, b-pl); 
inv(p2, pl, b-p2); 

mul(b-p2, p2, templ); 
mul(templ, x-pl, temp2); 
mod (temp2, n, x-pl); 

mul(b-pl, pl, templ); 
mul(templ, x-p2, temp2); 
mod(temp2, n, x-p2); 

add (x-p1, x-p2, templ); 
mod (templ, n, m); 

#if 0 



void checksq(FILE *fp, bigint key, bigint n, bigint pI, bigint p2) 
{ 

bigint block, check, seventeen; 
int i, setsq = -1; 

unsigned char ch; 
char s [1000] ; 

block = getVar(256); 
check = getVar(256); 
seventeen = getVar(256); 

add (TEN, SEVEN, seventeen); 

for(i = 0; (i < (n->u«l)) && (EOF!= (ch= getc(fp))); i++) 
if (i&l) block->d[i»l] 1= ch«8; else block->d[i»l]= ch; 

for (i = n->u; i-- && !block->d[i]; ); block->s = ((block->u 
i+l) >0) ; 

} 

for(i = 0; i < 4; i++) 
{ 

} 

sqcheck = i; 
decrypt (block, pI, p2, check); 
if (equ(seventeen, check)) 
setsq = i; 

print (block, s); 
printf("block = %s\n", s); 
printf ("setsq = %d\n", setsq); 
sqcheck = setsq; 

#endif 

main(int argc, char **argv) 
{ 

char sn[lOOO], skey[lOOO] , sblock[lOOO] , sout[lOOO]; 
bigint n, key, block, output, pI, p2, seventeen; 
int i, j, ndigit, ch; 
FILE *filein, *fileout; 

/* 

*/ 

e - encryption. Provide the infile and keyfile. 
d - decryption. Provide the cypher file and keyfile. 
c - creation. Create two files, named in the <infile> and <keyfile> 
arguments, that will have the public and secret keys, as well as n. 

if(argc > 4) 
{ 

printf("Error: Too many arguments.\n"); 
printf ("mycrypt: mycrypt [inputfile] [keyfile] [action] \n") ; 

} 
else if(argc < 4) 

{ 

} 
else 

{ 

printf("Error: Not enough arguments.\n"); 
printf ("mycrypt: mycrypt [inputfile] [keyfile] [action] \n") ; 

init(5); 
n = getVar(256); 
key = getVar(256); 
pI = getVar(256); 



p2 = getVar(256); 
seventeen = getVar(256); 
add (TEN, SEVEN, seventeen); 

if (argv[3] [0] == 'c') 
{ 

block = getVar(256); 
output = getVar(256); 
rsa2(n, key, block, output); 
filein = fopen (argv [1], "w"); 
fileout = fopen (argv [2], "w"); 
print (n, sn); 
print (key, skey); 
print (block, sblock); 
print (output, sout); 
fprintf(filein, "%s\n%s", sn, sout); /*write public key n, b*/ 
fprintf(fileout, "%s\n%s", skey, sblock) ;/*secret key pI p2*/ 
fclose (filein) ; 
fclose(fileout) ; 

} 
else if (argv[3] [0] == 't') 
{ 

} 

block = getVar(256); 
output = getVar(256); 
add (TWO, TEN, block); 
getkey (n, key, "pubkey"); 
encrypt (block, key, n, output); 
getkey(pl, p2, "seckey"); 
decrypt (output, pI, p2, block); 
print (block, sblock); 
printf ("block = %s\n", sblock); 

else if (argv[3] [0] == 'e') 
{ 

getkey(n, key, argv[2]); 
ndigit n->u - 1; 
block = getVar(ndigit); 
output = getVar(ndigit); 
filein fopen(argv[I], "r"); 
fileout = fopen ("cfile", "w"); 

/*begin encrypting file*/ 
do 

{ 
for( i = 0; (i < (ndigit«I)) && (EOF!= (ch = 

getc (filein))); i++) 
if (i&l) block->d [i»I] 1= ch«8; else block->d [i»I] 

while (i < (ndigit«I)) { 
if (i&l) block->d [i»I] 1= 0«8; else block->d [i»I] 
i++; 
} 

Chi 

o . , 

for (i = ndigit; i-- && !block->d[i]; ); block->s ((block-
>u i+l) >0) ; 

encrypt (block, key, n, output); 
for(i = 0; i< output->u; i++) { 
fputc(output->d[il, fileout); 
fputc(output->d[il»8, fileout); 
} 
while (i++ < n->u) { fputc(O, fileout); fputc(O, fileout); } 
while(!feof(filein)) ; 



i++) 

Chi 

fclose (filein) ; 
fclose(fileout) ; 

e 1 s e if (a rgv [3] [0] = = I d I ) 

{ 
II sscanf(argv[4] ,"%d",&sqcheck); 
getkey (n, key, "pubkey") ; 
getkey(p1, p2, argv[2]); 
ndigit n->u - 1; 
block getVar(ndigit); 
output getVar(ndigit); 

filein 
fileout 

do 
{ 

fopen (argv [1] , "r"); 
fopen ("output", "w"); 

for( i = 0; (i < (n->u«l)) && (EOF!= (ch=getc(filein))); 

if (i&l) block->d[i»l] 1= ch«8; else block->d[i»l] = 

for (i n->u; i-- && !block->d[i]; ); block->s ( (block->u 
i+1) >0) ; 

#if 0 

#endif 

} 
1* 

for (sqcheck = 0; sqcheck < 4; sqcheck++) { 
decrypt (block, p1, p2, output); 

forti = 0; i< output->u; i++) { 
putchar(output->d[i]) ; 
putchar(output->d[i] »8) ; 

} 
fflush(stdout) ; 

for (j = 1, i = 0; i< output->u; i++) 
if ((1281 (128«8))&output->d[i]) { j 

if (j) 
O· break· } , , 

break; 

for(i = 0; i< output->u; i++) { 
fputc(output->d[i], fileout); 
fputc(output->d[i] »8, fileout); 
} 
while (i++ < ndigit) { fputc(O, fileout); 

} while(!feof(filein)); 
fclose(filein) ; 
fclose(fileout) ; 

fputc(O, fileout); 

gcc -g -0 rsa2.c 

*1 
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