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ABSTRACT 

Mathematical models are often used in describing immune response to HIV 

infection, and treatment against HIV infection can be improved through the study of 

these descriptions. One such model from Kirschner and Webb's paper, "Immunotherapy 

ofHIV -1 Infection," uses a system of two differential equations to model the interaction 

of the AIDS virus and CD4+ T -cells. Beginning with this existing model, we modify the 

equations to include the mathematical representation of a theoretical antiviral treatment 

based on maximizing the benefit to the patient. Solving this problem requires both 

analytic and numerical evaluations, and a numerical example is provided to illustrate the 

form of a treatment schedule. In solving the optimal control problem we learn how to 

best administer such a treatment to extend the life of the patient. 



I. Introduction: 

Mathematical models provide great insight into the workings of many biological 

environments. Quantifying the living world helps in the understanding of the dynamics within 

organisms and assists in medical studies, environmental studies, and other areas of biological 

benefit In medicine specifically, mathematical models can represent the actions of disease, and 

medical researchers can find optimal ways of treating infection through the use of such models. 

By the understanding of the dynamics of the immune system and its responses, the study of 

medicine can advance in efficiency of treatments. 

Many different researchers have considered the immune system's mathematical basis, 

recognizing the potential for describing immune cell numbers in terms of simple population 

models. When infectious cells, viruses, bacteria, etc., enter the body, the relationship between 

immune cells and invading cells becomes much like a predator-prey relationship. When the body 

becomes infected with the Human Immunodeficiency Virus, however, the system immediately 

becomes more complicated. Many researchers and mathematicians have dealt with the topic of 

mv infection described through mathematical modeling, and hopefully their work will help in the 

treatment of the terminal disease. The different models have their own advantages and 

disadvantages so one model will not necessarily lead to the "cure" for mv infection. Through 

the study of these models, researchers can continually make improvements to the existing systems 

and hopefully achieve the best treatment possible. 

Control theory is the mathematical study of adjusting features of systems to achieve 

desired goals. When relating control theory to medical models such as those involving HIV 

infection, we must consider the patient's threshold for treatment while we strive for the highest 
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achievable results of patient benefit (Fleming 2). Using an existing model from "Immunotherapy 

ofHIV-Infection" (Kirschner 73-74), we mathematically controlled the system in order to find the 

best way to administer a certain type of treatment for the infection. The theoretical treatnlent 

used in this evaluation fights HIV by inhibiting the proliferation of virus particles by infected T-

cells. By using control theory, we hoped to find an analytica1lnumerical representation of 

treatment that maximizes benefit to the patient. 

II. Existing HIV Modeling 

Mathematical models of HIV infection vary in many respects, but all basically begin with 

the underlying idea somewhat similar to a predator-prey or competition relationship. Because 

HIV infects immune cells themselves, the relationship between T -cells and HIV becomes very 

complicated. HIV models have many factors to consider, and some models involve several 

equations. One system from "Mathematical Analysis of Antiretroviral Therapy Aimed at HIV-1 

Eradication or Maintenance of Low Viral Loads" models HIV infection with a ten differential 

equation model (Wein 83). Models ofHIV infection range from highly complex to fairly simple, 

varying in assumptions and in the populations considered. 

The majority of mathematical models of viruses concern HIV -1, for HIV -1 is the most 

studied human virus (Regoes 451). As stated in "Virus Dynamics: the Effect of Target Cell 

Limitation and Immune Responses on Virus Evolution," seven assumptions underlie the theory of 

HIV -1 progression. These assumptions are 

(I) virus load causes disease; (ii) immune responses reduce virus load; (iii) HIV-1 
can impair immune responses by killing CD4 cells; (iv) there is continuous and 
rapid virus replication throughout the course of infection; ( v) the rapid turnover 



leads to a large number of virus mutants; (vi) some of these mutants can escape 
from immune responses; (vii) the virus may evolve towards faster replication rates 
during infection (451-452). 

4 

Although not all models incorporate mutations, these assumptions relate the basic idea of the 

situation being modeled. 

One specific model of the dynamics of mv infection is "Immunotherapy of mV-1 

Infection" by D.E. Kirschner and G.F. Webb. This paper assesses the benefit of using 

interleukins, a specific type of cytokine, to boost the immune response to the infection (Kirschner 

71). Kirschner and Webb model the immune response to mv -1 infection using only the 

populations of virus particles and of T -cells. They do not use different states of the T -cells (e. g., 

infected and latent, infected and actively producing virus), and hence their model is relatively 

simple in comparison to many other existing models. Kirschner and Webb's work resulted in the 

two equation system of ordinary differential equations, 

dT = sl - (s2)V - JlT - kVT 
dt (b1 + V) 

dV - cVT 
dt (b2 + V) 

in which T represents the concentration of CD4+ T -cells as a function of time and V represents 

the concentration of free virus particles as a function of time. The first two terms of dT/dt 

represent the source and proliferation of healthy CD4+ T -cells and s 1 =20 and s2= 1. 5. The values 

b1 and b2 are half saturation constants and they equal 14.0 and 1.0, respectively. The value -JlT 

is a natural death term and -k VT involves the loss of T -cells to viral infection. The value Jl, death 

rate ofuninfected T-cells, is 0.002; and k, the rate of infection by free virus, is 2.5*10A-4. The 
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term gV/(b2 + V) involves virus proliferation from several areas other than plasma such as the 

lymph system. The value g, input rate of external viral source, is 30. The initial value for T for 

the model is 1000.0, but three different values in different versions of the paper are listed for 

initial V: 1.0, 1000, 3000. The model is fundamentally a modified predator-prey or (more 

accurately) competition relationship with interaction terms of -kVT and -cVT. (In their paper, 

Kirschner and Webb further modified the system with a drug input function r( t) representing the 

interleukin treatment by adding the term r(t)T to the dT/dt equation.) 

III. Implementation of the Antiviral Function 

The original system devised by Kirschner and Webb was re-evaluated in its original form 

and modified to include an antiviral treatment inhibiting the production of virus particles. Using 

control theory, the optimal treatment schedule can be calculated for this treatment. Because the 

treatment affects virus proliferation, the effect of the control function u( t) is the coefficient of the 

proliferation term for the virus population. For controls u(t) such that .1 < u(t) < .9, our state 

system is 

dT 2.0 - - .002T - (2.5*101\(-4))VT 
dt (14.0 + V) 

dV = 30V( .9-u(t) ) - .007VT . 
dt (1.0 + V) 

IV. Evaluation of the System 

When creating the best situation for the patient, we must consider both the positive and 



negative results of the treatment. In order to maximize the benefit to the patient, we must 

maximize the objective functional, 

t1 

J ( T(t) - (l;2)PU2(t) ) dt 
o 
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which represents the benefit to the immune system through increased concentration of T -cells 

minus the systemic cost of the treatment. By finding u*(t), the optimal treatment which 

maximizes this integral, we find the treatment schedule which provides the greatest overall benefit 

to the patient. When maximizing this integral, we must first find and utilize the Hamiltonian of the 

system, 

H ( T -(l;2)pu2(t) ) + AI(dT/dt) + A2(dV/dt), 

where Al and A2 are functions dependent on values ofT, V, and time (Kamien 124-128). Solving 

the optimality equation, aH/au = 0, gives the optimal equation for the treatment, 

{ 0.1 u < 0.1 

-A2*30V 
u*(t) = { -------------- 0.1 <u<0.9 

P*(1.0+V) 

{ 0.9 u>0.9 

The adjoint equations, A1'=(-BHlBT) and A2'=(-BHlBV), evaluated from the Hamiltonian are 

Al '=AI *(.002+.007V) + A2*(2.5*10A(-4)V - 1.0 

A2'=A1 *( 21.0 + (2.5*10A(-4»T ) - A2*( 27.0-30u -.007T) 
(14.0+v)2 (1.0+V)2 
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which are necessary in finding the numerical solution of the modified system. To determine if 

these equations do in fact produce a maximum value for the functional, we must verify that the 

second partial derivative of the Hamiltonian with respect to u*(t) is negative. We find that 

8ZHlauz -~; therefore, choosing ~>O will make u*(t) the optimal treatment function. 

Solving the model itself must be done numerically. The original model was re-solved 

using the classic Fourth Order Runge-Kutta method written in a Fortran code (Appendix A). The 

values of the T -cells decrease and the values of the virus increase so quickly initially that an 

extremely small step-size must be used or the values will become negative. The initial 

concentration ofT-cells, TO, was set at 500.0 in the newly modified system rather than 

TO=1000.0 as in the original paper. The initial value was lowered in order to simulate a later 

stage of infection. The original model lists three initial values for the virus population in two 

different copies of the paper (one copy prior to publication), but the value 1000.0 was used in this 

evaluation because this value was included in the actual published result and the re-evaluation 

results seemed logical. The value ~= 124.0 was chosen because it provided the best results and 

did not violate the condition 13>0. The optimality system, which is the original T(t) and V(t) 

ODEs coupled with adjoint ODEs including the control u*(t), was evaluated using an iterative 

method with the Classic Fourth Order Runge-Kutta Method in a FORTRAN code (Appendix B). 

Numerical solutions were found for the resulting functions of the T-cell population with respect to 

time, the virus population with respect to time, as well as the treatment schedule over time. The 

nunlerical results for the original system and the optimized system were computed in the 

respective FORTRAN codes then graphed using MA TLAB. 
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V. Results and Discussion 

The virus population values decrease in the presence of treatment (Figure 1 and Figure 2) 

although the results do not appear to be drastic. The numerical results to the original system 

show a steady decline in the T-cell population (Figure 3), but the population of the T -cells 

behaves quite differently in the presence of treatment. The positive change in T-cell numbers in 

the presence of treatment is quite obvious (Figure 4), with T-cell numbers increasing over the 

majority of the treatment period and gradually declining near the end of the treatment period. 

Hence, the treatment schedule does appear to increase the T-cell population over the course of 

treatment and therefore seems to benefit the patient. The numerical results for u*(t), the 

treatment schedule (Figure 5). includes high levels of treatment at the beginning of the treatment 

period with the dosage decreasing over the course of treatment. This result suggests that an 

intense treatment is very beneficial initially in the treatment schedule, but maintaining that strength 

of treatment would not result in the overall best situation for the patient. Most likely the negative 

effects of the drug outweigh the benefits of high treatment levels as time progresses. 

Although the treatment discussed here is theoretical, current treatments exist inhibiting 

different stages ofillV infection which affect the progression of the disease in various major 

ways, including the prevention of binding ofHIV to the surface of the host cell and the inhibition 

of reverse transcription of RNA from the HIV particle into T-cell DNA. The treatment evaluated 

in this paper is assumed to treat through inhibition of one or more stages of viral production. The 

combined use of different treatments, i.e., a "drug cocktail," has the potential for highly favorable 

results. By using optimal treatment schedules, we can best combine these various treatments to 
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benefit patients. 
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T-cell population vs. time in the presence of treatment 
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c This program solves a of differential equations modeling 
.c the action of the immune system in response to HIV infection. The 
c model comes from "Immunotherapy of HIV-l Infection," D.E. Kirschner 
c and G.F. Webb, Journal of Biological Systems. 

implicit none 
real ti, tf, h, t, v 
integer n, i 
real xn(2,1001), xl, x2, kx(2,4) 

c The original differential equations are entered: 

xl (t,v) 
x2(t,v) 

2.0 - (1.5*v)/(14.0+v) - .002*t - (2.5e-4)*v*t 
30.0*v/{1.0+v) .007*v*t 

c Initialize values: 

n = 1000 
ti = 0.0 
tf = 100.0 
h = (tf-ti)/n 

c Initial values are set for the loop: 

xn(l,l) = 
xn{2,l) 

500.0 
1000.0 

c Begin the loop using R-K: 

DO i=l,n+l 

kx(l,l)=h*xl(xn{l,i),xn(2,i» 
kx(2,l)=h*x2(xn(l,i),xn(2,i» 

kx(l,2)=h*xl(xn(l,i)+kx(l,l)/2,xn(2,i)+kx(2,l)/2) 
kx(2,2)=h*x2(xn(l,i)+kx(l,l)/2,xn(2,i)+kx(2,l)/2) 

kx(l,2)=h*xl(xn(l,i)+kx(1,1)/2,xn(2,i)+kx(2,l)/2) 
kx(2,2)=h*x2(xn(l,i)+kx(1,1)/2,xn(2,i)+kx(2,l)/2) 

kx(l,3)=h*xl(xn(l,i)+kx(l,2)/2,xn(2,i)+kx(2,2)/2) 
kx(2,3)=h*x2(xn(1,i)+kx(1,2)/2,xn(2,i)+kx(2,2)/2) 

kx(l,4)=h*xl(xn(l,i)+kx(l,3),xn(2,i)+kx(2,3» 
kx(2,4)=h*x2(xn(l,i)+kx(1,3),xn(2,i)+kx(2,3» 

c Move t and v values forward in time: 

xn(l,i+l)=xn(1,i)+(kx(1,1)+2*kx(1,2)+2*kx(l,3)+kx(l,4) )/6 
xn(2,i+l)=xn(2,i)+(kx(2,l)+2*kx(2,2)+2*kx(2,3)+kx(2,4»16 

print*,i,xn(1,i+l),xn(2,i+l) 

ENDDO 
c print*,xn(1,n+l),xn(2,n+l) 

stop 
end 
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c This program solves a system of differential equations modeling 
c the action of the immune system in response to HIV infection. The 
c model comes from "Immunotherapy of HIV-1 Infection," D.E. Kirschner 
c and G.F. Webb, Journal of Biological Systems. The original system 
c is modified to include a theoretical antiviral chemotherapy 
c treatment. 

implicit none 
real ti,tf,h,t,v,adj1,adj2,uavg,xntavg,xnvavg,c 
real beta,eps,tol,epsx1,epsx2,epsy1,epsy2 
integer n,i,counter,L,k,m,j,ii,p,q,s 
real xn{2,1001),yn{2,1001),x1,x2,y1,y2,kx{2,4),ky{2,4) 
real u(1001),xold{2,1001),yold{2,1001) 

c The original differential equations are entered: 

x1{t,v) = 2.0 - (1.5*v)/{14.0+v) - .002*t (2.5e-4)*v*t 
x2{t,v,c) 30.0*v*{.9-c)/{1.0+v) .007*v*t 
y1{adj1,adj2,v) = adj1*{.002+.007*v)+adj2*{2.5e-4)*v-1.0 
y2{adj1,adj2,t,v,c) = adj1*({21.0/«14.0+v)*{14.0+v»)+ 

! (2.5e-4)*t)-adj2*«27.0-30.0*c)/«1.0+v)*(1.0+v»-.007*t) 

c Initialize values: 

n = 1000 
ti 0.0 
tf = 100.0 
h = (tf-ti)/n 
beta 124.0 
tol 10.0 

c Initial values are set for the loops: 

xn(l,l) = 500.0 
xn(2,l} = 1000.0 
DO j=l,n 

yn(l,j)=1.0 
yn(2,j)=-1.0 

ENDDO 

yn{l,n+1}=0.0 
yn(2,n+1)=0.0 

c Initialize "old" values to be compared to xn,yn: 

DO m=l,n+1 
xold(l,m)=500.0 
xold{2,m) 1000.0 
yold (1, m) 1. 0 
yold(2,m) 1.0 

ENDDO 

c Begin the loop using R-K: 

counter=O 
25 counter=counter+1 

DO i=l,n 

c Here, need to add small loop for u bdd by M: 

u(i)=«-1.0)*yn(2,i)*30.0*xn(2,i»/(beta*{1.0+xn(2,i») 
if (u (i) . It. .1) then 

u(i} .1 
elseif(u(i) .gt .. 9) then 

u(i)=.9 



endif 

uavg=(u(i) + u(i+1»/2.0 

kx(l,l)=h*x1(xn(l,i),xn{2,i» 
kx{2,l)=h*x2(xn(l,i),xn(2,i),u(i» 

kx{l,2)=h*x1(xn(l,i)+kx(l,l)/2,xn{2,i)+kx(2,l)/2) 
kx(2,2)=h*x2(xn(l,i)+kx(l,l)/2,xn(2,i)+kx(2,l)/2,uavg) 

kx(l,3)=h*x1(xn(l,i)+kx(l,2)/2,xn(2,i)+kx(2,2)/2) 
kx(2,3)=h*x2(xn(l,i)+kx{l,2)/2,xn(2,i)+kx(2,2)/2,uavg) 

kx(l,4)=h*x1(xn(l,i)+kx(l,3),xn(2,i)+kx(2,3» 
kx(2,4)=h*x2(xn(l,i)+kx(l,3),xn(2,i)+kx(2,3),u(i+1» 

c Move t and v values forward in time: 

c 

xn(1,i+1)=xn(1,i)+(kx(l,l)+2*kx(1,2)+2*kx(l,3)+kx(l,4»/6.0 
xn(2,i+1)=xn(2,i)+(kx(2,l)+2*kx(2,2)+2*kx(2,3)+kx(2,4»/6.0 

print*,xn(1,i+1),xn(2,i+1) 

ENDDO 
c print*,xn(l,n+1),xn(2,n+1) 

c Begin loop for R-K for adjoints: 

DO ii=l,n 

c Here, need to add small loop for u bdd by M: 

u(ii)=«-1.0)*yn(2,ii)*30.0*xn(2,ii»/(beta*(1.0+xn(2, ii») 
if (u (ii) .It. .1) then 

u(ii)=.l 
elseif (u(ii) .gt .. 9) then 

u(ii)=.9 
endif 

L=2+n-ii 
xntavg=(xn{1,L)+xn(l,L-1»/2.0 
xnvavg=(xn(2,L)+xn(2,L-1»/2.0 
uavg=(u(L)+u(L-1»/2.0 

ky(l,l)=-h*y1(yn(l,L),yn(2,L),xn(2,L» 
ky(2,1)=-h*y2(yn(l,L),yn(2,L),xn{l,L),xn(2,L),u(L» 

ky(l,2)=-h*y1(yn(l,L)+ky(l,l)/2,yn(2,L)+ky(2,l)/2,xnvavg) 
ky(2,2)=-h*y2(yn(l,L)+ky(l,l)/2,yn(2,L)+ky(2,l)/2,xntavg, 

!xnvavg,uavg) 

ky(l,3)=-h*y1(yn(l,L)+ky(l,2)/2,yn(2,L)+ky(2,2)/2,xnvavg) 
ky(2,3)=-h*y2(yn(l,L)+ky(l,2)/2,yn(2,L)+ky(2,2)/2,xntavg, 

!xnvavg,uavg) 

ky(l,4)=-h*y1(yn(l,L)+ky(l,3),yn(2,L)+ky(2,3),xn(2,L-1» 
ky(2,4)=-h*y2(yn(l,L)+ky(l,3),yn(2,L)+ky(2,3),xn(l,L-1), 

!xn(2,L-1),u(L-1» 

c Move adjoint values in time: 

c 

yn(l,L-1)=yn(l,L)+(ky(l,l)+2*ky(l,2)+2*ky(l,3)+ky(l,4))/6.0 
yn(2,L-1)=yn(2,L)+(ky(2,1)+2*ky(2,2)+2*ky(2,3)+ky(2,4»/6.0 

print*,yn(l,L+1) ,yn(2,L+1) 



ENDDO 
print*,yn(l,L+l),yn(2,L+l) 

Need to check if control is working as an antiviral: 

epsxl=O.O 
epsx2=0.0 
epsyl=O.O 
epsy2=0.0 

DO p=l,n+l 
epsxl 
epsx2 
epsyl 
epsy2 

ENDDO 

epsxl + abs(xn(l,p)-xold(l,p» 
epsx2 + abs(xn(2,p)-xold(2,p» 
epsyl + abs(yn(l,p)-yold(l,p» 
epsy2 + abs(yn(2,p)-yold(2,p» 

eps = epsxl + epsx2 + epsyl + epsy2 

if (eps .It. toll then 
print*, 'convergence 
print* 

after',counter, 'iterations' 

print*, 'T-cell: Virus: Adjl: Adj2: 
DO k=l,n+l,20 

u: ' 

print*,k,' ',xn{l,k),' , ,xn(2,k),' , ,yn(l,k),' , ,yn(2,k), 
!' ',u(k) 

ENDDO 
print* 
print*, 'final values:' 
print*, 'T-cell:' ,xn(l,n+l) ,'Virus:',xn(2,n+l) 
print*, 'Adjl:',yn(l,n+l), 'Adj2:',yn(2,n+l) 
goto 45 

elseif (counter .gt. 20) then 
print*, 'convergence not reached' 
print*, 'last values are:' 
DO s=l,n+l,50 

print*,xn(l,k),' , ,xn(2,k),' , ,yn(l,k),' ',yn{2,k),' , ,u{k) 
ENDDO 
print*, 'exiting .... ' 
goto 45 

else 
DO q=l,n+l 

xold(l,q)=xn{l,q) 
xold(2,q)=xn(2,q) 
yold(l,q)=yn(l,q) 
yold{2,q)=yn{2,q) 

ENDDO 
goto 25 

endif 

stop 
end 
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