
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative

Exchange

University of Tennessee Honors Thesis Projects University of Tennessee Honors Program

Spring 4-1999

A Computational Process-Response Model of
Hillslope Evolution Applied to Undercut Slopes on
Abandoned Incised Meanders in the Eastern
Highland Rim of Tennessee USA
Richard Tran Mills
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj

This is brought to you for free and open access by the University of Tennessee Honors Program at Trace: Tennessee Research and Creative Exchange. It
has been accepted for inclusion in University of Tennessee Honors Thesis Projects by an authorized administrator of Trace: Tennessee Research and
Creative Exchange. For more information, please contact trace@utk.edu.

Recommended Citation
Mills, Richard Tran, "A Computational Process-Response Model of Hillslope Evolution Applied to Undercut Slopes on Abandoned
Incised Meanders in the Eastern Highland Rim of Tennessee USA" (1999). University of Tennessee Honors Thesis Projects.
https://trace.tennessee.edu/utk_chanhonoproj/329

https://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu/utk_chanhonoproj?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu/utk_chanhono?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu/utk_chanhonoproj?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F329&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

Name:

UNIVERSITY HONORS PROGRAM

SENIOR PROJECT - APPROVAL

lf~~~C~~_~_~Jb ______ --------------------------
College: A.h..t~..it.ba-.L ___ -- Department: ?z!L~!.~1J.!f.!.f-;_~~!~~ PhYSles

F acu 1 ty Men to r: _Pc,-}.lJLt~!!J.._f_!?"b2-t_-________________________ _

PROJECT TITLE: _A_Co..t'tlfM-i4.iiPjlJf_LfC<2.{lUL-=-g~~'!..'U~_J:J£'!.L!!'£'

11 J1 ~j!.t2~ _ f.".!'iH.-I:.i{lrl.Ar4e-ll~ f£ _ !kiv.sJJ:L QOIU _0_"_ M'l.~ flJ£l_ - - - -

:k'l, .. /LtLP.J!:fJ..~4..{[:f._/rI_f~!_&5.A("lLfI~JLII.!!L&"';J_££~~!.5.!!~_(j5_1--_-
I have reviewed this completed senior honors thesis with this student and certify
that it is a project commensurate with honors level undergraduate research in this
field.

Signed: __ ~ _____________________ :. _______ , Faculty Mentor
Ci/ I' &... <::. .(' ~ E. a L. A-S' .r

Date: --~Ura?----------
Comments (Optional):

A COMPUTATIONAL PROCESS·RESPONSE MODEL OF HILLSLOPE EVOLUTION
APPLIED TO UNDERCUT SLOPES ON ABANDONED INCISED MEANDERS IN THE

EASTERN HIGHLAND RIM OF TENNESSEE, USA

Richard Tran Mills
Department of Geological Sciences and
Department of Physics and Astronomy

University of Tennessee
Knoxville, Tennessee 37996, USA

1

INTRODUCTION

Evolution of hillslopes on resistant bedrock takes place so slowly that direct observation

of change in most cases is impossible. A traditional way to study this evolution is to substitute

space for time by ordering modern-day hillslope profiles according to their relative age, and then

considering their forms to represent stages of a developmental sequence. In the unglaciated

Appalachians and Interior Plateaus of southeastern North America, landscapes are poorly dated,

and finding a chronosequence of hillslope profiles is difficult. One opportunity to do so is

provided by incised meandering streams that show "ingrown" meanders, characterized by gentle

slip-off slopes on the inside of the meanders and steep undercut slopes on the outside. Some of

these meanders become abandoned when stream erosion cuts through their narrow necks. Once

the meander is abandoned, the hillslope on the outside of the meander is no longer actively

eroded and its profile evolves into a new form with lower slope angles. The higher the cutoff

meander above the modern stream level (AML), the older the meander. Thus, the height AML of

the meander can be used as a proxy for hillslope age.

Here, a newer method was used in conjunction with this traditional approach to

complement and extend it. A general computational process-response model of hillslope

evolution based on the mass-balance equation was developed and used to simulate the transition

of actively undercut slopes into slopes on abandoned meanders. The combination of space for

time substitution and computer modeling was used to study hillslope development on the Eastern

Highland Rim, Tennessee, where streams are incised as much as 100 m below the plateau surface

(Figure 1). This thesis focuses mainly on the modeling portion of the study; the full details of the

study are presented elsewhere (Mills and Mills, 1997).

2

PHYSICAL SETTING

The eastern Highland Rim of Tennessee is a plateau standing at an elevation of about 300

m, situated between the Cumberland Plateau to the southeast (elevation about 550 m) and the

Central Basin to the northwest (elevation about 200 m) (Figure 1). This area is underlain, for the

most part, by five formations. From oldest to youngest these are the Leipers and Catheys

Formations (Ordovician), commonly mapped as one unit; the Chattanooga Shale (Devonian and

Mississippian); the Fort Payne Formation (Mississippian); and the Warsaw Formation

(Mississippian). The Leipers-Catheys unit contains coarse-grained, fine-grained, and argillaceous

limestone, and has a maximum exposed thickness of 45 m. In the incised stream valleys, this unit

crops out at the base of the slopes and on the valley floor. The Chattanooga Shale is a

carbonaceous, fissile shale about 8 meters thick. It crops out in settings similar to the

Leipers-Catheys. The Fort Payne Formation contains silicastone, calcareous siltstone,

argillaceous limestone, and bands and nodules of dense chert. Much of its silica apparently has

formed by replacement of limestone. Fourteen samples from the Fort Payne in the Cane Creek

area (north of Burgess Falls in southern Putnam County) were dissolved in formic acid to

determine the percent of insoluble materials by weight. This percentage ranged from 28.7 to 91.1,

with a mean of 55.0. The Fort Payne thickness ranges from 50 to 75 m. Of the units described

here, the Fort Payne is by far the most resistant to erosion and generally forms the steep valley

walls along the incised streams. The Warsaw Formation is a limestone with various

concentrations of sand, calcareous siltstone, calcareous shale, and argillaceous limestone. In the

study areas it occurs mainly on the surface of the Highland Rim. Its thickness ranges from 25 to

3

35 m (Wilson and Marcher, 1968). Regional dip is a fraction of 1 ° to the southeast, but small

local structures also occur.

The present mean annual temperature on the northern Eastern Highland Rim is about

15°C and the mean annual rainfall about 1320 mm. However, pollen records on the Rim

demonstrate much colder temperatures during the last glacial maximum. For example, in a record

from Anderson Pond (36° 02' N, 85° 30' W) at an elevation of about 300 m, De1court (1979)

reported vegetation patterns for 18 kyr that indicate mean annual temperatures near O°C. Thus,

periglacial conditions have existed here during parts of the Pleistocene.

Many streams near the western margin of the Highland Rim plateau are deeply incised,

flowing in gorges as much as 100 m deep. Generally these valleys show "ingrown" meanders,

characterized by gentle slip-off slopes on the inside of the meanders and steep undercut slopes on

the outside. Some of these meanders have been abandoned when stream erosion cut through the

narrow neck of the meanders (Figures 2-3). The floors of these "cutoff" meanders range in height

from 2 m to as much as 43 m above the modem stream. The age of abandonment thus varies

from recent to ancient; some idea of the time involved can be gained by considering regional

denudation rates and stream incision rates. Based on dissolved stream loads, Reesman and

Godfrey (1981) found that the chemical denudation of the Central Basin is about 40 m

myr-1
• Since the incised streams on the Highland Rim are graded to the Central Basin, a

downcutting rate of this amount would seem reasonable. Also germane to this question is the

streanl incision rate determined by Sasowsky et al. (1995) for the East Fork of the Obey River

near the western edge of the Cumberland Plateau (site A in Figure 1). Based on heights of

paleomagnetically dated cave passages above the present stream, they estimated this rate to be 60

4

m myr-'. Although the formations involved are stratigraphically higher than those of the valleys

considered here, the climatic and neotectonic settings of this river are similar to those of the

incised Highland Rim streams, so that this rate is probably applicable. Taking the 40 m myr- I and

the 60 m myr-1 as a probable range of incision rates, the highest cutoff meander was abandoned

between 1.08 and 0.72 Ma.

METHODS

Twelve cutoff meanders that most closely matched in regard to stratigraphy and depth of

stream incision were selected from about twice that number on the Eastern Highland Rim.

Several approaches were then used to study the changes in the form of the undercut slope as a

function of the vertical height of the abandoned meander floor above the modem stream. Briefly,

these were:

• First, on topographic maps (scale 1 :24,000, contour interval 20 ft [6.1 m]), the maximum

slope angle over a vertical distance of 100 ft (30.5 m) was measured on the outside of

each meander. These angles were then plotted against the maximum height AML of the

abandoned meander floor.

• Second, 21 hillslope profiles were surveyed on both active and abandoned undercut

slopes, by means of tape and clinometer. The actively eroded slopes were examined to

determine the effect of stratigraphy on the form of slope profile, and to determine the

5

probable original form of hillslopes on the abandoned meanders. Then the form and

steepness of the abandoned undercut slopes were examined and related to the height

AML.

• Third, a small number of seismic refraction lines were run in order to determine

approximate thicknesses of colluvium on floors and valley walls of abandoned meanders.

• Fourth, for selected profiles, a computer model based on work by Kirkby (1971, 1984,

1987, 1992, and unpub. data, 1991) and Kirkby et al. (1992) was written and used to

simulate the evolution of hillslope profiles over time.

The results of the first three approaches are documented in full in Mills and Mills (1997); here,

only those results pertinent to the computer modeling approach are mentioned.

The model was utilized by taking one of the actively undercut slopes as the initial profile,

and then running the model until the profile had "evolved II into a form approaching that of a

particular profile on an abandoned meander. As process rates were not measured in this study,

the approach was to use appropriate rates from the literature. Different values of rates were tried

in order to make the simulated profile most closely approach the form of the actual profile,

subject to the restriction that only rates that seemed reasonable could be used. The best-fitting

simulated profile was taken to be the one with the smallest mean absolute difference between

elevations along the simulated and actual profiles. The model time necessary to reach this best-fit

profile was then recorded. Hundreds of simulations were run in the course of the study.

6

THE PROCESS-RESPONSE HILLSLOPE EVOLUTION MODEL

The computer Inodel developed is based heavily on work by Kirkby (197 L 1984, 1987,

1992, and unpub. data, 1991) and Kirkby et al. (1992). The essentials of the model are as

follows. The hilIslope profile is divided into a series of equally spaced cells (5 J in the

simulations we ran), with the storage in each cell representing the elevation at a point on the

hillslope. Between each time step, sediment fluxes into and out of each cell are calculated from

empiricaJ process laws, and from these the accompanying changes in the elevation of each cell

are determined. Climate and Jithology are held constant, so process rates depend largely upon the

slope topography; i.e., distance from the divide and downslope gradient. A fixed time step of

small enough size to prevent numerical instabilities is used.

Process laws

"Creep" inc1udes a group of processes which depend on gradient but not on collecting

area, and have no lower threshold. In the present setting it consists mainly of soil creep and

solifluction. Creep is assumed to carry sediment at a rate directly proportional to the downslope

gradient. "Wash" refers to over1and flow that is able to entrain and carry soil particles on the

sUlface. Unlike creep, wash depends on collecting area (i.e., distance from the divide) as well as

on gradient. The seditnent flux S out of a cell froD1 creep and wash processes combined is given

by (Kirkby et at., 1992):

S=K[l +(x/u)2]g (1)

7

where x is the distance from the divide, g is the downslope gradient, K is a constant giving the

rate of creep, and u is the distance in meters beyond which the wash term, K(X/U)2g, becomes

larger than the creep term.

Landslides are modeled as a continuous process; hence the sediment flux due to

landslides represents a long-term average, rather than individual slides. The use of these average

rates assumes that individual slides are small enough not to change the slope profile significantly_

The flux due to landslides is controlled by four parameters, which are discussed in more detail in

Kirkby (1984, 1987). Two of these are thresholds: a lower, stable gradient g rp below which there

is no landslide activity, and an upper gradient gt above which slides will never come to rest. The

first depends on the angle of internal friction and whether pore pressure can develop. Likely

values range from 0.14 (8°) for clays up to about 0.58 (30°) for some sandstones. The second

may usually be related to the talus angle of repose of 0.7 (35°). The third is a rate constant ex

which governs the rate of free degradation, or unconstrained lowering, D which is given by

D =exg(g - g<t». (2)

ex may range from 0.001 m yr- 1 for sandstones to as much as 10 m yr- 1 for clays (Kirkby, 1987).

The fourth parameter ho indicates the average height from which blocks fall from cliffs, which

should be roughly their mid-height. It is in a sense used to represent the momentum of the falling

blocks in the expression for the mean horizontal distance h traveled by the moving material:

h=hJ(gt -g). (3)

The value of ho influences how far a slide can run out across gently sloping ground at the base of

8

a slope, but generally has only a slight effect on the slope profile elsewhere. Combining the

expressions for detachnlent rate and travel distance, the sedilnent flux Si out of cell i due to

landslides is given by (Kirkby et ai., 1992)

S.- Ddx+Si _1

I 1 +(1/h)dx

where dx is the spacing between cells, and Si _ 1 is the slide flux out of cell i-I.

Solution is modeled as a rate of uniform vertical lowering; with each iteration of the

nl0del, each cell is lowered by an amount determined by

where dz is the change in elevation of the cell, r,\' is the rate of solution, and dt is the time step

(4)

(5)

used. Unlike the other processes tllodeIed, solution does not contribute to the flux of sediment

being transported to cells downslope; rather, it is assumed that any material freed by solution

imtllediately leaves the system. This assumption is reasonable for al1 but very arid c1ilnates,

where reprecipitation of dissolved minerals can become significant.

The basis for the hillslope model--the mass-balance equation

For each iteration of the model, sediment fluxes out of each cell (and hence into the

adjacent cell downslope) due to creep and landslides are calculated. These are then grouped

together into a total sediment outflux for each cell, and then converted into the resultant changes

in elevation. The basis for this is the mass-balance, or continuity equation, which may be written

9

as

az _ as
at ax (6)

where S is the downslope flux of sediment and z the elevation at distance x froln the divide, and t

is the elapsed tilne. In lnore concrete tenns, the elevation changes are determined from the

expreSSIon:

az _ Si-I-Si

at ax (7)

where Si is the sediment flux out of cell i, and Si-l the flux out of cell i-I and, hence, the tlux into

cell i. Once the rate of elevation change ozlar due to downslope sedirnent transport for a cell is

calculated, the change in elevation is determined by multiplying by the tilne step dt. Combining

this rate of elevation change with that due to solution, the explicit expression for the elevation of

a cel1 can be written:

az
~ -..,. +(-r)dt
""t+df ---""f -at s (8)

where :z.t is the elevation of a cell at time t.

Additional assumptions

Due to the inherent linlitations of conlputer models, a few somewhat artificial

assumptions must be tnade. At the divide, the calculated downslope sediment flux is doubled,

because it is assumed that an equal anlount of sediment leaves in each direction (the rate of

10

solution is not doubled). At the final basal cell, provision is made for the user to choose whether

all sediment transported in is to be removed or whether a fixed percentage of entering material is

to be retained. In the interest of numerical stability, negative elevations are not allowed; if a

cell's calculated elevation comes out negative, it is set to O. Generally, solution is the only

process which could cause negative elevations, were this requirement not imposed.

Implementation

The computer model was written entirely in the Microsoft Visual Basic 5 programming

language. Although Visual Basic (VB) is not commonly used to write numerical modeling code,

it was chosen for several reasons. First, since we initially did not know the specifics of how we

wished to model to operate, VB seemed like a good choice because of its suitability for rapid

application prototyping. Second, it was important for the program to have an intuitive graphical

user interface that could be easily understood by other users, and VB excells at interface design.

Third, it was important that others be able to easily understand and modify the program code.

The forgiving syntax and widespread use of VB allow the language to be easily learned. VB

does have the disadvantages of being proprietary and somewhat slow, but these are not real

problems, as the software is relatively cheap and even the longest model runs should be

completed in a few minutes on an Intel 486-class machine.

The program code was written keeping ease of future modification in mind. The

erosional processes (with the exception of uniform vertical solution, which is discussed in the

program documentation) are implemented in a modular fashion, with each process being

implemented in separate function that returns the downslope sediment flux due to the action of

11

that process. Thus one can easily modify how a process is modeled or add new a one to the

program without having to make changes spread throughout the program code.

A freeware public distribution of the n10deling program, titled Richard's n-store Hillslope

Dynamics Model (HDS for short), has been prepared. The model will be distributed with full

source code, and is licensed under the terms of the GNU General Public License, version 2,

which allows redistribution and/or modification of the progran1 as long as the modified versions

remain free and also licensed under the terms of the GNU General Public License. Efforts have

been made to insure that the documentation and program commenting are adequate enough to

allow users to easily modify and extend the program code. The documentation for the program is

provided in Appendix A, and the full source code of the model is in Appendix B.

RESIJLTS AND DISCUSSION

The hillslope evolution model was applied to one profile from each of the Cane Creek

cutoff meanders (Figure 4). For each of these profiles, the most appropriate profile from the

actively undercut hillslopes (Figure 5) was used as an initial profile. The appropriateness of a

profile was determined on the basis of how well its stratigraphy and relief matches that of the

profile on an abandoned meander that we wished to "evolve" the initial profile into. For

example, for the oldest cutoff, where the meander floor had not yet cut through the base of the

Fort Payne Formation, the profile U4 was used as the initial profile.

The rationale for the selected process rates was as follows. For the vertical solution rate

(r~), a value of 50 J..lm yr-1 was used. This is a high rate for silicate rocks, but a low rate for

carbonate rocks. As the Fort Payne Formation, the chief formation with which we are concerned,

12

consists of more than half insolubles (mostly silica), but does contain some limestone beds, its

solution rate is probably intermediate between the two types of rocks.

The landslide threshold angle (g ¢) was assumed to be 23°, based on the angles of internal

friction estimated fronl the particle-size distributions (Table 1) using the triangular diagram of

Kirkby (1973, Figure 5). We chose to estimate rather than experimentally measure the angles of

internal friction because incorporation of the large clasts present in the slope debris is difficult

using a shear box of typical size. Furthermore, it seems that slope angles in the study area are

only partly controlled by the mechanics of the surficial mantle, as the correlation between angle

of internal friction and slope angle is poor. For example, the angles of the straight segments in

profile A3 are 36° and 38° , and are 34° and 35° for A2. The 34° - 38° range is typical of talus

slopes; however, as shown in Table 1, there seems to be too much silt and clay in the debris for it

to behave as talus. Talus can stand at an angle close to its angle of internal friction (<p) because

its interstices are too large to allow significant pore pressure to develop even during intense

rainfalls. However, the amount of fine material in the debris mantles of A3 and A2 should be

sufficient to produce complete saturation, which would produce a maximum slope angle 8 such

that, approximately, tan 8 = Y2 tan <p (Skempton, 1964), which, for the <p values shown in Table

1, would yield e equal to 21 °_25°. Yet, the observed maximum angles are much closer to the <p

values than they are to these angles. This finding is difficult to explain, except by assuming that

slope angle is at least partly controlled by factors other than the mechanics of the surficial mantle.

One possible explanation is that bedrock ledges act to "dam" debris and thereby increase the

slope angle from what it would be if the bedrock lacked ledges.

The talus angle (gt) was assumed to be 35°, a typical value. No data were available to

13

estimate the rate of free degradation above threshold (a). Given that the Fort Payne is a highly

resistant unit, however, it was assumed to have a rate comparable to sandstone, so that the value

of 1 mm yr- l used by Kirkby (1984, 1987) for sandstone was used. Creep rate (K) generally

ranges from 10 to 100 cm2 yr- l
, with the former typical of normal soil creep and the latter of

periglacial solifluction. Therefore, the former was used for time intervals during the Holocene

and the latter for intervals of glacial climates. That periglacial conditions existed during glacial

times is strongly suggested by the Anderson Pond pollen record (Delcourt, 1979), located only 11

km ESE of the Cane Creek sites at a similar elevation.

The distance at which wash becomes greater than creep (u) also varies with climate.

Generally, the main factor is the effect of vegetation cover, with distances being greater where

vegetation cover is greater (i.e., humid climate) and lesser where the cover is lesser (i.e., dry

climate). However, in the present setting the main climatic variation over time is temperature.

Under periglacial conditions, because of the great increase in creep rate, we assumed that the

effect of wash would be somewhat less. Therefore, we used 200 m for glacial climates and 50 m

for interglacial climates. In the humid climate of Tennessee, it might be expected that u would be

far longer than slope length. However, as shown by the presence of gullies on some of the slopes

(Figure 3), the effect of wash has been significant. The above process rates were also ones that

resulted in relatively good fits of the model profiles to the actual profiles.

The best results obtained for the three sites are shown in Figure 6. For the climate

sensitive parameters, a decision about what rates to use was made as follows. Preliminary runs

showed the approximate model ages of the three profiles. Creep and wash rates were then

assigned according to how much of the profile's age was during glacial times and how much

14

during post-glacial times, with the boundary set at 15 kyr. Because the model age of the youngest

hillslope (29.6 kyr; Figure 6A) fell about equally in each interval, values of K (50 cm2 y(l) and u

(100 m), intermediate between those of glacial and postglacial conditions, were used. For the

intermediate hillslope (98.4 kyr; Figure 6B) and the oldest hillslope (330.2 kyr; Figure 6C), since

the ages fell mainly in the Pleistocene, glacial-age values were used (K = 100 cm2 yr- I and u =

200 m). (For the oldest hillslope, this usage ignores the presence of interglacials during the time

span. However, the 100 cm2 yr-1 value produced a substantially better fit than did lower K values,

and so was used despite this problem).

As Figure 6 shows, the best fit was obtained for the oldest profile (Figure 6C), and the fit

for the youngest profile (Figure 6A) is also good. The fit for the intermediate profile (Figure 6B)

is poorer than desired, but was the best that could be done using reasonable process rates.

To determine the colluvium thickness on the lower ends of the hillslopes associated with

the abandoned meanders, seismic lines were run along slope on four profiles. However, signals

proved to be severely attenuated in this loose material, and only minimum thicknesses could be

obtained. These thicknesses were >7.9 and >9.4 m at A3, >8.8 mat A2, and >9.7 m at AI. These

values establish the presence of thick colluvium on lower slopes, demonstrating that they are at

least substantially depositional. The talus thicknesses indicated by seismic refraction are

compatible with the modeling results for the younger two profiles, but not for the oldest, where

most of the talus deposited earlier in the slope evolution is subsequently removed by erosion. A

possible explanation for this discrepancy is that seismic velocity interpreted as talus here is, in

fact, residuum.

The sensitivity of model profile age to changes in rate values was determined by

15

repeatedly running the model using 4-6 different values for each parameter while holding the

values of other parameters constant. The effect on both fit and model age was examined. This

showed that, for the younger two profiles, by far the most important factor was the rate of free

degradation a. For example, by increasing the rate from 1 to 5 mm yr- l
, the age of the youngest

profile decreased from 29.6 kyr to about 6 kyr, and that of the intermediate profile decreased

from 98.4 to about 30 kyr. Variation in the other rates had much less effect, however, with the

age of the youngest profile showing changes of no more than about 15% and that of the

intermediate profile no more than about 50%.

In contrast, for the oldest profile, since most erosion is accomplished by transport-limited

rather than weathering-limited processes, the effect of variation in the free-degradation rate is

relatively small. For example, increasing a from 1 to 5 mm yr- l decreases age of the best-fit

profile from 330.2 kyr to about 276 kyr, and decreasing it to as small as 10-6 mm yr- l increases

the age only to about 366 kyr. On the other hand, variation in some of the other parameters has

somewhat greater effects than for the younger profiles. For example, decreasing creep rate K

from 100 to 10 cm2 yr-1 increases age about 60%, and decreasing wash distance u from 200 m to

50 m more than halves the age. The particular values chosen provide either the best fit or close to

the best fit.

A model parameter of interest is the amount of material retained in the most-downslope

cell. Presuming that the hillslope declines passively after abandonment of the meander, a large

amount of hillslope debris would be expected to pile up at the base of the slope. In fact, however,

retaining even several percent of the flux into the basal cell produces a profile that, because of

the prominence of its footslope, matches the actual profile much more poorly than when the cell

16

is set to retain none of the flux into it. (Retaining large percentages generally leads to model

instability.) Therefore, all of the simulations reported here retained no sediment in the basal cell.

A partial explanation of this finding may involve the process of meander abandonment. Rather

than being a simple on-off switch, abandonment probably is a gradual process, with a progressive

reduction in the frequency and size of flows through the meander loop while the cut-off course is

being established. Even though the decreasing flows may not be sufficient to undermine the

hillslope, they may still be capable of removing part of the debris shed by the declining slope.

(Some evidence for this interpretation may be provided by the topographic profiles across the

floors of cutoff valley reaches [Figure 7]. These indicate valley floors that are narrower than

those of active valleys, suggesting that they may have been adjusted, before they were completely

abandoned, to smaller flows than those typical of the active valley reaches.) In addition, basal

debris could be removed by solution, and, even after total cessation of stream flow, fine material

could also be removed from the base of the slope by wash.

As another check on the results of the modeling, the second profile at each of the three

Cane Creek cutoffs was modeled using the same process rates and initial profiles as used for the

first profile. Although fits were not as good, the ages of the best-fit model profiles were similar.

For A3c, the age was 25.8 kyr (vs. 29.2 kyr for A3b); for A2b the age was 105.5 kyr (vs. 98.4

kyr); and for Alc the age was 385.9 kyr (vs. 330.2 kyr for Alb). This finding shows that the

results are not significantly affected by small differences between individual profiles.

Assuming a uniform rate of downcutting for Cane Creek, age of the cutoffs (as given by

age of the hillslope profiles) should be proportional to height AML. A plot of the former against

the latter (Figure 8) thus allows a test of internal consistency of simulated ages, although of

17

course this tells us nothing about the accuracy of ages. As Figure 8 shows, at least on logarithmic

scales, the relationship is reasonably good.

CONCLUSIONS

The application of a hillslope evolution model allows several insights that otherwise

would not have been possible. One finding is that high creep rates, closer to those of a periglacial

than a temperate climate, are required to produce the upper convexities of the slope profiles

developed on the abandoned meander walls. This suggests that hillslopes in the region have been

strongly influenced by Pleistocene climates. Another result is the ability to compare the incision

rate of 60 mm kyr- 1 determined by Sasowsky et al. (1995) for the East Fork of the Obey River

with those determined by slope modeling. If the slope profile associated with the 43-m high

meander, for example, has an age of 330.2 kyr, a downcutting rate of 130 mm kyr-1 subsequent to

abandonment is implied. Of course, this age is very approximate, but it would have to be

increased to 716.7 kyr to yield the Obey River incision rate of 60 mm kyr- 1
• Such an increase

would require unreasonably low values of the transport-limited process rates. Hence, it appears

probable that the incision rate of Cane Creek has been somewhat greater than that of the Obey

River, although exactly how much faster cannot be specified with confidence.

A third insight concerns the process rates that need to be determined in the field to allow

more precise modeling to be done. For young hillslopes, the free degradation rate is by far the

most important to determine; creep, wash, and solution rates have much less effect on slope

evolution. On the other hand, for old hillslopes, the free degradation rate is not very important,

18

but the rates of creep, wash, and solution become critical. Determination of modern rates,

however, is not sufficient, as the effect of Pleistocene periglacial climate on hillslopes appears to

be strong. Pleistocene rates might be approximated by determining volumes of late-glacial

hillslope deposits between dated deposits.

A fourth insight concerns the amount of rock debris on the foot of the slope. Both the

model slope and the actual slope have far less talus than would be expected from simple passive

decline after abandonment. Possible explanations for this finding are removal of debris during a

gradual process of abandonment, removal of debris in solution, and removal of fine debris by

wash to points distant from the base of the slope.

19

REFERENCES CITED

De1court, H. R., 1979, Late-Quaternary vegetation history of the eastern Highland Rim and

adjacent Cumberland Plateau of Tennessee: Ecological Monographs, v. 49, p. 255-280.

Kirkby, M. J., 1971, Hillslope process-response models based on the continuity equation, in

Brunsden, D. (ed.), Slopes: fom1 and process: London, Institute of British Geographers,

Special Publication 3, p. 15-30.

Kirkby, M. J., 1973, Landslides and weathering rates: Geologia Applicata e Idrogeologica, Bari,

v. 8, p. 171-183.

Kirkby, M. J., 1984, Modelling cliff development in South Wales: Savigear reviewed: Zeitschrift

fur Geomorphologie, v. 28, p. 405-426.

Kirkby, M. J., 1987, General models of long-term slope evolution through mass movement, in

Anderson, M. G., and Richards, K. S., Slope stability: London, Wiley & Sons Ltd, p.

359-379.

Kirkby, M. J., 1992, An erosion-limited hillslope erosion model, in Schmidt, K.-H., and de

Ploey, J., eds., Functional geomorphology: landform analysis and models: Catena

Supplement no. 23, p. 157-187.

Kirkby, M. J., Naden, P.S., Burt, T. P., and Butcher, D. P., 1992, Computer simulation in

physical geography: Chichester, Wiley: p. 85-90.

Mills, H. H., and Mills, R. T., 1997, Evolution of undercut slopes on abandoned incised

meanders in the Eastern Highland Rim of Tennessee, USA (under review).

Reesman, A. L., and Godfrey, A. E., 1981, Development of the Central Basin of Tennessee by

chemical denudation: Zeitschrift fur Geomorphologie, v. 25, p. 437-456.

20

Sasowsky, 1. D., White, W. B., Schmidt, V. A., 1995, Determination of stream-incision rate in

the Appalachian plateaus by using cave-sediment magnetostratigraphy: Geology, v. 23,

p.415-418.

Skempton, A. W., 1964, The long-term stability of clay slopes: Geotechnique, v. 2, p. 75-102.

Wilson, C. W., Jr., and Marcher, M. V., 1968, Geologic map and mineral resources summary of

the Burgess Falls quadrangle, Tennessee: State of Tennessee Division of Geology, GM

326-SE and MRS 326-SE.

21

Table 1. Particle-size analysis and estimated angle of internal friction

Slope profile

Alb

A2a

A2b

A3b

A3c

% gravel

50

56

62

67

53

% sand

12

17

9

10

10

% silt

31

26

23

18

31

% clay

7

1

6

5

6

Estimated <P

The <p values were estimated from the triangular diagram in Kirkby (1973, his Figure 5) relating

<p to particle-size distribution.

22

FIGURE CAPTIONS

Figure 1. Location map of study area. Numbers 1-12 show locations of studied abandoned

meanders; A shows location of stream valley with incision rate determined by Sasowsky et ai.

(1995). Quadrangle and stream names are as follows: 1-3, Burgess Falls quadrangle, Cane Creek;

4, Burgess Falls quadrangle, Falling Water River; 5-6, Dodson Branch quadrangle, Blackburn

Fork; 7-9, Windle quadrangle, Roaring River; 10, Riverton quadrangle, Obey River East Fork;

11-12, Moodyville quadrangle, Wolf River.

Figure 2. Oblique aerial photograph of large cutoff meander on Eastern Highland Rim (location 4

on Figure 1). Width of meander floor is about 100 m.

Figure 3. Map showing area of concentrated study along Cane Creek. U indicates profiles on

actively undercut slopes and A indicates profiles on undercut slopes of abandoned meanders.

Meander A 1 is 43 m above the modem stream level, meander A2 is 14 nl above, and meander

A3 is 2 m above. Grid squares are 1-km on a side. Eastings and northings are for UTM Zone 16.

Figure 4. Profiles on abandoned undercut slopes at Cane Creek, showing geological contacts.

Locations of profiles are shown on Figure 3.

Figure 5. Profiles on actively undercut slopes at Cane Creek, showing geological contacts.

Locations of profiles are shown on Figure 3.

23

Figure 6. Comparison of assumed original profile, n10dem profile, and best-fit profile produced

by modeling, for the three abandoned meanders along Cane Creek. For this modeling, all profiles

were adjusted to the same horizontal length of 150 m. As all surveyed profiles were less than 150

m, this was done by extending the convex slope at the top of the profile. The following rates

were the same for all three of the shown simulations: solution rate (rJ = 50 Il yr- I
, landslide

threshold angle (gfj) 23°, talus angle (gt) = 35°, and rate of free degradation above threshold (a)

1 mm y(l. A. Lowest cutoff meander (A3). Creep/solifluction rate (K) = 50 cm2 yr- I
, distance

at which wash becomes greater than creep (u) = 100 m. The mean absolute difference between

the best-fit model profile and the actual profile is 1.66 m and the model age is 29.6 kyr. B.

Intermediate cutoff meander (A2), Creep/solifluction rate (K) = 100 cm2 y(l, distance at which

wash becomes greater than creep (u) = 200 m. The mean absolute difference between the best-fit

model profile and the actual profile is 3.76 m and the model age is 98.4 kyr. (None of the

actively-undercut profiles were suitable to use as an initial profile here, because immediately

above the intermediate cutoff the Rim surface is unusually low (about 10 m lower than

elsewhere), so that the actively-undercut profiles are higher than the original profile actually was.

To produce a more reasonable initial profile, the upper part of U1 was lowered about 10m.) C.

Highest cutoff meander (A 1). Creep/solifluction rate (K) = 100 cm2 yr- I
, distance at which wash

becomes greater than creep (u) = 200 m. The mean absolute difference between the best-fit

model profile and the actual profile is 0.66 m and the model age is 330.2 kyr.

Figure 7. Profiles across floors of abandoned meanders. Note vertical exaggeration is greater than

on Figures 4 and 5.

24

Figure 8. Plot of hillslope ages estimated by modeling vs. relative age of hillslopes indicated by

height of associated meander floor above modern stream.

25

Cumbertand
. Plateau

85.000 W + 36.00
o
N

o 10 20 30 Kilometers
!

---I .

" tj.

/4.
I

100 -E A3c - 80 Q.) Mfp = Fort Payne Fm
U Dc = Chattanooga Shale c

A2b en 60
(J) .-u 40 v.E. = 1.0

en
U

! 20 J s....
Q.)

> 0 I
I

0 50 100 150 200 250
Horizontal distance (m)

100
......--
E

80 --- V,E. = 1.0
<J.)
0
c 60 m

........ .".'
.",..'

(J) U4",""';' '- 40 u ",'

'" .",'

'" m " 0 20 ,,'
.r/Mfp

I.- \
ill)
> 0

0 50

,"" ."..';

100 150

Horizontal distance (m)

U3
us

Mw = Warsaw Fm

Mfp = Fort Payne Fm

Dc = Chattanooga Shale

Olcy = Leipers and

Catheys Fms

200 250

,,......-- --, . L-
,-tt::, /

)

100 ~I:-----------------~

E ~~:.::.:::::::::.~'
-- 80 ~~
~ .~

g 60 I \.

~ 40~ A
()

~ 201

V.E. = 1.0

o -+----:-1 ---;-I--"'"'!"I----:'!--""'"'1I:-l-.....;.;:::a~1

o 25 50 75 100 125 150

100~--------------------------~

- --Initial profile

~ SOl
----- Modern profHe
............... Best-fit model

profile c j.............. A2a
ro 60 -------.-:--- /
"t) :~",

B ····· " -0 40 ,
ro•. ~.~~, :--"U1 (modified)
o ~~

....... 20 ,~ .. a; ,
> '

.:.:~::::::
0-+-1 ----:-I----;-I----:-----~I---""'"'1I~~~1

o 25 50 75 100 125 150

_ 80~---------------------~
E

i 60~
~ 40 ~ C

-,--........ :... __ / Ai b
~ 20 l --.... r::-=-:::.":':

....... "':"::"":':=-::::::-::::-:"''''
~ ~-

~Ol 1 1--:---
o 25 50 75 100 125

Horizontal distance (m)

I

150

-.....
E 7 - 6 (l)
t) 5 c
ro 4
en .- 3 u
ro 2
t)

1
I-

(l) 0 >
o

<l-- Valley wall

\ ~ Lowest cutoff

\
v.e. = 2.0

Meander core --[:::>

/
/

/
/ .'

..... \ / /
•••• \ Intermediate cutoff / ••.•••••

••••• \ Highest • .,1 ••••••••

~ ••.•-:. cutoff - - .-:;. .. f"I'"
."".. IfIIIIII""" ••••••• - -::-.. -::: .. -:":' ----.-:':.::: - ----

10 20 30 40 50 60
Horizontal distance (m)

......-
(tj

6 300
~
o .-
::::s
C,.)

s-
O)

-g 100
co
0)

E
15 50
0)
0')
co

'"0
0) .-
co
E

:.;::;
(f)

w

R2= 0.976

2 5 10 50
Height of meander floor above modern stream level (m)

APPENDIX A:

HILLSLOPE DYNAMICS SIMULATOR

DOCUMENTATION

HDS 1.1 Documentation file:IIC:/vb/nstore I_I/docslindex.htmI

1 of 1

Richard's n-store Hillslope Dynamics Simulator
(HDS) version 1.1 documentation

Contents

Richard's n-store Hillslope Dynamics Simulator (HDS for short) simulates the evolution of hillslope
profiles through time using a simple linear-store model based on the mass balance equation. It utilizes a

fully graphical user interface, and allows real-time visualization of evolving hillslopes.

Below are links to documentation for this release.

LICENSING INFORMATION
Read this before using the program.

INTRODUCTION
A very brief overview of what HDS does.

THE HILLS LOPE MODEL
Specifics of the model and its implementation.

USING THE PROGRAM
The basics.
Explaining the user interface.
Understanding and writing the program input files.
Technical details of using the program.

APPENDICES
A: Determining of best fit profiles.
B: Using the program in the Visual Basic environment.
C: Specifics of altering the model.

REFERENCES

4/30/992:52 PM

------------------ - ------- -

HDS docs--Licensing Information file:IIC:lvb/nstorel_l/docsllicensing_information.htm

1 of 1

Richard's n-store Hillslope Dynamics Simulator (HDS), version 1.1.
Copyright (C) 1999 Richard Tran Mills.

This progranl is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANT ABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

4/30/992:53 PM

1 of 6

file:llC:/vb/nstore l_l/docs/COPYING

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
us it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modi it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1)
(2) offer you this license which gives you
distribute and/or modi the software.

copyright the software, and
permission to copy,

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

O. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"

4/30/992:53 PM

20f6

file://C:/vb/nstore 1_1 /docs/COPYING

means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as lIyoU".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program) .
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. {Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.}

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of

4/30/99 2:53 PM

30f6

fil e:l/C :/v b/nstore 1_11 docs/CO PYIN G

a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a} Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b} Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c} Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modi the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

4/30/99 2:53 PM

4of6

file:IIC:/vb/nstore l_l/docs/COPYING

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not speci a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

4/30/992:53 PM

50f6

file:IIC:/vb/nstore l_l/docs/COPYING

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type 'show w' .
This is free software, and you are welcome to redistribute it
under certain conditions; type 'show c' for details.

The hypothetical commands 'show w' and 'show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than 'show w' and 'show c' i they could even be
mouse-clicks or menu items--whatever suits your program.

4/30/992:53 PM

60f6

file:llC:/vb/nstore I_I Idocs/COPYING

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer ll for the program, if
necessary. Here is a samplei alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
'Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

4/30/992:53 PM

HDS docs--Introduction file:IIC :/vb/nstore l_lIdocs/introduction. html

1 of 1

Introduction

Richard's n-store Hillslope Dynamics Model (HDS) is a fully 32-bit, Windows95INT application for
simulating the evolution of hillslope profiles over time. It implements a relatively simple linear-store
model of hillslope evolution based on the mass-balance, or continuity, equation, which it "solves" by
approximation with finite differences. The program has a fully graphical user interface and allows
real-time visualization of the evolving hillslope, as well as output of numerical data to ASCII files. It
models the effects of landslides, wash, and creep/solifluction/rainsplash using empirical process laws.

HDS is written entirely in Microsoft Visual Basic 5 (most of the code should be backwards
compatible). I made a conscious effort to make the code as well-commented and readable as possible, so
that it can be easily altered by others. All of the source-code is freely available. The program executable
can be run without a copy of the Visual Basic environment, but the program can be much more useful if it
is run from within the Visual Basic environment (see Appendix B).

What it does:

HDS requires two ASCII input files: one specifying the process rates that will be used in a model run,
and one describing the initial geometry of the hillslope profile to be "evolved." A third ASCII profile,
specifying the geometry of a "target" hillslope profile that we hope to match by evolving the initial profile,
is optionaL The process rates file can be written in HDS's proprietary .par format, or .ev files from M. 1.
Kirkby's (Kirbyet al., 1992) SLOPEN program can be imported. Initial and target hillslope profile's can
be read from two column text files specifying (x,y) coordinates of points along the profile, or they can be
imported from the .ev files using Kirkby's percent of slope length vs. percent of slope height system.

The progranl breaks the hillslope into a series of equally spaced cells, with the storage in each cell
representing the elevation at a point on the hillslope. For each iteration of the model, the sediment fluxes
into and out of each cell are calculated from empirical process laws using the various rates specified by the
user, and the elevation of each cell is adjusted accordingly. The model is moved forward in time using a
fixed time step that is specified by the user. If the user has chosen to use a target profile, a comparison of
the evolving hillslope profile and the target one is made at each iteration, in order to determine the best fit.

The user is given several different output options. The evolving hillslope profile can be redrawn
continuously, or successive profiles can be overlaid at user-specified intervals. The user can choose to
write the evolved profile to disk at given intervals, and the current state of the evolving hillslope can be
dumped to disk at any time by clicking the appropriate button. If a target slope profile has been specified,
when a model run is terminated, the user is given the option of saving the best fit profiles to disk.

4/30/99 2:53 PM

HDS docs--The Hillslope Model file:IIC:/vb/nstorel_l/docs/the_hillslope_model.htm

1 of 4

The Hillslope Model

The model implemented in this program is based largely on work by M. J. Kirkby (1971, 1984, 1987,
1992, and unpub. data, 1991; Kirkby et ai., 1992) of Leeds University. The essentials of the model are as
follows. The hillslope profile is divided into a series of equally spaced cells, with the storage in each cell
representing the elevation at a point on the hillslope. Between each time step, sediment fluxes into and out
of each cell are calculated from empirical process laws, and from these the accompanying changes in the
elevation of each cell are determined. Climate and lithology are held constant, so process rates depend
largely upon the slope topography; i.e., distance from the divide and downslope gradient. A fixed time
step of small enough size to prevent numerical instabilities is used.

"Creep" includes a group of processes which depend on gradient but not on collecting area, and have
no lower threshold. In the present setting it consists mainly of soil creep and solifluction. Creep is
assumed to carry sediment at a rate directly proportional to the downslope gradient. "Wash" refers to
overland flow that able to entrain and carry soil particles on the surface are grouped together as "wash."
Unlike creep, wash depends on collecting area (i.e., distance from the divide) as well as on gradient. The
sediment flux S out of a cell from creep and wash processes combined is given by (Kirkby et aI., 1992):

2 S K[l +(x/u)]g

where x is the distance from the divide, g is the downslope gradient, K is a constant giving the rate of

creep, and u is the distance in meters beyond which the wash term, K(xlu)2g, becomes larger than the creep
term.

Landslides are modeled as a continuous process; hence the sediment flux due to landslides represents
a long-term average, rather than individual slides. The use of these average rates assumes that individual
slides are small enough not to change the slope profile significantly. The flux due to landslides is
controlled by four parameters, which are discussed in more detail in Kirkby (1984, 1987). Two of these
are thresholds: a lower, stable gradient grpbelow which there is no landslide activity, and an upper gradient

g t above which slides will never come to rest. The first depends on the angle of internal friction and

whether pore pressure can develop. Likely values range from 0.14 (go) for clays up to about 0.58 (30°) for

some sandstones. The second may usually be related to the talus angle of repose of 0.7 (3SO). The third is
a rate constant a which governs the rate of free degradation, or unconstrained lowering, D which is given
by

D = o:g(g- gfi).

a may range from 0.001 m yr-1 for sandstones to as much as 10 m yr-1 for clays (Kirkby, 1987). The fourth
parameter ho indicates the average height from which blocks fall from cliffs, which should be roughly their

mid-height. It is in a sense used to represent the momentum of the falling blocks in the expression for the
mean horizontal distance h traveled by the moving material:

The value of ho influences how far a slide can run out across gently sloping ground at the base of a slope,

but generally has only a slight effect on the slope profile elsewhere. Combining the expressions for
detachment rate and travel distance, the sediment flux S. out of cell i due to landslides is gi ven by (Kirkby

t

et ai., 1992)

4/30/99 2:54 PM

HDS docs--The Hillslope Model file:/IC:/vb/nstore l_l/docs/the_hillslope_ffiodel.htffi

2 of 4

_ Ddx+S2_1

S2 - 1 +(llh)dx

where dx is the spacing between cells, and Si - 1 is the slide flux out of cell i - 1.

Solution is modeled in two ways. Kirkby (1991, unpub. data; et aI., 1992) modeled the sediment flux
out of a cell due to solution as being linearly proportional to the distance x from the divide:

S = sol· x

Where sol is the rate constant governing Kirkby-type solution. In Kirkby's 1991 and 1992 programs,
solution does not operate unless the downslope gradient exceeds 0. In HDS, we allow the user to specify
the "solution gradient" which the downslope gradient must exceed in order for Kirkby-type solution to
operate. We do this because often the downslope gradient is incredibly close to 0, but is just ever so
slightly greater, leading to operation of Kirkby-type solution where it should not really be occurring. Also,
in Kirkby's 1991 and 1992 programs, the sediment outflux due to solution is included with the sediment
influx into the cell below; in effect, sediment can build a "talus." This seems unrealistic, so we instead
assume that dissolved material is almost immediately carried out of the system, and therefore is not
included as part of the sediment influx into the lower neighboring cell.

Experimentation with the model using Kirkby-type solution alone often yielded unsatisfactory
results. Certainly, the rate of solution should somehow increase with distance from the divide, but the
linear relationship seems to give poor results. Additionally, at least some sort of solution should occur
around the divide as well. Hence, we also modeled solution as a rate of uniform vertical lowering; with
each iteration of the model, each cell is lowered by an amount determined by

where dz is the change in elevation of the cell, rs is the rate of solution, and dt is the time step used. Again,

this type of solution does not contribute to the flux of sediment being transported to cells downslope;
rather, it is assumed that any material freed by solution immediately leaves the system.

For each iteration of the model, sediment fluxes out of each cell (and hence into the adjacent cell
downslope) due to creep, landslides, and (optionally) Kirkby-type solution are calculated. These are then
grouped together into a total sediment outflux for each cell, and then converted into the resultant changes
in elevation. The basis for this is the mass-balance, or continuity equation, which may be written as

az as
at ax

where S is the downslope flux of sediment and z the elevation at distance x from the divide, and t is the
elapsed time. In more concrete terms, the elevation changes are determined from the expression:

dependS'. is the sediment flux out of cell i, and S. 1 the flux out of cell i-I and, hence, the flux into cell i
l l-

(actually, if one is using Kirkby-type solution, the flux due to it must be subtracted fromSi_I). Once the

rate of elevation change azlat due to downslope sediment transport for a cell is calculated, the change in
elevation is determined by multiplying by the time step dt. Combining this rate of elevation change with

4/30/992:54 PM

HDS docs--The Hillslope Model file:I/C :/v bin store l_l/docs/the_hillslope_model.htm

3 of 4

that due to solution, the explicit expression for the elevation of a cell can be written:

aZ
Zr+dt= Zt +(-- r)dt at

where Zt is the elevation of a cell at time t.

What's really going on -- a "pseudocode" explanation of the program

For those of you who would like some more concrete details of the program's operation, here's an
something close to a pseudocode explanation of what the program does (Kirkby-type solution is left out of
this explanation, but it's easy to figure out how it would fit in):

GUTS OF THE HILLSLOPE MODEL

For each iteration, the computer calculates sediment fluxes out of each cell, beginning with the uppermost
cell and ending with the lowest one. Excluding the special cases used at the top and bottom of each cell,
for cell i (see the paper for explanations of the variables):

I) The sediment flux due to creep and wash is calculated. This flux is independent of the flux upslope. The
expression used is:

2 s= K[l +(xfu)]g

2) The sediment flux due to landslides is calculated. This flux is dependent on the landslide flux upslope.
The expression used is:

_ Ddx+S2_1

S2 - 1 +(lfh)dx

where S· is the flux due to landslides out of cell i, and S. 1 is the flux due to landslides out of cell i-I, and
l l-

hence into cell i.

Once the fluxes have been calculated for each cell, a total sediment outflux for each cell is calculated by
simply adding the fluxes due to creep/wash and landslides together. Now changes in elevation due to
these fluxes can be determined by the continuity equation. The rate of change in elevation is given by the
expression:

Note that in the above equation, the S's are total sediment outfluxes, i.e. sums of the fluxes due to
creep/wash and landslides. To get from Bz/Bt (due to processes other than solution) to actual changes in
elevation with a timestep, one just multiplies by the timstep dt. That is, the change in elevation
dz I t' (due only to processes other than solution) with timestep dt is non-so u wn

4/30/99 2:54 PM

HDS docs--The Hillslope Model file:IIC :/vb/nstore l_lIdocs/the _hillsl ope _model.htm

40f4

az
dz W'IHt,lJ1ti(11l. = dt at

And since the elevation change dZso[ution due to solution is given by

We find that the total change in elevation of a cell must be given by the sums of these, viz.

Which, substituting, is written

az
dz =(--r)dt at '

And since the elevation Zt + dt of a cell at time t + dt must be equal to the cell's elevation at time t plus the

change in elevation that happens between the two times, we may write the cell's elevation

az
Zt+dt = Zt +(at -r)dt

which is in fact the explicit expression for the elevation of a cell from the preceding section. Once the new
elevation of each cell has been determined from the this equation, a new iteration begins.

4/30/99 2:54 PM

HDS docs--U sing the Program file :lIe :/vb/nstore l_lIdocs/using_the_program.htm

1 of 11

USil1g the Program

The basics (a very abbreviated overview)

Hopefully, the user interface is intuitive enough to allow users to figure things out, but, just in case, I'll
specify the basic steps in performing a model run. (Try running with some of the example files included
with the program, if you'd like):

1) Creating a file that contains the process rates that you want to use (either a .par or a .ev file).
2) Creating a file that specifies the initial geometry of the hillslope profile you wish to evolve.
3) (Optional) Creating a file that specifies the geometry of the target hillslope profile you want to try to

match.
4) Specifying the input filenames in the text boxes in the Main window.
5) Specifying the program options you desire in the Options window.
6) Starting the model run by pressing the "Run Model" button.

Now, provided that all of the filenames you specified exist the model should start running. When it' ~
running you can do several things by clicking the buttons in the "Model Running ... " window that pops up.

• You can show and hide various program windows by clicking the appropriate checkboxes on the left
side of the "Model Running" window.

• You can pause the model by clicking the "Pause model" button in the "Model Running ... " window.
You are then presented with the option to write a snapshot of the current profile to disk.

• You can pause the model and display the best fit profiles by clicking the "Pause and display best fit
profiles" button. The profile shown in blue is the best fit as determined by absolute differences,
while the one in green is that determined by squared differences. (More on how the best fits are
determined later).

• You can terminate the model run by clicking the IITerminate model run" button. If you are using a
target profile for comparison, you are given the option of saving the best fit profiles to disk at this
time.

While the model is running, it's also possible to change the timestep, process rates, etc., by changing the
values in the textboxes in the "Progranl Options" and "Model Parameters" window. However, if you really
need to change these while the model is running, it's best to do so within the Visual Basic environment
(see Appendix B for details).

If you'd like to work with the graphical output displayed in the "Hillslope profile view:" window, it's
possible to write it's current state to the Windows clipboard by clicking the mouse on it and pressing
[Alt]-[Print Screen]. (This works for all windows applications.) More on this later.

Below you'll find a much more detailed explanation of how to use the program:

The details

• Part I: A window by window explanation of the program interface.
• Part II: An explanation of the file formats used by the program.

4130/992:55 PM

HDS docs--Using the Program file:IIC:/vb/nstore l_lIdocs/using_the_program.htm

2 of 11

Part I: A window by window explanation of the program interface.

The main program window

The main program window is the first thing that is displayed when the program initially loads and
when a model run is completed. It is from this window that you specify which input files to use, start a
model run, and exit the program.

Specifying the input files:

There are three text boxes present in the window--these are where the names of the input files to be used
are specified.

• The model parameters file -- This is the file that contains the process rates to be used in a model run.
It can be in .ev or .par format. If you are using a .par format file, it is possible to specify the other
input files to be used within the .par file itself (to learn how this works, see the Understanding and
writing the program input files section),

• The initial profile name -- This is the file that specifies the geometry of the initial profile to be
evolved. This can be a .dat or a .ev file.

• The target profile name -- This is the file that specifies the geometry of the hillslope profile with
which you are comparing the initial profile's evolution. This can be a .dat file or a .ev file. The use 01
a target profile is optional.

There are two ways to specify the names of the input files to be used. The first and most direct method is to
select the approriate text box by left-clicking on it, and then typing in the path and name of the file to be
used. However, if you don't know this information (or would simply prefer not to type it), it is easier to use
the second method: click on the appropriate "Browse [whatever]" to bring up Window's standard Open
dialog box.

Choosing the target profile options:

There are two check boxes present above the name of the target profile file.

• The "Use target profile" checkbox -- Put a check in this box if you intend to use a target profile in

4/301992:55 PM

HDS docs--Using the Program file:/ /e :/vb/nstore 1_1 /docs/using_the _program.htm

3 of 11

your model run. If this box is not checked, then you don't have to specify a filename in the "target
profile name" text box.

• The "Display target profile" checkbox -- Put a check in this box if you will be using a target profile
and you want it to be displayed in the window in which the evolving hillslope is shown.

Running the model:

Once you have specified the names of the input files and have selected the options that you wish to use,
press the "Run Model" button to start the run.

Exiting the program:

When you are finished using the program and wish to exit, click the "Exit the program" button or the
Windows close gadget to end the program.

The Program Options window

The Program Options window is where you specify several different program options.

The size of the fixed timestep -- You must specify the size of the time step (in years) that the model
advances by with each interation. Too large a timestep leads to numerical instabilities (further explanation
is provided in the technical details section).

Dynamically vary basal removal -- If this option is enabled, an attempt is made by the progran1 to adjust
the sediment outflux in the last cell by extrapolating from the outfluxes of the cells immediately above.
This is an experimental feature, and, in my judgement, usually gives unsatisfactory results. See the
technical details section for more information.

Fraction leaving base -- If the "Dynamically vary basal removal" option is not selected, then the a fixed
proportion of the sediment entering the basal cell is removed with each iteration. This proportion ranges
between 0 and 1. Setting this proportion anywhere much below one usually yields an unnaturally large
buildup of sediment at the base and leads to numerical instabilities.

Profile display options -- You can choose between two options for displaying the hillslope profile as it
evolves.

• Continuosly redraw profile -- If this option is selected, then the profile will be redrawn after every

4/30/99 2:55 PM

HDS docs--Using the Program file://C:/vb/nstorel_l/docs/using_the_program.htm

4 of 11

iteration. This slows down the model a bit because of the time consumed by freqently redrawing.)
• Overlay successive profiles every x iterations-- If this option is selected, the hillslope profile is

drawn over any previous profiles every x iterations. This is somewhat faster than continuously
redrawing, and allows the user to more easily see exactly how the profile evolves over time.

Writing successive profiles to file every x iterations -- If this option is enabled, the output file specified
will be created, and every x iterations, the profile will be written to this file in (x,y) coordinates. (Be
careful with your disk space when using this option.)

The Model Running Window

This window is what you control the program from when a model run is in progress.

Showing and hiding program windows -- The three checkboxes on the left allow you to show and hide
the options, parameters, and status windows while a model run is in progress. Just click to hide/show a
window.

Pause the model and (optional) take snapshot -- Clicking this button pauses the model and gives you the
option of taking a snapshot of the profile's current state. When you take a "snapshot,1l the current hillslope
profile is dumped to a disk file in (x,y) coordinates along with the number of years elapsed and interations
completed. The program will prompt you for the file name to use.

Pause and display best fit profiles Clicking this button pauses the model and displays the current best
fit profiles in the "Hillslope profile view:" window. The best fit as determined by absolute differences is
drawn in while that determined by differences of squares is drawn in blue. The target profile is also
drawn, in red. (Note that the if the best fit profiles are perfectly coincident, only a green best fit profile will
be drawn. This is because the best-fit profile determined by absolute differences is drawn after the best-fit
profile determined by squared differences.)

Terminate Model Run -- Clicking this button terminates the current model run. When you do so, you are
given the choice of saving the best fit information to a file. If you choose yes, the times of best fits,
iterations and years elapsed, the minimum mean absolute and squared differences, and the best fit profiles
are written to disk (the program will prompt you for the file name). Once the model run is terminated, all
of the program variables are reset and another run can be started from the main window.

The Model status window

This window displays various data about the current state of the model. For an explanation of the
information regarding best fits, see Appendix A.

4/30/992:55 PM

HDS docs--Using the Program file://C:/vb/nstorel_l/docs/using_the_program.htm

5 of 11

The Model Parameters window

Modifying process rates at run-time -- It is possible to modify the process rates by clicking in the
appropriate textbox and typing a new value. (Refer to the technical details section if you plan to do this.)

The Hillslope profile view window

This window is where the program draws all of its graphical output.

4/30/992:55 PM

HDS docs--Using the Program file:IIC:/vb/nstore l_l/docs/using_the_program.htffi

6 of 11

Iii Hilisiope profile view:

Copying the contents of the Hillslope profile view window -- It is possible to copy the contents of the
Hillslope profile view window to the windows clipboard. To do so, click on the window to select it and
press [Alt]-[Print Screen] on your keyboard. (This is a general feature of Windows, not HDS.)

Part II: An explanation of the file fornlats used by the program.

HDS requires at least two files for input: a file specifying the rate constants to use, and a file specifying the
initial hillslope profile to start from. A third file, specifying a target profile, is optional. The program can
use input files in its proprietary format, or it can import the .ev files used in hillslope modeling programs
by Kirkby.

The Parameters file Cpar)

HDS uses .par files to specify the various parameters that the model will use. Here's an example:

Example .par parameter file

Number of cells down length of slope:

50

PROCESS RATES

Creep/Splash (c.lO) or Solifluction (c.lOO) rate [sq.cm /y]

Distance [m] at which wash becomes greater than creep etc
Solution rate (Kirkby-type) [micro m/y] (250 for limestone, 5 50 for

others)

Solution rate (uniform vertical lowering model) [micro m/y]

4130/99 2:55 PM

HDS docs--Using the Program file:IIC:/vb/nstorel_l/docs/using_the_program.htm

7 of 11

solution threshold angle (for Kirkby-type) [degrees]

100 200 a 50 1

Landslide threshold angle [degrees] {8 to 30}

Talus angle [degrees] (above which debris will not stop) {c. 35x}

Rate of free degradation above threshold [mm/y] «2500mm/y)

Landslide travel distance [m]

23 35 5 50
PROGRAM OPTIONS (Optional. "NS" keyword indicates that a parameter is not

specified.)

Use fixed time step of (years)

NS
Dynamically vary basal removal (a or anything else

1

Fraction leaving base (fixed removal only)

1

no, 1 yes)

Continuously redraw profile (0 or anything else = no, 1 = yes)

a
Overlay successive profiles every

200

iterations {ignored if the above is 1}

ASSOCIATED FILES {Optional. "NS" keyword indicates that a parameters is not
specified.)

Initial profile file (.ev or .dat)

NS

Target profile file (.ev or .dat)

NS

How do I go about writing one of these?

Well, it's simpler than it looks--most of the lines in the above example are just placeholders. When the
program loads a .par file, it doesn't use any of those lines of English text--those are only there for your
benefit. The program only pays attention to those lines with numbers for program parameters in them.
However, the lines of English text DO need to be there, because HDS is programmed to skip a specified
number of lines before reading certain sets of parameters. For example, when HDS reads the following
lines from the input file:

PROCESS RATES
Creep/Splash (c.l0) or Solifluction (c.l00) rate [sq.cm Iy]

Distance [m] at which wash becomes greater than creep etc

others)

100

Solution rate (Kirkby-type) [micro m/y] (250 for limestone, 5-50 for

200

Solution rate (uniform vertical lowering model) [micro m/y]

Solution threshold angle (for Kirkby-type) [degrees]

a 50 1

it simply skips 6 lines down and then reads 5 values into the appropriate numeric variables. If you
replaced the first six lines with six lines of nonsense characters, HDS wouldn't care or even know. You
probably wouldn't want to do this, however, because those lines tell you what each of the 5 numbers listed
represent. '100' represents the creep constant, '200' represents the distance at which wash becomes greater
than creep, and so on.

The best way to write a .par file is to modify an existing one. Use "example.par", which is included with

4/30/99 2:55 PM

HDS docs--Using the Program file:llC:/vb/nstore 1_1 Idocs/using_thc_program.htm

8 of II

this program, or one of your own, and simply modify the values of the various parameters. Leave the lines
of English text alone, unless you want to modify the comments that they contain.

What's specified in a .par file

The first thing that's specified is the "number of cells down length of slope." This is the number of discrete
cells that the program will break the hillslope profile into. Using more cells results in greater detail in the
hillslope profile, as well as more more computations for the computer to carry out. 50 has worked well for
the simulations that I have run, but feel free to experiment and see what gives the best results.

After the number of cells to use is specified, the .par file is divided into three sections, two of which are
optional:

The PROCESS RATES section:

This section is required. It's where you specify the values of the process rates and other constants that
appear in the process laws that govern the evolution of the slope profile. For information about these
parameters, refer to the documentation on the hillslope 1110del itself.

The PROGRAM OPTIONS section:

This section is optional, but if it is included, it must immediately follow the "process rates" section.
Here you can specify most of the program options that can be specified in the Program Options window
when the program is running. See the documentation on the Program Options window for information on
the various options. Note that you don't have to specify all of the paramters in this section. Place the
keyword "NS" on any line where you prefer to use the program's default for that option.

The ASSOCIATED FILES section:

This section is also optional. If it is included, it must immediately follow the "program options" section,
unless that section has been omitted, in which case it must immediately follow the "process rates" section.
Here you can specify the initial and target profile files to use with the .par file, and thus avoid having to
specify those files manually in the main program window.

Profile Data files Cdat)

These files are used to describe the geometries of the initial and target hillslope profiles. A .dat file
consists of two columns specifying the (x,y) coordinates of points along the hillslope. The x and y
coordinates on each line are separated by tabs or several spaces. An example file, exanlple.dat, is included
with the program .

. ev files

The .ev format is that used by Kirkby's SLOPEN hillslope modeling program. An .ev file specifies both
hillslope process rates and hillslope geometry. In HDS, however, if an .ev file is specified in one of the
input filename textboxes, only the type of input associated with that textbox is loaded from the .ev file.
For example, if you specify exanlple.ev in the textbox for the model parameters file, the program will load
the parameters specified in example.ev, but it will only load the hillslope geometry contained in
example.ev if that file is specified in the initial profile name textbox as well. Thus it is possible to use
only the model parameters, only the hillslope geometry, or both from a given .ev file.

4/30/992:55 PM

HDS docs--Vsing the Program t1le://C :/vb/nstore I_I /docs/using_the_program.htm

9 of II

Here's an example .ev file (example.ev):

Example .ev file

Slope length (m) I initial height(m) & number of points down length of slope

150 100 50

PROCESS RATES

Creep/Splash (c.l0) or Solifluction (c.l00) rate (sq.cm /y)

Distance (m) at which wash becomes greater than creep etc

Solution rate (fm/y) [250 for limestone, 5-50 for others]

100 200 0 50

Minimum insoluble residue in soil (0.4-0.5)

Scale soil depth for initial deepening (c. 100cm)

Soil depth at which transport rate is halved (1-1000cm)

0.5 100 50

Landslide threshold angle (x) {8x to 30x}

Talus (above which debris will not stop) {c. 35x}

Rate of free degradation above threshold «2500rnrn/y)

23 35 5

Landslide travel distance (m)

50

Basal condition controlled by

Base level elevation (m)

1 o

1 Elev'n: 2 Sediment Removal

Absolute Rate of 1: Lowering or 2: Sedi increment/unit fp width «<2E4fm/y)

Relative rate/m above baselevel 1: Lowering or 2: Sedi Inc «<100fm/y)

Flood Plain width (1-1000m) { relevant in case 2}

o o 10

TECTONICS (non interactive)

Uplift in fm/y «20,OOOfm/y) at divide

Uplift in fm/y at slope base

Proportion p quadratic (+ for doming:

o o o
INITIAL SOIL DEPTHS

At top of s (m)

At base of slope (m)
1 0

INITIAL FORM PROFILE for each slope section

proportion linear)

Percent of slope length (adding to 100% or final point joined to baselevel)

Percent of slope height (above base level)
Proportion p quadratic (+ for conveXi 1-p=prop linear)

17.56 2.13 0

11.58 5.90 0

7.13 5.90 0

11.13 10.15 0

10.60 9.51 0

11.41 15.35 0

8.09 13.04 0

5.45 11.27 0

3.10 7.84 0

0.19 10.22 0

4/30/992:55 PM

HDS does--Using the Program file:/ /C:/vb/n store 1_1 /does/using_the _pro gram,htm

10 of 11

0.42 8.69 0

If L.H. column adds to less than 100%, last point is joined to base level

The first portion of an .ev file specifies various model parameters. Only those parameters that also appear
in . par files are used. Kirkby's SLOPEN program does some extra things that HDS does not, and the
parameters that are specific to SLOPEN are simply ignored by HDS. As with .par files, the lines of text
that identify the various parameters are simply place holders. One modification in the .ev file format is
allowed by the program. If one places a fourth number on the same line as the "Solution rate" number (this
is Kirkby-type), that fourth number will be interpreted as the rate of solution by uniform vertical lowering.
If this number is not given, then the program assumes that no solution by uniform vertical lowering should
occur.

The second portion of an .ev file specifies the initial hillslope geometry according to the following format:
the first column specifies the percentage of the slope's horizontal length between two points, the second
column specifies the percentage of the slope's height between two points, and the last column specifies the
"proportion p quadratic", which is not used by HDS. I find the format of .par files much more intuitive for
specifying initial hillslope geometry.

Some technical details

Selecting a time step

It is important to select a sufficiently small time step. Otherwise, numerical instabilities will appear,
causing the model to exhibit increasingly erratic behavior (showing hillslope evolution that clearly defies
physical law) until numerical overflow will cause the program to crash. An appropriate time step can be
found by a moderate amount of trial and error. For most hillslopes, a time step on the order of tens of
years usually works. The more dramatically the profile changes over time, the smaller the time step needs
to be. For instance, young, steep profiles subject to dramatic change by landslides will require much
smaller time steps than old, gentle profiles that change very gradually over time. Sometimes it is desirable
to change the time step during the course of a model run, keeping it very small while a profile remains
fairly steep, and then increasing it significantly when the profile is gentle and changes only very gradually
over time. If you desire to do this, it is best to do so from within the Visual Basic environment (see
Appendix B for details).

Modifying program parameters at run time

It is possible to modify the various program parameters while the model is running by clicking in the
appropriate textbox and typing a new value. This can cause problems, though, because, at each iteration,
the program grabs the values of the parameters from the text boxes. So, if you delete what is in one of the
parameter text boxes and then the program tries to read the value from it, it will encounter an error and
break. You can avoid such problems by cleverly making sure that there is always a value in the text box
(example: to change time step from 50 to 100 you change it to 5, then 15, then 1, then 100). A much better
way to make changes in the model parameters is to run the program code from within the Visual Basic
development environment, however (see the details in Appendix B).

Note that a time step can only be too small insofar as it may require lots of computer (actual) time for the
model to run.

4/30/992:55 PM

HDS docs--Using the Program file:IIC:/vb/nstore 1_1/docs/using_the_program.htm

11 of 11

Dynamically varying basal removal

This feature was added as more of an experiment than anything else. Like retaining too much sediment at
the bottom of the slope when using fixed removal, dynamically varying the basal removal seems to result
in unnaturally large sediment buildups at the base and numerical instabilities.

The procedure for determining the outflux of sediment from the basal cell when using this option is
simple. The program simply determines a linear rate of increase of sediment outflux with increasing
position downslope by calculating the rate of increase between the cell two positions before the basal cell
and the cell immediately before the basal cell. The program then extrapolates to determine the outflux for
the basal cell.

4/30/99 2:55 PM

HDS docs--Appendices file:IIC :/v bin store L 1/ docs/appendices. htm]

1 of 3

Appendix A: Determination of best fit profiles

The program determines best fit profiles by two slightly different methods. According to the method based
on the minimum mean squared difference, the best-fitting simulated profile is taken to be the one with the
smallest mean squared difference between elevations along the simulated and target profiles. The best fit
profile based on the minimum mean absolute difference is determined in a similar fashion, but absolute
values of differences between elevations along the simulated and target profiles are used, rather than
squared differences.

I do not know which method really yields a closer fit. In the research that I have done, I have ended up
using the absolute differences method, but both methods usually yield very similar results.

Appendix B: Using the program in the Visual Basic environment

Although it is possible to run HDS from the executable files included in the program distribution, the
program is more useful when it is run fronl within the Visual Basic environment. From within the Visual
Basic environment it is possible to pause the program (break) during execution, modify program
parameters, and then continue execution from where the program left off. The ability to do this can be
very valuable. For instance, if one knows that significant climatic change has taken place during a
hillslope's evolution, one can begin a model run with parameters appropriate to earlier conditions, pause
the model run after an appropriate amount of time has passed, modify the process rates to reflect later
climatic conditions, and then resume the model run with those rate changes in place.

There are two good ways to pause a model run. The first is to manually issue a break command while the
program is running, either by pushing the break button on the Visual Basic toolbar, issuing a
CNTRL-BREAK from the keyboard, or by selecting "Break" from the "Run" menu of the Visual Basic
environment. The second way is to instruct Visual Basic to break on a watched expression. To do this,
one selects "Add Watch" from the "Debug" menu. When the "Add Watch" window pops up, one types the
expression that Visual Basic is to watch in the "Expression:" textbox, and then clicks the "Break When
Value Is True" option. This is the best way to pause the model when you want to stop it at a specific point
in model time, such as when you wish to change the process rates after a certain number of years have
passed. The model keeps track of how many years have elapsed in the model run in the global variable
"Time". So, for example, to have the model break execution after 10000 years, the watched expression to
specify is "Time = 10000".

Once the model has been stopped, parameters values may be changed by issuing assignment statements (of
the form variable == new_value) in the "Immediate" code window. To modify most parameters, one
actually needs to modify the contents of the textboxes in the program windows--this is because the
program internally represents some of these values in different units than the user specifies them in. Code
is attached to the parameter textboxes in the program that will convert these to the units that the program
uses internally and then update the internal variables. This conversion and updating occurs anytime that
the values of the textboxes are changed, even if the program is in break mode at the time.

Inconveniently, when the program is in break mode, the values of the textboxes cannot be changed by
clicking on them and then editing their contents. The values must be changed via an assignment statement
issued in the "Immediate" code window. The variable names for the important program parameters are
listed below:

4/30/992:55 PM

HDS docs--Appendices file:IIC : Ivb/n store l_lIdocs/appendices .html

20f3

OptionsForm. Timestep -- time step (in years)
ParametersForm. creep_constant -- the creep/rainsplash/solifluction constant
ParametersForm. u_wash -- distance at which wash becomes greater than creep, etc.
ParametersForm. solution_rate -- solution rate for Kirkby-type solution
ParametersForm. vertical_solution -- solution rate for the uniform vertical lowering model
ParametersForm. solution_threshold -- threshold angle for Kirkby-type solution
ParametersForm. lower_threshold -- landslide threshold angle
ParametersForm. higher_threshold -- talus angle (above which debris will not stop)
ParametersForm. detachment_constant -- rate of free degradation above threshold
ParametersForm. travel_constant --landslide travel distance

To change one of these parameters in the middle of a model run, one puts the program in break mode,
issues an assignment statement in the "Immediate" code window (e.g. OptionsForm. Timestep = 100),

and then continues execution of the program.

Appendix C: Specifics of altering the model

The program code was written keeping ease of future modification in mind. The erosional processes (with
the exception of uniform vertical solution, which will also be discussed) are implemented in a modular
fashion, with each process being implemented in separate function that returns the downslope sediment
flux due to the action of that process. Thus one can easily modify how a process is modeled or add new a
one to the program without having to make changes spread throughout the program code.

All of the code that performs the actual calculations in the model are contained in Modulel . bas. Code
contained in the form objects only implement the user interface. Modulel. bas contains many
functions/subroutines; we will discuss those which one needs to be familiar with in order to alter the
model.

The first procedure that gets executed when the program is started is the Main () procedure, which simply
loads the appropriate forms at startup. The procedure that should really be considered the main part of the
program is the MainLoopO subroutine, which really launches everything else in the model. It is what is
called when the "Run Modell! button is pressed (after a few initializations associated with the user interface
are performed). When MainLoop () begins, it carries out some initializations, and then enters the main
while loop in the program, which terminates when something sets the model_stop flag to True. Each
time through the loop, the necessary graphics are drawn, the model is taken through another iteration, the
goodness of fit is calculated, and, finally, the iteration counter is incremented.

MainLoop () calls the Step () subroutine to perform an actual iteration of the numerical model. The first
thing that the Step () subroutine does is enter a for loop that, for each cell along the hil1s1ope profile, does
the following:

1. Calculates the downslope gradient.
2. Calculates and sums the downslope sediment fluxes due to each erosional process being modeled.
3. Calculates the time derivative of elevation dzldt by subtracting the total flux out of the current cell

from that of the previous cell, and then dividing by the distance between cells dx.

Once that loop has completed, the program enters another for loop. This loop uses the dzldt value
calculated for each cell to determine the elevation change that should occur over the length of the time

4/30/992:55 PM

HDS docs--Appendices file://C:/vb/nstore l_l/docs/appendices.html

3 of 3

step, and then the elevation of each cell is updated accordingly. It is here that the effects of uniform
vertical lowering by solution are incorporated, instead of in the preceding for loop. This is because
solutional uniform vertical lowering is not modeled as a downslope sediment flux.

There are, of course, some special cases that have not been discussed above, such as what to do at the
hillslope divide or the basal cell. These were omitted for the sake of clarity, and they can be easily
understood by examining the code in the step () subroutine.

Fluxes due to various erorsional processes are calculated by the following functions:

SlowFlux () -- Returns the sediment flux due to creep/splash/solifluction and wash.
SlideFlux () -- Returns the sediment flux due to landslides.
SolutionFlux () -- Returns the sediment flux due to Kirkby-type solution.

To modify the operation of these processes, one needs only to modify the the code within each function.

To add new erosional processes to the model, one first needs to write a function that returns the downslope
sediment flux due to that process. Then the code within the first for loop of the Step () subroutine that
sums the fluxes due to all of the erosional processes needs to be modified to include the flux due to the
added process in the summation. The code that does so consists of the following two lines:

Total_transport (i) = (Slow_transport + Slide_Transport)

dz_dt(i) (Total_transport(i - 1) - (Total_transport (i) + Solution_transport)) / dx

The reason that Solution_transport is not included in the Total_transport (i) sum is that
Kirkby-type solution does not build a talus, viz., material freed by solution transport is removed
immediately from the system. That is why Solution_transport is only added in on the second line. (It
is, of course, very easy to change things so that the flux due to Kirby-type solution does build a talus.
There is code commented out in the procedure that implements Kirby-type solution in such fashion.) If
one desires a new erosional process to build a talus, simply add the flux calculated for that function into
the Total_transport (i) sum. If not, only add it in the second line, where Solution_transport is
added.

4/30/992:55 PM

HDS docs--References Cited file:IIC:/vb/nstore l_lIdocs/references. html

1 of 1

References Cited

Kirkby, M. J., 1971, Hillslope process-response models based on the continuity equation, in Brunsden, D.
(ed.), Slopes: form and process: London, Institute of British Geographers, Special Publication 3, p. 15-30.

Kirkby, M. J., 1984, Modelling cliff development in South Wales: Savigear reviewed: Zeitschrift fUr
Geomorphologie, v. 28, p. 405-426.

Kirkby, M. J., 1987, General models of long-term slope evolution through mass movement, in Anderson,
M. G., and Richards, K. S., Slope stability: London, Wiley & Sons Ltd, p. 359-379.

Kirkby, M. J., 1992, An erosion-limited hillslope erosion model, in Schmidt, K.-H., and de Ploey, 1., eds.,
Functional geomorphology: landform analysis and models: Catena Supplement no. 23, p. 157-187.

Kirkby, M. J., Naden, P.S., Burt, T. P., and Butcher, D. P., 1992, Computer simulation in physical
geography: Chichester, Wiley: p. 85-90.

4/301992:55 PM

APPENDIXB:

HILLSLOPE DYNAMICS SIMULATOR

SOURCE CODE

Module1 1

'A multiple linear store model for hillslope evolution.
'Based loosely on a model formulated by M. J. Kirkby.
'Copyright (c) 1997, 1999 by Richard Tran Mills.
'Initial alpha version completed 7/11/97.
'First semblance of an actual user interface appeared 7/16/97.
ILimited .ev import ability also added 7/16/97.
17/19/97--Completed fixing some small problems with .ev importing.'
17/24/97--Finished adding target profile comparison, (x,y) format initial profiles.
17/25/97--Added support for a partial sediment flux out of the last cell. Added a text bo
x for the user to specify the fixed time step.
17/26/97--Added some different options for handling solution.
17/29/97 Fixed a slight error that was large problems with model time: landslide thresho
lds were left in I rather than converted into slopes.
17/30/97--Fixed an error in IS bug fix! (It was due to a typo.)
17/31/97--Added a box in the window to allow the user to the solution threshold ang
le (in degrees) .
'8/01/97--Added several features that we decided were necessary after modeling yes
: Program displays best fit profiles, means differences; separate text boxes for .ev and .dat fil
e names; program defaults to solution which produces no talus.
'8/03/97 -Added a tally of the initial amount of sediment and the amount of sediment (talus) whic
h leaves the system.
'8/06/97--Added support for a uniform vertical solutional lowering rate, as well as code to preve
nt negative elevations (these were to numerical problems) .
'8/07/97--Added support for a dynamical varying removal rate in the last cell, based on a linea
r extrapolation from the removal rates of the second- and first to last cells.

With this change in place, declared version 1.0 of the program.
'4/15/99--After numerous improvements upon the user interface, released version 1.1

of the program.

Explicit

'Represents the horizontal (x) and vertical (y) position of a hillslope cell.
Public Type Cell

x As Double
y As Double

End Type

Public Const PI As Double 3.14159265359

Public hillslope_cell() As Cell
Public () As Cell
ile

'Dynamic array of cells that make up the hil profile
'Dynamic array of cells that make up the target hillslope prof

Public model_stop As Integer 'Flag to stop model. Model stops when
Public iteration As Long 'Counts the number of iterations elapsed.
Public number_of_cells As Integer 'Holds the number of cells in the hill

Public dt As Double
Public dx As Double

Public Time As Double

'Time step
ICell along profile

'Absolute "time" since the model started iterating

Public creep_constant As Double 'Constant governing the rate of creep

= True

profile

Public u_wash As Double IThe distance in meters beyond which the wash becomes greater than creep
Public higher_threshold As Double, lower_threshold As Double 'Gradient thresholds for landslid
es
Public travel_constant As Double 'Constant governing landslide travel distance
Public detachment_constant As Double 'Constant governing landslide detachment
Public solution_rate As Double 'Rate of denudation (Kirkby-type solution) (this lS a constan
t)
Public vertical_solution As Double 'Rate of uniform vertical lowering by solution
Public solution_threshold As Double 'Angle (in degrees) which the local gradient must equal 0

r exceed for Kirkby-type solution to occur

Public MinSumAbs As Double 'Minimum sum of absolute differences
Public MinSumSquares As Double 'Minimum sum of squared differences
Public BestAbsFitTime As Double 'Time at which the best fit to the target profile has occurred
, according to the sum of absolute differences
Public BestAbsProfile() As Cell 'The modeled profile which best fits the target profile, accord

to the sum of absolute differences

Module1 2

Public BestSquaresFitTime As Double 'Time of best fit, according to difference of squares.
Public BestSquaresProfile{) As Cell 'Modeled profile associated with BestSquaresFitTime.

Public Initial_area As Double 'Holds the area of the initial profile; used to indicate the tota
1 amount of sediment that the model starts with.
Public As Double 'Total flux of talus into the last cell. This allows us to calculate

how much talus leaves the system when we have 100% removal at the s base.

'ImportEv() imports parameters and initial from a .ev file whose name
'is contained in infile$. It returns True upon success.

Public Function ImportEv(inf) As Integer
Dim i As Integer, j As Integer
Dim testS
Dim junk As Variant 'This really is just a variable for holding junk.
Dim x As Double, y As Double, m As Double
Dim slope_length As Double, initial_height As Double
Dim xpercent{) As Double, ypercent() As Double
Dim xoriginal() As Double, yoriginal{) As Double
Dim number_of_original-points As Integer
Open infile$ For Input As #1

'Read in the data from the .ev file

For i 1 To 2
Line Input #1, junk

Next i
Input #1, slope_length, initial_height, number_of_cells
'The next line of code needs a bit of explaining. When Kirkby's program says it is
'say, 20 cells, it is the hillslope with 21 points. On the other hand, when my
'program says it is cells, it uses 20 points to model the hillslope. To correct
'for this difference, I add 1 to the number of cells specified in the .ev file.
number_of_cells = number_of cells + 1
For i = 1 To 4

Line Input #1, junk
Next i
Input #1, creep_constant, u_wash, solution_rate
creep_constant = creep_constant * 0.0001
solution_rate = solution_rate * 0.000001
Input #1, junk
If VarType(junk) >= 2 And VarType{junk) <= 5 Then

vertical solution junk * 0.000001
Else

vertical solution 0
End If
For i 1 To 7

Line Input #1, junk
Next i
Input #1, lower_threshold, higher_threshold, detachment_constant
lower_threshold = Tan(PI / 180 * lower_threshold) 'Put the threshold's in terms of
higher_threshold = Tan(PI / 180 * higher_threshold)
detachment_constant detachment_constant * 0.001 'Not sure if this is the correct to

do. I think it is.
For i 1 To 3

Line Input #1, junk
Next i
Input #1, travel_constant, junk, junk
For i = 1 To 17

Line Input #1, junk
Next i

'Read in the original ile in terms of percentages.
number_of_original-points = 0
Do

testS = Input(l, #1)
If (Asc{test$) > 47 And Asc(test$) < 58) Or Asc{test$) = 46 Then 'i.e., if the characte

r is a or decimal
Seek #1, (Seek{l) - 1) 'Move read/write position back one character.
Input #1, x, y,

Module1 3

If Not (x = 0 And y = 0) Then
nUmber_of_original-points number_of_original-points + 1
ReDim Preserve xpercent(number_of_original-points}
ReDim Preserve ypercent(number_of_original-points)
xpercent(number_of_original-points) x
ypercent{number_of_original-points) y

End If
End If

Loop While {Asc{test$} > 47 And Asc{ } < 58) Or Asc{test$} 46
'Convert the slope percentages into {x,y} coordinates.
ReDim xoriginal(number_of_original-points + 1)
ReDim yoriginal(number_of_original-points + 1}

(1) = a
yoriginal{l) = initial_height
For i 1 To number_of_original-points

xoriginal(i + 1) xoriginal(i) + slope_length * xpercent{i} / 100
yoriginal(i + 1} = yoriginal(i) - initial_height * ypercent{i} / 100

Next i
If xoriginal(number_of_original-points + 1) <> slope_length Then 'If the x percentages don

't add up to lOa, we must add a final point as baselevel.
ReDim Preserve xoriginal{number_of_original-points + 2)
ReDim Preserve yoriginal{number_of_original-points + 2}
xoriginal{number_of_original-points + 2) slope_length
yoriginal{number_of_original-points + 2} = 0

End If
'Initialize the array of equally spaced cells composing the initial hillslope profile
ReDim hillslope_cell{number_of_cells)
dx slope_length / (number_of_cells - 1)
hillslope_cell{l).x = xoriginal{l)

(l).y = yoriginal{l)
For i = 2 To (number_of_cells)

x = hillslope_cell{i - l).x + dx
hillslope_cell{i).x x
j 1
'While xoriginal{j) < hillslope_cell(i).x
'Note that the above line of code which is commented out SHOULD work, but doesn't. I thi

nk there's a bug in VB.
'Hence I use the line below as a substitute.
While CSng(xoriginal{j)) < CSng{hillslope_cell{i) .x)

j = j + 1
Wend
m (yoriginal{j) - yoriginal{j - 1)) / (xoriginal(j) - xoriginal(j - 1)) 'm s of

the line
y m * (x - xoriginal{j)) + yoriginal{j)
hillslope_cell(i).y = y

Next i
Close #1
ImportEv

End Function
True

'LoadXYTargetProfile () loads a target hills profile from an ASCII file of (x,y)
'The target profile is then broken down into cells with the same spacing as the ones in the initi
al profile.
'The target and initial profiles must have the same initial length.
'The first point in the target profile must have x = O.
'This procedure will only work correctly after a starting profile has been loaded.

'This function returns True is successful, False if not.

Public Function LoadXYTargetProfile{ProfileName$) As Variant
Dim i As Integer, j As Integer, filenumber As Integer
Dim number_of-points As Integer
Dim x As Double, y As Double, m As Double
Dim xoriginal{) As Doublet yoriginal{) As Double
ReDim target-profile{number_of_cells)

filenumber = FreeFile()
Open ProfileName$ For Input As #filenumber
While EOF{filenumber) a 'Read in the (x,y) data

Modulel - 4

nUmber_of-points nUmber_of-points + I
ReDim Preserve xoriginal(nurnber_of-points)
ReDim Preserve yoriginal(nurnber_of-points)
Input #filenumber l xoriginal(nurnber_of-points) I yoriginal(number_of-points)

Wend

IExit and return False if initial and target les are not of the same length.
If (number_of-points) <> hillslope_cell(nurnber_of_cells).x Then

LoadXYTargetProfile False
Exit Function

End If

INow break the target profile into cells with spacing identical to that of the initial profil
e

target-profile(l) .x
target-profile(l) .y

xoriginal(l)
yoriginal(l)

For i = 2 To number of_cells
x = target-profile(i - l).x + dx
target-profile(i) .x = x
j 1
ISee the comments in ImportEv() for why I use the CSng() function here.
While CSng(xoriginal(j») < CSng(target-profile(i) .x)

j j + 1
Wend
m (yoriginal(j) - yoriginal(j - 1» / (xoriginal(j) - xoriginal(j 1)

the line
y m * (x xoriginal(j») + yoriginal(j)
target-profile(i).y y

Next i

Close #filenumber

IExit procedure and return Truei target profile has been successfully loaded.
LoadXYTargetProfile True

End Function

ILoadXYInitialProfile loads an initial hillslope profile from an ASCII file of
I (x/y) points. ProfileName$ fies the name of the file to be loaded.
IThe function returns True upon success.

Public Function LoadXYInitiaIProfile{ProfileName$) As Variant
Dim i As Integer I j As Integer l filenumber As Integer
Dim number_of-points As Integer
Dim x As Double I y As Double I m As Double
Dim xoriginal(} As Double, yoriginal() As Double
'The Preserve keyword is not used here l so the profile loaded from a .ev
'file is overwritten.
ReDim hillslope_cell(number_of_cells}

filenumber FreeFile()
Open ProfileName$ For Input As #filenumber
While EOF(filenumber) = 0 'Read in the (x,y) data

number_of-points nUmber_of-points + 1
ReDim Preserve xoriginal(number_of-points)
ReDim Preserve yoriginal(number_of-points)
Input #filenumber/ xoriginal(number_of-points)t yoriginal{number_of-points)

Wend
dx = (xoriginal(number_of-points) - xoriginal(1» / (number_of_cells 1)
'Now break the target profile into cells with equal spacing.
hillslope_cell(l).x xoriginal(l)
hillslope_cell(1).y yoriginal(1)
For i 2 To number_o

x = hillslope_cell{i 1).x + dx
hillslope_cell{i).x = x
j 1
tSee the comments in ImportEv{) for why I use the CSng{) function here.
While CSng{xoriginal(j)} < CSng(hillslope_cell(i) .x)

j = j + 1
Wend

1m slope of

Module1 - 5

m
the line

y
hi

Next i

(yoriginal(j) - yoriginal(j - 1)) / (xoriginal(j)

xoriginal(j)) + yoriginal(j)
(i).y y

Close #filenumber

xoriginal(j - 1))

'Exit procedure and return True; (x,y) initial profile has been
'successful loaded.
LoadXYInitialProfile True

End Function

'Mainloop() launches everything else in the model, basically.

Public Sub MainLoop()
Dim i As Integer, test As Variant, junk As Integer
ReDim BestAbsProfile(number_of_cells)
ReDim BestSquaresProfile(number_of_cells)
GraphForm.Show
'Put this here so OptionsForm won't be partially obscured by GraphForm
OptionsForm.Show
Call ScaleToFit(hillslope_cell, GraphForm)
If MainForm.chkUseTargetProfile 1 Then

test = LoadTargetProfile(MainForm.TargetProfileName)
If test = False Then

'm slope of

junk = MsgBox("The target profile you selected could not be used.", vbExclamation, "W
arning")

ElseIf MainForm.ChkDisplayTargetProfile = 1 Then
Call ProfilePlot(target-profile, GraphForm, RGB(255, 0, 0))

End If
End If
StatusForm.Show
If MainForm.chkUseTargetProfile = 1 Then

'We have to do all this to prime the loop.
MinSumAbs = SumAbsDifferences{hillslope_cell, target-profile)
MinSumSquares = SumSquaredDifferences(hillslope_cell, target-profile)
BestAbsFitTime = 0
BestSquaresFitTime 0
StatusForm.BestAbsFitTime = BestAbsFitTime
StatusForm.MinMeanAbsDifference = MinSumAbs / number_of_cells
StatusForm.BestSquaresFitTime = BestSquaresFitTime
StatusForm.MinMeanSquaredDifference = MinSumSquares / number_of_cells
For i 1 To number_of_cells

BestAbsProfile{i) = hillslope_cell(i)
Next i
For i = 1 To number_of_cells

BestSquaresProfile{i) = hillslope_cell(i)
Next i

End If

ProfileArea(hillslope_cell)

'This is the main program loop.
While model_stop <> True

If OptionsForm.OptRedraw = True Then
GraphForm.Cls
Call ProfilePlot{hillslope_cell, GraphForm) 'Plot the current hillslope le
If MainForm.ChkDisplayTargetProfile = 1 Then Call ProfilePlot(target-profile, GraphFo

rm, RGB(255, 0, 0))

hen
ElseIf OptionsForm.OptNoRedraw True And iteration Mod OptionsForm.UpdateFrequency 0 T

Call ProfilePlot(hillslope_cell, GraphForm)
End If
If OptionsForm.WriteFrequency <> Empty Then

If OptionsForm.chkWriteSuccessiveProfiles 1 And iteration Mod CInt(OptionsForm.Writ
eFrequency) 0 Then

test
End If

End If

AppendProfile{OptionsForm.OutputFilename)

Module1 - 6

StatusForm.DisplayStatus
Step 'Move the model through one time step.
'Check for best fit if a target profile is being used.
If MainForm.chkUseTargetProfile = 1 Then

If SumAbsDifferences(hillslope_cell, target-profile) < MinSumAbs Then
MinSumAbs = SumAbsDifferences(hillslope_cell, target-profile)
BestAbsFitTime = Time
StatusForm.BestAbsFitTime Time
StatusForm.MinMeanAbsDifference MinSumAbs I number of cells
For i 1 To number_of cells

BestAbsProfile(i) = hillslope_cell(i)
Next i

End If
If SumSquaredDifferences(hillslope_cell, target-profile) < MinSumSquares Then

MinSumSquares SumSquaredDifferences(hillslope_cell, target-profile)
BestSquaresFitTime Time
StatusForm.BestSquaresFitTime Time
StatusForm.MinMeanSquaredDifference = MinSumSquares I number_o
For i = 1 To number_of_cells

BestSquaresProfile(i) = hillslope_cell(i)
Next i

End If
End If
'DoEvents passes control to the operating system to let it handle
'routine tasks, etc.
DoEvents
iteration

Wend
End Sub

iteration + 1

'ProfileArea() calculates the area under a slope profile by the trapezoidal rule.
'Note l of course l that this will yield somewhat inaccurate areas for
'with overhangs. Though I do not think it is possible to get slopes with
loverhangs in the model.
'This function isn't actually used anywhere in the model, but it is useful to
Ihave if one wants to calculate how much sediment has been eroded out of the
'system.
'Arguments:

le() -- Array of Cell's that fy a hillslope profile.

Public Function ProfileArea(profile() As Cell) As Double
Dim i As Integer
Dim area As Double

area = 0
For i = 1 To (number_of_cells - 1)

area = area + (1 / 2) * (profile(i).y + le(i + 1) .y) * (profile(i + l).x
) .x)

Next i
ProfileArea

End Function
area

'SumAbsDifferences() calculates the sum of the absolute differences in elevation
'between two hillslope profiles. It is used to determine best fits by absolute
'differences.
'Arguments:

profile1()
profile2()

Array of Cells representing a hills lope
Ditto

Ie

Public Function SumAbsDifferences(profile1() As Cell, profile2() As Cell) As Double
Dim i As Integer
Dim sum As Double

For l = 1 To number_of_cells
sum sum + Abs(profile1(i).y - profile2(i) .y)

Next i
SumAbsDifferences = sum

End Function

profile(i

Modulel 7

'ScaleToFit(} sets up the GraphForm coordinate system such that the hillslope
'contained in () fits inside the form.

Public Sub ScaleToFit(profile(} As Cell, GraphForm}
Dim i As Integer
Dim xmax As Double, xmin As Double
Dim ymax As Double, As Double
Dim xlength As Double, ylength As Double

'Find the max and min x and y values
For i = 1 To number of cells - -

If profile(i}.x > xmax Then xmax profile(i} .x
If profile(i} .x < xmin Then xmin profile(i} .x
If (i) .y > ymax Then ymax profile(i) .y
If (i) .y < ymin Then ymin profile(i) .y

Next i

'Set up the coordinate system with some extra room around the edges
xlength xmax - xmin
ylength ymax - ymin
GraphForm.Scale (xmin - 0.025 * xlength, ymax + 0.025 * ylength) (xmax + 0.025 * xlength, ymi

n 0.025 * ylength)
End Sub

'ProfilePlot(} plots an array of hillslope cells to a plot object with an
'optionally specified color value.
'Arguments:

data an array of Cell data structures with x and y variables.
object the name of the form, picture box, etc., within which to plot

the graph.
ColorValue -- the color value that the profile is to be drawn with. This

argument is optional.

Public Sub ProfilePlot(data(} As Cell, plot_object, Optional ColorValue)
Dim i As Integer

'The following code which has been commented out plots only the points
'in the hillslope profile.
'For i 1 To number_of_cells

plot_object.PSet (data(i) .x, data(i) .y}
'Next i

'This code connects the points in the hillslope profile with lines.
If VarType(ColorValue) = vbError Then

plot_object.PSet (data(l) .x, data(l) .y)
For i 2 To number_of_cells

plot_object.Line -(data(i) .x, data(i) .y)
Next i

Else
plot_object.PSet (data(l) .x, data(l} .y), ColorValue
For i = 2 To number_of_cells

plot_object.Line -(data(i) .x, data(i) .y), ColorValue
Next i

End If
End Sub

'SlideFlux() calculates the sediment flux downs
'Arguments:

x -- Distance from the divide
gradient Downslope gradient

due to landslides.

previous_slide_transport the slide flux for this iteration out of the
adjacent upslope cell

Public Function SlideFlux(x As Double, gradient As Double, previous_slide_transport As Double) As
Double

Dim Detachment As Double

Modulel - 8

'Reciprocal_height is the reciprocal of the slide travel distance
, (Kirkby's h)
Dim Reciprocal_height As Double
Dim Flux As Double

Reciprocal_height (higher_threshold - gradient) / travel_constant
'The line below is just to prevent any numerical problems.
If Reciprocal_height < 0 Then Reciprocal_height = 0
Detachment = detachment_constant * gradient * (gradient lower_threshold)
Flux = (Detachment * dx + previous_slide_transport) / (1 + Reciprocal_height * dx)
If Flux < 0 Then Flux = 0
SlideFlux = Flux

End Function

'SolutionFlux() calculates sediment flux due to Kirkby-type solution. The
'downslope must exceed the "solution threshold gradient"
, (solution_threshold) in order for solution to occur.
'Arguments:

x Distance from the divide
gradient -- Downslope gradient

Public Function SolutionFlux(x As Double, gradient As Double) As Double
If gradient> Tan(PI / 180 * solution_threshold) Then SolutionFlux solution_rate * x Else S

olutionFlux = 0
End Function

'SlowFlux() calculates the combined downslope sediment flux for "creep"
'processes and wash.
'Arguments:

x Distance from the divide
gradient -- Downslope gradient

Public Function SlowFlux(x As Double, gradient As Double) As Double
SlowFlux creep_constant * gradient * (1 + (x / u_wash) A 2)

End Function

'Step() steps the model through one iteration.

Public Sub Step()

Dim i As Integer
Dim gradient As Double 'Local downslope gradient
Dim () As Double 'Change in elevation z with time t
Dim Total_transport() As Double 'Total downslope sediment flux
Dim Slow_transport As Double, Solution_transport As Double, Slide_Transport As Double
Dim Pl As Double, P2 As Double l P3 As Double, m As Double

ReDim dz_dt{number_of_cells)
ReDim Total_transport (number_of_cells)

'Calculate rates of denudation, etc., for each cell.

For i = 1 To number_of_cells
If i = number_of_cells Then 'viz., if we are at the base of the slope

If OptionsForm.chkVaryRemoval = 0 Then
'Assume that the flux out of the cell is a given percent of the flux out of the cell

direct above.
dz_dt(number_of_cells) (Total_transport(number_of_cells - 1) CDbl(OptionsForm.Fra

ctionLeaving) * Total_transport(number_of_cells - 1)) / dx
Elserf OptionsForm.chkVaryRemoval = 1 Then

'Pl = percent of incoming talus leaving second to last cell
Pl Total_transport(number_of_cells - 2) / Total_transport(number_of_cells 3)
'P2 percent of incoming talus first to last cell
P2 Total_transport(number_of_cells - 1) / Total_transport(number_of_cells - 2)
'm = slope of the line relating amount of incoming talus leaving a cell to the cell's

x coordinate.
m = (P2 - Pl) / (hillslope_cell(number_of_cells

Modulel - 9

ls-2).x)
P3 = m * (hillslope_cell(number_of_cells).x - hillslope_cell(f cells 1) .x)

+ P2
dz_dt(number_of_cells) = (Total_transport(number_of_cells - 1) - P3 * Total_transport

(number_of_cells 1» / dx

Else

End If

'This assumes that the divide is on the left and the base on the right.
gradient = (hillslope_cell(i).y hillslope_cell(i + 1) .y) / dx
'The [name]_transport variables are all RATES (fluxes) of transport.
Slow_transport = SlowFlux(hillslope_cell(i) .x, gradient)
Solution_transport = SolutionFlux(hillslope_cell(i) .x, gradient)
Slide_Transport = SlideFlux(hillslope_cell(i) .x, gradient, Slide_Transport)

'Do not allow solution to build a talus.
Total_transport (i) (Slow_transport + Slide_Transport)
dz_dt(i) = (Total_transport(i 1) - (Total_transport (i) + Solution_transport» / dx

'Allow solution to build a talus.
'Total_transport (i) = (Slow_transport + Slide_Transport + Solution_transport)
'dz_dt(i) = (Total_transport(i - 1) - (Total_transport(i») / dx

If i 1 Then 'i.e., if we are at the divide
'We assume symmetry such that an equal amount of sediment
'leaves each side of the divide.
dz_dt(l) dz_dt(l) * 2

End If

End If
Next i

'Choose the value of the time increment dt.
'For right now, I'm simply using a fixed time increment.

dt CDbl(OptionsForm.Timestep)

Time
For

each cell

Time + dt
i = 1 To number_of_cells
'We have to incorporate the vertical lowering by solution
'not be multiplied by 2 at the first cell.
hills l(i).y = hillslope_cell(i).y + dz_dt(i) * dt
'This is to prevent negative elevations, which can lead to
If hillslope_cell(i).y < 0 Then hillslope_cell(i).y = 0

Next i

here, so it will

vertical solution * dt
numerical

'Flux_out is the total flux into the basal cell. It isn't actually used by the
'program, but it allows us to keep track of the amount of debris that leaves
'the system when we are retaining no sediment at the slope bottom.
Flux_out Flux_out + Total_transport(number_of_cells 1) * dt

End Sub

'SumSquaredDifferences()
'two hillslope profiles.

calculates the sum of the difference of squares between

'Arguments:
lei ()
le2()

An array of Cell's representing a hillslope profile
ditto

Public Function SumSquaredDifferences(profilel() As Cell,
Dim i As Integer
Dim sum As Double

For i = 1 To number_of_cells
sum sum + (profilel(i).y - profile2(i) .y) A 2

Next i
SumSquaredDifferences sum

le2() As Cell) As Double

Modulel - 10

End Function

'Writefitdata() saves the data on best fits to the file whose name is contained
'in filename$. It returns True when successful.

Public Function WriteFitData(filename$) As Variant
Dim i As Integer, filenumber As Integer

filenumber = FreeFile()

Open filename$ For Output As #filenumber
Print #filenumber, "Initial Profile Name: " + MainForm.InitialProfileFileName
Print #filenumber, "Target Profile Name: " + MainForm.TargetProfileName
Print #filenumber, "Model time elapsed (years) :", Time
Print #filenumber, "Iterations completed:", iteration
Print #filenumber, "Time of best fit (squared differences) :", BestSquaresFitTime
Print #filenumber, "Minimum mean squared difference:", (MinSumSquares / number_of_cells)
Print #filenumber, "Time of best fit (absolute differences:", BestAbsFitTime
Print #filenumber, "Minimum mean absolute difference:", (MinSumAbs / number_of_cells)
Print #filenumber,
Print #filenumber, "Best fit profile (squared differences):"
For i 1 To number_of_cells

Print #filenumber, BestSquaresProfile(i) .x, BestSquaresProfile(i).y
Next i
Print #filenumber,
Print # filenumber , "Best fit profile (absolute differences}:"
For i = 1 To number_of_cells

Print #filenumber, BestAbsProfile(i) .x, BestAbsProfile(i}.y
Next i

Close #filenumber

WriteFitData
End Function

True

'LoadParameters() loads parameters from .par or .ev file whose name is contained
'in filename$. It does so by calling ImportEvParameters(} or LoadParFile(}.
'It returns True upon success.

Public Function LoadParameters(filename$) As Variant
Dim extension$, char$
Dim i As Integer
Dim test As Variant

'Get the file extension of the parameters file
i = 1
While char$ <> "." And i <= Len {filename$}

extension$ Right${filename$, i)
char$ Left${extension$, 1)
i = i + 1

Wend

'Read in the parameters
If extension$ ".ev" Or extension ".EV" Then

'import the parameters from an .ev file
test ImportEvParameters(filename$}

ElseIf extension$ = ".par" Or ".PAR" Then
'Read in the contents of a .par file
test = LoadParFile{filename$}

End If

'Update the textboxes in ParametersForm to correspond with what's been loaded
, (Conversion of the parameters into the correct units is handled by methods
'in the ParametersForm form.)
ParametersForm.creep_constant = creep_constant
ParametersForm.u_wash = u_wash
ParametersForm.solution_rate solution_rate

Modulel - 11

ParametersForm.vertical_solution vertical_solution
ParametersForm.solution_threshold = solution_threshold
ParametersForm.lower_threshold = lower_threshold
ParametersForm.higher_threshold = higher_threshold
ParametersForm.detachment_constant = detachment_constant
ParametersForm.travel_constant travel_constant

LoadParameters = True

End Function

'LoadParFile() reads in the contents of the .par parameters file whose name
'is contained in filenameS

Public Function LoadParFile(filename$) As Variant
Dim i As Integer, filenumber As Integer

Id

Dim buffer As Variant
Dim junkS

filenumber FreeFile()
Open filenameS For Input As #filenumber
Line Input #filenumber, junkS
Line Input #filenumber, junkS
Input #filenumber, number_of_cells
For i 1 To 6

Line Input #filenumber, junkS
Next i
Input #filenumber, creep_constant, u_wash, solution_rate, vertical_solution, solution_thresho

For i = 1 To 4
Line Input #filenumber, junkS

Next i
Input #filenumber, lower_threshold, higher_threshold, detachment_constant, travel constant
If EOF(filenumber) = True Then 'Exit this function if the end of file has been reached.

LoadParFile = True
Exit Function

End If
Line Input #filenumber, junkS
'I start using a buffer variable below since values read can be either numeric or strings.
If Left$(junk$, 15) = "PROGRAM OPTIONS" Then

'If the .par file contains a section fying program options.
Line Input #filenumber, junkS
Input #filenumber, buffer
If VarType(buffer) <> vbString Then

'If the buffer variable does not hold a string.
dt = CDbl(buffer)

End If
Line Input #filenumber, junkS
Input #filenumber, buffer
If VarType(buffer) <> vbString Then 'ditto

OptionsForm.chkVaryRemoval = buffer
End If
Line Input #filenumber, junkS
Input #filenumber, buffer
If VarType(buffer) <> vbString Then 'ditto

OptionsForm.FractionLeaving buffer
End If
Line Input #filenumber, junkS
'Below, read whether or not to continuously redraw profile.
Input #filenumber, buffer
If buffer = 1 Then

OptionsForm.OptRedraw
Else

True

OptionsForm.OptRedraw False
End If
Line Input # filenumber , junkS
'read how often to overlay successive profiles.
Input #filenumber, buffer
If VarType(buffer) <> vbString Then

Module1 - 12

OptionsForm.UpdateFrequency
End If

buffer

'Exit this function if the end of file has been reached.
If EOF(filenumber) = True Then

LoadParFile True
Exit Function

End If
Line Input #filenumber, junkS

End If
If Left$(junk$, 16) = "ASSOCIATED FILES" Then

Line Input #filenumber, junkS
Input #filenumber, buffer 'Read initial profile filename.
If buffer <> "NS" Then

MainForm.InitialProfileFileName = buffer
End If
Line Input #filenumber, junkS
Input #filenumber, buffer 'Read the target profile filename.
If buffer <> "NS" Then

MainForm.TargetProfileName = buffer
MainForm.chkUseTargetProfile 1

End If
End If
Close #filenumber
LoadParFile

End Function
True

'ImportEvParameters loads parameters from the .ev file whose name is contained
'in filenameS. It returns True upon success.

Public Function ImportEvParameters{filename$) As Variant
Dim i As Integer, filenumber As Integer
Dim junk As Variant 'This really is just a variable for holding junk.

filenumber FreeFile()
Open filenameS For Input As filenumber

'Read in the data from the .ev file
For i 1 To 2

Line Input #filenumber, junk
Next i
Input #filenumber, junk t junk, number_of_cells
'The next line of code needs a bit of explaining. When Kirkby's program
'says it is using t say, 20 cells, it is modelling the hillslope with 21
'points. On the other hand, when my program says it is using 20 cells, it
luses 20 points to model the hillslope. To correct for this difference l I
ladd 1 to the number of cells specified in the .ev file.
number_of_cells number_of_cells + 1
For i = 1 To 4

Line Input #filenumber t junk
Next i
Input #filenumber, creep_constant, u_wash, solution_rate
Input #filenumber, junk
'Below: if a rate of vertical solution has been specified in the
I .ev file (not actually supported by the original .ev file format
If VarType{junk) 2 And VarType{junk) 5 Then

vertical solution CDbl{junk)
Else

vertical_solution 0
End If
For i = 1 To 7

Line Input #filenumber, junk
Next i
Input #filenumber, lower_threshold, higher_threshold, detachment_constant
For i = 1 To 3

Line Input #filenumber, junk
Next i
Input #filenumber, travel_constant
Close #filenumber

Module1 - 13

ImportEvParameters True

End Function

'LoadInitialProfile() loads an initial slope profile from either a .ev or a .par
'file. It does so by calling ImportEvInitialProfile() or LoadXYInitialProfile().
'It returns True upon success.

Public Function LoadInitialProfile(filename$) As Variant
Dim i As Integer, filenumber As Integer, test As Variant
Dim , extensionS

'Get the file extension of the initial profile filename
i 1
While charS <> "." And i <= Len(filename$)

extensionS Right$(filename$, i)
(extension$t 1)

i
Wend

i + 1

If extensionS = ".ev" Or extensionS ".EV" Then
test ImportEvInitialProfile(filename$)

Else
test

End If
LoadXYInitialProfile(filename$)

LoadInitialProfile
End Function

True

'ImportEvInitialProfile() loads an initial profile from the .ev file whose
'name is specified in filenameS. It returns True upon success.

Public Function ImportEvInitialProfile(filename$) As Variant
Dim i As Integer, j As Integer, filenumber As Integer
Dim testS
Dim junk As Variant 'This really is just a variable for holding junk.
Dim x As Double, y As Double, m As Double
Dim slope_length As Double, initial_height As Double
Dim xpercent() As Double, ypercent() As Double
Dim xoriginal() As Double, yoriginal() As Double
Dim number_of_original-points As Integer

filenumber FreeFile()
Open filenameS For Input As #filenumber

'Read in the data from the .ev file
For i = 1 To 2

Line Input #filenumber, junk
Next i
Input #filenumber, slope_length, initial_height, junk
For i 1 To 34

Line Input #filenumber, junk
Next i

'Read in the original profile in terms of percentages.
number_of_original-points = 0
Do

testS = Input(l, #filenumber)
'If the character is a digit or decimal.
If (Asc(test$) > 47 And Asc(test$) < 58) Or Asc(test$) 46 Then

'The line below moves read/write position back one character.
Seek #filenumber, (Seek(l) - 1)
Input #filenumber, x, y, junk
If Not (x = 0 And y = 0) Then

number_of_original-points = number_of_original-points + 1
ReDim Preserve xpercent(number_of_original-points)
ReDim Preserve ypercent(number_of_original-points)
xpercent(number_of_original-points) = x

Modulel - 14

ypercent(number_of_original-points) y
End If

End If
Loop While (Asc() > 47 And Asc() < 58) Or Asc(

IConvert the slope percentages into (xly) coordinates.
ReDim xoriginal(number_of_original-points + 1)
ReDim yoriginal(number_of_original-points + 1)
xoriginal(l) a
yoriginal(l) = initial_height
For i = 1 To number_of_original-points

46

xoriginal(i + 1) xoriginal(i) + slope_length * xpercent(i) / 100
yoriginal(i + 1) yoriginal(i) - initial_height * ypercent(i) / 100

Next i
'If the x percentages donlt add up to 100 1 we must add a final point at
Ibaselevel.
If xoriginal(number_of_original-points + 1) <> slope_length Then

ReDim Preserve xoriginal(number_of_original-points + 2)
ReDim Preserve yoriginal(number_of_original-points + 2)
xoriginal(number_of_original-points + 2) slope_length
yoriginal(number_of_original-points + 2) = a

End If

IInitialize the array of equally spaced cells composing the initial
'hillslope profile.
ReDim hillslope_cell(number_of_cells)
dx = slope_length / (number_of_cells - 1)
hillslope_cell(l).x xoriginal(l)
hillslope_cell(l).y = yoriginal(l)
For i 2 To (number_of_cells)

x hillslope_cell(i l).x + dx
hillslope_cell(i).x x
j = 1
'While xoriginal(j) < hillslope_cell(i).x
INote that the above line of code which is commented out SHOULD work l
'but doesn't.
II think there's a bug in VB.
INo, I KNOW that there is.
IHence I use the line below as a substitute.
While CSng(xoriginal(j)) < CSng(hillslope_cell(i) .x)

j j + 1
Wend
m (yoriginal(j) - yoriginal(j - 1)) / (xoriginal(j) - xoriginal(j - 1))

the line
y m * (x - xoriginal(j)) + yoriginal(j)
hillslope_cell(i).y = y

Next i

Close #filenumber

ImportEvInitialProfile
End Function

True

ILoadTargetProfile() loads a target profile from either a .ev or a .par file. It
'does so by calling ImportEvTargetProfile() or LoadXYTargetProfile(). It returns
'true upon success.

Public Function LoadTargetProfile(filename$} As Variant
Dim i As Integer, test As Variant
Dim char$, extension$

'Get the file extension of the parameters file
l 1
While char$ <> l!." And i <= Len (filename$)

extension$ = Right$(filename$, i)
char$ Left$(extension$, 1)
i = i + 1

Wend

'm slope of

Module1 - 15

If extensionS = ".ev" Or extensionS = ".EV" Then
test ImportEvTargetProfile(filename$)

Else
test

End If
LoadXYTargetProfile(filename$)

LoadTargetProfile
End Function

True

'ImportEvTargetProfile() loads a target profile from the .ev file whose name is
'specified in filenameS. It returns True upon success.

Public Function ImportEvTargetProfile(filename$) As Variant
Dim i As Integer, j As Integer, filenumber As Integer
Dim testS
Dim junk As Variant 'This really is just a variable for holding junk.
Dim x As Double, y As Double, m As Double
Dim slope_length As Double, initial_height As Double
Dim xpercent() As Double, ypercent() As Double
Dim xoriginal() As Double, yoriginal() As Double
Dim number_of_original-points As Integer
Dim number_of_new-points

Open filenameS For Input As #filenumber

'Read in the data from the .ev file
For i 1 To 2

Line Input #filenumber, junk
Next i
Input #filenumber, slope_length, initial_height, junk
For i = 1 To 34

Line Input #filenumber, junk
Next i

'Read in the original profile in terms of percentages.
number_of_original-points = a
Do

testS = Input(l, #filenumber)
'i.e., if the character is a digit or decimal.
If (Asc(tes) > 47 And Asc(test$) < 58) Or Asc(= 46 Then

'The line below moves read/write position back one character.
Seek #filenumber, (Seek(l) 1)
Input #filenumber, x, y, junk
If Not (x = a And y = 0) Then

number_of_original-points number_of_original-points + 1
ReDim Preserve xpercent(number_of_original-points)
ReDim Preserve ypercent(number_of_original-points)
xpercent(number_of_original-points) x
ypercent(number_of_original-points) = y

End If
End If

Loop While (Asc(test$) > 47 And Asc() < 58) Or Asc(test$) 46

'Convert the slope percentages into (x,y) coordinates.
ReDim xoriginal(number_of_original-points + 1)
ReDim yoriginal(number_of_original-points + 1)
xoriginal(l) a
yoriginal(l) initial_height
For i 1 To number_of_original-points

xoriginal(i + 1) xoriginal(i) + slope_length * xpercent(i) / 100
yoriginal(i + 1) yoriginal(i) - initial_height * ypercent(i) / 100

Next i

'If the x percentages don't add up to lOa, we must add a final point as
'baselevel.
If xoriginal(number_of_original-points + 1) <> slope_length Then

ReDim Preserve xoriginal(number_of_original-points + 2)

Module1 16

ReDim Preserve yoriginal(number_of_original-points + 2)
xoriginal(number_of_original-points + 2) slope_length
yoriginal(number_of_original-points + 2) = 0
number_of_new-points = number_of_original-points + 2

End If

'Exit and return False if initial and target profiles are not of the same
'length.
If xoriginal(number_of_new-points) <> hillslope_cell(number_of_cells).x Then

ImportEvTargetProfile = False
Exit Function

End If

'Initialize the array of equally spaced cells composing the initial
'hillslope profile.
ReDim target-profile(number_of_cells)
dx = slope_length / (number_of_cells - 1)
target-profile(l).x = xoriginal(l)
target-profile(l).y = yoriginal(l)
For i 2 To (number_of_cells)

x target-profile(i - l).x + dx
target-profile(i).x x
j 1
'While xoriginal(j) < target-profile(i).x
'Note that the above line of code which is commented out SHOULD work,
'but doesn't.
'I think there's a bug in VB.
'No, I KNOW that there is.
'Hence I use the line below as a substitute.
While CSng(xoriginal(j» < CSng(target-profile(i) .x)

j j + 1
Wend
m (yoriginal(j) - yoriginal(j - 1» / (xoriginal(j) - xoriginal(j - 1»

the line
y m * (x - xoriginal(j» + yoriginal(j)
target-profile(i) .y = y

Next i

Close #filenumber

ImportEvTargetProfile
End Function

True

'WriteSnapshot() writes a snapshot of the current state of the modeled hillslope
'to the file specified by filenameS. It returns True upon success.

Public Function WriteSnapshot(filename$) As Variant
Dim i As Integer, filenumber As Integer

filenumber FreeFile ()

Open filenameS For Output As #filenumber
Print #filenumber, "Initial Profile Name: " + MainForm.InitialProfileFileName
Print #filenumber, "Model time elapsed (years) :", Time
Print #filenumber, IIIterations completed:", iteration
Print #filenumber,
For i 1 To number_of_cells

Print #filenumber, hillslope_cell(i) .x, hillslope_cell(i).y
Next i

Close #filenumber

WriteSnapshot = True
End Function

'AppendProfile() write the current iteration number, the time elapsed, and the
'current modeled hil profile to the disk file whose name is specified in
'$filename. If filenameS does not exist already, it is created. Otherwise, the

'm of

Module1 - 17

'data are appended onto the end of the file.

'Note that I never explicitly close the file opened in this function.
'This is to avoid having to close and reopen it several times, which
'could severely limit performance. The file opened in this function
'SHOULD be closed when the program executes a Reset statement after
'a model run is terminated.
Public Function AppendProfile(filename$) As Variant

Dim i As Integer
Static filenumber As Integer

If iteration 0 Then
filenumber = FreeFile()
Open filenameS For Output As #filenumber

End If
Print #filenumber, "Iteration "i iteration, "Years elapsed: "i Time
For i 1 To number_of_cells

Print #filenumber, hills (i) .x, (i) .y
Next i
Print #filenumber ,

AppendProfile = True
End Function

'The ResetPublicVariables() procedure resets all of the Public variables declared
lin module1, with the exception of the model_stop

Public Sub ResetPublicVariables()
Erase hills lope_cell
Erase target-profile
Erase BestAbsProfile
Erase BestSquaresProfile

iteration = 0
number_of_cells 0
dt = 0
dx = 0
Time = 0
creep_constant 0
u_wash = 0
higher_threshold 0
lower_threshold 0
travel_constant = 0
detachment constant 0
solution_rate 0
vertical_solution = 0
solution_threshold = 0
MinSurnAbs :::: 0
MinSumSquares :::: 0
BestAbsFitTime = 0
BestSquaresFitTime 0
Initial_area 0
Flux_out :::: 0

End Sub

'Main() is the procedure called when the program is opened.

Public Sub Main()
MainForm.Show
OptionsForm.Show

End Sub

GraphForm - 1

VERSION 5.00

End

VB.Form
AutoRedraw
BackColor
Caption
ClientHeight
ClientLeft
ClientTop
ClientWidth
LinkTopic
PaletteMode
ScaleHeight
ScaleWidth

-1 'True
&HOOFFFFFF&
"Hills
5580
60
345
11865
"Form1"

profile

1 'UseZOrder
5580
11865

view: "

MainForm - 1

End Sub

Private Sub BrowseInitialProfileFiles_Click()
CommonDialog1.Filter = ".dat files (*.dat) I*.datl .ev files (*.ev) 1*·evIAll files (*.*) 1*.*
CommonDialog1.ShowOpen
MainForm.InitialProfileFileName CommonDialog1.filename

End Sub

Private Sub BrowseParameterFiles_Click()
CommonDialog1.Filter = ".par files (* .par) 1 * .parl.ev files (* .ev) 1 * .evlAll files (*. *) 1*. *"
CommonDialog1.ShowOpen
MainForm.ParametersFileName = CommonDialog1.filename

End Sub

Private Sub BrowseTargetProfiles_Click()
CommonDialog1.Filter = ".dat files (*.dat) I*.datl.ev file (*.ev) 1*.evIAll files (*.*) 1*.*"
CommonDialog1.ShowOpen
MainForm.TargetProfileName CommonDialog1.filename

End Sub

Private Sub chkUseTargetProfile_Click()
If chkUseTargetProfile = 1 Then

TargetProfileName.SetFocus
End If

End Sub

Private Sub ExitProgram_Click()
End

End Sub

'This is to insure that the entire application is killed off if
'MainForm is terminated.
Private Sub Form_Unload(Cancel As Integer)

End
End Sub

Private Sub RunModel_Click()
'v. 1.0 code:
'OptionsForm.Show
'Dim test as integer 'This is for error-trapping.
'test ImportEv(MainForm.EvFileName)
'test LoadXYInitialProfile(MainForm.DatFileName)

Dim test As variant

iteration = 0
model_stop = False

'This will eventually be used for error-trapping.

test LoadParameters(MainForm.ParametersFileName)
test LoadlnitialProfile(MainForm.lnitialProfileFileName)
test LoadTargetProfile(MainForm.TargetProfileName)
ModelRunningForm.Show
MainLoop

End Sub

Private Sub ShowOptions_Click()
If OptionsForm.Visible = False Then

OptionsForm.Show
ShowOptions.Caption = "Hide Options"

ElseIf OptionsForm.Visible True Then
OptionsForm.Hide
ShowOptions.Caption = "Show Options"

End If
End Sub

'This will not work correctly with the time step that must be used with the .ev files,
'due to differences in the various model parameters used here.
Private Sub TestModel_Click()

'Initialize program variables:

MainForm - 2

'I'm mostly using the values from the file slope1.ev that comes with Kirkby's book.
dx 1
number_of_cells 50
creep_constant = 10 * 0.0001
u_wash = 200
solution_rate = 10 * 0.000001
lower_threshold Tan(PI / 180 * 22)
higher_threshold Tan(PI / 180 * 35)
detachment_constant 50 * 0.001 'I *think* this is right.
travel_constant = 20

'Set up the initial s profile:
'This one is a normal fault scarp.
For i = 1 To 50

If i <= 15 Then
hillslope_cell{i).y 25

Elself i > 36 Then
hillslope_cell{i).y 0

Else
hillslope_cell{i).y -(25 / 21) * i + 300 / 7

End If
hillslope_cell{i).x = i

Next i

End Sub

MainForm 1

VERSION 5.00
Object O{F9043C88-F6F2-101A-A3C9 08002B2F49FB}#1.1#Oo; °COMDLG32.0CX o

Begin VB.Form MainForm

Caption
Cl
ClientLeft

ClientWidth

MaxButton
MinButton
PaletteMode

ScaleWidth

1 'Fixed Single
°Richard's n-store hillslope dynamics simulator (HDS) I v. 1.1"
2865
6045
2265
5955
"Forml°
o 'False
o 'False
1 'UseZOrder
2865
5955

Begin VB.CommandButton ExitProgram
Caption "Exit the program O

Left
TabIndex
Top
Width

End

Left
Tab Index
Top
Width

End

855
3840
12
1200
1935

BrowseTargetProfiles
°Browse target profiles o

255
1800
11
1800
1815

MSComDlg.CommonDialog CommonDialogl
Left 0
Top 0
_ExtentX 847

ExtentY 847
_Version 327681

End

Left
TabIndex
Top
Width

End

InitialProfileFileName
285
240
10
1320
3375

VB.CommandButton BrowselnitialProfileFiles
Caption "Browse (x,y) profiles o

Left
TabIndex
Top
Width

End

Left
Tab Index
Top
Value
Width

End

Left
Tab Index
Top
Value
Width

255
1800
8
960
1815

ChkDisplayTargetProfile
°Display target profile o

255
1920
7
2160
1 'Checked
1815

chkUseTargetProfile
"Use target profile"
255
240
6
2160
1 'Checked
1575

MainForm - 2

End
VB.TextBox

Height
TargetProfileName

285

End

Left
Tab Index
Top
Width

240
5
2520
3375

VB.CornrnandButton RunModel

End

Caption
Height
Left
Tab Index
Top
Width

"Run Model"
855
3840
3
120
1935

VB.TextBox
Height

ParametersFileName
285

Left
Tab Index
Top
Width

End

240
1
480
3375

VB.CornrnandButton BrowseParameterFiles
Caption "Browse parameter files"
Height 255
Left 1800
TabIndex 0
Top 120
Width 1815

End

End

VB.Label Labe13
Caption
Height
Left
Tab Index
Top
Width

VB.Label Labe12
Caption
Height
Left
Tab Index
Top
Width

End
VB.Label Labell

Caption
Height
Left
TabIndex
Top
Width

End
End

"Initial profile name:"
255
120
9
1080
1575

"Target profile name:"
255
120
4
1920
1455

"Model parameters file:"
255
120
2
240
1575

ModelRunningForm - 1

Private Sub chkShowOptionsForm_Click()
If chkShowOptionsForm.Value 1 Then

OptionsForm.Show
EIseIf chkShowOptionsForm.Value = 0 Then

OptionsForm.Hide
End If

End Sub

Private Sub chkShowParametersForm_Click()
If chkShowParametersForm.Value = 1 Then

ParametersForm.Show
EIseIf chkShowParametersForm.Value = 0 Then

ParametersForm.Hide
End If

End Sub

Private Sub chkShowStatusForm_Click()
If chkShowStatusForm.Value 1 Then

StatusForm.Show
EIseIf chkShowStatusForm.Value o Then

StatusForm.Hide
End If

End Sub

Private Sub DisplayBestFitProfiles_Click()
Dim junk As Integer
If MainForm.chkUseTargetProfile = 1 Then

Call ProfilePlot(BestSquaresProfile, GraphForm, RGB(O, 0, 255))
Call ProfilePlot(BestAbsProfile, GraphForm, RGB(O, 255, 0))
Call ProfilePlot(target-profile, GraphForm, RGB(255, 0, 0))

End If
junk = MsgBox("Model paused. Click OK to continue. ", vbOKOnly, "Model paused")

End Sub

Private Sub PauseModel_Click()
Dim response As Integer, test As Variant
response MsgBox("Would you like to take a snapshot?", vbYesNo, "Model paused")

'Now, hopefully, the below code will not end up writing the contents of the
'hillslope_cell() array in the middle of an iteration. It should only write
'after an iteration has been completed, because that is when the DoEvents()
'function is called. On my computer, under both Win95 and WinNT 4.0, the
'writ only occurs after DoEvents() is called.
If response = vbYes Then

Dim filenameS
Dim i As Integer
While charS <> "." And i <> Len (MainForm. InitialProfileFileName)

i i + 1
charS Mid (MainForm. InitialProfileFileName, if 1)

Wend
If charS = "." Then

filenameS Mid (MainForm. InitialProfileFileName, 1, i) + "snp"
EIseIf Len (MainForm. InitialProfileFileName} = i Then

filenameS = Mid (MainForm. InitialProfileFileName, 1, i) + ".snp"
End If
CommonDialog1.filename = filenameS
CommonDialog1.Filter = ".snp files (*.snp) 1*.snpIAII files (*.*) 1*.*"
CommonDialog1.ShowSave
test WriteSnapshot (CommonDialog1. filename)

End If
End Sub

Private Sub TerminateModeIRun_Click()
Dim test As Variant

If MainForm.chkUseTargetProfile 0 Then
Dim quit_model As Integer
quit_model MsgBox(IIAre you sure you want to terminate this model run?", vbYesNo, "End m

ModelRunningForm 2

odel run? n)
If quit_model = vbNo Then

model_stop = False
Exit Sub

ElseIf quit_model = vbYes Then
model_stop True

End If
ElseIf MainForm.chkUseTargetProfile = 1 Then

Dim SaveInfo As Integer
SaveInfo = MsgBox("Save the best fit information?", vbYesNoCancel, "Model Prompt")
If SaveInfo = vbCancel Then

model_stop False
Exit Sub

ElseIf SaveInfo vbNo Then
model_stop = True

ElseIf SaveInfo = vbYes Then 'I should eventually prompt the user for a filename h
ere, instead of just assigning one.

model_stop = True
Dim filename$
Dim i As Integer
While char$ <> "." And i <> Len (MainForm. InitialProfileFileName)

1
Mid (MainForm. InitialProfileFileName, i, 1)

Wend
If char$ "." Then

filename$ = Mid (MainForm. InitialProfileFileName, I, i) + "fit"
ElseIf Len (MainForm. InitialProfileFileName) = i Then

filename$ Mid (MainForm. InitialProfileFileName, I, i) + It.fit"
End If
CommonDialogl.filename = filename$
CommonDialogl.Filter ".fit files (*.fit) 1*·fitIAII files (*.*) 1*.*"
CommonDialogl.ShowSave
test = WriteFitData(CommonDialogl.filename)

End If
End If

Reset 'Close any files that are still open.

'Now reset everything so a new model run can be performed.
'First, unload all of the forms except MainForm.
'(Unloading MainForm would kill the application.)
Unload GraphForm
Unload StatusForm
Unload ParametersForm
Unload Opt ions Form
Unload ModelRunningForm

'Now reload and show OptionsForm, whose properties have been
'reset to their initial values by the Unload statement.
Load OptionsForm
OptionsForm.Show

'Now reset all of the public variables.
Call ResetPublicVariables

End Sub

ModelRunningForm - 1

VERSION 5.00
Object "{F9043C88-F6F2-101A-A3C9-08002B2F49FB}#1.1#0"; "COMDLG32.0CX"
Begin VB.Form ModelRunningForm

Caption "Model Running "
ClientHeight 1620
ClientLeft 150
ClientTop 6435
ClientWidth = 6015
LinkTopic "Form1"
ScaleHeight 1620
ScaleWidth 6015
Begin MSComDlg.CommonDialog CommonDialog1

Left 2160
Top 960

ExtentX 847
ExtentY 847

_Version 327681
End

VB.CheckBox chkShowStatusForm
Caption
Height
Left
TabIndex
Top
Value
Width

"Show status window"
255
240
5
1080
1 'Checked
1815

End
VB.CheckBox chkShowParametersForm

Caption "Show parameters window"
Height 375
Left 240
TabIndex 4
Top 600
Width 2175

End
Begin VB.CheckBox

Caption
chkShowOptionsForm

IIShow options window"
255 Height

Left
TabIndex
Top
Value
Width

240
3
240
1 'Checked
1935

End
Begin VB.CommandButton

Caption
TerminateModelRun
"Terminate Model Run II
375 Height

Left 2760
TabIndex 2
Top
Width

End

1080
3135

VB.CommandButton DisplayBestFitProfiles
Caption "Pause and display best fit profiles"
Height 375
Left 2760
TabIndex 1
Top 600
Width 3135

End
VB.CommandButton PauseModel

Caption "Pause model and (optional) take snapshot"
Height 375
Left 2760
Tab Index 0
Top 120
Width 3135

End
Begin VB.Shape Shape1

Height 1335

ModelRunningForrn - 2

End

Left
Top
Width

End

120
120
2415

OptionsForrn - 1

Private Sub BrowseOutputFiles_Click()
CornmonDialogl. Filter = ". out files (*. out) 1* . out I All files (*. *) 1* . *"
CornmonDialogl.ShowOpen
OptionsForm.OutputFilename = ComrnonDialogl.filename

End Sub

Private Sub chkWriteSuccessiveProfiles_Click()
If chkWriteSuccessiveProfiles = 1 Then

WriteFrequency.SetFocus
End If

End Sub

OptionsForm 1

VERSION 5.00
Object "{F9043C88-F6F2 101A-A3C9-08002B2F49FB}#1.1#0"j "COMDLG32.0CX"
Begin VB. Form OptionsForm

BorderStyle 1 'Fixed Single
Caption "Program Options"
ClientHeight 2850
ClientLeft 6480
ClientTop 5625
ClientWidth 5475
LinkTopic "Form1"
MaxButton 0 'False
MinButton 0 'False
PaletteMode 1 'UseZOrder
ScaleHeight 2850
ScaleWidth 5475
Begin MSComDlg.CommonDialog CommonDialog1

Left 480
Top 1200

ExtentX 847

End

_ExtentY
_Version

847
327681

Begin VB.CommandButton BrowseOutputFiles
Caption "Browse output files"
Height 255
Left 3240
Tablndex 16
Top 2040
Width 1815

End
Begin VB.TextBox

Height
Left
Tab Index
Top
Width

End
Begin VB.TextBox

Height
Left
TabIndex
Top
Width

End
Begin VB.CheckBox

Caption

End

Height
Left
Tab Index
Top
Width

Begin VB.CheckBox
Caption
Height
Left
Tab Index
ToolTipText
Top
Width

End

OutputFilename
285
600
15
2400
4455

WriteFrequency
285
3240
12
1680
615

chkWriteSuccessiveProfiles
"Write successive profiles to file every"
255
240
11
1680
3015

chkVaryRemoval
"Dynamically vary basal removal"
255
120
10
"This feature is experimental. I don't think it works quite
480
2535

Begin VB.TextBox FractionLeaving
Height 285
Left 1800
TabIndex 9
Text
ToolTipText
Top
Width

End

If 111
"Proportion of the flux into the basal cell that 1S carried away."
960
615

OptionsForm - 2

Begin VB.TextBox
Height
Left

285
1800
7
"50"

Tab Index
Text
ToolTipText
Top

"(Too large a time step leads to numerical instabilities.)"
120

Width 615
End
Begin VB.Frame Framel

Caption
Height

"Profile display options:"
1335

Left 2760
TabIndex o
Top 120
Width 2535
Begin VB.TextBox UpdateFrequency

Height 285
Left 840
TabIndex 4
Text
Top
Width

End

"200"
960
615

OptNoRedraw Begin VB.OptionButton
Caption
Height

"Overlay successive profiles"
255

End

Left
TabIndex
Top
Value
Width

End
VB.OptionButton

Caption

End

Left
TabIndex
Top
Width

Begin VB. Label Labe12
Caption
Height
Left
TabIndex
Top
Width

End
Begin VB.Label Labell

Caption
Height
Left
TabIndex
Top
Width

End

VB. Shape Shapel

120
2
720

1 'True
2295

OptRedraw
"Continuously
255
120
1
360
2295

"iterations."
255
1560
5
960
735

"every"
255
360
3
960
495

Height 1215
Left 120
Top 1560
Width 5055

End
Begin VB.Label Labe16

redraw profile"

Caption "Output file name:"
Height 255
Left 600
TabIndex 14
Top = 2040

OptionsForm 3

End

Width
End
Begin VB.Label Labe15

Caption
Height
Left
TabIndex
Top
Width

End
Begin VB.Label Labe14

Caption

End

End

Height
Left
TabIndex
ToolTipText
Top
Width

VB.Label Labe13
Caption
Height
Left
Tab Index
ToolTipText
Top
Width

1335

"iterations."
255
3960
13
1680
735

"Fraction leaving base: (fixed removal only)"
375
120
8
"Proportion of the flux into the basal cell that is carried away."
840
1575

"Use fixed time step of:"
255
120
6
"(Too large a time step leads to numerical instabilities.)"
120
1575

ParametersForm 1

Private Sub creep_constant_Change()
Module1.creep_constant CDbl(ParametersForm.creep_constant) * 0.0001

End Sub

Private Sub detachment_constant_Change()
Module1.detachment_constant CDbl(ParametersForm.detachment_constant) * 0.001

End Sub

Private Sub higher_threshold_Change()
Module1.higher_threshold Tan(PI / 180 * CDbl(ParametersForm.higher_threshold))

End Sub

Private Sub lower_threshold_Change()
Module1.1ower_threshold = Tan(PI /180 * CDbl(ParametersForm.lower_threshold))

End Sub

Private Sub solution_rate_Change()
Module1.so1ution_rate = CDbl(ParametersForm.solution_rate} * 0.000001

End Sub

Private Sub solution_threshold_Change()
Module1.so1ution_threshold = CDbl(ParametersForm.solution_threshold)

End Sub

Private Sub travel_constant_Change()
Module1.travel constant = CDbl(ParametersForm.travel_constant)

End Sub

Private Sub u_wash_Change(}
Module1.u_wash = CDbl(ParametersForm.u_wash)

End Sub

Private Sub vertical_solution_Change(}
Module1.vertical_solution CDbl(ParametersForm.vertical_solution) * 0.000001

End Sub

Parameters Form - 1

VERSION 5.00
Begin VB.Form ParametersForm

Caption "Model Parameters"
ClientHeight 3495
ClientLeft 150
ClientTop 2370
ClientWidth 5700
LinkTopic
ScaleHeight
ScaleWidth
Begin VB.TextBox

Height

End

Left
Tab Index
Top
Width

Begin VB.TextBox
Height

End

Left
Tab Index
Top
Width

Begin VB.TextBox
Height

End

Left
Tab Index
Top
Width

"Form1 11

3495
5700

travel_constant
285
4560
17
3120
495

detachment_constant
285
4560
16
2760
495

higher_threshold
285
4560
15
2400
495

Begin VB.TextBox lower
Height

threshold
285

Left
Tab Index
Top
Width

End
Begin VB.TextBox

Height

End

End

End

Left
Tab Index
Top
Width

VB.TextBox
Height
Left
TabIndex
Top
Width

VB.TextBox
Height
Left
Tab Index
Top
Width

VB.TextBox
Height
Left
TabIndex
Top
Width

End

4560
14
2040
495

solution_threshold
285
4560
13
1680
495

vertical_solution
285
4560
12
1320
495

solution_rate
285
4560

u_wash

11
960
495

285
4560
10
600
495

Begin VB.TextBox creep_constant
Height 285
Left 4560
TabIndex 9

ParametersForm

Top
Width

End

2

Begin VB.Label Label9
Caption
Height
Left ~

TabIndex
Top
Width

End
Begin VB.Label Label8

Caption

End

End

Height
Left
TabIndex
Top
Width

VB.Label Label7
Caption

Left
Tab Index
Top
Width

Begin VB.Label Label6
Caption
Height
Left
TabIndex
Top
Width

End
Begin VB.Label LabelS

Caption
Height
Left
TabIndex
Top
Width

End
Begin VB.Label Label4

Caption
Height
Left
TabIndex
Top
Width

End
Begin VB.Label Label3

Caption

End

Height
Left
TabIndex
Top
Width

VB. Label Label2
Caption
Height
Left
TabIndex
Top
Width

End
VB.Label Labell

Caption
Height =

240
495

"Landslide travel distance [m]:"
255
120
8
3120
2175

"Rate of free degradation above threshold [mm/y]:"
255
120
7
2760
3615

"Solution threshold angle (for Kirkby-type)
255
120
6
1680
3615

] : "

"Talus angle [degrees] (above which debris will not stop):"
255
120
5
2400
4095

"Landslide threshold angle [degrees]:"
255
120
4
2040
2655

"Solution rate (uniform vertical lowering model) [micro m/y]:"
255
120
3
1320
4095

"Solution rate (Kirkby-type) [micro m/y] : "
255
120
2
960
2775

"Distance [m] at which wash becomes greater than creep etc:"
255
120
1
600
4335

"Creep/Splash (c.l0) or Solifluction (c.l00) rate [sq.cm /y]:"
255

ParametersForm - 3

End
End

Left
TabIndex
Top
Width

120
o
240
4095

StatusForm - 1

Public Sub DisplayStatus()
StatusForm.Years.Caption = Time
StatusForm.Iterations.Caption iteration

End Sub

StatusForm 1

VERSION 5.00
Begin VB.Form StatusForm

Caption "Model status"
ClientHeight 2280
ClientLeft 8235
ClientTop 435
ClientWidth 3705
LinkTopic
PaletteMode
ScaleHeight
ScaleWidth
Begin VB.Label

"Form1"
1 'UseZOrder
2280
3705

MinMeanSquaredDifference
"N/A" Caption

Height
Left
Tab Index
Top
Width

255
2400
11
1200
1215

End
Begin VB. Label MinMeanAbsDifference

Caption "N/A"
Height 255
Left 2400
TabIndex 10
Top 1920
Width 1335

End
Begin VB.Label Labe16

Caption
Height
Left
TabIndex
Top
Width

End
Begin VB.Label Labe15

Caption

End

Height
Left
Tab Index
Top
Width

"Min Mean Abs Difference:"
255
240
9
1920
1935

"Min Mean Squared diff:"
255
240
8
1200
1935

Begin VB.Label BestAbsFitTime
Caption "N/A"
Height 255
Left 2400
Tab Index 7
Top 1560
Width 1215

End
Begin VB.Label BestSquaresFitTime

End

Caption
Height
Left
Tab Index
Top
Width

Begin VB.Label Labe14
Caption
Height
Left
Tab Index =
Top
Width

End
Begin VB.Label Labe13

"N/A"
255
2400
6
840
1215

"Time of best fit (abs):"
255
240
5
1560
1935

Caption "Time of best fi t (squares):"
Height 255

Status Form - 2

Left
TabIndex
Top
Width

240
4
840
1935

End
Begin VB.Label Iterations

Caption "Iterations"
Height ~ 255
Left 2400
TabIndex 3
Top 480
Width 1215

End
Begin VB.Label Years

Caption

End

End

End
End

Height
Left
TabIndex
Top
Width

VB.Label Labe12
Caption
Height
Left
TabIndex
Top
Width

VB.Label Labell
Caption
Height
Left
TabIndex
Top
Width

"Years"
255
2400
2
120
1215

"Iterations completed:"
255
240
1
480
1935

"Model time elapsed (years):"
255
240
o
120
1935

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	Spring 4-1999

	A Computational Process-Response Model of Hillslope Evolution Applied to Undercut Slopes on Abandoned Incised Meanders in the Eastern Highland Rim of Tennessee USA
	Richard Tran Mills
	Recommended Citation

	tmp.1280944806.pdf.Fnu02

