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Abstract 

The Department of Energy has a large reserve of highly radioactive waste sludge located 

at the Hanford facility. The storage tanks that hold this material are approaching the end 

of their expected life cycles. The potential of disaster such as leakage or explosion is 

increasing with every passing year. This report presents the preliminary design of a 

system to process a large volume of this sludge to low-level waste. 

The processing of this waste requires leaching with 3 M sodium hydroxide before 

entering the system. The system design includes using the ion exchange resin Crystal 

Silicotitinate to remove the radioactive cesium ions from the waste strealTI. The high 

level waste radioactive ions are taken away to be stored in a safer waste facility. The rest 

of the waste sludge can then be treated by acidification, crystallization, and 

electrochemical reduction to re-claim most of the sodium which is recycled and used as 

leaching solution. This design will process 25,000 gal/hr of solution and has an expected 

annual operating cost of $164 million. The major expense is the annual waste disposal 

cost of $6.1 billion. The current design has a life cycle of three years. It is 

reCOlTIlTIendation that a lower tlowrate that will increase the life cycle of the plant and 

allow the cost to be incurred over a greater number of years be investigated. 
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Introduction 

Beginning in the mid-1940's, the United States Departluent of Energy (DOE), in 

the midst of the nuclear arms race of the Cold War, began storing spent nuclear fuel and 

nuclear waste at it's Hanford site in Richmond, Washington. This 560 square mile site 

along the Columbia River houses 177 underground high-level waste tanks each capable 

of 50,000 gallons to 1,000,000 gallons capacity (ENR October 23, '95, 16). Of these 

tanks, 149 are single-shelled (constructed from 1944-1969) and the remaining 28 are 

double-shelled (built after 1970). The double-shelled tanks are composed of 1.5 feet 

thick reinforced concrete with two inner steel liners. They are covered with six to eight 

feet of soil (Seltzer, 5). All told, the site contains 80% of the United States spent nuclear 

fuel from arms production totaling 227,000 cubic meters or 60,000,000 gallons of high 

level radioactive waste (Babad et aI., 427). 

The Hanford site also houses 2300 tons of spent fuel rods, which are still "hotll, in 

underwater steel casks in two basins 37.5 meters long and 20 meters wide (lllman, 30). It 

costs the taxpayers $35 million per year to monitor these basins (ENR August 28, '95, 

17). 

Many instances of release have been reported at the Hanford site. Many of the 

single-shelled tanks have leaked, although none of the double-shelled tanks have. The 

basins containing the spent fuel rods have leaked on several occasions and are considered 

by many experts to be seismically unsafe. For instance, the K-East basin spilled 

15,000,000 gallons of water in the late 1970's and 94,000 gallons in 1993 (Civil 

Engineering October '95, 12). It is not believed that any of this contaluination reached 

ground water. 



In addition, several safety concerns have been expressed by community members 

and federal inspectors regarding this DOE site. Some of the tanks are suspected to be 

seismically unsafe. In 1992, the "Red Team", a group of technical experts from various 

consulting firms and national laboratories found that many tanks do not have proper 

monitoring systems. The team also found 3000 pieces of equipment out of service, 

including pumps, compressors, and ventilation systems (Illman, 23). Some of the older 

single-sheJJed tanks have high hydrogen levels and must be ttburped tt (a process for 

releasing hydrogen from the tank in order to prevent pressure build up and thus 

explosion). 

The Hanford site has also become a great economic liability. Besides the $35 

million listed earlier to monitor the basins, much more money is needed to monitor the 

tanks. Maintenance costs on the equipment are astronomical. Taxpayers have been 

estimated to have paid $7.5 billion since 1989. This money did not go to cleanup 

processes but rather to meet compliance standards of the endless federal and state 

regulations. Senator Frank Murkowski (Alaska) called Hanford, " ... the largest civil 

works project in human history." 

The Department of Energy realized that it must act to correct this situation before 

it gets worse or before a disaster occurs. A request was made by DOE for contractors to 

submit estimates for cleanup of the Hanford site so that a contract could be issued. As of 

1995, four teams were bidding on the project: 1 )Fluor-Daniel is leading the teatn of 

Lockheed-Martin, Rust Federal Services, Babcock & Wilcox, Duke Energy and Services 

and Numerated & International Technology Corporation~ 2) Bechtel Corporation is 

leading the team including Westinghouse, British Nuclear Fuel Limited, Computer 
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Sciences Corporation and Johnson Controls~ 3) Raytheon is spearheading the team of 

CH2M Hill Incorporated, ICF Kaiser, Tenneco Boeing Information Services and Seimans 

Power Corporation~ finally 4) TRW and Parsons Corporation are allegedly organizing a 

team (ENR Jan. 15, '96, 15). 

In lieu of these developments, the consulting firm of Binkley, Kennedy & Luttrell 

are attempting to undertake the cleanup of one of the waste tanks at the Hanford site. The 

team came up with a conceptual design and cost estimate (capital and operating costs) for 

recycling caustic leach solutions in one of these waste tanks. The facility can process 

25,000 gallons per hour of caustic solutions that have been used to "leach" alumina and 

smaller concentrations of other components from the precipitates. Below is an estimate 

of the composition of the tank being treated: 

Component 

Sodium hydroxide 

Sodium aluminate 

Sodium nitrate 

Sodium nitrite 

Sodium phosphate 

Cesium nitrate 

Concentration 

3M (minus NaOH consumed in 

converting aluminum to aluminate) 

Saturated 

O.05M 

O.DIM 

O.OIM 

IO-6M 

Other salt concentrations can be assumed negligible. 

The plant is designed to remove cesium from the leach liquor to a level suffIcient 

enough to allow the remaining dissolved components to be incorporated in a low-level 
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waste which can be handled without shielding. As much sodium as practical is removed 

from the solution, converted to sodium hydroxide and recycled to the beginning of the 

process. This will aid in cost savings. 

In addition, a discussion of nuclear regulatory policy is also contained in this 

paper. Several sources are cited as references for this project. I would especially like to 

thank my partners, Brandon Binkley and Billy Luttrell, and my advisor for this project, 

Dr. Jack Watson. Without these people, none of this project would have been possible. 
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Nuclear Regulatory Policy 

When the Cold War began in the mid 1940's, the United States paid much more 

attention to getting ahead in the nuclear arms race than it did in exploring the 

environmental repercussions of doing so. Gradual1y, scientists and the public began 

expressing concerns about the safe storage of spent nuclear fuel and the byproducts of 

nuclear power and weapons production. What followed was a series of Congressional 

regulations that became a bit more stringent with each new promulgation. This gradual 

trend gave technology the opportunity to advance (cleanup methods) and also allowed the 

enormous cost of cleanup to be spread out over a longer period of time. 

The Atomic Energy Act of 1946 was the first Congressional regulation dealing 

with atomic energy. This statute established the Atomic Energy Commission (AEC), 

which was to conduct research and development on the peacentl applications of 

fissionable and radioactive materials. 

The Atomic Energy Act of 1954 stressed domestic and international uses of the 

atom and also provided for the control of source material and by-product material 

(radioactive substances). It is the primary source of federal authority for regulating 

nuclear materials. In Northern States Power Co. v. Minnesota, 405 US 1035 (1972), the 

Supreme Court decided that the federal government has the right to regulate control and 

operation of nuclear materials, including disposal of nuclear wastes (Herzik 54). 

The Price-Anderson Act originally passed in 1957 amended the Atomic Energy 

Act by encouraging financial responsibility of nuclear plant owners. Plant owners who 

obtain sufficient liability insurance according to the act's guidelines were shielded from 

unlimited tort recoveries. The Act was amended in 1966 to prohibit participating nuclear 
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entities from assessing legal defenses of governmental immunity and contributory 

negligence. Further Amendments in 1988 limited liability to $560 million in the event of 

an extraordinary nuclear occurrence. Punitive damages cannot be awarded for a nuclear 

incident or precautionary evacuation. The Price-Anderson Act does not clearly provide 

the same liability dollar limit protection to transporters and storers of radioactive wastes 

as it does to nuclear producers. Therefore, all transporters and storers of nuclear waste 

obtain insurance which will be able to cover all costs of an accidental spill (because of 

high risk, this is very expensive). Insurance companies will rarely insure against claims 

for punitive damages, civil fines and penalties (Herzik 55). 

The National Environmental Policy Act of 1969 (NEPA) stated its purpose as, lito 

prevent or eliminate damage to the environment and biosphere and stimulate the health 

and welfare of man." (Murray 159). NEPA created the Council of Environmental Quality 

(CEQ), an advisory group reporting to the President. This Act also established the 

Environmental Impact Statement, which must accompany any federal action that may 

significantly affect the environment. An EIS is a large document that describes 

alternatives, potential environmentaL economic, and social effects, includes public 

comments and agency answers and reports the findings of hearing boards. The 

Environmental Protection Agency was also created to regulate air and water standards, 

establish limits on pollution and control radioactive materials. The EPA provides for 

public participation through meetings, hearings and advisory group reviews (Murray 

159). The Energy Reorganization Act of 1974 divided the jurisdiction of the AtOlnic 

Energy Commission between two agencies, the Energy Research and Development 

Administration (ERDA) and the Nuclear Regulatory Commission (NRC). The Energy 

6 



Reorganization Act of 1977 replaced the ERDA (Murray 159). 

The Nuclear Regulatory Commission has jurisdiction over reactor construction 

and operation. It also licenses and regulates the possession, use, transportation, handling 

and disposal of radioactive materials. Agreement states accept authority to control 

radioactive wastes under NRC guidelines. Title 10 Energy, contains 1400 pages of 

regulations on radiation standards and reactors (Murray 160). 

The Department of Transportation (DOT) provides rules on the transportation of 

radioactive materials, and the Federal Emergency Management Agency (FEMA) prepares 

plans for emergency response to radioactive releases. 

In 1983, the Department of Energy issued the Defense Waste Management Plan. 

This plan called for the construction of waste treatment and disposal facilities, the 

construction of new storage facilities, and a safer transportation system for nuc1ear 

wasted (Herzik 128). It was produced in response to Congressional pressures for the 

Department of Energy to provide a direction for nuc1ear waste c1eanup. 

The U. S. Environmental Protection Agency has been charged with enforcing the 

c1ean-up provisions of the Comprehensive Environmental Response, Compensation, and 

Liability Act of 1980 (CERCLA) and its amendments contained in the Superfund 

Amendment and Reauthorization Act of 1986. Should a nuc1ear spill occur during 

transportation, the EPA and its state counterpart will spearhead the cleanup effort (Herzik 

56). 

In 1988, Congress included language about environmental contamination in the 

Defense Authorization Act. In 1989, Department of Energy (DOE) Secretary, James 

Watkins, stated that environmental protection and assurance of safety and health took 
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precedence over production. "Tiger Teams", groups of DOE and contractor experts were 

sent to inspect facilities across the nation. These teams assessed compliance with rules 

and laws and prepared reports for corrective action. The teams inspected 35 major 

facilities and issued 8715 findings. This study led to the establishment of an 

Environmental Safety and Health Progress Assessment Program to implement findings 

(Murray 142). 

A key conclusion of the study was that safety concerns existed at many of the 

facilities. A total of III U.S. inactive sites were identified and a date of 2019 was set as 

a goal date for cleanup. To accomplish the time frame, DOE created the Office of 

Environmental Restoration and Waste Management (EM). Many issues and challenges 

face this program: I) Coordination with the EPA Superfund program (EPA has 

identified 25 radioactively contaminated sites, along with sites with sojl contamination 

due to natural radionuclides)~ 2) What degree cleanup is feasible (can't make totally 

clean for technological, economic and social reasons)~ 3) The need for new technologies 

(robotics and new separation technologies)~ 4) Requirements for environmentally trained 

personnel (takes time and money to retrain employees in nuclear cleanup field)~ 5) Must 

convince the public that this expensive project with little visible signs of a product 

deserves support and must be done~ 6) Establishing priorities for cleanup (most of the 

content is unknown, and studies must be performed to see which areas are in need for 

quickest cleanup~ 7) Deciding on the applicability of the concepts of ALARA (as low as 

reasonably achievable) and BRC (below regulatory concern)~ 8) Finding sites for 

disposal facilities that will accommodate decontamination and decommissioning waste~ 

9) Need to manage effectively (comprehensive management system is needed for entire 
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nationwide process). (Murray 143) 

Concerns about the possibility of having no place to dispose of low-level 

radioactive wastes led the states to seek control of waste management. This led to the 

Low-Level Radioactive Waste Policy Act of 1980. The legislation says, "Each state is 

responsible for providing for the availability of capacity either within or outside the state 

for disposal of low-level radioactive waste generated within its borders (excluding 

defense or other federal wastes). Low-level radioactive waste can be most safely and 

effectively managed on a regional basis." (Murray 160) This act created compacts 

among several states. Compacts decide what facilities are needed and which state will 

serve as the host and for how long. 

Then, in 1985 Congress passed the Low-Level Radioactive Waste Policy 

Amendments Act. It called for keeping three commercial disposal sites open through 

1992 due to the longer-than-anticipated time necessary for the states to form compacts. It 

also set volume limits on the wastes that could be sent to these sites. The Act called for 

deadlines on ratifying compacts, selecting host states, developing plans, submitting 

license applications and providing for disposal. The Department of Energy was able to 

allocate additional storage capacity to reactors in cases of emergency, and the Nuclear 

Regulatory Commission could authorize emergency access to the existing sites (Murray 

161 ). 

Establishing low-level waste storage facilities by the deadline of 1996 has been 

slow for a number of reasons: I) each project must develop its own selection process for 

a disposal site: 2) a survey of a complete host state for potential sites involves the 

collection and analysis of enormous amounts of data: 3) the processes of site 
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characterization and interpretation of data are long and involved; 4) the application for a 

license is a many volume document; 5) the regulatory review of the application is 

thorough and extensive; and 6) lawsuits initiated by potential host communities or 

intervening groups delay action (Murray 162). This lack of storage facilities has added 

great expense to generators who now have to store wastes on site. 

In 1982, Congress passed the Nuclear Waste Policy Act for the management of 

high-level radioactive waste and spent fuel. It contained input from industry, 

government, and environmentalists and a timetable for action by the Department of 

Energy leading to underground disposal of high-level waste. 

The Act was designed to regulate primarily commercial waste materials, but 

provides for defense waste disposal upon Presidential approval. A nuclear waste fund 

was setup to pay for disposal, with money coming from the waste generators themselves, 

who in turn charge their electricity customers. The fee was established at 1110 

cent/kilowatt hour (Murray 162). 

Following passage of the law, DOE established the Office of Civilian Radioactive 

Waste Management (OCRWM). Guidelines were issued for the process to select suitable 

sites for a repository, a Mission Plan was developed, and geological surveys were begun. 

Nine sites were identified as potentially acceptable, and this number was further reduced 

to three sites in 1987: Hanford, Washington, Yucca Mountain, Nevada and Deaf Smith 

County, Texas (Murray 163). After the passage of the Nuclear Waste Policy 

Amendments Act of 1987, Yucca Mountain would be the only site characterized. 

It was decided to use a Monitored Retrievable Storage (MRS) system, and studies 

were conducted on how to best implement it. A limit on storage capacity of the facility 
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was set at 10,000 tons. A license must be granted by the Nuclear Regulatory 

Commission before the MRS can be built. This is the legal device that prevents the MRS 

from becoming a permanent storage facility (Murray 163). 

The 1987 Act added a number of special features: A Nuclear Waste Review 

Board in the National Academy of Sciences was created; spent fuel must be shipped in 

NRC-approved packages, with state and local authorities notified of the shipments; 

authority was given for continued studies of the sub-sea-bed disposal option; no further 

crystalline rock studies were allowed; and DOE is to submit a study for the needs of a 

second repository in the period from 2007 to 2010 (Murray 163). 

Progress in characterization of the Yucca Mountain site have been slow due to the 

efforts of the State of Nevada to halt the project. DOE finally obtained approval to 

proceed and not be held up by permit requirements. The main concern expressed was 

regarding pathways on the premises that would allow rapid radionuclide transfer on the 

site. 

A timetable was revised to accept spent fuel from utilities by 1998 and begin 

waste disposal in 20 I O. To accept the fuel, DOE must have the Monitored Retrieval 

Storage facility ready. This in turn depends on the success of the OCR WM to 

characterized the site efficiently and to avoid legal obstruction. Finally, adequate funding 

must continue if this project is to reach fruition (Murray 164). 

In 1992, Congress passed the Energy Policy Act which was broad in scope, 

emphasized energy efficiency, research and development on conventional fuels, 

alternative fuels and uranium enrichment. The law stated that: 1) the EPA would set 

standards for Yucca Mountain based on findings by the National Academy of Sciences 
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on several specific issues related to radiological protection; 2) the NRC would provide 

requirements and criteria based on EPA standards, assuming engineered barriers and 

long-term oversight of the repository by DOE; 3) DOE would report to Congress on the 

adequacy of plans for disposal of waste from future reactors, and 4) states would have 

authority over below-regulatory-concern (BRC) wastes, negating NRC policy (Murray 

164). 

The principle regulation concerning low-level wastes (civilian radioactive wastes) 

is Part 61 (10 CFR 61) of Title 10 Energy. The legislation is based on research by the 

NRC and its contractors and must gain approval by industry and the public (Murray 165). 

Low-level wastes are further broken down into smaller categories. "Below 

regulatory concern" (BRC) wastes can be disposed of without any concern of 

radioactivity. Next, Class A wastes require minimum precautions for disposal. They 

must not be stored in cardboard containers, must be solidified or mixed with an absorbent 

so there is no more than one percent liquid, there must be no explosive or combustible 

material present, containment at low pressure if gaseous, and must receive treatment if 

biological in origin (Murray 165). Class B wastes must be stable (keep their size and 

weight despite stresses on the container from soil weight, moisture and radiation) and 

also have to meet minimum requirements (Murray 165). Class C wastes should be 

protected so that an inadvertent intruder could not reach the waste by drilling, digging a 

well, or excavating for a building. Finally, Greater than Class C wastes (GTCC) must be 

treated as high-level wastes and thus are not cleared for near surface burial. The 

Department of Energy disposes of these wastes. These classes are based on half-lives 

and activity of isotopes in the material. Data for the isotopes may be found in 10 CFR 61 
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(Murray 165). 

NRC Regulatory Guides supplement regulations and provide information on 

issues such as quality assurance, design bases, calculation methods and the form of 

reporting (Murray 165). 

Over 30 pages of regulations govern the storage of high-level radioactive wastes. 

They are contained in Part 60 of the Code of Federal Regulations Title 10 Energy (10 

CFR 60). Some of these important provisions include: I) Design and operation of the 

facility should not pose an unreasonable risk to the health and safety of the public 

(radiation limit is a small fraction of that due to natural background): 2) a multiple barrier 

approach is to be used, including the waste form, containers, and host rock: 3) 

performance objectives are set for both the components and the system: 4) a thorough site 

characterization must be made, with features such as possible flooding regarded as 

sufficient to disqualify, and features such as geological stability or slow water tlow 

regarded as favorable: 5) repository should be located where there are no attractive 

resources, far from population centers, and under federal control and should maintain 

good records and prominent markers: 6) high-level wastes are to be retrievable up to titly 

years from the start of operation: 7) waste package must be designed to take account of 

all possible effects (must be dry and chemical1y inert): 8) wastes in the package should be 

safe from water for at least 300 years: and 9) predictions of safety must be made with 

conservative assumptions and by calculations that take account of uncertainties, using 

expert opinion (Murray 166). 

Accompanying this legislation is 10 CFR 960, which contains the Department of 

Energy's criteria on characterizing repositories. In lieu of Congress's decision in 1987 to 
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limit the study of Yucca Mountain, the regulations related to selection of several sites fbr 

characterization and on the recommendation of one site for use are now irrelevant 

(Murray 166). 

The fact is that nuclear regulatory policy is an area that has evolved over the last 

fifty years. Over that time, it has tended to be an area where fear from the people make 

legislation somewhat less scientific than it should be at times. As America heads into the 

twenty-first century and as our fuel needs continue to grow, the public must learn to look 

at nuclear power in a different light than it views nuclear weapons. In addition, scientists 

must continue to work at finding new storage techniques that are safer and cheaper than 

the facilities current technology permits. Nuclear power is an unlimited source of power. 

America should take advantage of it, but we must first learn to deal with the problems of 

waste disposal which come with it. 
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Process Description 

The most crucial aspect of the treatment system is to remove the radioactive cesium from 

the waste stream in a safe manner. The waste must be contained within protective 

shielding until all of the cesium is removed. A system of ion exchange columns is 

designed to remove the cesium in the first stage of the process. The composition of the 

waste stream entering the ion exchange system is shown in Table I. The ion exchange 

system pictured in Appendix A is a series of columns packed with Crystal Silicotitinate 

(CST), a resin that exchanges Cs+ ions for Na+ ions according to the following reaction. 

1) Cs+ + NaR <---> CsR + Na-t 

The design is a scale up of a laboratory effort presented in the report on ion exchange 

resin by DOE. The following assumptions are made to scale up the process used in the 

laboratory experiments. 

1.) The Ix10-6 M Cs+ feed solution is equivalent to the 7.5 x 10-5 M test solution. 

2.) All of the Cs+ ions (100%) are removed in the ion exchanger. 

3.) Only Cs+ ions exchange for the Na+ ions 

Assumption 1 allows for the use of the experimental loading curve from the lab 

experiments to detennine the amount of CST required to remove the Cs~ in the feed. The 

second and third assumptions allow us to assume that the material balance is the saIne as 

the entrance feed with the exception that the cesium nitrate is converted to sodium nitrate. 

The next step in the process is to acidifY the waste streaJn with 12 M nitric acid. 

Acidification converts all of the nitrites to nitrates and destroys the alUlninate ions in the 

solution. The aluminate ions (Al02-) are essentially aluminum ions (Ar'~) and four 

hydroxide ions (OH-) in water. Hydroxide ions cannot exist in an acidic solution so the 

aluminate ions are represented in the process and simulation from this point on as 
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aluminum ions. This part of the process is modeled using ASPEN to obtain a 

representation of the interactions of the acid with the waste stream. The acidifier is 

modeled using the MIXER module in ASPEN as an agitated tank. The components of the 

waste stream are broken down into individual ions to account for the interactions of the 

dissociated species in solution. The ASPEN simulation does not function properly when 

phosphate ions are incorporated into the waste stream~ therefore, phosphate ions are left 

out of the simulation and are assumed to follow the same path as the aluminum ions. This 

assumption causes a negligible error since the amount of phosphate ions in the waste 

strealn is small « 0.020/0 by molar flow rate). 

The acidic waste stream is sent to an evaporator to remove most of the water before the 

remaining stream undergoes crystallization. The evaporator is modeled in ASPEN using 

the FLASH2 module. The evaporator, operating at 400 OF and atmospheric pressure 

(14.7 psig) creates two streams. The vapor stream consists of water and a trace of nitric 

acid. The liquid stream is predominately sodium and nitrate ions (Na' and N03 , 

respectively) with a small amount of salt ions (Al+3
, P04-

3
, etc.) and water. The liquid 

stream is sent through a crystallizer operating at 100 OF to solidifY most of the sodium and 

nitrate ions as sodium nitrate, NaN03 (s). The crystallizer is represented in the simulation 

with the HEATER module operating as a cooler. The crystallized stream is passed 

through a vacuum filter, modeled in ASPEN with a SEP2 unit, to separate the solids froin 

the liquid waste. The liquid waste is taken away as low-level waste. The total molar flow 

rate of low-level waste is approximately 300 lbmollhr: the volumetric flow rate is 50 ft3/hr. 

The solid sodium nitrate from the filtration step is re-dissolved in water so it can be 

converted by electrochemical reduction to reclaim the sodium from the process. The 

water to dissolve the sodium nitrate comes from the vapor product of the evaporator. The 

vapor from the evaporator is condensed at a pressure of 14.7 psig to a temperature of 

212°P. The condenser is modeled in ASPEN using a HEATER module as a cooler. The 

condensed water and the solid sodium nitrate are combined in an agitated tank to produce 

a 2.2 M solution of sodium nitrate. 
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The final step in the treatment of the Hanford waste solution is nitrate destruction in an 

electrochemical cell. In this cell a potential is applied which drives the destruction of 

nitrates. The laboratory work in the report by Hobbs results in the lead electrode 

completely destroying the nitrates and producing 75% of the feed in the form ofN2 gas, 

24% as NOx gas, and 1% as NH3 gas. The following assumptions are made so Hobbs' 

work could be used to determine material balances in the cell. The detailed calculation are 

in Appendix B. 

1.) The reactions in the process go as those in the report producing the same 

product streams. 

2.) The cell destroys exactly enough water to produce OH- ions that will 

combine with Na+ to produce sodium hydroxide. 

The resulting material flows are summarized in Figure 2. The off gases produced in the 

nitrate destruction are released into the atmosphere. It is assumed that the NOx emissions 

do not exceed regulations or that release permission may be purchased. 

Equipment Sizing and Costing 

Cost estimates are calculated using general correlations from Perty's Chemical ElIxilleer's 

Handbook, -Ith editioll and Plal/t [)e ... ;iXII alld Ecollomicsfor Chelllicol J~'lIxiJleer'.\· (Pelers 

and Timmerhau.\)' The Marshall and Swift Equipment Cost Index for the second quarter 

of 1996 is used to calculate the proper present day cost from equipment prices based in 

past years. Cost estimates for all of the major equipment items are displayed in Table 2~ 

calculations for the individual items are detailed in Appendix C. 
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Table 2: Equipment Costs 

Equipnlent Item Size Cost 

Ion Exchange Columns 8 @ 16 m~ $844,800 

Shielding/Building 5000 fe $4.3 million 

Acid Tank 1000 gallons $28,000 

Evaporator 100,000 fe $1.5 million 

Condenser 100,000 fe $1.5 million 

Crystallizer 700 tons/day $804,500 

Filter 200 fe $48,600 

Mixing Tank 1000 gallons $28,000 

Electrochemical Cell 2100 m2 $210,000 

I Total Equipment Cost --- $9.3 million 

The ion exchange system is the most capital intensive section of the project. This 

operation must be carried out in a building shielded by seven feet of reinforced concrete 

on all sides. The layout of the building and exchange columns is also located in the 

Appendix. The system consist of two sets of four ion exchange columns in parallel 

separated by a concrete wall. Each column has a volume of 16m3 
( Diam- 2m, L- 5m), 

and is packed with 320 kg of CST resin. At a flow rate of6 column volumes per hour (6 

CV/hr) each column will exhibit .02% breakthrough at 70 CV or 12 hrs. and will load to 

500/0 in 280 CV or 47 hours (DOE). The proposed system runs continuously because the 

layout allows the feed to travel through one side while a column is being changed out on 

the other. The piping is arranged so that the feed can be pumped through the system in 

any order necessary. Each column is loaded in 47 hours and one column must be 

exchanged every 12 hours. The cost for each unit is $105,600 and the total material cost 

for the facility is approximately $5 lnillion. 

The equipment items for the section of the process simulated on ASPEN (from the acid 

tank to the sodium nitrate solution tank) are sized and cost estimations are made based on 

the tlow rates and compositions of the streams within the sitnulation. The acid tank and 
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the sodium nitrate solution tank are evaluated as 1000 gallon agitated vessels. The size 

was chosen arbitrarily and ensures an adequate capacity to handle the flows in the process. 

The cost of each tank is $28,000. The costs of the evaporator and the condenser are 

assumed to be essentially the same. Both units handle roughly the same now rate and 

perform opposite functions~ the evaporator vaporizes the water and the condenser cools it 

back down. The heating surface is assumed to be 100,000 square feet making the cost of 

each unit approximately $1.5 million. The cost of the crystallizer is calculated based on a 

capacity of 700 tons per day resulting in a cost of $805,500. The filter cost, based on a 

filtering area of 200 square feet, is $48,600. 

The projected equiplnent cost for the electrochemical cell is a rough estimate. The 

$210,000 price is an estimate based on multiplying the required electrode area of 1400 

m2 by 1. 5 and then again by $100 I m2
. The cell consists of one hundred 14 m2 electrodes 

in series. The layout and calculations of the cell are in Appendix C. 

Fixed capital investment is calculated using a typical percentages table for direct and 

indirect cost segments. Fixed capital investment amounts to $32.4 million and is 

summarized in Table 3. 
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Table 3: Fixed Capital Investment Chart 

Conlponent Assunled 'Yc. of Total Cost 

Purchased Equipment 30 $9.3 million 

Installation 8 $2.5 million 

Instrumentation 4 $1.25 million 

Piping 10 $3. I million 

Electrical 4 $1.25 million 

Building 7 $2.2 million 

Yard Improvements 2 $620,000 

Service Facilities 15 $4.65 million 

Land 0 0 

Engineering and Supervision 7 $2.2 million 

Construction Expense 5 $ 1.55 million 

Contractor's Fee 2 $620,000 

Contingency 10 $3. I million 

Total Fixed-Capital --- $32.4 million 

Investment 

Operating and Material Costs 

Operating costs are calculated based on twenty four hours a day, 365 days a year (8766 

hrs/yr) of operation. A summary of the operating costs, including material and waste 

removal costs, is found in Table 4. The calculations for these costs are summarized in 

Appendix C. 
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Table 4: Operating, Material, and Waste Removal Costs 

Utility!Material Usage Annual Cost 

Ion exchange system 730 columns/yr $77. I million 

Nitric acid 40,000 Ib/hr $36.3 million 

Sodium hydroxide 2040lb/hr $20.2 million 

Steam 4.35 e5 Ib/hr $12.4 mil1ion 

Electricity 2.2 e8 kwh $17.5 million 

Labor 3% offixed capital invest. $522,000 

Overhead 50% of labor cost $261,000 

Total Operating Cost --- $164.3 nJillion 

Low-level waste removal 25,000 m3/yr $248 million 

High-level waste removal 11,680 mJ/yr $5.84 billion 

Total Waste Removal Cost --- $6.1 billion 

The largest operating cost is incurred in the change out of the ion-exchange units. The 

cost per unit includes the cost of the column and the packing material and amounts to 

$105,600. An ion exchange unit is replaced every twelve hours and results in a cost of 

$77. I million. The next major operating expense is the cost of nitric acid tor the 

acidification. The price of nitric acid is $210 per ton as quoted in the April 14, 1997 issue 

of Chen Ii cal Market Reporter. The annual cost of nitric acid amounts to $36.3 million. 

Two major utilities costs are incurred in running the plant~ 500 psig steam for the 

evaporator and electricity for electrochemical reduction. The annual steam cost is $12.4 

million while the electricity cost is $17.5 million. The cost of labor is estimated as three 

percent offixed capital investment and comes to $522,000. Overhead costs are estimated 

as fifty percent of the labor cost or $261,000. The total annual operating cost is $164.3 

million. 
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Waste Disposal Options 

Waste disposal is a major cost associated with the operation of the clean salt process. A 

question arises over whether to design a system to re-claim the sodium as sodium 

hydroxide and recycled as caustic or to dispose of the sodium with the low-level waste. 

The low-level waste is incorporated into a glass that contains 50% waste by weight and 

costs $10,000 per cubic meter to produce. Option 1 is to use electrochemical reduction to 

convert the sodium nitrate into sodium hydroxide for use as caustic recycle. Option 2 is to 

dispose of the sodium and nitrate as low-level waste. Calculations for the comparison of 

the two modes of disposal are given in Appendix C with results summarized in Table 5. 

Table 5: Low-level Waste Disposal Comparison 

Option 1 Option 2 

(with NaOH recycle) (without recycle) 

Volume of low-level waste 25,'000 m3/yr 200,000 m'~/yr 

Waste removal cost $248 million $1.97 billion 

Cost of purchasing NaOH $20.2 million $248 million 

Cost of electricity for $17.5 million ------

electrochemical cell 

Total waste renloval cost $285.7 million $2.2 billion 

The waste disposal cost under option 2 is considerably higher due to the larger volume of 

low-level waste~ the cost amounts to $1.97 billion annually. The cost of purchasing fresh 

caustic is included in option 2 because no sodium hydroxide is recycled; this cost is $248 

million per year. The total waste disposal cost under option 2 is over $2.2 billion per year. 

The low-level waste disposal cost under option I is $248 million per year. The total cost 

under option 1 also includes the cost of the electrochemical reduction unit. The 

equipment cost for the unit is $210,000. The cost of operating the unit is $17.5 million 

per year for electricity. A small amount of sodium hydroxide must be purchased under 
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option I because the recycle does not contain the needed amount of caustic. 

Approximately 51 Ibmol/hr of sodium hydroxide must be purchased; a cost of $20.2 

million per year. The total waste disposal cost under option I is $285.7 million; a savings 

of over $1.9 billion per year compared to option 2. The plant is designed based on option 

1 with the electrochemical reduction process and the caustic recycle. 
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Results Discussion and Analysis 

The plant design (See Figure 1: Process Flowsheet) contains several unit 

operations. First, the caustic sludge is pumped into two sets of four shielded ion 

exchange columns in series. In this reactor, all of the radioactive cesium is replaced by 

sodium. Next, the process stream is pumped into an acidifier and mixed with 12 M nitric 

acid. Most of the hydroxide ions are neutralized and the stream, which is mostly water, 

and sodium nitrate is piped to an evaporator. The top stream which is almost exclusively 

water vapor is sent to an evaporator, condensed, and sent to another mixing tank where it 

will eventually be mixed with another process stream. The bottom stream which is 

sodium ions, nitrate ions, water, aluminum ions and phosphate ions is pumped into a 

crystallizer. Inside the crystallizer, the sodium and nitrate ions solidify into sodium 

nitrate. This stream is then passed through a vacuum filter where solids and liquids are 

separated. Approximately 300 lbmol/hr or 50 ft3/hr of liquid is disposed of as low level 

nuclear waste. The sodium nitrate (solid) is redissolved in the mixer with the water 

from the condenser before it is passed into the electrochemical cell. All of the processes 

after the ion exchange to the electrochemical cell were modeled and costed using 

ASPEN. The ion exchanger and the electrochemical cell were sized, modeled and costed 

by hand. The sodium nitrate solution entering the electrochemical cell is 2.2 M. In the 

cell, Hobbs l analysis was used to model the destruction of the nitrates. The lead electrode 

completely converts the nitrates into nitrogen gas, NOx, and ammonia. These off gases 

produced are released into the atmosphere. The remaining 574 lbmollhr of sodium 

hydroxide is recycled as fresh caustic. 

All of the equipment for the plant (ion exchange columns, shielding/bui lding, 
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acidifier, evaporator, condenser, crystallizer, filter, mixing tank and electrochemical cell) 

cost $9.3 million. The total fixed capital of the project, including equipment, land and 

construction totals $32.4 million. Materials, labor and overhead add an additional $164.3 

million to the project and waste disposal contributes an enormous $6.1 billion to the 

project. The waste cost is assuming that the plant implements the sodium hydroxide 

recycle, which reduces low-level waste storage costs and cost for purchase of fresh 

caustic. The total cost of the project sums to $6.3 billion (97% of total cost can be 

attributed to waste storage). 
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Conclusions 

Unfortunately, there is currently no permanent high-level waste storage facility in 

the United States. Nonetheless, due to the safety concerns at the Hanford site, a cleanup 

project must be initiated. A plant similar to the design in this report is very inexpensive 

compared to the cost of the actual disposal of the nuclear waste materials. Processes 

similar to the sodium hydroxide recycle must be employed to help reduce costs of new 

materials and unneeded waste disposal. Perhaps, a similar process to recycle nitric acid 

as fresh feed could be researched. Also, chemicals such as nitric acid and ammonium 

hydroxide which will be purchased in massive quantities could be negotiated to lower 

prIces. 

Given that the plant, labor and equipment comprise such a small percentage of the 

total cost of the Hanford cleanup cost, the Department of Energy should not only 

consider the price of the bids on its cleanup contract, but also the reputation and 

technological expertise of the company to whom it gives the bid. An avoidable disaster 

does not need to take place simply because the government was trying to cut a few 

million dollars from a multi-billion dollar project. 
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======= ==================== ============================= ~= ==~== 

Data file created by ASPEN PLUS ReI. 9.2 1 on 17:06:14 Tue Apr 15, 1997 
Run ID: NACH Item: STREAM-SUM Screen: Stream-Sum.Main 
C- - - - --C - - - - -C - - -----C - -- - --C--- - ----C- - --- -C- -- - - -

Display ALL STREAMS 1WASTE 2HN03 3PROD 4FLVAP 4WCOND 
Units: From B1 B2 B9 
Format: GEN_E To B1 B1 B2 B9 B6 

Phas LIQUID LIQUID LIQUID VAPOR LIQUID 
Temperature [F] 77.0 77.0 124.3 400.0 212.0 
Pressure [PSI] 14.70 14.70 14.70 14.70 14.70 
Vapor Frac 0.000 0.000 0.000 1.000 0.000 
Mole Flow [LBMOL/HR 12916.500 4151.406 16442.500 14995.254 14995.254 
Mass Flow [LB/HR] 236402.703 91690.375 328093.406 270143.688 270143.688 
Volume Flow [CUFT/HR] 3315.258 1190.556 4702.904 9.37619E+6 4516.409 
Enthalpy [MMBTU/HR 1564.457 411.252 -1975.711 -1520.710 1807.333 
Mole Flow [LBMOL/HR 

NA+ 686.000 686.000 
OH- 626.000 < 0.001 < 0.001 
N03 12.500 625.406 638.500 < 0.001 
H+ 625.406 < 0.001 < 0.001 
WATER 11550.000 2900.000 15076.000 14995.254 14995.254 
HN03 0.594 trace < 0.001 

Display ALL STREAMS 1WASTE 2HN03 3PROD 4FLVAP 4WCOND 
Units: From B1 B2 B9 
Format: GEN_E To B1 B1 B2 B9 B6 

Phas LIQUID LIQUID LIQUID VAPOR LIQUID 
AL+3 42.000 42.000 
NAN03(S) 



Display ALL STREAMS 6FLLIQ 7COOL 8 LAW 9S0L 10WASH 
Units: From B2 B4 B5 B5 B6 
Format: GEN_E To B4 B5 B6 

Phas LIQUID MIXED LIQUID SOLID LIQUID 
Temperature [F] 400.0 100.0 100.0 100.0 181.2 
Pressure [PSI] 14.70 14.70 14.70 14.70 14.70 
Vapor Frac 0.000 0.000 0.000 0.000 0.000 
Mole Flow [LBMOL/HR 1447.246 873.098 298.949 574.149 16143.552 
Mass Flow [LB/HR] 57949.371 57949.371 9149.454 48799.602 318943.312 
Volume Flow [CUFT/HR] 437.247 395.986 50.180 345.806 4756.264 
Enthalpy [MMBTU/HR -128.158 -151.462 36.244 -115.218 -1922.552 
Mole Flow [LBMOL/HR 

NA+ 686.000 111.851 111.851 574.149 
OH- < 0.001 < 0.001 < 0.001 < 0.001 
N03- 638.500 64.351 64.351 574.149 
H+ trace trace trace < 0.001 
WATER 80.746 80.746 80.746 14995.253 
HN03 trace trace trace trace 

Display ALL STREAMS 6FLLIQ 7COOL 8 LAW 9S0L 10WASH 
Units: From B2 B4 B5 B5 B6 
Format: GEN_E To B4 B5 B6 

Phas LIQUID MIXED LIQUID SOLID LIQUID 
AL+3 42.000 42.000 42.000 
NAN03{S) 574.149 574.149 

Display ALLSTREAMS 
Units: From 
Format: GEN_E To 
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Appendix E - UNIVERSITY HONORS PROGRAM 
PLAN FOR INTERNATIONAL STUDY, WORK, AND TRAVEL 

Name: ---?~~--~-~~--------------------------------
College: ___ lL~:...':-.~~~_______ Department: __ ~~~_~~~ __ 

Faculty Mentor: 

BRIEF DESCRIPTION OF PROPOSED INTERNATIONAL EXPERIENCE: 

J:.WI'\It k )dO('ltl~ ~ ~~.J..-""" Gh~iC",) G,....f'W"'f '" +heA<­
\~ SVV{UIh P-Iv-l,T'tr-..fb1'" e-~~ 'iC)-CAW ~ IL«kb'J) £h7W ... 

ATTACH COPIES OF: Your travel schedule, addresses of institutions with which 
you will be affiliated, copies of relevant correspondence from host institutions. 

I have met with this student and discussed the plan and attachments describing the 
proposed international study, work, and travel. The plan is well-conceived, and the 
student appears to be prepared adequately for this experience. 

Signed: 
Elizabeth Ousley, Ad visor 
Center for International Education 
G 1 02 Melrose Hall 
phone: 974-3177 
Email: EOUSLEY@UTK.EDU 

Date: 

Return this completed form to The University Honors Program, F10l Melrose Hall, 
974-7875, at least 1 month prior to your departure. 
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