
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative

Exchange

University of Tennessee Honors Thesis Projects University of Tennessee Honors Program

Spring 5-1991

Multi-Channel Music Synthesis Using an ASIC
Lewis Thornberry

Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj

This is brought to you for free and open access by the University of Tennessee Honors Program at Trace: Tennessee Research and Creative Exchange. It
has been accepted for inclusion in University of Tennessee Honors Thesis Projects by an authorized administrator of Trace: Tennessee Research and
Creative Exchange. For more information, please contact trace@utk.edu.

Recommended Citation
Thornberry, Lewis, "Multi-Channel Music Synthesis Using an ASIC" (1991). University of Tennessee Honors Thesis Projects.
https://trace.tennessee.edu/utk_chanhonoproj/76

https://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu/utk_chanhonoproj?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu/utk_chanhono?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://trace.tennessee.edu/utk_chanhonoproj?utm_source=trace.tennessee.edu%2Futk_chanhonoproj%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

Multi-channel Music Synthesis Using an ASIC

Andrew B. Gardner & Lewis Thornberry

ECE-494: Introduction to ASIC Design

April 2.3, 1991

Professor: Dr. Don Bouldin

TABLE OF CONTENTS

I. ABSTRACT

II. INTRODUCTION

III. SYSTEM LEVEL DESIGN

IV. CHIP LEVEL DESIGN
A. HARDWARE

1. REPEATABLE CHANNEL PROCESSING
2. IMPLICIT REST GENERATION
3. RESTGENERATION
4. TEMPO GENERATION
5. CLOCKING

B. FIRMWARE

V . INPUT/OUTPUT
A. PIN ASSIGNMENTS
B. USER DATA FORMATS

VI. SIMULATION DISCUSSION

VII. CONCLUSION

APPENDIX I

FIGURE 1: SYSTEM LEVEL DESIGN
FIGURE 2: CHIP LEVEL DESIGN
FIGURE 3: TEMPO GENERATION
FIGURE 4: REST GENERATION
FIGURE 5: IMPLICIT REST GENERATION
FIGURE 6: PIN ASSIGNMENT

APPENDIX II

CONTROLLER.BDS
SCHEMATICS
.PIN FILE
.CSL FILE
THOR TIMING PLOTS

ABSTRACT

The high speed and multiple channel requirements necessary for music synthesis
suggest the use of an application-specific integrated circuit (ASIC). While a

microprocessor is capable of controlling such a system, the parallel architecture

and precision timing and I/O capabilities of an ASIC make it an attractive

alternative, particularly when high-quality results are desired (like accurate note

frequencies).

Inputs to this particular ASIC are eight bits wide. The data structure of the system is
not complex, and the options available include: tempo control (fast or slow),

variable note duration (in multiples of a 16th note), and selectable pitch (including
a range of three octaves). Notes may be played indefinitely without a pause by

setting an endnote bit. The output of this circuit is a variable frequency square

wave that can be used in conjunction with drivers to control a speaker element.

INTRODUCTION

The music synthesis ASIC designed provided a practical introduction to many VLSI

design concepts: simulation methods, CAD tools, and space limitations. An effort to

reduce the complexity of the chip and data encoding scheme clearly resulted in a

tradeoff in 'extra' functions. Music in the form of notes from a three-octave range

are encoded in a memory device (ROM or RAM). The music synthesis system

sequentially addresses the memory to provide an appropriate input signal to the

ASIC, in turn providing an appropriate output signal for music generation (the

variable frequency square wave). Rest notes and tempo were considered and

implemented.

Pin assignment was not a problem in this particular project; if a larger chip size

were available, an improved data loading scheme would have to be developed to

accomodate multiple channels (the current method requires eight pins of input per

channel. .. obviously four or more channels becomes unwieldy in terms of package

size). Because of the low frequency range of human hearing this ASIC will not be

overly taxed with speed requirements. Rather the space limitations of the TinyChip

forced difficult decisions on which functions (tempo, special sound effects, number

of available notes, number of tempos, ...) to include, and prohibited the addition of

an internal ROM containing the count map (making song encoding easier) and

additional chan nels.

One major consideration in the design of this project was exactly how sound would
be produced. Different notes are recognized by the human ear based on

frequency and waveform quality. Since the latter variable is rather ambiguous and
not easily addressable, the primary function of this ASIC was to generate an

appropriate frequency square wave. The accuracy of this frequency was directly

related to the size of the duration counter used in the circuit. To obtain 'quality'

sound, each note's frequency must be within a 30/0 tolerance (or 3-cent tolerance in

music jargon). There still existed an option, however, concerning the final output

stage of the system: it was possible to have the ASIC generate n-bit words at a

variable frequency, with each word representing a digitized waveform. Or the ASIC

could clock a ROM containing a digitized waveform. These words (from the ASIC

or ROM) could then be decoded by a digital-to-analog converter (DAC) which

would drive a speaker element. While the waveform quality would undoubtedly
improve, the difficulty of this impementation was deferred.

The last important consideration for this project was the complexity of the
supporting system. It appears that while the ASIC will require several auxiliary
integrated circuits (see Figure 1 in Appendix I), these will be easily connected.

Still, the music synthesizer chip designed is hardly a stand-alone componentl The
alternative to an ASIC or microprocessor is a direct implementation of logic using
SSI/MSI/LSI IC's. This hardly seems feasible, though, since this circuit required
approximately 100 devices and the support of a clever finite state machine
controller.

SYSTEM LEVEL DESIGN

As mentioned in the introduction, there is more than one possible implementation

of this music synthesis system. The proposed stand-alone system is shown in

Figure 1. Logic Works was used to generate the logic of the ASIC. This logic was

combined with a finite state machine controller to produce the chip. Due to pin

limitations, a maximum of three music channneis can be implemented on the

TinyChip using the current data encoding scheme.

For every song he intends to generate, the user is asked to produce a Song Prom,

a programmable memory that contains a sequence of note codes. These codes

are addressed by the ASIC's address select lines. The codes are then used to

address a value in the subsequent Count Map, a pre-packaged memory containing

frequency-related count values that are loaded into the ASIC. A Count Map is

required for each individual channel the user intends to produce; he therefore

controls the width of his programmable memory.

The data field that the user must master is simply composed of a six-bit field for

each note: five of the bits determine the specific frequency of the note (or rest) (two

octaves are available). The sixth bit is an endnote bit. The purpose of this endnote

is to teU the ASIC whether to turn the note off at the end of a 16th note cycle. By

leaving the note on (and playing it again), a continuous note can be produced of

long duration.

The address-select and ROMs feed the input signal (the encoded song) into the
ASIC. An additional chip requirement is the external clock, which is necessary to
generate note timing as 01 and 02 are too fast for audio frequencies. The clock, a

100 kHz signal, also feeds a configuration of four decade counters. These are

used to extract the 100 Hz and 10Hz frequencies the ASIC needs to keep tempo.

Since the ASIC is not a high current-output device, a line drive will interface the

ASIC to the speaker element. It is anticipated that the power rating, dynamic range,

and dynamic impedance of the speaker will not present much challenge to

interfacing. With the current system setup, it is still possible to use the output of the

ASIC to clock a ROM containing a digitized waveform. The ROM output word could

be decoded and used by a DAC.

CHIP-LEVEL DESIGN

HARDWARE

The ASIC is designed to support a finite state machine, or controller,
and its peripheral random logic. These functions are illustrated in
Figure 2. While the FSM is actually programmed with special
software, the surrounding schematics are developed using
Logicworks.

REPEATABLE CHANNEL PROCESSING

Of these schematics, perhaps the most crucial element is the
repeatable channel processing logic that is shown within dotted lines.
With only minor changes to the control program, and simple cut and
paste operations in Logicworks, this block can be repeated as long as
space remains within the chip (and the necessary pins are available).
Of course, each repitition of the grouped functions adds to the overall
parallel processing effectiveness of the ASIC, and is thus the main
advantage of the automated approach. Unfortunately, it is clear that
there is no room on the TinyChip for even a second channel of logic.
Perhaps the design could be further minimized in order to achieve
multiple channels.

The operation of the logic is simple. The 8-bit input that corresponds
to the note to be played is loaded into the counter, where it is tested
for zero by the FSM. The controller will increment the count if zero
has not been reached, and will toggle the output when zero has been
reached. After expiration of the count, the same count value is
reloaded into the counter for incrementing. This cycle continues
until the note's duration has expired, at which time a new count
value appears at the input.

THE IMPLICIT REST GENERA nON

The Implicit Rest Generator of Figure 4 determines when to finally
turn off a note's ringing. This mimics music in the real world, where
blocks of time are actually composed of both musical notes and
various unrecorded rests between notes. The user has direct control
over the Implicit Rest Generator. Since each data entry corresponds
to the duration of a 1/16th note, the pogrammer may implement a
series of notes separated by pauses (such as 4 sixteenth notes with
the Endnote bit asserted in each), or one long continuous note (such

as one quarter note implemented as 4 continuous sixteenth notes).
In other words, the Endnote bit allows the user to program any
continuous note length, with a resolution of the sixteenth note.

Key to the generation of the implicit rest is the 5 Bit Counter, which
need not be repeated, but can be tapped by all the channels. Its
input is the 1kHz tap of the trio of decade counters in the external
circuitry. The two bits that are tapped at the output of the counter
correspond to the two available tempos. These bits go high, for the
first time in the playing of a note, when around 75-80% of the note's
duration has already passed (see CLOCKING). They are gated with
the endnote bits and tempo bit of each separate channel processing
block. This boolean sum of products is latched as the value IREST, or
implicit rest. This line is utilized in the Rest Generator. The FSM
clears the counter and latch values at the beginning of a new note.

REST GENERATION

This subset of logic, detailed in Figure 5, serves as the connection
between the controller, which is entirely ignorant of rests, and the
two rest control lines, IREST and REST. REST, or note rest, is asserted
when the user inputs the code for rests (see SIMULATION section).
The channel input lines are combined in boolean fashion to detect the
REST signal, and the two rest control lines are then added together to
produce an output enable line. This enable line, when asserted,
prevents the CHTOGGLE output of the FSM from propagating through
to the chip's output. The output is instead pulled low for the
duration of the note.

TEMPO GENERATION

Also on-chip is the Tempo Generator of Figure 3. This logic generates
the control line that determines when a note's duration has expired,
and thus orders the playing of the next note. CN, or note clock, is
derived from the 10Hz input. The slow clock is divided by four
internally to produce two tempo options, which the user selects from
with the TEMPO input line. The user pulls TEMPO high for fast
operation, where whole notes last around 1.6 seconds, or grounds the
line for the slower speed, where whole notes last as long as 6.4
seconds.

CLOCKING

The counting is clocked by a100kHz toggle clock, or CT. It will
generate note periods with a resolution of 0.02msec. By using an 8
bit counter, we designed for the generation of frequencies between
50 kHz and 195 Hz, which certainly includes the two octave range
that we targeted.

How accurate are our generated frequencies? Due to pin limitations,
we were forced to sacrifice some accuracy. Since the Count Map
feeds only 8 bits to the ASIC, one of those 8 bits must contain the
Endnote data that the user programmed in the Song Prom. We chose
to make the LSB of the Count Map outputs equal to the Endnote bit.
Therefore, we have limited the imposed error to plus or minus
0.02msec per period. This is in addition to the intrinsic error
associated with our limited resolution.

Analysis shows that most of the notes are within 1 % of their ideal
values. The only severe errors occur in the last few notes at the top
of the frequency range. The human ear is most likely to detect error
when two similar notes are played in sequence. Assuming that the
worst case results in the playing of B5 and C6, which are 987.7Hz and
1041.67Hz, respectively, the user will hear:

(1/980.4)/0.02msec ==> 51 counts ==> (1/51 *0.02msec)
or 980 Hz, and
(1/1041.67)/0.02msec ==> 48 counts + endnote ==> (1/49*0.02msec),
or 1020 Hz.

That is about a 70% reduction in step between notes, and may be
noticed by the music expert. But with this application, in which low
quality speakers produce low quality sound, it is unlikely that at
such high frequencies, the quality will be noticeably reduced for the
average listener.

We discussed earlier how the 100kHz toggle clock is tapped by four
decade counters to produce a 10Hz note clock, and also how the note
clock is again tapped in a two bit counter to provide 2 choices for
tempo. Now let us describe how the decision to enable the IREST line
IS made.

It is obvious that IREST can not be made immediately available at
the beginning of the note's duration. That would make the note

sound like a rest note. The idea is to allow the note to play for most
of its alloted time before enabling the IREST to bring the channel's
output low. This is done by tapping the external decade counters at
the 100Hz signal, for the third clock input. This clock feeds into a 5
Bit Duration Counter. When the fourth bit of that counter goes high,
the elapsed time has been 8*1/10Hz, or 0.08 seconds, which is nearly
80% of the duration of a note in fast tempo. It is also true that all
five bits go high at once every 32 counts. This boolean tap provides
an elapsed time of 0.32 seconds, which is 80% of the slow tempo's
duration of 0.4 sec. We therefore conclude that combining these two
Duration Counter taps with the tempo and endnote bits provides an
Implicit Rest function for each tempo.

FIRMWARE

We have spared our controller from the nightmare of rests. Nor do
we ask that it produce count values that correspond to user specified
notes. In turn, the FSM worked flawlessly, requiring the correction
of only one error in the entire program. Contrast that to the
Logicworks effort, which required countless revisions. A good design
strategy may be to accomplish as much as one comfortably can in the
hardware development language, and to implement the more
challenging tasks in logic. Doing this will produce a majority of the
design in a small portion of the total design time, and will keep the
difficult debugging sessions focussed only on the understandable
schematics.

A major task that our FSM performs is the constant manipulation and
sampling of the counter. If the counter is at zero, the program must
be ready to toggle the CHTOGGLE output, after which it must perform
a LOAD command. The controller must therefore check each
channel's counter, and follow channel-specific instructions in
channel-specific states. Theoretically, it will be possible for the FSM
to fail at this elementary task if multiple counters go to zero
simultaneously. This challenge would have to be addressed if we
had more than one channel.

The FSM is also in charge of clearing the CT and CN latches after
these clocks are detected. This requires two additional lines, CLRN
and CLRT. These lines are only asserted during the state
immediately following the detection of the clocks. CLRN also clears
the random logic's flip flops.

A final task that the FSM must perform is the maintenance of the
address select lines. The controller has a 2 bit output field that feeds
two chip output pads, ADDRI and ADDR2. Two bits are required
because four functions are implemented: clear, remove clear,
increment, and hold.

INPUT/OUTPUT

PIN ASSIGNMENTS

The chip's pin assignments (see Figure 6) were changed quite
frequently during the design. The initial four channel design with
internal Count Maps was discarded when it was found that such
secondary control is more easily implemented external to the chip.
This made the 8 bit Count Map outputs become chip input pins,
thereby increasing the I/O requirement for each channel to 9 pins.
This, in turn, left us with hopes of fitting 2 or 3 channels on the 25
available pins, because we had to have pins for PHIl and PHI2, V dd
and GND, the 3 clocks, TEMPO, INITIAL, and the address select field.

If the first two channels are 9 pins each (remember to count the
output pin), then that leaves only 7 pins for the third channel. If we
were indeed designing three channels, then perhaps the third
channel would be defined over only one octave (a bass clef, perhaps),
so that it could function with just a 6 bit counter. Or perhaps we
would design an extensive testing scheme, using all 7 bits to verify
functionality after fabrication. Both of these schemes require more
logic, and cannot be implemented on our crowded TinyChip.

USER DATA FORMAT

The user is asked to familiarize himself with the data entry scheme
for the Music Synthesis. He must produce a 6 bit field containing
frequency and duration information for each note. The first five bits
correspond to the 25 notes available in the two octaves of interest,
and also include a code for the musical rest. Of course, the sixth bit is
the all-important Endnote bit. The following table provides a listing
of the note codes and the respective Count Map outputs. Note that
the Count Map's LSB is the Endnote bit.

NOTE 5BIT CODE ENDNOTE MAP OUTPUT
C4 00000 0 01000000

1 01000001
C#4 00001 0 01001010

1 01001011
D4 00010 0 01010100

1 01010101
D#4 00011 0 01011110

1 01011111

E4 00100

F4 00101

F#4 00110

G4 00111

G#4 01000

A4 01001

A#4 01010

B4 01011

C5 01100

C#5 01101

D5 01110

D#5 01111

E5 10000

F5 10001

F#5 10010

G5 10011

G#5 10100

A5 10101

A#5 10110

B5 10111

C5 11000

REST 11111

0 01100110

1 01100111

0 01110000

1 01110001

0 01111000

1 01111001

0 01111110

1 01111111

0 10000110

1 10000111

0 10001100

1 10001101

0 10010100

1 10010101

0 10011010

1 10011011

0 10011110

1 10011111

0 10100100

1 10100101

0 10101010

1 10101011

0 10101110

1 10101111

0 10110010

1 10110011

0 10110110

1 10110111

0 10111010

1 10111011

0 10111110

1 10111111

0 11000010

1 11000011

0 11000110

1 11000111

0 11001000

1 11001001

0 11001100

1 11001101

0 11001110

1 11001111

X 00100000

SIMULATION DISCUSSION

THOR provided us with two easy-to-use methods of testing our chip's
functionality. The interactive mode was useful in the early stages of
testing, as it allowed us to step through the initialization of the ASIC,
controlling all the inputs very carefully. The batch mode provided
an easy way to generate the long periods of time needed to test the
chip's response to the assertions of IREST, REST, and CN. Each
simulation led to error correction and eventually confirmed
successful operation of the circuitry.

Figure A: In interactive mode, we see the toggling of CHTOGGLE and
subsequent toggling of the output line. Notice how LOAD
forces 11110000 into the counter and CHZERO detects
00000000.

Figure B: A close-up of the start up sequence shows the predicted
state sequence 0-1-2-3 followed by the count and wait
3-9-3-9 sequence.

Figure C: A close-up of the assertion of CHZERO. Note that after
state 5 detects CHZERO, it moves to State 6. CN is not
detected there, so the 3-9-3-9 sequence starts anew.

Figure D: This batch mode overview is not entirely realistic; there
would be many more toggles of the output line. There is
ample evidence here that the IREST line is effective at
TEMPO=l; the output line goes low and stays low after
IREST goes high. The next note is chosen at 10000.

Figure E: This close-up of the IREST transition shows that the FSM
is completely ignorant of the implicit rest, as it continues
to follow the 3-9-3-9 and 5-a-5-a sequences for counting.

Figure F: This overview displays that at the slow tempo, the
DETECT line properly enables the IREST line. Here we see
some harmless delay between assertion of DETECT and
assertion of IREST; the implicit rest is useful after almost
any arbitrary percentage of the initial note period has
elapsed. Most other delays in this circuit are equally
harmless.

Figure G: A close-up (TEMPO=O) of the assertion of IREST, which
again goes high on the falling edge of DETECT.

Figure H: The Rest Code, 20hex, has been entered, and notice that
REST stays high, thereby grounding the output. Again,
the FSM continues as if a regular note were playing.

CONCLUSION

The development of this project is almost complete; the final routing and switch­

level simulation remains due to difficulties with the Sun1 operating system. It is

anticipated that the chip will fit the TinyChip size constraints (indicated by rules-of­

thumb mentioned in lecture), and that the circuit will function as predicted by THOR

since the highest frequency in the circuit is a 100kHz external clock (and there are

no abrupt logic transitions). Complete simulation was not possible, however, since

the thorough monitoring of a 16th note's load, play, and stop cycles would require

too many time steps. Rather a short artificial note was played quickly and

successfully.

The size of the five-bit duration counter and the eight-bit frequency counter limited

the number of channels to one. It should be noted that a larger frequency counter

could produce more accurate notes; the current note scale suffers some frequency

degradation above middle C. Of course these counters could be moved outside of

the ASIC and/or shared between channels. Still, it appears that one-channel is the

practical limitation for a TinyChip using this design.

Possible improvements for this project include a streamlined controller and

algorithm for note-generation, more specific standard cells (Le. a NAND-gate

without the optional inverter) for more efficient space utilization, and a serial data­

load scheme to reduce the number of pins per channel. The unused pins in this

project could be used for an additional channel (with a different input scheme, or
less precise note frequencies/range) or for testing or monitoring.

The difficulty in the deSign of this chip seemed to lay in organizing this large task

and mastering the CAD tools necessary for completion. Later chips would require

far less time to take from the "designed-on-paper" stage to the "tested-and-ready­

to-go" stage. It was evident that the use of standard cells speeded the completion

of this project: the parts were guaranteed to work, the schematic capture of Logic

Works was easy to use, and the high-level functions of the standard cells made it

easy to go from initial design to implementation.

APPENDIX

(Figures)

I

Decade
Counters

Address
select/la tch

for song PROM

Song
PROM

Speaker
Element(s)

Drivers

Figure 1. System Overview

IM~l--------------------~

Tempo----~~---., ..----t---------------------------,
10Hz---~......_--_..
100kHz

CT CN CHZ6IlO INmAL

.... en
Finite State Machine f ;r

§ ~ §
ft)

~ ADDRESS !DAD c:::ma:x:;LB

2

~-------------.------Bnd note

IE--....;.---- Tempo

r-----------------Softl Prom Addreas Select

Figure 2. Chip-level hardware block diagram.

10Hz Tempo
0=a10w
1=fut

+VDD eN
OJ(

Q
RST

fSMIN
(CLRN)

Figure 3. Tempo Generation Schematic.

1kHz IN10 TEMPO

ClRN 5-bit counter

B4 B2

CLRN

IREST1

Figure 4. Implicit Rest Generation Schematic.

110

i11
rfst1

Notf: Hust rfsft irfst.

i12
113
i14

irfst1

CHTOGGLE

Figure 5. Rest Generation Schematic.

01

I I

Figure 6. ASIC Pin Assignment.

APPENDIX II

(CAD files/Simulation results)

MODEL CONTROLLER
ADDRESS<1:0>, FSM 10-9
LOAD, FSM 8
COUNT, FSM 7
CHTOGGLE, FSM 6
CLRN, FSM 5
CLRT, FSM 4
NEXTSTATE<3:0> FSM 3-0

INITIAL, FSM 7
CT, FSM 6
CN, FSM 5
CHZERO, ! FSM 4
PRESENTSTATE<3:0>; ! FSM 3-0

CONSTANT SO = 0, Sl = 1, S2 2, S3 = 3, S4 4, S5
S7 7, S8 = 8, S9 = 9, S10 10;

ROUTINE 	 MAIN;
NEXTSTATE = PRESENTSTATE;
IF INITIAL THEN BEGIN

NEXTSTATE SO;

ADDRESS = 3; LOAD 0; COUNT 0;

CHTOGGLE 0; CLRN 0; CLRT 0;

END
ELSE BEGIN

SELECT PRESENTSTATE FROM
[SO]: 	BEGIN

ADDRESS 3; LOAD 0; COUNT
CHTOGGLE 0; CLRN 1; CLRT
IF CN THEN BEGIN

NEXTSTATE Sl;
END
ELSE BEGIN

NEXTSTATE SO;
END;

END;
[Sl]: BEGIN

ADDRESS = 2; LOAD 0; COUNT
CHTOGGLE = 0; CLRN = 0; CLRT
NEXTSTATE S2;

END;
[S2]: 	BEGIN

ADDRESS = 2; LOAD = 1 COUNT
CHTOGGLE = 0 ; CLRN 1; CLRT

IF CT THEN BEGIN
NEXTSTATE S3

END
ELSE BEGIN

NEXTSTATE S2;
END;

END;
[S3]: BEGIN

ADDRESS 2; LOAD = 0 ; COUNT
CHTOGGLE 0; CLRN 1 CLRT
IF CHZERO THEN BEGIN

NEXTSTATE S4
END
ELSE BEGIN

NEXTSTATE S9;
END;

END;
[S4J: BEGIN

ADDRESS = 2 ; LOAD = 1 ; COUNT
CHTOGGLE = 1 ; CLRN = 1 CLRT
IF CT THEN BEGIN

NEXTSTATE = S5

5, S6 6,

0;
0

0;
0;

= 0 ;
1;

1
0;

0

1

END
ELSE BEGIN

NEXTSTATE S4;
END;

END;
[S5J: BEGIN

ADDRESS = 2 ; LOAD = 0 ; COUNT 1
CHTOGGLE 1; CLRN = 1 CLRT 0
IF CHZERO THEN BEGIN

NEXTSTATE S6
END
ELSE BEGIN

NEXTSTATE S10;
END;

END;
[S6J: BEGIN

ADDRESS = 2 ; LOAD = 0 ; COUNT 0
CHTOGGLE = 1 ; CLRN = 1 CLRT 0
IF CN THEN BEGIN

NEXTSTATE S7
END
ELSE BEGIN

NEXT STATE S2;
END;

END;
[S7J: BEGIN

ADDRESS = 0 ; LOAD = 0 ; COUNT 0
CHTOGGLE = 1 ; CLRN = 0 ; CLRT 0
NEXTSTATE S8;

END;
[S8J: BEGIN

ADDRESS 1; LOAD 0; COUNT 0
CHTOGGLE 1; CLRN = 0 ; CLRT 0
NEXTSTATE = S2;

END;
[S9J: BEGIN

ADDRESS = 2 ; LOAD = 0; COUNT 0
CHTOGGLE = 0 ; CLRN 1 CLRT 1
IF CT THEN BEGIN

NEXTSTATE S3
END
ELSE BEGIN

NEXTSTATE S9;
END;

END;
[S10J: BEGIN

ADDRESS 2; LOAD = 0 ; COUNT 0
CHTOGGLE = 1 ; CLRN = 1 CLRT 1
IF CT THEN BEGIN

NEXTSTATE S5
END
ELSE BEGIN

NEXTSTATE S10;
END;

END;
ENDSELECT;

END;
ENDROUTINE;
ENDMODEL;

cells
DOOOOI
D00002
D00003
D00004
D00005
D00006
D00007
D00008
D00009
DOOOIO
DOOOII
DOOOI2
DOOOI3
DOOOI4
DOOOI5
DOOOI6
DOOOI7
DOOOI8
DOOOI9
D00020
D0002I
D00022
D00023
D00024
D00025
D00026
D00027
D00028
D00029
D00030
D0003I
D00032
D00033
D00034
D00035
D00036
D00037
D00038
D00039
D00040
D0004I
D00042
D00043
D00044
D00045
D00046
D00047
D00048
D00049
D00050
D0005I
D00052
D00053
D00054
D00055
D00056
D00057
D00058
D00059
D00060
D0006I
D00062
D00063
D00064
D00065

nanf2II
nanf2II
norf211
nanf3II
nanf3II
norf211
invflOI
dfbf3II
dfbf3II
xorf201
nanf2II
nanf2II
invflOI
norf211
dfbf3II
dfbf3II
dfbf3II
dfbf3II
xorf201
xorf201
nanf2II
nanf2II
nanf2II
nanf2II
nanf2II
nanf2II
norf211
norf211
nanf3II
dfbf3II
dfbf3II
dfbf3II
dfbf3II
xorf201
xorf201
nanf2II
nanf2II
nanf2II
nanf2II
nanf2II
nanf2II
norf211
norf211
nanf3II
dfbf3II
nanf2II
nanf2II
nanf2II
nanf2II
nanf2II
nanf2II
nanf2II
nanf2II
nanf3II
nanf2II
norf211
norf211
norf211
norf211
norf211
norf211
norf211
norf211
invfI03
norf311

DOO066
DOO067
DOO068
DOO069
DOO070
DOO071
DOO072
DOO073
DOO074
DOO075
DOO076
DOO077
DOOO78
DOO079
DOO080
DOO081
DOO082
DOO083
DOO084
DOO085
DOO086
DOO087
DOO088
DOO089
DOO090
DOO091
DOO092
DOO093
DOO094
10
11
12
13
14
15
16
17
00
01
02
03
04
05
06
07
08
09
010
PI
p2
P3
P4
P6
P7
P8
P9
P10
P11
P20
P28
P29
P30
P31
P32
P33
P36

norf311
norf311
norf311
dfbf311
dfbf311
dfbf311
dfbf311
xorf201
xorf201
nanf211
nanf211
nanf211
nanf211
nanf211
nanf211
norf211
norf211
nanf311
dfbf311
dfbf311
nanf311
nanf311
nanf211
norf211
nanf211
dfbf311
norf311
nanf311
nanf311
FSMIn
FSMIn
FSMIn
FSMIn
FSMIn
FSMIn
FSMIn
FSMIn
FSMOut
FSMOut
FSMOut
FSMOut
FSMOut
FSMOut
FSMOut
FSMOut
FSMOut
FSMOut
FSMOut
PHIl
PHI2
PadIn
PadIn
PadIn
PadIn
PadIn
PadIn
PadIn
PadIn
PadGND
PadIn
PadIn
PadIn
PadOut
PadOut
PadIn
PadOut

P37 Padln
P40 PadVdd
nets
ADDR1 09-1 P31-1
ADDR2 010-1 P32-1
BO D00018-S D00019-1 D00020-1 D00022-1 DOO029-1 DOOOSS-2
D0006S-1
B1 D00019-2 D00021-1 D00022-2 D00029-2 DOO030-S DOOOS4-3
D0006S-2
B2 D00016-S D00020-2 D00024-2 D0002S-1 DOO029-3 DOOOS4-2
D0006S-3
B3 D00017-S D0002S-2 D00028-2 DOOOS4-1 DOO066-1
B4 D00033-S D00034-1 D0003S-1 D00037-1 DOO044-1 DOO066-3
BS D00034-2 D00036-1 D00037-2 D00044-2 DOO04S-S DOO067-2
B6 D00031-S D0003S-2 D00039-2 D00040-1 DOO044-3 DOO067-1
B7 D00032-S D00040-2 D00043-2 D00067-3
CHTOGGLE D00002-2 06-1
CHZERO D00068-S 14-1
CLK1 D00008-2 D00009-2 D00012-2 P28-1
CLK2 D00070-2 D00071-2 D00072-2 D00084-2 D0008S-2 P29-1
CLK3 D00069-2 P30-1
CLRN D00008-3 D00009-3 D0001S-3 D00070-3 D00071-3 D00072-3
D00084-3 D0008S-3 D00091-3 05-1
CLRT D00069-3 04-1
CN D0001S-S 15-1
COUNT D00016-2 D00017-2 D00018-2 D00030-2 07-1
CT D00069-S 16-1
DETECT D00004-3 D00094-4
DURO D00072-S D00073-1 D00074-1 DOO076-1 DOO083-1 DOO086-1
D00094-2
DUR1 D00073-2 D0007S-1 D00076-2 DOO083-2 DOO084-S DOO086-2
D00094-1
DUR2 DOOOOS-3 D00070-S D00074-2 DOO078-2 DOO079-1 DOO083-3
D00093-3
DUR3 D00071-S D00079-2 D00082-2 DOO087-2 DOO088-1
D00093-2
DUR4 D0008S-S D00087-3 D00089-2 DOO093-1
IN10 D00004-2 DOOOOS-2 D00046-1 DOOOS6-1 P3-1
IN11 DOOOS3-1 DOOOS7-1 P4-1
IN12 D00047-1 DOOOS8-1 P6-1
IN13 D00048-1 DOOOS9-1 P7-1
IN14 D00049-1 D00063-1 D00092-3 P8-1
IN1S D00001-1 DOOOS2-1 D00062-1 P9-1
IN16 DOOOSO-1 D00061-1 D00092-2 P10-1
IN17 DOOOS1-l D00060-1 D00092-1 P11-1
INITIAL 17-1 P37-1
IREST1 D00003-2 D00091-S
LOAD D00046-2 D00047-2 D00048-2 D00049-2 DOOOSO-2 DOOOSl-2
DOOOS2-2 DOOOS3-2 D00064-1 08-1
OUTO D00002-3 P36-1
REST1 DOOOOl-3 D00003-1
SOOOOI D00002-1 D00003-4
S00002 D00004-4 D00006-1
S00003 D00004-1 D00007-2
S00004 DOOOOS-4 D00006-2
SOOOOS D00008-S D00010-2
S00006 D00008-1 D00008-4
S00007 D00009-S D00010-1 DOOOll-2
S00008 D00009-1 D00010-3
S00009 DOOOll-3 D00014-1
S00010 D00012-3 D00014-2
SOOOll D00011-1 D00013-2
S00012 D00014-3 D0001S-2
S00013 D00019-3 D00030-1
S00014 D00020-3 D00021-2
S00015 D00021-3 D00027-1

DOO086-3

-
S00016 D00022-3 D00023-2
S00017 D00023-4 D00026-1
S00018 D00024-3 D00027-2
S00019 D00023-1 D00025-3
S00020 D00016-1 D00027-3
S00021 D00026-2 D00028-3
S00022 D00028-1 D00029-4
S00023 D00024-1 D00030-4
S00024 D00018-1 D00018-4
S00025 D00034-3 D00045-1
S00026 D00035-3 D00036-2
S00027 D00036-3 D00042-1
S00028 D00037-3 D00038-2
S00029 D00038-4 D00041-1
S00030 D00039-3 D00042-2
S00031 D00038-1 D00040-3
S00032 D00032-1 D00041-3
S00033 D00031-1 D00042-3
S00034 D00041-2 D00043-3
S00035 D00043-1 D00044-4
S00036 D00039-1 D00045-4
S00037 D00033-1 D00033-4
S00038 D00017-1 D00026-3
S00039 D00017-6 D00048-4
S00040 D00018-6 D00046-4
S00041 D00016-6 D00047-4
S00042 D00030-6 D00053-4
S00043 D00031-6 D00050-4
S00044 D00033-6 D00049-4
S00045 D00045-6 D00052-4
S00046 D00032-6 D00051-4
S00047 D00031-2 D00032-2 D00033-2 D00045-2 D00055-3
S00048 D00054-4 D00055-1
S00049 D00018-3 D00056-3
S00050 D00030-3 D00057-3
S00051 D00016-3 D00058-3
S00052 D00017-3 D00059-3
S00053 D00032-3 D00060-3
S00054 D00033-3 D00063-3
S00055 D00031-3 D00061-3
S00056 D00045-3 D00062-3
S00057 D00056-2 D00057-2 D00058-2 D00059-2 D00060-2
D00061-2 D00062-2 D00063-2 D00064-2
S00058 D00065-4 D00066-2
S00059 D00066-4 D00068-1 D00068-2
S00060 D00067-4 D00068-3
S00061 D00073-3 D00084-1
S00062 D00074-3 D00075-2
S00063 D00075-3 D00081-1
S00064 D00076-3 D00077-2
S00065 D00077-4 D00080-1
S00066 D00078-3 D00081-2
S00067 D00077-1 D00079-3
S00068 D00070-1 D00081-3
S00069 D00080-2 D00082-3
S00070 D00082-1 D00083-4
S00071 D00078-1 D00084-4
S00072 D00072-1 D00072-4
S00073 D00071-1 D00080-3
S00074 D00086-4 D00087-1 D00088-2
S00075 D00089-3 D00090-2
S00076 D00088-3 D00089-1
S00077 D00085-1 D00090-3
S00078 D00006-3 D00091-2
S00079 DOOOOl-2 D00092-5
S00080 D00093-4 D00094-3

S00081 D00087-5 D00090-1

STATE[O] 10-1 00 1

TEMPO D00005-1 D00007-1 D00012-1 D00013-1 P33-1

VDD D00008-6 D00009-6 D00015-1 D00015-6 D00069-1 D00069-6

D00070-6 D00071-6 D00072-6 D00084-6 D00085-6 D00091-1

D00091-6 P40-1

STATE[l] 11-1 01-1

STATE[2] 12-1 02-1

STATE [3] 13-1 03-1

(g ONE) (n = vdd) (o=Vdd);

(g ZERO) (n = gnd) (0 GND) ;

(g ONE) (n = INIO) (0 = INIO);

(g ZERO) (n = INll) (0 = INll);

(g ZERO) (n=IN12) (0=IN12);

(g=ZERO) (n=IN13) {0=IN13};

(g=ONE) (n=IN14) (0=IN14);

(g=ONE) {n=IN15} (0=IN15);

(g=ONE) (n=IN16) (0=IN16);

{g=ONE} (n=IN17) (0=IN17);

(g=ONE) (n=TEMPO) (o=TEMPO);

(g CLOCK) (n=INITIAL) (o=INITIAL) (s=3) (vs=O, 10, 11000);

(g CLOCK) (n CL PHIl) (0 = PHIl) (s = 3) (vs = 0,1,4);

(g CLOCK) (n CL-PHI2) (0 = PHI2) (s = 3) (vs 2,1,4);

(g CLOCK) (n CLK1) {o CLK1} (s = 3) (vs 40, 40, 10500) ;

(g CLOCK) (n CLK2) (o CLK2) (s 3) (vs 0,500(1000);

(g CLOCK) (n CLK3) (0 CLK3) (s = 3) (vs 0,5(10);

(m HEXOUT) (n STATE) (i = STATE[3-0]);

(m = BINOUT) (n CLRT) (i = CLRT);

(m = BINOUT) (n CLRN) (i = CLRN);

(m = BINOUT) (n CHTOGGLE) (i = CHTOGGLE);

(m BINOUT) (n COUNT) (i COUNT);

(m BINOUT) (n LOAD) (i = LOAD);

(f=nanf211) (n=D00001)
(i= IN15,

S00079)
(do=O,O)
(0= unc,

REST1)

(f=nanf211) {n=D00002}
(i= SOOOOl,

CHTOGGLE)
(do=O,O)
(0= unc,

OUTO)

(f=nanf211) (n=DOOOll)
(i= SOOOll,

S00007)
(do=O,O)
{o= unc,

S00009}

(f=nanf211) (n=D00012)
(i= TEMPO,

CLK1)
(do=O,O)
(o= unc,

SOOOlO)

(f=nanf211) (n=D00021)
(i= Bl,

S00014)
(do=O,O)
(0= unc,

S00015)

(f=nanf211) (n=D00022)
(i= BO,

-
Bl)

(do=O,O)
(0= une,

800016)

(f=nanf211) (n=D00023)
(i= 800019,

800016)
(do=O,O)
(0= 800017,

une)

(f=nanf211) (n=D00024)
(i= 800023,

B2)

(do=O,O)

(0= une,

800018)

(f=nanf211) (n=D00025)
(i= B2,

B3)
(do=O,O)
(o= une,

800019)

(f=nanf211) (n=D00026)
(i= 800017,

800021)
(do=O,O)
(0= une,

800038)

(f=nanf211) (n=D00036)
(i= B5,

800026)
(do=O,O)
(o= une,

800027)

(f=nanf211) (n=D00037)
(i= B4,

B5)
(do=O,O)
(0= une,

800028)

(f=nanf211) (n=D00038)
(i= 800031,

800028)
(do=O,O)
(0= 800029,

une)

(f=nanf211) (n=D00039)
(i= 800036,

B6)
(do=O,O)

(0= 	unc,
300030)

(f=nanf211) (n=D00040)
(i= B6,

B7)
(do=O,O)
(0= unc,

300031)

(f=nanf211) (n=D00041)
(i= 300029,

300034)
(do=O,O)
(0= unc,

300032)

(f=nanf211) (n=D00046)
(i= INIO,

LOAD)
(do=O,O)
(o= 300040,

unc)

(f=nanf211) (n=D00047)
(i= IN12,

LOAD)
(do=O,O)
(o= 300041,

unc)

(f=nanf211) (n=D00048)
(i= IN13,

LOAD)
(do=O,O)
(o= 300039,

unc)

(f=nanf211) (n=D00049)
(i= IN14,

LOAD)
(do=O,O)
(o= 300044,

unc)

(f=nanf211) (n=D00050)
(i= IN16,

LOAD)
(do=O,O)
(o= 300043,

unc)

(f=nanf211) (n=D00051)
(i= IN17,

LOAD)
(do=O,O)
{o= 300046,

unc}

(f=nanf211) (n=D00052)
(i= IN15,

LOAD)
(do=O,O)
(0= S00045,

unc)

(f=nanf211) (n=D00053)
(i= IN11,

LOAD)
(do=O,O)
(0= S0004 2,

unc)

(f=nanf211) (n=D00055)
(i= S00048,

BO)

(do=O,O)

(0= unc,

S00047)

(f=nanf211) (n=D00075)
(i= DUR1,

S00062)
(do=O,O)
(0= unc,

S00063)

(f=nanf211) (n=D00076)
(i= DURO,

DUR1)
(do=O,O)
(0= unc,

S00064)

(f=nanf211) (n=D00077)
(i= S00067,

S00064)
(do=O,O)
(0= S00065,

unc)

(f=nanf211) (n=D00078)
(i= S00071,

DUR2)
(do=O,O)
(0= unc,

S00066)

(f=nanf211) (n=D00079)
(i= DUR2,

DUR3)

(do=O,O)

(0= unc,

S00067)

(f=nanf211) (n=D00080)
(i= S00065,

S00069)
(do=O,O)
(0= unc,

S00073)

(f=nanf211) (n=D00088)
(i= DUR3,

S00074)
(do=O,O)
(0= unc,

S00076)

(f=nanf211) (n=D00090)
(i= S00081,

S00075)
(do=O,O)
(0= unc,

S00077)

(f=norf211) (n=D00003)
(i= REST1,

IREST1)
(do=O,O)
(0= unc,

SOOOOl)

(f=norf211) (n=D00006)
(i= S00002,

S00004)
(do=O,O)
(0= S00078,

unc)

(f=norf211) (n=D00014)
(i= S00009,

S00010)
(do=O,O)
(0= S00012,

unc)

(f=norf211) (n=D00027)
(i= S00015,

S00018)
(do=O,O)
(0= S00020,

unc)

(f=norf211) (n=D00028)
(i= S00022,

B3)
(do=O,O)
(0= S00021,

unc)

(f=norf211) (n=D00042)
(i= S00027,

S00030)
(do=O,O)
(0= S00033,

une)

(f=norf211) (n=D00043)
(i= S00035,

B7)
(do=O,O)
(0= S00034,

une)

(f=norf211) (n=D00056)
(i= IN10,

S00057)
(do=O,O)
(0= S00049,

une)

(f=norf211) (n=D00057)
(i= IN11,

S00057)
(do=O,O)
(0= S00050,

une)

(f=norf211) (n=D00058)
(i= IN12,

S00057)
(do=O,O)
(0= S00051,

une)

(f=norf211) (n=D00059)
(i= IN13,

S00057)
(do=O,O)
(0= S00052,

une)

(f=norf211) (n=D00060)
(i= IN17,

S00057)
(do=O,O)
(0= S00053,

une)

(f=norf211) (n=D00061)
(i= IN16,

S00057)
(do=O,O)
(0= S00055,

une)

(f=norf211) (n=D00062)
(i= IN15,

S00057)
(do=O,O)

(0= 	800056,
unc)
;

(f=norf211) (n=D00063)
(i= INI4,

800057)
(do=O,O)
(0= 800054,

unc)

(f=norf211) (n=D0008I)
(i= 800063,

800066)
(do=O,O)
(0= 800068,

unc)

(f=norf211) (n=D00082)
(i= 800070,

DUR3)
(do=O,O)
(0= 800069,

unc)
,.

(f=norf211) (n=D00089)
(i= 800076,

DUR4)
(do=O,O)
(0= 800075,

unc)

(f=nanf3II) (n=D00004)
(i= 	800003,

INI0,
DETECT)

(do=O,O)
(0= unc,

800002)

(f=nanf3II) (n=D00005)
(i= 	TEMPO,

INI0,
DUR2)

(do=O,O)
(0= unc,

800004)

(f=nanf3II) (n=D00029)
(i= 	BO,

BI,

B2)

(do=O,O)
(0= unc,

800022)

(f=nanf3II) (n=D00044)
(i= B4,

B5,

B6)
(do=O,O)
(0= une,

300035)
;

(f=nanf311) (n=D00054)
(i= B3,

B2,
B1)

(do=O,O)

(0= une,

30004B)
;

(f=nanf311) (n=DOOOB3)
(i= 	DURO,

DUR1,
DUR2)

(do=O,O)
(0= une,

300070)

(f=nanf311) (n=DOOOB6)
(i= 	DURO,

DUR1,
DUR2)

(do=O,O)
(0= une,

300074)

(f=nanf311) (n=DOOOB7)
(i= 300074,

DUR3,
DUR4)

(do=O,O)
(0= 3000B1,

une)

(f=nanf311) (n=D00093)
(i= 	DUR4,

DUR3,
DUR2)

(do=O,O)

(0= une,

3000BO)
;

(f=nanf311) (n=D00094)
(i= DUR1,

DURO,
3000BO)

(do=O,O)
(0= une,

DETECT)
;

(f=invf101) (n=D00007)
(i= TEMPO)
(do=O)
(0= 300003)

(f=invf101) (n=D00013)
(i= TEMPO)
(do=O)
(0= 500011)

(f =dfb f 311) (n = DO 0 0 0 8)
(i= 500006,

CLK1,
CLRN,
Vdd)

(do=O,O)
(0= 300005,

300006)
(s= 3)

(f=dfbf311) (n=DOO 009)
(i= 300008,

CLK1,
CLRN,
Vdd)

(do=O,O)
(0= 500007,

unc)
(s= 3)

(f=dfbf311) (n=D00015)
(i= Vdd,

300012,
CLRN,
Vdd)

(do=O,O)
(0= CN,

unc)
(s= 3)

(f=dfbf311) (n=D00016)
(i= 300020,

COUNT,
300051,
300041)

(do=O,O)
(o= B2,

unc)
(s= 3)

;

(f=dfbf311) (n=D00017)
(i= 500038,

COUNT,
300052,
300039)

(do=O,O)
(0= B3,

unc)
(s= 3)

(f=dfbf311) (n=D00018)
(i= 300024,

COUNT,
300049,
300040)

(do=O,O)
(0= BO,

S00024)
(8= 3)

(f=dfbf3ll) (n=D00030)
(i= S00013,

COUNT,
S00050,
S00042)

(, 0)
(0= Bl,

S00023)
(8= 3)

(f=dfbf3ll) (n=D0003l)
(i= S00033,

S00047,
S00055,
S00043)

(do=O,O)
(o= B6,

une)
(8= 3)

(f=dfbf3ll) (n=D00032)
(i= S00032,

S00047,
S00053,
S00046)

(do=O,O)
(0= B7,

une)
(8= 3)

(f=dfbf3ll) (n=D00033)
(i= S00037,

S00047,
S00054,
S00044)

(do=O,O)
(0= B4,

S00037)
(8= 3)

(f=dfbf3ll) (n=D00045)
(i= S00025,

S00047,
S00056,
S00045)

(do=O,O)
(0= B5,

S00036)
(8= 3)

(f=dfbf3ll) (n=D00069)
(i= Vdd,

CLK3,
CLRT,
Vdd)

(do=O,O)
(0= CT,

unc)
(s= 	3)

(f=dfbf311) (n=D00070)
(i= 	S00068,

CLK2,
CLRN,
Vdd)

(do=O,O)
(0= DUR2,

unc)
(s= 	3)

(f=dfbf311) (n=D00071)
(i= 	S00073,

CLK2,
CLRN,
Vdd)

(do=O,O)
(0= DUR3,

unc)
(s= 3)

(f=dfbf311) (n=D00072)
(i= 	S00072,

CLK2,
CLRN,
Vdd)

(do=O,O)
(0= DURO,

S00072)
(s= 3)

(f=dfbf311) (n=D00084)
(i= S00061,

CLK2,
CLRN,
Vdd)

(do=O,O)
(0= DUR1,

S00071)
(s= 3)

(f=dfbf311) (n=D00085)
(i= S00077,

CLK2,
CLRN,
Vdd)

(do=O,O)
(o= DUR4,

unc)
(s= 3)

11) 	(n=D00091)
{i= 	Vdd,

S00078,
CLRN,
Vdd}

(do=O,O)
(0= IREST1,

une)
(8= 3)

(f=xorf201) (n=D00010)
(i= S00007,

S00005)
(do=O)
(0= S00008)

(f=xorf201) (n=D00019)
(i= BO,

B1)
(do=O)
(0= S00013)

(f=xorf201) (n=D00020)
(i= BO,

B2)
(do=O)
(0= S00014)

(f=xorf201) (n=D00034)
(i= B4,

B5)
(do=O)
(0= S00025)

(f=xorf201) (n=D00035)
(i= B4,

B6)
(do=O)
(0= S0002 6)

(f=xorf201) (n=D00073)
(i= DURO,

DUR1)
(do=O)
(0= S00061)

(f=xorf201) (n=D00074)
(i= DURO,

DUR2)
(do=O)
(0= S00062)

(f=invf103) (n=D00064)
(i= LOAD)
(do=O)
(o= S00057)

(f=norf311) (n=D00065)
(i= BO,

B1,
B2)

(do=O,O)

(0= 	800058,

unc)

(f=norf3ll) (n=D00066)
(i= B3,

800058,
B4)

(do=O,O)
(0= 800059,

unc)

(f=norf3ll) (n=D00067)
(i= B6,

B5,
B7)

(do=O,O)
(0= 800060,

unc)
;

(f=norf3ll) (n=D00068)
(i= 800059,

800059,
800060)

(do=O,O)
(0= unc,

CHZERO)

(f=norf3ll) (n=D00092)
(i= IN17,

IN16,
IN14)

(do=O,O)
(0= unc,

800079)

(f=fri3_core_controller_F8M) (
(i= PHIl,

PHI2,
8TATE [0-3] ,
CHZERO,
CN,
CT,
INITIAL)

(do=O,O,O,O,O,O,O,O,O,O,
0)

(0= 8TATE [0-3],
CLRT,
CLRN,
CHTOGGLE,
COUNT,
LOAD,
ADDRl,
ADDR2)

(s= 8)
;

(m=analyzer) (n=scope)
(i= 	 ADDRl,

ADDR2,
OUTO,
BO,

I •

BI,

B2,

B3,

B4,

B5,

B6,

B7,

DURO,

DURI,

DUR2,

DUR3,

DUR4,

DETECT,

LOAD,

COUNT,

CHTOGGLE,

CN,

CLRN,

CLRT,

CHZERO,

IRESTI,

RESTI f

STATE(3-0])

(s= 3)

(' ,..l Vi, ,'('(.1 f ~

~

\u
,.J
J
~

\.L

o 98 196 294 392 490 588 686 784 882

j) o

G')

~

:>
..!J

\-L

o 13 26 39 52 65 78 91 104 117 130

J

~

~
-

\l

STATE[3-0] a a a a 9 9 9

611 627 643 659 675 691 707 723 739 755 n1

OUR3

OUR4

1102 2204 3306 4408 5510 6612 7714 8816 9918

C)
\lJ I OUR2

~I
::>
v

(L

83

84

85

86

87

DURO

DURl

\u DUR2

~I
DUR3

DUR4

DETECT

'-.9

U

7029 7132 7235 7338 7441 7544 7647 7750 7853 7956 8059

\U
C'd
:J
\!)

CNr==
CLRN

STATE[3-0]

14237

STATE[3-01~

15004

ADDR1bl===ADDR2

81

82

83

84

85

86

87

DURO

DUR1

DUR2

DUR3

DUR4

DETECT

LOAD

COU

CHTOGGLE

CN

0

\U

~I

~I

k.

CLRN

CLR

CHZERO

IREST1

REST1

• •

f .tl!

\V
~
j
\L

RE5T1
5TATE[3-0J II-O:-1~nr:lrW-:Y-W--w'rv\l"'lrW-v-w--ur-w!'Uif'"'1j"""'Ar'Ur-ur~""'I.IJ,..-uI""I"""'I''''''\I''',\Ir-'Ar-'Ar....,U-..,.,,.....,11,-.,11,.....'._..,.,..._1.._'

o

,.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	Spring 5-1991

	Multi-Channel Music Synthesis Using an ASIC
	Lewis Thornberry
	Recommended Citation

	tmp.1280173683.pdf.hqQ3h

