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ABSTRACT 

The high speed and multiple channel requirements necessary for music synthesis 
suggest the use of an application-specific integrated circuit (ASIC). While a 

microprocessor is capable of controlling such a system, the parallel architecture 

and precision timing and I/O capabilities of an ASIC make it an attractive 

alternative, particularly when high-quality results are desired (like accurate note 

frequencies). 

Inputs to this particular ASIC are eight bits wide. The data structure of the system is 
not complex, and the options available include: tempo control (fast or slow), 

variable note duration (in multiples of a 16th note), and selectable pitch (including 
a range of three octaves). Notes may be played indefinitely without a pause by 

setting an endnote bit. The output of this circuit is a variable frequency square 

wave that can be used in conjunction with drivers to control a speaker element. 



INTRODUCTION 

The music synthesis ASIC designed provided a practical introduction to many VLSI 

design concepts: simulation methods, CAD tools, and space limitations. An effort to 

reduce the complexity of the chip and data encoding scheme clearly resulted in a 

tradeoff in 'extra' functions. Music in the form of notes from a three-octave range 

are encoded in a memory device (ROM or RAM). The music synthesis system 

sequentially addresses the memory to provide an appropriate input signal to the 

ASIC, in turn providing an appropriate output signal for music generation (the 

variable frequency square wave). Rest notes and tempo were considered and 

implemented. 

Pin assignment was not a problem in this particular project; if a larger chip size 

were available, an improved data loading scheme would have to be developed to 

accomodate multiple channels (the current method requires eight pins of input per 

channel. .. obviously four or more channels becomes unwieldy in terms of package 

size). Because of the low frequency range of human hearing this ASIC will not be 

overly taxed with speed requirements. Rather the space limitations of the TinyChip 

forced difficult decisions on which functions (tempo, special sound effects, number 

of available notes, number of tempos, ...) to include, and prohibited the addition of 

an internal ROM containing the count map (making song encoding easier) and 

additional chan nels. 

One major consideration in the design of this project was exactly how sound would 
be produced. Different notes are recognized by the human ear based on 

frequency and waveform quality. Since the latter variable is rather ambiguous and 
not easily addressable, the primary function of this ASIC was to generate an 

appropriate frequency square wave. The accuracy of this frequency was directly 

related to the size of the duration counter used in the circuit. To obtain 'quality' 

sound, each note's frequency must be within a 30/0 tolerance (or 3-cent tolerance in 

music jargon). There still existed an option, however, concerning the final output 

stage of the system: it was possible to have the ASIC generate n-bit words at a 

variable frequency, with each word representing a digitized waveform. Or the ASIC 

could clock a ROM containing a digitized waveform. These words (from the ASIC 

or ROM) could then be decoded by a digital-to-analog converter (DAC) which 



would drive a speaker element. While the waveform quality would undoubtedly 
improve, the difficulty of this impementation was deferred. 

The last important consideration for this project was the complexity of the 
supporting system. It appears that while the ASIC will require several auxiliary 
integrated circuits (see Figure 1 in Appendix I), these will be easily connected. 

Still, the music synthesizer chip designed is hardly a stand-alone componentl The 
alternative to an ASIC or microprocessor is a direct implementation of logic using 
SSI/MSI/LSI IC's. This hardly seems feasible, though, since this circuit required 
approximately 100 devices and the support of a clever finite state machine 
controller. 



SYSTEM LEVEL DESIGN 


As mentioned in the introduction, there is more than one possible implementation 

of this music synthesis system. The proposed stand-alone system is shown in 

Figure 1. Logic Works was used to generate the logic of the ASIC. This logic was 

combined with a finite state machine controller to produce the chip. Due to pin 

limitations, a maximum of three music channneis can be implemented on the 

TinyChip using the current data encoding scheme. 

For every song he intends to generate, the user is asked to produce a Song Prom, 

a programmable memory that contains a sequence of note codes. These codes 

are addressed by the ASIC's address select lines. The codes are then used to 

address a value in the subsequent Count Map, a pre-packaged memory containing 

frequency-related count values that are loaded into the ASIC. A Count Map is 

required for each individual channel the user intends to produce; he therefore 

controls the width of his programmable memory. 

The data field that the user must master is simply composed of a six-bit field for 

each note: five of the bits determine the specific frequency of the note (or rest) (two 

octaves are available). The sixth bit is an endnote bit. The purpose of this endnote 

is to teU the ASIC whether to turn the note off at the end of a 16th note cycle. By 

leaving the note on (and playing it again), a continuous note can be produced of 

long duration. 

The address-select and ROMs feed the input signal (the encoded song) into the 
ASIC. An additional chip requirement is the external clock, which is necessary to 
generate note timing as 01 and 02 are too fast for audio frequencies. The clock, a 

100 kHz signal, also feeds a configuration of four decade counters. These are 

used to extract the 100 Hz and 10Hz frequencies the ASIC needs to keep tempo. 

Since the ASIC is not a high current-output device, a line drive will interface the 

ASIC to the speaker element. It is anticipated that the power rating, dynamic range, 

and dynamic impedance of the speaker will not present much challenge to 

interfacing. With the current system setup, it is still possible to use the output of the 

ASIC to clock a ROM containing a digitized waveform. The ROM output word could 

be decoded and used by a DAC. 



CHIP-LEVEL DESIGN 

HARDWARE 

The ASIC is designed to support a finite state machine, or controller, 
and its peripheral random logic. These functions are illustrated in 
Figure 2. While the FSM is actually programmed with special 
software, the surrounding schematics are developed using 
Logicworks. 

REPEATABLE CHANNEL PROCESSING 

Of these schematics, perhaps the most crucial element is the 
repeatable channel processing logic that is shown within dotted lines. 
With only minor changes to the control program, and simple cut and 
paste operations in Logicworks, this block can be repeated as long as 
space remains within the chip (and the necessary pins are available). 
Of course, each repitition of the grouped functions adds to the overall 
parallel processing effectiveness of the ASIC, and is thus the main 
advantage of the automated approach. Unfortunately, it is clear that 
there is no room on the TinyChip for even a second channel of logic. 
Perhaps the design could be further minimized in order to achieve 
multiple channels. 

The operation of the logic is simple. The 8-bit input that corresponds 
to the note to be played is loaded into the counter, where it is tested 
for zero by the FSM. The controller will increment the count if zero 
has not been reached, and will toggle the output when zero has been 
reached. After expiration of the count, the same count value is 
reloaded into the counter for incrementing. This cycle continues 
until the note's duration has expired, at which time a new count 
value appears at the input. 

THE IMPLICIT REST GENERA nON 

The Implicit Rest Generator of Figure 4 determines when to finally 
turn off a note's ringing. This mimics music in the real world, where 
blocks of time are actually composed of both musical notes and 
various unrecorded rests between notes. The user has direct control 
over the Implicit Rest Generator. Since each data entry corresponds 
to the duration of a 1/16th note, the pogrammer may implement a 
series of notes separated by pauses (such as 4 sixteenth notes with 
the Endnote bit asserted in each), or one long continuous note (such 



as one quarter note implemented as 4 continuous sixteenth notes). 
In other words, the Endnote bit allows the user to program any 
continuous note length, with a resolution of the sixteenth note. 

Key to the generation of the implicit rest is the 5 Bit Counter, which 
need not be repeated, but can be tapped by all the channels. Its 
input is the 1kHz tap of the trio of decade counters in the external 
circuitry. The two bits that are tapped at the output of the counter 
correspond to the two available tempos. These bits go high, for the 
first time in the playing of a note, when around 75-80% of the note's 
duration has already passed (see CLOCKING). They are gated with 
the endnote bits and tempo bit of each separate channel processing 
block. This boolean sum of products is latched as the value IREST, or 
implicit rest. This line is utilized in the Rest Generator. The FSM 
clears the counter and latch values at the beginning of a new note. 

REST GENERATION 

This subset of logic, detailed in Figure 5, serves as the connection 
between the controller, which is entirely ignorant of rests, and the 
two rest control lines, IREST and REST. REST, or note rest, is asserted 
when the user inputs the code for rests (see SIMULATION section). 
The channel input lines are combined in boolean fashion to detect the 
REST signal, and the two rest control lines are then added together to 
produce an output enable line. This enable line, when asserted, 
prevents the CHTOGGLE output of the FSM from propagating through 
to the chip's output. The output is instead pulled low for the 
duration of the note. 

TEMPO GENERATION 

Also on-chip is the Tempo Generator of Figure 3. This logic generates 
the control line that determines when a note's duration has expired, 
and thus orders the playing of the next note. CN, or note clock, is 
derived from the 10Hz input. The slow clock is divided by four 
internally to produce two tempo options, which the user selects from 
with the TEMPO input line. The user pulls TEMPO high for fast 
operation, where whole notes last around 1.6 seconds, or grounds the 
line for the slower speed, where whole notes last as long as 6.4 
seconds. 



CLOCKING 

The counting is clocked by a100kHz toggle clock, or CT. It will 
generate note periods with a resolution of 0.02msec. By using an 8 
bit counter, we designed for the generation of frequencies between 
50 kHz and 195 Hz, which certainly includes the two octave range 
that we targeted. 

How accurate are our generated frequencies? Due to pin limitations, 
we were forced to sacrifice some accuracy. Since the Count Map 
feeds only 8 bits to the ASIC, one of those 8 bits must contain the 
Endnote data that the user programmed in the Song Prom. We chose 
to make the LSB of the Count Map outputs equal to the Endnote bit. 
Therefore, we have limited the imposed error to plus or minus 
0.02msec per period. This is in addition to the intrinsic error 
associated with our limited resolution. 

Analysis shows that most of the notes are within 1 % of their ideal 
values. The only severe errors occur in the last few notes at the top 
of the frequency range. The human ear is most likely to detect error 
when two similar notes are played in sequence. Assuming that the 
worst case results in the playing of B5 and C6, which are 987.7Hz and 
1041.67Hz, respectively, the user will hear: 

(1/980.4)/0.02msec ==> 51 counts ==> (1/51 *0.02msec) 
or 980 Hz, and 
(1/1041.67)/0.02msec ==> 48 counts + endnote ==> (1/49*0.02msec), 
or 1020 Hz. 

That is about a 70% reduction in step between notes, and may be 
noticed by the music expert. But with this application, in which low 
quality speakers produce low quality sound, it is unlikely that at 
such high frequencies, the quality will be noticeably reduced for the 
average listener. 

We discussed earlier how the 100kHz toggle clock is tapped by four 
decade counters to produce a 10Hz note clock, and also how the note 
clock is again tapped in a two bit counter to provide 2 choices for 
tempo. Now let us describe how the decision to enable the IREST line 
IS made. 

It is obvious that IREST can not be made immediately available at 
the beginning of the note's duration. That would make the note 



sound like a rest note. The idea is to allow the note to play for most 
of its alloted time before enabling the IREST to bring the channel's 
output low. This is done by tapping the external decade counters at 
the 100Hz signal, for the third clock input. This clock feeds into a 5 
Bit Duration Counter. When the fourth bit of that counter goes high, 
the elapsed time has been 8*1/10Hz, or 0.08 seconds, which is nearly 
80% of the duration of a note in fast tempo. It is also true that all 
five bits go high at once every 32 counts. This boolean tap provides 
an elapsed time of 0.32 seconds, which is 80% of the slow tempo's 
duration of 0.4 sec. We therefore conclude that combining these two 
Duration Counter taps with the tempo and endnote bits provides an 
Implicit Rest function for each tempo. 



FIRMWARE 

We have spared our controller from the nightmare of rests. Nor do 
we ask that it produce count values that correspond to user specified 
notes. In turn, the FSM worked flawlessly, requiring the correction 
of only one error in the entire program. Contrast that to the 
Logicworks effort, which required countless revisions. A good design 
strategy may be to accomplish as much as one comfortably can in the 
hardware development language, and to implement the more 
challenging tasks in logic. Doing this will produce a majority of the 
design in a small portion of the total design time, and will keep the 
difficult debugging sessions focussed only on the understandable 
schematics. 

A major task that our FSM performs is the constant manipulation and 
sampling of the counter. If the counter is at zero, the program must 
be ready to toggle the CHTOGGLE output, after which it must perform 
a LOAD command. The controller must therefore check each 
channel's counter, and follow channel-specific instructions in 
channel-specific states. Theoretically, it will be possible for the FSM 
to fail at this elementary task if multiple counters go to zero 
simultaneously. This challenge would have to be addressed if we 
had more than one channel. 

The FSM is also in charge of clearing the CT and CN latches after 
these clocks are detected. This requires two additional lines, CLRN 
and CLRT. These lines are only asserted during the state 
immediately following the detection of the clocks. CLRN also clears 
the random logic's flip flops. 

A final task that the FSM must perform is the maintenance of the 
address select lines. The controller has a 2 bit output field that feeds 
two chip output pads, ADDRI and ADDR2. Two bits are required 
because four functions are implemented: clear, remove clear, 
increment, and hold. 



INPUT/OUTPUT 

PIN ASSIGNMENTS 

The chip's pin assignments (see Figure 6) were changed quite 
frequently during the design. The initial four channel design with 
internal Count Maps was discarded when it was found that such 
secondary control is more easily implemented external to the chip. 
This made the 8 bit Count Map outputs become chip input pins, 
thereby increasing the I/O requirement for each channel to 9 pins. 
This, in turn, left us with hopes of fitting 2 or 3 channels on the 25 
available pins, because we had to have pins for PHIl and PHI2, V dd 
and GND, the 3 clocks, TEMPO, INITIAL, and the address select field. 

If the first two channels are 9 pins each (remember to count the 
output pin), then that leaves only 7 pins for the third channel. If we 
were indeed designing three channels, then perhaps the third 
channel would be defined over only one octave (a bass clef, perhaps), 
so that it could function with just a 6 bit counter. Or perhaps we 
would design an extensive testing scheme, using all 7 bits to verify 
functionality after fabrication. Both of these schemes require more 
logic, and cannot be implemented on our crowded TinyChip. 

USER DATA FORMAT 

The user is asked to familiarize himself with the data entry scheme 
for the Music Synthesis. He must produce a 6 bit field containing 
frequency and duration information for each note. The first five bits 
correspond to the 25 notes available in the two octaves of interest, 
and also include a code for the musical rest. Of course, the sixth bit is 
the all-important Endnote bit. The following table provides a listing 
of the note codes and the respective Count Map outputs. Note that 
the Count Map's LSB is the Endnote bit. 

NOTE 5BIT CODE ENDNOTE MAP OUTPUT 
C4 00000 0 01000000 

1 01000001 
C#4 00001 0 01001010 

1 01001011 
D4 00010 0 01010100 

1 01010101 
D#4 00011 0 01011110 

1 01011111 



E4 00100 

F4 00101 

F#4 00110 

G4 00111 

G#4 01000 

A4 01001 

A#4 01010 

B4 01011 

C5 01100 

C#5 01101 


D5 01110 


D#5 01111 


E5 10000 


F5 10001 


F#5 10010 


G5 10011 


G#5 10100 


A5 10101 


A#5 10110 


B5 10111 


C5 11000 


REST 11111 


0 01100110 

1 01100111 

0 01110000 

1 01110001 

0 01111000 

1 01111001 

0 01111110 

1 01111111 

0 10000110 

1 10000111 

0 10001100 

1 10001101 

0 10010100 

1 10010101 

0 10011010 

1 10011011 

0 10011110 

1 10011111 

0 10100100 

1 10100101 

0 10101010 

1 10101011 

0 10101110 

1 10101111 

0 10110010 

1 10110011 

0 10110110 

1 10110111 

0 10111010 

1 10111011 

0 10111110 

1 10111111 

0 11000010 

1 11000011 

0 11000110 

1 11000111 

0 11001000 

1 11001001 

0 11001100 

1 11001101 

0 11001110 

1 11001111 

X 00100000 




SIMULATION DISCUSSION 

THOR provided us with two easy-to-use methods of testing our chip's 
functionality. The interactive mode was useful in the early stages of 
testing, as it allowed us to step through the initialization of the ASIC, 
controlling all the inputs very carefully. The batch mode provided 
an easy way to generate the long periods of time needed to test the 
chip's response to the assertions of IREST, REST, and CN. Each 
simulation led to error correction and eventually confirmed 
successful operation of the circuitry. 

Figure A: In interactive mode, we see the toggling of CHTOGGLE and 
subsequent toggling of the output line. Notice how LOAD 
forces 11110000 into the counter and CHZERO detects 
00000000. 

Figure B: A close-up of the start up sequence shows the predicted 
state sequence 0-1-2-3 followed by the count and wait 
3-9-3-9 sequence. 

Figure C: A close-up of the assertion of CHZERO. Note that after 
state 5 detects CHZERO, it moves to State 6. CN is not 
detected there, so the 3-9-3-9 sequence starts anew. 

Figure D: This batch mode overview is not entirely realistic; there 
would be many more toggles of the output line. There is 
ample evidence here that the IREST line is effective at 
TEMPO=l; the output line goes low and stays low after 
IREST goes high. The next note is chosen at 10000. 

Figure E: This close-up of the IREST transition shows that the FSM 
is completely ignorant of the implicit rest, as it continues 
to follow the 3-9-3-9 and 5-a-5-a sequences for counting. 

Figure F: This overview displays that at the slow tempo, the 
DETECT line properly enables the IREST line. Here we see 
some harmless delay between assertion of DETECT and 
assertion of IREST; the implicit rest is useful after almost 
any arbitrary percentage of the initial note period has 
elapsed. Most other delays in this circuit are equally 
harmless. 

Figure G: A close-up (TEMPO=O) of the assertion of IREST, which 
again goes high on the falling edge of DETECT. 

Figure H: The Rest Code, 20hex, has been entered, and notice that 
REST stays high, thereby grounding the output. Again, 
the FSM continues as if a regular note were playing. 



CONCLUSION 

The development of this project is almost complete; the final routing and switch­

level simulation remains due to difficulties with the Sun1 operating system. It is 

anticipated that the chip will fit the TinyChip size constraints (indicated by rules-of­

thumb mentioned in lecture), and that the circuit will function as predicted by THOR 

since the highest frequency in the circuit is a 100kHz external clock (and there are 

no abrupt logic transitions). Complete simulation was not possible, however, since 

the thorough monitoring of a 16th note's load, play, and stop cycles would require 

too many time steps. Rather a short artificial note was played quickly and 

successfully. 

The size of the five-bit duration counter and the eight-bit frequency counter limited 

the number of channels to one. It should be noted that a larger frequency counter 

could produce more accurate notes; the current note scale suffers some frequency 

degradation above middle C. Of course these counters could be moved outside of 

the ASIC and/or shared between channels. Still, it appears that one-channel is the 

practical limitation for a TinyChip using this design. 

Possible improvements for this project include a streamlined controller and 

algorithm for note-generation, more specific standard cells (Le. a NAND-gate 

without the optional inverter) for more efficient space utilization, and a serial data­

load scheme to reduce the number of pins per channel. The unused pins in this 

project could be used for an additional channel (with a different input scheme, or 
less precise note frequencies/range) or for testing or monitoring. 

The difficulty in the deSign of this chip seemed to lay in organizing this large task 

and mastering the CAD tools necessary for completion. Later chips would require 

far less time to take from the "designed-on-paper" stage to the "tested-and-ready­

to-go" stage. It was evident that the use of standard cells speeded the completion 

of this project: the parts were guaranteed to work, the schematic capture of Logic 

Works was easy to use, and the high-level functions of the standard cells made it 

easy to go from initial design to implementation. 
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MODEL CONTROLLER 
ADDRESS<1:0>, FSM 10-9 
LOAD, FSM 8 
COUNT, FSM 7 
CHTOGGLE, FSM 6 
CLRN, FSM 5 
CLRT, FSM 4 
NEXTSTATE<3:0> FSM 3-0 

INITIAL, FSM 7 
CT, FSM 6 
CN, FSM 5 
CHZERO, ! FSM 4 
PRESENTSTATE<3:0>; ! FSM 3-0 

CONSTANT SO = 0, Sl = 1, S2 2, S3 = 3, S4 4, S5 
S7 7, S8 = 8, S9 = 9, S10 10; 

ROUTINE 	 MAIN; 
NEXTSTATE = PRESENTSTATE; 
IF INITIAL THEN BEGIN 

NEXTSTATE SO; 

ADDRESS = 3; LOAD 0; COUNT 0; 

CHTOGGLE 0; CLRN 0; CLRT 0; 


END 
ELSE BEGIN 

SELECT PRESENTSTATE FROM 
[ SO ]: 	BEGIN 

ADDRESS 3; LOAD 0; COUNT 
CHTOGGLE 0; CLRN 1; CLRT 
IF CN THEN BEGIN 

NEXTSTATE Sl; 
END 
ELSE BEGIN 

NEXTSTATE SO; 
END; 

END; 
[Sl]: BEGIN 

ADDRESS = 2; LOAD 0; COUNT 
CHTOGGLE = 0; CLRN = 0; CLRT 
NEXTSTATE S2; 

END; 
[ S2 ]: 	BEGIN 

ADDRESS = 2; LOAD = 1 COUNT 
CHTOGGLE = 0 ; CLRN 1; CLRT 

IF CT THEN BEGIN 
NEXTSTATE S3 

END 
ELSE BEGIN 

NEXTSTATE S2; 
END; 

END; 
[S3]: BEGIN 

ADDRESS 2; LOAD = 0 ; COUNT 
CHTOGGLE 0; CLRN 1 CLRT 
IF CHZERO THEN BEGIN 

NEXTSTATE S4 
END 
ELSE BEGIN 

NEXTSTATE S9; 
END; 

END; 
[S4J: BEGIN 

ADDRESS = 2 ; LOAD = 1 ; COUNT 
CHTOGGLE = 1 ; CLRN = 1 CLRT 
IF CT THEN BEGIN 

NEXTSTATE = S5 

5, S6 6, 


0; 
0 

0; 
0; 

= 0 ; 
1; 

1 
0; 

0 

1 




END 
ELSE BEGIN 

NEXTSTATE S4; 
END; 

END; 
[S5J: BEGIN 

ADDRESS = 2 ; LOAD = 0 ; COUNT 1 
CHTOGGLE 1; CLRN = 1 CLRT 0 
IF CHZERO THEN BEGIN 

NEXTSTATE S6 
END 
ELSE BEGIN 

NEXTSTATE S10; 
END; 

END; 
[S6J: BEGIN 

ADDRESS = 2 ; LOAD = 0 ; COUNT 0 
CHTOGGLE = 1 ; CLRN = 1 CLRT 0 
IF CN THEN BEGIN 

NEXTSTATE S7 
END 
ELSE BEGIN 

NEXT STATE S2; 
END; 

END; 
[S7J: BEGIN 

ADDRESS = 0 ; LOAD = 0 ; COUNT 0 
CHTOGGLE = 1 ; CLRN = 0 ; CLRT 0 
NEXTSTATE S8; 

END; 
[S8J: BEGIN 

ADDRESS 1; LOAD 0; COUNT 0 
CHTOGGLE 1; CLRN = 0 ; CLRT 0 
NEXTSTATE = S2; 

END; 
[S9J: BEGIN 

ADDRESS = 2 ; LOAD = 0; COUNT 0 
CHTOGGLE = 0 ; CLRN 1 CLRT 1 
IF CT THEN BEGIN 

NEXTSTATE S3 
END 
ELSE BEGIN 

NEXTSTATE S9; 
END; 

END; 
[S10J: BEGIN 

ADDRESS 2; LOAD = 0 ; COUNT 0 
CHTOGGLE = 1 ; CLRN = 1 CLRT 1 
IF CT THEN BEGIN 

NEXTSTATE S5 
END 
ELSE BEGIN 

NEXTSTATE S10; 
END; 

END; 
ENDSELECT; 

END; 
ENDROUTINE; 
ENDMODEL; 
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D0002I 
D00022 
D00023 
D00024 
D00025 
D00026 
D00027 
D00028 
D00029 
D00030 
D0003I 
D00032 
D00033 
D00034 
D00035 
D00036 
D00037 
D00038 
D00039 
D00040 
D0004I 
D00042 
D00043 
D00044 
D00045 
D00046 
D00047 
D00048 
D00049 
D00050 
D0005I 
D00052 
D00053 
D00054 
D00055 
D00056 
D00057 
D00058 
D00059 
D00060 
D0006I 
D00062 
D00063 
D00064 
D00065 

nanf2II 
nanf2II 
norf211 
nanf3II 
nanf3II 
norf211 
invflOI 
dfbf3II 
dfbf3II 
xorf201 
nanf2II 
nanf2II 
invflOI 
norf211 
dfbf3II 
dfbf3II 
dfbf3II 
dfbf3II 
xorf201 
xorf201 
nanf2II 
nanf2II 
nanf2II 
nanf2II 
nanf2II 
nanf2II 
norf211 
norf211 
nanf3II 
dfbf3II 
dfbf3II 
dfbf3II 
dfbf3II 
xorf201 
xorf201 
nanf2II 
nanf2II 
nanf2II 
nanf2II 
nanf2II 
nanf2II 
norf211 
norf211 
nanf3II 
dfbf3II 
nanf2II 
nanf2II 
nanf2II 
nanf2II 
nanf2II 
nanf2II 
nanf2II 
nanf2II 
nanf3II 
nanf2II 
norf211 
norf211 
norf211 
norf211 
norf211 
norf211 
norf211 
norf211 
invfI03 
norf311 



DOO066 
DOO067 
DOO068 
DOO069 
DOO070 
DOO071 
DOO072 
DOO073 
DOO074 
DOO075 
DOO076 
DOO077 
DOOO78 
DOO079 
DOO080 
DOO081 
DOO082 
DOO083 
DOO084 
DOO085 
DOO086 
DOO087 
DOO088 
DOO089 
DOO090 
DOO091 
DOO092 
DOO093 
DOO094 
10 
11 
12 
13 
14 
15 
16 
17 
00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
010 
PI 
p2 
P3 
P4 
P6 
P7 
P8 
P9 
P10 
P11 
P20 
P28 
P29 
P30 
P31 
P32 
P33 
P36 

norf311 
norf311 
norf311 
dfbf311 
dfbf311 
dfbf311 
dfbf311 
xorf201 
xorf201 
nanf211 
nanf211 
nanf211 
nanf211 
nanf211 
nanf211 
norf211 
norf211 
nanf311 
dfbf311 
dfbf311 
nanf311 
nanf311 
nanf211 
norf211 
nanf211 
dfbf311 
norf311 
nanf311 
nanf311 
FSMIn 
FSMIn 
FSMIn 
FSMIn 
FSMIn 
FSMIn 
FSMIn 
FSMIn 
FSMOut 
FSMOut 
FSMOut 
FSMOut 
FSMOut 
FSMOut 
FSMOut 
FSMOut 
FSMOut 
FSMOut 
FSMOut 
PHIl 
PHI2 
PadIn 
PadIn 
PadIn 
PadIn 
PadIn 
PadIn 
PadIn 
PadIn 
PadGND 
PadIn 
PadIn 
PadIn 
PadOut 
PadOut 
PadIn 
PadOut 



P37 Padln 
P40 PadVdd 
nets 
ADDR1 09-1 P31-1 
ADDR2 010-1 P32-1 
BO D00018-S D00019-1 D00020-1 D00022-1 DOO029-1 DOOOSS-2 
D0006S-1 
B1 D00019-2 D00021-1 D00022-2 D00029-2 DOO030-S DOOOS4-3 
D0006S-2 
B2 D00016-S D00020-2 D00024-2 D0002S-1 DOO029-3 DOOOS4-2 
D0006S-3 
B3 D00017-S D0002S-2 D00028-2 DOOOS4-1 DOO066-1 
B4 D00033-S D00034-1 D0003S-1 D00037-1 DOO044-1 DOO066-3 
BS D00034-2 D00036-1 D00037-2 D00044-2 DOO04S-S DOO067-2 
B6 D00031-S D0003S-2 D00039-2 D00040-1 DOO044-3 DOO067-1 
B7 D00032-S D00040-2 D00043-2 D00067-3 
CHTOGGLE D00002-2 06-1 
CHZERO D00068-S 14-1 
CLK1 D00008-2 D00009-2 D00012-2 P28-1 
CLK2 D00070-2 D00071-2 D00072-2 D00084-2 D0008S-2 P29-1 
CLK3 D00069-2 P30-1 
CLRN D00008-3 D00009-3 D0001S-3 D00070-3 D00071-3 D00072-3 
D00084-3 D0008S-3 D00091-3 05-1 
CLRT D00069-3 04-1 
CN D0001S-S 15-1 
COUNT D00016-2 D00017-2 D00018-2 D00030-2 07-1 
CT D00069-S 16-1 
DETECT D00004-3 D00094-4 
DURO D00072-S D00073-1 D00074-1 DOO076-1 DOO083-1 DOO086-1 
D00094-2 
DUR1 D00073-2 D0007S-1 D00076-2 DOO083-2 DOO084-S DOO086-2 
D00094-1 
DUR2 DOOOOS-3 D00070-S D00074-2 DOO078-2 DOO079-1 DOO083-3 
D00093-3 
DUR3 D00071-S D00079-2 D00082-2 DOO087-2 DOO088-1 
D00093-2 
DUR4 D0008S-S D00087-3 D00089-2 DOO093-1 
IN10 D00004-2 DOOOOS-2 D00046-1 DOOOS6-1 P3-1 
IN11 DOOOS3-1 DOOOS7-1 P4-1 
IN12 D00047-1 DOOOS8-1 P6-1 
IN13 D00048-1 DOOOS9-1 P7-1 
IN14 D00049-1 D00063-1 D00092-3 P8-1 
IN1S D00001-1 DOOOS2-1 D00062-1 P9-1 
IN16 DOOOSO-1 D00061-1 D00092-2 P10-1 
IN17 DOOOS1-l D00060-1 D00092-1 P11-1 
INITIAL 17-1 P37-1 
IREST1 D00003-2 D00091-S 
LOAD D00046-2 D00047-2 D00048-2 D00049-2 DOOOSO-2 DOOOSl-2 
DOOOS2-2 DOOOS3-2 D00064-1 08-1 
OUTO D00002-3 P36-1 
REST1 DOOOOl-3 D00003-1 
SOOOOI D00002-1 D00003-4 
S00002 D00004-4 D00006-1 
S00003 D00004-1 D00007-2 
S00004 DOOOOS-4 D00006-2 
SOOOOS D00008-S D00010-2 
S00006 D00008-1 D00008-4 
S00007 D00009-S D00010-1 DOOOll-2 
S00008 D00009-1 D00010-3 
S00009 DOOOll-3 D00014-1 
S00010 D00012-3 D00014-2 
SOOOll D00011-1 D00013-2 
S00012 D00014-3 D0001S-2 
S00013 D00019-3 D00030-1 
S00014 D00020-3 D00021-2 
S00015 D00021-3 D00027-1 

DOO086-3 




-
S00016 D00022-3 D00023-2 
S00017 D00023-4 D00026-1 
S00018 D00024-3 D00027-2 
S00019 D00023-1 D00025-3 
S00020 D00016-1 D00027-3 
S00021 D00026-2 D00028-3 
S00022 D00028-1 D00029-4 
S00023 D00024-1 D00030-4 
S00024 D00018-1 D00018-4 
S00025 D00034-3 D00045-1 
S00026 D00035-3 D00036-2 
S00027 D00036-3 D00042-1 
S00028 D00037-3 D00038-2 
S00029 D00038-4 D00041-1 
S00030 D00039-3 D00042-2 
S00031 D00038-1 D00040-3 
S00032 D00032-1 D00041-3 
S00033 D00031-1 D00042-3 
S00034 D00041-2 D00043-3 
S00035 D00043-1 D00044-4 
S00036 D00039-1 D00045-4 
S00037 D00033-1 D00033-4 
S00038 D00017-1 D00026-3 
S00039 D00017-6 D00048-4 
S00040 D00018-6 D00046-4 
S00041 D00016-6 D00047-4 
S00042 D00030-6 D00053-4 
S00043 D00031-6 D00050-4 
S00044 D00033-6 D00049-4 
S00045 D00045-6 D00052-4 
S00046 D00032-6 D00051-4 
S00047 D00031-2 D00032-2 D00033-2 D00045-2 D00055-3 
S00048 D00054-4 D00055-1 
S00049 D00018-3 D00056-3 
S00050 D00030-3 D00057-3 
S00051 D00016-3 D00058-3 
S00052 D00017-3 D00059-3 
S00053 D00032-3 D00060-3 
S00054 D00033-3 D00063-3 
S00055 D00031-3 D00061-3 
S00056 D00045-3 D00062-3 
S00057 D00056-2 D00057-2 D00058-2 D00059-2 D00060-2 
D00061-2 D00062-2 D00063-2 D00064-2 
S00058 D00065-4 D00066-2 
S00059 D00066-4 D00068-1 D00068-2 
S00060 D00067-4 D00068-3 
S00061 D00073-3 D00084-1 
S00062 D00074-3 D00075-2 
S00063 D00075-3 D00081-1 
S00064 D00076-3 D00077-2 
S00065 D00077-4 D00080-1 
S00066 D00078-3 D00081-2 
S00067 D00077-1 D00079-3 
S00068 D00070-1 D00081-3 
S00069 D00080-2 D00082-3 
S00070 D00082-1 D00083-4 
S00071 D00078-1 D00084-4 
S00072 D00072-1 D00072-4 
S00073 D00071-1 D00080-3 
S00074 D00086-4 D00087-1 D00088-2 
S00075 D00089-3 D00090-2 
S00076 D00088-3 D00089-1 
S00077 D00085-1 D00090-3 
S00078 D00006-3 D00091-2 
S00079 DOOOOl-2 D00092-5 
S00080 D00093-4 D00094-3 



S00081 D00087-5 D00090-1 

STATE[O] 10-1 00 1 


TEMPO D00005-1 D00007-1 D00012-1 D00013-1 P33-1 

VDD D00008-6 D00009-6 D00015-1 D00015-6 D00069-1 D00069-6 

D00070-6 D00071-6 D00072-6 D00084-6 D00085-6 D00091-1 

D00091-6 P40-1 


STATE[l] 11-1 01-1 

STATE[2] 12-1 02-1 

STATE [3] 13-1 03-1 




(g ONE) (n = vdd) (o=Vdd); 

(g ZERO) (n = gnd) (0 GND) ; 

(g ONE) (n = INIO) (0 = INIO); 

(g ZERO) (n = INll) (0 = INll); 

(g ZERO) (n=IN12) (0=IN12); 

(g=ZERO) (n=IN13) {0=IN13}; 

(g=ONE) (n=IN14) (0=IN14); 

(g=ONE) {n=IN15} (0=IN15); 

(g=ONE) (n=IN16) (0=IN16); 

{g=ONE} (n=IN17) (0=IN17); 

(g=ONE) (n=TEMPO) (o=TEMPO); 

(g CLOCK) (n=INITIAL) (o=INITIAL) (s=3) (vs=O, 10, 11000); 

(g CLOCK) (n CL PHIl) (0 = PHIl) (s = 3) (vs = 0,1,4); 

(g CLOCK) (n CL-PHI2) (0 = PHI2) (s = 3) (vs 2,1,4); 

(g CLOCK) (n CLK1) {o CLK1} (s = 3) (vs 40, 40, 10500) ; 

(g CLOCK) (n CLK2) (o CLK2) (s 3) (vs 0,500(1000); 

(g CLOCK) (n CLK3) (0 CLK3) (s = 3) (vs 0,5(10); 

(m HEXOUT) (n STATE) (i = STATE[3-0]); 

(m = BINOUT) (n CLRT) (i = CLRT); 

(m = BINOUT) (n CLRN) (i = CLRN); 

(m = BINOUT) (n CHTOGGLE) (i = CHTOGGLE); 

(m BINOUT) (n COUNT) (i COUNT); 

(m BINOUT) (n LOAD) (i = LOAD); 


(f=nanf211) (n=D00001) 
(i= IN15, 

S00079) 
(do=O,O) 
(0= unc, 

REST1) 

(f=nanf211) {n=D00002} 
(i= SOOOOl, 

CHTOGGLE) 
(do=O,O) 
(0= unc, 

OUTO) 

(f=nanf211) (n=DOOOll) 
(i= SOOOll, 

S00007) 
(do=O,O) 
{o= unc, 

S00009} 

(f=nanf211) (n=D00012) 
(i= TEMPO, 

CLK1) 
(do=O,O) 
(o= unc, 

SOOOlO) 

(f=nanf211) (n=D00021) 
(i= Bl, 

S00014) 
(do=O,O) 
(0= unc, 

S00015) 

(f=nanf211) (n=D00022) 
(i= BO, 



-
Bl) 

(do=O,O) 
(0= une, 

800016) 

(f=nanf211) (n=D00023) 
(i= 800019, 

800016) 
(do=O,O) 
(0= 800017, 

une) 

(f=nanf211) (n=D00024) 
(i= 800023, 

B2) 

(do=O,O) 

(0= une, 


800018) 

(f=nanf211) (n=D00025) 
(i= B2, 

B3) 
(do=O,O) 
(o= une, 

800019) 

(f=nanf211) (n=D00026) 
(i= 800017, 

800021) 
(do=O,O) 
(0= une, 

800038) 

(f=nanf211) (n=D00036) 
(i= B5, 

800026) 
(do=O,O) 
(o= une, 

800027) 

(f=nanf211) (n=D00037) 
(i= B4, 

B5) 
(do=O,O) 
(0= une, 

800028) 

(f=nanf211) (n=D00038) 
(i= 800031, 

800028) 
(do=O,O) 
(0= 800029, 

une) 

(f=nanf211) (n=D00039) 
(i= 800036, 

B6) 
(do=O,O) 



(0= 	unc, 
300030) 

(f=nanf211) (n=D00040) 
(i= B6, 

B7) 
(do=O,O) 
(0= unc, 

300031) 

(f=nanf211) (n=D00041) 
(i= 300029, 

300034) 
(do=O,O) 
(0= unc, 

300032) 

(f=nanf211) (n=D00046) 
(i= INIO, 

LOAD) 
(do=O,O) 
(o= 300040, 

unc) 

(f=nanf211) (n=D00047) 
(i= IN12, 

LOAD) 
(do=O,O) 
(o= 300041, 

unc) 

(f=nanf211) (n=D00048) 
(i= IN13, 

LOAD) 
(do=O,O) 
(o= 300039, 

unc) 

(f=nanf211) (n=D00049) 
(i= IN14, 

LOAD) 
(do=O,O) 
(o= 300044, 

unc) 

(f=nanf211) (n=D00050) 
(i= IN16, 

LOAD) 
(do=O,O) 
(o= 300043, 

unc) 

(f=nanf211) (n=D00051) 
(i= IN17, 

LOAD) 
(do=O,O) 
{o= 300046, 

unc} 



(f=nanf211) (n=D00052) 
(i= IN15, 

LOAD) 
(do=O,O) 
(0= S00045, 

unc) 

(f=nanf211) (n=D00053) 
(i= IN11, 

LOAD) 
(do=O,O) 
(0= S0004 2, 

unc) 

(f=nanf211) (n=D00055) 
(i= S00048, 

BO) 

(do=O,O) 

(0= unc, 


S00047) 

(f=nanf211) (n=D00075) 
(i= DUR1, 

S00062) 
(do=O,O) 
(0= unc, 

S00063) 

(f=nanf211) (n=D00076) 
(i= DURO, 

DUR1) 
(do=O,O) 
(0= unc, 

S00064) 

(f=nanf211) (n=D00077) 
(i= S00067, 

S00064) 
(do=O,O) 
(0= S00065, 

unc) 

(f=nanf211) (n=D00078) 
(i= S00071, 

DUR2) 
(do=O,O) 
(0= unc, 

S00066) 

(f=nanf211) (n=D00079) 
(i= DUR2, 

DUR3) 

(do=O,O) 

(0= unc, 


S00067) 



(f=nanf211) (n=D00080) 
(i= S00065, 

S00069) 
(do=O,O) 
(0= unc, 

S00073) 

(f=nanf211) (n=D00088) 
(i= DUR3, 

S00074) 
(do=O,O) 
(0= unc, 

S00076) 

(f=nanf211) (n=D00090) 
(i= S00081, 

S00075) 
(do=O,O) 
(0= unc, 

S00077) 

(f=norf211) (n=D00003) 
(i= REST1, 

IREST1 ) 
(do=O,O) 
(0= unc, 

SOOOOl) 

(f=norf211) (n=D00006) 
(i= S00002, 

S00004) 
(do=O,O) 
(0= S00078, 

unc) 

(f=norf211) (n=D00014) 
(i= S00009, 

S00010) 
(do=O,O) 
(0= S00012, 

unc) 

(f=norf211) (n=D00027) 
(i= S00015, 

S00018) 
(do=O,O) 
(0= S00020, 

unc) 

(f=norf211) (n=D00028) 
(i= S00022, 

B3) 
(do=O,O) 
(0= S00021, 

unc) 

(f=norf211) (n=D00042) 
(i= S00027, 



S00030) 
(do=O,O) 
(0= S00033, 

une) 

(f=norf211) (n=D00043) 
(i= S00035, 

B7) 
(do=O,O) 
(0= S00034, 

une) 

(f=norf211) (n=D00056) 
(i= IN10, 

S00057) 
(do=O,O) 
(0= S00049, 

une) 

(f=norf211) (n=D00057) 
(i= IN11, 

S00057) 
(do=O,O) 
(0= S00050, 

une) 

(f=norf211) (n=D00058) 
(i= IN12, 

S00057) 
(do=O,O) 
(0= S00051, 

une) 

(f=norf211) (n=D00059) 
(i= IN13, 

S00057) 
(do=O,O) 
(0= S00052, 

une) 

(f=norf211) (n=D00060) 
(i= IN17, 

S00057) 
(do=O,O) 
(0= S00053, 

une) 

(f=norf211) (n=D00061) 
(i= IN16, 

S00057) 
(do=O,O) 
(0= S00055, 

une) 

(f=norf211) (n=D00062) 
(i= IN15, 

S00057) 
(do=O,O) 



(0= 	800056, 
unc) 
; 

(f=norf211) (n=D00063) 
(i= INI4, 

800057) 
(do=O,O) 
(0= 800054, 

unc) 

(f=norf211) (n=D0008I) 
(i= 800063, 

800066) 
(do=O,O) 
(0= 800068, 

unc) 

(f=norf211) (n=D00082) 
(i= 800070, 

DUR3) 
(do=O,O) 
(0= 800069, 

unc) 
,. 

(f=norf211) (n=D00089) 
(i= 800076, 

DUR4) 
(do=O,O) 
(0= 800075, 

unc) 

(f=nanf3II) (n=D00004) 
(i= 	800003, 

INI0, 
DETECT) 

(do=O,O) 
(0= unc, 

800002) 

(f=nanf3II) (n=D00005) 
(i= 	TEMPO, 

INI0, 
DUR2) 

(do=O,O) 
(0= unc, 

800004) 

(f=nanf3II) (n=D00029) 
(i= 	BO, 


BI, 

B2) 


(do=O,O) 
(0= unc, 

800022) 

(f=nanf3II) (n=D00044) 
(i= B4, 

B5, 



B6) 
(do=O,O) 
(0= une, 

300035) 
; 

(f=nanf311) (n=D00054) 
(i= B3, 

B2, 
B1) 

(do=O,O) 

(0= une, 


30004B) 
; 

(f=nanf311) (n=DOOOB3) 
(i= 	DURO, 

DUR1, 
DUR2) 

(do=O,O) 
(0= une, 

300070) 

(f=nanf311) (n=DOOOB6) 
(i= 	DURO, 

DUR1, 
DUR2) 

(do=O,O) 
(0= une, 

300074) 

(f=nanf311) (n=DOOOB7) 
(i= 300074, 

DUR3, 
DUR4) 

(do=O,O) 
(0= 3000B1, 

une) 

(f=nanf311) (n=D00093) 
(i= 	DUR4, 

DUR3, 
DUR2) 

(do=O,O) 

(0= une, 


3000BO) 
; 

(f=nanf311) (n=D00094) 
(i= DUR1, 

DURO, 
3000BO) 

(do=O,O) 
(0= une, 

DETECT) 
; 

(f=invf101) (n=D00007) 
(i= TEMPO) 
(do=O) 
(0= 300003) 



(f=invf101) (n=D00013) 
(i= TEMPO) 
(do=O) 
(0= 500011) 

( f =dfb f 311) (n = DO 0 0 0 8 ) 
(i= 500006, 

CLK1, 
CLRN, 
Vdd) 

(do=O,O) 
(0= 300005, 

300006) 
(s= 3) 

(f=dfbf311) (n=DOO 009) 
(i= 300008, 

CLK1, 
CLRN, 
Vdd) 

(do=O,O) 
(0= 500007, 

unc) 
(s= 3) 

(f=dfbf311) (n=D00015) 
(i= Vdd, 

300012, 
CLRN, 
Vdd) 

(do=O,O) 
(0= CN, 

unc) 
(s= 3) 

(f=dfbf311) (n=D00016) 
(i= 300020, 

COUNT, 
300051, 
300041) 

(do=O,O) 
(o= B2, 

unc) 
(s= 3) 

; 

(f=dfbf311) (n=D00017) 
(i= 500038, 

COUNT, 
300052, 
300039) 

(do=O,O) 
(0= B3, 

unc) 
(s= 3) 

(f=dfbf311) (n=D00018) 
(i= 300024, 

COUNT, 
300049, 
300040) 



(do=O,O) 
(0= BO, 

S00024) 
(8= 3) 

(f=dfbf3ll) (n=D00030) 
(i= S00013, 

COUNT, 
S00050, 
S00042) 

( , 0 ) 
(0= Bl, 

S00023) 
(8= 3) 

(f=dfbf3ll) (n=D0003l) 
(i= S00033, 

S00047, 
S00055, 
S00043) 

(do=O,O) 
(o= B6, 

une) 
(8= 3) 

(f=dfbf3ll) (n=D00032) 
(i= S00032, 

S00047, 
S00053, 
S00046) 

(do=O,O) 
(0= B7, 

une) 
(8= 3) 

(f=dfbf3ll) (n=D00033) 
(i= S00037, 

S00047, 
S00054, 
S00044) 

(do=O,O) 
(0= B4, 

S00037) 
(8= 3) 

(f=dfbf3ll) (n=D00045) 
(i= S00025, 

S00047, 
S00056, 
S00045) 

(do=O,O) 
(0= B5, 

S00036) 
(8= 3) 

(f=dfbf3ll) (n=D00069) 
(i= Vdd, 

CLK3, 
CLRT, 
Vdd) 



(do=O,O) 
(0= CT, 

unc) 
(s= 	3) 

(f=dfbf311) (n=D00070) 
(i= 	S00068, 

CLK2, 
CLRN, 
Vdd) 

(do=O,O) 
(0= DUR2, 

unc) 
(s= 	3) 

(f=dfbf311) (n=D00071) 
(i= 	S00073, 

CLK2, 
CLRN, 
Vdd) 

(do=O,O) 
(0= DUR3, 

unc) 
(s= 3) 

(f=dfbf311) (n=D00072) 
(i= 	S00072, 

CLK2, 
CLRN, 
Vdd) 

(do=O,O) 
(0= DURO, 

S00072) 
(s= 3) 

(f=dfbf311) (n=D00084) 
(i= S00061, 

CLK2, 
CLRN, 
Vdd) 

(do=O,O) 
(0= DUR1, 

S00071) 
(s= 3) 

(f=dfbf311) (n=D00085) 
(i= S00077, 

CLK2, 
CLRN, 
Vdd) 

(do=O,O) 
(o= DUR4, 

unc) 
(s= 3) 

11) 	(n=D00091) 
{i= 	Vdd, 

S00078, 
CLRN, 
Vdd} 



(do=O,O) 
(0= IREST1, 

une) 
(8= 3) 

(f=xorf201) (n=D00010) 
(i= S00007, 

S00005) 
(do=O) 
(0= S00008) 

(f=xorf201) (n=D00019) 
(i= BO, 

B1 ) 
(do=O) 
(0= S00013) 

(f=xorf201) (n=D00020) 
(i= BO, 

B2) 
(do=O) 
(0= S00014) 

(f=xorf201) (n=D00034) 
(i= B4, 

B5) 
(do=O) 
(0= S00025) 

(f=xorf201) (n=D00035) 
(i= B4, 

B6) 
(do=O) 
(0= S0002 6) 

(f=xorf201) (n=D00073) 
(i= DURO, 

DUR1) 
(do=O) 
(0= S00061) 

(f=xorf201) (n=D00074) 
(i= DURO, 

DUR2) 
(do=O) 
(0= S00062) 

(f=invf103) (n=D00064) 
(i= LOAD) 
(do=O) 
(o= S00057) 

(f=norf311) (n=D00065) 
(i= BO, 

B1, 
B2) 


(do=O,O) 




(0= 	800058, 

unc) 


(f=norf3ll) (n=D00066) 
(i= B3, 

800058, 
B4 ) 

(do=O,O) 
(0= 800059, 

unc) 

(f=norf3ll) (n=D00067) 
(i= B6, 

B5, 
B7 ) 

(do=O,O) 
(0= 800060, 

unc) 
; 

(f=norf3ll) (n=D00068) 
(i= 800059, 

800059, 
800060) 

(do=O,O) 
(0= unc, 

CHZERO) 

(f=norf3ll) (n=D00092) 
(i= IN17, 

IN16, 
IN14) 

(do=O,O) 
(0= unc, 

800079) 

(f=fri3_core_controller_F8M) ( 
(i= PHIl, 

PHI2, 
8TATE [0-3] , 
CHZERO, 
CN, 
CT, 
INITIAL) 

(do=O,O,O,O,O,O,O,O,O,O, 
0) 

(0= 8TATE [0-3], 
CLRT, 
CLRN, 
CHTOGGLE, 
COUNT, 
LOAD, 
ADDRl, 
ADDR2) 

(s= 8) 
; 

(m=analyzer) (n=scope) 
(i= 	 ADDRl, 

ADDR2, 
OUTO, 
BO, 



I • 

BI, 

B2, 

B3, 

B4, 

B5, 

B6, 

B7, 

DURO, 

DURI, 

DUR2, 

DUR3, 

DUR4, 

DETECT, 

LOAD, 

COUNT, 

CHTOGGLE, 

CN, 

CLRN, 

CLRT, 

CHZERO, 

IRESTI, 

RESTI f 

STATE(3-0]) 


(s= 3) 
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