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An Analysis of Planetary Helium 

by Kris H. Green, University of Tennessee, Department of Physics 
May 10, 1994 

under the direction of Drs. Joerg Mueller and Joachim Burgdoerfer 



I. Introduction 

Classical mechanics is sufficient to analytically describe the motions 
of systems involving the interactions of two particles. However, the three
body problem cannot be completely solved analytically, due to its 
nonintegrability. It can, however, be solved numerically. Since there are 
numerous physical systems which can be described as a three-body 
interaction, such as planetary systems, the quarks inside a baryon, two 
electron systems, and one electron molecules, it is important to understand 
this problem. 

The interactions of planetary bodies involve attractive gravitational 
forces, so that each body is attracted to each other body by a force which is 
inversely proportional to the square of the distance between the two bodies. 
Quark interactions take place through the strong force, which is proportional 
the distance between two particles, much like Hooke's law for springs. ill 
each of these cases, and in many other, less physical examples, the forces 
involved have the same sign, so that the particles are all attracted towards 
each other in some fashion. However, these systems all exhibit instabilities 
under certain conditions. 

There are many three-body systems, such as helium, which are more 
complex than this. Helium consists of two negatively charged electrons 
orbiting a positively charged alpha particle. The three particles interact 
through Coulombic forces, so that each electron is attracted to the alpha 
particle. The interactions between the ~o electrons are repulsive. Like 
other examples, the helium atom exhibits instabilities under certain 
conditions. This paper will attempt to identify some of the conditions under 
which the system remains stable. 

The helium atom is a quantum mechanical system, and, as such, is 
subject to the laws of quantum mechanics. The methods of quantum 
mechanics are fully sufficient to understand the simplest atom, hydrogen . . 
This atom is a simple two body system. Perturbation theory is necessary to 
describe the quantum mechanics of the helium atom. Thus, the helium atom 
can be used to study the classical mechanics of the three-body Coulomb 
problem as well as the quantum mechanics of such a system. Comparison 
between the two can be used to further the studies of both. 



Studies of the classical inechanics of helium have led to the 
identification of several periodic orbits: the Wannier orbit, the Langmuir 
orbit, and the asymmetric stretch. Each of these involves the electrons being 
separated by the nucleus, as shown below. Of the three, only the Langmuir 
orbit is known to be stable. This paper will focus on a fourth type of orbit, 
the planetary orbits, so named because of their resemblance to their 
gravitational counterparts. 

f 
• 

~-------C--x ~ 


a b 

Figure 1. Illustration of the (a) Langmuir and (b) Wannier orbit. 

A planetary orbit (classically) or planetary state (quantum 
mechanically) is an orbit/state in which both electrons are excited. Thus, 
neither lies at the lowest possible energy. Additionally, both are on the same 
side of the nucleus, one very far away and one much closer, so that it almost 
moves on a Keplerian ellipse. 



II. Planetary Orbits 

n.I Mathematical Description 
To begin studying the helium atom as a three-body problem, we first 

define coordinates for the system as shown below. By considering situations 
in which the total angular momentum is zero, we reduce the problem to 
motion in a plane. ill general, each particle requires two spatial coordinates 
and two momentum coordinates, giving a system of twelve variables. The 
system can be reduced to eight variables if we further assume that the 
nucleus is massive enough that the forces acting on it can be neglected. 

inner e 

Figure 2. Illustration of the coordinate system. 

The Hamiltonian (in Cartesian coordinates) for this system is 

l( 2 2 2 2) Z Z 1H=- PXl+PYl+PX2+PY2 ----+
2 'i r2 r12 

where the r's represent the radial distance to each electron, and the inter
electron distance. Z represents the total nuclear charge, which is two for 
helium. This Hamiltonian produces eight ordinary differential equations by 
application of the Hamiltonian equations 

which can be numerically integrated. The equations themselves have 
singularities when there is a collision between any two of the three particles 
(the electrons and the nucleus). However, by using the noncanonical 
transformations 



2
Xl =U _V

2 

YI =2uv 

2 +p2 = _ Pu Pv2]l[ 2+Pxl yl 4 2 2 
U +V 

the equations can be partially regularized, removing the singularities. The 
new Hamiltonian is then 

1(1 P; +p~ 2 ) Z Z2 1h=- 2 2 +Px2+Py 2 - 2 2--+
2 4 u +v u +v R12r2 

which again produces eight differential equations, two for each degree of 
freedom. This can be further improved by regularizing the time. The 
current method, when combined with a variable time step numeric 
integration process leads to an increase in energy conservation by a factor of 
about 30%. The time has not been regularized in the current scheme. These 
eight equations are coupled, making it impossible to derive an analytic 
solution, and forcing us to use numerical methods to calculate trajectories 
and lifetimes. Note that only the momenta and coordinates of one electron 
have been regularized. These are the position and momenta of the inner 
electron, the one closest to the nucleus. 

In order to use numerical methods, we must flrst defme the initial 
conditions for the system. It is convenient to use the hyperspherical 
coordinates (and their corresponding momenta) 

2a=arctan(~J 0=81 -8 

· 
PR=R 

in order to describe the six initial conditions needed. For planetary orbits, 
we start with both electrons initially on the same side of the nucleus, 812=0. 
This reduces the number of initial conditions needed to specify the problem 
to only flve. This can further be reduced by scaling the total energy to be 
constant at E=-l. Since the time derivative of 8 can be related to the total 
energy once the other coordinates are known, we now only need four initial 
conditions to specify the problem: R, dRJdt, a, and da/dt. Even though 
only these four are needed, it is still a daunting task to search the phase 



space for possibly stable orbits. Other methods than the "hit and miss" 
approach of guessing initial conditions are needed. 

II.2 Trajectories for Helium (Z=2) 
The problem has now been reduced to a four dimensional phase space 

in which we must search for initial conditions leading to stable andlor 
periodic orbits. What is needed is a systematic method for searching this 
phase space. By hit-and-miss guessing, we can examine trajectories of the 
two electrons in Cartesian space. The following page shows a typical 
planetary orbit, as well as the effects on the orbit of slightly altering the 
initial conditions. 

It is seen that the inner electron travels on a nearly-precessing ellipse 
around the nucleus. We describe the path as "nearly-precessing" because Jhe 
major axis of the ellipse is confined to a certain angular region, instead of 
sweeping all the way around the nucleus. It is also seen that the outer 
electron is confined both to an angular region and a radial region. The 
breaking up of this angular confinement inevitably leads to autoionization, a 
situation in which one, or both, of the electrons gains sufficient energy to 
escape the binding force of the nucleus. 

Below (see figure 4) is an illustration of another trajectory. It is clear 
that this trajectory shows many of the same characteristics as the trajectory 
above. However, the outer electron is more confmed, following a complex, 
winding path after a few increments of time. This orbit is characteristic of a 
"torus-filling" type of orbit. The inner electron also follows a much more 
regular path, with its Keplerian ellipse precessing symmetrically and the 
inner electron confined inside a definite region close to the nucleus. There is 
an apparent "wall" which this electron cannot pass. 

Rather than using the full Hamiltonian of the system, one can use the 
frozen planetary approximation (FP A.) This model assumes that the outer 
electron's motion is negligible, and simply ignores it, freezing the electron in 
place. There is thus an electric field (that of a point charge) acting on the 
inner electron. This leads to the "nearly-precessing" ellipse; however, the 
motions of the inner electron are much more regular than when using the 
correct Hamiltonian. Later in this paper, it is shown that there is an 
additional flaw--all orbits are stable and periodic in the FP A, whereas the 
true Hamiltonian does not produce such regular motion. The other problem 
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Figure 3. Trajectory plots for different values of dRldt and da/dt. R=6.0, a=O. In. The 
nucleus is located at (0,0). (a) dRldt=O, da/dt=O; (b) dRldt=O, da/dt=O.OS; (c) 
dRldt=O.l, da)dt=O; and (d) dRldt=O.l, da/dt=O.OS. 
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with this model is that it will not produce correct results for the motion of the 
outer electron~ if the inner electron is frozen. 
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Figure 4. Illustration of a torus-filling trajectory. 
Initial 'conditions: R=7, dR/dt=O, a=O.1001n, da/dt=O. 
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Figure 5. Illustration of a trajectory using the frozen planetary approximation. 

II.3 Frequency Analysis 
Instead of plotting the trajectories in Cartesian coordinates, it is also 



useful to plot various quantItIes of the system as they evolve over time. 
When this is done several relationships appear in the various physical 
properties of the system. In essence, there are six quantities which are 
useful to observe over time: the angle to the Runge-Lentz vector, the angle 
to the outer electron, the difference in these two angles, the radial position of 
the outer electron, the eccentricity of the inner electron's ellipse, and the 
angular momentum of one of the electrons. Since the total angular 
momentum is required to be zero, it is unnecessary to view the angular 
momentum of both electrons. The Runge-Lentz vector is, in essence, the 
major axis of the ellipse as shown below. All angles are measured relative 
to some arbitrary zero. 

electron 
Runge-Lentz 
vector 

Figure 6. Illustration of Runge-Lentz vector. 

For a trajectory similar to that shown above «a) of figure 3) these 
various quantities are plotted versus time in figure 7. It is immediately 
apparent that the Runge-Ientz vector and the outer electron are in a 1: 1 
phase-locked relationship. Furthermore, the Runge-Ientz vector sweeps out 
a larger angle than the outer electron, confining the outer electron angularly 
so that stability can be maintained. All of the quantities examined are 
periodic for this orbit, and others similar to it. Additionally, there are other 
phase-locking relationships found in the other measurements. 

11.4 Stability plots 
An easy method for getting an overview of the phase space is to make 

stability studies of the orbits. For these, a large number of initial conditions 
are run in a grid pattern, keeping two of the four initial conditions fixed. The 
computer runs each set of initial conditions for a specified time (much longer 
than the period of any of the quantities involved) and categorizes the orbit 
as: stable, classically forbidden, or autoionizing. In a stable orbit, the two 
electrons are still bound to the nucleus after the computer program has 
numerically integrated the system of equations for some pre-determined 
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period of time, T c. A classically forbidden orbit is not a true orbit, since, in 
order to use the specified initial conditions, the time derivative of q would 
initially be imaginary. The autoionizing orbits are broken down into inner 
and outer autoionization, based on which electron is no longer bound to the 
nucleus. For each of these orbits, one of the electrons is ejected, heading off 
to infinity, at some time t<T c. A number of stability plots are given in the 
appendix. 

All of the stability plots exhibit a fractal nature, the structure of which 
is dependent on the two fixed coordinates and the nuclear charge. The most 
surprising feature of the plots for helium (Z=2) is the large size of the stable 
region. Since there are a number of seemingly delicate balances among the 
frequencies describing the system's motion, one would expect a smaller 
stable region to reflect the number of initial conditions which could satisfy 
those balances. Figure 1 in the appendix shows a highly detailed close-up of 
the stability plots for Helium. 

The size of the region of stability does depend greatly on the nuclear 
charge. Somewhere between Z=3 and Z=4 the stable region shrinks so that 
it is only a narrow strip running the perimeter of the classically allowable 
trajectories. Figure 2 in the appendix illustrates the various stability plots for 
2<Z<5. On the other hand, as Z decreases, the stable region splits off, close 
to Z=1.3, forming two separate stable regions, which are clearly separated 
by an unblemished region of initial conditions which lead to the 
autoionization of the outer electron. Using a charge of Z=1.0 is unphysical, 
since the electrostatic force on the outer electron would be almost 
completely masked by the inner electron, causing all orbits to autoionize. 
The plots for 1.1<Z<2 are given in figure 3 of the appendix. 

The splitting can possibly be explained by the existence of two 
separate types of stable orbits as described above. The torus-filling types 
can be found just along the boundary between the stable and classically 
forbidden regions. The existence of these two types of stable orbits has 
profound consequences for the effective potential in which the electrons 
move. The determination of this potential will be discussed in section ill. 

Stability plots of the FP A trajectories show the same intrinsic shape as 
those for the full Hamiltonian. However, the entire region of physically 



allowable coordinates leads to stable orbits as seen below. This is to be 
expected, since, without the motion of the outer electron, the inner electron 
moves in a steady potential, with the nuclear attraction dominating. This 
leads to the usual Kepler ellipses which orbit the nuceus and are perturbed 
by the steady state field of the outer (fixed) electron. 

II.S Poincare Surfaces 

Another method of studying the overall stability of a given orbit is by 
the method of Poincare sections. This method only works properly when the 
phase space being studied is four dimensional. One then creates a two
dimensional picture by only looking at points on the orbit where one of the 
three variables has a given value. Then, by noting whether the orbit makes a 
closed loop, a series of closed loops or scattered, unconnected points, one 
can determine whether the orbit is stable, periodic, resonant, or completely 
unstable. 

In the current problem, we have several complications for using this 
method which make it less useful than in other instances. First, the phase 
space is six dimensional. This means that the surface of section at constant 
energy can only reduce the number of variables from five to four. Viewing a 
four-dimensional surface is impossible, and applying any of Poincare's 
methods to identifying the type of orbit can not be done. Thus, we must take 
"thin slices" in the other coordinates, effectively taking multiple Poincare 
surfaces at once. This can reduce the problem to two dimensions and allow 
th~ resulting surface of section to be analyzed if there are enough data points 
left after "slicing" to form any coherent structure. This is not always 
posible. 

The second problem with this method involves calculating the 
enormous number of data points needed. Once a method has been 
determined to reduce numerical error and produce "good" points on the 
surface, the problem of actually calculating these points is computer
intensive, requiring a great deal of time for one orbit. Since this method 
works best when applied to multiple orbits, allowing the production of 
several, overlayed surfaces of section, the computer time necessary is 
prohibitive. 



The third major problem with the method of sections is that of the 
aforementioned numerical error. It is relatively easy, using these teclmiques 
for a small error in rounding or some other function to magnify, destabilizing 
a particular orbit, causing the data points to wander off of the previously 
well-defined surface of section. 

It is, however, possible to overcome these difficulties USIng the 
method of "analytic shooting." This method involves treating the inner 
electron as if it moves on a perfect ellipse in a central potential modified by 
the effects of the outer electron. When the inner electron reaches a point 
where energy conservation becomes a problem, analytic shooting moves the 
electron through the to point on the ellipse which is stable. Since the inner 
electron revolves around the nucleus much faster than the outer electron 
moves, one can simply treat the outer electron as continuing in its present 
trajectory for the time necessary for inner electron to move to its new 
position. Mter taking a surface of section with 812=0 (that is, when both 
electrons are in 'conjunction with the nucleus) and then taking thin slices in 
the other coordinates, the following surface of section can be produced, after 
scaling. 
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Figure 8. Surface of section for helium. Note the two separate islands indicating a resonance. 

This graph shows the coorqinates Pa versus a and has been cropped 
to eliminate some of the erroneous data created by numerical error. The 
existence of two islands for a single set of initial conditions clearly predicts 



the existence of strong resonances, as seen in the frequency analysis of this 
orbit. 

U sing these surface of section plots, one can calculate the quantum 
numbers associated with the trajectory by calculating the areas enclosed by 
the orbits on the surface. However, it would take a great deal of tilne to 
calculate one orbit, much less the many necessary for correct quantum 
predictions. This is the primary reason that calculations of this type were not 
used extensively, although they could greatly aid the development of a full 
description of the planetary states of helium. 
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III. Results 

III.I The Stark Frequency 

Examination of the trajectories generated by the FP A approximation 
suggests that the inner electron's motions are governed by the Stark Effect 
caused by the electric field of the outer electron. The Stark Frequency can 
be calculated by the application of 

3 2 Ee1ec
Q) =-n 

s 2 Z 

This expression can be simplified by using the quantum mechanical 
definitions of the inner electron's radial position. 

3 n2 

r.=-
I 2 Z 

Due to scaling, 

where 

and thus the scaling invariance gives 

, 2n2 
r. =-r. 

I IZ2 

leading to 

3
r=-Z 

I 4 

The classical expression of the electric field due to the outer is electron is 



E _ 1 
elec - ( )2ro -If 

In these expressions, ri and ro represent the radius of the innner and outer 
electron, respectively. Combining these expressions, we get a simple 
equation for the Stark frequency. 

Further, we can empirically estimate the outer electron's radial 
position from the computer plot of the trajectories. The table below shows 
the average radius over a trajectory of fixed time for each electron at 
different values of Z. Note that the table also shows the maximum and 
minimum values for a that can be used as initial conditions for the orbit. All 
trajectories have the following initial conditions: 

· R=7.0 dRIdt = 0.0 da/dt = 0.0 

The average radii were all calculated for the upper value of a. These orbits 
fall along the edge of the stable region and are of the torus-filling variety. 
The maxmum and minimum radii shown are the radii for the outer electron 
for initial conditions leading to a near-autoionization, ie these points are the 
result of trajectories whose intitial conditions used the lower bound for a. 

The graphs below illustrate the values shown in the table. The 
minimum and maximum values of a can be estimated by linear functions of 
Z, as can the average radius of the inner electron. The average radius for the 
outer electron can be approximated by the fonn (with E=-l) 

0.5 
ro = 2 +3.5+0.9Z

(Z -1.2) 

http:3.5+0.9Z


Z a(min) a(max) <Rin> < Rout> R(min) R(max) e(max) ~e(max) 

1.3 0.034 0.060 0.973 8.583 1.737 13.753 1.80 1.50 
1.4 0.041 0.065 1.062 7.053 2.068 8.659 0.90 0.88 
1.5 0.047 0.070 1.139 6.438 2.273 7.810 0.95 0.80 
1.6 0.052 0.076 1.227 6.162 2.144 13.214 1.70 0.80 
1.7 0.059 0.082 1.325 6.086 2.418 7.855 0.85 0.65 
1.8 0.070 0.088 1.412 5.987 3.024 6.952 0.70 0.55 
1.9 0.068 0.094 1.501 5.938 2.362 14.610 0.85 0.65 
2.0 0.083 0.100 1.589 5.918 3.005 10.024 1.05 0.45 
2.1 0.088 0.106 1.655 5.851 2.281 17.364 0.75 0.45 
2.2 0.098 0.112 1.777 5.930 3.738 6.992 0.80 0.35 
2.3 0.103 0.118 1.871 5.975 3.667 6.952 0.95 0.40 
2.4 0.110 0.124 1.959 5.990 3.900 7.180 0.80 0.30 
2.8 0.138 0.150 2.357 6.378 4.770 7.409 0.60 0.30 
2.9 0.137 0.156 2.455 6.514 2.927 10.105 0.90 0.40 
3.0 0.145 0.161 2.533 6.600 4.414 11.131 0.92 0.35 

Table 1. Showing the values measured and computed for several . values of Z. 
. The values Z=2.5,2.6,2.7 were rejected due to numerical error. 

The radii and a information is shown graphically below. 

Calculating the Stark frequency for Z=2 by this method gives numbers 
which agree reasonably well with the obseved values in the computer 
program. For example, at Z=2, <ro>=6.08 (by the formula given above) 
and, thus, (i)s=0.07, predicting a period of about 90 units of scaled time. 
Looking at the graph shown in figure 7(a), one can see that the orbit 
completes one oscillation in slightly less than 100 units of time. 

http:i)s=0.07
http:ro>=6.08
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Figure 9. Graph showing observed maximum and minimum radii for the outer electron. 

The intitial conditions used were: R=7, dR/dt=O, d~/dt=O, and the lower bound of ~ for each value 
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Figure 10. Graph showing Z dependence of the average radii for the inner and outer electron. 

The intitial conditions used were those for a torus-filling trajectory, along the upper bound of ~. 
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~hen ~falls outside these values, all orbits tend to autoionize. 



ID.2 Quantum Numbers 

It is possible to estimate the quantum regime in which planetary states 
lie by use of the infonnation in the table above. Nonnally, the quantum state 
for a two-electron atom can be described intenns of the quantum numbers of 
each electron: ni, Ii, mi. This discription is usually given in tenns of n1, n2, 
11, 12, L, and M, where L, and M are the total angular momenta. However, 
for these planetary states, we have chosen L=O. This forces M=O and 11 =12. 
Thus, the system can now be described using only three quantum numbers: 
nl,n2,1. 

A better method for describing these states is given by the following 
three quantum numbers. It is beyond the scope of this paper to discuss why 
these numbers are any better then the others. 

n =max(n1 ,n2) 

N =min(npn2) 

K ~ -N COS(012 ) 

These quantum numbers can be estimated from the quantities in table 1 by 
the following fonnulae. In these, ri corresponds to the average radius of the 
inner electron reported in table 1. The variables r max and r min represent the 
maximum and minimum observed values of the radius of the outer electron. 
The quantity ~8max refers to the maximum difference in th,e angle between 
the Runge-Lentz vector and the angle to the outer electron. This is measured 
at near-autoionization. 

r.Z N , <-< 
rmax(Z -1) n 

K 
- > -cos(~e . ) N max 

The results of these calculations are summarized in the table below 
and shown graphically in the two figures following the table. The defintion 
of the quantum numbers forces n to be greater than or equal to N. Thus, any 



values of N/n greater than 1 have been treated as equal to l. From the 
graphs one can see that N/n has a value between 0.5 and 1. This leads to the 
conclusion that planetary states can only be found in regions where 
N~n<2N. 

Z Nln (min) N/n (max) KIN 

1.3 0.554 1.000 -0.071 
1.4 0.655 1.000 -0.637 
1.5 0.662 1.000 -0.697 
1.6 0.498 1.000 -0.697 
1.7 0.640 1.000 -0.796 
1.8 0.676 1.000 -0.853 
1.9 0.466 1.000 -0.796 
2.0 0.563 1.000 -0.900 
2.1 0.427 1.000 -0.900 
2.2 0.683 0.934 -0.939 
2.3 0.690 0.950 -0.921 
2.4 0.684 0.928 -0.955 
2.8 0.704 0.877 -0.955 
2.9 0.609 1.000 -0.921 
3.0 0.584 0.928 -0.939 

Table 2. Quantum regime of planetary states for various values of Z. 

The value of KIN can be approximated by the following fonnula 

K 0.1 
= 1 

N Z -1.2 

which tends to -1 as Z approaches infinity. The boundary values ofN/n can 
be approximated using the linear functions: 

( N) =-0.05Z + 1.077 
n max 

( N) . =0.031Z +0.543 
n mm 

Thus, these simple approximations (ignoring the oscillations in the values of 
N/n) show that the region of allowable N/n and Kin shrinks with increasing 
Z, as expected. 
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Figure 12. Graph of KIN versus Z. 
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III.3 The Effective Potential 

Another important quantity that can be used in the description of the 
planetary states is the effective potential for the inner electron. Calculation 
of this is relatively straightforward, to zeroth order. Like all classical 
systems, one can approzimate the effective potential as that of the harmonic 
oscillator: 

Where co s is the Stark frequency and 8 is the angle to the Runge-Lentz 
vector. However, observations of the trajectories lead one to believe that 

_ there is some critical angle, 8max, that bounds this potential. If the Runge
Lentz vector exceeds this angle, the trajectory proceeds to autoionize. Since 

we can treat the effective potential as 

I Q)s • 2(....Q)VeiJ =--2Sln UJ 
2a 

where "a" is a parameter which is seen to vary with Z, the nuclear charge. 
The effective potential is shown below. Plotted along with this is the 
potential for the harmonic oscillator. 
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Figure 14. The effective poential. 



The maximum for the effective potential is reached when the 
argument of the sine function is nl2 or -nI2. Thus, 

1t 
a=-

28max 

The value of "a" can be determined from the maximum values of 8 at break 
up. These are listed in Table 1. The graph in figure 15 illustrates the Z 
dependence of "a." Figure 16 shows 8max as a function of Z. The value of 
"a" should diverge with increasing Z, but there are not enough data points to 
support this. 
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Figure 15. The value of the constant la l in the effective potential as a function of Z. 
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Figure 16. Graph of 8max versus Z at near-autionionizing trajectories. 
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Appendix 

The following pages illustrate the stability plots discussed in the body 
of the paper. In each, the following initial conditions are constant: 

R=7.0 dRJdt = 0 

Each of the graphs is plotted in da/dt versus a, where these are the other two 
intitial conditions for the orbit. F or the pictures, a given set of initial 
conditions is marked in red to indicate that it is stable. Blue points indicate 
initial conditions leading to the ejection of the inner electron. Green points 
mark autoionizing orbits which eject the outer electron. Black or white 
points are used to mark classically forbidden sets of initial conditions. 
Inside the stable regions are a number of randomly scattered blue points.
These are the result of numerical instabilities in the computer program. 
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Appendix Figure 2. Stability plots for (a) Z=2, (b) Z=3 , (c) Z=4, and (d) Z=5 . 
Note the "thinningll out and eventual disappearance of a stable region. 
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Appendix Figure 3.2. Stabililty plots for (a) Z=1.3, (b) Z=1.2, and (c) Z=l.l. 
Note the splitting of the stable region into a thin strip on the edge and-a 
la[Q:er region on the interior. y:' 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	Spring 5-1994

	An Analysis of Planetary Helium
	Kris Harrison Green
	Recommended Citation


	tmp.1280258301.pdf.SA8z8

