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Introduction

Since the rediscovery of the importance of viruses in marine
environments (Bergh et al. 1989; Proctor and Fuhrman 1990;
Suttle et al. 1990), researchers have worked to try and determine
the quantitative nature of virus effects on marine microbial
food webs. Originally documented in aquatic systems almost
100 years ago (Duckworth 1976) the implications of virus activ-
ity have remained elusive. Beginning in the early 1990s how-
ever, efforts on several fronts began to quantify the rate at

which virus particles were produced and “turned-over” in pri-
marily pelagic aquatic environments. Whereas many of these
methods have not been set aside, an appreciation of the differ-
ent options available to the aquatic viral ecologist is necessary.

Prior to understanding the methods that are available to
estimate virus production rates in aquatic systems, it is per-
haps best to understand how the information is important
and will be used (as the intended fate of the information may,
in part, dictate the manner of its collection). Virus production
rates are most commonly used to infer the losses of primary or
secondary production in aquatic systems due to the activity of
viruses. In the case of direct estimates of particle production
rate, knowledge concerning the number of viruses produced
per lytic event (the burst size) allows for one to estimate the
number of host cells destroyed by the activity of viruses. As
such, estimates of virus activity need to be made over times
scales that are on the same temporal order as the turnover rate
of the host population.

TEM assessments of microbial mortality—One of the earliest
attempts to estimate the mortality inferred on microbial com-
munities was the percentage of visibly infected cells approach
(Proctor et al. 1993). The approach is based on the assumption
that intact virus particles are visible in infected cells for a cer-
tain percentage of the lytic cycle. By undertaking controlled
infections within a lab setting, Proctor and colleagues (1993)
were able to estimate the percentage of the lytic cycle that
viruses were visible within infected cells. By extrapolating this
relationship to microbial communities, estimates of the per-
centage of microbial cells that carried a visible virus infection
could be made using a transmission electron microscope set to
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a high accelerating voltage. Scoring a sufficient number of cells,
a researcher can then make estimates of the percentage of a pop-
ulation carrying a virus burden. This approach was applied
using thin-sectioning (Proctor et al. 1993) as well as a whole cell
approach with (Bratbak et al. 1992) or without “lysis-from-with-
out” by streptomycin (Weinbauer and Peduzzi 1994).

Radioactive incorporation—Popular for assaying the produc-
tion rate of bacteria in aquatic environments, the incorpora-
tion rate of radiotracers to estimate virus production was
developed and proposed as a method in the early 1990s (Stew-
ard et al. 1992a, 1992b). In brief, the method mimics bacterial
production assays by estimating the incorporate of a 3H-, 32P-,
or 14C-labeled radiotracer (thymidine or leucine) into virus
particles. As such, the technique is highly dependent on the
ability of the researcher to separate intact virus particles from
both whole and lysed bacterial and algal materials. Mechani-
cal separation (by filtration) is typically the method of choice
for this approach because a high throughput rate of samples is
needed for significant replicates to be processed. However, the
size-range that viruses occupy (~50–750 nm) overlaps with the
size-range of the operational exclusion range (>0.2 µm) lead-
ing to the loss of some portion of some samples. Moreover, fil-
ter “breakthrough” (the passage of particles greater than the
operational cut off of the filters into samples) quickly con-
taminates this assay. This filtration step in the assay is critical,
as even minor amounts of contamination from a couple of
bacterial or algal cells can result in a significant error in the
estimates of the amount of viral DNA or protein that is pro-
duced. As such, both the variance and opportunity for error
associated with this approach reduce its attractiveness.

Indirect methods: virus decay rates—One approach to deter-
mine the rate of production of virus particles is to examine
their loss rates from the water column. Given that virus parti-
cle abundance is static (a tenuous assumption in some cases),
then the loss rate of virus particles should be balanced by the
production rate. Several variations on this approach exist,
including the use of tracer particles (Garza and Suttle 1998;
Suttle and Chen 1992; Wilhelm et al. 1998a), the use of natu-
ral communities, and the arrest of virus production by adding
poisons (Heldal and Bratbak 1991), and the addition of fluo-
rescently labeled particles that can be tracked as a percentage
of the population (Noble and Fuhrman 2000). In all cases,
these approaches provide information on specific groups in
natural samples, although the information comes at a cost of
some tractability for the system in question.

What do we want from a virus production method?—Ulti-
mately, the estimation of virus production rates should be as
noninvasive as possible, and be able to provide information
concerning the production rate of either total virus particles or
specific groups within a sample. To this end, many labs now
favor the dilution and reoccurrence approach that has been in
use for the last 6 y (Weinbauer et al. 2002; Wilhelm et al.
2002). It has been suggested to use the name “virus reduction
approach” (VRA) (McDaniel et al. 2002), because a dilution

approach has been used for a long time for grazers (Landry
and Hassett 1982) and has been recently applied to viruses
(Baudoux et al. 2007; Evans et al. 2003).

In a comparison with the radiotracer incorporation and the
fluorescently labeled viruses approach, Helton et al. (2005)
conclude that the VRA should be the most widely applicable
method because it is the least difficult and the most efficient
method. In brief, the method involves the removal of free
virus particles from a sample, and then documents their reoc-
currence over time. The rate of this reoccurrence, when cor-
rected for the relative abundance of potential host cells in a
sample, allows for an estimate of the production rate of parti-
cles in the sample by direct counts using epifluorescence
microscopy or flow cytometry. In addition, it is possible to
estimate the percentage of infected cells (PIC) in the initial
population. Adaptations, including the enumeration of spe-
cific particles (by qPCR quantification) or infectious particles
(via plaque assays or MPN assays), allow for multiple compo-
nents of the virus community to be assayed from individual
experiments.

Materials and procedures
General remarks—The reduction and reoccurrence method

for estimating virus production has become the new “gold
standard” by which virus production rates have been mea-
sured. This approach has been tested in a number of environ-
ments and in different seasons. Whereas the approach itself is
relatively simple, several different adaptations of the approach
now exist. These adaptations are discussed below, each with
their own variations. The areas of this process can be parti-
tioned into the following areas: 1) methods to reduce the
abundance of viruses, 2) incubation and sampling of samples,
and 3) data processing and interpretation.

Methods to reduce the abundance of viruses—The major differ-
ence between all published approaches to measure virus pro-
duction by the reduction and reoccurrence method is the
process of reducing the abundance of free virus particles. Before
collecting the host community, prefiltration can be used to
avoid loss of newly produced viruses by attachment to large
particles or grazing on infected cells. Like any filtration step,
this also has the potential to lead to loss of hosts or viruses. As
such, if prefiltration of samples is going to occur, it needs to be
completed in a manner appropriate for the samples in ques-
tion. As well, separation of the microbial (i.e., host) commu-
nity from free viruses also requires filtration, which can lead to
significant losses or changes in the efficacy of the approach. To
this end, the choice of membrane material is important, and
while some membranes (e.g., low protein binding-matrices)
may be more expensive that others (e.g., glass fiber or cellulose
nitrate) they offer advantages in reduced analytical variances
that are well worth the extra expense.

In this paper, three different approaches to reduce the
abundance of free virus particles are discussed. Whereas each
method has its benefit and drawback, it is incumbent on the
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users to understand these as well as to choose the method
most appropriate for their question of interest.

Approach 1: Over filter virus reduction with continuous cell
resuspension (Wilhelm et al. 2002)—In this approach, the
microbial host community (~300 mL) is gently (vacuum pres-
sures of <200 mmHg) collected over a 0.2-µm nominal pore-
size low protein-binding filter (e.g., Durapore, Millipore Cor-
poration) while virus-free (ultrafiltrate, UF) water is added to
maintain the approximate sample volume. After three pas-
sages of sample volume through the filter, the retained micro-
bial community is distributed (n ≥ 3) for incubation (see
below). During the filtration process, bacteria are gently and
continually resuspended from the filter surface using a trans-
fer pipette to resuspend cells that may become trapped on the
membrane. Since the original approach for this assay, a num-
ber of adaptations have been made: these include the use of a
tube and peristaltic pump to keep cells in suspension (Helton
et al. 2005).

Approach 2: Tangential flow filtration (TFF) based concentra-
tion and resuspension of cells in virus-free water (Weinbauer et al.
2002)—Bacteria in a 200-300 mL water sample are concen-
trated using a 0.2-µm pore-size tangential flow filtration sys-
tem (e.g., a Vivaflow 50 cartridge, 0.2-µm pore size, polysul-
fone; Vivascience operated by a peristaltic pump). The
bacterial concentrate (ca. 10-15 mL; i.e., the retentate) is kept
and the filtrate (permeate) containing the viruses is passed
through a 30- or 100-kDa filter unit to generate virus free
water. Note that some concentrate is in the cartridge and tubes
but can be collected by removing the feed tube and pumping
the concentrate into the retentate container. The bacterial
concentrate is then mixed with the UF, and samples are dis-
tributed in triplicate into incubation tubes.

Approach 3: TFF virus reduction and continuous cell resuspen-
sion (Winget et al. 2005)—This approach is similar to approach
2, however, UF is made before and fed into the bacterial reten-
tate to keep the volume constant. Filtered volumes are as in
approach 1. One caveat is that passages of the sample volume
through the filter have been found to marginally improve
viral reduction over use of 3 passages of the sample volume
(Winget et al. 2005).

Comments on microbial community collection and virus
reduction—Ultrafiltered water can be made by a variety of car-
tridges that are available from several providers. Either 30 kDa
or 100 kDa exclusion cartridges are typically used as they are
in the generation of virus concentrates (Wilhelm and Poorvin
2001). In practice the 100 kDa should remove less dissolved
organic matter and, as such, lead to fewer changes in dissolved
solute concentrations. However, the 100 kDa cartridges might
not retain very small viruses, such as some RNA viruses.

In all three approaches, the goal is to maintain the host
population while reducing the abundance of free viruses. Typ-
ically viral abundance is reduced to ~10%–20% of the initial
concentration, while bacterial abundance is reduced to ~50%.
However, recovery efficiency can vary strongly. One would

expect that the recovery efficiency differs among environ-
ments, but this has been not studied systematically. While not
ideal, the reduction in host abundance reduces virus–host
contact rates and the frequency with which new infections
occur during the incubation stage. For approaches 1 and 3, the
procedures require the separate generation of virus-free water
prior to experimental set-up, and this can be time consuming
as the virus-free water should be generated from the specific
station where the incubation sample is collected. In practice,
this time lag can be reduced by using a larger scale concentra-
tion system (e.g., the Amicon M12 system, Millipore), which
can more rapidly generate virus-free water. One advantage of
approach 2 is that the virus-free water can be generated in par-
allel with the collection of the microbial host community,
allowing for more rapid pre-processing and experimental set-
up (and as such allowing for multiple samples to be processed
in parallel). However, this approach carries with it the caveat
that cells are concentration up to 10-fold beyond their in situ
abundances for a short period, and this increased cell density
may have unknown effects on microbial metabolism (e.g.,
activation of quorum sensing pathways).

Experiment incubation and sample collection—To determine
the rate of virus production, each of the above approaches
requires that samples containing the reduced virus commu-
nity be incubated under in situ conditions so that the micro-
bial metabolism can proceed and viruses continue the lytic
cycle. Several options are available here, including the use of
environmental chambers that can control temperature. In the
field, one of the most common approaches is to use flowing
lake/seawater incubators. In this case, water is pumped from
the sea surface (often exploiting existing equipment if on a
research vessel, i.e., the ship’s deck water or fire systems) into
an on deck box incubator, and then allowed to return over-
board by means of an overflow system. Care must be taken in
these cases to ensure that the volumes and flushing rates of
the incubators are sufficient to allow for complete incubation
of sample bottles while cycling the flow-through fast enough
to maintain surface temperatures (i.e., to avoid heating in the
sun). One other question commonly raised concerns whether
to carry out the incubations at in situ light levels or in dark-
ness. To date most studies have focused on the heterotrophic
bacterial community, and as such, have used darkened bottles
or incubators for this step. Incubation under in situ light con-
ditions can be completed and may favor virus production in
photoheterotrophs or alga, but comes with the caveat of virus
loss due to light effects. Please see the Assessment section for
more details on the impacts of light versus dark incubations.

To determine the rate of virus production in the experi-
mental sample, subsamples are collected from the incubation
bottles at increments appropriate for the system being studied.
In environments where the microbial community is rapidly
turning over, this may be on the order of every 1.5 h, whereas
in environments where microbial growth is slow this may be
on the order of every 4-6 h. Typically, subsampling is best
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completed at 2.5-3 h intervals over a period of 10-12 h,
although in environments of low trophic status/growth rate
experiments can run 18-24 h. It is critical here that the precise
time of sampling is noted, as this information is required to
determine the rates of virus production within the samples.

Subsamples, once collected, need to be quickly processed or
preserved for enumeration of the virus community. To date,
the only published information using any of these approaches
involves the enumeration of the total virus community within
samples. Ongoing research, however, is focusing on the reduc-
tion and reoccurrence approach to enumerate the rates of pro-
duction of individual virus groups (e.g., by plaque assay or
quantitative PCR).

Data processing and interpretation—The processing and
analysis of the data collected by the above experimental
designs is as important as the choice of method to set up the
experiment. In each case, the results of the enumerations
result in 3 independent rates of virus production. These rates
are determined from the slopes of plots of virus abundance
versus time for the independent incubations. These in situ
experimental production rates must then be corrected for the
bacterial losses during sample set up: to do this one simply
takes the ratio of in situ bacterial abundance to experimental
(T = 0) bacterial abundance and multiplies this by the produc-
tion rate (Table 1, Eq. 1). It is critical to determine these rates
from the individual incubations and not from the mean of the
virus abundance in the 3 separate samples, as the independent
rates can be used to calculate a mean rate and an estimate of
variance (the first standard deviation) for that measure.

Once the rate (and variance) of virus production is deter-
mined, a number of secondary calculations become available
to the researcher beyond the variations in virus production
rates under different environmental conditions or spatio-
 temporally. It is important at this juncture to note that each
of these calculations comes with the caveats of not only this
method, but also of the method used to determine the com-
panion parameters discussed below.

The most basic calculation typically completed from the
virus production data is to develop an estimate of the host
cells lost. This estimate is calculated from the rate at which
viruses are produced and an empirically (preferably) deter-

mined or estimated burst size (Table 1, Eq. 2). This calculation
makes the assumption that the viruses produced within a sam-
ple are produced primarily from the lysis of heterotrophic bac-
teria. While this may not be completely correct, it is generally
considered a safe assumption that aquatic viruses in most sam-
ples (>90%) are produced this way (Weinbauer 2004).

To estimate the percentage of the microbial community
that was infected at the beginning of the experiment (%
infected cells, PIC), the abundance of viruses produced during
the observation is divided by the burst size to estimate the
number of bacterial cells that were lysed (Table 1, Eq. 3). This
represents a conservative estimate of the cells carrying a virus-
burden at the onset of the experiment, as some cells in the
early stages of the lytic cycle and with long lytic cycle times
may not yet have lysed. The PIC is then calculated as 100 × the
number of lysed cells divided by bacterial abundance at T = 0.

Furthermore, virus production can be related to viral-
mediated mortality of bacterioplankton in several ways. For
more detailed calculations, see also http://www.univie.ac.at/
nuhag-php/vipcal/ (Luef et al. 2009). Virus production can be
divided by the burst size and bacterial abundance at T = 0 to
obtain a lysis rate of the standing stock: for example, as % of
bacterial abundance per day. Using burst size estimates, viral
lysis rate can also be compared with bacterial production and
expressed as % mortality in the sense of % of production
lysed. In the latter case, it is important to either correct for
losses of bacterial abundance or measure bacterial production
at T = 0 of the incubations.

The PIC can also be related to bacterial mortality using
models. Two models have been used (Binder 1999; Proctor et
al. 1993) to make these estimates from transmission electron
microscopy measures. These models are predicated on the
assumption that in steady state one of the two daughter cells
originating from cell division is lost. Thus, in the model of
Proctor et al. (1993) the percentage of infected cells is multi-
plied by two to obtain that (“factor-of-two rule”). Binder
(1999) developed a more elaborate model that including graz-
ing on infected cells to estimate the fraction of mortality from
viral lysis. Note that in those studies the authors chose (we
believe incorrectly) the term frequency instead of percentage,
but the calculations are the same.
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Table 1. Formulae for inferring the production, turnover, and effects of viruses on marine microbial communities 

Equation Parameter Units Formula

1. In situ virus production rates (VPR) Particles per volume per time Experimental virus production = (in situ BA/BAex, T=0)

2. Virus-inferred bacterial lysis Bacteria per volume per time Bacterial lysed = VPR/BS

3. Number of lysed cells Bacteria per volume Number of lysed cells = Maximum minus minimum 

viral abundance/average burst size

4. Percentage of infected cells Percentage PIC = Number of lysed cell divided by bacterial abundance

5. Virus remobilized nutrients Nutrients per time Nutrients = Virus-inferred bacterial lysis 

× nutrient quota per cell

VPR, in situ virus production rate; BA, in situ bacterial abundance; BAex, T=0, experimental bacterial abundance at T = 0; BS, burst size; VA, in situ
virus abundance.



A final calculation that has become very relevant as of late
is the production of estimates of nutrients “recycled” due to
virus-mediated cell lysis. In both marine and freshwater envi-
ronments, some knowledge of the biochemical impacts of
viruses is desired to better develop models of geochemical
budgets and cycles. In the current case, the abundance of cells
lysed by viruses can be used to estimate carbon and nutrient
regeneration rates by multiplying cells lysed by the cellular
quota for the nutrient in question (Poorvin et al. 2004). One
caveat to this calculation is that the fate of elements released
by virus-mediated cell lysis remains unsure, as only a few stud-
ies (Gobler et al. 1997; Middelboe and Jörgensen 2006; Mid-
delboe and Lyck 2002; Mioni et al. 2005; Poorvin et al. 2004)
have carefully addressed this issue. That said, the role of
viruses within these cycles is no doubt critical (Brussaard et al.
2008; Suttle 2007; Wilhelm and Suttle 1999), and potentially
a fruitful area of future research.

Assessment
A series of factors to consider when choosing the

approach that is most appropriate for a lab is given in
Table 2. One of the problems with the virus reduction
method is that the manipulation of the sample could influ-
ence virus production. For example, the loss of cells and
release of organic compounds due to stress or cell breakage
during filtration (Nagata and Kirchman 1990) could influ-
ence rates. This alteration could affect bacterial production
and ultimately affect the burst size (Parada et al. 2006).
While no changes in bacterial production were seen in early
trials of the virus reduction approach (Wilhelm and Suttle,
unpubl. data), this problem suggests that bacterial produc-
tion rates should be measured at the start of the experiment
and either during or at the end of incubations to determine
if virus production is related to losses of heterotrophic pro-
duction. In a previous virus-reduction type assay where this
was tested, the burst size did not differ between in situ and

mitomycin C–treated samples (Weinbauer and Suttle 1996).
This is, so far, the only indication that the VRA does not
influence burst size, however, it has to be noted that burst
size was not checked in the untreated controls. Another
potential problem is that many protistan grazers of prokary-
otes are destroyed or inactivated by excessive handling.
Because protists can ingest viruses (Gonzalez and Suttle
1993) and could preferentially graze on infected cells (Wein-
bauer and Peduzzi 1995), such losses could result in
increased variance in the estimates of viral production
although preliminary observations (unpublished) suggest
that exclusion of grazers at the beginning of the experiment
does not affect rates. Finally, viral decay rate is usually not
measured during the incubations, although it can be impor-
tant (Winter et al. 2004).

Only a few studies have compared different approaches to
assess prokaryotic mortality by viruses (for example, summa-
rized in Weinbauer 2004). Some studies have also compared
various approaches of the VRA. Weinbauer et al. (2002) found
no consistent differences between Approach 1 and 2 for five
samples from coastal and offshore Mediterranean water when
calculating FIC. Another comparison was done using
approach 1 and 3 (Winget et al. 2005). In three experiments,
one of the two methods yielded negative and the other
method positive values. For the two where positive values
were obtained, there was no significant difference between the
two samples.

As part of the current assessment, a comparison of
approaches 1 and 3 were completed during cruise transects in
the Pacific and Atlantic Oceans (Fig. 1). Across 8 different sta-
tions, only one station (occupied in the North Atlantic)
showed a significant difference in estimated virus production
rates using these two techniques. That station, which was part
of a larger survey of the North Atlantic described elsewhere
(Rowe et al. 2008), was a general statistical outlier for a num-
ber of parameters.

Weinbauer et al. Estimating virus production
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Table 2. A comparison of the pros and cons of the three virus reduction assay approaches 

Approach Advantages Disadvantages

Over filter concentration approach • Cells are not concentrated • UF has to be made before the start of the 

(Wilhelm et al. 2002) • High reduction efficiency (75 – 80% +) incubations (adds 0.5–1 h to processing time)

• Limited material requirements • Weak recovery of bacteria

TFF Concentration and resuspension • Parallel sampling processing is easy • Bacteria are concentrated, which might increase infection 

(Weinbauer et al. 2002) (only one pump needed) and affect performance of cells and physiology

• Most rapid approach • Low reduction efficiency

• Volume needed: 200 mL • Requires 30 or 100 kDa filters to generate ultrafiltered water

• Good recovery of bacteria

TFF concentration with continual resuspension • Cells are not concentrated • UF has to be made before the start of the incubations

(Winget et al. 2005) • High reduction efficiency (75 – 80% +) (adds 0.5–1 h to processing time)

• Good recovery of bacteria • Multiple UF filters needed (0.2 and 30 or 100 kDA)



Another area that has yet to be assessed in terms of esti-
mates of virus production rates is the effect of light levels dur-
ing the incubation process. While exposure to light may cause
a loss of virus particles integrity or particle infectivity (Wil-
helm et al. 2003; Wilhelm et al. 1998b), exposure to levels of
photosynthetically active radiation may enhance host pro-
duction rates or drive the photoreactivation of viruses that
have experienced DNA damage (Weinbauer et al. 1997; Wein-
bauer et al. 1999). To date most studies have focused on esti-
mating the production rates of infecting heterotrophic bacte-
ria, so the incubation step has been completed with darkened
bottles or incubators. To examine the effects of ambient light
exposure, seven comparisons (using the over-filter approach)
were completed during a transect from Hawaii to Australia.
The assays were completed in a Plexiglas incubator (thereby
reducing UV wavelengths) in bottles where the light field was
reduced to 30% ambient (light) or completely darkened. As
shown in Fig. 2, no significant difference was seen between
the light and dark incubations in terms of estimated virus pro-
duction rates. While not an exhaustive survey (and absent of
information on the richness and evenness of viruses within
the samples), the results demonstrate that virus production
estimates appear to be independent of light field. One caveat
to this is that changes in virus community structure were not
examined in this study: it is possible that some virus popula-
tions increased in production whereas others were lost in the
contrasting light and dark incubations.

Discussion

As new estimates of virus production rates appear, one
overarching observation is that the production rates often
seem to be too high to be sustainable by estimated bacterial
production rates. The immediate effect of this is the genera-
tion of problems when extrapolating to food web or biogeo-
chemical models. However, it has to be noted, that precisely
quantifying both the production and mortality rates is diffi-
cult for microorganisms in general. This observation also illus-
trates the critical point that microbial communities are doubt-
less never in “steady-state” and as such (relatively)
near-instantaneous observations of rates do not neatly
describe community function (Hutchinson 1961). Moreover,
this observation also suggests that the production of viruses
from the lysis of phototrophs and/or protists may be impor-
tant in some situations.

Given the above caveat, there remains an opportunity to
employ the information generated by these measures to
examine the effects of viruses on biogeochemical processes
and food web interactions. For example, the virus reduction
approach in its various forms has revealed ecologically rele-
vant trends of viral infection such as diel cycles (Winter et
al. 2004), seasonal variations, and changes along trophic
gradients (Winget et al. 2005) or fronts (Wilhelm et al.
2002). Carbon and Fe release have also been estimated using
this approach (Poorvin et al. 2004; Strzepek et al. 2005).
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Fig. 1. Side-by-side comparisons of the over-filter method reduction
approach (gray circles, Wilhelm et al. 2002) and the tangential flow fil-
tration (TFF) method for the reduction of free virus particles (white cir-
cles, Winget et al. 2005). Samples were collected in the southeastern
Pacific Ocean (January 2007) as well as the Sargasso Sea and the North
Atlantic during May–June 2005 (Rowe et al. 2008). Experiments were
completed at sea using the described protocols (n = 3, ±SD), and
results are displayed as viruses produced (log scale). No significant dif-
ferences were seen (Student t-test, 2-tailed, P < 0.05) except for station
11 (far right). 

Fig. 2. Side-by-side comparisons of virus production rates determined
using the over-filter method reduction approach (Wilhelm et al. 2002)
with incubation stages completed in the dark (black circles) or reduced
sunlight (white circles). For light exposed experiments, samples were
incubated at ambient temperatures in a continuous flow incubator with
solar intensity reduced to 30% using neutral density screening. Samples
were collected in the southeastern Pacific Ocean (January 2007). Experi-
ments were completed at sea using the described protocols (n = 3, ±SD)
and results are displayed as viruses produced (log scale). No significant
differences were seen (Student t-test, 2-tailed, P < 0.05). 



Comparisons to other mortality processes, such as grazing,
can also be made to gauge how environmental parameters
influence mortality mechanisms (Gobler et al. 2008; Wein-
bauer and Höfle 1998). In all, the availability of a method to
estimate virus production rates provides researchers with an
opportunity to begin to develop quantitative estimates of
the effect of viruses on marine microbial communities.

Comments and recommendations
There are now many adaptations appearing for the above

experimental approaches, and the reader is encouraged to
review the literature prior to undertaking these experiments.
New applications, including the use of infection assays and
quantitative polymerase chain reaction (qPCR) estimates of
virus abundance are now being used to allow researchers to
focus on the production rate of specific viruses within whole
community populations. As well, the virus reduction
approach has also been employed to estimate virus turnover
rates in marine sediments (Hewson et al. 2001; Mei and
Danovaro 2004). This requires alterations to the protocols
described above, and researchers are encouraged to seek out
those references prior to attempting such a study.
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