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A New Stochastic Model for Systems Under
General Repairs

Huairui R. Guo, Haitao Liao, Member, IEEE, Wenbiao Zhao, and Adamantios Mettas

Abstract—Numerous stochastic models for repairable systems
have been developed by assuming different time trends, and re-
pair effects. In this paper, a new general repair model based on the
repair history is presented. Unlike the existing models, the closed-
form solutions of the reliability metrics can be derived analytically
by solving a set of differential equations. Consequently, the con-
fidence bounds of these metrics can be easily estimated. The pro-
posed model, as well as the estimation approach, overcomes the
drawbacks of the existing models. The practical use of the proposed
model is demonstrated by a much-discussed set of data. Compared
to the existing models, the new model is convenient, and provides
accurate estimation results.

Index Terms—Closed-form solution, confidence bounds, general
repair, maximum likelihood estimation, proportional failure inten-
sity, repairable system, virtual age.

ACRONYMS1

HPP Homogeneous Poisson Process

NHPP Non-Homogeneous Poisson Process

PI Proportional Intensity

MLE Maximum Likelihood Estimate

LR Likelihood Ratio

MTBF Mean Time Between Failures

NOTATION

cumulative number of failures up to time

failure intensity function

baseline failure intensity function

, expected value of cumulative failure
intensity
time of the th failure, and the th inter-arrival time

repair effective factor in Kijima models

virtual age after the th repair
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1The singular and plural of an acronym are always spelled the same.

parameters of the proposed model

conditional reliability before the th failure

conditional pdf of the th failure time

vector of functions of time , and/or failure/repair
history
estimate

I. INTRODUCTION

FOR a repairable system, repair actions can bring the system
to one of the following states: “as good as new” (perfect

repair), “as bad as old” (minimal repair), or “better than old, but
worse than new” (general repair).2 Many stochastic models for
repairable systems have been developed by assuming different
repair effects. The vast majority of these models consider only
the first two cases [3], [5], [17]. Recently, general repairs have
received much attention [1], [2], [8], [10], [11], [13], [20], [21].

Specifically, the current research has shown significant in-
terest in two particular approaches in modeling general repairs.
The first one is called the proportional intensity (PI) model. In
this subset, the repair effect is expressed by a reduction of the
system failure intensity [13]. The second one is called the virtual
age model in which the repair effect is expressed by a reduction
of the system age [7], [9]. For these two subsets, many models
have been developed, and methods for parameter estimation and
goodness-of-fit tests discussed [10], [13], [15]. These models
are statistically sound, but they are difficult to use in solving en-
gineering problems due to their mathematical complexity. Es-
pecially, for the existing models, the closed-form solutions of
reliability metrics of the system, such as the expected number of
failures, instantaneous failure intensity, and mean time between
failures (MTBF), are not available. It is mainly because these
models are expressed in discrete forms, even though numerical
solutions of the model parameters can be obtained through sta-
tistical inference procedures, such as the Maximum Likelihood
approach. As a result, the current research effort highly relies
on Monte Carlo simulation in order to obtain these reliability
metrics [2], [10]. Moreover, little research has been done on es-
timating the confidence bounds of these reliability metrics. This
also stems from the lack of closed-form solutions.

In this paper, a new model for general repairs based on repair
history is proposed. The new model is expressed in a contin-
uous form, and considers the repair effects and the time trends
simultaneously. More importantly, unlike the existing models,

2The states which remain but which we do not treat in this paper are “better
than new”, and “worse than old”.
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this model can give the closed-form solutions for all the relia-
bility metrics by solving a set of differential equations. Conse-
quently, the confidence bounds of these reliability metrics can be
obtained through the Fisher Information Matrix. The proposed
method overcomes the drawbacks of the existing models for the
analyses of complex repairable systems.

The remainder of this paper is organized as follows. Section II
briefly reviews the existing repair models, and addresses their
drawbacks. Section III presents the new model, and its proper-
ties. Section IV develops the statistical inference procedure for
estimating the model parameters and confidence bounds of the
reliability metrics of interest. In Section V, a numerical example
is provided to demonstrate the use of the proposed model in
maintenance practices. Section VI draws conclusions, and dis-
cusses the future research.

II. OVERVIEW OF MODELS FOR REPAIRABLE SYSTEMS

The non-homogeneous Poisson process (NHPP) is one of
the most popular models for repairable systems. Many models
have been developed based on this process, such as the Crow-
AMSAA model [5], and bounded intensity process (BIP) model
[19]. These models account for the time trend effect, but can
only describe the “as bad as old” type of repair processes. To
address general repairs, Kijima virtual age models [11], [12],
and PI models [3], [4], [13] have been proposed. The virtual
age, and PH models are capable of modeling a vast variety of
repairs. We will first review some of these models.

A. Non-Homogeneous Poisson Process

NHPP models are widely used to describe failure processes
exhibiting certain trends, such as reliability growth, or deteri-
oration. Let be the cumulative number of failures up to
time (counting process), be its expected value, and
be the failure intensity, then the probability that equals

is given by

(1)

and is

(2)

Functions such as the power law function [5], log-linear func-
tion [3], [4], [13], exponential function [19], and many others
[17] have been utilized to describe the trend of failure intensity.
Particularly, the log-linear function

(3)

with the parameters , and , has been widely used in modeling
NHPP due to its significant flexibility. If , the system will
exhibit an increasing failure intensity; if , the system will
have a decreasing failure intensity; and when , the failure
process becomes a Homogeneous Poisson Process (HPP) with

a constant failure intensity. In this paper, the log-linear function
will be considered in our model development.

In a repair model following a NHPP, the time trend effect has
been considered, but the general repair effect is essentially ig-
nored. In practice, repair actions will bring the reliability indices
of the system, e.g., the failure intensity, to somewhere between
the “as good as new”, and the “as bad as old”. To consider the
general repair effect, virtual age models, and PI models have
been developed.

B. Virtual Age Model

Kijima [11], [12] developed two general repair models by in-
troducing the virtual age concept. Consider a repairable system
under instant repairs. Let be the successive failure
times , and , be the inter-arrival times be-
tween failures such that

(4)

Denote the real age of the system by , the repair
effective factor by , and the system virtual age
after the th repair by ( for a new system). In the
literature, two famous virtual age models have been reported.

Kijima Model I:
Kijima model I assumes that the th repair cannot remove
the damage incurred before the th failure; instead it
can only reduce the additional age of the system partially
from to . Accordingly, the virtual age after the th
repair becomes

(5)

thus

(6)

Kijima Model II:
Suppose that, before the th repair, the virtual age is

. Kijima model II assumes that the th repair
will remove the cumulative damage from both current,
and previous failures; thus the virtual age after the repair
becomes

(7)

thus

(8)

The basic idea of the virtual age models is to address the
repair process as a generalized renewal process, and substitute
the real time with the virtual age for calculations. For example,
denote the virtual age at a given time by , and consider the
log-linear formulation, then the corresponding failure intensity
becomes

(9)
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Essentially, the Kijima virtual age models assume that re-
pairs do not change the system’s distinct probabilistic structure
(the system lifetime distribution, and parameter structure), and
the only change made by repairs is the system virtual age.
This assumption is physically intuitive, and mathematically
useful; however, as for the computation effort, these models
highly rely on Monte Carlo simulation to obtain the reliability
metrics. Thus, the practical application of these general repair
models becomes difficult. More clearly, the substitution with
the virtual age, such as in (9), raises the following problems in
maintenance practices:

• For a future time , the virtual age is unknown. There-
fore, the corresponding failure intensity is unknown,
and so is the expected cumulative number of failures .
Because there are no closed-form solutions of and

, it is difficult to predict their future values, and give
their confidence bounds. The only way to obtain the pre-
dicted values, and their confidence bounds, is to conduct
simulation. However, simulation is time-consuming, and
the accuracy of the results is mainly determined by the sim-
ulation scale.

• Because the expected value of the cumulative failure rate
is , and the cumulative MTBF is ,
the same problems in (a) also exist for , and the cu-
mulative MTBF.

C. Proportional Intensity Model

It is clear that the virtual age models do not change the func-
tional form of the failure intensity, but shift the intensity “block”
horizontally along the time axis. In contrast, the PI models as-
sume that repairs do not change the form of the baseline failure
intensity, but shift the intensity “block” vertically along the in-
tensity direction. To reflect such vertical shift (repair effects),
the general PI model is

(10)

where is the baseline model, is the vector of functions
that may depend upon both system operating time and system
operating/failure/repair history, and is the vector of unknown
parameters.

Lawless & Thiagarajah [13] used a specific PI model of a
modulated renewal process [4]:

(11)

where , , are model parameters, and is the time of
the latest failure prior to time . Obviously, when this model is
used for prediction, can be obtained only by simulation.

III. MODEL DEVELOPMENT

A. Mathematical Formulation

Maintenance of a deteriorating system is often imperfect,
with the condition of the system after maintenance being at a
level somewhere between new, and its prior condition. There-
fore, a general repair model is more realistic for describing the

practical maintenance effort. In addition, it has been recognized
that the chronological age, quite often, does not reflect the
characteristic behavior of the system. To recognize the intrinsic
characteristic of the system, entire information about the usage
& repair history needs to be considered.

It seems plausible to assume that the cumulative number of
repairs or failures is a useful metric that captures the age, use
behavior, operating conditions, as well as repair history of the
system. Motivated by this assumption, we propose a new gen-
eral repair model based on the expected cumulative number of
repairs (failures) as

(12)

where is the baseline failure intensity function, and the re-
pair effect is reflected by the second term with pa-
rameter . By considering the effective repairs, i.e., the system
reliability is recovered or at least not worsened after each re-
pair, we have . Note that when the proposed model
includes the minimal repair model as a special case. In the fol-
lowing, we only focus on the discussion when .

For this model, the closed-form solution of can be ob-
tained by solving the following differential equation:

(13)

where the constant can be obtained from the boundary condi-
tion . Specifically, if the log-linear baseline intensity
function is used, i.e., , the new model becomes

(14)

We will focus on this specific model hereafter. Following
(13), the new model becomes

(15)

Then, from , the constant can be obtained as
, when . Therefore, substituting into

(15) yields

(16)

For some components or systems, there is no time trend
(aging); the total failure intensity is only affected by the
number of bugs found during a debugging process. For this
case, we have , which leads to a constant baseline failure
intensity. Resolving (13) yields

(17)

Equations (16) & (17) are closed-form solutions of , and
its confidence bounds can be calculated from the variance-co-
variance matrix of the maximum likelihood estimates (MLE) of
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, , and . Furthermore, taking the first derivative of with
respect to time yields

(18)

and

(19)

Then, the confidence bounds of can be calculated based on
the variance-covariance matrix of the parameter estimates of ,
, and as well.

B. Model Properties

The properties of system failure intensity over time are in-
dicative of the effectiveness of performing repairs.

First, the monotonic properties of the new model are investi-
gated. When , taking the derivative of in (18) yields

(20)

Because , it is sufficient to study the sign of .
Obviously, when , the model represents a homoge-
neous Poisson process (HPP) with the constant failure intensity
of . This equation means the repair effect, and the
system wear-out are canceling each other. When ,
the system exhibits an increasing trend in failure intensity, while
it has a decreasing trend when . Similarly, when

, taking the derivative of in (19) yields

(21)

Because , will be decreasing over time. In other
words, the reliability of the system is improved due to repairs.

As for the asymptotic properties of the model, when ,
from (18), if ,

when
when

(22)

Obviously, when , the failure probability of the system
will approach 0 as ; otherwise, it will eventually have
the same failure behavior as a HPP with the constant failure
intensity of . Likewise, when , from (19), if ,

. One example in this case is the software
failure & debugging process, as mentioned previously.

The following analyses will focus on the case when ,
while similar procedures can be applied when .

IV. STATISTICAL INFERENCE PROCEDURE

There are many approaches to estimate the model parameters
from historical failure data. In this paper, the Maximum Likeli-
hood approach is utilized.

A. Maximum Likelihood Estimates

For the new model in (14), the empirical failure intensity is

(23)

which is the empirical sample of the process. In other words,
the continuous process with is used to ap-
proximate the discontinuous process with .
Therefore, the conditional reliability before the th failure is

(24)

and the conditional pdf of the th failure time is

(25)
So, the likelihood function of the observed data is

(26)

and the corresponding log-likelihood function is

(27)

From (24), the first derivatives of the log-likelihood function
with respect to the parameters are given by

(28)

(29)

(30)
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The MLE of , , and can be obtained by setting (25)–(27) to
zero, and solving the equations simultaneously. Then, the MLE
of , and become

(31)

and

(32)

B. Variance-Covariance Matrix of Parameter Estimates

Based on the asymptotic theory for MLE, the variance-covari-
ance matrix of the MLE , , and can be obtained by taking
the inverse of the Fisher Information Matrix [14] evaluated at
the MLE as

(33)

C. Confidence Bounds of , and

From (17), the partial derivatives of with respect to the
model parameters are

(34)

(35)

(36)

where ; . Using the
delta method [16], the variance of can be obtained as

(37)

where the partial derivatives are evaluated at the MLE , ,
and . By assuming the log transformation of follows the

TABLE I
FAILURE TIME DATA FROM PLANE 7 (IN CUMULATIVE OPERATING HOURS)

-normal distribution, the approximate 100 % confidence
bounds [14] of are given by

(38)

where , and is the
percentile of the standard -normal distribution. Sim-

ilarly, the confidence bounds of in (18) can also be calcu-
lated using this method, which will not be repeated here.

D. Likelihood Ratio Tests for Time Trend, and Repair Effect

The likelihood ratio (LR) test is a statistical test of the
goodness-of-fit between two hierarchically nested models.
Especially, it can be implemented to check the significance of
adding additional parameters in a model. Let be a vector
consisting of additional model parameters. The LR statistic

follows the distribution with degrees of freedom, where
, and are the

maximum likelihood values obtained for , and
respectively. It follows that the null hypothesis, ,
is rejected if , in which is the upper quantile
of the distribution with degrees of freedom. Because the
significance of a specific effect reflected by the data can be
measured by the value of the associated parameter in the repair
model, it is equivalent to check the significance of the model
parameter using the LR test as demonstrated next.

V. NUMERICAL EXAMPLE

The proposed model is demonstrated using the well known
data on airplane air-conditioning failures [18]. One data set de-
noted as Plane 7 [3], [13] is analysed. Table I gives the failure
times in cumulative operating hours. The baseline failure inten-
sity is assumed for the new model.

A. Tests for Time Trend, and Repair Effect

First of all, the likelihood ratio approach presented in
Section IV is utilized in testing for the time trend, and the repair
effect. The first hypothesis test is expressed as

Neither time nor repair effect exists .

At least one effect exists (either , or ,
or both).

which tests the time trend, and the repair effect simultaneously.
Under the null hypothesis , by setting , and , the
maximum log-likelihood value is obtained as 143.8356. On
the other hand, the maximum log-likelihood value under the full
model is 138.9524. Then, the test statistic equals ,
which is greater than , the chi-square value with
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TABLE II
PARAMETER ESTIMATES OF DIFFERENT MODELS

two degrees of freedom at the significance level 0.05. Therefore,
the HPP is rejected, implying either the time trend effect, or
the repair effect, or both exist. To study the time trend effect
individually, the following test is conducted as

No time trend exists .

Time trend exists .

By setting , the maximum log-likelihood value is ob-
tained as 206.0910. The test statistic is , which
is much greater than . Therefore, is rejected,
meaning that the time trend is significant. Similarly, the third
test can be implemented to check the significance of the repair
effect by testing

No repair effect exists .

Repair effect exists .

In this test, the maximum log-likelihood value equals
143.7858. The test statistic is , which is greater

than , implying that the repair effect exists.
These tests show the evidence of both the time trend, and the
repair effect; therefore the full model will be utilized for the
subsequent analyses. Note that Lawless & Thiagarajah [13]
drew different conclusions regarding the trend, and repair effect
for the same data. However, by comparing the log-likelihood
values in both works, we can see that the values we obtained are
higher (e.g., in testing of : No repair effect exists ,
the value is in our work, whereas the value is

in the last column of Table I in [13]). In terms of
MLE, the parameter estimates we obtained are more accurate;
so our conclusions may be more appropriate in capturing the
trend, and the repair effect.

B. Model Comparison

For comparison, another three repair models, NHPP, Kijima I,
and Kijima II models are considered. In the NHPP model, the
failure intensity is set to be ; and for Kijima I, and
II models . The parameter estimates of these
models are summarized in Table II. The parameters of all the
models are estimated using the Maximum Likelihood Estima-
tion method. The likelihood functions of NHPP, and Kijima I
are given in [5] & [22]. The likelihood function of Kijima II is
similar to Kijima I; the only difference is the way of calculating
the virtual age. From Table II, it can be seen that by coincidence
the Kijima I model becomes a perfect renewal model because

. Moreover, the NHPP model shows a decreasing failure
intensity as , while the others exhibit an increasing trend of
failure intensity before repairs are conducted, i.e.

Fig. 1. Estimates of (a) the expected number of failures m(t), and (b) the
failure intensity �(t).

. Note that the repair effect or the repair trend is reflected by
the parameters , and . More specifically, the NHPP assumes

, i.e., there is no reliability improvement after repairs. The
Kijima I model shows that the system is as good as new after
each repair. As for the Kijima II, and the new model, both values
show that repairs reduce the system failure intensity, and repair
actions restore the system back to somewhere between the “as
good as new,” and the “as bad as old” conditions.

For comparison, Fig. 1 gives the estimates of the expected
number of failures , and the failure intensity , using the
different models. From Fig. 1(a), we can see that the prediction
errors of the Kijima models are large, while both the new model
and the NHPP model appear to fit the data better. The only dif-
ference between the new model and the NHPP model is whether
or not the repair effect is considered, which has already been
tested before. In Fig. 1(b), the discrete model for the instanta-
neous failure intensity is expressed as , and
represented by the discrete diamond marks. The figure shows
that the solid line goes through the diamond marks, meaning
that the proposed continuous model in (14) fits the empirical
discrete model in (23) quite well.



46 IEEE TRANSACTIONS ON RELIABILITY, VOL. 56, NO. 1, MARCH 2007

Fig. 2. Predicted (a) failure number, and (b) instantaneous failure intensity with
95% confidence bounds (2-sided)—NHPP model with log-linear intensity.

The confidence bounds of the number of failures , and
the failure intensity , are given in Figs. 2–5. For the Kijima
models, the figures are obtained by the Monte Carlo simulation
approach because there are no closed-form solutions. From the
figures, the advantages of the new model can be seen clearly.
Although the NHPP model also gives smooth curves because it
also has closed-form solutions, the confidence bounds are rela-
tively wide. The Kijima models can provide similar prediction
results to the new model; however, it can only give the predic-
tion, and confidence bounds by simulation, which is time-con-
suming, and the quality of the prediction results highly depends
on the simulation scale.

Moreover, it is worth recognizing the differences between the
minimal repair model (see Fig. 2), and the general repair models
(seeFigs. 3–5). In Fig. 2, the failure intensity, represented by a
smooth curve, is monotonically decreasing. In Figs. 3 & 4, the
failure intensity functions exhibit decreasing time trends first,
and afterwards stay even around certain values. The oscillation
components attached to the time trends stem from simulations
involved in the Kijima models. For the new model, Fig. 5 gives
the smooth failure intensity function, which decreases first, and

Fig. 3. Predicted (a) failure number, and (b) instantaneous failure intensity with
95% confidence bounds (2-sided)—Kijima I model with log-linear intensity.

quickly approaches a constant. Such a feature can be verified by
examining the model parameters. From Table II, because

, and , the failure intensity will
exhibit a decreasing trend as discussed in Section III; moreover,
because , the failure intensity will eventually approach to
the constant . Note that this detailed feature
in trend has not been captured in the analyses by Lawless &
Thiagarajah [13].

For the NHPP, and the new model, analytical Fisher bounds
are used, and the lognormal distribution is assumed. Therefore,
they are approximation bounds, and the accuracy of the approx-
imation is affected by the number of failures used in the model
parameter estimation. In the given example, because we have 27
failures, it is reasonable to use the Fisher bounds.

VI. CONCLUSION

In this paper, a new general repair model based on the
number of repairs has been proposed. The model considers the
cumulative repair effects, and the time trends simultaneously.
More importantly, unlike the existing general repair models,
this model is analytically solvable for all the reliability metrics
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Fig. 4. Predicted (a) failure number, and (b) instantaneous failure intensity with
95% confidence bounds (2-sided)—Kijima II model with log-linear intensity.

by solving a set of differential equations. Consequently, the
confidence bounds of these reliability metrics can be easily
estimated. The proposed analytical method has strong statistical
foundations, and overcomes all the drawbacks of the existing
models for the analyses of complex repairable systems. Specif-
ically, compared to the existing models, the proposed model
is capable of giving faster, more accurate estimation results
without relying on time-consuming Monte Carlo simulations.
The numerical example shows that the proposed method is
promising, and efficient. Furthermore, it holds promise both for
being useful in real industrial applications, as well as having
a structure permitting further generalizations of repairable
system analyses.

Many extensions to the proposed model are possible, in-
cluding the interval failure data analyses, use of general
baseline failure intensity functions, modeling of the interaction
between the time trend and repairs, and inclusion of repair
costs, which would generate more practical interest. Moreover,
the applications of the model in such areas as the human system
reliability, healthcare, and software reliability, which have their

Fig. 5. Predicted (a) failure number, and (b) instantaneous failure intensity with
95% confidence bounds (2-sided)—new model with log-linear intensity.

specific failure intensity trends, and more complex “repair”
effects, would bring about further extensions. Furthermore,
some new research has been done on optimal repair allocation
under limited resources (e.g., see [6]). Because the proposed
model can capture both the time trend, and repair effects in an
analytical, closed-form way, it has a great deal of potential for
making optimal allocation when different repair or maintenance
policies are available.

APPENDIX

Entries of the Fisher Information Matrix:

From (27), the second derivatives of the log-likelihood func-
tion are given by
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where
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