

University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange

Chemistry Publications and Other Works

Chemistry

January 2005

Vibrational dependence of the H₂-H₂ C₆ coefficients

Robert Hinde University of Tennessee, rhinde@utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_chempubs

Part of the Atomic, Molecular and Optical Physics Commons, Biological and Chemical Physics Commons, and the Physical Chemistry Commons

Recommended Citation

Hinde, Robert, "Vibrational dependence of the H_2-H_2 C_6 coefficients" (2005). Chemistry Publications and Other Works. https://trace.tennessee.edu/utk_chempubs/7

This Article is brought to you for free and open access by the Chemistry at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chemistry Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

Vibrational dependence of the $H_2 - H_2 C_6$ dispersion coefficients

Robert J. Hinde^{a)}

Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600

(Received 27 December 2004; accepted 26 January 2005; published online 8 April 2005)

We use the sum-over-states formalism to compute the imaginary-frequency dipole polarizabilities for H₂, as a function of the H–H bond length, at the full configuration interaction level of theory using atom-centered d-aug-cc-pVQZ basis sets. From these polarizabilities, we obtain isotropic and anisotropic C_6 dispersion coefficients for a pair of H₂ molecules as functions of the two molecules' bond lengths. © 2005 American Institute of Physics. [DOI: 10.1063/1.1873512]

The parahydrogen dimer $(pH_2)_2$ formed by two j=0 H₂ molecules is the molecular analog of the He₂ van der Waals dimer. Because the pH_2-pH_2 interaction is relatively weak and the H_2-H_2 reduced mass is small, the dimer formed between two v=0 pH₂ molecules has just a single bound state,¹ one which is characterized by an intermolecular vibrational wave function that spans a wide range of intermolecular distances R. In the ground state of the empirical H_2-H_2 potential given in Ref. 2, for example, fully 30% of the $(pH_2)_2$ dimer's probability density is located in the classically forbidden region $R \ge 10 a_0$, where the $pH_2 - pH_2$ potential is dominated by dispersion interactions. In this paper, we compute R^{-6} dispersion coefficients for H₂-H₂, H₂-D₂, and D_2-D_2 dimers in which one of the monomers is in the v =1 level; these coefficients provide constraints on the shape of the H_2-H_2 potential in the classically forbidden large R region, and hence on the binding energies of near-threshold states of these van der Waals dimers.

We begin by computing the H₂ dipole polarizabilities α_{xx} and α_{zz} at imaginary frequencies using the sum-over-states formalism,

$$\alpha_{qq}(i\omega) = 2\sum_{n\neq 0} \frac{(E_n - E_0)|\langle 0|\hat{\mu}_q|n\rangle|^2}{(E_n - E_0)^2 + \hbar^2 \omega^2},$$
(1)

where $\hat{\mu}$ is the dipole moment operator and q represents a Cartesian coordinate (in this case, either x or z) in the molecule-fixed frame of reference; the H₂ bond defines the molecule-fixed z axis. The ground state electronic wave function $|0\rangle$ and excited state electronic wave functions $|n\rangle$, their energies E_0 and E_n , and the dipole moment matrix elements $\langle 0|\hat{\mu}_q|n\rangle$ are obtained from full configuration interaction (CI) electronic structure calculations employing a cc-pVQZ atom-centered Gaussian basis set for hydrogen³ that has been doubly augmented^{4,5} (denoted d-aug-cc-pVQZ) with diffuse functions that facilitate the accurate *ab initio* computation of dipole polarizabilities.⁶

These electronic structure calculations are performed at H_2 bond lengths *r* ranging from 0.9 a_0 to 2.1 a_0 in steps of 0.1 a_0 , and also at $r_{avg}=1.449 a_0$, which is close to the v = 0 vibrationally averaged H_2 bond length. Calculations at $r=0.9 a_0$, $r=1.449 a_0$, and $r=2.1 a_0$ are also performed us-

ing the smaller d-aug-cc-pVTZ atom-centered Gaussian basis set for hydrogen. All electronic structure calculations are performed using the 22 November 2004 R1 version of GAMESS.⁷ At each value of r, the sum in Eq. (1) is evaluated over the entire set of excited electronic states obtained from the full CI calculations. The relevant electronic state energies and dipole moment matrix elements may be downloaded from the EPAPS depository.⁸

As a check on the completeness of our electronic basis set, we use our d-aug-cc-pVQZ dipole moment matrix elements to evaluate the sums

$$\sum_{n\neq 0} |\langle 0|\hat{\mu}_x|n\rangle|^2, \quad \sum_{n\neq 0} |\langle 0|\hat{\mu}_z|n\rangle|^2, \tag{2}$$

which should give the ground state expectation values $\langle 0|\hat{\mu}_x^2|0\rangle$ and $\langle 0|\hat{\mu}_z^2|0\rangle$ in the limit of a complete basis set. We then compare these quantities with the corresponding ones computed directly from the electronic second moments for H₂ given in Table V of Ref. 9. At the bond lengths where this comparison can be made, our results differ from those obtained from Ref. 9 by 0.2% or less. The static dipole polarizabilities given by Eq. (1) at $\omega=0$ are in similarly good agreement with the H₂ polarizabilities computed in Ref. 10.

Equipped with the polarizabilities defined by Eq. (1), we next compute the isotropic polarizability $\alpha = (2\alpha_{xx} + \alpha_{zz})/3$ and the polarizability anisotropy $\Delta \alpha = \alpha_{zz} - \alpha_{xx}$. Using these quantities and one-dimensional quadrature, we then obtain the C_6 dispersion coefficient for a pair of j=0 H₂ molecules with bond lengths r_1 and r_2 ,

$$C_6(r_1, r_2) = \frac{3\hbar}{\pi (4\pi\epsilon_0)^2} \int_0^\infty \alpha(i\omega, r_1) \alpha(i\omega, r_2) d\omega, \qquad (3)$$

and the anisotropic dispersion coefficients $C_{6,02}$, $C_{6,20}$, and $C_{6,22}$ defined by¹¹

$$C_{6,ab}(r_1,r_2) = \frac{\hbar}{\pi (4\pi\epsilon_0)^2} \int_0^\infty f_a(i\omega,r_1) f_b(i\omega,r_2) d\omega.$$
(4)

In Eq. (4), $f_0(i\omega) = \alpha(i\omega)$ while $f_2(i\omega) = \Delta \alpha(i\omega)$.

For each pair of H₂ bond lengths (r_1, r_2) , we evaluate Eqs. (3) and (4) using trapezoid rule quadrature with a step size of $\Delta \omega = 0.1$ a.u. over the range $0 \le \omega \le 50$ a.u. (We find that the values of the integrals do not change significantly when we use smaller step sizes or when we extend the inte-

0021-9606/2005/122(14)/144304/2/\$22.50

122, 144304-1

^{a)}Electronic mail: rhinde@utk.edu

TABLE I. Vibrational matrix elements $\langle v | (r-r_0)^n | v' \rangle$ for j=0 H₂ and D₂ molecules. These integrals are based on vibrational wave functions computed from the potential curve in Ref. 9 using the Numerov-Cooley (Ref. 13) method.

Molecule	υ	v'	$n = 1 (a_0)$	$n=2 (a_0^2)$
H ₂	0	0	0.048 34	0.030 53
H_2	0	1	0.166 39	0.026 74
H_2	1	1	0.144 95	0.106 87
D_2	0	0	0.034 35	0.020 90
D_2	0	1	0.139 52	0.015 84
D ₂	1	1	0.101 93	0.070 15

grals to include larger values of ω .) At $r_1 = r_2 = r_{avg}$ we obtain $C_6 = 12.0571$ a.u., $C_{6,20} = C_{6,02} = 1.2256$ a.u., and $C_{6,22} = 0.3941$ a.u. These values are in good agreement with those obtained by Bishop and Pipin¹² using a similar computational approach (but a different basis set for describing the electronic wave functions): $C_6 = 12.058 \ 168 \ a.u., C_{6.20}$ $=C_{6.02}=1.2194$ a.u., and $C_{6.22}=0.3898$ a.u. Dispersion coefficients computed using the d-aug-cc-pVTZ basis set differ from the d-aug-cc-pVQZ values by 0.7% or less, indicating that the d-aug-cc-pVTZ dispersion coefficients are already nearly converged with respect to basis set. We therefore expect that further expansion of the atomic basis set beyond the d-aug-cc-pVQZ level will provide only minor improvements in the accuracy of the dispersion coefficients presented here.

We fit our computed dispersion coefficients to polynomials of the form

$$P(r_1, r_2) = \sum_{b=0}^{2} \sum_{c=0}^{2} A_{bc} (r_1 - r_0)^b (r_2 - r_0)^c,$$
(5)

where $r_0 = 1.4 a_0$. We then use the H₂ and D₂ vibrational matrix elements given in Table I to integrate these polynomial fits over specific H₂ and D₂ vibrational wave functions, thereby obtaining vibrationally averaged dispersion coefficients with the general form $\langle v_1, v_2 | P(r_1, r_2) | v'_1, v'_2 \rangle$ for a pair of j=0 molecules; these are listed in Table II. We find that, as expected, dispersion interactions are slightly stronger in v=0+v=1 molecular pairs than in v=0+v=0 pairs. We also find that off-diagonal terms of the form $\langle v_1=0, v_2 \rangle$ $=1|P(r_1,r_2)|v_1'=1,v_2'=0\rangle$ are small but non-negligible; the C_6 coefficient for $H_2(v=0)+H_2(v=1)$ pairs, for example,

TABLE II. Vibrationally averaged C_6 dispersion coefficients (in atomic units) for various molecular pairs.

Pair		C_6	<i>C</i> _{6,20}	$C_{6,02}$	C _{6,22}
$H_2(v_1, v_1')$	$H_2(v_2, v_2')$				
(0, 0)	(0, 0)	12.077	1.246	1.246	0.408
(0, 0)	(1, 1)	12.799	1.327	1.450	0.479
(0, 1)	(1, 0)	0.137	0.035	0.035	0.027
$H_2(v_1, v_1')$	$D_2(v_2, v_2')$				
(0, 0)	(0, 0)	11.972	1.234	1.217	0.398
(0, 0)	(1, 1)	12.477	1.291	1.358	0.447
(1, 1)	(0, 0)	12.687	1.437	1.296	0.467
$D_2(v_1, v_1')$	$D_2(v_2, v'_2)$				
(0, 0)	(0, 0)	11.869	1.205	1.205	0.388
(0, 0)	(1, 1)	12.368	1.260	1.345	0.435
(0, 1)	(1, 0)	0.096	0.024	0.024	0.018

changes by about 2% depending on whether the vibrational excitation is delocalized across the pair of molecules in a symmetric or antisymmetric fashion.

ACKNOWLEDGMENT

This work was supported by the National Science Foundation through Grant No. CHE-0414705.

- ¹A. R. W. McKellar, J. Chem. Phys. **92**, 3261 (1990).
- ²M. J. Norman, R. O. Watts, and U. Buck, J. Chem. Phys. **81**, 3500 (1984). ³T. H. Dunning, Jr., J. Chem. Phys. **90**, 1007 (1989).
- ⁴R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
- ⁵D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. **100**, 2975 (1994).
- ⁶The basis sets used in this work were obtained from the 02/25/04 version of the Extensible Computational Chemistry Environment Basis Set Database, located at (http://www.emsl.pnl.gov/forms/basisform.html).
- ¹M. W. Schmidt, K. K. Baldridge, J. A. Boatz et al., J. Comput. Chem. 14, 1347 (1993).
- ⁸See EPAPS Document No. E-JCPSA6-122-307515 for text files containing these energies and dipole moment matrix elements. A direct link to this document may be found in the online article's HTML reference section. The document may also be reached through the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
- ⁹W. Kołos and L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965).
- ¹⁰L. Wolniewicz, J. Chem. Phys. **99**, 1851 (1993).
- ¹¹A. J. Stone and R. J. A. Tough, Chem. Phys. Lett. **110**, 123 (1984).
- ¹²D. M. Bishop and J. Pipin, Int. J. Quantum Chem. **45**, 349 (1993).
- ¹³J. W. Cooley, Math. Comput. **15**, 363 (1961).