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Abstract

Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) plays key roles in gluconeogenesis, glyceroneogenesis, and cataplerosis.
Experiments were designed to examine the effects of endogenous lipid molecules from rat livers on the expression of PEPCK-C gene
in primary rat hepatocytes. The lipid extracts prepared from livers of Zucker fatty, lean, and Wistar rats induced the expression levels
of PEPCK-C transcripts. Insulin-mediated reduction of PEPCK-C gene expression was attenuated by the same treatment. The lipid
extracts induced the relative luciferase activity of reporter gene constructs that contain a 2.2-kb 5 0 promoter fragment of PEPCK-C gene,
but not the construct that contains only the 3 0 untranslated region (UTR) of its mRNA. The estimated half life of PEPCK-C transcripts
in the presence of the lipid extract is the same as that in the absence of it. My results demonstrate for the first time that endogenous lipid
molecules induce PEPCK-C gene transcription and attenuate insulin action in liver.
� 2007 Elsevier Inc. All rights reserved.
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Liver plays a key role in controlling lipid and glucose
homeostasis. Profound changes of hepatic lipid and glu-
cose metabolism are usually associated with metabolic
abnormalities, such as obesity and diabetes [1], and
are attributed to alterations of the gene expression in
liver [2,3]. PEPCK-C which converts oxaloacetate into
phosphoenolpyruvate in the presence of GTP has been
considered as the rate limiting enzyme for hepatic gluco-
neogenesis [4]. Mice with homozygous deletion of PEP-
CK-C gene died after birth with severe hypoglycemia and
profound changes in lipid and amino acid metabolism
prior to the death. Although mice with liver-specific
deletion of PEPCK-C gene maintained euglycemia after a
24-h fasting, their lipid metabolism was impaired [5,6]. In
intact mouse liver, PEPCK-C flux correlated tightly with
tricarboxylic acid cycle flux [7]. Given its role in gluconeo-
genesis, glyceroneogenesis, and cataplerosis, it is reason-
able to hypothesize that hepatic PEPCK-C may be

regulated by endogenous metabolites in multiple metabolic
pathways [8–10].

Because allosteric regulation of PEPCK-C activity has
not been reported in mammalian cells, its activity is primar-
ily controlled by regulation of its gene expression in differ-
ent physiologic conditions [8,11]. In the liver, fasting,
diabetes, carbohydrate-free, and high fat diets increase,
whereas re-feeding, insulin treatment, and high carbohy-
drate diets decrease its expression. Glucagon, glucocorti-
coids, thyroid hormone, and retinoic acid induce hepatic
PEPCK-C gene expression, while insulin and glucose inhi-
bit it [11]. Multiple regulatory elements mediating its
responses to hormones and nutrients have been identified
at the 5 0 promoter region [8,11]. The transcription factors
and co-activators that interact with these elements and reg-
ulate PEPCK-C gene transcription have been proposed or
identified [8,11,12]. Some of them play key roles in control-
ling hepatic lipid metabolism. Over-expression of the active
form of sterol regulatory element-binding protein 1c
(SREBP-1c) stimulated lipogenesis and abolished PEP-
CK-C gene expression in cultured rat hepatocytes [13,14].
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In liver of rodents fed with T0901317, a synthetic agonist
for liver X receptor (LXR) activation, the expression of lip-
ogenic genes was induced and that of PEPCK-C gene was
suppressed [15,16]. These results imply that signals mediat-
ing changes of hepatic lipid metabolism may regulate PEP-
CK-C gene expression.

In this study, lipid molecules were extracted from rat liv-
ers and their effects on PEPCK-C gene expression were
measured in primary rat hepatocytes. To this end, I report
for the first time that lipid mediators in hepatic lipid
extracts induce transcription of PEPCK-C gene and atten-
uate insulin-mediated reduction of its expression.

Materials and methods

Reagents. a-Amanitin, bovine insulin, dexamethasone, and 3, 3 0, 5-
triiodo-L-thyronine were obtained from Sigma (Saint Louis, MO). Lipo-
fectin transfection reagent and medium 199 were obtained from Invitrogen
Corporation (Carlsbad, CA). Dulbecco’s PBS and fetal bovine serum were
obtained from Mediatech (Herndon, VA). Sixty millimeter rat tail colla-
gen I-coated dishes were obtained from BD Biosciences (Bedford, MA).
Petroleum ether, n-heptane, isopropanol, ethanol, and potassium
hydroxide were obtained from Fisher Scientific (Pittsburgh, PA).

Rats and primary hepatocytes. Male Sprague–Dawley, Zucker lean and
fatty rats (8–15 weeks of age) were purchased from Harlan Breeders
(Indianapolis, IN). All experimental procedures were approved by the
Institutional Animal Care and Use Committee. All the guidelines for the
use and care of laboratory animals were followed.

Hepatocytes were isolated from non-fasted male Sprague–Dawley rats
(250–300 g of body weight) and seeded as described [17]. After 3–4 h, the
attached cells were washed once with 4 ml of PBS, and incubated in
medium A (Medium 199 supplemented with 100 nM dexamethasone,
100 nM T3, 100 U/ml sodium penicillin, and 100 lg/ml streptomycin sul-
fate) with 1 nM insulin for overnight before treatments as described in
each experiment.

Lipid extraction. Livers of ad libitum fed rats were collected, weighed,
washed, minced by razor blades, and homogenized in n-heptane at 1 to 10
ratio (1 g to 10 ml, w/v) using Polytron homogenizer at 6000 rpm for
1 min. The homogenate was kept in glass bottle filled with nitrogen (N2)
and stirred for 48 h at room temperature (RT). After that, the homogenate
was allowed to stand for at least 30 min. The supernatant was removed
and dried under N2. The dried lipids were weighed and stored under N2 at
�20 �C until being used. For saponification, 150 mg of total lipids was
mixed with 10 ml of 0.5 M KOH in ethanol (1 volume of 5 M KOH + 9
volume of ethanol) and incubated at 65 �C for 40 min. The non-saponi-
fiable matters were extracted twice with 15 ml of petroleum ether (PE),
dried and reconstituted in 100% ethanol at 40 mg/ml. The non-saponifi-
able matters extracted by PE were designated as the lipid extracts in this
paper.

Treatments of the lipid extracts and a-amanitin. Primary rat hepato-
cytes were washed once with PBS and treated with 0.2% ethanol as vehicle
control or 80 lg/ml lipid extracts in the presence or absence of insulin in
medium A at 37 �C and 5% CO2 for 6 h. For a-amanitin experiments, the
remaining cells that have been only treated with the lipid extract for 6 h
were washed once with 3 ml PBS and incubated in medium A containing
3 lM a-amanitin with or without the lipid extract. Total RNAs were
isolated at 0.5, 1, 2, 4, and 6 h, and subjected to RT-PCR analysis.

cDNA synthesis and quantitative real time PCR (RT-PCR). All the
reagents and equipment sets were from Applied Biosystems unless
described otherwise. Total RNA was isolated using the RNA STAT 60
reagent (TEL-TEST, Inc, Friendswood, TX). DNA contamination was
removed using the DNA-free� kit. First strand cDNA was synthesized
from 2 lg of DNA-free RNA with random hexamer primers using cDNA
synthesis kit. The RT-PCR primer sequences were designed using Primer
Express software and will be provided upon request. Each reaction con-

tains, in a final volume of 14 ll, cDNA from 14 ng of reverse transcribed
total RNA, 2.33 pmol primers, and 7 ll of 2 · SYBR Green PCR Master
Mix. Triplicate PCRs were carried out in 96-well plates using the 7300
Real Time PCR System. The conditions are 50 �C for 2 min, 95 �C for
10 min, followed by 40 cycles of 95 �C for 15 s and 60 �C for 1 min. The
relative amounts of all mRNAs except for Fig. 4B and C were calculated
using the comparative CT method as described [18] with 36B4 as the
invariant control. In the a-amanitin experiment, the relative amounts of
36B4 (Fig. 4B) and PEPCK-C (Fig. 4C) transcripts were calculated using
the following formula, relative amounts of mRNA ¼ 2ðCT-timeX�CT-time0Þ.
Here, CT-timeX is the CT number at one experimental time point, and CT-

time0 is the CT number at time 0, the time that a-amanitin was added. The
levels of 36B4 and PEPCK-C transcripts at time 0 were arbitrarily
assigned as 100%.

Reporter gene constructs and assay. Standard protocols (Molecular
Cloning) were followed in all recombinant DNA engineering procedures.
A 2.2-kb promoter fragment (PEPCK-2.2k) was cloned and inserted into
pGL3-basic reporter gene vector (Promega) to obtain plasmid I. For
plasmid II, a 622 bp 3 0 UTR fragment was cloned and inserted into pGL3-
Promoter (Promega) reporter gene vector to replace the SV40 late poly (A)
signal sequence. For plasmid III, the 2.2 kb promoter fragment of PEP-
CK-C gene was inserted into plasmid II to replace the SV40 promoter. The
primer sequences will be provided upon request. The methods for plasmid
transfection using Lipofectin transfection reagent, and dual luciferase
assay have been described elsewhere [17].

Statistics. Data are presented as means ± SD and compared by
unpaired Student’s t test. P < 0.05 was considered statistically significant.

Results

Lipid extracts from livers of Zucker fatty rats induce

PEPCK-C gene expression

Fig. 1A shows the relative levels of PEPCK-C tran-
scripts in primary hepatocytes treated with vehicle or the
lipid extracts from Zucker Fatty rat livers in the absence
or presence of 100 nM insulin. The lipid extract treatment
resulted in a 5.7 ± 3.0-fold induction of PEPCK-C tran-
scripts in the absence of insulin. Insulin reduced the levels
of PEPCK-C transcripts to 0.07 ± 0.03- and 0.5 ± 0.4-fold
of the control value in the absence or presence of the liver
lipid extracts, respectively. The levels of insulin receptor
transcripts did not change under these conditions as shown
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Fig. 1. The lipid extracts from Zucker fatty rats induce the levels of
PEPCK-C (A), but not insulin receptor (B) transcripts. Primary hepato-
cytes were treated with either vehicle control or the lipid extracts in the
absence or presence of 100 nM insulin. The levels of PEPCK-C (A) and
insulin receptor (B) transcripts were measured by RT-PCR. The gene
expression level in control group without insulin was arbitrarily assigned
as 1. Results represent the means ± SD of five independent experiments
(*P < 0.04).
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in Fig. 1B. These results indicated that a lipid mediator in
the lipid extracts from Zucker fatty rat livers induces the
expression levels of PEPCK-C transcripts. Although insu-
lin still suppressed it, the content of PEPCK-C transcripts
has been maintained at a significantly higher level in the
presence of the lipid extract (0.5 vs 0.07, P < 0.04). It sug-
gests an attenuation of insulin action in the presence of the
lipid extracts.

The lipid extracts from livers of Zucker lean rats attenuated

insulin-mediated reduction of PEPCK-C gene expression

It is important to determine whether the lipid mediator
activities exist in livers of lean rats and cause attenuation of
insulin action in lower concentrations of insulin. A batch of
the lipid extract was prepared from livers of Zucker lean
rats and its effects were measured in the presence of increas-
ing concentrations of insulin. Fig. 2A shows that the lipid
extract from lean rat livers induced the expression levels
of PEPCK-C transcripts by 5.8 ± 2.8-fold. Fig. 2B shows
that insulin at 0.1, 1, 10, and 100 nM reduced them to
33.0 ± 0.8%, 5.8 ± 3.5%, 3.9 ± 2.6%, and 3.8 ± 3.8% of
the control level in the absence of the lipid extract, respec-
tively. In the presence of the lipid extract, the same treat-
ments only reduced them to 58.2 ± 7.2% (P < 0.01),
32.7 ± 2.0% (P < 0.001), 21.6 ± 6.5% (P < 0.02), and
14.5 ± 2.6% (P < 0.03), respectively. At each concentration
of insulin, the remaining level of PEPCK-C transcripts was
significantly higher in the presence than that in the absence
of the lipid extract. To achieve 67% reduction, it required
0.1 or 1 nM insulin in the absence or presence of the lipid
extract, respectively, indicating a tenfold reduction of insu-

lin action. These results demonstrated that the lipid extract
from lean rat livers induce the PEPCK-C gene expression
and causes attenuation of insulin action. This phenomenon
has been repeatedly observed using several batches of the
lipid extracts (data not shown).

The lipid extract induces transcription of PEPCK-C gene in

primary rat hepatocytes

It is important to determine whether the lipid extract
caused elevation of synthesis, stability or both, of PEP-
CK-C transcripts. Reporter gene assay has been used to
determine the roles of 5 0 promoter region of PEPCK-C
gene [19] and 3 0 UTR of its mRNA [20] in controlling cel-
lular levels of its transcripts. Fig. 3A shows the reporter
gene constructs I, II, and III generated for this purpose.
The construct I contains PEPCK-2.2k, Firefly luciferase
cDNA and SV40 late poly(A) signal. The Firefly luciferase
activity derived from it will be correlated with the activa-
tion of the promoter. The construct II contains SV40 pro-
moter, Firefly luciferase cDNA and a 622-bp 3 0 UTR. The
Firefly luciferase activity derived from it will reflect the sta-
bility of the 3 0 UTR of rat PEPCK-C mRNA. The con-
struct III contains PEPCK-2.2k, Firefly luciferase cDNA
and the 3 0 UTR. The Firefly luciferase activity derived from
it will be determined by the activation of the promoter and
the stability of the 3 0 UTR. As shown in Fig. 3B, for plas-
mid I, the lipid extract induced its activation by 2.3 ± 0.6-
fold. Insulin significantly reduced the relative luciferase
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represents the means ± SD of three independent transfection experiments
each assayed in duplicate (*P < 0.04).
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activity to 0.5 ± 0.2- and 1.1 ± 0.4-fold of the control value
(P < 0.04) in the absence or presence of the lipid extract,
respectively. The reduction caused by insulin in the absence
of the lipid extract (from 1 to 0.5) is similar to that in the
presence of it (from 2.3 to 1.1). For plasmid II, the relative
luciferase activity was not affected by the lipid extract, insu-
lin, or both. For plasmid III, the lipid extract induced its
relative luciferase activity by 1.9 ± 0.3-fold. Insulin
reduced the activity to 0.7 ± 0.1- and 1.2 ± 0.2-fold
(P < 0.04) of the control value in the absence or presence
of the lipid extract, respectively. The reduction caused by
insulin in the presence of the lipid extract (from 1 to
0.67) is similar to that in the absence of it (from 1.9 to
1.2). These results demonstrated that the lipid extract
induces the levels of PEPCK-C gene expression through
the activation of it promoter, but not the stability of its
mRNA.

The lipid extract does not affect the decay of PEPCK-C

transcripts

The stability of PEPCK-C mRNA was measured in the
presence of a-amanitin, a specific inhibitor of RNA poly-
merase II complex [21]. Fig. 4A illustrates the schematic
of the experimental design as described in the experimental

procedures. As shown in Fig. 4B, the lipid extract from
Wistar rat livers increased the levels of PEPCK-C tran-
scripts by 3.5 ± 0.6-fold. 1 nM insulin reduced them to
0.07 ± 0.01- and 0.7 ± 0.4-fold of the control value in the
absence and presence of the lipid extract, respectively,
reflecting a tenfold difference (0.7 vs 0.07, P < 0.04). The
80% (from 3.5 to 0.7) reduction by insulin in the presence
of the lipid extract is smaller than 93% reduction (from 1
to 0.07) in the absence of it, demonstrating attenuation
of insulin action. These results demonstrated that the lipid
mediator activities exist in livers of Wistar rats.

As shown in Fig. 4C, the contents of 36B4 transcripts
started to drop 6 h after a-amanitin treatment and exhib-
ited no difference between the vehicle control and lipid
extract groups. The estimated half life of 36B4 transcripts
is more than 4 h. Fig. 4D shows the decay of PEPCK-C
transcripts in the absence or presence of the lipid extract.
At 0.5, 1, 2, 4, and 6 h after a-amanitin treatment, the con-
tents of PEPCK-C transcripts in the control group dropped
to 84 ± 6%, 64 ± 10%, 32 ± 8%, 20 ± 8%, and 12 ± 4% of
that at time 0, respectively. At the same time points, their
amounts in the presence of the lipid extract dropped to
87 ± 5%, 63 ± 10%, 37 ± 9%, 22 ± 6%, and 11 ± 3% of
that at time 0, respectively. The decay rates for both groups
are almost identical. The estimated half life of PEPCK-C
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transcripts is about 1.5 h for both groups, demonstrating
no change of its stability after the lipid extract treatment.
It supports the conclusion that the lipid mediator induces
the transcription of PEPCK-C gene.

Discussion

My results demonstrate for the first time that a lipid
mediator in the lipid extracts from rat livers induces tran-
scription of PEPCK-C gene in primary rat hepatocytes.
This novel approach and observation have not been pub-
lished previously as far as I know. Because the activity of
the lipid mediator has been observed in livers from different
rat strains, the lipid mediator is probably a common
metabolite in the liver. The existence of this lipid mediator
in livers of other species and insulin resistant animals
remains to be determined.

The identity of the lipid mediator remains to be deter-
mined. It could not be glucocorticoids since the medium
A contains 100 nM dexamethasone. The unsaponifiable
matters include cholesterol, oxysterols, and intermediates
in cholesterol metabolic pathway [22]. Activation of the
oxysterol receptor LXR reduced the PEPCK-C expression
in rodent livers [15]. Insulin induces SREBP-1c transcrip-
tion through activation of LXR at its promoter [17]. All
these results would predict that oxysterols in the lipid
extract will cause a reduction of the PEPCK-C gene expres-
sion, rather than the induction as I observed. Therefore,
the active molecule is unlikely an activator of LXR. Alter-
natively, it might be an antagonist. However, the effects of
fenofibrate ester, a LXR activation antagonist, on PEPCK-
C gene expression have not been reported in the original
observation [23].

Another novel observation is that the lipid extracts
attenuated insulin-mediated reduction of PEPCK-C gene
expression. Currently, it is not known whether the same
lipid mediator induces the PEPCK-C gene transcription
and attenuates insulin action. Additionally, whether the
active molecule works directly on the PEPCK-C promoter
or more upstream of insulin signaling cascade is another
question. The fact that the attenuation has been observed
only by RT-PCR, but not by reporter gene assays, implies
that it acts directly on the promoter. The discrepancy may
be caused by the lack of nucleosome structure in luciferase
reporter plasmids used. Indeed, it has been shown that
rapid, insulin-induced, histone demethylation at the PEP-
CK-C gene promoter plays a role in insulin-mediated
reduction of PEPCK-C gene transcription [24]. Whether
the lipid mediator interferes with this process deserves fur-
ther study.

The activities of the endogenous lipid mediators indicate
that the transcription of PEPCK-C gene can be coordi-
nately regulated by both intracellular metabolites and
extracellular signals. The levels of the active molecules
and pathways responsible for their production may con-
tribute to the role of liver in maintaining glucose and lipid
homeostasis. The abnormal production of them may

reduce the responses of hepatocytes to extracellular hor-
monal and nutritional signals, and result in metabolic dis-
eases, such as insulin resistance. Identification of these lipid
mediators and their functional mechanisms will not only
uncover the additional regulatory mechanisms of PEP-
CK-C gene transcription but also provide us with new tools
to combat metabolic diseases.
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