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Abstract 

The self-imaging phenomenon referred to as the Talbot effect in the field of optics was 

discovered by H. F. Talbot in the 1830s, and is now widely used for imaging using not only 

visible light but also X-rays, electrons, neutrons, and matter waves. In this review, the author 

introduces the current progress being made in hard-X-ray imaging microscopy based on the 

self-imaging phenomenon. Hard-X-ray imaging microscopy is a promising technique for non-

destructively visualizing internal structures in specimens with a spatial resolution up to a few 

tens of nanometers. The use of the self-imaging phenomenon makes it possible to realize highly 

sensitive phase-contrast X-ray imaging microscopes. These approaches have several 

advantages over conventional X-ray imaging microscopes, including the widely used Zernike 

X-ray phase-contrast microscopes, and can provide a powerful way of quantitative visualization 

with a high spatial resolution and a high sensitivity even for thick specimens.  

 

 

 

 

 

 

 



1. Introduction 

Non-destructive and quantitative high-spatial-resolution visualization of internal structures of 

materials consisting of light elements will bring about significant progress in biological and 

materials sciences. Hard-X-ray imaging microscopy is a technique for non-destructively 

visualizing internal structures of specimens with a spatial resolution up to a few tens of 

nanometers [1]. It has an advantage over other X-ray microscopies such as X-ray scanning and 

diffraction microscopies in that it does not require time-consuming measurements. However, 

similar to the other X-ray microscopies, it is less sensitive to materials consisting of lighter 

elements because hard X-rays weakly interact with them. One way to improve the sensitivity 

of hard-X-ray imaging microscopy is by using the phase-shift of X-rays passing through a 

specimen [2-4]. In principle, this so-called X-ray phase-contrast imaging microscopy provides 

three orders of magnitude higher sensitivity than conventional ones based on absorption 

contrast. Several X-ray phase-contrast imaging microscopes have been reported since the mid-

1990s, but they require a high-brilliance synchrotron X-ray source or specially designed optics. 

Zernike phase-contrast microscopy for visible light [5,6] is attainable even for hard X-rays [7-

10] and it works with a compact low-brilliant laboratory X-ray source, but it is quantitative only 

for a week-phase object.  

In the last decade, X-ray phase-contrast imaging techniques using the self-images (referred 

to as “Fourier images” [11] in the field of electron microscpy) of a grating generated by the 



Talbot effect [12-16], which is called X-ray grating interferometry [17-52], have attracted much 

attention. Because X-ray grating interferometry enables highly sensitive X-ray imaging with a 

continuous-spectrum low-brilliant laboratory X-ray source, it is suitable for medical diagnostics. 

Besides, it works with spherical-wave X-rays, which cannot be used other X-ray phase-contrast 

imaging techniques such as crystal interferometry and diffraction enhanced imaging (DEI). This 

fact enables the use of an X-ray lens, and X-ray phase-contrast imaging microscopes can be 

constructed on the basis of X-ray grating interferometry [27,29,30,32,34,40,50].  

   In this review, X-ray phase-contrast imaging microscopy is reviewed. The next section is 

devoted to the theoretical description of the self-imaging phenomenon. In Section 3, X-ray 

phase-contrast imaging using the X-ray grating interferometry is reviewed. In Section 4, several 

phase-contrast X-ray imaging microscopes using the self-imaging phenomenon are introduced. 

Finally, in Section 5, the future prospects of the X-ray imaging microscopes are discussed and 

conclusions are made.  

 

2. Self-imaging phenomenon 

The self-imaging phenomenon called the Talbot effect was discovered by H. F. Talbot [12]. 

A typical setup where the phenomenon can be observed is shown in Fig. 1, where spatially 

coherent quasi-monochromatic light emanated from a point source illuminates a one-

dimensional periodic pattern (diffraction grating) located on the (𝑥𝑥1,𝑦𝑦1)-plane at a distance 



𝑅𝑅1 from the source. When the pitch 𝑑𝑑1 of the grating is much larger than the wavelength λ 

of the light, the images of the grating, called self-images or Talbot images, are formed at specific 

distances downstream of the grating.  

This self-imaging phenomenon can be attributed to the Fresnel diffraction by the grating as 

follows. For simplicity, we consider the electric field of light close to the optical axis (𝑧𝑧-axis). 

In addition, we assume that the electric field is polarized in the y-direction, but the following 

theoretical description is approximately correct even that polarized in the x-direction because 

only the Fresnel diffraction close to the optical axis (in the paraxial approximation) contributes 

to the self-imaging phenomenon. The electric field 𝐸𝐸2 on the (𝑥𝑥2,𝑦𝑦2)-plane at a distance 𝑧𝑧12 

downstream from the grating can be written in the paraxial approximation by 

𝐸𝐸2(𝑥𝑥2,𝑦𝑦2) ≈ −𝑖𝑖𝐸𝐸10
𝜆𝜆

exp�2𝜋𝜋𝜋𝜋𝑧𝑧12𝜆𝜆 �

𝑧𝑧12
∬𝑇𝑇(𝑥𝑥1 + 𝑥𝑥′,𝑦𝑦1 + 𝑦𝑦′)exp �𝑖𝑖𝑖𝑖�𝑥𝑥′

2+𝑦𝑦′2�
𝜆𝜆𝑧𝑧eff,12

� 𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑′. (1) 

Here, 𝐸𝐸10 ≡
𝐸𝐸0exp�2𝜋𝜋𝜋𝜋

𝑅𝑅1
𝜆𝜆 �exp�

𝜋𝜋𝜋𝜋�𝑥𝑥12+𝑦𝑦12�
𝜆𝜆𝑅𝑅1

�

𝑅𝑅1
  corresponds to the electric field just in front of the 

grating, 𝑇𝑇(𝑥𝑥1,𝑦𝑦1) is the complex transmission function of the grating, 𝑧𝑧eff,12 is the effective 

distance defined by 𝑧𝑧eff,12 ≡ � 1
𝑅𝑅1

+ 1
𝑧𝑧12
�
−1

, and (𝑥𝑥2,𝑦𝑦2) ≡ 𝑅𝑅2
𝑅𝑅1

(𝑥𝑥1,𝑦𝑦1), where 𝑅𝑅2 ≡ 𝑅𝑅1 + 𝑧𝑧12. 

If we assume that the size of the grating is regarded to be infinite,  𝑇𝑇(𝑥𝑥1,𝑦𝑦1) can be expanded 

by a Fourier series ∑ 𝑎𝑎𝑛𝑛exp �2𝜋𝜋𝜋𝜋 𝑛𝑛𝑥𝑥1
𝑑𝑑1
�𝑛𝑛  , where 𝑎𝑎𝑛𝑛  is the 𝑛𝑛 th Fourier component of the 

transmission function. Using 𝑎𝑎𝑛𝑛, Eq. (1) can be rewritten by 

𝐸𝐸2(𝑥𝑥2,𝑦𝑦2) ≈ 𝐸𝐸20 ∑ 𝑏𝑏𝑛𝑛exp �2𝜋𝜋𝜋𝜋 𝑛𝑛𝑥𝑥2
𝑑𝑑2
�𝑛𝑛 , (2) 

where 𝐸𝐸20 ≡
𝐸𝐸0exp�2𝜋𝜋𝜋𝜋

𝑅𝑅2
𝜆𝜆 �exp�

𝜋𝜋𝜋𝜋�𝑥𝑥22+𝑦𝑦22�
𝜆𝜆𝑅𝑅2

�

𝑅𝑅2
  corresponding to the electric field on the (𝑥𝑥2,𝑦𝑦2) -



plane when no grating would be placed, 𝑑𝑑2 ≡
𝑅𝑅2
𝑅𝑅1
𝑑𝑑1, and 𝑏𝑏𝑛𝑛 is defined by 

𝑏𝑏𝑛𝑛 ≡ 𝑎𝑎𝑛𝑛exp �−𝑖𝑖𝑖𝑖 𝑛𝑛2𝜆𝜆𝑧𝑧eff,12
𝑑𝑑12

�. (3) 

Equation (3) means that if 𝑧𝑧eff,12  is an even-integer multiple of 𝑑𝑑1
2

𝜆𝜆
 , the electric field just 

behind the grating is completely reproduced with a magnification of 𝑅𝑅2
𝑅𝑅1

. This reproduction of 

the electric field forms the self-image. Historically, the effective distance where the first self-

image appears, i.e., 2𝑑𝑑1
2

𝜆𝜆
, which was first found for nearly plane-wave illumination by Rayleigh 

[53], is called the Talbot distance. Note that even at an odd-integer multiple of 𝑑𝑑1
2

𝜆𝜆
, the electric 

field just behind the grating is also reproduced but with a half-pitch shift.  

It is convenient to define the Talbot order 𝑝𝑝 by 

𝑝𝑝 ≡ 𝜆𝜆𝑧𝑧eff,12
𝑑𝑑12

 . (4) 

By using 𝑝𝑝, Eq. (3) can be rewritten as 

𝑏𝑏𝑛𝑛(𝑝𝑝) ≡ 𝑎𝑎𝑛𝑛exp[−𝑖𝑖𝑖𝑖𝑛𝑛2𝑝𝑝] , (5) 

In the cases where an absorption grating is used, the intensity of light just behind the grating is 

reproduced with a magnification of 𝑅𝑅2
𝑅𝑅1

 when 𝑝𝑝 is a positive integer (the intensity is shifted by 

a half pitch when 𝑝𝑝 is an odd positive integer). In the cases where a phase grating is used, an 

intensity distribution that is the same as the shape of the grating, which is also called a self-

image, often appears at a fractional Talbot order. This phenomenon is referred to as the 

fractional Talbot effect. For example, when a rectangular π/2-phase grating with a duty cycle 

of 0.5 is used, its self-images appear at odd-integer multiples of 1
2
  [54], whereas when a 



rectangular π-phase grating with a duty cycle of 0.5 is used, its self-images with a compression 

ratio α  of 2 (meaning that the pitch of a self-image is given by 𝑑𝑑2
2

 ) appear at odd-integer 

multiples of 1
8
 [55]. At a Talbot order other than such specific Talbot orders, various intensity 

distribution, which is generally referred to as the Fresnel image [56], appears.  

Note that in the case of two dimensional grating, the Talbot distance is given by the minimum 

distance where 𝜆𝜆𝑧𝑧eff,12|𝑁𝑁𝒂𝒂1∗ + 𝑀𝑀𝒂𝒂2∗ | is equal to an even integer for all 𝑁𝑁 and 𝑀𝑀 [56]. Here, 

𝑁𝑁 and 𝑀𝑀 are integers and 𝒂𝒂1∗  and 𝒂𝒂2∗  are reciprocal lattice vectors defined by the primitive 

lattice vectors 𝒂𝒂1 and 𝒂𝒂2 of the two dimensional grating. 

  We can interpret Eq. (2) in geometrical wave optics [52]. In fact, we can rewrite Eq. (2) into 

𝐸𝐸2(𝑥𝑥2,𝑦𝑦2) ≈ 𝐸𝐸20 ∑ 𝑇𝑇𝑛𝑛(𝑥𝑥1 − Δ𝑥𝑥𝑛𝑛)𝑛𝑛 exp �2𝜋𝜋𝜋𝜋 Δ𝑙𝑙𝑛𝑛
𝜆𝜆
�, (6) 

where 

𝑇𝑇𝑛𝑛(𝑥𝑥1) ≡ 𝑎𝑎𝑛𝑛exp �2𝜋𝜋𝜋𝜋 𝑛𝑛𝑥𝑥1
𝑑𝑑1
�, (7) 

Δ𝑥𝑥𝑛𝑛 ≡ 𝑛𝑛 𝜆𝜆
𝑑𝑑2
𝑧𝑧12, (8) 

= 𝑛𝑛𝑛𝑛𝑑𝑑1, (9) 

Δ𝑙𝑙𝑛𝑛 ≡
Δ𝑥𝑥𝑛𝑛2

2𝑧𝑧eff,12
. (10) 

Equation (6) can be interpreted as follows: the 𝑛𝑛th order diffracted wave propagates along the 

path passing through the point Pn shown in Fig. 2, and Δ𝑙𝑙𝑛𝑛 corresponds to the optical path 

difference between the 𝑛𝑛th and 0th orders, passing through the points Pn and P0, respectively.  

  The intensity 𝐼𝐼2(𝑥𝑥2,𝑦𝑦2) of the image at the distance of 𝑧𝑧12 from the grating is given by 



𝐼𝐼2(𝑥𝑥2,𝑦𝑦2) ≈ 𝐼𝐼20 ∑ 𝑇𝑇𝑚𝑚+𝑛𝑛(𝑥𝑥1 − Δ𝑥𝑥𝑚𝑚+𝑛𝑛)𝑇𝑇𝑚𝑚∗ (𝑥𝑥1 − Δ𝑥𝑥𝑚𝑚)𝑚𝑚 exp �2𝜋𝜋𝜋𝜋 Δ𝑙𝑙𝑚𝑚+𝑛𝑛−Δ𝑙𝑙𝑚𝑚
𝜆𝜆

�, (11) 

where 𝐼𝐼20 ≡ |𝐸𝐸20|2. Equation (11) is convenient when we consider the effect of spatial and 

temporal coherences of light: the spatial- and temporal-coherence lengths on the grating that 

are required for 𝑚𝑚 th and (𝑚𝑚 + 𝑛𝑛) th orders to interfere are given by Δ𝑥𝑥𝑛𝑛  and Δ𝑙𝑙𝑛𝑛 , 

respectively. For a finite size of quasi-monochromatic light source, the effect of the spatial 

coherence can be described by the van Cittert-Zernike theorem [6,15] and can be represented 

by a complex coherence factor 𝜇𝜇𝑛𝑛 [6]; using 𝜇𝜇𝑛𝑛, 𝐼𝐼2(𝑥𝑥2,𝑦𝑦2) can be expressed in the following 

form [47]:  

𝐼𝐼2(𝑥𝑥2,𝑦𝑦2) ≈ 𝐼𝐼20 ∑ 𝜇𝜇𝑛𝑛𝑇𝑇𝑚𝑚+𝑛𝑛(𝑥𝑥1 − Δ𝑥𝑥𝑚𝑚+𝑛𝑛)𝑇𝑇𝑚𝑚∗ (𝑥𝑥1 − Δ𝑥𝑥𝑚𝑚)𝑚𝑚 exp �2𝜋𝜋𝜋𝜋 Δ𝑙𝑙𝑚𝑚+𝑛𝑛−Δ𝑙𝑙𝑚𝑚
𝜆𝜆

�. (12) 

For the self-image to be observed, it is necessary for the 𝑚𝑚th and (𝑚𝑚 + 1)th orders to interfere. 

Because the 𝑚𝑚th and (𝑚𝑚 + 1)th order waves propagate along two different paths separated by 

𝑝𝑝𝑑𝑑1 on the grating (see Fig. 2), a spatial coherence length that is comparable or larger than 

𝑝𝑝𝑑𝑑1 is necessary on the grating. On the other hand, the self-image can be observed even for a 

broad spectrum because, from the Wiener-Khintchine’s theorem [6], the temporal coherence 

length of the light used is roughly given by 𝜆𝜆
2

Δ𝜆𝜆
, where Δ𝜆𝜆 is the bandwidth of the light, and 

the temporal coherence that is necessary for the 𝑚𝑚th and (𝑚𝑚 + 1)th orders to interfere is Δ𝑙𝑙1, 

which is comparable to λ when 𝑑𝑑1 ≫ λ.  

 

3. X-ray grating interferometry 



In the X-ray grating interferometry based on the Talbot effect, the phase shift caused by a 

sample is detected by the deformation of the self-image. When a sample is located at a distance 

of 𝑅𝑅s from the X-ray source in Fig. 1, the electric field on the (𝑥𝑥2,𝑦𝑦2)-plane is expressed from 

Eqs. (2) and (6) by [47] 

𝐸𝐸2(𝑥𝑥2,𝑦𝑦2) ≈ 𝐸𝐸20 ∑ 𝑏𝑏𝑛𝑛(𝑝𝑝)𝑇𝑇′s(𝑥𝑥s − 𝑛𝑛𝑝𝑝s𝑑𝑑1,𝑦𝑦s)exp �2𝜋𝜋𝜋𝜋 𝑛𝑛𝑛𝑛2
𝑑𝑑2
�𝑛𝑛 . (13) 

Here, (𝑥𝑥s,𝑦𝑦s) ≡ 𝑅𝑅s
𝑅𝑅1

(𝑥𝑥1,𝑦𝑦1), 𝑝𝑝s is the effective Talbot order given by 

𝑝𝑝s ≡ �
𝑝𝑝 𝑅𝑅s
𝑅𝑅1

             (0 ≤ 𝑅𝑅s ≤ 𝑅𝑅1)

𝑝𝑝 𝑅𝑅2−𝑅𝑅s
𝑅𝑅2−𝑅𝑅1

        (𝑅𝑅1 ≤ 𝑅𝑅s ≤ 𝑅𝑅2)
, (14) 

and 𝐸𝐸20𝑇𝑇′s(𝑥𝑥s,𝑦𝑦s) corresponds to the electric field on the (𝑥𝑥2,𝑦𝑦2)-plane that formed because 

of the free-space propagation of X-rays from the sample to the plane when no grating is located: 

𝑇𝑇′s(𝑥𝑥s,𝑦𝑦s) is expressed using the complex transmission function 𝑇𝑇s(𝑥𝑥s,𝑦𝑦s) of the sample by 

𝑇𝑇′s(𝑥𝑥s,𝑦𝑦s) ≈ ∬𝑇𝑇s(𝑥𝑥s + 𝑥𝑥′s,𝑦𝑦s + 𝑦𝑦′s)exp �𝑖𝑖𝑖𝑖�𝑥𝑥′s
2+𝑦𝑦′s2�

𝜆𝜆𝑧𝑧eff,s2
� 𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑′, (15) 

where 𝑧𝑧eff,s2 ≡ � 1
𝑅𝑅s

+ 1
𝑅𝑅2−𝑅𝑅s

�
−1

. The complex transmission function 𝑇𝑇s(𝑥𝑥s,𝑦𝑦s) of the sample 

represents the effects of the absorption and the phase-shift of the sample:  

𝑇𝑇s(𝑥𝑥s,𝑦𝑦s) = exp �− 𝜇𝜇s(𝑥𝑥s,𝑦𝑦s)
2

� exp[−𝑖𝑖Φ(𝑥𝑥s,𝑦𝑦s)] , (16) 

where 𝜇𝜇s(𝑥𝑥s,𝑦𝑦s) corresponds to the linear absorption coefficient and Φ(𝑥𝑥s,𝑦𝑦s) is the phase 

shift caused by the sample. The intensity of the self-image is expressed from Eqs. (12) and (13) 

by 

𝐼𝐼2(𝑥𝑥2,𝑦𝑦2) ≈ 𝐼𝐼20 ∑ 𝜇𝜇𝑛𝑛𝑏𝑏𝑚𝑚+𝑛𝑛(𝑝𝑝)𝑏𝑏𝑚𝑚∗ (𝑝𝑝)𝑇𝑇′s(𝑥𝑥s − (𝑚𝑚 + 𝑛𝑛)𝑝𝑝s𝑑𝑑1,𝑦𝑦1)𝑇𝑇′s∗(𝑥𝑥s −𝑚𝑚

𝑚𝑚𝑝𝑝s𝑑𝑑1,𝑦𝑦1) exp �2𝜋𝜋𝜋𝜋 𝑛𝑛𝑥𝑥2
𝑑𝑑2
� . (17) 



Equation (17) means that this optical configuration works as a multi-wave interferometer: the 

deformation of the self-image due to the insertion of a sample includes the effect of interference 

between the (𝑚𝑚 + 1) th and 𝑚𝑚 th orders. In other words, we can realize a shearing 

interferometer with a shearing distance of psd1 by retrieving the 1st order Fourier component of 

the intensity of the self-image. From geometrical consideration (see Fig. 2), it can be shown 

that the spatial coherence length on the grating that is necessary for the shearing interferometer 

is given by pd1. This is the reason why the interferometer does not require high-spatial-

coherence X-rays. Note that, if the shearing distance is larger than the size of the sample, the 

interferometer works as a Mach-Zehnder interferometer (an array of Mach-Zehnder 

interferometers), which provides a phase image (see Fig. 6 (a)) as X-ray and electron 

holographies do [57,58]. A fringe scanning [59-61] or Fourier transform method [62] is 

commonly used to retrieve the 1st order Fourier component 𝑞𝑞1(𝑥𝑥2,𝑦𝑦2) of the intensity of the 

self-image. If we neglect the effect of the free-space propagation, i.e., 𝑇𝑇′s(𝑥𝑥s,𝑦𝑦s) ≈ 𝑇𝑇s(𝑥𝑥s,𝑦𝑦s), 

the phase difference between Φ(𝑥𝑥s − (𝑚𝑚 + 1)𝑝𝑝s𝑑𝑑1,𝑦𝑦s)  andΦ(𝑥𝑥s − 𝑚𝑚𝑝𝑝s𝑑𝑑1,𝑦𝑦s)  is obtained 

from the argument of 𝑞𝑞1. Note that when a rectangular grating with a duty cycle of 0.5 is used 

and the compression ratio of the self-image is 1, only the three terms 𝑎𝑎−1, 𝑎𝑎0, 𝑎𝑎1 contribute 

to 𝑞𝑞1(𝑥𝑥2,𝑦𝑦2), so that the optical configuration works as a three-wave interferometer. In fact, 

from Eq. (17), the 1st order Fourier component of the intensity of the self-image is proportional 

to 



𝑃𝑃(𝑥𝑥2, 𝑦𝑦2) = 𝜇𝜇1�𝑏𝑏0𝑏𝑏−1∗ 𝑇𝑇s(𝑥𝑥s,𝑦𝑦s)𝑇𝑇s∗(𝑥𝑥s + 𝑝𝑝s𝑑𝑑1,𝑦𝑦s) + 𝑏𝑏1𝑏𝑏0∗𝑇𝑇s(𝑥𝑥s −

𝑝𝑝s𝑑𝑑1,𝑦𝑦s)𝑇𝑇s∗(𝑥𝑥s,𝑦𝑦s)�exp �2𝜋𝜋𝜋𝜋 𝑥𝑥2
𝑑𝑑2
�, (18) 

and for a weakly absorbing sample, the argument of Eq. (18) is proportional to  

Φ(𝑥𝑥s−𝑝𝑝s𝑑𝑑1,𝑦𝑦s)−Φ(𝑥𝑥s+𝑝𝑝s𝑑𝑑1,𝑦𝑦s)
2

, (19) 

which gives a twin image with an opposite sign separated by 2𝑝𝑝s𝑑𝑑1 [29,30,32], as later shown 

in Figs. 6(a) and 6(c). Here, we used (𝑏𝑏0𝑏𝑏−1∗ )∗ = 𝑏𝑏1𝑏𝑏0∗. Since the configuration gives the twin 

image, it can be regarded as a quasi-two-wave interferometer, but at points where 𝛥𝛥𝛥𝛥(𝑥𝑥2, 𝑦𝑦2) 

defined by 

𝛥𝛥𝛥𝛥(𝑥𝑥2,𝑦𝑦2) ≡ arg[𝑏𝑏0𝑏𝑏−1∗ 𝑇𝑇s(𝑥𝑥s,𝑦𝑦s)𝑇𝑇s∗(𝑥𝑥s − 𝑝𝑝s𝑑𝑑1,𝑦𝑦s)] − arg[𝑏𝑏1𝑏𝑏0∗𝑇𝑇s(𝑥𝑥s + 𝑝𝑝s𝑑𝑑1,𝑦𝑦s)𝑇𝑇s∗(𝑥𝑥s,𝑦𝑦s)] , 

(20) 

is close to π, the photon number that contributes to form the twin image becomes very small 

to make the image have a low signal-to-noise ratio. In addition, when 𝛥𝛥𝛥𝛥(𝑥𝑥2,𝑦𝑦2) exceeds an 

odd-integer multiple of π, π-wrapping, i.e., π-phase jump, occurs [32] (see Fig. 7 (a)). This 

kind of wrapping is different from that caused by the fact that the range of the value of 

arg[𝑏𝑏0𝑏𝑏−1∗ 𝑇𝑇s(𝑥𝑥s,𝑦𝑦s)𝑇𝑇s∗(𝑥𝑥s + 𝑝𝑝s𝑑𝑑1,𝑦𝑦s) + 𝑏𝑏1𝑏𝑏0∗𝑇𝑇s(𝑥𝑥s − 𝑝𝑝s𝑑𝑑1,𝑦𝑦s)𝑇𝑇s∗(𝑥𝑥s,𝑦𝑦s)] is limited from –π 

to π; unwrapping algorithms for the latter do not work well for the former because we can 

experimentally obtain π-wrapped images after they are blurred by the finite size of the X-ray 

source and/or point spread function of the X-ray image detector.  

  It is often assumed that Φ(𝑥𝑥s,𝑦𝑦s) is a slowly varying function of 𝑥𝑥s. In this case,  



Φ(𝑥𝑥s,𝑦𝑦s) can be expanded by a Taylor series and approximated up to the first order:  

Φ(𝑥𝑥s,𝑦𝑦s − 𝑚𝑚𝑝𝑝s𝑑𝑑1) ≈ Φ(𝑥𝑥s,𝑦𝑦s) −𝑚𝑚𝑝𝑝s𝑑𝑑1
𝜕𝜕Φ(𝑥𝑥s,𝑦𝑦s)

𝜕𝜕𝑥𝑥s
. (21) 

Thus, by taking the argument of the 1st order Fourier component of the intensity of the self-

image, arg[𝑞𝑞1], we can obtain a differential phase image 𝜕𝜕Φ(𝑥𝑥s,𝑦𝑦s)
𝜕𝜕𝑥𝑥s

. Note that there is a tradeoff 

between the magnification of the sample and the sensitivity to 𝜕𝜕Φ(𝑥𝑥s,𝑦𝑦s)
𝜕𝜕𝑥𝑥s

 : increasing 

magnification of the sample makes the slope of the wavefront gentle and, as a result, reduces 

the sensitivity to 𝜕𝜕Φ(𝑥𝑥s,𝑦𝑦s)
𝜕𝜕𝑥𝑥s

. In other words, the effective Talbot order 𝑝𝑝s becomes smaller when 

the sample is located closer to the X-ray source to increase the magnification of the sample.  

  There are several setups that have so far been proposed for obtaining the differential phase 

image. Figure 3 shows four typical setups of the X-ray grating interferometry for this purpose. 

In the setup shown in Fig. 3(a) [24,38], the self-image generated downstream of a grating (G1) 

is resolved by a high-spatial-resolution X-ray image detector, and arg[𝑞𝑞1] was obtained by the 

Fourier transform method [62], where the spatial resolutions of the obtained images are limited 

by the pitch of the self-image. Because the setup of Fig. 3(a) requires a high-spatial resolution 

X-ray image detector, which generally has a small field-of-view, it is suitable only in the case 

where a small field-of-view is sufficient. The interferometer shown in Fig. 3(b) is called a Talbot 

interferometer [19,63,64], where an absorption grating (G2) is overlaid on a self-image to form 

an image with moiré fringes (a moiré image). Generating moiré fringes makes it possible to 

detect the deformation of the self-image without using a high-resolution X-ray image detector 



and to realize a large field of view. The setups of Figs. 3(c) [35] and 3(d) [23] enable the use of 

using a low-brilliance X-ray source. As shown in Section 2, a spatial coherent length that is 

comparable or larger than the pitch of the grating used is required for the Talbot effect to occur. 

Because of the weak interaction of hard X-rays with materials, the grating has to have a high 

aspect-ratio, which makes it difficult to reduce the pitch of the grating to less than 1 μm. Thus, 

from the van Cittert-Zernike theorem, a micro-focus X-ray source or a very large distance from 

a large-size X-ray source is necessary to meet the requirement of the spatial coherence length. 

The setups shown in Figs. 3(c) and 3(d) meet the requirement with even a low-brilliance 

normal-size X-ray source: the source grating (G0) located close to the X-ray source works as 

an array of individually coherent but mutually incoherent X-ray sources. In this case, another 

condition is necessary for the self-images that is generated by the mutually incoherent X-ray 

sources to constructively be added:  

1
𝑑𝑑0

= α
𝑑𝑑1
− 1

𝑑𝑑2
, (22) 

where α is the compression ratio of the self-image. The use of a normal-size X-ray source 

drastically reduces the time that is required for obtaining a moiré image because the X-ray flux 

that is generated by an X-ray source is generally proportional to the size of the source.  

  It should be noted that, in addition to the merit that continuous-spectrum spherical-wave X-

rays are available, the X-ray grating interferometry has multi-modality: it can provide three 

independent images called transmittance, differential-phase, and visibility-contrast images 



[25,31,36,37,41-47], which can be given by |𝑞𝑞0| , arg[𝑞𝑞1] , and 2|𝑞𝑞1|
|𝑞𝑞0|  , respectively. The first 

image corresponds to the conventional absorption-contrast image, while the contrast of the third 

image has several origins including mainly ultra-small-angle X-ray scattering from the sample, 

which enables structure analysis at each pixel. 

 

4. X-ray imaging microscopy using self-imaging phenomenon 

In Section 2, we saw that the Talbot effect can occur even when a grating is illuminated by 

continuous-spectrum spherical-wave X-rays and that it enables to realize X-ray phase-contrast 

imaging. Since a spherical wave can magnify an image, we can construct an X-ray phase-

contrast microscope by using the Talbot effect.  

The simplest type of X-ray phase-contrast microscopy using the Talbot effect is the 

projection types that have been shown in Fig. 3. In these cases, their spatial resolutions are 

determined not only by magnification but also by the total size of the X-ray source and the 

spatial resolution of the X-ray image detector. To attain a spatial resolution of, e.g., 1 μm using 

the projection type X-ray phase-contrast microscopy, it is necessary to use an X-ray source with 

a size less than 1 μm and/or an X-ray image detector with a spatial resolution less than 1 μm, 

both of which reduce the photon number available for X-ray imaging. In addition, free-space 

propagation of X-rays from the sample to the X-ray image detector blurs the image of the 

sample projected on the detector because of refraction caused by the sample, although this 



blurring causes an edge-enhancement effect, which is positively used for the so-called 

propagation-based imaging technique.  

  The setup of the X-ray imaging microscope shown in Fig. 4(a), consisting of an X-ray lens 

and a grating, can solve the problem of the defocusing. For simplicity, we assume here that the 

X-ray lens (objective lens) is ideal, i.e., the amplitude spread function (ASF) is given by a delta 

function. In fact, from detailed analytical calculations, it was shown that the electric field 

created on the image plane (the (𝑥𝑥′2,𝑦𝑦′2)-plane) can be expressed by  

𝐸𝐸2(𝑥𝑥′2,𝑦𝑦′2) ≈ 𝐸𝐸′20 ∑ 𝑏𝑏𝑛𝑛(𝑝𝑝′)𝑇𝑇s(𝑥𝑥′s − 𝑛𝑛𝑛𝑛′𝑑𝑑′1,−𝑦𝑦′s)exp �2𝜋𝜋𝜋𝜋 𝑛𝑛𝑛𝑛′2
𝑑𝑑′2

�𝑛𝑛 , (23) 

which is the same as that in the case of the X-ray projection microscope shown in Fig. 3(a) 

except that there is no defocusing effect. Here, 𝐸𝐸′20 corresponds to the electric field on the 

image plane without the sample and the grating, expressed by 

𝐸𝐸′20 = −
exp�2𝜋𝜋𝜋𝜋(𝑎𝑎+𝑏𝑏)

𝜆𝜆 �exp�𝜋𝜋𝜋𝜋�𝑥𝑥′2
2+𝑦𝑦′22�

𝜆𝜆𝑅𝑅′2
�

𝑀𝑀
, (24) 

where 𝑎𝑎, 𝑏𝑏, and 𝑅𝑅′2 are geometrically defined distances from the object plane to the X-ray 

lens, from the X-ray lens to the image plane, and from the focal spot of the X-ray source to the 

image plane, respectively, 𝑀𝑀 is the magnification of the sample, which is given by 𝑏𝑏
𝑎𝑎
, and the 

(𝑥𝑥′s,𝑦𝑦′s)-plane is defined on the object plane, defined by (𝑥𝑥′s,𝑦𝑦′s) ≡ − 1
𝑀𝑀

(𝑥𝑥′2,𝑦𝑦′2). Equation 

(23) includes both the cases where the grating is located upstream and downstream of the X-

ray lens if we define the Talbot order 𝑝𝑝′ and the pitch 𝑑𝑑′2 of the Fresnel image on the image 

plane as follows:  



𝑝𝑝′ ≡ �
− 𝜆𝜆𝑧𝑧eff,s1

𝑑𝑑′12
   (𝑅𝑅s ≤ 𝑅𝑅1 < 𝑅𝑅lens)                                      

𝜆𝜆𝑧𝑧′eff,12
𝑑𝑑12

  (−𝑓𝑓′ < 𝑅𝑅′1 ≤ 𝑅𝑅′2,𝑅𝑅′1 ≠ 0)                         
 , (25) 

𝑑𝑑′2 ≡ �
𝑀𝑀𝑑𝑑s  (𝑅𝑅s ≤ 𝑅𝑅1 < 𝑅𝑅lens)                    

𝑑𝑑1
𝑅𝑅′2
𝑅𝑅′1

  (−𝑓𝑓′ < 𝑅𝑅′1 ≤ 𝑅𝑅′2,𝑅𝑅′1 ≠ 0)  , (26) 

where 𝑅𝑅lens is the distance of the X-ray lens from the X-ray source, 𝑓𝑓′ is the distance of the 

focal spot of the X-ray source from the lens, satisfying 1
𝑓𝑓

= 1
𝑅𝑅lens

+ 1
𝑓𝑓′

, where 𝑓𝑓 is the focal 

length of the X-ray lens, 𝑅𝑅′1 is the distance of the grating from the focal spot when the grating 

is located downstream of the X-ray lens, 𝑧𝑧eff,s1 and 𝑧𝑧′eff,12 are the effective distance defined 

by 

𝑧𝑧eff,s1 ≡ � 1
𝑅𝑅s

+ 1
𝑅𝑅1−𝑅𝑅s

�
−1

 , (28) 

𝑧𝑧′eff,12 ≡ � 1
𝑅𝑅′1

+ 1
𝑅𝑅′2−𝑅𝑅′1

�
−1

 , (29) 

and 𝑑𝑑s ≡ 𝑑𝑑1
𝑅𝑅s
𝑅𝑅1

 . Equation (23) can be interpreted as follows: when the grating is located 

between the object plane and the X-ray lens, a Fresnel image corresponding to a negative Talbot 

order is virtually generated on the object plane, which forms a magnified Fresnel image on the 

image plane with the magnification of 𝑀𝑀, whereas when the grating is located between the X-

ray lens and image plane, the focal spot of the X-ray source works as a virtual X-ray source and 

a Fresnel image with a positive and negative Talbot order is generated on the image plane by 

the spherical-wave X-rays from the virtual focal spot. Here, it was assumed that the X-ray lens 

is ideal, i.e., the amplitude spread function (ASF) is given by a delta function, but for a real lens, 

the electric field on the image plane is convoluted with the ASF [30].  



  The spatial coherence length on the object plane that is necessary for the Talbot effect to 

occur is roughly given by 𝑑𝑑′2/𝑀𝑀  [30]. This is equivalent to the condition that the spatial 

coherence length of the spherical-wave X-rays from the virtual focal spot on the image plane is 

comparable or larger than 𝑑𝑑′2.  

  Because Eq. (23) is the same as that in the case of the X-ray projection microscope except 

for without the defocusing effect, we can realize X-ray phase contrast microscopy using the 

self-imaging phenomenon. Similar to the setups of the X-ray phase-contrast imaging shown in 

Fig. 3, several setups are possible for the X-ray phase-contrast microscopy. Figures 4(b), 4(c), 

and 4(d) demonstrate typical possible setups of an X-ray phase-contrast microscope consisting 

of two or three gratings. In the setup shown in Fig. 4(b), an absorption grating overlays the self-

image on the image plane to form a moiré image, from the deformation of which a differential-

phase image is obtained. The setup shown in Fig. 4(d) is similar but uses a source grating, the 

image of which works as an array of individually coherent but mutually incoherent virtual X-

ray sources. This setup enables the use of a low-brilliance X-ray source. The spatial resolution 

of both the setups of Figs. 4(b) and 4(d) is limited by the pitch of the absorption grating on the 

image plane. In addition, increasing magnification 𝑀𝑀 makes the slope of the wavefront gentle 

and, as a result, reduces the sensitivity to 𝜕𝜕Φ(𝑥𝑥s,𝑦𝑦s)
𝜕𝜕𝑥𝑥s

, similarly to the setup of Figs. 3(b) and (d).  

A solution that solves the problem of the low spatial resolution and the reduced sensitivity is 

highly magnifying and resolving the self-image, which can be realized by the setups shown in 



Figs. 4(a) and 4(c). In these setups, their spatial resolution is not limited by the pitch of the 

grating and even the total size of the low-brilliance X-ray source but is mainly determined by 

the numerical aperture of the X-ray lens. In addition, instead of a differential-phase image, we 

can obtain a twin image with an opposite sign separated by 2𝑝𝑝′𝑑𝑑′1, each of which is a phase 

image if the sample is smaller than the separation distance 2𝑝𝑝′𝑑𝑑′1 (later shown in Figs. 6(a) 

and 6(c)). Thus, they enable quantitative X-ray phase-contrast imaging without the loss of 

sensitivity. A phase image can also be retrieved from a twin image for a sample larger than 

2𝑝𝑝′𝑑𝑑′1, as later shown in Fig. 6(d).  

 

5. Experimental examples 

  It was experimentally shown that the setups shown in Figs. 4(a), 4(b), and 4(c) work as X-

ray phase-contrast microscopes. The first experiment of X-ray phase-contrast microscopy using 

the self-imaging phenomenon was performed by Takeda et al. in the setup of Fig. 4(b). The 

setup was constructed at BL20XU, SPring-8, Japan, where a high-spatial coherence 

monochromatic X-ray beam from an undulator is available at an experimental station located 

245 m downstream from the source. They used 12.4 keV monochromatic X-rays from a double-

crystal monochromator, a Fresnel zone plate with an outermost zone width of 100 nm and a 

focal length of 320 mm as an X-ray lens, 8 μm-pitch π/2-phase and absorption gratings, and 

an X-ray image monochromator detector with an effective pixel size of 4.34 μm consisting of 



a phosphor screen, a relay lens, and a cooled charge-coupled device (CCD) camera. Figure 5(a) 

is a moiré image detected on the image plane. A differential phase image of polystyrene (PS) 

spheres and a Ta test chart with a magnification of 18.4 were successfully obtained by a fringe 

scanning method with a higher sensitivity than that based on X-ray absorption contrast without 

the grating (Figs. 5(b) and 5(c)). It was shown that the spatial resolution of these images is 

limited by the pitch of the grating. X-ray phase tomography was also performed for a piece of 

PS/PMMA blend, and its phase-separation structure consisting of PS-rich and PMMA-rich 

regions was successfully observed (Fig. 5 (d)).  

  Higher spatial resolution and higher sensitivity X-ray phase-contrast imaging was also 

successfully realized by Yashiro et al. in the setup of Fig. 4(a) [29,30,32]. This experiment was 

also performed at BL20XU, SPring-8. Monochromatic X-rays with an energy of 9 keV, a 

Fresnel zone plate with an outermost zone width of 86.6 nm and a focal length of 261 mm, and 

the X-ray image detector with an effective pixel size of 4.34 μm were used and a 4.3 μm-pitch 

π/2-phase grating was located 67.8 mm downstream from the back focal plane of the lens.  

  Figures 6(a) and 6(c) show twin images of PS spheres and a 1-μm-thick Siemens star chart 

with a magnification of 23.7 obtained by a fringe scanning method. It was shown that the twin 

image of Fig. 6(a) gives quantitative phase images and has much higher sensitivity than that 

based on X-ray absorption contrast without the grating (Fig. 6(b)). In addition, the spatial 

resolution achieved by the setup was not limited by the pitch of the grating but by the numerical 



aperture of the lens and the spatial resolution of the detector. In Fig. 6 (a), the standard deviation 

in the region without the sample was 2π × 0.003 rad. A phase image of the Siemens star chart 

was also successfully retrieved (Fig. 6 (d)) by an adaptive deconvolution algorithm using the 

visibility-contrast image, which is simultaneously obtained in the fringe scanning method and 

proportional to the signal-to-noise ratio of the twin image.  

  The setup proposed by Yashiro et al. enables quantitative X-ray phase-contrast imaging even 

for a sample with a large phase shift, which is essential for X-ray phase tomography but difficult 

to perform using conventional Zernike-phase-contrast X-ray imaging. Figure 7 demonstrates 

an example of quantitative X-ray phase-contrast imaging and tomography for a PS sphere with 

a diameter of 55 μm obtained by Yashiro et al. In this case, not only the 2π-wrapping due to the 

fact that the range of the value of argument function is limited from –π to π but also the π-

wrapping mentioned in Section 3 can be seen between the twin image in Fig. 7(a). They 

extracted the boundaries of the π-wrapped regions by using the fact that this π-phase jump 

occurs when |𝑞𝑞1|  is close to zero, which performed unwrapping successfully. From such 

quantitative X-ray phase-contrast images after the π-unwrapping (an example is shown in Fig. 

7(c)), a phase tomogram of the PS sphere was successfully obtained (Fig. 7(e)).  

  The setup shown in Fig. 4(c) was also attained by Kuwabara et al. using a low-brilliance 

normal-focus laboratory X-ray source [34]. They used a rotating anode-type X-ray source with 

a size of 0.2 (horizontal) and 0.3 mm (vertical). A pyrolytic graphite (PG) mosaic crystal was 



used as a monochromator to use Cu Kα1 characteristic X-rays. Taking the so-called Bragg-

Brentano geometry, the PG crystal worked as a condenser of X-rays to illuminate the sample. 

Figure 8 shows a twin image (8(b)) and a phase image (8(d)) of an 8.8-μm-thick polyimide film 

with a magnification of 5.4. Although the spatial resolution in this case was limited by the 

spatial resolution of the X-ray image detector because of the limited magnification in a limited 

space, quantitative X-ray phase-contrast microscopy using the self-imaging phenomenon and a 

low-brilliance X-ray source was successfully performed. Recently, Takano et al. achieved a 

spatial resolution of 50 nm with the same setup except that they used high-performance Fresnel 

zone plate and capillary condenser optics [50].  

 

6. Prospects and conclusions 

As is seen in Section 2, the self-imaging phenomenon occurs even in the case of continuous-

spectrum spherical-wave X-rays. This means that the development of an achromatic X-ray lens 

for high-spatial resolution with a small coma aberration would make it possible to realize high-

spatial and temporal resolution X-ray phase contrast microscopy using a wideband width of a 

pink undulator beam or a white synchrotron X-ray beam from a bending magnet. Wolter mirrors 

[65,66] are candidates for an X-ray lens without chromatic and coma aberrations, but it is 

difficult to fabricate an Wolter mirror for imaging with a spatial resolution less than 100nm 

[67,68]. Recently, Matsuyama et al. successfully developed advanced Kirkpatrick-Baez (AKB) 



mirrors [69], which are a system for X-ray imaging microscopy consisting of two elliptical 

mirrors and two hyperbolic mirrors oriented perpendicular to each other, and attained a spatial 

resolution of 50 nm without chromatic aberration [70,71]. The use of such an achromatic X-ray 

imaging system will expand the possibility of the X-ray phase-contrast imaging microscopy 

introduced in this review.  

Future development of an energy-resolved X-ray image detector will also open a new 

window: in addition to X-ray phase-contrast imaging microscopy, X-ray fluorescent imaging 

microscopy may be simultaneously achieved in the same setup. Thus, the X-ray phase-contrast 

microscopy using the self-imaging phenomenon is a promising tool for various fields including 

materials sciences, biology, medicine, and industrial applications.  

Note that the Talbot-Lau interferometer works not only for X-rays but also neutrons [72-81] 

and matter waves [17,82-86]. The setup of the microscope for a low-brilliance X-ray source 

introduced in this review will enable high-spatial resolution phase-contrast imaging even with 

neutrons and matter waves from incoherent sources if high-performance lenses are developed 

for them.  

In conclusion, X-ray phase-contrast microscopy using the self-imaging phenomenon 

provides a high sensitivity, brought by the use of the X-ray phase shift, and a high spatial 

resolution which is not limited by the pitch of the grating and the total size of the X-ray source 

but by the numerical aperture of the X-ray lens, and makes it possible to even use a low-



brilliance X-ray source. This approach has several advantages over the conventionally proposed 

X-ray imaging microscopy and can provide a powerful way of quantitative visualization in 

various fields of materials and life sciences.  
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CAPTIONS 

Fig. 1: (Color online) Illustration of setup where Talbot effect occurs.  

 

Fig. 2: (Color online) Schematic illustration of geometrical-optics interpretation of Talbot effect 

for monochromatic X-rays. Electric field at distance 𝑧𝑧12 downstream of grating (G1) is formed 

from interference of waves passing through points Pn on G1 (𝑛𝑛 = 0, ±1, ±2,⋯), where Pn is 

separated at distance of Δ𝑥𝑥𝑛𝑛 from P0. Here, Δ𝑙𝑙𝑛𝑛 is optical path difference between nth and 

0th order.  

 

Fig. 3: (Color online) Four typical setups for X-ray grating interferometry where one (a), two 

((b) and (c)), and three (d) gratings are used. Setups illustrated in (b), (c), and (d) are referred 

to as Talbot, Lau, and Talbot-Lau types.  

 

Fig. 4: (Color online) Four typical setups for X-ray phase-contrast microscopy using self-

imaging phenomenon where one (a), two ((b) and (c)), and three (d) gratings are used.  

 

Fig. 5: (a) Moiré image obtained on image plane in X-ray phase-contrast imaging microscopy 

shown in Fig. 4 (b). (b) Differential phase image of PS spheres obtained by microscopy (left) 

and transmittance image of them obtained without two gratings (right). (c) Differential phase 



image of Ta test chart with thickness of 500 nm obtained by microscopy (upper) and 

transmittance image of them obtained without two gratings (lower). (d) Three-dimensional 

rendering view of portion of piece of polystyrene/poly(methyl methacrylate) (PS/PMMA) 

polymer blend[27] (Copyright (2008) The Japan Society of Applied Physics).  

 

Fig. 6: Twin images obtained in X-ray phase contrast microscopy shown in Fig. 4 (a) ((a) 

polystyrene (PS) spheres and (c) 1-μm-thick Ta Siemens star chart). (b) Image of PS spheres 

based on absorption contrast without grating. (d) Phase image of Siemens star chart retrieved 

by adaptive deconvolution algorithm[29,30] (©2009-2010 American Physical Society).  

 

Fig. 7: (a) Twin image of polystyrene (PS) sphere with diameter of 55 μm. (b) ln(|𝑞𝑞1|) map. 

(c) Phase image of PS sphere. (d) Section profile along line A in (c). (e) Tomogram along line 

B in (c)[32] (©2011 American Institute of Physics).  

 

Fig. 8: (Color online) (a) Self-image without sample. (b) Twin image of triangle-shaped 

polyimide film with thickness of 8.8 μm (gray scale: −π  to π ). (c) Section profile along 

dashed line in (b) (in unit of rad; filled circles: experimental data, dashed line: calculated curve 

for ideal (high-resolution) X-ray image detector, solid line: result of convolution of dashed line 

with LSF of X-ray image detector). (d) Phase image retrieved from (b) (gray scale: 0 to π)[34] 



(Copyright (2011) The Japan Society of Applied Physics).  
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