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Chapter 1

Introduction

Modern work on smooth manifolds and surfaces with the Riemannian metric has a long
history and belongs to the central theme of the research in differential geometry. However,
non-smooth surfaces are also natural mathematical objects and recently get more and
more attention. Various topics are considered in this view, such as Metric measure spaces,
Polyhedral meshes, Graphs, and Geometric group theory.

Among them, the applications of analysis on discrete objects, in particular, the poly-
hedral meshes, catch the eye of the society, especially the industry and other scientific
fields. For example, U. Pinkall and K. Polthier [24] develop a surface theory on simplicial
surfaces with triangulations. They define the mean curvature by using the variational prin-
ciple of area and energy on each triangular face. They also give a minimization algorithm
with conjugation to construct discrete minimal surfaces. In [25], K. Polthier discusses the
conforming and non-conforming triangulations and studies their convergence properties.
K. Hildebrandt, K. Polthier, and M. Wardetzky [9, 10] generalize the definition of shape
operators on a smooth surface and its normal graph and estimate the difference. Another
viewpoint comes from A I. Bobenko and Y. Suris [2, 3]. Their study foci on the discrete
isothermic surfaces, namely, conformal quadrilateral meshes and leads to a strong con-
nection between quadrilateral meshes and discrete integrable systems. Furthermore, M.
Alexa and M. Wardetzky [1] define a discrete Laplacian on arbitrary polygonal faces by
generalizing the cot formula K. Polthier discovered.

Their studies on the polyhedral meshes are based on the motivation of finding a proper
approximations of a given smooth surface, which produces a large number of applications
in the field of computer graphics, engineering design, and animation. However, one may
ask a question from an opposite direction, that is, how to discover a smooth surface from
a given discrete object without knowing any information about the underlying surface?

On the other hand, graph theory studies the combinatorial structures of discrete objects
by giving edge relations between isolated vertices. With proper geometric positions, some
of the graphs may look like surfaces, still, some are not. For example, the square lattice is
appropriate to say a discrete plane with E2 as its hidden smooth surface while the cubic
lattice cannot be treated as a discrete surface in E3. Hence a natural problem may be
asked from this observation, when does a graph with some geometric descriptions can be
treat as a “surface”?

The initial idea of our work comes from a combination of those two questions, that
is, try to identify an underlying surface from a discrete object with graph structures. A
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CHAPTER 1. INTRODUCTION 2

discrete object is usually treated as an abstract set of isolated vertices. By assigning
geometric positions and connecting a particular pair of vertices, the discrete object can
be seen as a kind of networks. The study of M. Kotani, H, Naito and T, Omori in [13]
introduces a specific kind of these networks, a trivalent graph in E3, as a discrete surface.
In precisely, the discrete surface is defined as a topological trivalent graph realized in E3 by
a piecewise linear injective. They also define some basic geometric quantities for example,
curvatures, by utilizing the trivalent structures. To find the underlying smooth object from
a given discrete surface, we use the idea of subdivision algorithms. Generally speaking, the
subdivision algorithm is a method that inserts new elements and combinatorial relations
into the initial discrete surface. We construct a sequence of discrete surfaces by applying
the subdivision algorithm iteratively. If this sequence converged in some certain sense,
then we can find the underlying surface as its limit.

Let Φ: X → E3 with M = Φ(X) as a discrete surface, where X is a topological
trivalent graph. {Mi}∞i=0 with M0 = M is a sequence of discrete surfaces constructed by
subdivision algorithm. The present thesis includes the following results:

1. By discussing the local Dirichlet energy, we give a proof of the convergence of the
subdivision algorithm.

Theorem 5.1.2 ( [37]). The sequence of discrete surfaces {Mi}∞i=0 that are constructed
by the modified GC-subdivisions forms a Cauchy sequence in the Hausdorff topology.

2. The limit set M∞ of this sequence in the Hausdorff topology is divided into three
types:

M∞ = MR ∪MV ∪MS .

MR is the set of accumulate vertices of all the rings. MV is the set of all the inserted
vertices. MS emerges as a global accumulation. To avoid the third part MS , we define
the un-branched surface and prove the following theorem

Theorem 5.2.4 ( [14]). Let M0 = {V0, E0,R0} be a be a trivalent graph in E3 satisfies

1. Each edge of M0 is shared by two rings at most.

2. Any two rings intersect at one edge or empty.

3. For any two n-rings ri and rj ∈ R0, the convex hull conv(N (ri)) of the one-
neighborhood N (ri) of ri and the convex hull conv(N (rj)) of the one-neighborhood
N (rj) of rj intersect when either ri and rj share a common edge or there is a ring
ri ⋄ rj as the common one-neighbor of ri and rj.

Then M∞ = MV ∪MR.

3. We also consider the monotonicity of the Dirichlet energy and prove its relation
with the topology of the discrete surface.

Theorem 5.3.2 ( [14]). Let {Mi}∞i be the sequence of discrete surfaces constructed from
a finite discrete surface M0 which at least has one n-ring with n ̸= 6. The Dirichlet energy
of Mi is bounded from above by the constant independent of n. Moreover, it is monotone
decreasing after enough steps if there is no n-ring with n > 6, conversely, it is monotone
increasing after enough steps if there is no n-ring with n < 6.
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Remark. In order to distinguish the definition of facc between our case and the polyhedra
case, we use ring (defined in Chapter 2) instead of face in the present thesis.

The present thesis is organized as follows:
Chapter 2 introduces the basic notions of discrete surfaces. Taking a topological triva-

lent graph, a discrete surface can be seen as a network realized by a piecewise linear
embedded map in E3. The trivalent structure leads to a natural assignment of the normal
vectors at each vertex. Section 2.1 gives the basic definitions of geometric quantities, espe-
cially normal vectors, fundamental forms, and curvatures, of the discrete surface. Section
2.2 then defines a notion of discrete minimal surfaces which have vanished mean curvature
at each vertex and discrete harmonic surfaces which have all the vertices satisfied the
balancing condition. For later use in the numerical experiments, Section 2.3 provides a
construction of the central frame and defines the height function at each vertex.

Chapter 3 reviews the fundamental theory of subdivision. Section 3.1 introduces the
basic definitions and notations of the subdivision algorithm since all these notions are used
continuously in the following chapters. Section 3.2 makes a brief overview of the existing
subdivision algorithms and their properties. Section 3.3 gives a general process of a subdi-
vision algorithm in a global view and provides the primary problem in subdivision theory.
Section 3.4 introduces the locality of the application of one subdivision algorithm and
defined the core construction: invariant neighborhood and subdivision matrix. With the
preparation in the previous sections, Section 3.5 discusses the convergence of subdivision
algorithms and introduces U. Reif’s sufficient condition.

Chapter 4 deals with the construction of subdivision algorithms for the discrete surface
as a trivalent graph in E3. Section 4.1 introduced the Goldberg-Coxeter construction
for trivalent topological graphs which preserve the trivalent structure for each step of
the process. Section 4.2 constructs the invariant neighborhood and the corresponding
subdivision matrix for the discrete surface. Section 4.3 provides a subdivision algorithm
for trivalent graph based on the Goldberg-Coxeter construction on the planar graphs.

Chapter 5 constitutes the core part of this work. The convergent of GC-subdivision
which constructed in Chapter 4 has been proved from the view of Dirichlet energy in
Section 5.1. Section 5.2 discusses the configuration of the limit space of the subdivision
sequence, especially in the un-branched case. As a consequence of the previous sections,
the monotonicity of the Dirichlet energy is proved in Section 5.3.

Chapter 6 put the subdivision algorithms into practice and demonstrate the numerical
experiments for two specific examples: the Mackay crystal and the C60. Both Gaussian
curvatures and mean curvatures have been computed and the existence of singularities
has been observed. The numerical results show that the subdivision sequences of Mackay
crystal converge to the Schwartz P surface. However in the case of C60, a few singularities
have been generated by the subdivision process. Some discussions and explanations of
these phenomena are given in the end.
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Chapter 2

Discrete Surfaces

There are two preliminary descriptions for embedded discrete objects in three-dimensional
space, namely, combinatorial and geometrical. The combinatorial descriptions character-
ize the discrete elements such as vertices, edges and faces, and the combination between
them. Each element is defined by a set of elements from the lower dimension, such as
faces are defined by edges, edges are defined by vertices. The geometrical descriptions
define where to locate these elements in the three-dimensional space. To be more pre-
cise, the combinatorial structure is an abstract underlying space with the information of
incidental of its elements. When applying some proper geometric method (we often call
it as realization in our work) on these underlying structure, one can obtain a discrete
object in the three-dimensional space. There are two primary reasons that we treat these
two characters separately. One of them is that the realization only gives the geometrical
positions of each vertex, the positions of other elements such as edges, faces are defined by
the corresponding connectivities described by the combinatorial structure of the abstract
underlying space. Another one will be introduced in Chapter 3 Subdivision Theory. In
fact, when we consider subdivision methods, we usually describe it by the combinatorial
description of discrete objects.

Recent works of discrete geometric objects have been intensively done from the view of
polyhedral surfaces in E3. These polyhedral surfaces, for example, triangulation of a given
geometrical manifold, are usually described as finite copies of triangles or squares with
proper combinatorial rules. Thus they are the two-dimensional geometric objects with the
parameterized domains, since each triangle or square can be treated as a closed subset of
R2. In this chapter, we address a new approach of discrete surfaces which comes from the
original work in [13]. The underlying structure is identified with a topological trivalent
graph, that is, it consists of the sets of vertices and edges, moreover, the valence at each
vertex should be three. The geometrical description is given by a piecewise linear map,
which embeds the trivalent structure in E3. Unlike the polyhedral surfaces, a discrete sur-
face under this definition is more like a network, not a “surface” in general sense. However,
we can identify the tangent plane at each vertex with the plane uniquely determined by its
three nearest neighbors. With the assigned tangent plane as well as the normal vector at
each vertex, we can define geometric quantities such as the fundamental forms, Gaussian
map, and curvatures. Therefore the trivalent graphs in E3 can be equipped with geome-
tries which similar to the smooth surfaces. Under these settings, we discuss the discrete
minimal and discrete harmonic surfaces. For later use, we also introduce the notion of the
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CHAPTER 2. DISCRETE SURFACES 6

central frame and height function near each vertex. The following definitions are based
on those described in [13,37].

2.1 Trivalent graphs in E3 and their curvatures

We firstly start from the combinatorial description. One should notice that each element
is described topologically, that is, we only concentrate on the incidental relations.

Let V be a finite set of vertices

V = {vi|i ∈ ZI = {0, 1, ..., I− 1}}.

An edge eij = {vi, vj} is a pair of two vertices in V . If two vertices vi, vj ∈ V (i ̸= j) are
connected by one edge, we say vi ∼ vj. Let E be the set of edges that joins two different
vertices

E ⊂ {eij|eij = {vi, vj}, i, j ∈ ZI, i ̸= j}.

For any v ∈ V , Ev denotes the set of edges that emerge from v.
Let X = (V,E) be a topological graph with V as the set of vertices and E as the set

of edges. We would like to introduce the concept of ring. In particular, we call a circuit,
which is a closed simple curve without self-intersections, as a ring in X. An n-ring r is
given by

r = {v0, ..., vn−1}

with the ordered n different vertices vi ∈ V in the circuit, where vi ∼ vi+1 (i ∈ Zn) and
vn = v0. Let

R = {rk|rk = {vk0 , ..., vkn−1}, k = {k0, ..., kn−1}, ki ∈ ZI}

denotes the set of rings. For any rk ∈ R, we can define the corresponding set of ring edges

E(rk) = {ek0k1 , ek1k2 , ..., ekn−1k0}.

It is obvious that the size of E(rk) equals to the length of rk.

Definition 2.1.1 (Trivalent Graph). Let V be a set of vertices. A trivalent graph X =
(V,E,R) is defined by the finite set of vertices V and a finite sets R of rings determined
by V and the corresponding set of edges E, which satisfies for any v ∈ V

♯Ev = 3.

For a given a trivalent graph X, we define a discrete surface M in R3 by a piecewise
linear map

Φ: X → E3

with M = Φ(X). Here we mean by “piecewise linear”, the image of each edge eij, which
is determined by its vertices V (eij) = {vi, vj}, is given by the line segment connecting two
vertices, that is

Φ(eij) = Φ(V (eij)) = {Φ(vi),Φ(vj)}.

Definition 2.1.2 (Discrete Surface). An injective piecewise linear realization Φ: X → E3

of a trivalent graph X is said to be a discrete surface in E3 if
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1. for any v ∈ V , all the elements of {Φ(e)|e ∈ Ev} are linearly independent in E3,
where Φ(e) is determined by the vertices of e, e.g., Φ(e) = Φ(V (e)).

2. Φ(X) is locally oriented, that is, the order of the three edges in Ev is assumed to be
assigned to each vertex of X.

Given a discrete surface Φ: X → E3 with M = Φ(X). Since Φ is injective, we can
define the elements in the image M = Φ(X) by the image of the corresponding elements
in X. The set of vertices of M is obtained by the image of V , denoted by

V = {v = Φ(v)|v ∈ V },

the set of edges of M is obtained by the image of E, denoted by

E = {e = Φ(e)|Φ(e) = Φ(V (e)), e ∈ E},

and the set of rings of M is obtained by the image of R, denoted by

R = {r = Φ(r)|Φ(r) = Φ(V (r)), r ∈ R}.

One can see M can be identified by V directly since the other elements and the corre-
sponding incidental relations are induced from X immediately after V be determined.

For any v ∈ V , let vi be its nearest neighbors, i.e., vi ∼ v, and ei = {v, vi} with
i ∈ {1, 2, 3}. Then Ev = {e1, e2, e3}. We call the pair

τ(v) := (v, Ev)

as the basic unit of v in X. Immediately we have the corresponding element in M, i.e.,
Ev = {e1, e2, e3} where ei = {v,vi} in M, and the basic unit of v

τ(v) = τ(Φ(v)) = Φ(τ(v)) = (Φ(v),Φ(Ev)) = (v, Ev).

Roughly speaking, M acts as a one-dimensional “net” in E3 with many “holes”. At each
knot of the net, we have specific incidental that comes from the basic unit so that we can
equip the abstract knot with geometry structures. On the other hand, the “holes” can be
identified with rings in M which is a circuit of vertices, or in fact, a cyclic combination of
copies of the basic unit. How to fill these “holes” by the basic unit is one of the fundamental
problems in the theory of discrete surfaces. Before we state the core problem, we take a
brief review of the geometry structure on this “net”.

Definition 2.1.3 (Tangent Plane). Let Φ: X → E3 be a discrete surface withM = Φ(X).
For any v ∈ M, the tangent plane TvM and the corresponding unit normal vector n(v)
can be defined by the basic unit τ(v) = (v, Ev). That is,

TvM is identified with the plane uniquely determined by v’s nearest neighbors {v1,v2,v3}
and the unit normal vector n(v) at v is given by

(2.1.1) n(v) =
e1 × e2 + e2 × e3 + e3 × e1

|e1 × e2 + e2 × e3 + e3 × e1|
,

where ei ∈ Ev, ei = {v,vi}.
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Remark 2.1.4. Let τ = τ(v) be a basic unit. τi = τ(vi) be the unit of vi, where vi is
the nearest neighbor of v. Then we can define the following geometry quantities at each
vertex v by τ and τi.

1. The directional derivative of Φ at v along ei is given as the orthogonal projection of
ei to the tangent plane TvM, i.e.,

(2.1.2) ∇eiΦ = Proj[Φ(ei)] = Proj[ei] = ei − ⟨ei, n(v)⟩ei.

2. The directional derivative of the unit normal vector at v along ei is given by

(2.1.3) ∇ein(v) = Proj[n(vi)− n(v)].

3. The first and second fundamental forms of v ∈ M are given by, respectively

(2.1.4)

I(v) =

(
⟨e2 − e1, e2 − e1⟩, ⟨e2 − e1, e3 − e1⟩
⟨e3 − e1, e2 − e1⟩, ⟨e3 − e1, e3 − e1⟩

)
,

II(v) =

(
−⟨e2 − e1,n2 − n1⟩, −⟨e2 − e1,n3 − n1⟩
−⟨e3 − e1,n2 − n1⟩, −⟨e3 − e1,n3 − n1⟩

)
.

where ni = n(vi), i ∈ {1, 2, 3}. Notice that II(v) is not necessarily symmetric.

Definition 2.1.5 (Curvatures). Let Φ: X → E3 be a discrete surface with M = Φ(X).
Then for each vertex v ∈ M, the Gauss curvature K(v) and the mean curvature H(v)
are represented as follows, respectively

(2.1.5)
K(v) = det[I(v)−1 II(v)],

H(v) =
1

2
tr[I(v)−1 II(v)].

Example 2.1.6. (1)Regular hexahedron and (2) regular truncated icosahedron ( fullerene
C60) are both trivalent graph in E3 with constant curvatures.

Proof. Since both of them are regular and located on the sphere, we can consider a basic
unit τ on sphere with v = rn(v) where r is the radius. It is easy to check ei − e1 =
r(ni − n1) thus we have

I(v) = −r II(v).

That is

K(v) =
1

r2
, H(v) = −1

r
.

2.2 Discrete harmonic and discrete minimal surfaces

In smooth surface theory, conformal minimal immersions of Riemann surfaces in R3 are
harmonic maps. How are they related under the discrete version? Since we have already
defined the mean curvature at each vertex, it is very natural to have the following definition
of discrete minimal surface.
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Definition 2.2.1 (Discrete Minimal Surface). A discrete surface Φ: X → E3 is called a
discrete minimal surface if its mean curvature vanishes at each vertex.

Harmonic map is the critical point of Dirichlet functional. In our settings, Dirichlet
energy is defined on the discrete elements. Let Φ: X → E3 with M = Φ(X) be a discrete
surface. By the definition we know X is finite, thus we define the Dirichlet energy ED of
Φ(X) by the sum of square norm of all edges, i.e.,

(2.2.1) ED(Φ(X)) =
∑
e∈E

|Φ(e)|2.

Furthermore, the realization of an arbitrary graph X that minimizes the Dirichlet energy
is called as a harmonic realization [16] or an equilibrium placement [5].

In fact, the harmonic realization introduces a distinct local geometric feature. Let
τ = (v, Ev) be the basic unit of X, from an elementary result in classical geometry, the
Dirichlet energy

(2.2.2) ED(Φ(τ)) = |Φ(e1)|2 + |Φ(e2)|2 + |Φ(e3)|2

reaches its minimum if and only if Φ(v) is located at the barycenter of its nearest neighbors.
By this fact, we give the following definition

Definition 2.2.2 (Harmonic Discrete Surface ([13, Definition 3.15])). A discrete surface
Φ: X → E3 is harmonic when it satisfies

(2.2.3) Φ(ev,1) + Φ(ev,2) + Φ(ev,3) = 0,

for any v ∈ V , and Ev = {ev,1, ev,2, ev,3}.
The equation (2.2.3) is called as the balancing condition. The representation of curva-

tures of harmonic discrete surface are computed as following

Proposition 2.2.3 ( [13, Proposition 3.16]). Let Φ: X → E3 be a discrete harmonic
surface, for v ∈ V and Ev = {e1, e2, e3}, the Gauss curvature K(v) and the mean curvature
H(v) are respectively given by

(2.2.4)

K(v) = − 3

2A(v)2

∑
i,j,k

⟨ei,nj⟩⟨ej,ni⟩,

H(v) =
3

2A(v)2

∑
i,j,k

⟨ei, ej⟩(⟨ei,nj⟩+ ⟨ej,ni⟩),

where A(v) = det[I(v)], (i, j, k) is the alternate of (1, 2, 3).

Proposition 2.2.3 indicates that a discrete harmonic surface may not be discrete mini-
mal. The following theorem provides a sufficient condition for a discrete harmonic surface
which has vanished mean curvature at each vertex.

Theorem 2.2.4 ([13, Theorem 3.17]). A discrete harmonic surface Φ: X → E3 is minimal
if for any v ∈ V and Ev = {e1, e2, e3}

(2.2.5) ⟨Φ(e1),Φ(e2)⟩+ ⟨Φ(e2),Φ(e3)⟩+ ⟨Φ(e3),Φ(e1)⟩ = 0.

In particular, the equation above is equivalent to

(2.2.6) |Φ(e1)| = |Φ(e2)| = |Φ(e3)|.
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2.3 Central frame and height function

As we mentioned before, unlike polyhedral meshes, an embedded trivalent graph is a
discrete object in E3 without any information about the underlying surface. Given a
polyhedral mesh, for example, triangulation. It can be viewed as combined copies of the
triangle with geometric information. Each triangle is a closed subset of R2 and equipped
with the smooth coordinate inside. However, in our setting, the discrete surface can
be represented as finite copies of the basic unit with combinatorial rules. Although the
trivalent feature of the basic unit provide a “natural” way for us to define the geometric
structures, its underlying space can hardly have any proper coordinate. Fortunately, in
the classical surface theory, by assuming some requirements, a surface can be locally
expressed in Euler form. To be more precisely, it can be viewed as the graph of a scalar-
valued function in a local coordinate system, that is, the parameters are associated with the
tangent plane moreover, the function values are measured in the normal direction. We call
this function the height function. The smoothness nearby is related to the differentiability
properties of this height function.

We address this issue in the following way. Let Φ: X → E3 with M = Φ(X) be a
discrete surface. For a fix vertex v0 ∈ M, assume v0 is located at the origin. Take the
unit normal vector n0 = n(v0) as the z-direction. Then the xy-plane becomes the tangent
plane of v0.

Let T0 = (t
(0)
1 , t

(0)
2 ) be a pair of two linear independent vectors on Tv0M. Define

(2.3.1) F0 := [T0,n0]

as the central frame at v0, which is a 3× 3-matrix. Assuming there exists a neighborhood
δ(v0) of v0 such that the orthogonal projection of these vertices to the tangent plane at v0

is injective, in fact, at least the nearest neighbors of v0 satisfied this requirement. Then
under the central frame, any v ∈ δ(v0) has

the tangential component

(2.3.2) ξ0 = (v − v0) · T0 ∈ R2

the normal component

(2.3.3) ζ0 = (v − v0) · n0 ∈ R.

the local height function

(2.3.4) h(ξ0) = ζ0

Then we have the following unique representation of v

(2.3.5) v = v0 + ξ0T0 + h(ξ0)n0,

and the local Euler from

(2.3.6) (v − v0) · F0 = [ξ0, h(ξ0)].

Remark 2.3.1. Let vi be a nearest neighbor of v, then the absolute value of the height
function on vi measures the distance between v and the bottom △(v1,v2,v3). In partic-
ular, when Φ: X → E3 is discrete harmonic, this height vanishes.



Chapter 3

The Fundamental Theory of
Subdivision

Subdivision algorithms are developed from two opposite motivations. Usually, one of the
motivations is to approximate a given surface over a control net, for example, triangulation
of a geometric surface. To do so, one may try to refine the control net by some “well
defined” rules which is called as the subdivision. By applying subdivision repeated, more
and more elements such as vertices and corresponding combinatorial structures are inserted
into the control net so that they converge to the original surface under some proper
conditions. From the other side, one can define the subdivision algorithms by applying
a linear map on a given space of control net without knowing any information about the
underlying surface. The subdivision algorithms can be processed iteratively so that one
can obtain a sequence of control nets. If this sequence converged in some certain sense,
one might use this procedure to find the underlying surface, or in general, to generate a
surface. Therefore, by considering both of the views, one can use subdivision algorithm
to deal with the problem of filling a “hole” on a given surface, or equivalently, finding an
underlying surface from a given mesh.

In this section, we present a short introduction of subdivision theory, such as original
ideas, general subdivision process and analysis near the singularities. Some fundamental
properties are also discussed so that one can make a better understanding of the subdivi-
sion algorithms as well as the structure of the combinatorial meshes.

3.1 Control net and refinement

A Control net in subdivision theory is a discrete object where the subdivision algorithms
act. Polyhedral meshes, triangulations and the discrete surfaces we introduced in Chap-
ter 2 are all examples of control nets.

As we mentioned, a discrete object is usually described by the combination of discrete
elements and geometry information. Using arguments similar to those in Chapter 2 (nor-
mal type for the elements in the topological graph and bold type for the corresponding
elements in E3), let K be combinatorial mesh, which consists of vertices with incidental
relations. An injective map Φ: K → E3 and C = Φ(K) defines a control net in E3 with
the combinatorial structure described by K.

11
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We put an extra line here, in this chapter, we use combinatorial meshes and control
nets instead of the topological graphs and the corresponding realizations that we defined
in Chapter 2, respectively. The formers are often used in the general subdivision theory.

Definition 3.1.1 (Valence). Let Φ: K → E3 with C = Φ(K) be a control net. The
valence of a vertex v ∈ K (corresponding with v ∈ C) is given by the number of edges
emerged from it.

The vertices of a given control net can be classified into two types in terms of valence:
the ordinary vertex and the extraordinary vertex. Here the valence of the vertices should
be considered after several steps of refinement. Therefore, this classification is also related
to subdivision algorithms. That is, after several steps of refinement, the vertices with the
most appeared valance are called to be the ordinary vertices. The rest are called to be the
extraordinary vertices. Always, the regular tilling of a plane by individual polygons gives
a hint of this classification. For example, the ordinary vertices of the triangular mesh are
those vertices with valence six, and the ordinary vertices of the square mesh are those
vertices with valence four (see Figure 3.1).

Remark 3.1.2. A control net with all vertices that have the same valence is called as
regular, otherwise is called as irregular. In particular, a control net with all vertices have
the same valence except for one with valence ν is called as ν-regular.

For each vertex of a given control net, we consider the combinatorial structures nearby
as the following

Definition 3.1.3 (One-/n-neighborhood). Let Φ: K → E3 with C = Φ(K) be a control
net. For a given vertex v ∈ K (corresponding with v ∈ C), the set of all faces which have
v (v) as the common vertex is called as the one-neighborhood of v (v). Inductively, the
union of the one-neighborhoods of all vertices in the (n-1)-neighborhoods of v (v) is called
as the n-neighborhood.

In particular, the neighborhood of the ordinary vertex is called as the regular region
and the neighborhood of the extraordinary vertex is called as the irregular region (see
Figure 3.1).

Given a control net C with K as its combinatorial mesh. Let V be the set of vertices
of C. The refinement of C is construct by two basic steps:

1. Insert new vertices to V based on the combinatorial description.

2. Connecting appropriate vertices and generating a new control net C ′.

By considering the combinatorial structure of the new control net C ′, the refinement can
be characterized into two types: interpolate type where the vertices from V also take
part in the incidental relation of C and approximate type where the inserted vertices are
prescribed in a similar way of C, however, do not connect with its vertices. The interpolate
type remains the geometry information of the initial control net. One of the examples is
given as the split operation over the square mesh. For a square mesh, adding one vertex
for each edge and one vertex for each face. Keeping the split edges and connecting the
face vertex with the inserted edge vertices such that each square face splits into four. The
approximate type may generate a surface with Ck-continuous (k > 2). Corner cutting is
one such type of refinement. By cut off the vertices and the edges, the resulting edges and
the new vertices are meet at the vertex cutoffs.
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Figure 3.1: Both a and c are the ordinary vertices with their 2-neigborhood as the regular
region. o is the extraordinary vertex with its 2-neigborhood as the irregular region.

3.2 Subdivision zoo

For a given polyhedral mesh as control net, a subdivision algorithm produces a sequence
of the control nets with increasing finer geometrical structure. E. Catmull and J. Clark [4]
and D. Doo and M. Sabin [7] introduced the first geometric subdivision algorithm. They
assumed that a given control net consists of two types of regions, one is called as the regular
region, where the standard continuity can be introduced and the other one is called as the
irregular region, where the continuity is not easy to achieve. Thus the resulting surface
also consists of continue part which corresponding to the regular regions and “holes” which
corresponding to the irregular regions. Moreover, the subdivision algorithm enlarges the
regular regions and shrinks the irregular regions without changing the number and the type
so that the “holes” can be filled gradually. In the space of control net, this means when we
insert new vertices, most of them are located to match the conditions of the regular regions,
however, those vertices that contribute to generate shrinking irregular region should be
chosen rather than arbitrarily. Often, they are computed by some linear combination of
the vertices from the old control net near the irregular region, which are also called as
invariant neighborhood sometimes. The associated matrix of this combination is called as
the subdivision matrix. The smoothness of the limit surface is deeply related to the choice
of this matrix when the subdivision algorithm is applied iteratively.

After the initial idea of Catmull-Clark subdivision and Doo-Sabin subdivision, C. Loop
[18] developed the Loop subdivision as well as N. Dyn [8] developed the Butterfly subdi-
vision for triangular meshes. They followed the original idea and extended the algorithm
from quad mesh to triangles. Various of subdivision algorithms have been developed for
specific requirements and applications to different fields such as computer graphics, indus-
trial design, and engineering. J. Stam and C. Loop [35] combined both the Catmull-Clark
subdivision and the Loop subdivision, and invented the Quad/triangle algorithm. They
applied both algorithms separately on the quad and triangle part from a mixed quad and
triangle mesh and introduced new subdivision rules for the connecting parts. Although this
method loses some continuity on the connecting elements, it has improved the Catmull-
Clark subdivision in handling with the undesirable triangular parts from quad meshes
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and made this method more applicable under several conditions. To construct surfaces
with a particular property, G. Morin [21] uses cubic polynomials to generate circles and
hyperbolic functions in the subdivision and designed the Circle preserving subdivision.
In this subdivision algorithm, a tension parameter is introduced so that one can obtain
an almost everywhere C2-continuous surface except for a finite number of vertices which
is C1-continuous. Other motivations like taking great control of the size of refined mesh
has been considered as well. The simplest subdivision by U. Reif and J. Peters [32], the
4−8-subdivision by L. Velho and D. Zorin [38], and the

√
3-subdivision by L. Kobbelt [12]

are addressed as the subdivision algorithms which has a smaller number of newly inserted
vertices. Furthermore, Free-form splines by H. Prautzsch [29] and TURBS by U. Reif [31]
are notable for their high smoothness. Both of these algorithms can generate a surface
with an arbitrary degree of smoothness. The basic techniques are based on the functions
of bi-degree (2k + 2) and can generate Ck-continuous surfaces.

We list typical subdivision algorithms with a short explanation about the properties in
Table 3.2, which is called as the Subdivision Zoo. One can check almost all the subdivision
algorithms have been constructed to generate quad or triangular meshes. Some of the
algorithms construct a new control net interpolating with the initial one. Others focus
on the smoothness requirement and design the approximate approaches. In fact, C1-
(normal) continuous and C2-(curvature) continuous can be satisfied. With some specific
method, one can even construct Ck-continuous surfaces. However, all of these algorithms
have singularities in the limit surface. Here the singularity means the point where the
well-behaved differentiability fails. For example, Catmull-Clark subdivision generates an
almost C2-continuous surface with some individual vertices (in fact, the extraordinary
vertex of the control net) have C1-continuous.

Subdivision Algorithm Net Type Degree Class

Catmull-Clark [E. Catmull and J. Clark [4] ] □ approx bicubic C2

Doo-Sabin [D. Doo and M. Sabin [7]] □ approx biquadratic C2

Loop [C. Loop [18]] △ approx quartic C2

Butterfly [N. Dyn et al [8]] △ interpol C1

Kobbelt [L. Kobbelt [11]] □ interpol C1

Simplest [U. Reif and J. Peters [32]] □ approx quadratic C1

TURBS [U. Rief [31]] □ approx bi-2k + 2 Ck
√
3-Subdivision [L. Kobbelt [12]] △ approx C2

4-8 Subdivision [L. Velho and D. Zorin [38]] △ approx sixtic C4

Circle preserving [G. Morin et al [21]] □ approx cubic C2

Ternary triangle [C. Loop [19]] △ approx quartic C4

Quad/triangle [J. Stam and C. Loop [35]] △,□ approx bicubic, quartic C2

4-3[J. Peters and L. Shiue [23]] △,□ approx quartic C2
√
2-Subdivision [Li et al [17]] □ interpol sixtic C4

Table 3.1: Subdivision Zoo. A brief introduction of typically subdivision algorithms and
their basic properties.
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3.3 Subdivision process

Subdivision process is the way to produce sequences of control nets by applying the sub-
division algorithms iterated. As we mentioned before, the basic idea of the subdivision is
to define a smooth object as the limit of a sequence of successive refinement. Thus the se-
quence of control nets should be finer when the subdivision algorithms applied adjectively
on the initial control net. This means the newly generated control net will have a greater
number of discrete elements, such as vertices, edges, and faces. We often take subdivision
process as operations act on the control net.

To be more precise, let Φ: K → E3 with C = Φ(K) be a given control net, each step of
the subdivision process is described by a set of similar operations. Furthermore, individual
step of the subdivision process is described by two operations. One is the refinement
operation on the combinatorial mesh K, which produces new vertices and combinatorial
descriptions to generate K ′. Another one is the smoothing operation in which we assign
the geometrical description to the new K ′, that is, Φ′ : K ′ → E3 with C ′ = Φ′(K ′) as the
new generated control net from C.

Although the subdivision algorithm changes the global view of control nets, the process
is local. That is, newly added vertices are derived from the vertices in a fairly small neigh-
borhood of each vertex from the previous control net. This derivation can be described by
a linear combination, which can also be treated as a weighted sum of the vertices in the
previous control net. A subdivision mask. is a weighted graph. The weight of the vertices
in the previous control net are used to compute a particular new vertex after one step of
the subdivision (see Figure 3.2).

(a) (b)

Figure 3.2: (a) A subdivision mask from the Loop subdivision. (b) A subdivision mask
from the Butterfly subdivision.

Usually, we let the sum of the weights from one given mask equals to one. Furthermore,
by the idea of E. Catmull and J. Clark [4], the generated vertices should be ordinary while
the number and the type of the extraordinary vertices are constant during the iterative
subdivision process. From the view of configuration, this requirement makes sure that the
extraordinary vertices are isolated from each other after several steps of the subdivision. By
the locality of subdivision masks, the corresponding process can be split into a combination
of local refinements.
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Now we start with a general case of subdivision process. Let C0 be a given control net
with K as its combinatorial mesh

(3.3.1) Φ: K → E3 with C = Φ(K).

A subdivision is processed by iteration of the subdivision algorithm over the initial control
net to generate a sequence of control nets as a chain

(3.3.2) C0 → C1 → · · · → Ci → · · · ,

where Ci refers to the control net of each step and “→” defined the process direction. The
Ci is obtained by Ci−1 and is rooted in C0.

For any control net Ci, let Vi = {vi
k|k ∈ ZIi} be the set of the vertices. By the discussion

in Chapter 2 we can identity Ci with Vi. In particular, Ci can be described by a control
net matrix

(3.3.3) Ci := (vi
0,v

i
1, . . . ,v

i
Ii−1)

t.

where Ci has the size of (Ik×3) and each row refers to a vertex in three dimensional space.
The vertices of Ci is generated from the vertices of the previous control net. Furthermore,
this relation is linear. Therefore the subdivision process can be described by the following
map

(3.3.4) S : Ci → Ci+1

in the view of control net matrix

(3.3.5) Ci+1 = SCi,

where S is an adaptive matrix called the global subdivision matrix. The map S constructs
the combinatorial structure of Ki+1 from Ki and describes the geometrical position of each
vertex in Ki+1. Formally, we use the same “S” to represent the corresponding matrix. In
fact, as the subdivision process goes on, the size of S keeps growing since the number of
vertices increases after each step of subdivision. For each control net Ci, one can trace
back to the initial one by

(3.3.6) Ci = SCi−1 = S2Ci−2 = · · · = SiC0.

where Si refers to the formal product of S with increasing size. The restriction of S on a
proper neighborhood of a vertex is nothing but the subdivision mask. That is, S can be
represented by the weights that we use to generate new vertices from the previous control
net. By applying S for infinite many times, we can get the following sequence

(3.3.7) C0 → C1 → · · · → Ci → S∞C0

If the subdivision algorithm converges, then we have

(3.3.8) S∞C0 = lim
i→∞

SiC0

as the limit surface. Here we use the expressions of “convergence” and “limit” without
specifying definitions.
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3.4 Invariant neighborhood and subdivision matrix

Since the size of the global subdivision matrix keeps increasing after each step of the
process, the investigation of subdivisions from the global view is not easy to achieve.
Because of the locality we discussed before, however, the control net Ci+1 can be generated
by application of some subdivision masks piece by piece on a partition of Ci. The global
issue can be split into a combination of local refinements with specific properties. In
another word, the subdivision algorithm generates a shrinking irregular/regular region
by producing a sequence of shrink n-neighborhoods of a given extraordinary/ordinary
vertex. This shrinking process is also called as “prolongation” of the regular regions since
the irregular regions can be treat as “gaps” after several steps of the subdivision. The
matrix constructed by the combination of the subdivision masks of the vertices in this
n-neighborhood is called as the subdivision matrix and the associated n-neighborhood is
called as the invariant neighborhood. Additionally, this subdivision matrix should preserve
the combinatorial structure of the invariant neighborhood, and remains unchanged for each
subdivision step.

Definition 3.4.1 (Subdivision matrix). Let CN
0 be an n-neighborhood of a specific vertex

in C0 with the combinatorial mesh N . Let SN be the local subdivision map that determines
the subdivision near the vertex and preserves the combinatorial structure of N . That is

(3.4.1)
SN : CN

i → CN
i+1

CN
i+1 = SNC

N
i

The associated matrix SN is called as the subdivision matrix and the control net matrix
CN

i is called as the invariant neighborhood.

In the Loop subdivision [18], the invariant neighborhood is the 2-neighborhood of a
extraordinary vertex as shown in Figure 3.3.

Figure 3.3: The invariant neighborhood of the Loop subdivision.

Suppose CN
0 has k vertices. Then the control net matrix CN

0 has the size of k× 3. The
corresponding subdivision matrix SN act on CN

0 by matrix product as following

(3.4.2) SN


v0
N0

v0
N1

v0
N1

· · ·
v0
Nk−1

 =


v1
N0

v1
N1

v1
N1

· · ·
v1
Nk−1

 .



CHAPTER 3. THE FUNDAMENTAL THEORY OF SUBDIVISION 18

Moreover, the size of SN is (k× k) determined by CN
0 and each row of SN is given by the

subdivision mask of the corresponding vertex.
In fact, the subdivision matrix can be viewed as the restriction of the global subdivision

matrix on the invariant neighborhood, that is,

(3.4.3) SN = S|N .

Therefore, the investigation on the growing global subdivision matrix can be considered
separately on each invariant neighborhood with the associated subdivision matrix. Subdi-
vision matrix plays an essential role in subdivision algorithm rather than related control
nets from adjacent subdivision steps. The analysis of the convergence and smoothness
properties of the subdivision process, especially at the extraordinary vertices, is based on
the eigenstructure of the subdivision matrix.

3.5 Convergence of subdivisions

In this section, we introduce the Reif ’s sufficient condition discussed by U. Reif in [30] for
the convergence of the subdivision algorithms.

Let CN
0 be an invariant neighborhood of a given control net C0 and SN be the associated

local subdivision map. We have the following chain of generated invariant neighborhoods

(3.5.1) CN
0 → CN

1 → · · · → CN
i →

with

(3.5.2) CN
i = SNC

N
i−1 = S2

NC
N
i−2 = · · · = Si

NC
N
0 ,

where SN is the subdivision matrix with a fixed size which determined by the vertex
matrix CN

0 . Moreover, Si
N = SNS

i−1
N = SNSN · · · · · SN is the matrix product. Iterative

application of the subdivision matrix generates a sequence of invariant neighborhoods. In
particular, if the generated invariant neighborhoods shrinking into one vertex, the local
subdivision is said to be convergent. That is

Definition 3.5.1. Let CN
0 be a given invariant neighborhood. The associated subdivision

map SN is said to be convergent if there exist a unique vertex v with

(3.5.3) lim
i→∞

vi
N = v

for any sequence of vertices vi
N ∈ CN

i where CN
i = S i

NCN
0 .

Equivalently, this also defined the convergence of subdivision matrix in the correspond-
ing matrix form.

Remark 3.5.2. Let

(3.5.4) C =
∪
i∈N

CN
i =

∪
i∈N

S i
NCN

0 .

The convergence implies the closure

(3.5.5) C̄ = C ∪ v

is a surface without gap.
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Definition 3.5.3. The surface C̄ is said to be tangent plane continuous, if the subdivision
map (or the associated subdivision matrix) converges and if there exist a unique limit n(v)
such that for any sequence of normal vectors

(3.5.6) lim
i→∞

n(vi
N) = n(v),

where vi
N ∈ CN

i .

Remark 3.5.4.

1. n(v) is a formal normal vector as the limit of the converged sequence since the
normal vector at v ∈ C̄ may not even exist.

2. Being tangent continuous dose not mean C1-continuous unless the projection of the
vertices to the limit tangent plane is injective, which means the local single sheeted.

Furthermore, the subdivision algorithm can be treated as a combination of local sub-
division maps over the corresponding invariant neighborhoods. The convergence of a sub-
division algorithm therefore can be represented by the convergence of the iterated local
subdivision maps as well as the associated subdivision matrices.

When no ambiguity is possible, we identity the invariant neighborhood CN
0 and the

associated local subdivision map SN with the corresponding vertices matrix CN
0 and the

subdivision matrix SN , respectively.
Now we start to introduce the Reif’s sufficient condition for the convergence of a given

subdivision algorithm. It is equivalent to consider the convergence of the subdivision
matrix since the global subdivision map is clipping into pieces of local subdivision maps
on “well-prepared” invariant neighborhoods.

Let CN
0 be the invariant neighborhood with S as the associated subdivision matrix.

Since each row of S sums up to 1, λ0 = 1 is always an eigenvalue of S and φ0 = (1, 1, ..., 1)t

is the corresponding eigenvector. Let λi be the eigenvalues of S and φi be the corresponding
eigenvector, where i ∈ ZK.

Theorem 3.5.5 ( [30]). A subdivision matrix S converged if 1 = λ0 > |λ1| ⩾ · · · ⩾ |λK−1|.

Proof. Let CN
0 be the corresponding invariant neighborhood. CN

0 can be expressed by the
eigenvectors of S as

(3.5.7) CN
0 =

K−1∑
i=0

φiai.

Since CN
0 sized of (K × 3), φi sized with (K × 1), then ai ∈ R3, i ∈ ZK.

Similarly, the subdivision sequence can be expressed by

(3.5.8) CN
m = Sm

NCN
0 =

K−1∑
i=0

λm
i φiai = (a0, a0, . . . , a0)

t + o(1).

Which means for any vm
N ∈ CN

m , we have

(3.5.9) vm
N = a0 + o(1).
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Let v = a0, therefore we have

(3.5.10) lim
m→∞

vm
N = v.

Suppose a0 is at the origin. Additionally and without loss of generality, we assume
λ1 = λ2 = λ > 0. Then we have

(3.5.11) CN
m = λm(φ1a1 + φ2a2 + o(

λ3

λ
)m).

Equation 3.5.11 shows that, up to a scaling factor λm, any vm
Nj

∈ CN
m with sufficient large

m, it can be express by the linear combination of a1 and a2, up to an infinite small term

(3.5.12)
vm
Nj

λm
= (φ1)ja1 + (φ2)ja2 + (o(

λ3

λ
)m),

where ( · )j means the element from j-th row.
This indicates that a1 and a2 spans a plane at the limit vertex and (φ1, φ2)j is the

coordinate of the j-th vertex in CN
m when we take projection to the tangent plane

(3.5.13) π : vm
Nj

7→ (φ1, φ2)j.

On the other hand, the subdivision can take place on the combinatorial mesh N and
generates a domain Ω by the same process we discussed in E3. Thus the corresponding
element vmNj

is equipped with a natural coordinate from Ω

(3.5.14) ι : vm
Nj

7→ vmNj
∈ Ω.

Define the transition function

(3.5.15)
Ψ := π ◦ ι−1 : Ω → Span{a1, a2}

vmNj
7→ (φ1, φ2)j

,

which is also called as the character map of the subdivision matrix. Then the smoothness
near the limit vertex can be represented by this map. That is, if Ψ is regular, then the
limit surface is tangent continuous at the limit vertex, In particular, the limit normal
vector n(v) is given as

(3.5.16) n(v) =
a1 × a2
|a1 × a2|

.

Moreover, if Ψ is injective, which infers the injective of the projection π, then the limit
surface is single sheeted. Therefore C1-continuous.

We end this section by Reif’s sufficient condition

Theorem 3.5.6 ( [30]). Let S be a subdivision matrix associated with the invariant neigh-
borhood CN

0 . If the eigenvalue of S satisfies

(3.5.17) 1 = |λ0| > |λ1| = |λ2| ⩾ · · · ⩾ |λK−1|

and the character map Ψ is regular and injective, then the limit surface generated by S is
C1-continuous.



CHAPTER 3. THE FUNDAMENTAL THEORY OF SUBDIVISION 21

Remark 3.5.7.

1. Theorem 3.5.6 provides a sufficient condition for a subdivision algorithm to generate
the C1-continuous surface.

2. Subdivision algorithm for a discrete surface introduced in Chapter 2 can not be
treated by this condition since the topological graph dose not equipped with coor-
dinate.



Chapter 4

Subdivision Algorithms for Trivalent
Graphs in E3

As we described in the previous section, there exist many types of subdivision schemes
with typical features and different valuable advantages. The subdivision zoo in the last
chapter introduces some “well-behavior” subdivision algorithms, where we mean by “be-
havior” the convergent properties. However, one should notice that, so far these subdi-
vision algorithms which produce C1(normal)-convergence or C2 (curvature)-convergence
even Ck-convergence, are all established by generating sequences of triangular or square
meshes. These specific characters allow for a local parameterization and reasonable com-
binatorial structures. Classical researches on the limit surfaces, especially the regularity
usually regarded in the parameterization near the extraordinary vertices, take plenty of
advantages from these standard textures. Furthermore, nowadays one can see a wide
exploitation of the triangulations and quadrilaterals in the area of computer graphics,
animation industries and engineering designs by the application of geometry processing.

In our work, we concentrate on a new discrete object with a special structure, that
is, the trivalent graph in three dimensional Euclidean space. The local trivalent structure
provides an intuitive description of the geometries and leads to several natural definitions
of geometric quantities which has already been introduced in Chapter 2. A discrete surface
under this setting can be described as a combination of finite copies of the basic unit τ =
(v, Ev) equipped with some proper connectivities. One direct observation of this definition
is that the discrete surface is no longer a two-dimensional polyhedra, however, a discrete
object (vertices) with an indication of interaction noted by edges. General discussions
on subdivision schemes in Chapter 3, which extends the area of regular faces to “filling”
the “gaps” by the iteration of subdivision processing, may not work effectively. Neither
nor the smoothness analysis of the limit surface, which depends on the parameterization
method (J. Stam [34]) of the combinatorial mesh with induced coordinate from R2.

In this chapter, we will introduce a specific subdivision algorithm for the trivalent
graphs which preserving the local trivalent structure and generating a sequence of con-
vergent subdivisions. In fact, an intutive understanding of the subdivision algorithms,
directly perceived through sense, is given as follows: generating a sequence of shrinking
rings.

In general, to construct a subdivision algorithm is to describe how to proceed with
the algorithm in each step. By the discussions in Chapter 3, each step is obtained by

22
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applying a set of operators on the corresponding invariant neighborhoods, which we call
“generating shrinking rings”. This set of operators from every step is consisting of two
types, the refinement operator and the smoothing operator. The refinement operator
always applying on the combinatorial mesh so that one can insert new elements with
corresponding combinatorial information. On the other hand, the smoothing operator
assigns the geometric positions to the newly inserted elements, mainly the set of new
vertices, and derive a finer control net from the previous one.

In our construction, we firstly introduce a specific refinement operator for topological
trivalent graphs, which is called as Goldberg-Coxeter construction provided by M. Deza
and M. Detour Sikirić [6]. Instead of subdividing the trivalent graph on a plane directly,
they consider the subdivision of the dual graph, which turns out to be a triangular mesh.
By edge splitting of each triangle, one can obtain a finer triangular mesh whose dual is
the refinement of the initial trivalent graph. It should be noted that this construction
can be applied to the planar graph only. In our case, we use it ring-wise in the process.
Secondly, we define the smoothing operators for each ring and give the geometric positions
of the newly inserted vertices. In [13], the smoothing operators for each step of subdivision
algorithm are given in a global view, that is, by the standard realization (M. Kotani and
T. Sunada [16]) of the entire subdivided trivalent graph. Even though a sequence of
subdivided discrete surfaces can be produced by this method, the relations between two
adjacent steps are not explicit. Therefore the convergent properties are hard to analyzed.
In order to improve their method, we provide the smoothing operator by solving a Dirichlet
problem with the vertices in each ring of the previous surface as the boundary condition
and find the least energy configuration of the corresponding generated ring.

4.1 Goldberg-Coxeter construction of trivalent graphs

The Goldberg-Coxeter construction (GC-construction) is a way to subdivide a planar
trivalent graph defined by M. Deza and M. Detour Sikirić [6]. Since the duality relationship
between the basic unit and the triangle, this construction provides a successful subdivision
method which preserves the trivalent structure.

Definition 4.1.1 (Goldberg-Coxeter construction). Let X = (V,E) be a planar trivalent
graph. The graph GC(X) is built in the following steps (see Figure 4.1).

1. Take the dual graph X∗ of X. Since X is trivalent, X∗ is a triangulation, namely, a
plane graph whose faces are all triangles.

2. Every triangle in X∗ is subdivided into another set of faces. If we obtain a face which
are not triangle, then it can be glued with other neighboring non-triangle faces to
form triangles.

3. By duality, the triangulation of (2) is transformed into GC(X).

Now we describe this construction in the view of subdivision algorithm. That is, to
generate the sequence of shrinking rings, we need to apply the GC-construction on each
ring structure of the given topological trivalent graph. To be more precise, let X =
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: the GC-construction of the hexagonal lattice: For a given trivalent graph (a),
its dual graph (c) is constructed as shown in (b). The subdivision of (c) is obtained as (d)
and its dual graph, (f) is constructed as shown in (e).

(V,E,R) be a trivalent graph in Chapter 2, for an n-ring r = {v0, v1, ..., vn−1} ∈ R, we
define the augment n-ring r̃ by

(4.1.1) r̃ := {τ0, τ1, ..., τn−1}

where τi = (vi, Evi) refers to the basic unit centered at vi (see Figure 4.2(a)).
After an individual step of applying the GC-construction on a fixed augment n-ring r̃,

the edges of r are replaced by 6-rings thus we obtained a small n-ring with n 6-rings as its
one-neighborhood. Iteration of the same processing generates the sequences of shrinking
rings corresponding to each initial ring. Taking a global version, we finally have a sequence
of topological subdivisions Xi of X ring-wisely.

Remark 4.1.2.

1. In the present thesis, only GC2,0 (GC-construction of type (2, 0)) is utilized to subdi-
vide a topological graph and denoted by GC for simplicity. For more general theory
on GC-constructions, please see [6].

2. Since individual edge is replaced by 6-ring after one step of subdivision. Iterated
GC-constructions only enlarge the number of 6-rings of the trivalent graph. It does
not change the number of the rings in other size. More precisely, on a fixed augment
n-ring r̃, we obtain an n-ring r′ in it with n 6-rings as its one-neighborhood after
one step of GC-construction. (see Figure 4.2).

3. The limit metric on the domain is not the Euclidean metric but a similar metric
studied as the tangent cone at the infinity in [15]. In the present thesis, we concern
the metric as the induced metric through the realizations from E3.
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(a) (b) (c)

Figure 4.2: Application of the GC-construction to an augment 8-ring (a) (bold line). (b)
shows the subdivision process.The result as is shown at (c) is a smaller 8-ring and eight
6-rings as its one-neighborhood (bold line).

4.2 Invariant neighborhood and subdivision matrix

As we mentioned in Chapter 3, the subdivision algorithm locally effects on a given con-
trol net. That is, it can be regarded as a combination of local subdivision maps on the
corresponding invariant neighborhoods. With the GC-construction as the refinement op-
erator, we are now trying to define a corresponding smoothing operator, which assigns the
geometric position to the generated shrinking rings. Since GC-construction is applied on
a topological graph ring-wisely, the corresponding smoothing operator should follow the
same procedure, which means each invariant neighborhood should take the individual ring
as its central part.

Given a discrete surface Φ: X → E3 with M = Φ(X). Let

(4.2.1) r = {v0, v1, ..., vn−1}

be an n-ring in R and

(4.2.2) r′ = {v′0, v′1, ..., v′n−1}

be the generated n-ring of r after one step of the GC-construction.
We assign the geometry positions for the generated ring. The realization Φ′ of r′ in E3

is given by solving a Dirichlet problem with V (r) as the boundary condition and find the
least energy of the augment generated n-ring r̃′ (see Figure 4.3), that is,

(4.2.3) ED(Φ
′(r̃′)) = min{Φ: r′ → E3}.

Let r and r′ be the corresponding images in E3, When no ambiguity is possible, we
identified r and r′ with their matrix forms respectively. That is,

(4.2.4) r = (v0,v1, ...,vn−1)
t ∈ M(n, 3),

(4.2.5) r′ = (v′
0,v

′
1, ...,v

′
n−1)

t ∈ M(n, 3).

By the discussion in Chapter 2, the requirement of minimizing of Dirichlet energy equiv-
alent to the balance condition at each newly inserted vertex. That is,

(4.2.6) −v′
i−1 + 3v′

i − v′
i+1 = vi, for i ∈ Zn.
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(a) (b)

Figure 4.3: (a) shows r (dashed line) and r′ (bold line). (b) shows the realization of r
(dash line) and r′ (bold line) in E3. (Corresponding to the area in shadow.)

Thus the linear relation between r and r′ is given by

(4.2.7)


v′
0

v′
1

v′
2

v′
3

· · ·
v′
n−1

 =



3 −1 0 . . . 0 −1
−1 3 −1 . . . 0 0
0 −1 3 . . . 0 0
0 0 −1 . . . 0 0

. . .
0 0 0 . . . 3 −1
−1 0 0 . . . −1 3



−1
v0

v1

v2

v3

· · ·
vn−1

 .

In particular the corresponding subdivision matrix S(n) of the fixed n-ring is given as

(4.2.8) S(n) :=



3 −1 0 . . . 0 −1
−1 3 −1 . . . 0 0
0 −1 3 . . . 0 0
0 0 −1 . . . 0 0

. . .
0 0 0 . . . 3 −1
−1 0 0 . . . −1 3



−1

∈ M(n),

and the eigenvalues of S(n) are

(4.2.9) λk(n) =
1

1 + 4 sin2(kπ/n)
, k ∈ Zn.

Therefore by the discussion in Chapter 3, this local subdivision map corresponding to
n-ring as the invariant neighborhood is converged since

(4.2.10) 1 = λ0(n) > λ1(n) ⩾ λ2(n) ⩾ · · · ⩾ λn−1(n).

4.3 GC-subdivision of discrete surfaces

Now we begin to construct a subdivision algorithm based on the subdivision matrices we
defined on each ring above. In [37], we use the matrices directly for each ring and estab-
lished an interpolate subdivision algorithm. The convergence seems obvious, however, it
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generates a large number of singularities in the numerical experiments in the last Chapter.
We improve this original algorithm by modifications on specific vertices and construct the
modified subdivision algorithm.

LetX0 = (V0, E0, R0) be a topological trivalent graph andXi+1 be the GC-construction
of Xi, i.e., Xi+1 := GC(Xi), for any i ∈ N.

Assume we have already obtained

(4.3.1) Φi : Xi → E3 with Mi = Φ(Xi),

and define

(4.3.2) Φ′
i+1 : Xi+1 → E3 with M′

i+1 = Φ′(Xi+1)

as a minimizing map of the Dirichlet energy from Xi+1 with Mi = Φi(Xi) as the boundary
condition, namely it satisfies

1. Φ′
i+1(Vi) = Φi(Vi),

2. Φ′
i+1 takes the minimum of the Dirichlet energy in local, i.e., for any fixed ring

ri ∈ Ri and the associated generated ring ri+1 ∈ Ri+1,

(4.3.3) ED(Φ
′
i+1(r̃

i+1)) = min{ED(Φ
′ : r̃i+1 → E3)}.

The vertices set V ′
i+1 of M′

i+1 is a union of two disjoined sets, i.e., V ′
i+1 = Vi

∪
V i
i+1, where

Vi = Φi(Vi) and V i
i+1 is the set of solution vertices of the boundary problem. However,

the connectivity of the vertices is reconstructed by the corresponding relations in Xi+1.
Define a projection

(4.3.4) πi+1 : M′
i+1 → E3

with Mi+1 as the image. For any v ∈ M′
i+1

(4.3.5) πi+1(v) =

{
v v ∈ V i

i+1

barycenter of its neighbors v ∈ Vi

.

Finally, let

(4.3.6) Φi+1 = πi+1 ◦ Φ′
i+1 : Xi+1 → E3, with Mi+1 = Φ(Xi+1).

Then we construct a subdivision algorithm which generates a sequence of discrete surfaces
{Mi}i by the iterative processing shown as the following diagram

· · ·

Mi

πi
? GC- M′

i+1

Mi+1

πi+1
? GC- · · ·
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Remark 4.3.1.

1. Since the subdivision algorithm is established by modification of the original method
in [37], the invariant neighborhoods and corresponding subdivision matrices are also
changed. We address a proof of the convergence based on the analysis of Dirichlet
energy in next chapter.

2. The comparison of these two algorithms will list in the numerical experiments in the
last chapter.



Chapter 5

Evaluation and estimate

In classical subdivision theory, discussions of the regularity of the limit surface often re-
quire the existence of smooth parameterization of this limit. The locality of subdivision
algorithms suggests that the processes reproduce the initial control nets by applying par-
ticular subdivision matrices on corresponding invariant neighborhoods iteratively. Thus
the spectrum of the subdivision matrices indicate the convergent properties of the global
subdivision algorithms. In the polyhedral mesh case, for example, the combinatorial mesh
of a triangular mesh can be treated as a triangulation of a parameterized domain in R2,
which can also provide a parameterization of its image as the discrete surface in R3. Most
of the subdivision algorithms take advantages from these specific structures.

In our work, however, the discrete surface is given as a realization of a topological
trivalent graph. One of the fundamental problems is how to discuss the convergence and
the regularity of the subdivision algorithm without parameterizations of the combinatorial
mesh. In this chapter, we consider this problem in the view of the Dirichlet energy and
provide proof of the convergence of the modified subdivision algorithm by discussing the
local behavior of the Dirichlet energy. Furthermore, we discuss the limit of the subdivision
sequence and prove the monotonicity of the Dirichlet energy which is determined by the
topology of the initial discrete surface.

5.1 Convergence of the modified subdivision algorithm

Individual step of a given subdivision algorithm is applied on a particular ring and its
neighborhood. We firstly introduce the discussion on the monotonicity of the Dirichlet
energy of adjacent two steps from the original subdivision method in [37].

Proposition 5.1.1 ( [37]). For any n-ring r and the associated n-ring r′ which generated
by one step of the GC-construction, there exists a constant number λ(n) < 1 such that

(5.1.1) ED(Φ
′(r̃′)) ≤ λ(n)ED(Φ(r)),

where r̃′ is the augmented n-ring of r′.

Proof. Let r and r′ be the corresponding images of r and r′ in E3. When no ambiguity is
possible, we identified r and r′ with their matrix forms respectively. That is,

(5.1.2) r = (v0,v1, ...,vn−1)
t ∈ M(n, 3)

29
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(5.1.3) r′ = (v′
0,v

′
1, ...,v

′
n−1)

t ∈ M(n, 3)

where v0 and v′
0 are connected by a single edge.

Then Dirichlet energy of r and r̃′ can be represented as the following, respectively

(5.1.4) ED(Φ
′(r̃′)) =

n−1∑
i=0

|vi − v′
i|2 +

n−1∑
i=0

|v′
i − v′

i+1|2 = ∥r − r′∥2 + ∥r′ − Tr′∥2,

(5.1.5) ED(Φ(r)) =
n−1∑
i=0

|vi − vi+1|2 = ∥r − Tr∥2,

where | · | is the vector norm, ∥ · ∥ is the Hilbert-Schmidt norm of the square matrix and
T is the matrix operator that exchanges the order of the rows

(5.1.6) T :=

(
O In−1

1 OT

)
∈ M(n).

The the requirement of minimizing the Dirichlet energy equivalent to the balancing con-
dition at each inserted vertex, in fact

(5.1.7)
∂ED(Φ

′(r̃′))

∂v′
i

= 0, for i ∈ Zn,

which is

(5.1.8) −v′
i−1 + 3v′

i − v′
i+1 = vi, for i ∈ Zn.

Then we obtain the linear relationship between r and the associated r′ as following

(5.1.9) r′ = S(n)r,

where

(5.1.10) S(n) := (3In − T − T t)−1 =



3 −1 0 . . . 0 −1
−1 3 −1 . . . 0 0
0 −1 3 . . . 0 0
0 0 −1 . . . 0 0

. . .
0 0 0 . . . 3 −1
−1 0 0 . . . −1 3



−1

∈ M(n),

and In is the identity matrix of size n.
Direct computation shows the eigenvalue of S(n) as following

(5.1.11) λk(n) =
1

1 + 4 sin2(kπ/n)
, k ∈ Zn.

On the other hand, since S(n) is symmetric, we have the following equation

(5.1.12) S(n)(r − Tr) = S(n)r − S(n)Tr = S(n)r − TS(n)r = r′ − Tr′.
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Here we claim that

(5.1.13) r − Tr ⊥ ϕ0, r′ − Tr′ ⊥ ϕ0,

where φ0 = (1, . . . , 1)T is the eigenvector of λ0 = 1.
In fact, if we let r = c0φ0 + r⊥, where r⊥ ⊥ φ0. By noticing that Tφ0 = φ0, we have

(5.1.14)

⟨r − Tr, φ0⟩ = ⟨r⊥ − Tr⊥, φ0⟩ = ⟨r⊥, φ0⟩ − ⟨Tr⊥, φ0⟩
= −⟨Tr⊥, Tφ0⟩ = −T ⟨r⊥, φ0⟩
= 0.

Similarly, we can also prove r′ − Tr′ ⊥ φ0 by noticing the fact that

(5.1.15) S(n)φ0 = λ0(n)φ0 = φ0.

Let σ̃(S(n)) be the sub-dominate eigenvalue of S(n), by (5.1.13) we have

(5.1.16) ∥r′ − Tr′∥2 ≤ σ̃(S(n))2∥r − Tr∥2 = λ2
1(n)∥r − Tr∥2.

Similarly,

(5.1.17) ∥r − r′∥2 ≤ λ1(n)(1− λ1(n))∥r − Tr∥2.

Therefore

∥r′ − Tr′∥2 + ∥r − r∥2 ≤ λ2
1(n)∥r − Tr∥2 + λ1(n)(1− λ1(n))∥r − Tr∥2

= λ1(n)∥r − Tr∥2,

where λ1(n) = 1/(1 + 4 sin2(π/n)) < 1 as desired.

By using the monotone decreasing of the local Dirichlet energy, we can prove the
convergence of modified subdivision alogrithm.

Theorem 5.1.2 ( [14]). The sequence of discrete surfaces {Mi}∞i=0 that are constructed
by the modified GC-subdivisions forms a Cauchy sequence in the Hausdorff topology.

Proof. Let ri be a fixed n-ring in Ri, r
i+1 be the associated generated n-ring in Ri+1. Now

we consider the Hausdorff distance dH of these rings

(5.1.18)

dH(Φi(r
i),Φ′

i+1(r
i+1) ≤

∑
e∈E(ri+1)

|Φ′
i+1(e)|

≤
√

2n(ED(Φ′
i+1(r

i+1)) ≤ E0(n)

√
λi+1
1 (n),

where E0(n) :=
√
2nED(Φ0(r0)) is constant which determined by the initial discrete sur-

face Φ0 : X0 → E3 with M0 = Φ(X0) and λ1(n) = 1/(1 + 4 sin2(π/n)). Since each face
of a fixed trivalent graph has finite many of edges, that is, n is bounded from above. Let
λ1 = max{λ1(n)}, E = max{E0(n)}, we have

(5.1.19) dH(Mi,M′
i+1) = sup

ri∈Ri

{dH(Φi(r
i),Φ′

i+1(r
i+1)} ≤ E

√
λi+1
1 .
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On the other hand, take v ∈ ri, also we have v ∈ Vi. Since πi+1(v) is the barycenter of
its nearest neighbors, we have

(5.1.20) dH(v, πi+1(v)) < sup
ri∈Ri

{dH(Φi(r
i),Φ′

i+1(r
i+1)} = dH(Mi,M′

i+1).

That is,

(5.1.21) dH(Mi,Mi+1) = dH(Mi, πi+1(M′
i+1)) = sup

v∈Vi

{dH(v, πi+1(v))} ≤ E

√
λi+1
1 .

Thus for any ε > 0, let N = [2 log1/λ1
(Λ/ε)]. Then for any i, j > N (j > i), we have

dH(Mi,Mj) ≤ dH(Mi,Mi+1) + dH(Mi+1,Mi+2) + · · ·+ dH(Mj−1,Mj)

≤ E
(√

λi+1
1 +

√
λi+2
1 + · · ·+

√
λj
1

)
< ΛE

√
λi+1
1

< ε,

where Λ = (1 +
√
λ1)/(1 − λ1) is a constant determined by the initial discrete surface as

well.

5.2 The limit set of the subdivision sequence

We address a proof of the convergence of the modified subdivision algorithm through the
view of Dirichlet energy. In this section, we discuss the limit space.

Let M0 = {V0, E0,R0} be a trivalent graph in E3 and {Mi}∞i=0 = {Vi, Ei,Ri}∞i=0 be the
sequence constructed by the modified GC-subdivision. The limit set M∞ of this sequence
in the Hausdorff topology is divided into three types:

M∞ = MR ∪MV ∪MS .

The first two come from accumulating vertices of the shrinking invariant neighborhoods
and the third one emerges as a global accumulation.

More precisely, MR is the set of accumulating vertices associated with each ring in
Mi. We have the following proposition

Proposition 5.2.1.

(5.2.1) MR :=
∪
i

{ the barycenters of all rings ri ∈ Mi}.

Lemma 5.2.2. For any n-ring ri ∈ Ri, let r
i+1 = S(n) · ri. Then we have

ri+1 ⊂ conv(ri),

where S(n) is the subdivision matrix and conv( · ) means the convex hull of the corre-
sponding object · .
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Proof. Let S(n) = (alm)lm (l, m ∈ Zn), r
i = (vi

0,v
i
1, · · · ,vi

n−1)
t. Noticed that S(n) ·1 = 1,

then for any l

(5.2.2)
n−1∑
m=0

almv
i
m = vi+1

l ,

where

(5.2.3)
n−1∑
m=0

alm = 1, alm ≥ 0.

That is,
ri+1 ⊂ conv(ri).

It also shows that ri and ri+1 share one same barycenter rb. Furthermore, since
r(i+k) = Sk

n · ri, by Proposition 5.1.1

(5.2.4) ED(r
(i+k)) < λk

1 · ED(r
i) → 0 as k → ∞,

which means ri degenerates to a single vertex as i goes to ∞. We call this point r∞ as
the accumulate point associated with ri. Easy to see for any k, r∞ and rb are lying in the
same convex hull of r(i+k). Therefore r∞ = rb complete the proof of Proposition 5.2.1.

A corollary direct from the Proposition 5.2.1 as a consequence.

Corollary 5.2.3. Any fixed n-ring of the discrete surface will converge to its barycenter
by the GC-subdivision. Further more, the convergence rate varies inversely with n.

On the other hand, MV is the set of all inserted vertices. The convergence to a vertex in
MV is pathological, although we have the energy monotonicity formula (Theorem 5.3.2).
It seems the balancing condition plays an important role.

For example, when we take the atomic configuration of the fullerene C60, a polygonal
graph on the sphere, which does not satisfy the balancing condition, we obtain a patho-
logical shape as the limit of its subdivisions. It seems the modified method gives a better
convergent than the original method in [37]. For numerical calculations for C60, Mackay
crystal of type P and their subdivision, see Chapter 6.

So far, for a general discrete surface M, we know little about the set MS of the limit
of the subdivision sequence which constructed by the GC-subdivision. Under a natural
condition, however, we prove MS is empty.

We introduce a definition of a specific discrete surface as following: M is said to be
un-branched if each edge is shared by two rings. One of the examples of branched discrete
surfaces is discussed in [14].

Theorem 5.2.4 ( [14]). Let M0 = {V0, E0,R0} be a be a trivalent graph in E3 satisfies

1. Each edge of M0 is shared by two rings at most.

2. Any two rings intersect at one edge or empty.
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3. For any two n-rings ri and rj ∈ R0, the convex hull conv(N (ri)) of the one-
neighborhood N (ri) of ri and the convex hull conv(N (rj)) of the one-neighborhood
N (rj) of rj intersect when either ri and rj share a common edge or there is a ring
ri ⋄ rj as the common one-neighbor of ri and rj.

Then M∞ = MV ∪MR.

We prove Theorem 5.2.4 by the followings. An one-neighborhood of an n-ring r is a
set

N (r) = {r, r1, r2, · · · , rn}
of r and its one-neighbor rings rα, α ∈ {1, 2, . . . , n}. We firstly consider the following
Lemma

Lemma 5.2.5. ∪
ri+1∈Ri+1

conv(N (ri+1)) ⊂
∪

ri∈Ri

conv(N (ri)),

Proof. Noticing that in one individual subdividing process, we have two kinds of rings.
One is the generated rings which obtained as a solution r′ of the Dirichlet problem with
the boundary condition r by the equation (5.1.9). That is

r′ = S · r,

and the one-neighborhood of r′ is given as

N (r′) = {r′, r′ ⋄ r′
1, · · · , r′ ⋄ r′

n},

where r′ = S ·r and r′
α = S · (rα) (α ∈ {1, · · ·n}) although we use the same S to show the

linear relations, however, the size of S is depending on the size of the ring that applied on.
The other one is the common one-neighboring 6-ring of two rings r′ and r′

α (α ∈ {1, · · ·n}).
We denote it as r′ ⋄ r′

α. Since we identity each ring with the set of its vertices, we have

r′ ⋄ r′
α ⊂ r′ ∪ r′

α ∪ r = S · r ∪ S · rα ∪ π(r),

and the one-neighborhood of r′ ⋄ r′
α is given as

N (r′ ⋄ r′
α) = {r′ ⋄ r′

α, r
′, r′

α, r
′ ⋄ r′

α−1, r
′ ⋄ r′

α+1, r
′
α ⋄ r′

α−1, r
′
α ⋄ r′

α+1}.

Notice for a given R ∈ Ri+1, there is a face r ∈ Ri such that R ∈ N (r). More
precisely R is either a solution ring r′ = S · r or a common one-neighboring ring r′ ⋄ r′

α.
In the case that R = r′ = S · r in Ri+1 with r ∈ Ri, we have conv(N (R)) ⊂

conv(N (r)). Since we have the relation

N (r)) ⊂ S · r
∪

∪αS · rα
∪

π(r),

where π is the action of taking the barycenter of the three nearest neighboring vertices.
They are all linear combination of elements of N (r), and this relation yields the claim.

In the case that R = r′ ⋄ r′
α in Mi+1 with r ∈ Mi and an one-neighboring ring rα of

r,
conv(N (R)) ⊂ conv(N (r)) ∪ conv(N (rα)).
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(a) (b) (c)

Figure 5.1: (a) N (r) = {r, r1, . . . , rn}, (b) the gray face and light-gray faces consists
N (r′), (c) the gray face and light-gray faces consistsN (r′⋄r′

α) (♠ refers to the projection).

We also have the relation

N (R) ⊂ π(r) ∪ π(rα) ∪ S · r ∪ S · rα ∪ S · rα−1 ∪ S · rα+1,

where π is the action of taking the barycenter of the three nearest neighboring vertices,
and here we use the vertices of N (rα) only. Therefore elements in N (R) are again all
linear combination of elements of N (r) and N (rα).

Combining these two cases we have∪
ri+1∈Ri+1

conv(N (ri+1)) ⊂
∪

ri∈Ri

conv(N (ri)).

We define
Ci :=

∪
r∈Ri

conv(N (r)).

The lemma claims
M∞ ⊂ · · · ⊂ Ci+1 ⊂ Ci ⊂ · · · C0.

In particular, for any v∞ ∈ M∞, assume that v∞ /∈ MV and take a sequence of
vertices vk such that limvk = v∞. Since r∞ /∈ MV , we assume no two vk and vj are in
the same stage, i.e., there is a unique vi ∈ Ri for every i without loss of generality.

Let vi ∈ ri and vi+1 ∈ ri+1, then we have

ri+1 = S · ri

or
ri+1 = S · ri ⋄ S · ri

α

where ri and ri
α are two neighbored rings in Ri. Since we assume two convex hulls of

one-neighborhoods N (r) and N (rα) intersect only when r and rα adjacent or there is a
common one-neighboring ring r ⋄ rα.
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In the latter case, vi+1 ∈ ri∩ri
α which contradicts the choice of the sequence. Therefore

vi+1 ∈ S · ri with vi ∈ ri.

That implies v∞ is the accumulate point of a ring, that is, v∞ ∈ MR, and complete the
proof of Theorem 5.2.4.

5.3 Monotonicity of the Dirichlet energy

Let {Mi}∞i be the sequence of discrete surfaces with Mi = (Vi, Ei,Ri) as the discrete
surface of the i-th step constructed from an un-branched initial discrete surface M0. Now
we show the monotonicity of the Dirichlet energy.

For a given n-ring, individual step of the GC-construction of the topological trivalent
graph generates a smaller n-ring and reconstructs the neighbor combination such that each
edge from the previous graph is replaced by a 6-ring. Therefore even the size of the ring
set keep enlarging when the subdivision process applied iterated, however, the number
of n-ring with n ̸= 6 remains constant. This observation provides the core idea for the
following proof.

Let Ri be the set of rings from the i-th step of construction. Ri is a union of three
disjoint sets of rings, that is

(5.3.1) Ri = Rn<6
i

∪
R=6

i

∪
Rn>6

i ,

where n denoted as the size of the rings in each corresponding set. That is, Rn=6
i is the

set of 6-rings in Mi and Rn<6
i and Rn>6

i are the sets of n-rings in Mi with n < 6 and
n > 6, respectively. Since the initial discrete surface is finite, there exists an N -ring with
the largest size N . The GC-subdivision enlarges the size of 6-rings only, we have

(5.3.2) ♯Rn<6
i = ♯Rn<6

0 , ♯Rn>6
i = ♯Rn>6

0 .

Lemma 5.3.1. Let r be an n-ring in Mi and r′ be the associated n-ring in Mi+1 as a
solution of the Dirichlet problem with the boundary r.

(5.3.3) ED(r
′) ≤ λ2

1(n)ED(r),

where λ2
1(n) is the sub-dominaite eigenvalue of the subdivision matrix S(n).

Proof. Since the property of GC-subdivision, r′ = S(n) · r. The assertion is obvious.

Theorem 5.3.2 (Monotonicity of the Dirichlet energy [14]). Let {Mi}∞i be the sequence
of discrete surfaces constructed from a finite discrete surface M0 which at least has one
n-ring with n ̸= 6. The Dirichlet energy of Mi is bounded from above by the constant
independent of n. Moreover, it is monotone decreasing after enough steps if there is no
n-ring with n > 6, conversely, it is monotone increasing after enough steps if there is no
n-ring with n < 6.
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Proof. By the definition of Dirichlet energy, we have

(5.3.4) ED(Mi) =
∑
e∈Ei

|e|2 = 1

2

∑
ri∈Ri

ED(r
i).

For any ri ∈ Ri, let ri+1 be the associated generated n-ring, i.e., the solution of the
Dirichlet problem with the boundary ri. Then

(5.3.5) ED(Mi+1) =
∑

ri+1=S(n)·ri,ri∈Ri

ED(r̃
i+1),

where r̃i+1 is the augmented ring of ri+1. Now we compute the Dirichlet energy of Mi+1,

(5.3.6)

ED(Mi+1) =
∑

ri+1=S(n)·ri,ri∈Ri

ED(r̃
i+1)

≤
∑
ri∈Ri

λ1(n)ED(r
i)

≤ 1

2

∑
ri∈Rn<6

i

ED(r
i) +

1

2

∑
ri∈Rn=6

i

ED(r
i) + λ1(N)

∑
ri∈Rn>6

i

ED(r
i)

=
1

2

∑
ri∈Ri

ED(r
i) +

(
λ1(N)− 1

2

) ∑
ri∈Rn>6

i

ED(r
i).

The first inequality is due to (5.1.1) and the second estimate is due to the inequality

(5.3.7)

λ1(n) < 1/2 for n < 6,

λ1(6) = 1/2,

λ1(n) < λ1(N) for 6 < n < N.

The first term of the left hand is equal to the ED(Mi). Since the number of the rings
in Rn>6

i is constant independent of i, the second term bounded. Let C be the upper
boundary of the sum of the Dirichlet energy of the rings in Rn>6

i , by Lemma 5.3.1, we
finally obtain

(5.3.8) ED(Mi+1) ≤ ED(Mi) +

(
λ1(N)− 1

2

)
λ2i
1 (N)C.

When there are no n-rings with n > 6, then the inequality is strict for large enough i The
monotone increasing can be proved by the similar argument.



Chapter 6

Numerical Experiments and
Applications

In this chapter, we provide the results of numerical experiments on both C60 and the
Mackay crystal (Figure 6.1). Some of the results are included in the work collaborate
with M. Kotani, H. Naito in [14]. In the numerical experiments, both the original GC-
subdivision introduced in [37] and the modified method in Chapter 4 are discussed.

(a) (b)

Figure 6.1: (a) C60 and (b) Mackay crystal of type P.

The C60 is the atomic structure of the famous fullerene. Each atom of the C60 has three
bonds so that we can apply our method to study its subdivisions. Furthermore, the C60 is
a carbon network on the sphere, which makes it a “positive curved” discrete surface. Also,
each vertex of the C60 does not satisfy the balancing condition. These specific structures
make the C60 a good example in our discrete surface theory.

On the other hand, the Mackay crystal is another carbon network. It is introduced
by Mackay and Terrones [20] and studied as a triply periodic discrete minimal surface
(Schwarz P surface). Opposite to the case of C60, the Mackay crystal is a “negative
curved’ discrete surface and each of the vertices satisfies the balancing condition. In the
work of M. Kotani, H. Naito and T, Omori [13], the Mackay crystal has been studied
as a harmonic realization. They construct its subdivisions, however, do not given an
explanation on the “topological defects” of the limit space. We provide a reason for this
in the following.
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1 3 6

Original
method
for C60

Modified
method
for C60

Original
method
for Mackay

Modified
method
for Mackay

Figure 6.2: Numerical computations of both the original and modified subdivision methods
of C60 and Mackay crystal (the first, third, and sixth step). The color of each vertex is
represented for the value of the corresponding height function.(Discussed in Chapter 2).

Figure 6.2 shows the results of numerical computations on the subdivisions of C60 and
Mackay crystal. Both of the original subdivision method and the modified subdivision
method are convergent. The first row of this figure shows that the vertices of the C60

and its subdivisions are performed as singularities when we apply the original subdivision
method. However, the subdivisions of Mackay crystal generated by the original method
produce few singularities (second row). This observation makes us consider the importance
of the balancing condition. Thus we modify the original subdivision methods so that newly
inserted vertices at each step satisfy the balancing conditions. The modified method
provides a better result on the C60 also, a similar result on the Mackay crystal, as shown
in the second row of this figure. On the other hand, in the third step of subdivisions of the
Mackay crystal, one can easily find some “defects” at the boundaries which also appeared
in [13]. These “defects” occurred at the accumulate points of the 8-rings. By Corollary
5.2.3, we can see the topological defects come from the difference of the convergent rates,
which vary inversely with the size of the rings.
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1 3 6

Original
method
for C60

Modified
method
for C60

Original
method
for Mackay

Modified
method
for Mackay

Figure 6.3: Dirichlet energy of the subdivisions (the first, third, and sixth step). a) In the
case of C60, local energies around 5-rings are less than them around 6-rings while in the
case of Mackay crystal, them around 8-rings are greater than them around 6-rings. b) In
both cases, local energies around n-rings are greater than them around m-rings, if n > m.
c) This observation is also confirmed in Figure 6.4, and supported by the calculations in
Section 5.3.
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C60 Mackay crystal

Figure 6.4: The Dirichlet energy of subdivisions of C60 and Mackay crystal. Dashed line:
original subdivisions. Solid line: modified subdivisions.
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Figure 6.3 and Figure 6.4 shows the Dirichlet energy of the subdivision sequences. We
can see the Dirichlet energy of the subdivisions of C60 disperses at the 5-rings. However, the
Dirichlet energy of the Mackay crystal concentrate at the 8-rings. By the Theorem 5.3.2,
C60 has 6-rings and 5-rings then its energy monotonically decreases, while the Mackay has
6-rings and 8-rings so that the Dirichlet energy monotonically increases but bounded from
above.
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