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Abstract

Hydraulic jumps are characterized by flows with an abrupt change in the fluid height, as seen

in tidal basins, rivers, and dam spillways. They also occur on smaller scales and we have developed

a small-scale table top experiment consisting of an impinging fluid jet impacting a horizontal plate

to systematically study the geometry of the hydraulic jump. Striking polygonal shapes are observed

which depend upon the flow of the impinging jet, fluid properties, weir geometry and the flow

history. These steady shapes are reflective of a balance of inertial, pressure, and surface tension

forces. The effect of weir height and geometry on the modal behavior and jump geometry is studied.

Two experimental protocols are introduced that illustrate the effect of flow history and hysteresis

in the formation of polygonal hydraulic jumps. This highlights the nonlinearity inherent in mode

selection. We are able to collapse all of our experimental data with the Weber number using the

downstream fluid height as the characteristic length scale. The critical wavelength is shown to be

approximately constant which strongly implies the mode selection mechanism is related to Plateau-

Rayleigh breakup. Our results highlight the complex multiphysics involved in this phenomena.
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Chapter 1

Introduction

Hydraulic jumps are seen in a multitude of scales ranging from tidal basins [43] to kitchen

sinks [54] and are characterized by a transition from a fast moving shallow flow to a slow moving deep

flow. The transition between the two regimes is referred to as a hydraulic jump. The Froude number

Fr = V/
√
gh, which is defined as the ratio of inertia to gravitational forces is used to characterize

the phenomena. Upstream of the jump the inertia forces are dominant so that Fr > 1 and the

flow is said to be supercritical whereas downstream gravitational forces dominate, Fr < 1, and

the flow is subcritical, as shown in Figure 1.1. The decrease in velocity causes an adverse pressure

gradient to develop causing flow separation which results in a sudden jump in fluid height in order

to conserve mass. The hydraulic jump can be laminar or turbulent and this depends upon both

the working fluid and far-field boundary conditions. For example, Figure 1.2 shows that a circular

hydraulic jump can be turbulent with water but laminar with glycerine. The presence of a geometric

obstruction or weir in the far field downstream region is also important and will be discussed later.

On large scales the vortexes under the jump are useful by hindering erosion effects downstream of

dam spillways and can also remove air entrapped in water supply and sewage lines. Hydraulic jumps

are also useful in irrigation systems because of the deep slow flow in the downstream region. On

smaller scales understanding the behavior of hydraulic jumps can be useful in coating flows, cooling

by an impinging jet, chemical mixing, and other thin film applications [10, 57].

The typical flow structures for laminar jumps are illustrated in Figure 1.3. The simplest flow

occurs in the Type 1 jump, Figure 1.3a, and consists of single change in fluid height accompanied

by a vortex in the downstream region. A Type 1 jump using glycerol as the liquid is shown in
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v₁

v₂

Hydraulic Jump subcri"cal

supercri"cal

h₁

h₂

Figure 1.1: Schematic of planar hydraulic jump showing the transition from supercritical to subcrit-
ical flow.

Figure 1.2b. As the height in the subcritical region increases, there is an accompanying change in

flow structure to a Type 2a jump, shown in Figure 1.3b, in which there remains a single change

in fluid height and a secondary recirculation vortex develops. The Type 2b jump, Figure 1.3c, is

characterized by two changes in fluid height and is sometimes referred to as a double jump [17].

(a) Turbulent circular hydraulic jump

1 cm

(b) Laminar circular hydraulic jump

Figure 1.2: Typical hydraulic jumps can be (a) turbulent or (b) laminar.

Figure 1.4 provides a schematic of the relevant forces involved for a laminar Type 1 hydraulic

jump. The jump interface has a radius of curvature and surface tension forces Fγ directed towards the

center of curvature while the vortex introduces a force Fω towards the fluid interface. Gravitational

forces Fg are directed upstream while the upstream and downstream velocities give rise to inertia

forces Fv1 and Fv2 , respectively. Lastly, viscous forces Fη resist flow near the wall and at the rollers

where flow stretching occurs.

2



(a) Type 1 (b) Type 2a (c) Type 2b

Figure 1.3: Schematic of the different flow regimes (a) Type 1, (b) Type 2a, (c) Type 2b, in laminar
hydraulic jumps. Type 2 (b,c) is characterized by an additional secondary recirculation vortex, with
Type 2b (c) distinguished by a double jump structure.

Fη

Fg

Fγ
Fω

Fv1

Fv2

Figure 1.4: Flow schematic of Type 1 hydraulic jump illustrating the relevant forces.

1.1 Circular hydraulic jump

One of the earliest studies of hydraulic jumps was given by Rayleigh 1914 [43] who developed

an inviscid theory in planar coordinates to describe the flow conditions upstream if the downstream

conditions are known. The theory also showed that energy across the jump is not conserved more

than likely a consequence of viscous dissipation. Although no experiments were performed, Rayleigh

stated this phenomenon could be studied in more detail by the means of an impinging jet impacting

a horizontal plate. One of the first experimental studies was conducted by Tani 1949 [48] who

identified the flow separation and eddy recirculation just downstream of the jump. Birkhoff et al.

[3] extended Rayleigh’s results and developed an inviscid theory to predict the jump radius for

circular jumps appearing by an impinging jet on an horizontal plate. Watson [54] incorporates

viscous effects to predict jump radius in circular hydraulic jumps by introducing a boundary layer

in the superciritical region for both laminar and turbulent flow conditions. Watson compared his

own data with the model along with a number of other experimental studies [36, 23, 35, 8, 13, 19,

51], and the results showed varying agreement with the model. There have been numerous other

experimental studies of hydraulic jumps [32, 16, 10, 1, 40, 28, 29, 24, 30, 47]. Improvements to

these models were made by including surface tension effects as was first mentioned by Bowles and

3



Smith [9], and Liu and Lienhard [32] who introduced non-dimensional groups such as the Weber

number. Notably, Bush and Aristoff [11] developed a model that generalized the model of Watson

to include surface tension and showed it accurately predicted a large experimental data set. This

is one of the more recognized models and fits experimental data well. A variety of mathematical

methods and simulations have been developed over the years to describe the pressure, boundary

layer, inertia, and surface tension to model the flow structure, height profile, or location of the jump

[9, 4, 21, 16, 22, 5, 6, 55, 10, 56, 40, 57, 20, 53, 11, 41, 28, 27, 58, 50, 46, 45, 38, 52].

1.2 Polygonal hydraulic jumps

As mentioned earlier, the introduction of a geometric obstruction (weir) in the downstream

region can affect the hydraulic jump structure. Ellegaard et al. [17] [16] observed striking steady

polygonal shapes, as shown in Figure 1.5, by introducing a circular weir downstream of an impinging

liquid jet. These structures are characterized by a mode number N identified by the number of sides

of the polygon and have similar flow structures to those shown in Figure 1.3c. Steady polygonal

jumps are observed in an extensive experimental study by Bush et al. [12], along with the identi-

fication of a clover regime, which exhibits structures such as 3 and 4-leafed clovers and butterfly

patterns, among others. They identify the range of parameters for these structures and show the

polygonal jumps are related to the Plateau Rayleigh instability of a liquid column [39, 42]. Teymour-

tash and Mokhlesi [49] observed rotating polygonal jumps for higher downstream weir heights. The

existence of these striking structures are not only limited to smooth horizontal plates but also have

been observed on micro-decorated surfaces [14], on micro-patterned surfaces [26], and on rotating

surfaces [25]. A phenomenological model is presented by Martens [33] to predict the jump shape,

which further supports findings that the polygonal structures are related to the Rayleigh-Plateau in-

stability. Inertial lubrication theory has been used to predict both circular and polygonal structures

[46, 45, 44]. A more detailed theoretical study of the flow structure, particularly the vortices, has

been conducted by Labousse and Bush [31]. Figure 1.6 illustrates the flow in a polygonal jump. The

flow from the impinging jet is directed outward into the rotating vortex at the jump. The particle

then works its way outwards until it gets accelerated into the subcritical flow. Figure 1.6a shows

the rotating vortexes at the corners and Figure 1.6b show that the flow is directed outwards into

the subcritical flow.

4



Figure 1.5: Steady N = 6 sided polygonal hydraulic jump.

1.2.1 Motivation

This thesis is concerned with characterizing the geometric structure of polygonal hydraulic

jumps, as it depends upon i) the weir geometry and ii) the flow history.

Prior experimental studies of polygonal hydraulic jumps have generally neglected the effect

of weir geometry and in circular jumps the results have been somewhat inconclusive. Craik et al.

[13] has stated that the downstream flow conditions don’t impact the hydraulic jump upstream in

progressive studies. Experimental studies conducted in [54, 51] adjust the jet Reynold’s number, weir

height, and nozzle radius concluding that the jump radius is a function of the jet Reynold’s number

and the nozzle diameter. Geometric effects on impact plates without a weir are studied by Brechet

and Neda [10], who show that laminar jumps are unaffected by geometry, whereas turbulent jumps

are affected by micro-patterned [26] and micro-decorated [14] surfaces. Most studies of polygonal

hydraulic jumps utilize large impact plates (36cm in diameter) such that the weir is sufficiently

downstream so as to not affect the jump. This thesis addresses this issue. This information will

be useful in the future development of mathematical models to explore the physics of polygonal

hydraulic jumps.

Polygonal hydraulic jumps are known to exist in a particularly small region of the relevant

parameter space and the specific jump geometry largely depends upon the flow history. As such,

it is critically important to establish detailed experimental protocols. Here we establish two unique

protocols; 1) upscale-downscale and 2) natural state. The first protocol exhibits strong hysteresis

in the observed mode number as it depends upon the flow rate. The second protocol identifies an

5



(a) Path of a particle in polygonal hydraulic
jump.

(b) Air entrap in the rotating vortexes in the
corners.

Figure 1.6: Type 2b flow visualization in polygonal hydraulic jumps. The particle paths are illus-
trated sub-figure in 1.6a and the rotating vortexes in the corners sub-figure in 1.6b.

optimal shape preferred by the system, but in some cases there can exist multiple preferred states.

The models for polygonal structure lack information regarding the geometry of the jump

resulting in simplifications of the forces responsible for creating these structures. In previous exper-

imental studies for polygonal structures the area and perimeter of the supercritical region is never

found. In this study image processing techniques are utilize to elucidate this information.
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Chapter 2

Experiment

Q

w

w

plate radius  r

weir height  h
N

nozzle height  h nozzle radius

flow rate

a

external fluid height  H

Figure 2.1: Schematic of the hydraulic jump showing a liquid jet impacting a plate with a weir of
height hw affixed at the outer edge of the plate rw.

Experiments are performed by pumping a viscous fluid at flow rate Q through a nozzle of

radius a at a height hN onto an impact plate, as shown in Figure 2.1. After the fluid impacts the

plate it flows radially outward over a weir of height hw located at the plate radius rw and into a

catch tank, which is then recirculated through the system in a closed loop. In our experiments,

the weir is always located at the edge of the plate so as to create the ‘free-fall effect’. The liquid

typically forms a hydraulic jump, but this is not always the case. To properly study the effects

of weir geometry hN and a are kept constant throughout the experiments and hw, rw, and Q are

varied. By adjusting the weir height hw and flow rate Q the external height of the fluid H changes

and in a small range of parameters a striking polygonal structure can appear (Fig.1.5). The range

of parameters explored in these experiments are shown in 2.1.
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Parameter range
nozzle height (hN ) 1.0 [cm]
nozzle radius (a) 0.46 [cm]

flow rate (Q) (30− 110) [mL/s]
weir height (hw) 2.67− 3.4 [mm]

external fluid height (H) 5.50− 6.52 [mm]
weir radius (rw) 7.62− 17.78 [cm]

Table 2.1: Range of experimental parameters.

2.1 Experimental Setup

The experimental setup consists of a circulation tank, impact plate and weir, nozzle, pump

setup, cross member, flow meter, height measurement device, and imaging platform as shown in

Figure 2.2. Precise control of the experimental conditions is needed to achieve steady polygonal

hydraulic jumps. In what follows, we describe in detail the steps required to produce these steady

shapes.

camera

flowmeter

pump

glass impact plate

leveling legs

backdrop

backdrop

tank

tubing

crossmember

weir
LED lights

radial flow

nozzle

fluid height 

measuring tool

Figure 2.2: Schematic of the experimental setup

Multiple points of adjustments are implemented to ensure the impinging jet is orthogonal
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to the impact plate. By using three leveling legs on the tank and a DXL360S dual axis digital pro-

tractor the impact plate can be leveled to an accuracy of 0.01◦. Similarly the nozzle can be oriented

orthogonal to the impact plate by using an adjustable nozzle mount. In previous work polygonal

jumps were accomplished with nozzle radii a = 0.2cm − 0.515cm in [6, 18, 12, 49]. Tapered nozzle

designs were used to reduce turbulence and encourage uniform flow [12, 49]. Recommendations

by McCarthy and Molloy [34] Bergthorson et al. [2], are provided to design a nozzle to produce a

uniform velocity profile but this is difficult to achieve over the entire range of flow parameters used

here. Tests were performed with both uniform and tapered nozzles and the flow was qualitatively

similar in all cases. To ensure that all velocity profiles were fully developed and laminar an uni-

form nozzle design using recommendations from Durst et al. [15] was used. Glass is used for the

impact plate because it is flat, has uniform thickness, and allows for easy imaging of the jump from

underneath. Weirs of varying geometry are glued to the outer edge of the impact plate. The goal

of this work is to investigate the effect of weir geometry and we used four circular plates of radius

7.62cm, 12.7cm, 15.24cm, 17.78cm and a square plate with edge length 22cm. For each geometry, we

used 4 separate weir heights hw = 2.67mm, 2.84mm, 3.17mm, 3.4mm that were precision manufac-

tured by a 3D printer. Small imperfections in the weir height along the circumference were noted

to cause asymmetries in the jump structure. To resolve this issue, we used fine grit sand paper to

ensure the weir height was uniform which we measured with digital calipers to within 0.01mm. In

total, we conducted experiments on 16 weir geometries

The fluid height measurement tool allows for the downstream fluid height H to be measured.

A stepper motor translates a threaded rod with a needle mounted at the end up and down. With

an electrical current running through the fluid, the height of the fluid is registered once the needle

point recognizes electric contact. For all experiments the height is measured 3cm inside the edge of

the weir. This method is also utilized by Ellegaard et al. [16] and Rao and Arakeri [40]. Through

experimentation it is found that H is uniform at a distance > 5cm downstream from the jump.

A steady, pulseless flow is required to achieve steady polygonal jumps and we use an Iwaki

MD-30RT-115NL centrifugal pump. We note that we tried using a diaphragm pump but were unable

to produce polygonal jumps due to the high degree of pulsing. The flow rate is adjusted using a

variac allowing for fine adjustments of ≈ 1mL/s. The flow meter consists of a Digiten FL-408 paddle

sensor calibrated for each fluid by conducting a bucket test to reveal the relationship between paddle

frequency and flow rate. This shows a maximum error of 1mL/s. Following previous studies ethylene
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glycol (EG) is used as the working fluid [49, 12, 17] . Commercial anti-freeze solutions were used and

the density, viscosity, and surface tension were measured using an Anton Paar DMA 35, Anton Paar

MCR 302 rheometer, and CSC tensiometer, respectively. Those properties are given in Table 2.2.

We note the pump temperature tended to increase over time which could affect the fluid properties

during a given experiment. A pump cooling system was implemented to maintain the liquid at room

temperature.

Fluid ρ [g/cm3] η [mm2/s] σ [mN/m]
anti-freeze 1.12 13.7-16.4 44

Table 2.2: Fluid properties of working fluids at room temperature 23◦C. Density ρ in g/cm3,
viscosity η in mm2/s, and surface tension σ in mN/m

The geometric structure of the hydraulic jump is captured by a camera that is mounted

underneath the impact plate, as shown in Figure 2.2. The YI-4k camera can be controlled wirelessly

which allows for operation in this location. To provide a consistent background and reduce unwanted

light, white backdrops are mounted around both the nozzle and camera. LED lights are mounted

inside the tank facing inwards to illuminate the jump.

2.2 Image Processing

Previous literature has either neglected or simplified the specific geometry of the polygonal

hydraulic jump, despite the critical need for both interpretation of experimental results and the

development of mathematical models. It is the explicit goal of this thesis to reveal the details of

the geometric structure in the supercritical region of the hydraulic jump. This will be accomplished

through identification of the area A and perimeter P .

The image processing technique is schematically illustrated in Figure 2.3. An image is

captured from beneath the hydraulic jump and the center of the picture was found by recognizing

the impinging jet, using a Matlab function that finds circles within a range of predetermined pixels.

The image is then cropped to a reasonable size and centered as shown in Figure 2.3a. The green

matrix is separated from the RGB matrix in Figure 2.3b where the strong green accent is shown by

the brighter pixels. A filter is used to binarize the image resulting in the outline of the hydraulic

jump shown in Figure 2.3c. Next white pixels are used to fill in everything inside the outline and

black pixels outside the outline resulting in Figure 2.3d from which the area A can be computed. An
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(a) cropped image (b) green matrix (c) filtered image

Area (A)

(d) area image

Perimeter (P)

(e) perimeter image

Figure 2.3: Image processing protocol takes a raw image 2.3a that is filtered 2.3c from which the
area 2.3d and perimeter 2.3e can be computed.

edge detection algorithm is used on Figure 2.3d to yield Figure 2.3e from which the perimeter P can

be calculated. By counting the white pixels from Figure 2.3d and 2.3e and using a predetermined

relationship of A in mm2 to number of pixels, and P in mm, the geometry of the supercritical region

can be found.

A calibration is done to relate the number of white pixels in Figures 2.3d and 2.3e to area A

and perimeter P respectively. To do so shapes with similar attributes and magnitudes to those seen

in the experiments are created in SolidWorks. Polygonal shapes with concave and convex sides, and

round corners of modes N = 3−9. 25 of these shapes ranging from the smallest area to the greatest

area seen in the experiments are then printed to a 1:1 scale. Since SolidWorks allows for A and P

to be known, these values are then linked to their respective shapes. These shapes are then placed

on the impact plate and pictures are taken the way they would be during experiments. From these

pictures the respective pixels for A and P is found. With these pixels values known and the actual

A and P known a relationship can be found.

2.3 Dimensionless groups

We will describe our data using three dimensionless groups; The Reynolds number Re ≡

Q/ηa for the liquid jet represents the effect of inertia over viscous forces. The Weber number We ≡

ρQ2/γH3 is the ratio of inertia to surface tension forces and the Bond number Bo ≡ ρga2/γ the ratio

of gravitational to surface tension forces. For all the experiments B = 5.28. The mode number N and

characteristic ratio A/PH are shown to correlate with the Reynolds number Re and the geometry

of the jump collapses upon scaling with We. The characteristic ratio A/PH characterizes the

geometry of the jump and the flow. The area A and perimeter P are primarily influenced by inertia
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and viscous dissipation as the flow rate Q increases inertia and equivalently A, as seen experimentally

in radial flow hydraulic jump studies [54, 36, 13, 51, 32, 16, 10, 11, 12, 28, 29, 50, 30, 49]. Larger

area A in the supercritical region generates more viscous dissipation. The height of the fluid H

affects both surface tension and gravitational forces. As H increases so does the gravitational force,

and the surface tension force decreases because its inversely proportional to radius of curvature.

Accordingly, the characteristic ratio A/PH informs us about both the geometry of the jump and

the relative magnitude of forces there. The mode number N is represented by the number of sides

and is used to observe transitional behavior. The hysteresis ∆Re quantifies the robustness of a given

shape N and highlights the nonlinearity of the problem. The scaled wavelength λ/H is related to

the mode number λ = P/N and defines the instability mechanism.

Parameter variable range
characteristic ratio (A/PH) 0.3− 2.4

mode number (N) 3− 10
Reynold’s number (Re) 450− 1350

hysteresis (∆Re) 100− 525
Weber number (We) 150− 1180

wavelength ratio (λ/H) 100− 525
Bond number (B) 5.28

Table 2.3: Dimensionless groups and the range of parameters in experiment.

2.4 Experimental Protocol

A given set of parameters will yield a polygonal jump shape that is not necessarily unique

and depends upon the path towards that set of conditions. Otherwise stated, hysteresis is possible

and highlights the nonlinearity in this problem. The experimental protocol is important and we

describe three such techniques; i) upscale-downscale, ii) natural state, and iii) forced, in this section.

In each case, the flow rate is adjusted in 1− 2mL/s increments during the experiments.

2.4.1 Upscale-Downscale

The upscale-downscale experiment finds the range of parameters for which a mode number

N is possible. The maximum and minimum Re values allows the robustness of a given shape N to be

quantified. The protocol is as follows. The flow rate is slowly increased from the lowest possible flow
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rate where a steady jump appears. This is usually the N = 3 shape. The flow rate is then increased

in small increments typically (1− 2)mL/s. At each increment data is collected which includes flow

rate, external height, and a picture is taken. It is important to note that the hydraulic jump isn’t

physically interfered with so that natural transitions from N → N + 1 will occur. This process is

continued until the jump becomes unsteady. This typically occurs with modes N = 9 or N = 10 and

completes the upscale experiment. The downscale portion of the experiment starts at the maximum

flow rate found from the upscale portion. The procedure is identical but the flow rate is decreased

at prescribed increments. This procedure allows for the lower bound of the polygons to be found.

The flow rate is decreased until the hydraulic jump collapses in on the fluid jet.

2.4.2 Natural State

The natural state is defined as the preferential configuration of the jump at a given flow

rate Q. The protocol differs from the upscale-downscale in that the jump structure is destroyed by

a probe at each increment in flow rate. This interference destroys the jump and allows for another

structure to naturally form and settle. Data is then collected for that structure and the process

is repeated increasing the flow rate by a small increment. It is important to use small increments

because the transition from polygons N → N + 1 does not always happen suddenly, and under

certain conditions there are multiple shapes N that can exist for that particular flow rate. We

repeat the process until modes appear unsteady.

2.4.3 Forced

Our largest weir hw = 3.4mm does not produce steady polygonal jumps using either the

upscale-downscale or natural state protocols. However, steady jumps can be obtained by alternative

means which we call forced. There is no particular protocol to conduct this experiment and whenever

a steady structure appears a data point is collected. The methods include random creation, physical

obtrusion, varying the flow rate, or some combination thereof. Typically steady structures occur

around Q = 80−110 mL/s at which point random high mode numbers appear. The flow rate is then

decreased rapidly and typically the structure will settle at a random N . Repeating this multiple

times and with careful adjustments of the Q, a considerable data set can be collected. Though this

method is not ideal it can still produce some useful information.
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Chapter 3

Experimental Results

This chapter reports our experimental results on polygonal hydraulic jumps and is organized

as follows. We begin by reporting the mode number N as it depends upon the Reynolds number Re

for both the natural state and upscale-downscale protocols. Typical mode shapes are shown in Figure

3.1. For the upscale-downscale protocol, there is a range of flow conditions under which a particular

mode N is excited that depends upon the direction of the flow increment and we characterize

this hysteretic range by ∆Re. Next, we characterize the polygonal jump geometry through the

characteristic ratio A/PH which collapses the data for a particular weir geometry, irrespective of

the experimental protocol. We then show how this ratio depends upon the weir height and weir

radius. That ratio depends strongly on the weir height, but is independent of the weir radius up to

a critical ratio of nozzle diameter to plate diameter. Lastly, we collapse our entire data set using the

Weber number and show that the critical wavelength of the polygonal shape approaches a constant

value which suggests the instability is related to surface tension effects and the Plateau-Rayleigh

instability of a liquid column.

Figure 3.1: Experimentally observed polygonal jumps exhibit mode numbers N = 3− 9.
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3.1 Mode number N selection

3.1.1 Natural state results

Figure 3.2 shows the results of a typical natural state experiment where the mode number

N is plotted against the Reynolds number Re. Increasing Re leads to an increase in mode number

N and that trend appears to be linear. Interestingly, for the higher mode numbers, multiple shapes

are capable of being excited for a given Re. For example, Figure 1.2 shows that for Re = 800, it is

possible to excite a N = 7, N = 8, or N = 9 mode. That is, mode selection is not unique, despite

the fact that the natural state protocol requires the destruction of the previous polygonal structure

and the relaxation of the jump into the new state. We assume that these regions correspond to the

boundary of the domain of attraction between two or more mode shapes.
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Figure 3.2: Mode number N against Reynolds number for the hw = 3.17mm weir on the rw = 17.8cm
plate for the natural state protocol.
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The goal of the natural state protocol is to observe the polygonal jump with lowest energy

and the overlapping behavior of Re is more than likely due to natural and experimental perturbations

introduced. The flow in the supercritical and subcritical regions must be tranquil and any small

perturbation would cause a transition. We observed this phenomena in experiment and were careful

not to disturb the flow. Lastly, we note that asymmetry in the jumps wasn’t common in the natural

state experiments but did occur and more frequently in the regions where different N would overlap.

3.1.2 Upscale-downscale and hysteresis

Figure 3.3 plots the mode number N against Reynolds number Re for a typical weir in an

upscale-downscale experiment. During the upscale sweep, modal transitions occur when N → N +1

and during the downscale sweep when N → N − 1. For a given mode N , the upscale and downscale

transition occur at different Re and this difference increases with mode number N . For example,

N = 7 begins at Re = 930 during and upsweep and Re = 700 on a downsweep. This difference

illustrates hysteresis in this phenomena, a feature synonymous with nonlinearity. Our data allows

for a quantitative method to represent the robustness of the modes. The maximum Re for a given

mode N is found during the upscale sweep of the experiment and the minimum Re can be found

during the downscale sweep and the difference between these values we refer to as the hysteresis

∆Re, as shown in Figure 3.3. At any Reynolds number Re more than one mode can exist and for

700 < Re < 900 there are four potential modes. Two examples of these modes are shown as inset of

Figure 1.3 for Re = 550 and Re = 930.

As the Re increases for a fixed mode number N the area A and perimeter P of the shape will

increase and the shape will transition from N → N + 1. Immediately before the modal transition,

one or more sides of the polygon either become asymmetric or convex and at that point the shape

transitions, as shown in Figure 3.4a. Note that the lower mode number N = 3 − 6 tend to have

concave sides before the transition, whereas the higher mode numberN = 7−9 tend to be asymmetric

before they transition. During the downscale sweep the sides are typically concave and the shape

decreases in size as the Re decreases. Once the corners become close enough such that the rotating

vortices interact with one another the corners collapse and the shape transitions from N → N − 1,

as shown in Figure 3.4b.
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Figure 3.3: Mode number N against Reynolds number for the hw = 3.17mm weir on the rw = 17.8cm
plate for the upscale and downscale experiments. Upscale and downscale data are given by closed
and open symbols, respectively. At Reynold’s Re = 550 a N = 3 mode appears in the upscale and
a N = 5 mode in the downscale [inset]. Upscale and downscale data are given by closed and open
symbols, respectively. The mode hysteresis ∆Re is defined as the range of Re where a given mode
appears and is shown for the N = 8 mode.

3.1.3 Forced

For our largest height hw = 3.4mm weir, we are not able to attain steady polygonal shapes

using the upscale-downscale or natural state protocols. However, we are able to produce steady jumps

using the forced method protocol discussed in Section 2.4.3. Figure 3.5 plots the mode number N

against Reynolds number Re for this data, which is shifted towards higher Reynolds number when

compared with our next tallest hw = 3.17mm weir shown in Figure 3.3. This implies more inertia

is required to attain a given shape on the taller weir, as could be expected. Interestingly, steady

polygonal jumps exist over a wide range of parameters, as shown in Figure 3.5. For given Re, there

17



UpscaleUpscale

(a) Maximum state for mode numbers N

DownscaleDownscale

(b) Minimum state for mode numbers N

Figure 3.4: Mode transition during upscale-downscale experiment for the hw = 3.17mm weir on the
rw = 17.78cm plate. The particular Reynolds number Re where the transition occurs can be seen
in Figure 3.4b.

are many regions where four modes can exist and some small regions where even five modes can

exist. This phenomena was not observed for the other weirs.

Figure 3.6 shows a montage of steady polygonal modes with the same Re = 690. The

corners of each polygon have similar radius of curvature, which is different than observations made

with the other weirs and as the mode number N increases the sides become more concave. This

could mean that gravitational effects or vortex inertia are restricting the surface tension forces from

causing a transition N → N + 1. This could also be why none of the sides are convex.
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Figure 3.5: Mode number N against Reynolds number for the hw = 3.4mm weir on the rw = 17.8cm
plate for forced experiments.

Figure 3.6: Modes N = 3− 6 exist for a Reynolds number Re = 690 using the forced method.

19



3.2 Geometry of the jump A/PH

As shown above, the experimental protocol is important in mode number selection. Each

polygonal shape is characterized by a mode number N , area A, perimeter P and external height

H. For a fixed height weir, we take the data shown in Figures 3.2 and 3.3 from the natural and

upscale-downscale protocols, respectively, and compute the characteristic ratio A/PH. Figure 3.7

plots that data against Reynolds number Re which shows a collapse of the data indicating that the

particular experimental protocol is unimportant in determining this ratio. This observation perhaps

goes against intuition in which one might expect the A/PH ratio for a N = 7 and N = 9 mode to

be different for a fixed Reynolds number Re = 930 (cf. Figure 3.3). This collapse also occurs for

other fixed height weirs but along a different curve.
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Figure 3.7: Characteristic ratio A/PH against Reynold’s number Re for the 3.17mm weir on the
circular plate with radius 17.8cm contrasting the natural state and upscale-downscale protocols.
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3.3 The effect of weir geometry and height

3.3.1 Varying height H

Mode number selection and the characteristic ratio A/PH are affected by the weir geometry

and height. Figure 3.8 plots the hysteresis ∆Re against mode number N , as it depends upon the

weir height hw. Modes N = 3 − 6 generally share the same trend, but at N = 7 the taller weirs

begin to deviate from the shorter weirs and exhibit large hysteresis. This is most likely related to

the higher relative inertia Re required to create such shapes.
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Figure 3.8: Mode number N against hysteresis ∆Re as it depends upon weir height hw on the
17.8cm plate for the upscale-downscale protocol. The weir heights hw are denoted differently. See
figure 3.3 on a visual on calculating delta Reynold’s number ∆Re

Figure 3.9 plots the characteristic ratio A/PH against Reynolds number Re as it depends

upon the weir height hw and shows the curve shifts to the right for increasing weir height. That is,
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Figure 3.9: Characteristic ratio A/PH against Reynolds number Re as it depends upon weir height
hw for the rw = 17.78cm plate. Weirs hw = 2.67mm, 2.84mm, 3.17mm include natural state data,
and weir hw = 3.4mm includes forced data. For a Reynolds number Re = 800, the N = 8 mode
shows a dramatic difference between the hw = 2.67mm and hw = 3.4mm weirs.

more inertia is required to create a shape with identical A/PH for taller weirs. For a fixed Re = 800,

the shapes vary dramatically between different weir heights. Figure 3.9 (inset) shows the shapes

become more concave a the weir height increases. For fixed A/PH = 1.2, the mode number N

increases with Re and the shape becomes more concave. We include the forced data hw = 3.4mm

in Figure 3.9 to show it follows similar trends as the other weirs.

3.3.2 Varying weir geometry

We are interested in the effect of weir geometry and investigate by varying the weir radius

from rw = 7.62− 17.2cm for a fixed weir height. We also tried using a square weir with edge length
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22cm.

Figure 3.10 plots the mode number N against Reynolds number Re for our three largest

radius weirs at a fixed height using the upscale-downscale protocol. As shown, the data is similar for

each weir radius and the modal transitions happen at approximately the same Re within a few mL/s.

Figure 3.11 plots the hysteresis ∆Re against mode number N from Figure 3.10 which is shown to

not depend upon the weir radius for the three largest circular weirs. The greatest difference occurs

for the N = 9 mode and is ≈ 7.5mL/s. We attribute these small differences to experimental error

and conclude that weir radius does not affect mode number selection for the three largest radii weirs.
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Figure 3.10: Mode number N against Reynolds number Re for the hw = 2.84mm as it depends upon
the weir radius for the upscale and downscale experiments.

A similar trend is seen in the natural state protocol, as shown in Figure 3.12 which plots

the mode number N against Reynolds number Re. The data from the three largest radius circular

weirs overlay one another up to experimental error. We also include data from the square weir with
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Figure 3.11: Mode number N against hysteresis ∆Re for the hw = 2.84mm weir as it depends upon
the weir geometry for the upscale and downscale experiments.

edge length 22cm and identical height, which is shifted towards higher Reynolds number indicating

that more inertia is required to create a given mode shape. This is our first observation that weir

geometry can affect mode number selection in polygonal hydraulic jumps. Similar conclusions can

be made for weirs with other heights. Even though mode number selection differs with the square

plate geometry, the characteristic ratio is unaffected, as shown in Figure 3.13 which shows a collapse

of the data irrespective of weir geometry. Recall that weir height will affect this curve.

Thus far, multiple weir geometries have been used and only the square weir showed deviation

in results from the other circular geometries. To further investigate, we use a significantly smaller

radius rw = 7.62cm weir and conduct both natural state and upscale-downscale experiments. Figure

3.14 plots the mode number N against Reynolds number Re for the upscale-downscale experiments

for the smallest rw = 7.62cm and largest rw = 17.2cm radius weir. It is interesting to note that the
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Figure 3.12: Mode number N against Reynolds number Re for the hw = 2.84mm weir as it depends
upon the weir geometry for natural state experiments.

downscale sweep is relatively unaffected by weir radius, however the upscale sweep shows a dramatic

difference with the smaller radius weir exhibiting a modal transition at much smaller Reynolds

number than the largest radius weir. This difference is more significant than experimental error and

suggests weir radius plays a role when the scale of the jump becomes comparable in magnitude to

the scale of the weir. For all other cases, the jump radius was significantly smaller than the weir

radius. This implies that the flow field at a certain distance downstream from the hydraulic jump

does not affect the jump itself.

Though stable hydraulic jumps can be accomplished with a smaller geometry plate, it is

important to note that weir geometry can affect the behavior and structure. We observed that

with a weir to nozzle radius ratio rw/rN ≥ 28 the results are indistinguishable. While those with

rw/rN ≈ 16.5 they are noticeably different.
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Figure 3.13: Characteristic ratio A/PH against Reynolds number Re for the hw = 3.17mm weir as
it depends upon the weir geometry.

3.3.3 Collapsing the data

As discussed in the previous sections, the characteristic ratio A/PH is independent of the

mode number N and experimental protocol for a fixed weir height hw. For each hw, there is a

different trend, as shown in Figure 3.9, demonstrating that A/PH is dependent upon H of the flow.

We scale the external height H with the perimeter P of the polygonal jumps and plot that result

against the downstream Weber number in Figure 3.15. The data collapses for all weir heights and

geometries used here. This suggests that the downstream fluid height H should be used as the

characteristic length scale in describing polygonal hydraulic jumps.

It’s notable that with the same y-axis values the data does not collapse using the jet

Reynold’s number Re. This implies that for fixed fluid properties that flow rate Q and external
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Figure 3.14: Mode number N against jet Reynolds number Re for the hw = 2.84mm weir on the
circular plates with smallest rw = 7.62cm and largest rw = 17.8cm radius for the upscale and
downscale experiments.

height H uniquely determine the area A and perimeter P irrespective of mode number N , weir

geometry or experimental protocol.

3.3.4 Critical wavelength and connection to Plateau-Rayleigh breakup

We examine the scaled wavelength λ/H as a function of mode number N in Figure 3.16 for

the upscale-downscale protocol and Figure 3.17 for the natural state protocol. Were the wavelength

λ = P/N . Figure 3.16 shows a larger wavelength for the upscale sweep and the wavelength difference

between upscale and downscale decreases with increasing mode number N . This random spread

seen in the upscale data in Figure 3.16 could be explained by the asymmetric behavior (Fig. 3.4a).

Looking at Figure 3.9 the P for hw = 2.67mm increases at slower rate than the 3.17mm weir, and
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Figure 3.15: Weber number We against H/P for all data.

since the λ/H transition during the downscale for the hw = 2.67mm & 2.84mm weirs is higher than

the hw = 3.17mm weirs, this would follow the data. These results also suggest that the critical

wavelength for the (N → N − 1) and (N → N + 1) transitions is not solely related to the height of

the fluid. Figure 3.17 shows the wavelength is a slowly decreasing function of mode number N whose

average value is approximately λ/H ≈ 3. Weir height does not seem to affect the scaled wavelength.

This approximately constant value is consistent with the Plateau-Rayleigh instability mechanism

where the critical scaled wavelength is constant and depends upon the radius of the cylinder, which

would correlate to the fluid height H in our toroidal geometry.

Although the λ/H ratio curve changes with weir height hw, as shown in Figure 3.17, the

fact that λ/H does not change with hw suggests that the wavelength selection mechanism is robust

suggesting the Plateau-Rayleigh instability as a logical mechanism in describing the polygonal jump
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Figure 3.16: Mode number N against scaled wavelength λ/H as it depends upon weir height hw on
the rw = 17.8cm plate for the upscale and downscale experiments.

geometry. The small deviation of λ/H with mode number N suggests a weak dependence upon

another parameter, which might include the secondary curvature of the toroidal shape which becomes

more important for smaller mode numbers. This interpretation is consistent with our results shown

in Figure 3.17.
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Figure 3.17: Scaled wavelength λ/H against mode number N as it depends upon weir height hw on
the rw = 17.8cm plate for the natural state experiments.
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Chapter 4

Discussion

In previous experiments involving polygonal hydraulic jumps [16, 17, 12, 49] information

regarding the weir geometry and the experimental protocol has not been reported in great detail,

thus hindering repeatability in experiment, as well as interpreting those results. We have explicitly

addressed these shortcomings through careful documentation of the experimental setup and pro-

tocol. This information can be used to improve mathematical models. For example, the model

of Rojas [46, 45, 44] requires an explicit knowledge of the downstream boundary conditions (fluid

height, weir height, etc.) in order to predict modal behavior. We have documented that modal be-

havior is affected by the experimental protocol, as contrasted by the upscale-downscale and natural

state protocols. In the upscale-downscale experiments, the hysteresis range ∆Re is identified for

weirs showing the hysteresis ∆Re dramatically increases with weir height. Hysteresis is also seen

to increase with mode number N which implies that the mode selection mechanism is inherently

nonlinear and any such future model would need to incorporate hysteresis to properly predict modal

behavior.

It is not possible to physically measure the geometry (perimeter, area) of the polygonal

hydraulic jump. Previous authors have attempted to average the inner and outer radii in order to

estimate the jump geometry but this introduces error into a process which is known to be extremely

sensitive to small changes in the jump geometry. Image processing methods are used to extract

the area A and perimeter P of these structures revealing new information that can be useful in

understanding the physics of the polygonal hydraulic jump as well as for future models. We have

shown the characteristic ratio A/PH is set by the Reynolds number Re and does not depend on
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flow history or mode number N . However, the ratio does depend upon the weir height hw and we

show that in order to achieve a similar jump geometry it requires more inertia as measured by the

increasing Reynolds number. All of our data collapses upon scaling with the downstream Weber

number indicating that the downstream height H is the relevant length scale in this problem. This

implies the polygonal hydraulic jump phenomenon is purely geometric.

By scaling the wavelength λ with external fluid height H and plotting against modes N ,

a collapse of the data is seen illustrating the modal selection mechanism is similar to the Plateau-

Rayleigh instability of a liquid column, which exhibits a constant scaled wavelength λ/H irrespective

of mode. Our scaled wavelength λ/H = 3, which differs from the Plateau-Rayleigh prediction of

λ/H = 4.5 and we attribute this difference to a number of factors that influence this constant, such

as the introduction of a secondary curvature in the toroidal geometry compared to the cylinder

and the role of viscosity in defining the critical wavelength. This shift in critical wavelength is also

seen in Plateau-Rayleigh breakup of liquid rivulets [7]. Rotating vortexes under the jump interface,

the imperfect curvature at the jump interface, and flow downstream of the jump could also play

a role. As mentioned by Pairam 2009 [37], for a torodial donut the major and minor radii alter

from an initial shape by expanding or contracting the donut until a critical value is reached upon

which the donut pinches off in the critical wavelength. Note that the hydraulic jump geometry is

unable to spontaneously expand or contract like in [37] to adopt a preferred geometry and perhaps

for this reason there is a range of preferred λ/H the we see in experiment. This is best seen in

the upscale-downscale experiments which exhibit different critical wavelengths for the maximum

and minimum modes. Even so, there is a mild collapse of the data for these states indicating that

polygonal hydraulic jumps are a geometric phenomena governed by a complex balance between

surface tension, viscosity and fluid inertia.
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Chapter 5

Conclusion

An experimental apparatus was constructed and approximately 1800 observations of polyg-

onal hydraulic jumps were made. Diagnostic techniques and image processing protocols allowed

characterization of the geometry of the polygonal jump through the mode number N , perimeter P ,

area A and downstream fluid height H. Three experimental protocols are developed; natural state,

upscale-downscale and forced, and we characterize the modal transition for each. With regard to

the upscale-downscale protocol, the transition in the upscale sweep N → N + 1 typically happens

when the sides of the become convex or the polygon asymmetric, whereas on the downscale sweep

all sides are concave and the transition happens at similar scaled wavelength λ/H. This typically

happens when the rotating vortexes in the corners start to interfere with each other. The robustness

for each mode N is defined by the hysteresis ∆Re and the modes N = 3 − 5 have nearly identical

∆Re irrespective of weir height. Natural state experiments identify the optimal mode number N

for each Reynolds number Re but this is not necessarily unique and multiple modes can exist at a

give Re. Although mode number selection is affected by the experimental protocol, we show that

the characteristic ratio A/PH does not and yields a unique curve for each weir height hw. Weir

geometry does not affect mode selection unless the ratio of weir radius to nozzle radius is less than

rw/rN < 17. All of our data collapses upon scaling with the downstream Weber number suggesting

the downstream fluid height is the proper choice of length scale in this problem. Lastly, we show

the scaled wavelength λ/H approaches a constant value suggesting the instability mechanism is re-

lated to Plateau-Rayleigh breakup. All of our observations allows us to better understand the fluid

mechanics behind mode selection and the geometry of polygonal hydraulic jumps.
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[8] Mustapha Bouhadef. Étalement en couche mince d’un jet liquide cylindrique vertical sur un plan
horizontal. Zeitschrift für angewandte Mathematik und Physik ZAMP, 29(1):157–167, 1978.

[9] RI Bowles and FT Smith. The standing hydraulic jump: theory, computations and comparisons
with experiments. Journal of Fluid Mechanics, 242:145–168, 1992.

[10] Y Brechet and Z Neda. On the circular hydraulic jump. American Journal of Physics, 67(8):
723–731, 1999.

[11] John WM Bush and Jeffrey M Aristoff. The influence of surface tension on the circular hydraulic
jump. Journal of Fluid Mechanics, 489:229–238, 2003.

[12] John WM Bush, Jeffrey M Aristoff, and AE Hosoi. An experimental investigation of the stability
of the circular hydraulic jump. Journal of Fluid Mechanics, 558:33–52, 2006.

[13] ADD Craik, RC Latham, MJ Fawkes, and PWF Gribbon. The circular hydraulic jump. Journal
of Fluid Mechanics, 112:347–362, 1981.

34
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berto Cuminato, Armando de Oliveira Fortuna, and Sean Mckee. High-order upwinding and
the hydraulic jump. International journal for numerical methods in fluids, 39(7):549–583, 2002.

[21] FJ Higuera. The hydraulic jump in a viscous laminar flow. Journal of fluid Mechanics, 274:
69–92, 1994.

[22] FJ Higuera. The circular hydraulic jump. Physics of Fluids, 9(5):1476–1478, 1997.

[23] Seikan Ishigai, Shigeyasu NAKANISHI, Minoru MIZUNO, and Toyoo IMAMURA. Heat trans-
fer of the impinging round water jet in the interference zone of film flow along the wall. Bulletin
of JSME, 20(139):85–92, 1977.
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