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Abstract

Type is an important invariant of a Cohen-Macaulay homogeneous ideal I in a polynomial

ring A[X1, . . . , Xd], where A is a field. In Chapter 2, we recall the algebraic definition of type using

Ext modules and depth. First we recall how the Cohen-Macaulay property is defined, how Ext is

defined via projective resolutions and how depth is defined through regular sequences or vanishing

of Ext. Chapter 2 also contains other necessary background information.

We mainly work with monomial ideals I in the ring R = A[X1, . . . , Xd] and the case where

the Krull dimension of R/I is zero, implying that I is Cohen-Macaulay and has an irredundant

parametric decomposition. In this case, the type of R/I has a computational-friendly formula:

type(R/I) = # parameter ideals occuring in the irredundant parametric decomposition of I.

The goal of this thesis is to use this to derive formulas for the type of other Cohen-Macaulay

quotients. We focus on ideals coming from (finite simple) graphs G; our formulas are in terms of

graph-theoretical data about G. This falls in the general area of combinatorial commutative algebra,

where one uses natural connections between the algebraic properties of a given monomial ideal I in

A[X1, . . . , Xd] and combinatorics.

Let G be a graph with vertex set {v1, . . . , vd}. Let ΣG be the suspension of G (see Defi-

nition 3.12). In Chapter 3, we define the edge ideal I(ΣG) in R′ = A[X1, . . . , Xd, Y1, . . . , Yd] (see

Definition 3.1), and we compute the type of the quotient R′/I(ΣG) combinatorially, which is found

to be exactly the number of minimal vertex covers of G:

type
(
R′/I(ΣG)

)
= # minimal vertex covers of G. (*)
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We prove this in Theorem 3.20. In particular, this computes type(R/I(G)) for all trees such that

R/I(G) is Cohen-Macaulay (see Fact 3.18(b)).

Next, given a weighted graph Gω, a weighted suspension (ΣG)λ (see Definition 3.39) with

λ satisfing the conditions in Fact 3.40, and its weighted edge ideal of I((ΣG)λ) (see Definition 3.25),

we go further to explore the type of the quotient R′/I((ΣG)λ), defined and studied by Paulsen

and Sather-Wagstaff [9]. As with Formula (*), we find that the type of R′/I((ΣG)λ) is exactly the

number of minimal weighted vertex covers of Gω:

type
(
R′/I((ΣG)λ)

)
= # minimal weighted vertex covers of Gω. (**)

We prove this in Theorem 3.43. In particular, this computes type(R/I(Gω)) for all weighted trees

such that R/I(Gω) is Cohen-Macaulay (see Fact 3.41(b)).

Finally, with ΣrG being the r-path suspension of G (see Definition 3.45), and Ir(ΣrG) the

r-path ideal of ΣrG( see Definition 3.47), we determine the type of the quotient R′/Ir(ΣrG), which

is given by the number of “p-minimal r-path vertex covers of Σr−1G”, in terms of an order on the

minimal r-path vertex covers of ΣrG. Using similar techniques, plus some extra effort, we deduce

the formula

type
(
R′/Ir(ΣrG)

)
= # p-minimal r-path vertex covers of Σr−1G. (***)

We prove this in Theorem 3.71. In particular, this computes type(R/Ir(G)) for all trees such that

R/Ir(G) is Cohen-Macaulay (see Fact 3.58(b)).
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Chapter 1

Introduction

Combinatorial commutative algebra is a branch of mathematics that uses combinatorics

and graph theory to understand certain algebraic constructions; it also uses algebra to understand

certain objects in combinatorics and graph theory. In this thesis, we explore aspects of this area via

edge ideals and path ideals of graphs and weighted graphs.

Let G be a (finite simple) graph with vertex set V = V (G) = {v1, . . . , vd} and edge set

E = E(G). Let A be a field, and consider the polynomial ring R = A[X1, . . . , Xd]. The edge ideal

of G is the ideal I(G) of R that is “generated by the edges of G.”

I(G) = (XiXj | vivj ∈ E)R.

Some research in combinatorial commutative algebra uses graph-theoretic properties of G to under-

stand algebraic properties of I(G), and vice versa.

An important concept in commutative algebra is the “Cohen-Macaulay” property; see Def-

inition 2.92. The definition is somewhat technical. For now, the reader should understand that

Cohen-Macaulay ideals in polynomial rings are particularly nice. If I is a Cohen-Macaulay ideal

in R, the “type” of R/I roughly measures how nice the ideal is. For instance, some of the nicest

Cohen-Macaulay ideals are the “Gorenstein” ideals, which end up being the Cohen-Macaulay ideals

of type 1.

If G is a tree, a theorem of Villarreal [11] characterizes when I(G) is Cohen-Macaulay;

see Fact 3.18. This characterization is purely graph-theoretical. One of the first goals of this
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thesis is to compute the type of R/I(G) for arbitrary Cohen-Macaulay trees. We accomplish this

in Theorem 3.20. As with Villarreal’s result, this computation is purely graph-theoretical. In

subsequent results of this thesis, we compute the type for other graph-theoretic algebra constructions

the edge ideal of a weighted tree and the path ideal of a tree when they are Cohen-Macaulay. These

results are in Theorems 3.43 and 3.71. These are the main results of this thesis. They form the bulk

of Chapter 3. Necessary background information is collected in Chapter 2 and Section 3.2.
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Chapter 2

Definitions and Background

Convention. In this chapter, let R be a commutative ring with identity, M an R-module and I ⊆ R

an ideal.

2.1 Commutative Rings with Identity

Definition 2.1. We say R is local if it has a unique maximal ideal m, also known as “quasi-local”.

The residue field of R is R/m.

“Assume (R,m, k) is local” or “assume (R,m) is local”, means that m is the unique maximal

ideal of R and k = R/m.

Example 2.2. Let k be a field.

(a) k is local with the maximal ideal (0).

(b) R = k[X]/(Xn) is local with m = (X)/(Xn).

(c) Let R = k[X1, . . . , Xd]/(X
a1
1 , · · · , Xad

d ), where ai ≥ 1 for i = 1, . . . , d. Then R is local with

m = (X1, . . . , Xd)/(X
a1
1 , . . . , Xad

d ).

Definition 2.3. Let U ⊆ R be multiplicatively closed and 1 ∈ U . The localization of M with respect

to U is defined to be

U−1M = {equivalence classes from M × U under ∼},
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where (m,u) ∼ (n, u) if there exists w ∈ U such that w(vm− un) = 0. Denote the equivalence class

of (m,u) as m
u or m/u.

Notation 2.4. Set Mp = (Rr p)−1M for any prime ideal p ⊆ R.

Definition 2.5. The radical of an ideal a ⊆ R is defined to be

rad(a) = r(a) =
√
a = {x ∈ R | xn ∈ a, ∀ n� 0} = {x ∈ R | xn ∈ a for some n ≥ 1}.

Definition 2.6. I is reducible if there exist ideals J,K ⊆ R such that I = J ∩K and J 6= I and

K 6= I. I is irreducible if it is not reducible and I 6= R.

Definition 2.7. An irreducible decomposition of I is an expression I =
⋂n
i=1 Ji with n ≥ 1 such

that ideals J1, . . . , Jn ⊆ R are irreducible.

Definition 2.8. An irreducible decomposition I =
⋂n
i=1 Ji is redundant if I =

⋂
i 6=k Ji for some

k ∈ {1, . . . , n}. An irreducible decomposition I =
⋂n
i=1 Ji is irredundant if it is not redundant, that

is, if every k ∈ {1, . . . , n} satisfies J 6=
⋂
i 6=k Ji. As J =

⋂n
i=1 Ji ⊆

⋂
i 6=k Ji holds automatically, the

given decomposition is irredundant if and only if every k ∈ {1, . . . , d} satisfies J (
⋂
i 6=k Ji.

Fact 2.9. [8, Corollaries 1.4.6 and 3.4.8] Let d ≥ 1. If A is a Noetherian ring, then every proper

ideal in A or A[X1, · · · , Xd] has an irredundant irreducible decomposition.

2.2 Regular Sequences

Depth is an important invariant of rings and modules in commutative and homological

algebra. It is defined in terms of the vanishing of Ext modules and it characterizes the length of

maximal regular sequences.

Definition 2.10. An element x ∈ R is a non-zero divisor on M if the multiplication by x map

M
·x−→M is 1-1; equivalently, for m ∈M , if xm = 0, then m = 0. Set

NZDR(M) = {a ∈ R | a is a nonzero divisor on M}.

Definition 2.11. An element x ∈ R is M -regular if

(a) x ∈ NZDR(M) and
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(b) xM 6= M .

Definition 2.12. A sequence a1, . . . , an ∈ I is M -regular if

(a) a1 is M -regular, and

(b) ai is M
(a1,...,ai−1)M -regular for i = 2, . . . , n,

Remark. Note that for a1, . . . , ai ∈ R, we have

M

(a1, . . . , ai)M

1©∼=
M/(a1, . . . , ai−1)M

(a1, . . . , ai)M/(a1, · · · ai−1)M
∼=

M/(a1, . . . , ai−1)M

aiM/(a1, . . . , ai−1)M
,

where 1© is from the third isomorphism theorem for modules. Thus, we have aiM/(a1, . . . , ai−1)M 6=

M/(a1, . . . , ai−1)M if and only if M/(a1, . . . , ai)M 6= 0. This observation justifies the following

equivalent definition for M -regular sequences.

Definition 2.13. A sequence a1, . . . , an ∈ I is M -regular if

(a) a1 ∈ NZDR(M),

(b) ai ∈ NZDR(M/(a1, . . . , ai−1)M) for i = 2, . . . , n, and

(c) (a1, . . . , an)M 6= M .

Remark. Condition (c) in Definition 2.13 is sometimes automatic, e.g., if (R,m) is local with

a1, . . . , an ∈ m and M is nonzero and finitely generated, then by Nakayama’s lemma, we have

(a1, . . . , an)M ⊆ mM (M .

Definition 2.14. A sequence a1, . . . , an ∈ I is a maximal M -regular sequence in I if a1, . . . , an is an

M -regular sequence in I such that for all b ∈ I, the longer sequence a1, . . . , an, b is not M -regular.

Example 2.15. A list of variables X1, . . . , Xn is A[X1, . . . , Xn]-regular for any commutative ring A.

2.3 Ext via Projective Resolutions

In this section, let N be another R-module. We present some definitions and facts from

homological algebra leading to the definition of Ext.
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Definition 2.16. A sequence A
f−→ B

g−→ C of R-module homomorphism is exact (at B) if Im(f) =

Ker(g). Note that Im(f) ⊆ Ker(g) if and only if g ◦ f = 0.

More generally, a sequence of R-module homomorphism

· · · di+1−−−→ Xi
di−→ Xi−1

di−1−−−→ · · ·

is exact if Im(di+1) = Ker(di) for all i ∈ Z.

Fact 2.17. We have the following facts:

(a) The sequence 0→ A
f−→ A′ of R-module homomorphisms is exact (at A) if and only if f is 1-1.

(b) The sequence B′
g−→ B → 0 of R-module homomorphisms is exact (at B) if and only if g is onto.

(c) The sequence 0→ A
f−→ B

g−→ C → 0 of R-module homomorphisms is exact if f is 1-1, g is onto

and Im(f) = Ker(g).

Definition 2.18. A short exact sequence is an exact sequence of the form

0→ U
α−→ V

β−→W → 0.

Definition 2.19. A homomorphism of short exact sequences is a triple (α, β, γ) of R-module ho-

momorphisms such that the following diagram commutes:

0 A B C 0

0 A′ B′ C ′ 0

α

f

β

g

γ

f ′ g′

Fact 2.20 (The Short Five Lemma). [4, Proposition 10.24] Let (α, β, γ) be a homomorphisms of

short exact sequences

0 A B C 0

0 A′ B′ C ′ 0.

α

f

β

g

γ

f ′ g′

(a) If α and γ are 1-1, then so is β.

(b) If α and γ are onto, then so is β.

(c) If α and γ are isomorphisms, then so is β.

6



Definition 2.21. A short exact sequence 0 → A
f−→ B

g−→ C → 0 is split if and only if it is

equivalent to the canonical exact sequence 0→ A
ε−→ A⊕C ρ−→ C → 0, i.e., if and only if there exists

a commutative diagram

0 A B C 0

0 A A⊕ C C 0.

=

f

β

g

=

ε ρ

In this event, β is an isomorphism by the short five lemma, and then β is an R-module isomorphism,

so B ∼= A⊕ C.

Notation 2.22.

HomR(M,N) := {R-module homomorphisms f : M → N} ,

which is an R-module because R is commutative.

Let A,B be R-modules. For each f ∈ HomR(A,B), define

f∗ = HomR(f,N) : HomR(B,N) −→ HomR(A,N)

φ 7−→ φ ◦ f.

A B

N

f

f∗(φ)
φ

Then f∗ an R-module homomorphism.

Fact 2.23. HomR(−, N) is a contravariant functor, i.e.,

(a) it respects identity maps: HomR(idM , N) = idHomR(M,N), and

(b) it respects compositions: for all R-module homomorphisms A
α−→ B

β−→ C,

HomR(β ◦ α,N) = HomR(α,N) ◦HomR(β,N).

7



Or equivalently, (β ◦ α)∗ = α∗ ◦ β∗, i.e., the following diagram commutes:

Hom(−, N) : HomR(A,N) HomR(B,N)

HomR(C,N).

HomR(α,N)

HomR(β,N)
HomR(β◦α,N)

Fact 2.24 (Left Exactness of Hom(−, N)). [4, Theorem 10.33] Let A
α−→ B

β−→ C → 0 be exact.

Then the induced sequence 0→ Hom(C,N)
β∗−→ Hom(B,N)

α∗−−→ Hom(A,N) is exact.

Remark. The functor Hom(N,−) is defined similarly with notation f∗ = Hom(N, f). This functor

is covariant and left exact.

Fact 2.25. [4, Theorem 10.30] The following conditions are equivalent.

(i) HomR(N,−) transforms epimorphisms into epimorphisms.

(ii) HomR(N,−) transforms short exact sequences into short exact sequences.

(iii) HomR(N,−) transforms exact sequences into exact sequences.

(iv) Every short exact sequence 0→ A→ B → N → 0 splits.

(v) For R-modules B and C, if B
β−→ C → 0 is exact, then every R-module homomorphism from

N to C lifts to an R-module homomorphism into B, i.e., given φ ∈ HomR(N,C), there is a map

ψ ∈ HomR(N,B) making the following diagram commute:

N

B C 0.

∃ ψ
φ

β

(vi) There exists an R-module N ′ such that N⊕N ′ is free, i.e., N is a summand of a free R-module.

Definition 2.26. An R-module P is called projective if it satisfies any of the equivalent conditions

of Fact 2.25.

Definition 2.27. A chain complex or R-complex is a sequence of R-module homomorphsims

M• = · · ·
∂Mi+1−−−→Mi

∂Mi−−→Mi−1

∂Mi−1−−−→ · · ·

such that ∂Mi−1 ◦ ∂Mi = 0 for all i ∈ Z. We say Mi is the module in degree i in the R-complex M•.

8



The ith homology module of an R-complex M• is the R-module

Hi(M•) = Ker(∂Mi )/ Im(∂Mi+1).

Definition 2.28. A projective resolution of M over R or an R-projective resolution of M is an exact

sequence of R-module homomorphisms

P+
• = · · · ∂

P
2−−→ P1

∂P1−−→ P0
τ−→M → 0

such that each Pi is a projective R-module.

The truncated projective resolution of M associated to P+
• is the R-complex

P• = · · · ∂
P
2−−→ P1

∂P1−−→ P0 → 0.

Define the R-complex Hom(P+
• , N) as follows:

Hom(P+
• , N) = 0→M∗

τ∗−→ P ∗0
(∂P1 )∗−−−−→ P ∗1

(∂P2 )∗−−−−→ · · ·
(∂Pi−1)∗

−−−−−→ P ∗i−1

(∂Pi )∗−−−−→ P ∗i
(∂Pi+1)∗

−−−−−→ · · · ,

where we set P ∗i = Hom(Pi, N) and (∂Pi )∗ = Hom(∂Pi , N) for i ≥ 0. Define the R-complex P ∗• as

follows:

P ∗• = Hom(P•, N) = 0→ P ∗0
(∂P1 )∗−−−−→ P ∗1

(∂P2 )∗−−−−→ · · ·
(∂Pi−1)∗

−−−−−→ P ∗i−1

(∂Pi )∗−−−−→ P ∗i
(∂Pi+1)∗

−−−−−→ · · · .

Let P ∗i be in degree −i, i.e., P ∗i = (P ∗)−i for each i ≥ 1. Then

P ∗• = 0 P ∗0 P ∗1 · · · P ∗i−1 P ∗i · · ·

P ∗• = 0 (P ∗)0 (P ∗)−1 · · · (P ∗)−i+1 (P ∗)−i · · · .

(∂P1 )∗ (∂P2 )∗ (∂Pi−1)∗ (∂Pi )∗ (∂Pi+1)∗

∂P
∗

0
∂P
∗
−1 ∂P

∗
−i+2 ∂P

∗
−i+1 ∂P

∗
−i

In particular,

∂P
∗

i = (∂P−i+1)∗, ∀ i ≤ 0.

By convention, we have ∂P
∗

i = 0 for all i ≥ 1.

9



Remark. Because of the condition ∂Pi ◦ ∂Pi+1 = 0 for i ≥ 1, by Fact 2.23, we have

(∂Pi+1)∗ ◦ (∂Pi )∗ = (∂Pi ◦ ∂Pi+1)∗ = 0∗ = 0, ∀ i ≥ 1.

Thus, Hom(P•, N) and similarly Hom(P+
• , N) are R-complexes.

Definition 2.29 (Ext via projective resolutions). Let P+
• be a projective resolution of M . Define

the Ext module by

ExtiR(M,N) := H−i(P
∗
• ) = Ker

(
∂P
∗

−i
)
/ Im

(
∂P
∗

−i+1

)
= Ker

(
(∂Pi+1)∗

)
/ Im

(
(∂Pi )∗

)
.

Fact 2.30. Let P+
• be a projective resolution of M . By the left exactness of Hom, we have an exact

sequence:

0→M∗
τ∗−→ P ∗0

(∂P1 )∗−−−−→ P ∗1 .

Then we have

Ext0
R(M,N) = Ker

(
∂P1
∗)
/ Im(0) ∼= Ker

(
(∂P1 )∗

)
= Im(τ∗) ∼= M∗ = HomR(M,N),

Ext−1
R (M,N) = Ker

(
0→ P ∗0

)
/ Im(0→ 0) = 0/0 = 0,

ExtiR(M,N) = Ker(0→ 0)/ Im(0→ 0) = 0/0 = 0, ∀ i ≤ −2.

Remark. ExtiR(M,N) is well-defined, i.e., independent of the choices of projective resolution of M ,

by [10, Theorem VIII.5.2].

Remark. We can also define the Ext module via injective modules, but this is not needed for this

thesis.

2.4 Krull Dimension, Depth and Type

In this section, we define Krull dimension of M and depth of M in I, then we define type

of M when (R,m) is local.
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Definition 2.31. The prime spectrum of R is

Spec(R) = {prime ideals of R}.

Let V(I) denote the set of prime ideals in R containing I:

V(I) = {p ∈ Spec(R) | I ⊆ p}.

The support of M is the set

SuppR(M) = {p ∈ Spec(R) |Mp 6= 0}.

Fact 2.32. It is straightforward to show that

SuppR(R) = Spec(R),

and

SuppR(R/I) = V(I).

Definition 2.33. The Krull dimension of M is

dimR(M) = sup{n ≥ 0 | ∃ a chain p0 ( p1 ( · · · ( pn in SuppR(M)}.

Set dim(R) = dimR(R).

Based on Fact 2.32, we have the following Krull dimension definitions for rings and quotient

rings.

Definition 2.34. (a) The Krull dimension of R is

dim(R) = sup{n ≥ 0 | ∃ a chain p0 ( p1 ( · · · ( pn in Spec(R)}.

(b) The Krull dimension of R/I is

dim(R/I) = sup{n ≥ 0 | ∃ a chain p0 ( p1 ( · · · ( pn in V(I)}.

11



Assumption. For the remainder of this section, we assume R is Noetherian and M is finitely

generated.

Fact 2.35. [10, Corollary V.5.12] If IM 6= M , then each maximal M -regular sequence in I has the

same length, namely

inf{i ≥ 0 | ExtiR(R/I,M) 6= 0}.

Through Fact 2.35, we have the following definition for depth:

Definition 2.36. If IM 6= M , we define depth of M in I by

depthR(I;M) = inf{i ≥ 0 | ExtiR(R/I,M) 6= 0}.

If IM = M , then set depthR(I;M) =∞.

Remark. If (R,m) is local and M 6= 0, then by Nakayama’s lemma, IM ⊆ mM (M , so IM 6= M .

Notation 2.37. If (R,m, k) is local, set depthR(M) = depthR(m;M)

Definition 2.38. Let (R,m, k) be local and M 6= 0. Assume depthR(M) = n. The type of M is

the positive integer

typeR(M) = dimk(ExtnR(k,M)).

2.5 Monomial Ideals

In this section, we introduce monomial ideals and a way of understanding them combinato-

rially. Let A be a commutative ring with identity, R = A[X1, . . . , Xd] unless otherwise stated. Set

X = (X1, . . . , Xd)R, the ideal generated by all variables in R and N0 = {0, 1, 2, · · · }.

Definition 2.39. A monomial in elements X1, . . . , Xd ∈ R is an element of the form Xn1
1 · · ·X

nd
d

in R, where n1, . . . , nd ∈ N0. For short, we write n = (n1, . . . , nd) ∈ Nd0 and Xn = Xn1
1 · · ·X

nd
d .

Notation 2.40. Let m,n ∈ Nd0. Write m < n when mi ≥ ni for i = 1, . . . , d. For each n ∈ Nd0, set

〈n〉 =
{
m ∈ Nd0

∣∣ m < n
}

= n+ Nd0.
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Example 2.41. We describe the two sets 〈(1, 2)〉 and 〈(1, 2)〉 ∪ 〈(3, 1)〉 in the following graphs.
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〈(1, 2) ∪ (3, 1)〉

where bullets represent points in the appropriate set.

Definition 2.42. Denote the set of monomials in R by

JRK =
{
Xn | n ∈ Nd0

}
.

Definition 2.43. A monomial ideal I in R is an ideal generated by monomials in X1, . . . , Xd, i.e.,

elements of the form Xn with n ∈ Nd0.

Remark. The trivial ideals 0 and R are monomial ideals since 0 = (∅)R and R = (1)R =

(X0
1 · · ·X0

d)R.

Assumption. For the remainder of this section, let I ⊆ R be a monomial ideal.

Fact 2.44 (Dickson’s Lemma). [8, Theorem 1.3.1] I is finitely generated by a set of monomials.

Definition 2.45. Denote the set of monomials in I by

JIK =
{
Xn ∈ I | n ∈ Nd0

}
= I ∩ JRK.

Fact 2.46. [8, Lemma 1.1.10] For each f ∈ I, each monomial occurring in f is in I.

Definition 2.47. The graph of I is

Γ(I) = {n ∈ Nd0 | X
n ∈ I} ⊆ Nd0.

13



Fact 2.48. [8, Theorem 1.1.12] Let I =
(
Xn1 , . . . , Xnt

)
with n1, . . . , nt ∈ Nd0. Then

Γ(I) = 〈n1〉 ∪ · · · ∪ 〈nt〉.

Example 2.49. LetR = A[X,Y ] and I = (X4, X3Y, Y 2)R. Then Γ(I) = 〈(4, 0)〉∪〈(3, 1)〉∪〈(0, 2)〉 ⊆

N2
0. We draw Γ(I) in the following graph.
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Definition 2.50. Define the monomial radical of I by

m-rad(I) = (rad(I) ∩ JRK)R,

where rad(I) is the radical of I.

Example 2.55 shows that rad(I) may not be a monomial ideal.

Fact 2.51. [8, Proposition 2.3.2] We have the following facts:

(a) m-rad(I) ⊆ rad(I).

(b) m-rad(I) = rad(I) if and only if rad(I) is a monomial ideal.

(c) If A is a field, then m-rad(I) = rad(I).

Definition 2.52. Let f = Xn ∈ JRK. The support of f is the set of variables that appear in f :

Supp(f) = {i ∈ {1, . . . , d} : ni ≥ 1} = {i ∈ {1, . . . , d} : Xi | f}.
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The reduction of f is the monomial achieved by reducing all non-zero exponents down to 1:

red(f) =
∏

i∈Supp(f)

Xi =
∏
Xi|f

Xi.

Example 2.53. Supp(X5
1X

4
3 ) = {1, 3} and red(X5

1X
4
3 ) = X1X3.

Fact 2.54. [8, Theorem 2.3.7] Assume I = (S)R for some S ⊆ JRK, then we have m-rad(I) =

(red(s) | s ∈ S)R.

Example 2.55. The monomial ideal I := (X3Y 2, XY 3, Y 5)R in R := A[X,Y ] has

m-rad(I) = (red(X3Y 2), red(XY 3), red(Y 5))R = (XY,XY, Y )R = (Y )R.

If A = Z/4Z, then rad(I) = (2, Y )R 6= m-rad(I).

Definition 2.56. I is m-reducible if there exist monomial ideals J,K ⊆ R such that I = J ∩K and

J 6= I and K 6= I. I is m-irreducible if it is not m-reducible and I 6= R.

Remark. Fact 2.60 shows when A is a field and I 6= 0, we have I is irreducible if and only if I is

m-irreducible.

Example 2.57. The monomial ideal (X3, X2Y 2, Y 4)R in R = A[X,Y ] is m-reducible because

we have (X3, Y 2)R ∩ (X2, Y 4)R = (X3, X2Y 2, Y 4)R, Y 2 ∈ (X3, Y 2)R r (X3, X2Y 2, Y 4)R and

X2 ∈ (X2, Y 4)Rr (X3, X2Y 2, Y 4)R.

Fact 2.58. I is m-irreducible if and only if I 6= R and for any monomial ideals J,K ⊆ R, if

I = J ∩K, then I = J or I = K.

Fact 2.59. [8, Theorem 3.1.4] A nonzero I is m-irreducible if and only if it is generated by “pure

powers”, i.e., if and only if I = (Xa1
i1
, . . . , Xat

it
)R for some t ≥ 1 and ai ≥ 1 for i = 1, . . . , t.

Fact 2.60. [8, Theorem 3.2.4] Assume A is a field. Then I is irreducible if and only if it is m-

irreducible.

Definition 2.61. An m-irreducible decomposition of I is an expression I =
⋂n
i=1 Ji with n ≥ 1 such

that monomial ideals J1, . . . , Jn ⊆ R are m-irreducible.

Example 2.62. The monomial ideal I = (X2, XY, Y 3)R in R = A[X,Y ] has an m-irreducble

decomposition I = (X,Y 3)R ∩ (X2, Y )R.
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Fact 2.63. [8, Theorem 3.3.3] If I 6= R, then I has an m-irreducible decomposition.

Definition 2.64. An m-irreducible decomposition I =
⋂n
i=1 Ji is redundant if I =

⋂
i6=k Ji for some

k ∈ {1, . . . , n}. An m-irreducible decomposition I =
⋂n
i=1 Ji is irredundant if it is not redundant,

that is, if every k ∈ {1, . . . , n} satisfies J 6=
⋂
i6=k Ji. As J =

⋂n
i=1 Ji ⊆

⋂
i6=k Ji holds automatically,

the given decomposition is irredundant if and only if every k ∈ {1, . . . , d} satisfies J (
⋂
i 6=k Ji.

Example 2.65. The m-irreducible decomposition in Example 2.62 is irredundant.

Fact 2.66. [8, Corollary 3.3.8] If I 6= R, then I has an irredundant m-irreducible decomposition.

Definition 2.67. A monomial Xn with n ∈ Nd0 is square-free if ni = 0 or 1 for i = 1, . . . , d. A

monomial ideal I of R is square-free if it is generated by square-free monomials.

Fact 2.68. [8, Theorem 3.3.9] If I has two irredundant m-irreducible decompositions I =
⋂n
i=1 Ii

and I =
⋂m
j=1 Ij , then n = m and there exists σ ∈ Sm such that Ii = Jσ(i) for i = 1, . . . , n, where

Sn is the permutation group.

Fact 2.69. [8, Theorem 5.1.2] Let A be a field and I have an m-irreducible decomposition I =⋂m
i=1 Ji. Then dim(R/I) = d − n, where n is the smallest number of generators needed for one of

the Ji.

Definition 2.70. A parameter ideal in R is an ideal of the form (Xa1
1 , . . . , Xad

d ) with a1, . . . , ad ≥ 1.

For Xn = Xn1
1 · · ·X

nd
d ∈ JRK with n ∈ Nd0, set

PR(Xn) =
(
Xn1+1

1 , . . . , Xnd+1
d )R.

Fact 2.71. The parameter ideals of R are exactly the ideals of the form PR(f).

Definition 2.72. A parametric decomposition of I is an m-irreducible decomposition of I of the

form I =
⋂n
i=1 PR(fi).

A parametric decomposition I =
⋂n
i=1 PR(fi) is irredundant if I 6=

⋂
i 6=j PR(fi) for any

j ∈ {1, . . . , n}.

A parametric decomposition I =
⋂n
i=1 PR(fi) is redundant if I =

⋂
i 6=j PR(fi) for some

j ∈ {1, . . . , n}.

Fact 2.73. [8, Theorem 6.1.5 and Exercise 5.1.7] I has a parametric decomposition if and only if

m-rad(I) = X. Furthermore, if A is a field, then they are equivalent to dim(R/I) = 0.
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Definition 2.74. f ∈ JRK is an I-corner element if f 6∈ I and X1f, . . . ,Xdf ∈ I, i.e., f 6∈ I and

fX ⊆ I. The set of I-corner elements in JRK is denoted CR(I).

Example 2.75. Let R = A[X,Y ]. Then CR(X3) = {X2, XY, Y 2} and CR(PR(Y 2)) = {Y 2}.
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q corner element

Remark. Corner elements may remind a reader of a border basis, but they are different.

Definition 2.76. Let J ⊆ R be an ideal. Define the ideal quotient or colon ideal (I :R J) by

(I :R J) = {r ∈ R | rj ∈ I, ∀ j ∈ R}.

Fact 2.77. [8, Theorem 2.5.1] Let J ⊆ R be an ideal. Then (I :R J) is an ideal of R. Furthermore,

if J is also a monomial ideal, then so is (I :R J).

Fact 2.78. [8, Proposition 6.2.3] We have the following facts:

(a) CR(I) = J(I :R X)K r JIK.

(b) If f, f ′ ∈ CR(I) are distinct, then f 6∈ (f ′)R and f ′ 6∈ (f)R.

(c) CR(I) is finite.

Proposition 2.79.

(I : X) = I + (CR(I))R.

Proof. “⊇”. By definition, XCR(I) ⊆ I, i.e., (I : X) ⊇ CR(I), i.e., (I : X) ⊇ (CR(I))R. Also,

(I : X) ⊇ I. So (I : X) ⊇ I + (CR(I))R.
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“⊆”. Let f ∈ J(I : X)K. Then fX ∈ I. If f ∈ I, we are done. Assume f 6∈ I. Since fX ∈ I,

f ∈ CR(I) ⊆ I + (CR(I))R.

Proposition 2.80. Assume A is a field. If f1, . . . , ft are the distinct I-corner elements in R, then

f1, . . . , ft is an A ∼= R/X-basis of (I : X)/I.

Proof. Since (I : X) ⊆ R is an ideal, (I : X) is an R-module. Also, since X · (I:X)
I = 0 in R/I,

(I : X)/I is an R/X ∼= A-vector space.

Let f ∈ (I : X)/I with f ∈ (I : X). Since CR(I) = {f1, . . . , ft}, by Proposition 2.79, we

have (I : X) = I + (f1, . . . , ft)R. So f ∈ (I : X)/I = I+(f1,...,ft)R
I = (f1, . . . , ft)

R
I = (f1, . . . , ft)

R
I .

Also, since f1, . . . , ft ∈ CR(I), f1, . . . , ft ∈ (I : X) and then f1, . . . , ft ∈ (I : X)/I. So there exist

r1, . . . , rt ∈ R/I with r1, . . . , rt ∈ R such that f = r1f1 + · · · + rtft. So f1, . . . , ft linearly span

(I : X)/I over A.

Assume there exist b1, . . . , bt ∈ R/X with b1, . . . , bt ∈ R such that b1f1 + · · · + btft = 0

in (I : X)/I. If bi = 0, assume without loss of generality that bi = 0. If bi 6= 0, assume without

loss of generality that bi is a constant. This is allowable because R/X ∼= A. Then in (I : X)/I,

0 = b1f1 + · · ·+ btft = b1f1 + · · ·+ btft. So b1f1 + · · ·+ btft ∈ I. Hence fi ∈ I for all i ∈ {1, . . . , t}

such that bi 6= 0 by Fact 2.46. By definition, though, we have fi 6∈ I for i = 1, . . . , t. Therefore,

bi = 0 for i = 1, · · · , t. Thus, f1, . . . , ft ∈ (I : X)/I are linearly independent over A.

Fact 2.81. [8, Theorem 6.2.9] Let CR(I) = {f1, . . . , fm}. Then I =
⋂m
j=1 PR(fj) is an irredundant

parametric decomposition.

Fact 2.82. [8, Proposition 6.2.11] Let f1, . . . , fm ∈ JRK. Assume I =
⋂m
i=1 PR(fi) is an irredundant

parametric decomposition of I. Then CR(I) = {f1, . . . , fm}.

Fact 2.83. [8, Theorem 7.5.1] Let I =
(
Xa1 , . . . , Xan

)
R with ai = (ai,1, . . . , ai,d) ∈ Nd0 for i =

1, . . . , n. Then

I =

d⋂
i1=1

· · ·
d⋂

in=1

(
X
a1,i1
i1

, . . . , X
an,in
in

)
.
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Example 2.84. Let R = A[X1, X2] and I = (X2
1X2, X1X3)R. Then by Fact 2.83,

I = (X2
1 , X1)R ∩ (X2

1 , X
0
2 )R ∩ (X2

1 , X3)R

∩ (X2, X1)R ∩ (X2, X
0
2 )R ∩ (X2, X3)R

∩ (X0
3 , X1)R ∩ (X0

3 , X
0
2 )R ∩ (X0

3 , X3)R

= (X1)R ∩R ∩ (X2
1 , X3)R ∩ (X1, X2)R ∩R ∩ (X2, X3)R ∩R ∩R ∩R

= (X1)R ∩ (X2
1 , X3)R ∩ (X2, X3)R.

The polarization of a monomial is a square-free monomial ideal in a new set of variables

obtained by turning powers of variables into products of distinct variables. It is constructed as

follows.

Definition 2.85. Define the polarization of Xa = Xa1
1 · · ·X

ad
d ∈ JRK to be the square-free monomial

PO(Xa) = X1,0 · · ·X1,a1−1 · · ·Xd,1 · · ·Xd,ad−1

in the polynomial ring R′ = A[Xi,j | 1 ≤ i ≤ d, 0 ≤ j ≤ ai − 1]. Let I =
(
Xa1 , . . . , Xan

)
R with

ai = (ai,1, · · · , ai,d) ∈ Nd0 for i = 1, · · · , n. Define the polarization of I by

PO(I) =

(
PO

(
Xa1

)
, . . . ,PO

(
Xan

))
R′,

where R′ is the smallest polynomial ring containing PO(Xa1), . . . ,PO(Xan).

Remark. Note that by identifying each Xi with Xi,0, one can regard

R′ = A[X1,0, · · · , Xd,0][Xi,j | 1 ≤ i ≤ d, 1 ≤ j ≤ ai − 1] = R[Xi,j | 1 ≤ i ≤ d, 1 ≤ j ≤ ai − 1],

which is a ring extension of R.

Example 2.86. Let R = A[X1, X2, X3] and I = (X2
1 , X1X2, X

3
2 ). Then

PO(I) = (X1,0X1,1, X1,0X2,0, X2,0X2,1X22)R′,

with R′ = A[X1,0, X1,1, X2,0, X2,1, X2,2].

19



Fact 2.87. [5] Let I =
(
Xa1 , . . . , Xan

)
R. Let mj = max1≤i≤n{ai,j} for j = 1, . . . , d. Then the

sequence of elements Z = {Xi,0 − Xi,k | 1 ≤ i ≤ d, 1 ≤ k ≤ mi − 1} forms a regular sequence on

R′/PO(I) where R′ is the smallest polynomial ring containing PO(Xa1), . . . ,PO(Xan), and

R

I
∼=

R′/PO(I)

(Z)R′/PO(I)
∼=

R′

(PO(I) + (Z))R′
.

Example 2.88. We have

A[X1, X2, X3]

(X2
1 , X

2
2 , X

2
3 )
∼=

A[X1, X2, X3, X1,1, X2,1, X3,1]

(X1X1,1, X2X2,1, X3X3,1) + (X1 −X1,1, X2 −X2,1, X3 −X3,1)
.

2.6 Homogeneous Cohen-Macaulay Rings

Let A be a field, set R = A[X1, . . . , Xd] and let I ( R be an ideal generated by homogeneous

polynomials. In this section, we define Cohen-Macaulayness and we see how to compute the type of

R/I, when R/I is Cohen-Macaulay.

Remark. The quotient ring R/I behaves analogously with local rings, e.g., every maximal homo-

geneous regular sequence on R/I has the same length (See Fact 2.90).

We have already defined depth and type in the local setting. Now we define them in the

homogeneous setting.

Definition 2.89. The depth of R/I is

depth(R/I) = the length of a maximal homogeneous (R/I)-regular sequence in X.

The type of R/I is

type(R/I) = dimA(ExtnR(A,R/I)),

where n = depth(R/I).

Fact 2.90. [2, Proposition 1.5.15] We have

depth(R/I) = depth(RX/IX),
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and

type(R/I) = type(RX/IX).

Fact 2.91. [2, Theorems 1.2.10 and 2.1.2] If f1, . . . , fr ∈ R is a homogeneous regular sequence for

R/I, then

depth(R/(I + (f1, . . . , fr)R)) = depth(R/I)− r,

and

dim(R/(I + (f1, . . . , fr)R)) = dim(R/I)− r.

Cohen-Macaulay rings, defined next, have been shown over and over again in the literature

to be extremely nice. See the discussion in [2, p.57] for more about this.

Definition 2.92. The quotient R/I is Cohen-Macaulay if depth(R/I) = dim(R/I). We say that I

is Cohen-Macaulay if the quotient R/I is Cohen-Macaulay.

Fact 2.93. We have the following facts:

(a) Let R/I be Cohen-Macaulay. If f1, . . . , fn is a maximal homogeneous regular sequence for R/I,

then dim(R/(I + (f1, . . . , fn)R)) = 0 and type(R/I) = type(R/(I + (f1, . . . , fn)R)).

(b) If I has an irredundant parametric decomposition I =
⋂t
i=1Qi, then type(R/I) = t.

Proof. (a) Since R/I is Cohen-Macaulay, by Fact 2.91, we have

dim(R/(I + (f1, . . . , fn)R)) = dim(R/I)− n = dim(R/I)− depth(R/I) = 0.

By [6, Proposition A.6.2], type(R/I) = type(R/(I + (f1, . . . , fn)R)).

(b) By Facts 2.81 and 2.82, we have |CR(I)| = t. Also, type(R/I) = dimA(Ext0
R(A;R/I)) =

dimA(HomR(A,R/I)) with A ∼= R/X. So to show type(R/I) = t, it is equivalent to verify |CR(I)| =

dimA(HomR(A,R/I)). Assume CR(I) =
{
Xn1 , . . . , Xnt

}
. Define

Φ : CR(I) HomR(R/X, R/I)

Xni ϕi : R/X R/I

r rXni
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We first show that ϕi is well-defined. Let r1 = r2 in R/X. Then r1 − r2 ∈ X. Since Xni ∈ CR(I),

(r1 − r2)Xni ∈ I. So r1X
ni − r2X

ni = (r1 − r2)Xni = 0 in R/I. Hence ϕi is well-defined, and it

follows readily that Φ is well-defined as well.

Let e1, . . . , et be the standard basis of the vector space At ∼= (R/X)t. Define

Φ̂ : At −→ HomR(A,R/I)

ei 7−→ Φ
(
Xni

)
= ϕi, ∀ i = 1, . . . , t

t∑
i=1

aiei 7−→
t∑
i=1

aiΦ
(
Xni

)
=

t∑
i=1

aiϕi

By [10, Remark IX.3.4], HomR(A,R/I) is a finite dimensional A-vector space. So by the universal

mapping property for A-vector space, Φ̂ is a well-defined A-linear transformation.

Let x =
∑t
i=1 aiei ∈ At with a1, . . . , at ∈ A. Then x ∈ Ker(Φ̂) if and only if 0 = Φ̂(x) =

Φ̂
(∑t

i=1 aiei
)

=
∑t
i=1 aiϕi if and only if in R/I, 0 =

(∑t
i=1 aiϕi

)
(1) =

∑t
i=1 aiϕi(1) =

∑t
i=1 aiX

ni

if and only if a1 = · · · = at = 0 by Proposition 2.80 if and only if x = 0. So Φ̂ is 1-1.

Let ψ ∈ HomR(A,R/I). If ψ = 0, then Φ̂(0) = 0 = ψ since Φ̂ is a linear transformation. By

Dickson’s Lemma, we have I = (f1, . . . , fm)R for some f1, . . . , fm ∈ JRK. Assume ψ 6= 0. Since A is

a cyclic R-module, there exists s ∈ R such that

ψ : A→ R/I

1 7→ s.

Note that in R/I, 0 = ψ(X/X) = (sX+ I)/I, i.e., sX+ I ⊆ I, so sX ⊆ I. Hence by Proposition 2.79,

s ∈ (I : X) = I+(CR(I))R = I+
(
Xn1 , . . . , Xnt

)
R. So in R/I, s =

t∑
i=1

biX
ni for some b1, . . . , bt ∈ R.

Since Φ̂ is A-linear, for all r ∈ A,

ψ(r) = sr = sr =

(
t∑
i=1

biX
ni

)
r =

(
t∑
i=1

ϕi(bi)

)
r =

(
t∑
i=1

Φ(Xni)(bi)

)
r =

(
t∑
i=1

Φ̂(ei)(bi)

)
r

=

(
t∑
i=1

Φ̂
(
biei
)
(1)

)
r =

(
Φ̂

( t∑
i=1

biei

)
(1)

)
r = Φ̂

(
t∑
i=1

biei

)
(r).

So Φ̂
( t∑
i=1

biei

)
= ψ. Thus, Φ̂ is onto.
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Chapter 3

Cohen-Macaulay Type of Weighted

Edge Ideals and Path Ideals

In Sections 3.2-3.4, we present the main results of this thesis. These results give formulas to

compute the type of the edge ideal of a suspension of a graph, the type of the weighted edge ideal of a

weighted suspension and the type of the r-path ideal of an r-path suspension of a graph. Section 3.1

contains a little more background needed for these results. Let A be a field and R = A[X1, . . . , Xd].

Let G = (V,E) be a (finite simple) graph with vertex set V = {v1, . . . , vd} and edge set E. An edge

between vertices vi and vj is denoted vivj .

3.1 Connections Between Combinatorics and Monomial Ide-

als

In this section, we list some combinatorial facts about square-free monomial ideals.

Definition 3.1. We have the following definitions:

(a) The edge ideal associated to G is the ideal I(G) ⊆ R that is “generated by the edges of G”:

I(G) = (XiXj | vivj ∈ E)R.
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(b) For each V ′ ⊆ V , let PV ′ ⊆ R be the ideal “generated by the elements of V ′”:

PV ′ = (Xi | vi ∈ V ′)R.

For instance, PV = X = (X1, · · · , Xd)R.

We use the definitions for paths and cycles from Diestel [3].

Definition 3.2. An r-path is a non-empty graph P = (V,E) of the form V = {x0, · · · , xr}

and E = {x0x1, x1x2, · · · , xr−1xr}, where xi are all distinct. We denote an r-path by Pr =(
x0 x1 · · · xr

)
. Note there is r + 1 vertices and r edges in Pr.

If Pr =
(
x0 x1 · · · xr−1

)
is an (r − 1)-path, then the graph Pr−1 +

xr−1xr is called a cycle.

Example 3.3. Consider the following 3-cycle C3 =
(
v1 v2 v3 v1

)
.

v1 v2 v3

The edge ideal I(C3) = (X1X2, X2X3, X1X3) in R = A[X1, X2, X3]. We have PV ′ = (X1, X3)R for

V ′ = {v1, v3}.

Definition 3.4. A vertex cover of G is a subset V ′ ⊆ V such that for each edge vivj ∈ E we have

vi ∈ V ′ or vj ∈ V ′. A vertex cover V ′ is minimal if it does not properly contain another vertex

cover of G.

Example 3.5. The minimal vertex covers for the 2-path P2 = ( v1 v2 v3) are depicted

in the following sketches.

v1 v2 v3 v1 v2 v3

Fact 3.6. [8, Theorem 4.3.6] The ideal I(G) is a square-free monomial ideal. It has the following

m-irreducible decomposition

I(G) =
⋂

V ′ v. cover

PV ′ =
⋂

V ′ min. v. cover

PV ′ ,
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where the first intersection is taken over all vertex covers of G, and the second intersection is taken

over all minimal vertex covers of G. The second intersection is irredundant.

Definition 3.7. For V ′ ⊆ V , set

XV ′ =
∏
vi∈V ′

Xi.

Definition 3.8. A simplicial complex on V is a nonempty collection ∆ of subsets of V that is closed

under subsets. An element of ∆ is called a face of ∆. A face of the form {vi} is called a vertex of

∆. A face of the form {vj , vk} with j 6= k is called an edge of ∆. A maximal element of ∆ with

respect to containment is a facet of ∆. The (d − 1)-simplex consists of all the subsets of V and is

denoted ∆d−1.

Definition 3.9. Let ∆ be a simplicial complex on V . The Stanley-Reisner ideal of R associated to

∆ is the ideal “generated by the non-faces of ∆”:

J∆ =
(
XV ′

∣∣ V ′ ⊆ V and V ′ 6∈ ∆
)
R.

Definition 3.10. W ⊆ V is independent in G if for any distinct xi, xj ∈ W : xi is not adjacent to

xj in G. An independent subset in G is maximal if it is maximal with respect to containment. Let

∆G denote the set of independent subsets of G. This is the independence complex of G.

Fact 3.11. [8, Theorem 4.4.9] ∆G is a simplicial complex such that

IG = J∆G
.

3.2 The Type of R′/I(ΣG)

In this section, we compute the type of R′/I(ΣG) naturally using some known facts. See

Formula (*) from the abstract and Theorem 3.20. Let R′ = A[X1, . . . , Xd, Y1, . . . , Yd].

Definition 3.12. The suspension of G is the graph ΣG with vertex set

V (ΣG) = V t {w1, · · · , wd} = {v1, . . . , vd, w1, . . . , wd}
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and edge set

E(ΣG) = E(G) t {v1w1, . . . , vdwd}.

This is also known as the K1-corona of G.

Remark. The term “suspension” is due to Villarreal [11]. It is not related to the suspension of a

topological space.

Example 3.13. The suspension ΣP2 of the path G = P2 = ( v1 v2 v3 ) is

w1 w2 w3

v1 v2 v3.

Fact 3.14. The minimal vertex covers of ΣG are of the form V ′ tW ′, where V ′ is a vertex cover

of G and W ′ = {wi | vi 6∈ V ′}. So the size of each minimal vertex cover of ΣG is d.

Example 3.15. Consider the following graph ΣP2 as in Example 3.13.

w1 w2 w3

v1 v2 v3

We depict the vertex covers of P2 in the following sketches.

v1 v2 v3 v1 v2 v3 v1 v2 v3

v1 v2 v3 v1 v2 v3

So by Fact 3.14, we present the minimal vertex covers of ΣP2 in the following sketches.

w1 w2 w3

v1 v2 v3

w1 w2 w3

v1 v2 v3

w1 w2 w3

v1 v2 v3

w1 w2 w3

v1 v2 v3

w1 w2 w3

v1 v2 v3
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Then by Fact 3.6, the irredundant m-irreducible decomposition of I(ΣP2) is given by

I(ΣP2) = (X1X2, X2X3, X1Y1, X2Y2, X3Y3)R′

= (X1, X2, X3)R′ ∩ (X1, X2, Y3)R′ ∩ (Y1, X2, X3)R′ ∩ (X1, Y2, X3)R′ ∩ (Y1, X2, Y3)R′.

Fact 3.16.

dim

(
R′

I(ΣG)

)
= d.

Proof. By Facts 3.6, 3.14 and 2.69, dim
(

R′

I(ΣG)

)
= 2d− d = d.

Fact 3.17. Note that I(ΣG) is the polarization of I(G) + (X2
1 , . . . , X

2
d)R. So by Fact 2.87, the list

X1 − Y1, . . . , Xd − Yd is a maximal homogeneous regular sequence for R′

I(ΣG) and

R

I(G) + (X2
1 , . . . , X

2
d)R

∼=
R′

I(ΣG) + (X1 − Y1, . . . , Xd − Yd)R′
.

Because of the following fact, the main result of this section gives a formula to compute

type(R/I(G)) for all trees such that R/I(G) is Cohen-Macaulay.

Fact 3.18. We have the following facts.

(a) R′/I(ΣG) is Cohen-Macaulay.

(b) If G is a tree and R/I(G) is Cohen-Macaulay, then G = ΣH for some subtree H, in fact, H is

the subgraph induced by vertices of degree ≥ 2.

Proof. (a) By Fact 3.17, depth(R′/I(ΣG)) = d. Also, by Fact 3.16, dim
(
R′/I(ΣG)

)
= d. So

R′/I(ΣG) is Cohen-Macaulay.

(b) By [11, Theorem 2.4].

Example 3.19. We have the following two quotients R/I(G), one of which is Cohen-Macaulay, and

the other is not.

(a) Consider the 2-path

G := P2 =
(
v1 v2 v3

)
.

Then I(G) = (X1X2, X2X3)R = (X1, X3)R∩(X2)R by Fact 3.6. So by the fourth isomorphism theo-

rem, we have in R/I(G), 0 = I(G) = (X1, X3)R∩(X2)R, which is a minimal primary decomposition.
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So the set of associated primes AssR(0) =
{

rad
(
(X1, X3)R

)
, rad

(
(X2)R

)}
=
{

(X1, X3)R, (X2)R
}

.

Hence by [1, Proposition 4.7] the set of zero divisors ZD(R/I(G)) of R/I(G) is (X1, X3)R∪(X2)R. So

X2 −X3 is regular in R/I(G). We simplify the quotient R/(I(G)+(X2−X3)R) ∼= R′/(X1X2, X
2
2 )R′,

where R′ = A[X1, X2].

By Fact 2.83, J := (X1X2, X
2
2 )R′ = (X1, X

2
2 )R′ ∩ (X2)R′. As before, ZD(R′/J) =

(X1, X2)R′. Since (X1, X2)R′ is a maximal ideal of R′/J , depth(R′/J) = 0. So depth(R/I(G)) =

depth(R′/J) + 1 = 1 by Fact 2.91. On the other hand, by Fact 2.69, dim(R/I(G)) = 3 − 1 = 2.

Hence R/I(G) is not Cohen-Macaulay.

Observe that P2 is not a suspension of any subtree.

(b) Consider the 3-path

G := P3 =
(
v1 v2 v3 v4

)
.

Then I(G) = (X1X2, X2X3, X3X4)R = (X1, X3)R ∩ (X2, X3)R ∩ (X2, X4)R by Fact 3.6. So by the

fourth isomorphism theorem, we have in R/I(G), 0 = I(G) = (X1, X3)R ∩ (X2, X3)R ∩ (X2, X4)R,

which is a minimal primary decomposition. As in part (a), we haveX3 −X4 is regular in R/I(G). We

simplify the quotient R/(I(G)+(X3−X4)R) ∼= R′/(X1X2, X2X3, X
2
3 )R′, where R′ = A[X1, X2, X3].

By Fact 2.83, J := (X1X2, X2X3, X
2
3 )R′ = (X2, X

2
3 )R′ ∩ (X1, X3)R′. As before, X1 −X2 is

regular in R′/J . We simplify the quotient

R/(I(G) + (X3 −X4, X1 −X2)R) ∼= R′/(J + (X1 −X2)R′) ∼= R′′/(X2
2 , X2X3, X

2
3 )R′′,

where R′′ = A[X2, X3]. Let K = (X2
2 , X2X3, X

2
3 )R′′. Then depth(R′′/K) = 0 as before and

so depth(R/I(G)) = depth(R′′/K) + 2 = 2 by Fact 2.91. On the other hand, by Fact 2.69,

dim(R/I(G)) = 4− 2 = 2. Hence R/I(G) is Cohen-Macaulay.

Observe that P3 is a suspension of the subtree 1-path
(
v2 v3

)
.

The following theorem is the first main result of this thesis. It is Formula (*) from the

abstract.

Theorem 3.20.

type

(
R′

I(ΣG)

)
= # minimal vertex covers of G.
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Proof. We compute

type

(
R′

I(ΣG)

)
= type

(
R′

I(ΣG) + (X1 − Y1, . . . , Xd − Yd)R′

)
= type

(
R

I(G) + (X2
1 , . . . , X

2
d)R

)
= # ideals in the irredundant parametric decomposition of I(G) + (X2

1 , . . . , X
2
d)

= # ideals in irredundant m-irrededucible decomposition of I(G)

= # minimal vertex covers of G,

where the first equality is from Facts 2.93(a), 3.18(a) and 3.17, the second equality is from Fact 3.17,

the third equality is from Fact 2.93(b) since dim
(

R
I(G)+(X2

1 ,...,X
2
d)R

)
= 0, the fourth equality is from

[8, Theorem 7.5.3], and the last equlity is from Fact 3.6.

Remark. Because of Fact 3.18, we can use Theorem 3.20 to compute type(R/I(G)) for all trees G

such that I(G) is Cohen-Macaulay.

Example 3.21. Consider the following graph ΣP2 as in Example 3.13.

w1 w2 w3

v1 v2 v3

We depict the minimal vertex covers of G := P2 in the following sketches.

v1 v2 v3 v1 v2 v3

By Theorem 3.20,

type
(
R′/I(ΣP2)

)
= # minimal vertex covers of P2 = 2.

Since R′/I(ΣP2) is Cohen-Macaulay by Fact 3.18(a), depth
(
R′/I(ΣP2)

)
= dim

(
R′/I(ΣP2)

)
= 3 by

Fact 3.16. Hence

Ext3
R′
(
A,R′/I(ΣP2)

) ∼= A2.
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3.3 Weighted Edge Ideals I(Gω) and the Type of R′/I((ΣG)λ)

In this section, we prove a weighted version of Theorem 3.20 based on results from [9].

See Formula (**) from the abstract and Theorem 3.43. Let R′ = A[X1, . . . , Xd, Y1, . . . , Yd]. Let

N = {1, 2, 3, · · · } be the set of positive integers.

Definition 3.22. A weight function on a graph G is a function ω : E → N that assigns a weight to

each edge. A weighted graph Gω is a graph G equipped with a weight function ω.

Example 3.23. Let G := P2 = ( v1 v2 v3 ). We assign a weight to each edge of ΣG,

then we get, e.g., the following weighted graph (ΣG)ω.

w1 w2 w3

v1 v2 v3

5 3 4

2 3

Definition 3.24. Let Ω consist of the pairs (V ′, δ′) with V ′ ⊆ V and δ′ : V ′ → N.

Definition 3.25. We have the following definitions:

(a) The weighted edge ideal associated to Gω is the ideal I(Gω) ⊆ R that is “generated by the

weighted edges of G”:

I(Gω) =
(
X
ω(vivj)
i X

ω(vivj)
j

∣∣ vivj ∈ E)R.
(b) Let P (V ′, δ′) ⊆ R be the ideal “generated by the elements of (V ′, δ′)”:

P (V ′, δ′) =
(
X
δ′(vi)
i

∣∣ vi ∈ V ′)R.
Example 3.26. Consider the following graph (ΣP2)ω as in Example 3.23.

w1 w2 w3

v1 v2 v3

5 3 4

2 3

The weighted edge ideal associated to (ΣP2)ω is

I((ΣP2)ω) = (X2
1X

2
2 , X

3
2X

3
3 , X

5
1Y

5
1 , X

3
2Y

3
2 , X

4
3Y

4
3 )R′.
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Let V ′ = {v1, w2, v3} and δ′ : V ′ → N is defined by v1 7→ 3, w2 7→ 2 and v3 7→ 4. Then

P (V ′, δ′) = (X3
1 , Y

2
2 , X

4
3 ).

Definition 3.27. A weighted vertex cover of Gω is an ordered pair (V ′, δ′) ∈ Ω such that V ′ is a

vertex cover of G and for each edge vivj ∈ E, we have

(a) vi ∈ V ′ and δ′(vi) ≤ ω(vivj), or

(b) vj ∈ V ′ and δ′(vj) ≤ ω(vivj).

The number δ′(vi) is the weight of vi.

Remark. For each weighted vertex cover (V ′, δ′) of Gω, we also use
{
v
δ′(vi)
i | vi ∈ V ′

}
to denote it,

especially when we depict weighted vertex covers of Gω in sketches.

Definition 3.28. Given two weighted vertex covers (V ′1 , δ
′
1) and (V ′2 , δ

′
2) of Gω, we write (V ′2 , δ

′
2) ≤

(V ′1 , δ
′
1) if V ′2 ⊆ V ′1 and δ′2(vi) ≥ δ′1(vi) for all vi ∈ V ′2 . A weighted vertex cover (V ′, δ′) is minimal if

there does not exist another weighted vertex cover (V ′′, δ′′) such that (V ′′, δ′′) < (V ′, δ′). We define

|(V ′, δ′)| = |V ′|.

Example 3.29. The minimal weighted vertex covers of Hω as in Example 3.23 are displayed in the

following sketches.

w1 w2 w3

v5
1 v2

2 v4
3

5 3 4

2 3

w1 w2 w3

v2
1 v3

2 v4
3

5 3 4

2 3

w1 w2 w4
3

v5
1 v2

2 v3

5 3 4

2 3

w1 w2 w4
3

v2
1 v3

2 v3

5 3 4

2 3

w5
1 w2 w3

v1 v2
2 v4

3

5 3 4

2 3

w1 w3
2 w3

v2
1 v2 v3

3

5 3 4

2 3

w5
1 w2 w4

3

v1 v2
2 v3

5 3 4

2 3
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Fact 3.30. [9, Theorem 3.5]

I(Gω) =
⋂

(V ′,δ′) w. v. cover

P (V ′, δ′) =
⋂

(V ′,δ′) min. w. v. cover

P (V ′, δ′),

where the first intersection is taken over all weighted vertex covers of Gω, and the second intersection

is taken over all minimal weighted vertex covers of Gω. The second intersection is irredundant.

Example 3.31. Consider the following graph (ΣP2)ω as in Example 3.23.

w1 w2 w3

v1 v2 v3

5 3 4

2 3

Then by Fact 3.30 and Example 3.29, the irredundant m-irreducible decomposition of I((ΣP2)ω) is

given by

I((ΣP2)ω) = (X5
1 , X

2
2 , X

4
3 )R′ ∩ (X2

1 , X
3
2 , X

4
3 )R′ ∩ (X5

1 , X
2
2 , Y

4
3 )R′ ∩ (X2

1 , X
3
2 , Y

4
3 )R′

∩ (Y 5
1 , X

2
2 , X

4
3 )R′ ∩ (X2

1 , Y
3
2 , X

3
3 )R′ ∩ (Y 5

1 , X
2
2 , Y

4
3 )R′.

Notation 3.32. For (V ′, δ′) ∈ Ω, set

X(V ′,δ′) =
∏
vi∈V ′

X
δ′(vi)
i .

Definition 3.33. (V ′, δ′) ∈ Ω is said to be weighted-independent in Gω if V ′ is independent in G,

or for any adjacent vi, vj ∈ V ′, we have δ′(vi) < ω(vivj) or δ′(vj) < ω(vivj). Let ∆Gω denote the

set of weighted-independent subsets (V ′, δ′) ∈ Ω in Gω.

Example 3.34. Consider the following weighted 2-path (P2)ω.

v1 v2 v3
2 3

Then {v10
1 , v10

3 } is weighted-independent in (P2)ω since {v1, v3} is independent in P2, and {v1
1 , v

2
2}

is weighted-independent in (P2)ω since δ′(v1) = 1 < 2 = ω(v1v2) and δ′(v2) = 2 < 3 = ω(v2v3).

Lemma 3.35. Let (V ′, δ′) ∈ Ω. If X(V ′,δ′) ∈ I(Gω), then XV ′ ∈ I(G).
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Proof. Since X(V ′,δ′) ∈ I(Gω), there exists vivj ∈ E such that X
ω(vivj)
i X

ω(vivj)
j

∣∣ X(V ′,δ′). Since

vivj ∈ E, we have XiXj ∈ I(G). Since ω(vivj) ≥ 1, we have vi, vj ∈ V ′, i.e., XiXj

∣∣ XV ′ . So

XV ′ ∈ I(G).

Theorem 3.36. Let (V ′, δ′) ∈ Ω. Then (V ′, δ′) ∈ ∆Gω if and only if X(V ′,δ′) 6∈ I(Gω).

Proof. “⇒”. Assume (V ′, δ′) ∈ ∆Gω . First, we assume V ′ is independent in G, i.e., V ′ ∈ ∆G.

Suppose XV ′ ∈ J∆G
, where J∆G

is the Stanley-Reisner ideal of R associated to the independence

complex ∆G. Then there exists V ′′ ⊆ V and V ′′ 6∈ ∆G such that XV ′′
∣∣ XV ′ , so V ′′ ⊆ V ′,

contradicting the fact that ∆G is a simplicial complex and V ′ ∈ ∆G. Hence XV ′ 6∈ J∆G
= I(G)

by Fact 3.11. Thus, X(V ′,δ′) 6∈ I(Gω) by Lemma 3.35. Assume now V ′ is dependent in G. Fix an

adjacent vi, vj ∈ V ′. Then δ′(vi) < ω(vivj) or δ′(vj) < ω(vivj), so X
ω(vivj)
i X

ω(vivj)
j - Xδ′(vi)

i X
δ′(vj)
j ,

hence X
ω(vivj)
i X

ω(vivj)
j - X(V ′,δ′). Since the adjacent vi, vj ∈ V ′ are arbitrary, X(V ′,δ′) 6∈ I(Gω).

“⇐”. Assume X(V ′,δ′) 6∈ I(Gω). If V ′ is independent in G, we are done. Assume V ′

is dependent in G. Then we can fix adjacent vi, vj ∈ V ′. Since X(V ′,δ′) 6∈ I(Gω), we have

X
ω(vivj)
i X

ω(vivj)
j - X(V ′,δ′), i.e., δ′(vi) < ω(vivj) or δ′(vj) < ω(vivj). Since the adjacent vi, vj ∈ V ′

are arbitrary, (V ′, δ′) is weighted-independent in Gω, i.e., (V ′, δ′) ∈ ∆Gω .

Definition 3.37.

J∆Gω
=
(
X(V ′,δ′)

∣∣ (V ′, δ′) ∈ Ω r ∆Gω

)
R.

Theorem 3.38.

I(Gω) = J∆Gω
.

Proof. “⊇”. Let X(V ′,δ′) ∈ J∆Gω
be a generator. Then (V ′, δ′) ∈ Ω r ∆Gω . So X(V ′,δ′) ∈ I(Gω) by

Theorem 3.36.

“⊆”. Let X
ω(vivj)
i X

ω(vivj)
j ∈ I(Gω) with vivj ∈ E. Let V ′ = {vi, vj} and define δ′ : V ′ → N

by δ′(vi) = ω(vivj) = δ′(vj). Then (V ′, δ′) ∈ Ω and X(V ′,δ′) = X
ω(vivj)
i X

ω(vivj)
j ∈ I(Gω). So

(V ′, δ′) ∈ Ω r ∆Gω by Theorem 3.36. Hence X
ω(vivj)
i X

ω(vivj)
j = X(V ′,δ′) ∈ J∆G

.

Definition 3.39. A weighted suspension of Gω is a weighted graph (ΣG)λ with weight function

λ : ΣG → N such that the underlying graph ΣG is a suspension of G and λ(vivj) = ω(vivj) for all

33



vivj ∈ E(G), i.e., λ|E(G) = ω. Graphically, (ΣG)λ has the form

· · · wi wj wk · · ·

· · · vi vj vk · · · .
λ(viwi) λ(vjwj) λ(vkwk)

ω(vivj) ω(vjvk)

Fact 3.40. Let (ΣG)λ be a weighted suspension of Gω such that λ(vivj) ≤ λ(viwi) and λ(vivj) ≤

λ(wjvj) for each vivj ∈ E. Then by [9, Lemma 5.3], I((ΣG)λ) is the polarization of I(Gω) +(
X

2λ(v1w1)
1 , . . . , X

2λ(vdwd)
d

)
R. So by Fact 2.87, the list X1 − Y1, . . . , Xd − Yd is a maximal regular

sequence for R′

I((ΣG)λ) and

R

I(Gω) +
(
X

2λ(v1w1)
1 , . . . , X

2λ(vdwd)
d

)
R
∼=

R′

I((ΣG)λ) + {X1 − Y1, . . . , Xd − Yd}R′
.

Because of the following fact, the main result of this section gives a formula to compute

type(R/I(Gω)) for all weighted trees such that R/I(Gω) is Cohen-Macaulay.

Fact 3.41. [9, Theorems 5.7 and 5.10] Let (ΣG)λ be a weighted suspension of Gω such that λ(vivj) ≤

λ(viwi) and λ(vivj) ≤ λ(wjvj) for each vivj ∈ E.

(a) R′/I((ΣG)λ) is Cohen-Macaulay.

(b) If Tλ′ is a weighted tree and R/I(Tλ′) is Cohen-Macaulay, then Tλ′ = (ΣH)λ′ for some weighted

subtree Hω′ and the weight function λ′ satisfies the above condition.

Example 3.42. Consider the following weighted 3-path.

Gλ := (P3)λ =
(
v1 v2 v3 v4

1 2 2 )
Then I(Gλ) = (X1X2, X

2
2X

2
3 , X

2
3X

2
4 )R = (X1, X

2
3 )R ∩ (X2, X

2
3 )R ∩ (X1, X

2
2 , X

2
4 )R ∩ (X2, X

2
4 )R

by Fact 3.30. As in Example 3.19, X3 −X4 is regular in R/I(Gλ). We simplify the quotient

R/(I(Gλ) + (X3 −X4)R) ∼= R′/(X1X2, X
2
2X

2
3 , X

4
3 )R′, where R′ = A[X1, X2, X3].

By Fact 2.83, J := (X1X3, X
2
2X

2
3 , X

4
3 )R′ = (X1, X

2
2 , X

4
3 )R′ ∩ (X2, X

4
3 ) ∩ (X1, X

2
3 )R′. Since

(X1, X2, X3)R′ is a maximal ideal of R′/J , depth(R/I(Gλ)) = 1 as in Example 3.19. On the other

hand, by Fact 2.69, dim(R/I(Gλ)) = 4− 2 = 2. Hence R/I(Gλ) is not Cohen-Macaulay.

Observe that (G)λ is a weighted suspension of P1 =
(
v2 v3

)
, i.e., (P3)λ = (ΣP1)λ

with (P1)ω =
(
v2 v3

2 )
, but we have λ(v2v3) > λ(v1v2).
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The following theorem is the second main result of this thesis. It is Formula (**) from the

abstract.

Theorem 3.43. Let (ΣG)λ be a weighted suspension of Gω such that λ(vivj) ≤ λ(viwi) and

λ(vivj) ≤ λ(wjvj) for each vivj ∈ E. Then

type

(
R′

I((ΣG)λ)

)
= # minimal weighted vertex covers of Gω.

Proof. We compute

type

(
R′

I((ΣG)λ)

)
= type

(
R′

I((ΣG)λ) + (X1 − Y1, . . . , Xd − Yd)R′

)
= type

(
R

I(Gω) +
(
X

2λ(v1w1)
1 , . . . , X

2λ(vdwd)
d

)
R

)
= # ideals in the irredundant parametric decomposition of

I(Gω) + (X
2λ(v1w1)
1 , . . . , X

2λ(vdwd)
d )

= # ideals in the irredundant m-irreducible decomposition of I(Gω)

= # minimal weighted vertex covers of Gω,

where the first equality is from Facts 2.93(a), 3.41(a) and 3.40, the second equality is from Fact 3.40,

the third equality is from Fact 2.93(b) since dim
(

R

I(Gω)+(X
2λ(v1w1)
1 ,...,X

2λ(vdwd)

d )R

)
= 0, the fourth

equality is from [8, Exercise 7.5.10], and the last equality is from Fact 3.30.

Remark. Because of Fact 3.41, we can use Theorem 3.43 to compute type(R/I(Gω)) for all weighted

trees Gω such that I(Gω) is Cohen-Macaulay.

Example 3.44. Consider the following weighted graph (ΣP2)λ as in Example 3.23.

w1 w2 w3

v1 v2 v3

5 3 4

2 3

The minimal weighted vertex covers of (P2)ω =
(
v1 v2 v3

2 3
)

are displayed in the

following sketches.

v1 v2
2 v3

2 3 v2
1 v3

2 v3
2 3 v2

1 v2 v3
3

2 3
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Since the weights in (ΣP2)λ satisfy the conditions in Fact 3.41(a) and Theorem 3.43, the ring

R′/I((ΣP2)λ) is Cohen-Macaulay and

type
(
R′/I((ΣP2)λ)

)
= # minimal weighted vertex covers of (P2)ω = 3.

We observe that the smallest number of vertices for one of the weighted vertex covers of (ΣP2)λ

is 3. Then by Facts 3.30 and 2.69, dim
(
(R′/I((ΣP2)λ)

)
= 6 − 3 = 3. Since R′/I((ΣP2)λ) is

Cohen-Macaulay by Fact 3.41(a), depth(R′/I((ΣP2)λ)) = dim
(
R′/I((ΣP2)λ)

)
= 3. Hence

Ext3
R′(A,R

′/I((ΣP2)λ)) ∼= A3.

3.4 Path Ideals and the Type of R′/Ir(ΣrG)

In this section, we prove a path-version of Theorem 3.20. See Formula (***) from the

abstract and Theorem 3.71. Let r be a positive integer, X = (X1, . . . , Xd)R and R′ = A
[
{Xi,j | i =

1, . . . , d, j = 0, . . . , r}
]
.

Definition 3.45. The r-path suspension of G is the graph ΣrG obtained by adding a new path of

length r to each vertex of G such that the vertex set

V (ΣrG) = {vi,j | i = 1, . . . , d, j = 0, . . . , r} with vi,0 = vi, ∀ i = 1, . . . , d.

The new r-paths are called r-whiskers.

Example 3.46. The 2-path suspension Σ2P2 of the path G = P2 = ( v1 v2 v3 ) is

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3.

Definition 3.47. The r-path ideal associated to G is the ideal Ir(G) ⊆ R that is “generated by the
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paths in G of length r”:

Ir(G) = (Xi1 · · ·Xir+1 | vi1 · · · vir+1 is a path in G)R′.

Remark. I1(G) = I(G).

Example 3.48. Consider the following graph Σ2P2 as in Example 3.46.

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3

Then the 2-path ideal of Σ2P2 is

I2(Σ2P2) = (X1,2X1,1X1, X1,1X1X2, X1X2X3, X1X2X2,1, X2X2,1X2,2,

X2X3X3,1, X2,1X2X3, X3X3,1X3,2)R′.

Definition 3.49. An r-path vertex cover of G is a subset V ′ ⊆ V such that for any r-path vi1 · · · vir+1

in G, we have vij ∈ V ′ for some j ∈ {1, . . . , r + 1}. An r-path vertex cover V ′ is minimal if it does

not properly contain another r-path vertex cover of G.

Example 3.50. Consider the following graph Σ2P2 as in Example 3.46.

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3

We depict the minimal 2-path vertex covers of Σ2P2 in the following sketches.

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3
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v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3

Based on the convention that vi,0 = vi for i = 1, · · · , d, we have Xi,0 = Xi for i = 1, · · · , d.

Definition 3.51. Define p : R′ → R by the formula p(Xij) = Xi. Let I ⊆ R′ be a monomial ideal

and set

IR = p(I)R = (Xa1
i1
· · ·Xan

in
∈ R | ∃ Xa1

i1,j1
· · ·Xan

in,jn
∈ JIK)R.

In words, IR is the monomial ideal of R obtained by setting Xi,j = Xi for all i, j. It is straightforward

to show that if f1, · · · , fm is a monomial generating sequence for I, then p(f1), · · · , p(fm) is a

monomial generating sequence for IR.

Example 3.52. Consider the 2-path ideal I2(Σ2P2) from Example 3.48. Then

I2(Σ2P2)R = (X3
1 , X

2
1X2, X1X2X3, X1X

2
2 , X

3
2 , X2X

2
3 , X

2
2X3, X

3
3 )R.

Definition 3.53. Let I ⊆ R be an ideal. For k = 1, 2, · · · , the kth bracket power of I is the ideal
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I [k] = (Tk)R, where Tk = {fk | f ∈ JIK}.

Fact 3.54. We have Ir(ΣrG) is the polarization of Ir(ΣrG)R by e.g., [7, Proposition 3.7]. So by

Proposition 2.87, the list Xi−Xi,k, 1 ≤ i ≤ d, 1 ≤ k ≤ r is a maximal homogeneous regular sequence

for R′

Ir(ΣrG) and

R

Ir(ΣrG)R
∼=

R′

Ir(ΣrG) + (Xi −Xi,k | 1 ≤ i ≤ d, 1 ≤ k ≤ r)R′
.

Furthermore, it is straightforward to show that

Ir(ΣrG)R = Ir(Σr−1G)R+ X[r+1],

where X = (X1, . . . , Xd)R.

Example 3.55. By definition, the polarization of I2(Σ2P2)R from Example 3.52 is

PO(I2(Σ2P2)R) = PO
(
(X3

1 , X
2
1X2, X1X2X3, X1X

2
2 , X

3
2 , X2X

2
3 , X

2
2X3, X

3
3 )R

)
= (X1X1,1X1,2, X1X1,1X2, X1X2X3, X1X2X2,1, X2X2,1X2,2,

X2X3X3,1, X2X2,1X3, X3X3,1X3,2)R′

= I2(Σ2P2),

where the last equality is from Example 3.48. Note that

I2(ΣP2)R+ X[r+1] = (X1,1X1X2, X1X2X3, X1X2X2,1, X2X3X3,1, X2,1X2X3)R

+ (X3
1 , X

3
2 , X

3
3 )R

= (X2
1X2, X1X2X3, X1X

2
2 , X2X

2
3 , X

2
2X3)R+ (X3

1 , X
3
2 , X

3
3 )R

= (X2
1X2, X1X2X3, X1X

2
2 , X2X

2
3 , X

2
2X3, X

3
1 , X

3
2 , X

3
3 )R

= I2(Σ2P2)R,

where the last equality is from Example 3.52.

Definition 3.56. Let vi be a vertex of degree 1 in G that is not a part of any r-path in G. We

write that vi is an r-pathless leaf of G. Let H be the subgraph of G induced by the vertex subset
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V r {vi}. We write that H is obtained by pruning an r-pathless leaf from G. A subgraph T of G

is obtained by pruning a sequence of r-pathless leaves from G if there exists a sequence of graphs

G = G0, G1, · · · , Gl = T such that each Gi+1 is obtained by pruning an r-pathless leaf from Gi.

Example 3.57. The vertex v6 in the following tree G is an 4-pathless leaf, because v6 is not part

of any 4-path in G.
v1 v2 v3 v4 v5

v6

Pruning this leaf yields the following 4-path, which has no 4-pathless leaves.

v1 v2 v3 v4 v5

Because of the following fact, the main result of this section gives a formula to compute

type(R/Ir(G)) for all trees such that R/Ir(G) is Cohen-Macaulay.

Fact 3.58. [7, Proposition 3.7 and Theorem 3.11] We have the following facts:

(a) R′/Ir(ΣrG) is Cohen-Macaulay.

(b) If G is a tree and R/Ir(G) is Cohen-Macaulay, then there exists a subtree H such that ΣrH is

obtained by pruning a sequence of r-pathless leaves from G.

Example 3.59. Consider the following tree G as in Example 3.57.

v1 v2 v3 v4 v5

v6

Then I4(G) = (X1X2X3X4X5)R. As in Example 3.19, X4 −X5, X3 −X4, X2 −X3, X1 −X2 is a

(maximal) regular sequence in R/I4(G). We simplify the quotient

R/(I4(G) + (X4 −X5, X3 −X4, X2 −X3, X1 −X2)R) ∼= R′/(X5
1 )R′,

where R′ = A[X1]. Since X1 is a maximal ideal of R′/(X5
1 )R, depth(R/I4(G)) = 4. On the other

hand, by Fact 2.69, dim(R/I(G)) = 5− 1 = 4. Hence R/I(G) is Cohen-Macaulay.

Observe that there exists a subtree v1 of G such that Σ4v1 is obtained by pruning a 4-pahtless
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leaf v6 from G:

Σ4v1 : v1 v2 v3 v4 v5

Fact 3.60. [7, Lemma 1.11] For every r-path vertex cover V ′ of G, there is a minimal r-path vertex

cover W ′ of G such that W ′ ⊆ V ′.

The main result of this section gives formulas to compute the type of R′/Ir(ΣrG) in terms

of minimal r-path vertex covers of Σr−1G. Compare this to Theorem 3.20 (the case r = 1). Thus,

we study Σr−1G before our main theorem.

Definition 3.61. Define q : V (Σr−1G)→ V (G) as q(vi,j) = vi. Let V ′′ ⊆ V (Σr−1G). Then

q(V ′′) = {vi | ∃ vi,j ∈ V ′′},

and we set

γV ′′ : q(V ′′)→ N

vi 7→ 1 + min{j | vi,j ∈ V ′′}.

Example 3.62. Consider the following graph Σ2P2 as in Example 3.46.

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1 v2 v3

Then V ′′ = {v1, v2,1, v3,2, v3} is a 2-path vertex cover of Σ2P2. We have q(V ′′) = {v1, v2, v3},

γV ′′(v1) = 1, γV ′′(v2) = 2 and γV ′′(v3) = 1.

The following theorem is a key for decomposing Ir(Σr−1G)R and hence Ir(ΣrG)R. The

proof is somewhat technical. The reader may wish to follow the argument with the preceding

example.

Theorem 3.63. Let V ′′ ⊆ V (Σr−1G). Then Ir(Σr−1G)R ⊆ P (q(V ′′), γV ′′) if and only if V ′′ is an

r-path vertex cover of Σr−1G.
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Proof. “⇒”. Assume Ir(Σr−1G)R ⊆ P (q(V ′′), γV ′′). Let ℘r := vp1,q1 · · · vpr+1,qr+1 be an r-path in

Σr−1G. Then Xp1 · · ·Xpr+1
∈ JIr(Σr−1G)RK ⊆ JP (q(V ′′), γV ′′)K. So

X
γV ′′ (vi0 )
i0

∣∣ Xp1 · · ·Xpr+1
for some vi0 ∈ q(V ′′).

Hence vi0 = vpl for some l ∈ {1, . . . , r + 1} and

γV ′′(vi0) ≤ (# of times i0 occurs in the list p1, . . . , pr+1).

So vpl = vi0 ∈ q(V ′′). Hence j0 := min{t | vi0,t ∈ V ′′} is well-defined. Note that j0 ∈ {0, . . . , r − 1},

vi0,j0 ∈ V ′′ and

1 + j0 = γV ′′(vi0) ≤ (# of times i0 occurs in the list p1, . . . , pr+1). (3.63.1)

Since ℘r is an r-path in Σr−1G, ℘r is of the following form.

vp1,q1 vpr+1,qr+1

...
...

vp1,1 vpr+1,1

vp1+q1 ,0 vp1,0 · · · vpr+1,0 vp1+r−qr+1
,0

where q1 or qr+1 may be 0. Let M0 := max1≤k≤r+1{qk | i0 = pk}. Then

1 + j0 ≤ (# of times i0 occurs in the list p1, . . . , pr+1) = 1 +M0, i.e., j0 ≤M0,

and there must exist a sub-path of ℘r of the form

vi0,0 vi0,1 · · · vi0,M0
.

Since 0 ≤ j0 ≤ M0, there exists a vertex in this path of the form vi0,j0 = vpk,qk for some k in

{1, . . . , r + 1}. So vpk,qk = vi0,j0 ∈ V ′′. Thus, V ′′ is an r-path vertex cover of Σr−1G.
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“⇐”. Assume V ′′ is an r-path vertex cover of Σr−1G. We need to show every monomial

generator of Ir(Σr−1G)R is in P
(
q(V ′′), γV ′′

)
. Let Xb := Xi1 · · ·Xir+1

be such a generator corre-

sponding to an r-path vi1,j1 · · · vir+1,jr+1
in Σr−1G. We need to show Xb ∈ P

(
q(V ′′), γV ′′

)
. Note

that Xi1,j1 · · ·Xir+1,jr+1 is of the following form.

Xi1,j1 Xir+1,jr+1

...
...

Xi1,1 Xir+1,1

Xi1+j1 ,0
Xi1,0 · · · Xir+1,0 Xi1+r−jr+1

,0

where j1 or jr+1 may be 0. So

jk + 1 ≤ (# of times ik occurs in the list i1, . . . , ir+1) = bik , ∀ k = 1, . . . , r + 1.

Since vi1,j1 · · · vir+1,jr+1 is an r-path in Σr−1G and V ′′ is an r-path vertex cover of Σr−1G, we have

vil,jl ∈ V ′′ for some l ∈ {1, . . . , r + 1}. Since Xb = Xi1 · · ·Xir+1
,

γV ′′(vil) = 1 + min{j | vil,j ∈ V ′′} ≤ 1 + jl ≤ (# of times il occurs in the list i1, . . . , ir+1) = bil .

So X
γV ′′ (vil )

il

∣∣ Xb. Hence Xb ∈ P
(
q(V ′′), γV ′′

)
.

The next result gives our first decomposition needed for computing type(R′/Ir(ΣrG)).

Theorem 3.64. One has

Ir(Σr−1G)R =
⋂

V ′′ r-path v. cover of Σr−1G

P
(
q(V ′′), γV ′′

)
,

and

Ir(ΣrG)R =
⋂

V ′′ r-path v. cover of Σr−1G

P
(
q(V ′′), γV ′′

)
+ X[r+1].

Proof. Since Ir(ΣrG)R = Ir(Σr−1G)R+X[r+1] by Fact 3.54 and the power of each variable in each

43



generator of Ir(Σr−1G)R is ≤ r, by [8, Theorem 7.5.3], it is enough to show that

Ir(Σr−1G)R =
⋂

V ′′ r-path v. cover of Σr−1G

P
(
q(V ′′), γV ′′

)
.

By [8, Theorem 7.5.1], the monomial ideal Ir(Σr−1G)R can be written as a finite intersection of

m-irreducible ideals, i.e., ideals of the form P
(
q(V ′′) := {vi1 , . . . , vit}, γV ′′

)
with V ′′ ⊆ V (Σr−1G)

such that γV ′′(vij ) = 1 + min{k | vij ,k ∈ V ′′} for j = 1, . . . , t. Then by Theorem 3.63,

Ir(Σr−1G)R ⊆
⋂

V ′′ r-path v. cover of Σr−1G

P
(
q(V ′′), γV ′′

)
⊆

⋂
V ′′ r-path v. cover of Σr−1G in the decomp. of Ir(Σr−1G)R

P
(
q(V ′′), γV ′′

)
= Ir(Σr−1G)R.

So

Ir(Σr−1G)R =
⋂

V ′′ r-path v. cover of Σr−1G

P
(
q(V ′′), γV ′′

)
.

The next result is key for our second decomposition result, Corollary 3.66.

Lemma 3.65. Let V ′′1 , V
′′
2 ⊆ V (Σr−1G). If V ′′1 ⊆ V ′′2 , then P

(
q(V ′′1 ), γV ′′1

)
⊆ P

(
q(V ′′2 ), γV ′′2

)
.

Proof. Assume V ′′1 ⊆ V ′′2 . Let X
γV ′′1

(vi)

i ∈ P (q(V ′′1 ), γV ′′1 ). Then X
γV ′′2

(vi)

i ∈ P (q(V ′′2 ), γV ′′2 ) and

γV ′′1 (vi) = min{j | vi,j ∈ V ′′1 } ≥ min{j | vi,j ∈ V ′′2 } = γV ′′2 (vi). So X
γV ′′2

(vi)

i

∣∣ XγV ′′1
(vi)

i . Hence

P (q(V ′′1 ), γV ′′1 ) ⊆ P (q(V ′′2 ), γV ′′2 ).

Here is our second decomposition result for computing type(R′/Ir(ΣrG)).

Corollary 3.66. One has

Ir(Σr−1G)R =
⋂

V ′′ min. r-path v. cover of Σr−1G

P (q(V ′′), γV ′′),

and

Ir(ΣrG)R =
⋂

V ′′ min. r-path v. cover of Σr−1G

P (q(V ′′), γV ′′) + X[r+1].
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Proof. By Fact 3.54 and [8, Theorem 7.5.3], it is enough to prove that

Ir(Σr−1G)R =
⋂

V ′′ min. r-path v. cover of Σr−1G

P (q(V ′′), γV ′′).

By Theorem 3.64, it is enough to show that

⋂
V ′′ r-path v. cover of Σr−1G

P (q(V ′′), γV ′′) =
⋂

V ′′ min. r-path v. cover of Σr−1G

P (q(V ′′), γV ′′).

“⊆” follows because every minimal r-path vertex cover is an r-path vertex cover.

“⊇” follows from Fact 3.60 and Lemma 3.65.

The decomposition in Corollary 3.66 may be redundant (See Example 3.73). So we define

another order from which we can produce an irredundant decomposition. Lemma 3.69 is the key for

understanding how this ordering helps with irredundancy.

Definition 3.67. Given two minimal r-path vertex covers V ′1 , V
′
2 of ΣrG, we write (V ′1 , γV ′1 ) ≤p

(V ′2 , γV ′2 ) if q(V ′1) ⊆ q(V ′2) and γV ′1 |q(V ′1 ) ≥ γV ′2 |q(V ′1 ). A minimal r-path vertex cover (V ′, γV ′) is

p-minimal if there is not another r-path vertex cover (W ′, γW ′) such that (W ′, γW ′) <p (V ′, γV ′).

The next two results are key for our third and final decomposition result.

Proposition 3.68. For every minimal r-path vertex cover W ′ of ΣrG, there is an p-minimal r-path

vertex cover W ′′′ of ΣrG such that W ′′′ ⊆W ′.

Proof. If W ′ is itself an p-minimal r-path vertex cover for ΣrG, then we are done. If W ′ is not

p-minimal, then either there is a vi ∈ q(W ′) that can be removed or for some vi ∈ q(W ′), the

function γW ′ |q(W ′)(vi) can be increased. In the first case, assume vi can be removed, then remove

all vertices of the form vi,j from W ′. Repeat the process until further removal creates at least one

path without a vertex to cover it. Notice that this process terminates in finitely many steps because

V is finite and q(W ′) ⊆ V . Let us denote this new r-path vertex cover as W ′′. If no vertices are

removed, then W ′ = W ′′.

In the second case, if γW ′′ |q(W ′′)(vi) can be increased, then it can done by increasing the

second index of vertices of the form vi,j in W ′′. We increase γW ′′ |q(W ′′)(vi) for each vi ∈ q(W ′′)

such that any further increase would cause the set not to be an r-path vertex cover. This process

also terminates in finitely many steps because γW ′′ |q(W ′′)(vi) ≤ r + 1 for each vi ∈ q(W ′′). Denote
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the new set W ′′′. Since no vertices can be removed from γW ′′′ |q(W ′′′) and γW ′′′ |q(W ′′′)(vi) for each

vi ∈ q(W ′′′) cannot be increased, W ′′′ is an p-minimal r-path vertex cover for ΣrG.

Lemma 3.69. Let V ′1 , V
′
2 be two minimal r-path vertex covers of Σr−1G. Then (V ′1 , γV ′1 ) ≤p

(V ′2 , γV ′2 ) if and only if P
(
q(V ′1), γV ′1

)
⊆ P

(
q(V ′2), γV ′2

)
.

Proof. (V ′1 , γV ′1 ) ≤p (V ′2 , γV ′2 ) if and only if q(V ′1) ⊆ q(V ′2) and γV ′1 |q(V ′1 ) ≥ γV ′2 |q(V ′1 ) if and only if

P (q(V ′1), γV ′1 ) ⊆ P (q(V ′2), γV ′2 ).

Next, we present our third and final decomposition result which will yield the type compu-

tation in Theorem 3.71.

Theorem 3.70. One has an irredundant parametric decomposition

Ir(ΣrG)R =
⋂

V ′′ p-min. r-path v. cover of Σr−1G

P
(
q(V ′′), γV ′′

)
+ X[r+1].

Proof. By Fact 3.54 and [8, Theorem 7.5.3], to verify this decomposition, it is enough to show that

we have an irredundant decomposition

Ir(Σr−1G)R =
⋂

V ′′ p-min. r-path v. cover of Σr−1G

P
(
q(V ′′), γV ′′

)
.

By Corollary 3.66, it is enough to show that

⋂
V ′′ min. r-path v. cover of Σr−1G

P
(
q(V ′′), γV ′′

)
=

⋂
V ′′ p-min. r-path v. cover of Σr−1G

P
(
q(V ′′), γV ′′

)
.

“⊆” follows as every p-minimal r-path vertex cover is a minimal r-path vertex cover.

“⊇” follows from Proposition 3.68 and Lemma 3.69.

Finally, the intersection is irredundant by Lemma 3.69.

The next theorem is the third main result of this thesis. It is Formula (***) from the

abstract.

Theorem 3.71.

type

(
R′

Ir(ΣrG)

)
= # p-minimal r-path vertex covers of Σr−1G.
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Proof. We compute

type

(
R′

Ir(ΣrG)

)
= type

(
R′

Ir(ΣrG) + (Xi −Xi,k | 1 ≤ i ≤ d, 1 ≤ k ≤ r)R′

)
= type

(
R

Ir(ΣrG)R

)
= # ideals in the irredundant parametric decomposition of Ir(ΣrG)R

= # p-minimal r-path vertex covers of Σr−1G,

where the first equality is from Facts 2.93(a), 3.58(a) and 3.54, the second equality is from Fact 3.54,

the third equality is from Fact 2.93(b) since dim
(

R
Ir(ΣrG)R

)
= 0, and the last equality is from

Fact 3.70.

Remark. Because of Fact 3.58, we can use Theorem 3.71 to compute type(R/Ir(G)) for all trees

G such that Ir(G) is Cohen-Macaulay.

Example 3.72. Consider the following graph Σ2P2 as in Example 3.46.

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

We depict the minimal 2-path vertex covers of Σ1P2 = ΣP2 in the following sketches.

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

It is straightforward to show that these are all p-minimal, i.e., the p-minimal 2-path vertex covers
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of ΣP2 are the following.

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

So by Theorem 3.71,

type
(
R′/I2(Σ2P2)

)
= 4.

We observe that the smallest number of vertices for one of the 2-path vertex covers of Σ2P2 is 3.

Then by Facts 3.30 and 2.69, dim
(
R′/I2(Σ2P2)

)
= 9−3 = 6. Since R′/I2(Σ2P2) is Cohen-Macaulay

by Fact 3.58(a), depth
(
R′/I2(Σ2P2)

)
= dim

(
R′/I2(Σ2P2)

)
= 6. Hence

Ext6
R′
(
A,R′/I2(Σ2P2)

) ∼= A4.

Example 3.73. The 3-path suspension Σ3P2 of the path G = P2 = ( v1 v2 v3 ) is

v1,3 v2,3 v3,3

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0.

We depict the minimal 3-path vertex covers of Σ2P2 in the following sketches.

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0
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v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

So by Theorem 3.66, we have a parametric decomposition

I3(Σ3P2)R = (X2)R ∩ (X1, X3)R ∩ (X1, X
2
2 , X

2
3 )R ∩ (X2

1 , X
2
2 , X

2
3 )R ∩ (X1, X

2
2 , X

3
3 )R

∩ (X1, X
3
2 , X

2
3 )R ∩ (X2

1 , X
2
2 , X3)R ∩ (X3

1 , X
2
2 , X3)R ∩ (X2

1 , X
3
2 , X3)R

∩ (X2
1 , X

3
2 , X

2
3 )R+ X3,

which is an redundant decomposition since e.g., the last ideal (X2
1 , X

3
2 , X

2
3 )R is contained in the

second to last ideal (X2
1 , X

3
2 , X3)R. Note the p-minimal 3-path vertex covers of Σ2P2 are the

following.

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0
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v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

v1,2 v2,2 v3,2

v1,1 v2,1 v3,1

v1,0 v2,0 v3,0

So by Theorem 3.70 and we have an irredundant parametric decomposition

I3(Σ3P2)R = (X2)R ∩ (X1, X3)R ∩ (X1, X
2
2 , X

3
3 )R ∩ (X3

1 , X
2
2 , X3)R ∩ (X2

1 , X
3
2 , X

2
3 )R+ X3,

and by Theorem 3.71, we have

type(R′/I3(Σ3P2)) = 5.

We observe that the smallest number of vertices for one of the 3-path vertex covers of Σ3P2 is 3.

Then by Facts 3.30 and 2.69, dim
(
R′/I3(Σ3P2)

)
= 12−3 = 9. Since R′/I3(Σ3P2) is Cohen-Macaulay

by Fact 3.58(a), depth(R′/I3(Σ3P2)) = dim
(
R′/I3(Σ3P2)

)
= 9 by Fact 3.16. Hence

Ext9
R′
(
A,R′/I3(Σ3P2)

) ∼= A5.

50



Bibliography

[1] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-Wesley
Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.

[2] Winfried Bruns and Jürgen Herzog. Cohen-Macaulay rings revised edition, volume 39 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.

[3] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer,
Berlin, fifth edition, 2018. Paperback edition of [ MR3644391].

[4] David S. Dummit and Richard M. Foote. Abstract algebra. John Wiley & Sons, Inc., Hoboken,
NJ, third edition, 2004.
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