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ABSTRACT 

     This research uses Origami patterns and folding techniques to generate non-linear force 

displacement profiles and study their effect on jumping mechanisms. In this case, the 

jumping mechanism is comprised of two masses connected by a Tachi-Miura Polyhedron 

(TMP) with non-linear stiffness characteristics under tensile and compressive loads. The 

strain-softening behavior exhibited by the TMP enables us to optimize the design of the 

structure for improved jumping performance. I derive the equations of motion of the 

jumping process for the given mechanism and combine them with the kinematics of the 

TMP structure to obtain numerical solutions for the optimum design. The results correlate 

to given geometric configurations for the TMP that result in the two optimum objectives: 

The maximum time spent in the air and maximum clearance off the ground. I then 

physically manufacture the design and conduct compression tests to measure the force-

displacement response and confirm it with the theoretical approach based on the 

kinematics. Experimental data from the compression tests show a hysteresis problem where 

the force-displacement profile exhibits different behavior whether the structure is being 

compressed or released. I investigate two methods to nullify the hysteresis when 

compressing or releasing the mechanism and then discuss their results. This research can 

lead to easily manufacturable jumping robotic mechanisms with improved energy storage 

and jumping performance. Additionally, I learn more about how to use origami techniques 

to harness unique stiffness properties and apply them to a variety of scenarios. 
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CHAPTER ONE 

INTRODUCTION AND REVIEW 

1.1 Introduction 

The invention of robots has greatly advanced human technologies in a variety of 

applications. From industrial [1]–[3] and military [4] applications to education [5], [6] and 

healthcare [7], [8] robots are improving the overall quality of our lives. Of particular note 

is the use of robots in different exploration scenarios. The use of robots allows for the 

exploration and investigation of different environments that would be too hazardous for 

humans to search on their own [9]. One of the challenges in developing robots for different 

exploratory tasks is deciding on the appropriate method of locomotion, be it wheeled, 

tracked, legged, or aviatory [10] . The advantage of using legged locomotion in mobile 

robots is that they are able to traverse uniquely challenging terrain that would otherwise be 

inaccessible to wheeled or tracked robots such as steep or sheer cliffs, rock shelves, or 

extremely soft terrain like deep sand or mud [11].  

Legged robots however require complex non-linear control due to their more 

complicated motion dynamics and ground impacts [12].  To simplify this, researchers can 

use single legged robots that utilize jumping as their form of motion [13]–[16]. The most 

important part of jumping performance relates to the storage of energy and its rapid release 

[12], [13], [17], [18]. The stored energy of the system prior to the jump transitions to the 

kinetic energy of the mechanism during the jump, and the maximum gravitational potential 

energy at peak jump height. In this way, an increase in stored energy prior to jumping 
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directly translates to greater gravitational potential energy and therefore a higher jump. 

There are various methods for energy storage in jumping robots including traditional linear 

springs [19]–[21], compressed air [22], and custom elastic elements [23]–[25]. Traditional 

linear springs can be compressed and store potential energy directly related to Hooke’s 

law. Suddenly releasing the springs will lead to a rapid release of the stored energy and 

force the system upwards into a jump. Compressed air can be used as the driving force on 

a cylinder that rapidly extends against the ground to launch the robot into the air. Higher 

pressures or greater volumes of air lead to greater stored energy of the system and greater 

jump height similarly to the traditional linear springs. Elastic elements work much the same 

way as the springs, being compressed or deformed to store some elastic strain energy. In 

the study by Yamada et al., the snap-through buckling of a closed elastic element is 

examined as a means of energy storage [25], [26]. In the case of jumping mechanisms, the 

restorative force of the elements is used as the actuation method to push the robot upwards 

into the air.  

Non-linear spring elements with strain-softening behavior can be especially 

advantageous in the storage of strain energy versus their linear counter-parts. By storing 

more strain energy, the jumping performance can be improved in terms of reaching a 

greater center of gravity height as well as a higher clearance off the ground. Fiorini and 

Burdick investigated a jumping mechanism that achieves non-linear stiffness by 

implementing a linear spring in a 6-bar geared mechanism [27]. The improved jumping 

performance for non-linear spring elements versus linear elements does come at a small 

sacrifice of energy efficiency of the system. However, the loss in efficiency is small 
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compared to that of the improved jump height for the center of gravity of the system and 

its clearance from the ground [17]. Therefore, in most cases using non-linear spring 

elements can be advantageous to improve the jumping performance of a jumping 

mechanism where maximum energy efficiency is not critical. The challenge lies in 

achieving the appropriate non-linear stiffness behavior.  

Origami, the ancient Japanese art of paper folding, has recently allowed for the 

expansion in possible designs and manufacturing capabilities of engineers. From 

deployable structures [28], self-folding robots [29], to surgical devices [30], and DNA 

machines [31] we are learning more about the characteristics of origami designs and their 

possible applications. One particular area of note is the use of Origami folding techniques 

to achieve tunable non-linear stiffness properties within mechanical structures [32]–[35]. 

This research focuses on a specific origami folding pattern, the Tachi-Miura Polyhedron  

(referred to as the TMP, and shown later in Figure 8) [36], [37] as a method for achieving 

the desirable non-linear stiffness properties to improve jumping performance.  

This research is organized as follows: first I look into the general method of utilizing non-

linear stiffness to improve jumping performance by storing larger amounts of energy. This 

is done by developing and examining the equations of motion and kinematic relationship 

for a jumping mechanism defined by two masses connected by a generic non-linear spring 

element. From there, I define the specific kinematics of the TMP design and show how it 

can be used as the non-linear spring element in our jumping mechanism. Then I move into 

the optimization techniques used on the design of the TMP structure to maximize jumping 

performance based on our theoretical model and analysis. Finally, I demonstrate the 
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practicality of using the TMP as a viable non-linear spring element by experimentally 

confirming the force-displacement curve of the TMP to its theoretical model. 

1.2 Review of the Dynamics of a Jumping Mechanism 

This section reviews the effects of utilizing nonlinear springs on the performance of a 

jumping mechanism. The mechanism is defined by two masses interconnected by a generic 

nonlinear spring represented by a piecewise linear function. Non-dimensional equations of 

motion are derived for the system and are analyzed both analytically and numerically to 

observe the jumping performance of the system. The nonlinear force-displacement curve 

is broken into two sections and the effects from changes to their properties are studied 

separately. These sections are the compression region, when the mechanism is subject to a 

negative (downward) displacement, and the tension region, as the mechanism is subject to 

a positive (upwards) displacement. It is observed that changes to the compression region 

of the force-displacement curve can lead to significant increases in overall stored energy 

and therefore improved jumping performance. Changes to the tension region do not affect 

the jumping performance of the system in terms of the height achieved by the center of 

gravity. However, the tension region does affect the internal oscillations of the system 

during the jump and can therefore affect the maximum clearance of the system off the 

ground. Results of this study provide valuable insight into the necessary nonlinear behavior 

and shape of the force-displacement curve to improve jumping performance. This 

information for a generic jumping mechanism can then be adapted to a specific design used 

to generate the proper nonlinear properties. 
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The work for this section as well as section 1.3 has already been published and 

discussed extensively in [17] and the figures for these sections come directly from that 

paper.  

The jumping mechanism (Figure 1) investigated consists of two identical masses 

connected by an elastic element exhibiting non-linear stiffness characteristics. Energy 

storage in the system occurs through exerting an input force using an actuator on the top 

mass to deform the elastic element. 

 

Figure 1:  Schematic of the jumping mechanism in (a) pre-jump phase of motion and (b) post-jump phase 

of motion. 

The reaction force-displacement relationship of the nonlinear spring can be generally 

represented by a nC  ( 0)n   continuous curve. However, in order to avoid introducing 

unnecessary complexities, I focus on a generic piecewise linear 0C  curve to describe the 

nonlinear stiffness properties. Despite its relative simplicity, the 0C  curve is a useful tool 

for approximating many nonlinear stiffness properties commonly used for engineering 

applications, e.g. negative stiffness [38] and quasi-zero stiffness [35], [39] characteristics. 



 6 

Figure 2(a) shows the 0C  piecewise linear force-displacement curve that will be used in 

this study. The displacement axis is represented by y , where 2 1 0y Y Y l= − − . 1Y  and 2Y  are 

the height of the two masses with respect to the ground, and 0l  is the free length of the 

nonlinear spring. This curve consists of four linear sections with different stiffness 

coefficients ( 1K  to 4K ). We also consider the structural and actuation limit that can 

constrain the problem. The structural limit ( H ) is the maximum relative displacement 

between the two masses in order to compress the spring and store an initial energy.  

 

Figure 2: (a) Piecewise linear reaction force-displacement curve of spring with structural and actuation 

limits. (b) Non-dimensional force-displacement curve. 

The actuation limit is the maximum amount of external force ( cf ) the actuator can 

provide. Moreover, the force-displacement curve can be divided in to two separate regions: 

The compression region (negative displacement), where the spring is compressed; and the 

tension region (positive displacement), where the spring is under tension. This separation 

allows us to study the energy storage (compression) and jumping dynamics (tension) in a 

more systematic approach, as we will see later in sections 1.2.3 and 1.2.4. 

Knowing the reaction force of the nonlinear spring, we can now investigate the 

dynamic behavior of the system. The dynamic motion of the jumping mechanism can be 
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divided into two different phases: 1) pre-jump phase and 2) post-jump phase. In order to 

just focus on the potential effects of the nonlinear spring, we assumed that the masses are 

equal: 1 2m m m= = . In the following two sections, we study the motion of the system in 

these two phases. 

1.2.1 Pre-Jump Phase 

The pre-jump phase (Figure 1(a)) occurs for all time prior to the bottom mass 1m  

leaving the ground. During this phase, an input actuation force displaces 2m  down to a 

certain initial position ( d ). Once the input force is removed, the reaction force of the spring 

accelerates the upper mass upward. The governing equation of motion during this phase 

can be represented by: 

2 2 0( ) ,mY F Y l mg= − − −  (1) 

where m  is the mass of the upper body, 2 0( )F Y l−  is the reaction force of the spring, and 

2Y  and 2Y  represent the acceleration and position of the upper mass (relative to the ground), 

respectively. We define *

ck f H= , the ratio between actuation limit and structural limit, 

as a reference linear spring coefficient. Equation (1) can be non-dimensionalized as 

follows: 

2

2
2 02

ˆ
ˆ ˆˆ ˆ( ) ,

d Y
F Y l G

d
+ − = −


 (2) 
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where, 1
1
ˆ Y

Y
H

=  , t = , 
*k

m
 =  , ˆ

c

F
F

f
=  , 0

0
ˆ l
l

H
=  and ˆ .

c

mg
G

f
=  We can also non-

dimensionalize the stiffness coefficients: 
*

ˆ , ( 1,2,..., 4).i
i

k
k i

k
= =   

1.2.2 Post-Jump Phase  

In order for a jump to be possible, the jumping mechanism must be capable of 

surpassing the gravitational force once the displacement in the non-linear elastic element 

has become positive. That is, the restoring force of the non-linear elastic element acting on 

the lower mass must exceed its weight. The jumping occurs when 2 2,
ˆ ˆ

jumpY Y= , where: 

2, 0
ˆ ˆˆ ˆ( ) .jumpF Y l G− =  (3) 

     The airborne or post-jump phase of the motion is illustrated in Figure 1 (b). Once the 

bottom mass has left the ground, the governing system of coupled equations of motion can 

be defined as: 

1 2 1 0

2 2 1 0

( ) ,

( ) .

mY F Y Y l mg

mY F Y Y l mg

= − − −

= − − − −
 (4) 

      Following the same procedure of section 1.2.1, we can derive the non-dimensional 

system of equations as follows: 

2

1
2 1 02

2

2
2 1 02

ˆ
ˆ ˆˆ ˆ( ) ,

ˆ
ˆ ˆˆ ˆ( ) .

d Y
F Y Y l G

d

d Y
F Y Y l G

d

= − − −


= − − − −


 (5) 
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The initial conditions of equation 5 can be extracted from the solution of pre-jump 

phase (equation 2). In the next section, we present the numerical simulation results of 

solving the equations of motion. 

1.3 Review of the Effect of Non-Linear Force Displacement Profiles on Jumping 

Behavior. 

Jumping is achieved when the bottom mass loses contact with the ground, as outlined 

in section 1.2.2. Once the jump begins, the majority of the stored energy in the spring, 𝐸0, 

is converted to kinetic energy of the upper and lower masses while some is converted to 

gravitational potential energy as the structure gains altitude. For the sake of the theoretical 

model, the mechanism is assumed to be subject only to conservative forces and therefore 

no damping is included. The total energy of the system during the post jump phase is a 

combination of the kinetic energy of the masses, the gravitational potential energy, and the 

spring potential energy will be conserved. Due to the non-linear spring element it is 

expected that the two masses will exhibit unique behaviors during the post jump phase. To 

this end, we study the response of both masses individually as well as the location of the 

combined center of gravity to obtain a clear understanding of the dynamic behavior of the 

system. We begin this investigation by studying the effect of stored elastic energy on the 

outcome of jumping performance. The stored energy relates to the compression section 

(negative displacement) of the force-displacement curve. To do so we must first gain an 

accurate understanding of the principles that govern the relation between the compression 

section of the force-displacement curve and the jumping behavior of the system (section 
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1.3.1). However, the tension section of the force-displacement (positive displacement) will 

also affect the point at which jumping actually occurs, as the bottom mass will not lose 

contact with the ground until the tension in the spring element equates to the weight of the 

bottom mass. Therefore, we also investigate the effect of the tension region on overall 

jumping performance (section 1.3.2). 

1.3.1 Energy Storage in the Compressed Region of the force Displacement Curve 

     The energy storage of the system is shown in Figure 3 (b) is achieved by compressing 

the spring element to some initial displacement. The stored energy, 0E , is equivalent to the 

work ( extW ) performed on the spring to compress it. 

 

Figure 3: (a) Reaction force-displacement curve of the spring with an initial displacement (d). (b) Non-

dimensional force-displacement curve of the spring with the shaded area representing the initial stored 

energy. (c) Three constituent areas of the shaded region. 

      The relationship between the stored energy and the reaction force of the spring 

compressed from the free length can be expressed as: 

0

0

( )

d

extE W F y dy= =    (6) 
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      Where d is the displacement from the free length and ( )F y is the reaction force in the 

spring shown in Figure 3 (a). A piecewise linear force-displacement curve is used for 

representing the non-linear stiffness properties of the system. This section focuses on the 

general piecewise linear curves that are constrained by the actuation and structural limits 

shown in Figure 2 (b) to study the effect of non-linear spring elements on jumping 

performance.  

      To generalize the energy storage function, equation (6) is non-dimensionalized with 

respect to the structural and actuation limits of the system.  

ˆ

0

0

ˆ ˆ ˆ ˆ( )

d

E F y dy=    (7) 

where: 

0
0

* 2

ˆˆ ,
1

2

E d
E d

H
k H

= =  
  

The two factors that affect the stored energy are the initial displacement and the force-

displacement function. For any given force function, maximum stored energy can be 

achieved when the spring element is compressed all the way to the structural limit, 𝑑̂ = 1. 

The overall shape of the force-displacement curve plays a significant role in the amount 

of stored energy as well. For a generic piecewise linear force-displacement curve bounded 

by the structural and actuation limits (𝑑̂ = 1 and 𝐹̂(𝑑) = 1 shown in Figure 3 (b)) the 

stored energy of the system is equivalent to the area between the 𝑦̂-axis and the 𝐹̂(𝑦̂) curve, 

the shaded region in Figure 3 (b). This area can be represented by the summation of three 

areas, a triangle 𝐴1 and two trapezoids 𝐴2 and 𝐴3. 
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0 1 2 3Ê A A A= + +    (8) 

The compression section of the force-displacement curve consists of three piecewise 

linear curves with three corresponding non-dimensional stiffness coefficients: 𝑘̂2, 𝑘̂3, and 

𝑘̂4. The values of these coefficients can be varied independently to affect the total stored 

energy and therefore the overall jumping performance. By varying the coefficients 

individually, we can learn about how the overall shape of a non-linear force-displacement 

curve affects jumping performance.  
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Figure 4: (a) Three different piecewise linear force-displacement curves, with positive, negative and zero 

3ˆk stiffness coefficients. (b) Vertical displacement of the upper mass (solid line) and lower mass (dashed 

line). (c) Vertical displacement of the center of gravity. 

Figure 4 (a) show piecewise linear force-displacement curves with a positive, negative, 

and zero stiffness value for 𝑘̂3. A constant linear force-displacement curve would have 

constant stiffness throughout the entire domain. The largest amount of stored energy from 

a constant linear stiffness would come from a non-dimensionalized stiffness value 𝑘̂ = 1. 

We investigate three piecewise linear curves all with the shared values for 𝑘̂1, 𝑘̂2, and 𝑘̂4. 

The tension stiffness is chosen to match the linear spring, 𝑘̂1 = 𝑘̂ = 1, in order to compare 

the performance of the non-linear elements in the compression region. Each non-linear 

curve uses a 𝑘̂3 value such that more energy is stored than the linear spring. 
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MATLAB ODE45 is used to solve the system of ordinary differential equations that 

governs the structure’s motion shown in equation (2). The initial conditions for the upper 

mass in the pre-jump phase are specified as [𝑌̂2 = 0, 𝑌̇̂2 = 0] where 𝑌̂2 is measured from 

the ground.  The post jump phase of motion defined by equation (5) are extracted from the 

solution for the pre jump phase once the tension in the spring is large enough to overcome 

the weight of the bottom mass. 

Figure 4 (b) and 4 (c) show the vertical displacement of the center of gravity and the 

top and bottoms masses individually. The results show that the piecewise linear springs 

exhibit better jumping performance than the constant linear springs in terms of jumping 

height (up to 14% better with specified values of 𝑘̂3. Jumping performance for the center 

of gravity and both masses is also better when 𝑘̂3 is positive because the mechanisms in 

this case store more energy due to the greater area between the force-displacement curve 

and the displacement axis (larger 𝐴2 in Figure 3 (c).)  

In addition to jumping height it is also useful to compare energy efficiency of the 

mechanisms. The higher jumping heights of the piecewise linear springs comes from 

storing more energy in compression of the system. We define the energy efficiency as the 

ratio between maximum gravitational potential energy of the center of gravity 

(max⁡(𝑃𝐸𝐶𝐺)) and the initial stored energy (𝐸0). 

0

max( )
100%CGPE

E
 =    (9) 
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      Figure 5 shows the gravitational potential energies of the three different systems shown 

in Figure 4. Also in the figure is the initial stored energy of the system with the given initial 

conditions.  

 

Figure 5: (a) Gravitational potential energy levels of the upper mass (UM), lower mass (LM) and center of 

gravity (CG) for constant linear stiffness (a); and three piecewise linear cases (b-d). The three piecewise 

linear force-displacement curves feature the same  𝑘̂1 = 1, 𝑘̂2 = 2, 𝑘̂4 = 0.9, 𝑦̂𝑐 = −0.2. But they have 

different 𝑘̂3 values: (b) 𝑘̂3 = −0.7, (c) 𝑘̂3 = 0, (d) 𝑘̂3 = +0.7. 

      From the results we can see that the mechanism with piecewise linear springs exhibit a 

small drop in energy efficiency when compared with the constant linear spring. It is 

interesting that the piecewise linear spring mechanisms exhibit better jumping performance 

in terms of jump height while sacrificing energy efficiency. Therefore we further 

investigate the efficiency drop for the mechanisms with greater initial stored energy. The 
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initial stored energy for a mechanism with a constant linear spring with stiffness coefficient 

𝑘̂ = 1 can be represented by 𝐸̂0: 

0 0
0

* 20,

ˆ ˆ1
1

2
linearspring

E E
E e

E
k H

= = = +  
 (10) 

      And 𝑒̂, (0 ≤ 𝑒̂ ≤ 1) represents the additional non-dimensional stored energy by 

utilizing non-linear stiffness properties in the compressions region of the force-

displacement curve. The difference between the efficiencies of the nonlinear and linear 

systems can be represented by the following equation:  

 

, ,

0, 0,

max( ) max( )
100%

ˆ ˆ ˆ

linear non linear

CG linear CG non linear

linear linear

PE PE

E E e

   −

−

 = − =

− 
+

 

 

 (11) 

      When considering the additional energy due to non-linear spring elements that will be 

converted into the kinetic energy of the system during the jump it can be shown that: 

 

ˆˆ2 100%
ˆ1

linear non linear

e
G

e
  −

 
− =  

+ 
 

 

 (12) 

      Equation (12) implies that there is a hyperbolic relationship between the efficiency drop 

of a non-linear mechanism and the additional stored energy 𝑒̂. The more energy that is 

stored in the pre-jump phase due to the non-linear behavior of the force-displacement 

curve, the less efficient the system becomes. It is also important to note that the efficiency 
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drop is linearly dependent on 𝐺̂, the ratio between the mass of the jumping mechanism and 

the reaction force in the spring (the actuation limit of the system). For a typical jumping 

mechanism, this ratio should be designed to be small, i.e. significantly less than one. For 

this study, 𝐺̂ = 0.1. As a result of the small value for 𝐺̂ the magnitude of the efficiency 

drop from using non-linear springs is also small (less than 2%). In this case, the benefit of 

better jumping performance (up to 14% increased height of the center of gravity) outweighs 

the sacrifice in system efficiency. 

     The results indicate that using non-linear spring elements in a jumping mechanism can 

significantly increase jumping height and therefore improve jumping performance at a 

minimal cost of energy efficiency, all while staying within the structural and actuation 

limits of the system.  The results are based on a 𝐶0 piecewise linear force-displacement 

curve, but the principles can be directly extended to any 𝐶𝑛⁡(𝑛 ≥ 1) nonlinear curves. 

1.3.4 Tensile Region of the Force-Displacement Curve and its Effect on Internal 

Oscillation in the Post-Jump Phase 

The previous section analyzes the effect of using non-linear properties to increase 

energy storage in the compression region of the force displacement curve. However, to 

fully comprehend the effect of nonlinear springs on jumping behavior the tension region 

(positive displacement) must be studied as well. The values for 𝑘̂2 and 𝑘̂4 are the same as 

in the previous section while 𝑘̂3 = +0.7. To study the effects of the tensile region, the 

values for 𝑘̂1 will differ. Three values are chosen; 𝑘̂1 = 1 will have the same stiffness as 

the constant linear spring previously discussed, while 𝑘̂1 = 0.5 and 𝑘̂1 = 5 represent 
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springs with softer and stiffer tension stiffness with respect to the constant linear spring. 

The shape of the force displacement curve with varying values for 𝑘̂1 is shown in Figure 

6. 

 

Figure 6: Three different piecewise linear force-displacement curves with the same compression section 

(𝑘̂2 = 2, 𝑘̂3 = +0.7, 𝑘̂4 = 0.9, 𝑦̂𝑐 = −0.2) but different tension stiffness coefficients. 

      Figure 7 (a) shows the jump height of both masses based on the different stiffness 

values in the tensile region. From Figure 7 (c) it can be seen that changing the stiffness of 

the tensile region does not affect the maximum height achieved by the center of gravity. 

However, the tensile stiffness does affect the internal oscillations within the mechanism 

within the post jump phase. Form Figure 7 (b) we can observe that increasing the tension 

stiffness decreases the magnitudes of the oscillations between the upper and lower masses 

but increases the frequency.  
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Figure 7: (a) Vertical displacement of the upper mass (solid line) and the lower mass (dashed line). (b) 

Internal oscillations of the jumping mechanism. (c) Vertical displacement of the center of gravity. Colors 

are the same as in figure 6. 

      To better understand the effects the tension stiffness has on the oscillations between 

the masses we will perform a modal analysis on the system. Figure 1 (b) shows the post-

jump phase of motion while the system is airborne. The equations of motion in this phase 
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with equal top and bottom mass is given by equation (5). Given a more general case where 

the top and bottom masses are different the system can be defined as follows: 

1 1 2 1 1

2 2 2 1 2

( )

( )

m z F z z m g

m z F z z m g

= − −

= − − −
  (13) 

      Where 𝑧1 and 𝑧2 are measured from the ground and the free length respectively, and 

𝐹(𝑧2 − 𝑧1) is a nonlinear function. During the oscillations, the system is simplified to use 

only the tension stiffness 𝑘1 to represent the stiffness characteristics around the equilibrium 

position (𝑧2 = 0).  The post jump phase of motion initially begins when the spring is under 

tension and that is why we make this assumption.  The equations of motion can then 

simplify into linear matrix form: 

(
𝑧̈1
𝑧̈2
) =

(

 
 

−𝑘1
𝑚1

𝑘1
𝑚1

𝑘1
𝑚2

𝑘1
𝑚2)

 
 
(
𝑧1
𝑧2
) + (

−𝑔
−𝑔) ↔ 𝑍̈

= [𝐾]𝑍 − 𝑔 

 (14) 

      With the matrix form, we can then solve for the eigenvalues and eigenvectors of the 

stiffness matrix [𝐾] by: 

𝜆1 = 0, 𝑣1 = (
0
0
) 

𝜆2 = −𝑘1
𝑚1 +𝑚2
𝑚2𝑚2

, 𝑣2 = (
−
𝑚2
𝑚1
1

) 

 (15) 

      It can be shown with diagonalization: 

[𝐾] = [𝑉][Λ][𝑉]−1  (16) 

      Where: 
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[𝑉] = (𝑣1 𝑣2) = (
1 −

𝑚2
𝑚1

1 1

) 

[Λ] = (
𝜆1 0
0 𝜆2

) = (
0 0

0 −𝑘1
𝑚1 +𝑚2
𝑚1𝑚2

) 

 (17) 

      So therefore equation (14) can be updated as follows: 

𝑍̈ = [𝑉][Λ][𝑉]−1𝑍 − 𝑔  (18) 

      And multiplying both sides of equation (18) by 𝑉−1: 

[𝑉]−1𝑍̈ = [Λ][𝑉]−1𝑍 − [𝑉]−1𝑔  (19) 

      And defining 𝑈 = [𝑉]−1𝑍 such that: 

𝑈 = (
𝑢1
𝑢2
) = [𝑉]−1𝑍 = (

𝑚1𝑧1 +𝑚2𝑧2
𝑚1 +𝑚2
𝑚1

𝑚1 +𝑚2
(𝑧2 − 𝑧1)

)  (20) 

      From equation (20) we can see that 𝑢1 represents the position of the center of gravity 

and 𝑢2 represents the magnitude of the internal oscillatory motion. Now using 𝑈 as the 

new state variable, equation (18) becomes: 

𝑈̈ = [Λ]𝑈 − [𝑉]−1𝑔  (21) 

      And by substituting [Λ] and [𝑉]−1 matrices into equation (21) we obtain: 



 22 

(
𝑢̈1
𝑢̈2
)

= (
0 0

0 −𝑘1
𝑚1 +𝑚2
𝑚1𝑚2

) (
𝑢1
𝑢2
)

− (

𝑚1
𝑚1 +𝑚2

𝑚2
𝑚1 +𝑚2

−
𝑚1

𝑚1 +𝑚2

𝑚1
𝑚1 +𝑚2

)(
𝑔
𝑔) 

 (22) 

 Which yields the two equations: 

𝑢̈1 = −𝑔 (
𝑚1

𝑚1 +𝑚2
+

𝑚2
𝑚1 +𝑚2

) = −𝑔 

𝑢̈2 = −𝑘 (
𝑚1 +𝑚2
𝑚1𝑚2

) 𝑢2 

 (23) 

      Clearly the acceleration of the center of gravity is independent of the stiffness in the 

tension section of the mechanism and is always equal to – 𝑔. From this we can conclude 

that even with different stiffness coefficients in the tension region the center of gravity 

movement will always remain the same, provided the system has the same initial stored 

energy, which can also be observed in Figure 7 (c). The frequency of the internal 

oscillations of the simplified mechanism can be found by: 

Ω = √
𝑚1 +𝑚2
𝑚1𝑚2

𝑘1  (24) 

      Although this frequency is only for the simplified mechanism and not the nonlinear 

system. However, it does suggest that the frequency is dependent on tension stiffness for 

the mechanism which agrees with the observations we can make from Figure 7 (b) which 

shows numerical simulation results of the nonlinear system. 
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      From this we can deduce that changing the stiffness coefficient of the tension region 

does not affect the jumping behavior of the center of mass, it does affect the internal 

oscillations and therefore could affect the maximum reach or clearance of the mechanism. 
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CHAPTER TWO 

USING THE TACHI-MIURA POLYHEDRON (TMP) BELLOWS TO ACHIEVE 

NON-LINEAR FORCE DISPLACEMENT BEHAVIOR 

      In the previous section I outlined how non-linear stiffness characteristics can improve 

the performance of a generic jumping mechanism. Achieving non-linearity in practice 

however can be challenging for engineers as most springs and elastic elements readily 

available for design exhibit linear stiffness properties. In the following sections, I show 

how it is possible to use rigid foldable origami structures to obtain non-linear stiffness 

properties, specifically a Tachi-Miura Polyhedron (TMP) bellows developed by Yasuada, 

Tachi, and Yang [36]. From there, I use a genetic algorithm to optimize the design of the 

TMP Bellows structure to have the best theoretical jumping performance based on 

numerical simulations within a set of provided design constraints. The results from the 

optimization for the design parameters can then be used directly to manufacture a TMP 

Bellows with an optimum force-displacement profile. This work has already been 

published and discussed in [40] and the figures come from that paper. 

2.1 Defining the Geometry and Force Displacement Profile of the TMP Bellows 

The TMP bellow is essentially a linear assembly of identical unit cells and each cell 

consists of two connected origami sheets (aka. the front sheet and back sheet shown in 

Figure 8 (a,b)).  The geometric design of two origami sheets can be uniquely defined based 

on two fold lines ( ,l ),m  the side length ( ),d and a sector angle ( ).   For clarity, we refer 
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the fold lines that remain parallel to the horizontal x-z reference plane as the “main-folds” 

and all other fold lines are the “sub-folds” (Figure 8 (b)).  

 

Figure 8: Design of the Tachi-Miura Polyhedron (TMP) bellow.  (a) The overall external geometry of a 

TMP bellow; this one consists of eight unit cells, and one of them is highlighted in gray. (b) The crease 

design of the front sheet and back sheet that makes up two unit cells. The main-folds are highlighted by red 

color. (c) The external geometry of a folded front sheet, showing the different angles used in the kinematics 

and mechanics analysis. 

Despite the relatively complex geometry, TMP bellow is rigid-foldable in that its 

folding motion does not induce any deformations in the facets. Therefore, we can assume 

the facets are rigid, and the fold lines behave like perfect hinges with assigned torsional 

stiffness.  In this way, we can use the virtual work principle and estimate the reaction force 

F of the TMP bellow along its length direction (y-axis in Figure 8 (a)) as follows, 
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      In this equation, N  is the number of unit cells in the TMP bellow; Mk  and Sk  are the 

equivalent torsional stiffness of the main-folds and sub-folds, respectively; M  is the 

dihedral angle associated with the main-folds, defined between the facets and x-z reference 

plane as shown in Figure 8 (c); S  is the dihedral angle between the facets along the sub-

folds; and S  is the angle between x-axis and a main-fold.  Denote u  as the change in unit 

cell height through folding and 0M  as the main fold angle corresponding to the initial, 

resting configuration, the magnitude of these angles can be calculated as 

1
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(28) 

      Figure 9 (a) illustrates the force displacement curve of a TMP bellow design based on 

30mm,l m d= = = 40 , =  0 65 ,M =   and 0.03N.m .M Sk k rad= =   Due to the 

nonlinear geometric relationships induced by origami folding, the TMP bellow shows a 

strong nonlinearity.  In particular, it shows a “strain softening” behavior in compression.  
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That is, the TMP exhibits a high stiffness under small compressive deformation, but its 

stiffness decreases as the deformation increases.  

 

Figure 9: The force-displacement curve of a TMP bellow. (a) The contribution of main-folds and sub-folds 

to the overall reaction force, and the sub-folds show the desired “strain softening” behavior in 

compression. (b) The modified reaction force curve considering the deformation limit due to folding. (c) 

The reaction force curve corresponding to different α angles, while all other design variables remain the 

same as those used in (a). 

      As outlined in Section 1.3.1, such nonlinearity is desired because it can store more 

energy upon compression compared to the traditional linear spring, leading to a higher 

jump.  Moreover, after careful examinations, I discover that the reaction force generated 
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by the sub-folds shows a stronger nonlinearity than the main-folds.  Therefore, I will 

intentionally weaken main-folds and stiffen up the sub-folds to strengthen the desired non-

linearity.  This allows us to neglect the contribution of the main-folds to the overall reaction 

force, and simplify equation (25) into the following: 

( )
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      However, this reaction force equation does not consider the deformation limits due to 

rigid folding.  That is, TMP bellow can only be folded in-between its compression limit at 

0S =  (fully compressed) and extension limit at 90S =  (fully stretched).  However, in 

reality when the TMP is compressed near 0 ,S =   its facets would come into contact with 

each other and resist further compression.  On the other hand, when the TMP is extended 

near 90 ,S =   both the front and back sheets are stretched flat so that the overall tension 

stiffness would increase significantly.  To incorporate these deformation limits by folding, 

I adopt the method developed by Liu and Paulino [41] and set two folding angle limits: 

1 20 =  for compression and 2 70 =   for tension.  When 1,S   the reaction force 

equation (29) is modified into the following: 
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      Similarly, when 2 ,S  the reaction force becomes, 
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      Figure 9 (b) illustrates the modified reaction force, which is used for the subsequent 

dynamic analysis and optimization. Figure 9 (c) illustrates the effect of the sector angle   

on the force-displacement curve.  When other design variables are fixed, increasing the   

angle would decrease the reaction force in the structure when compressed.  This leads to 

less stored strain energy. For this reason I would expect smaller alpha angles to lead to 

better jumping performance. 

2.2 Optimizing the TMP Bellows Design for Improved Jumping Performance 

The goal of this optimization is to identify the TMP bellow design that can lead to the 

best jumping performance.  To this end, I describe the jumping performance based on two 

different objectives: Airtime and Clearance (illustrated in Figure 10).  Airtime is the total 

time that the jumping mechanism spends in the air; and Clearance is the peak height 

achieved by the lower mass. I normalize the Clearance by the rest height of TMP bellow 

and use the normalized values as the optimization objective function.  
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Figure 10: A typical time response of the TMP origami jumper.  The schematic plots at the upper left 

corner illustrates the origami jumper at resting configuration, initial configuration when the upper mass is 

compressed, and post jump phase, respectively. The two objective functions of the design optimization: 

Airtime and Clearance are highlighted.  Notice the internal oscillation during the post jump phase 

influences the Clearance performance.  

There are five design variables that that can be tailored to optimize the jumping 

performance. The definition and range of these variables are listed in Table 1, and Figure 

8 illustrates how they relate to the overall geometry of TMP bellow.  Moreover, three 

geometric constraints are imposed.  The first constraint ensures that the design of TMP 

bellow is properly defined and there are no conflicting crease lines.  The second constraint 

defines a minimum main-fold length for the ease of manufacturing and assembly.  The 

third constraint sets an upper limit on the unit cell length.  The additional 15mm in the third 

constraint is for an extended tab to facilitate the assembly of two sheets.  
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Table 1: The design variables and geometric constraints used in the design optimization 

:N   Unit cell # 4 10N   

:d  Side length 20mm 40mmd   

:  Sector angle 30 70   

:l  Fold length  20mm 40mml   

:m  Fold length 20mm 40mmm   

Constraint 1: 2 cot 2 cos 0l d m − +   

Constraint 2: 10mm
2 tan

d
l


−  −  

Constraint 3: 2 tan 15 300mm
2 2

d
l m




  
+ + − +   

  
 

 

      In this study, the three constraints on design variables are defined based on the 

fabrication capabilities available to the author.  Increasing the variables beyond the upper 

limits would require additional fabrication equipment; while reducing them below the 

lower limit would makes assembly too difficult.  Regardless, we can still obtain valuable 

insights on the correlations between the design variables and jumping performance within 

these constraints.  
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Table 2: Other design variables used in the optimization. 

:M  End masses 1 2 0.25kgm Mm = = =  

0
:M Resting 

main-fold angle 
0

65M =  

:FR Initial folding 

ratio 

90
100% 75%

90

MFR
−

=  =  

:Sk Sub-fold 

stiffness 

0.0383 .Sk N m rad=  

 

      Besides the geometric design variables of TMP bellow, the magnitudes of some other 

variables are defined for the optimization (Table 2).  One of them is the stress-free, resting 

folding angle of the main-folds 0.M   However, a very large resting folding angle is 

difficult to achieve in experiments.  Based on repeated trial-and-errors using TMP 

prototypes of different geometric designs, 0 65M = is found to be a realistic value.  

Another important variable is the initial folding ratio, which is essentially the initial 

condition of the dynamic simulation discussed below.  Again, after repeated trial-and-error, 

it is found that an initial folding ratio of 75% is preferred because it can achieve the 

maximum stored energy for jumping without inducing any significant plastic deformation.  

The crease torsional stiffness coefficient k is estimated based on the experimental data 

gathered from different shim stock, which will be used to stiffen the sub-folds.  
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      I numerically simulate the jumping behavior of the TMP mechanism in MATLAB 

using ode45 solver for the different jumping phases outlined in section 1.2.1 and 1.2.2.  In 

these simulations, I assume the upper mass is lowered so that the TMP bellow is 

compressed to the initial folding ratio of 75%, and then the upper mass is released for 

jumping.  I then use the ode45 solver to obtain the pre-jump time response according to 

equations (29, 30, and 31).  Based on this response, I can identify the moment when the 

TMP bellow is stretched to the point that its resulting tension force surpass the weight of 

lower mass.  At this moment, the lower mass leaves the ground so that we can use this as 

the initial conditions for the post-jump phase.  Ode45 solver is used again to obtain the 

time response of the jumping phase so that the Airtime and Clearance can be recorded. To 

optimize the TMP bellow design, I integrate the jumping simulations and ModeFrontier 

using the NSGA-II optimization algorithm. NSGA-II is a common genetic algorithm for 

multi-objective optimization problems. I use a total population size of 2500 individuals 

across 5 generations.   Interested readers can refer to [42] for a complete description of this 

optimization method.  The optimization results according to each objective function are 

represented in Table 3. 

Table 3: Optimized TMP Bellows designs for Airtime and Clearance Objectives 

 

N α [°] d [mm] l [mm] 

m 

[mm] 

Airtime 

[sec] 

Normalized 

Clearance 

 

Airtime Optimum 10 30 20 28.5 20 0.502 179%  

Clearance Optimum 4 30 20 28.5 20 0.320 183%  
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      From the results in Table 3, one can observe that the optimized sector angle α is always 

at its lower limit.  As I explained in Section 4.1, a lower α angle corresponds to a stronger 

nonlinearity in the force-displacement relationship of the TMP bellow (Figure 9 (c)), which 

is desired for better jumping performance. The optimized unit cell side length d and the 

crease length l, m are the same.  Moreover, d and m are also at their lower limit.  The unit-

cell side length d appears in the denominator of the reaction force equation (29), so a small 

side length corresponds to a bigger reaction force and therefore more stored strain energy 

for jumping. The crease length m does not appear in the reaction force equation explicitly, 

but its value is kept low to avoid violating the third geometric constraint.  Similarly, the 

value of crease length l is also kept low to avoid violating the second geometric constraint.  

      The difference between the two optimized designs are the number of unit cells N.  More 

unit cells in a TMP bellow means a larger initial displacement of the upper mass, therefore 

more strain energy is stored for jumping and a longer airtime.  However, increasing the N 

values also increases overall structure height, which can negate the performance of 

normalized Clearance. Such a trade-off between Airtime and Clearance can be illustrated 

in the Pareto front shown in Figure 11.  
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Figure 11: Pareto front obtained in the optimization results 
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CHAPTER THREE 

EXPERIMENTAL CONFIRMATION OF NON-LINEAR FORCE DISPLACEMENT 

PROFILE IN THE TMP BELLOWS 

      From the results of the optimization procedure in the previous section I obtain design 

specifications for the TMP bellows. I use the design parameters to manufacture the TMP 

bellows for both the original design and the optimized design for maximum clearance from 

the parameters outlined in section 2.2. I then subject the TMP structures to compression 

tests to measure the response of their force-displacement curves and compare them to that 

of the theoretical models. For both the original and the optimized designs we are able to 

obtain greater than 90% agreement between the predicted force-displacement profile based 

on equations (29, 30 and 31) and the experimental data. Additionally, I am able to confirm 

up to a 75% increase in stored energy of the system for the optimized design over the 

original design that directly leads to improved jumping performance. 

3.1 Manufacturing of the TMP and Crease-line Modifications and their Effect on 

Torsional Fold Stiffness 

To confirm the performance of the TMP bellows it had to be manufactured and folded 

based on the design variables outlined in section 2.2. Initial prototypes of the TMP were 

made out of paper, with perforations along the crease lines to encourage proper folding. 

An example of a TMP made from paper can be seen in Figure 16. Manufacturing the TMP 

out of paper first provided valuable insight on the best techniques for assembly. However, 
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the torsional stiffness of the creases when the structure is made from paper are not large 

enough to generate enough force to exhibit jumping.  

Flexible plastic sheets are able to be folded similar to paper while maintaining a 

considerably larger torsional stiffness along the creases. For this reason, along with its 

availability, polypropylene sheets of 0.5mm thickness are used to assemble the TMP 

structure.  

As discussed in Chapter Two the majority of the non-linear behavior of the force 

displacement curve of the TMP bellows comes from the sub-folds. In the optimization, the 

sub-folds were stiffened, and the main folds weakened with sufficient magnitude to neglect 

the main folds in the calculations. In order to achieve this in practice, the groove-joint 

compliant hinge researched by Delimont, Magelby, and Howell [43] is implemented into 

the design. It was found that cutting a groove halfway through the material on a “valley” 

fold actually strengthens the fold by allowing for more bending behavior along the crease 

rather than pure stretching and deformation of the material. Conversely, applying the same 

groove on a mountain fold weakens the crease line and it behaves more like an ideal hinge. 

The mountain and valley folds for the TMP are outlined in Figure 8 (b). The benefit of 

applying the groove-joint is threefold. The groove joint allows us to strengthen the sub 

folds by scouring their valleys, weaken the main folds by scouring their mountains, and the 

grooves encourage proper folding behavior of the material by establishing the perfect 

crease lines of the design. 

The manufacturing process begins by drawing a single unit cell in Solidworks based 

on the values for the design parameters outlined in Figure 8. There will be 4 drawings for 
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each TMP structure, one for each side of the front and back sheet of the TMP. Each drawing 

contains the crease lines that need to be grooved to either strengthen or weaken the fold. 

Additionally, note the stress relief holes at the vertices of the crease lines. Removing the 

material at the vertices allows proper folding of the structure by removing the points of 

critical stress to prevent buckling. The Solidworks model for one side of the back sheet is 

shown in Figure 12. 

 

Figure 12: Solidworks Model of the Back Side Crease Lines for one of the 2 Sheets Necessary for the TMP 

Bellows. Dimensions are Based on the Design for Optimized Clearance 

      After the model is created in Solidworks it is converted into an adobe illustrator file. 

Doing so allows each line to be categorized into one of three different layers. The layers 

define if the material only needs to be grooved or through cut and also specifies which 

order to cut the lines in. and Adobe Illustrator file for one side of the back sheet of the TMP 

is shown in Figure 13. 
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Figure 13:Adobe Illustrator file for the Back Side Crease Lines for one of the 2 Sheets Necessary for the 

TMP Bellows. Dimensions are Based on the Design for Optimized Clearance 

      The adobe illustrator file can then be uploaded to the Graphtec FCX4000-50ES Cutter 

used to cut the crease lines into the polypropylene sheets. Specifications for the FCX4000 

can be found in Appendix A. When cutting the sheets, extreme care must be taken to align 

the material properly based on which side of the front or back sheet is being cut. As 

previously stated, it is desired to increase the stiffness of the sub folds by applying a groove 

on the valleys while decreasing the main fold stiffness by applying a groove on the 

mountains. This means that after grooving and cutting the strain reliefs for one side of the 

front or back sheet, the same material must be flipped over and aligned on the cutter such 

that the grooves and cuts for the reverse side are aligned appropriately with those already 
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made. Grooves and cuts being made on the reverse side of one of the sheets can be seen in 

Figure 14. 

 

Figure 14: The FCX4000 Cutter In progress Cutting the Grooves and Stress Reliefs for one of the 

Necessary Sheets for the TMP Bellows 

      After the cutter has applied the grooves to the crease lines and through cut the border 

and the stress reliefs, I obtain a flat sheet as shown in Figure 15. From here, the stress 

reliefs are pushed out and the sheet is folded along the grooved crease lines into the shape 

of the TMP structure.  
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Figure 15: The back side of one Sheet Necessary for the TMP before folding 

      After both sheets have been folded into the proper shape, they are stapled together along 

the end faces outside of the crease lines at each unit cell. Fully assembled TMP Bellows 

structures are shown in Figure 16, Figure 17, and Figure 18. 
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Figure 16: TMP Bellows Manufactured from Paper  

 

Figure 17: Original TMP Bellows Design Manufactured from Polypropylene 

 

Figure 18: Optimized TMP Bellows Design Manufactured from Polypropylene 
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After assembling the TMP structure from polypropylene sheets it can be observed that 

the force required to compress down to its desired initial folding ratio is up to eight times 

more than that of the force required to compress the paper structure. However, the exact 

value for torsional stiffness of the creases must be backwards calculated from experimental 

data. I use an ADMET Expert 5601 Displacement controlled Tensile testing machine 

(specifications shown in Appendix B) with a calibrated load cell to measure the force-

displacement response of the TMP. The testing system compresses the TMP to a set limit 

while continuously measuring the force applied back to the load cell. The displacement 

limit is determined based on the 75% folding ratio as the initial condition defined in section 

2.2.  Figure 19 shows the setup of the machine for the TMP compression tests. 



 44 

 

Figure 19: The Load Cell and Experiment Setup for the TMP Compression Tests 

Figure 20 shows the optimized TMP being compressed during one of the tests. There 

are smooth metal plates lubricated with a small amount of oil that come into contact with 

the top and bottom of the TMP. The lubricated smooth surface allows the shape of the TMP 

to smoothly deform and prevents additional sliding friction forces from resisting the 

deformation.  
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Figure 20: The Optimized TMP Undergoing a Compression Test 

      Firstly, we want to quantify the effect the groove joint method has on strengthening or 

weakening the folds. To illustrate this clearly, Figure 21 shows the force displacement 

curve for the optimized design with all (main and sub) folds weakened (a groove cut into 
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the mountain) versus an optimized design with the main fold weakened and the sub fold 

strengthened (groove cut into the valley of the sub folds).  

 

Figure 21: Optimized Design with Strengthened Sub Folds compared to Weakened Sub Folds 

      We can see an approximate 100% increase in the magnitude of the force generated by 

the TMP structure with the strengthened sub folds at the displacement limit (40 mm). 

Strengthening the sub folds and weakening the main folds in this manner allows us to use 

the simplified force equation for the TMP, equation (29) that accounts for the force 

generated only by the sub-folds.  

      To appropriately compare the theoretical force-displacement curve versus the 

experimental data for the design, the torsional stiffness of the sub folds, 𝑘𝑠, needs to be 

determined for the structure and used to generate the theoretical curve. To do this I 

rearrange equation (29) for 𝑘𝑠 to obtain: 
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𝑘𝑠 = −
𝐹𝑁𝑑𝑐𝑜𝑠(𝜃𝑀)

32 [𝑁(𝜃𝑆 − 𝜃𝑆0)
cos⁡(

𝜃𝐺
2 )

3sin⁡(𝜃𝑀)

cos(𝛼) sin⁡(𝜃𝑆)
]

 

 (32) 

Using the experimental data obtained by compressing the TMP structure and measuring 

the force and displacement, I can find a value for 𝑘𝑠 at each data point (using the 

relationships defined in equations (26, 27, and 28) to relate the folding angles to the 

displacement). The theoretical equation assumes a constant 𝑘𝑠 at all displacements so I take 

the root mean square (RMS) of all experimental values and use that as the 𝑘𝑠 in the 

theoretical model for each design tested. The RMS torsional stiffness is found using 

equation (33). 

𝑘𝑠 = √
1

𝑛
∑𝑘𝑠𝑖

2

𝑛

𝑖=1

  (33) 

      Where n is the number of data points used across all trials and 𝑘𝑠𝑖 is the value found 

using equation (32) at each data point. The torsional stiffness of the sub folds when 

strengthened with the groove joint method is found to be 𝑘𝑠 = 0.0409
𝑁𝑚

𝑟𝑎𝑑
 with a standard 

deviation of 41.71 10
Nm

rad

−  across 3 trials. 

3.2 Force Displacement Profile of Original versus Optimized TMP Design 

After using the experimental data to backwards calculate the stiffness value as 

described in the previous section, I can predict the theoretical force displacement curve 
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with the approximated stiffness value. Figure 22 compares the theoretical force 

displacement curve for the original design with the optimized design found in section 3.  

 

Figure 22: FD Curves for Original Design vs Optimized Design 

      While the original design has a greater maximum displacement for the same folding 

ratio of 75%, the optimized design is expected to generate a force that is significantly 

greater in magnitude, approximately triple the magnitude of the original design at their 

respective maximum displacements.  

      Figure 23 compares the experimental results for three trials of both the original design 

and the optimized design. In both cases, the sub-folds have been strengthened and the main 

folds weakened using the groove joint explained previously.  
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Figure 23: Experimental FD Curves for OG vs Optimized Design 

      When comparing Figure 22 and Figure 23 we can see that the experimental force 

displacement curves are in agreement with the predicted theoretical curves. The optimized 

design while having a smaller structural limit and therefore a smaller maximum 

displacement, generated considerably more force than the original design. However, it is 

also necessary to quantify how closely the experimental force-displacement curves are in 

agreement with the theoretical curves. Figure 24 shows both the theoretical and 

experimental force displacement curve for the original design.  
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Figure 24: Theoretical vs Experimental FD Curve for Original Design showing Comparable Linear 

Stiffness 

      Also included in Figure 24 is a comparable linear force displacement curve that 

achieves a similar maximum force at the maximum displacement. One can observe the 

increase in area between the curves and the x-axis for the non-linear TMP bellows curve 

that signifies the increase in stored elastic energy.  

      Figure 25 compares the theoretical and experimental force-displacement curve for the 

optimized design in addition to showing a force displacement curve for comparable linear 

stiffness.  
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Figure 25: Theoretical vs Experimental FD Curve for Optimized Design showing Comparable Linear 

Stiffness 

      Both Figure 24 and Figure 25 show that it is possible to closely predict the force-

displacement behavior of the TMP bellows design and we can obtain the expected force-

displacement curves in practice. However, as discussed in section 3 it is the stored energy 

that leads to the increase in jumping performance. To calculate the stored energy, a 

trapezoidal rule for numerical integration is used on both the experimental and theoretical 

force displacement curves. Both the experimental and theoretical curves have 

approximately 8000 data points to generate the curves and calculate the area between them 

and the x-axis to find the stored energy. Stored energy values for the original and optimized 

design are shown in Table 4 and Table 5 respectively.  

  



 52 

Table 4: Original Design Stored Energy  

Original Design Stored Energy [J] 

Trial 1 Trial 2 Trial 3 RMS Theoretical 
% Difference Between 

Theoretical and Experimental 
Energy Storage 

0.5811 0.5568 0.5520 0.5634 0.5200 8.02% 
 

Table 5: Optimized Design Stored Energy 

Optimized Design Stored Energy [J] 

Trial 1 Trial 2 Trial 3 RMS Theoretical 
% Difference Between 

Theoretical and Experimental 
Energy Storage 

0.9784 0.9866 0.9817 0.9822 0.9471 3.64% 

 

      With the original design I am able to experimentally obtain within approximately 8% 

of the predicted stored energy. This value is improved with the optimized design and I am 

able to obtain within 3.62% of the predicted stored energy. When comparing the stored 

energy values of the optimized versus the original design, it is observed that the optimized 

TMP bellows stores approximately 175% of the energy stored by the original design. This 

further supports the results of section 3 with the optimized design showing improvement 

on the original concept used for the TMP bellows as the backbone of the jumping 

mechanism. 

3.3 Hysteresis Behavior in the TMP Bellows Force Displacement Profile 

      As shown in section 3.2, we observe strong agreement in the force-displacement 

profiles between the predicted theoretical curves and the experimental data when the TMP 

is compressed form its rest length to the desired folding ratio. However, in the case of 
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jumping the structure starts from a compressed state and is released back to its rest length. 

When measuring the force-displacement profile of the TMP from a compressed state back 

to the rest length, there is significant hysteresis when compared with that of the force-

displacement profile measured from rest length to the compressed state. The non-linear 

profile of the force displacement curve on release loses a significant amount of the energy 

stored on compression. So much in fact that the jumping behavior is expected to be worse 

than that of a comparable linear force-displacement profile. In the following section I 

discuss the problems faced with achieving the desired force-displacement behavior when 

the TMP bellows is released from a compressed state, as well as an approach taken in an 

effort to mitigate the hysteresis problem 

3.3.1 Percent Energy Loss due to Hysteresis in TMP Bellows 

Figure 26 shows the theoretical, the comparable constant linear, and the experimental 

force-displacement curve for the optimized TMP bellows design. For the experimental 

curves, the solid lines are measured when compressing the structure form the rest length to 

the desired initial displacement for jumping, while the dashed lines are measured form the 

compressed state releasing the structure back to the rest length. 

It can be observed that there is significant hysteresis error when measuring the force-

displacement response compressing the structure versus measuring while releasing the 

TMP. When compressing, it can be seen that that the non-linear behavior of the force-

displacement curve dips below the comparable constant linear curve and achieves the 

desired greater stored energy. When releasing however, the non-linear behavior shown is 
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the exact opposite shape of what is desired. The force-displacement curve rises above the 

constant linear curve and remains above until returning back to the rest length. Instead of 

an increase in stored energy over the constant linear curve there is actually a loss of stored 

energy and the TMP would exhibit worse jumping performance if able to jump at all.  

 

Figure 26: Compression vs Release Force Displacement Curve for Optimized Design 

      We can quantify the energy lost due to the hysteresis errors as a percentage of the stored 

energy found when compressing the structure. Table 6 shows the values for the stored 

energy of each experimental trial as well as the root mean square for the optimized design 

and the percentage of energy lost, again obtained using trapezoidal numerical integration. 

It can be seen from the results that roughly half of the energy is lost in the optimized design 

due to the hysteresis error.  



 55 

 

Table 6: Optimized Design Energy Lost due to Hysterical Error 

Optimized Design 

  Trial 1 Trial 2 Trial 3 RMS 

Compression Energy [J] 0.9784 0.9866 0.9817 0.9822 

Release Energy [J] 0.5205 0.5189 0.5405 0.5266 

% Loss 46.80% 47.41% 44.94% 46.38% 

 

     The same phenomenon with the energy lost from hysteresis error is found when 

investigating the original design. This suggests that the hysteresis error does not arise 

strictly as a product of design geometry, rather it may have more to do with the material or 

the crease line deformation. Figure 27 illustrates the hysteresis error for the original design 

in a similar manner to Figure 26 for the optimized design. 
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Figure 27: Compression vs Release Force Displacement Curve for Original Design 

      Table 7 shows the stored energy and percent loss between the compression and release 

measurements for the original design. Similar values for the percent energy loss are 

obtained for the original design when comparing with the optimized design.  

Table 7: Original Design Energy Lost due to Hysterical Error 

Original Design 

  Trial 1 Trial 2 Trial 3 RMS 

Compression Energy [J] 0.5811 0.5568 0.5520 0.5633 

Release Energy [J] 0.2941 0.2970 0.2992 0.2968 

% Loss 49.39% 46.66% 45.80% 47.28% 

 

      There could be a number of reasons that contribute to the energy lost when the structure 

is compressed and then released. The author believes that the most likely culprit is the 

severe deformation introduced to the material along the crease-lines that leads to material 

fatigue. Regardless, the TMP bellows will not exhibit the desired jumping performance 
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unless the hysteresis issue can be solved, and the appropriate shape of the force-

displacement curve can be obtained in practice on release as well as compression. The 

following section discusses one method applied to the TMP in an effort to combat the 

hysteresis error. 

3.3.1 Introducing Torsional Springs to the TMP Bellows Sub-Folds 

One method to reduce the plastic deformation while maintaining a large enough 

torsional stiffness along the sub fold crease lines is to introduce pure linear torsional springs 

along the sub folds of the TMP structure. The theoretical model of the TMP already treats 

the torsional stiffness as a linearly constant value and the non-linearity of the force-

displacement curve comes from the geometry and folding behavior. Two approaches with 

torsional springs are used with the optimized design. In the first, I weaken the sub-folds as 

well as the main folds and rely on the torsional springs to generate the majority of the force 

necessary for the structure to respond. In the second, the sub folds are strengthened with 

the groove joint as before, yet I still introduce the torsional springs along the crease lines. 

The second method relies on the force to be generated by the crease lines and the material 

themselves while the torsional springs combat the material fatigue and increase the force 

response upon release.  

One of the challenges with introducing the torsional springs is finding components that 

are small enough to not interfere with the folding behavior of the structure while still 

generating enough force to overcome the hysteresis energy loss. The torsional springs are 

mounted by cutting slots in the middle of the sub folds for the center of the springs to align 
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with the crease lines. The optimized TMP structure with the added torsional springs can be 

seen in Figure 28. 

Figure 28: Optimized TMP with Torsional Springs 

      The force-displacement curve for the optimized design with the torsional springs is 

measured in the same way as the previous optimized design. The experimental force-

displacement curves with weakened sub-folds and added torsional springs are shown in 

Figure 29. When compared with Figure 21 it can be seen that the magnitude of the force 

generated by the structure with the torsional springs is similar to that of the TMP with all 

of the folds weakened. This suggest that the majority of the force response is still coming 

from the folds themselves and the torsional springs do not have a large enough stiffness 

value to overcome the hysteresis energy loss. This can also be seen when comparing the 

release curves to the compression curves in Figure 29. 
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Figure 29: TMP Bellows with Weakened Crease Lines and Torsional Springs mounted along each Sub 

Fold 

      Figure 30 shows the force-displacement curves for the TMP with the torsional springs 

as well as the strengthened sub-folds with the groove joint. Again, it can be seen that the 

torsional springs do not generate enough force to negate the material fatigue and the 

hysteresis energy loss. In fact, removing material along the creases to mount the torsional 

springs decreases the magnitude of the force by a small amount, approximately 5 N at 

maximum displacement.  



60 

Figure 30: TMP Bellows with Strengthened Crease Lines and Torsional Springs mounted along each Sub 

Fold 

      Table 8 and Table 9 show the stored energy for the compressions and release force 

displacement curves as well as the percent of energy lost on release for the structure with 

the weakened folds and torsional springs and the TMP with strengthened sub-folds and 

torsional springs respectively. 

Table 8: Stored and Lost Energy for TMP with Torsional Springs and Weakened Sub- Folds 

Optimized Design with Weakened Folds and Torsional Springs 

Trial 1 Trial 2 Trial 3 RMS 

Compression Energy [J] 0.4855 0.4823 0.4789 0.4822 

Release Energy [J] 0.1823 0.2066 0.2132 0.2007 

% Loss 62.45% 57.16% 55.48% 58.37% 
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Table 9: Stored and Lost Energy for TMP with Torsional Springs and Strengthened Sub-Folds 

Optimized with Strengthened Folds and Torsional Springs 

Trial 1 Trial 2 Trial 3 RMS 

Compression Energy [J] 0.6681 0.6447 0.6301 0.6476 

Release Energy [J] 0.3113 0.3160 0.3142 0.3138 

% Loss 53.41% 50.98% 50.13% 51.51% 

      As can be seen from the results, approximately half of the stored energy on compression 

is lost even with the torsional springs. In fact, the structure with the weakened sub folds 

and mounted torsional springs exhibits the worst energy loss of all TMP designs tested.  

      Based on the results it appears that the torsional springs used do not generate enough 

force to negate the hysteresis energy loss of the TMP structure. Increasing the torsional 

stiffness of the springs may lead to better results, however as mentioned before the springs 

are limited in their maximum size else they may interfere with the folding behavior of the 

structure. Increasing the stiffness of the springs tends to come directly from increasing their 

size and for this study the torsional springs used are close to the limit of what can be 

implemented with the optimized design without interfering with proper folding behavior. 
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CHAPTER FOUR 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

As a result of this study we have shown that non-linear stiffness can lead to better 

jumping performance of a jumping mechanism defined by Figure 1 in section 1.2. The non-

linear behavior of the force-displacement curve leads to greater stored energy in the non-

linear spring elements and this directly translates to improved jumping performance when 

compared to that of a linear spring, up to a 15% increase in the maximum height achieved 

by the center of gravity.  The maximum height of the center of gravity of the jumping 

mechanism is directly defined by its maximum potential gravitational potential energy in 

the post jump phase and the maximum stored potential energy in the compressed state in 

the pre-jump phase, assuming all stored elastic energy is converted to the kinetic energy of 

the jump and finally to the maximum potential gravitation energy.  

The origami TMP Bellows shows clear non-linear behavior for its force-displacement 

response of the shape necessary to improve jumping performance as outlined in section 

1.3.1. The non-linear behavior arises from the folding behavior and geometry of the 

structure while still treating the crease lines as having some constant linear torsional 

stiffness value. This allows us to use evolutionary algorithm optimization techniques on 

2500 designs outlined by constraints set for ease of manufacturing to find the best possible 

design for optimum theoretical jumping performance. Starting with an initial design 

outlined in section 2.1 and the design constraints outlined in Table 1and Table 2, I am able 

to obtain the optimum design defined by the geometric parameters in Table 3. This 

optimum design achieves the best jumping performance based on the numerical 
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simulations that solve the dynamics of the jumping mechanism outlined in section 1.2 and 

the objectives for airtime and clearance of the bottom mass.  

When designing the TMP bellows and manufacturing the structure based on the initial 

and optimized design out of polypropylene plastic sheets I am able to show greater than 

90% agreement between the expected force-displacement curve that arises from equation 

(29) and the curves obtained from experimental data. Additionally, I am able to show the 

benefits of the optimized design over the original in terms of its maximum stored energy 

when subject to a desired displacement based on a folding ratio of 75%. This further 

supports the claim of improved jumping performance for a jumping mechanism that 

utilizes non-linear stiffness elements as a means of increasing the stored elastic energy. 

The problem of nearly 50% hysteresis energy loss when releasing the TMP structure 

from its compressed state however inhibits experimental confirmation of the jumping 

behavior and performance obtained from the optimization results shown in Table 3. Using 

linear torsional springs to negate the effect of plastic deformation in the material along the 

crease lines did not adequately solved the problem of the hysteresis energy loss. The 

torsional springs were not strong enough to overcome the energy loss due to material 

fatigue in the crease lines. Torsional springs with a stiffness of greater magnitude may 

improvements in terms of less energy loss, however due to size constraints with the 

optimum TMP design to ensure proper folding behavior, I am limited in increasing the size 

of the springs and therefore increasing their stiffness values.  

     Further research should focus on combating the hysteresis energy loss of the TMP 

structure when releasing from the compressed state. The TMP bellows is proven to exhibit 
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the desired non-linear behavior that can lead to improved jumping performance when 

compressed from the rest length. Strong correlation between the theoretical force-

displacement curve and experimental test results, as well as an already established 

optimization procedure for the design will allow for easy adjustments to be made to the 

design if necessary to negate the hysteresis energy loss. Investigating the specifics of where 

the energy loss arises and how it relates to the TMP design, The energy loss can be negated 

and the TMP dynamic jumping behavior can be experimentally tested and compared with 

the numerical simulations to confirm the model and the benefits of non-linear spring 

elements in jumping mechanisms. Additionally, if the hysteresis energy loss can be 

explained and modeled, this opens the door for other studies on the dynamics of origami 

structures. Damping is a known problem within origami structures that arises from plastic 

deformation along the creases. If the damping can be modeled and related to the hysteresis, 

we can begin to account for it in our theoretical and experimental models thus allowing us 

to more accurately predict the behavior of origami structures in different applications. 
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Appendix A 

Graphtec FCX4000 Specifications 

Item FCX4000-50ES 
FCX4000-60ES (stand 

optional) 

Configuration Digital servo system, Flatbed 

Media hold-down 
method 

Electrostatic panel 

Effective cutting 
area 

W 25.98" x H 19.21" W 38.4" x H 25.9" 

Mountable media 
(Y-axis direction) 

21.10" 27.97" 

Maximum cutting 
speed 

29.5"/s (1 to 75 cm/s in 23 steps) 

Cutting pressure 
Tool 1: Max. 5.88 N (600 gf) 
Tool 2: Max. 5.88 N (600 gf) 

Cutting force 
settings 

Tool 1: in 48 steps, Tool 2: in 48 steps 

Minimum character 
size 

Approx. 10 mm square (varies with character font 
and media) 

Mechanical 
resolution 

0.005 mm (5µm) 

Programmable 
resolution 

GP-GL mode: 0.1/0.05/0.025/0.01 mm,  
HP-GL™ (*1) : 0.025 mm 

Distance accuracy 

Max.0.2% of the distance moved or 0.1mm, 
whichever is larger 
(excluding contraction of media, in plotting/cutting 
mode) (*2) 

Perpendicularity 
Max 0.3 mm / 16.93" 
(excluding contraction 

Max 0.4 mm / 24.01" 
(excluding contraction 
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Item FCX4000-50ES 
FCX4000-60ES (stand 

optional) 

of media, in 
plotting/cutting mode) 

of media, in 
plotting/cutting mode) 

Repeatability 
Max 0.1mm (excluding contraction of media, in 
plotting/cutting mode) (*2) 

Standard 
interfaces 

USB2.0 (Full Speed) / RS-232C / Ethernet 
(10BASE-T/100BASE-TX) 

Buffer memory 2MB 

Command sets 
GP-GL / HP-GL™ / AUTO (Automatic switching 
in GP-GL and HP-GL™) 

Number of tools 2 tools 

Cutter blade, pen, 
and tool types 

Cutter blade: supersteel 
Pen: water-based fiber-tip pen 
Creasing/scoring tool 

Operating panel 
3.7-inch graphical LCD (same LCD as the 
FCX2000) 

New features 

Dual configuration, Creasing in the curve, 
Perforation cutting (performed by the force 
control), Data management using the bar-code, 
Offline cutting operation using the USB memory, 
Display the degree of wear for the cutting blade, 
Confirming the cutting object size, Draft mode 
(higher throughput in arc) 

Power supply 100 to 240 V AC, 50/60 Hz (Auto switching) 

Power 
consumption 

Max. 120 VA 

Operating 
environment 

Temperature: 10 to 35 degree C ,  
Humidity: 35 to 75% RH (non-condensing) 
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Item FCX4000-50ES 
FCX4000-60ES (stand 

optional) 

Guaranteed 
accuracy 
environment 

Temperature: 16 to 32 degree C,  
Humidity: 35% to 70% RH (non-condensing) 

External 
dimensions (*3) 
(W x D x H) 

W 42.87" x D 35.31" x 
H 8.03" 

W 55.31" x D 42.08" x 
H 8.03" 
(including stand : W 
55.31" x D 43.18" x H 
35.27") 

Weight 
approx. 63.93 lbs 
(29kg) 

approx. 83.77 lbs (38 
kg) 
(including stand 121.25 
lbs (55 kg) 

Compatible 
OS (*4)(*5) 

Windows 10 (Home / Pro / Enterprise / 
Education) 
Windows 8.1 (Windows 8.1 / Pro / Enterprise) 
Windows 8 (Windows 8 / Pro / Enterprise)  
Windows 7 (Ultimate / Enterprise / Professional / 
Home Premium)  

Mac OS X 10.7 to 10.11 / macOS 10.12 (Sierra) 
to 10.13 (High Sierra) 

Supported 
software 

Cutting Master 4, Graphtec Pro Studio, Graphtec 
Studio for Mac, Windows Driver 

Compatible 
Standards 

Safety UL/cUL, CE mark 

EMC 
VCCI Class A, FCC Class A, CE mark (EN55032, 
others) 

 

Table A-1: FCX 4000 Specifications. 
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Appendix B 

ADMET Expert 5601 Tensile Testing Machine Specifications 

 

 

Figure B-1: Expert 5601 Static Specifications 
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