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Abstract

In the first chapter, I provide an empirical approach to answering a legal ques-

tion in daily fantasy sports. A major legal question the past few years is whether

daily fantasy sports is a game of chance or skill, and therefore whether it con-

stitutes gambling. Results show that there are mispricings in DraftKings pricing

mechanism, providing skilled players an opportunity to take advantage of this mis-

pricing and improve their chances of winning. This provides evidence that certain

elements of daily fantasy sports involve skill, and a long-run strategy exists for

participants to win money. Results also show evidence of heterogeneity in skill

level, and that skilled players target contests with particular settings.

In the second and third chapters, I switch focus to baseball arbitration. Over

the past two decades, Major League Baseball teams have adjusted how they value

certain player attributes based on how those functions aid in winning games.

Salaries doled out in the free agent market have adjusted to better compensate for

these attributes. For example, today power is valued less relative to the ability to

reach base than it was in the pre-Moneyball era. However, the arbitration market,

which uses previous arbitration cases to determine player salaries, has not seen

this adjustment. Using the non-parametric free disposal hull estimator, the second

chapter estimates the upper and lower bounds of contract zones for arbitration-

eligible position players, and then uses a second-stage regression to determine

which attributes improve players’ relative contract position on their contract zone.
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This chapter finds that power hitters are overcompensated and on-base hitters are

undercompensated in arbitration.

In chapter three, I analyze the consequences of the arbitration mispricing in

the context of a theoretical model. I expand current theoretical work in arbitration

modeling by addressing steps of the arbitration process not previously explored.

I then analyze how risk aversion, negotiation breakdown, arbitration panel valu-

ation uncertainty, and release fee percentage impacts outcomes. Results support

conclusions from previous research into baseball arbitration, while providing a

model framework for future research.
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CHAPTER 1

DAILY FANTASY SPORTS: A GAME OF CHANCE OR SKILL?

1.1 Introduction

Over 59.3 million people from the United States and Canada have participated

or are currently participating in a fantasy sport contest, with the average fantasy

player spending $653 annually.1 Professional leagues are incentivized to help

grow the fantasy sport sector as fantasy sport participants consume 40% more con-

tent after joining, 64% watch more live events, and 61% read more about sports.2

With team revenues driven partially by ads and sponsorship dollars, higher partic-

ipant engagement equates to higher revenue totals.

Daily fantasy sports (DFS) is a subset of the fantasy sport industry, with fis-

cal year 2017–18 worldwide annual handle—the total amount of money wagered—

at $3.19 billion.3 There are over 10 million users with DFS accounts, 4.7 mil-

lion of which are active users. Per Vardhman (2017), the top daily fantasy sites,

DraftKings and FanDuel, hold 90% market share in DFS. Those sites are backed

by major corporations, leagues, media companies, and more.4 This paper focuses

exclusively on DraftKings’ Daily Fantasy Football product.

1https://fsta.org/research/industry-demographics/
2https://betting-sites.me.uk/unstoppable-growth-fantasy-sports-infographic/
3New York State Gaming Commission 2017 Interactive Fantasy Sports Report
4Some major DraftKings or FanDuel investors include: Disney, Revolution Growth, The Na-

tional Football League (NFL), Fox Sports, Time Warner, Comcast Ventures, KKR, capitalG, NBC
Sports, Major League Baseball (MLB), and Shamrock
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For an entry fee, DFS contestants are given equal amounts of virtual cur-

rency used to purchase players and compile lineups. Figure 1.1 shows a typical

layout contestants see when selecting their lineups on DraftKings. Each player

has a distinctive price or salary, which is assigned by the DFS organizer based

on the player’s expected point contributions. Players score points based on their

real-life performances, and those points accumulate for the participants. The con-

testant wins a predetermined payout if his or her lineup outperforms a specific

percentage of other contestant lineups.5

Prices are set after they are posted; they do not adjust for shocks. Some

examples of shocks include: an injury or suspension announced, a report about

the expected usage of a player, injuries to key members of the opposing defense,

etc. This is unique in sport gambling markets as most gambling lines and spreads

are impacted by consumer demand.6 This heightens the importance of Draftkings’

pricing mechanism. For Draftkings’ pricing mechanism to be efficent, assuming

their objective is to produce a mechanism that matches player prices with ex-

pected point contributions, the initially assigned player prices should fully reflect

5There are multiple game types where the winning threshold is different. For example, in
double-up matchups, the top half of performing lineups receive the payoff. In triple-up, only the
top third win.

6There are various methods to gamble on a sporting event. One can bet on the spread, line,
odds, over/under, and more. When a shock happens, the prices for these gambling methods adjust
to account for changes in expected results. They also adjust when consumers have strong prefer-
ences for single particular outcomes. For example, one of the more popular gambling methods is
to bet against the spread. A gambling spread sets the handicap for a particular real-world event,
and consumers bet on either a team to cover or to not cover it. Suppose the New York Giants were
+7 against the Patriots, and the Patriots won 20-14; the Giants would have covered the spread
since 20 < 14 + 7. If there is heavy consumer demand for one side of the spread, odds makers
may adjust the line to even out the money coming in on both sides. Under an efficient market, the
probability of covering a spread should be .5.
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the players’ true values. If this is a game of chance, a player’s expected returns

would be perfectly computable based on their prices, and thus there is no strat-

egy to consistently beat the market. Alternatively, if this is a game of skill, there

are opportunities for skilled players to improve their probabilities of winning by

taking advantage of mechanism mispricing.

The legal landscape for daily fantasy games varies dramatically by state.

Nineteen states have laws on the books specifically allowing DFS. Eight states

either have laws on the books banning DFS or have attorney generals who have

effectively outlawed them. Three states have active legislation looking to regulate

DFS. The remaining states are currently in a gray area where DFS has neither

been expressly outlawed nor legalized.78 Despite the uncertainty, DraftKings and

FanDuel currently operate in 41 and 40 states, respectively.9 The industry is very

much in flux and those numbers are likely to have changed by the time this paper

is published. Most of the legal debate is around the concept of chance versus

skill. If DFS is a game of skill, then there must exist some strategy to ‘beat the

market’—win more than lose. Otherwise, a chance-based game would be mostly

random, where the expected long-run winnings are zero (or negative). If such a

strategy to beat the market does not exist, the outcome is completely based on

chance, and thus constitutes gambling.

Cabot and Miller (2011) opined that answering the chance versus skill

question should adhere to the following methodologies:

7http://abcnews.go.com/Sports/daily-fantasy-sports-state-state-tracker/story?id=48138210
8https://www.legalsportsreport.com/dfs-bill-tracker/
9https://www.legalsportsreport.com/daily-fantasy-sports-blocked-allowed-states/
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First, the effects-based analysis should compare the experience of av-
erage persons, without augmentation through experience or practice,
with that of the most highly skilled players to determine the skill levels
of the game. Second, the game should not be reviewed in isolation,
but in the way it is being offered. For example, a single game of
poker may be predominately chance-based, but a tournament may be
skilled-based. Third, the results of a mathematical analysis of play
does not need to result in the more skilled person winning virtually
every time, but instead only a statistically relevant number of times in
order to show that overall, in the particular game or format offered,
skill is the predominate factor.10

I address the chance versus skill question using a two-part procedure. First,

I analyze 2016–2018 player pricing for DraftKings to see if its pricing mechanism

is efficient compared to a market where market forces would drive prices such that

a player’s expected point contribution matches the price. I show evidence that cer-

tain player attributes are mispriced, providing opportunities for skilled players to

increase their lineup’s expected performance. Second, I analyze 2018 DraftK-

ing contest results using two different non-parametric tests. The first is a test for

stochastic dominance, which I use to analyze point score distributions between

contest types. The purpose of this is to see if there are different skill levels and

different strategies implemented for different contest settings. The second test is a

test for multimodality. The existence of multiple modes in lineup score densities

might suggest the existence of multiple player ‘types’, which could be interpreted

as players with different skill levels. While I do not observe which participants

are ‘skilled’, I can identify whether skilled players exist. Identifying the existence

of skilled players and potential strategies for them to implement in contest selec-
10This excerpt from Cabot and Miller (2011) was pulled from Meehan *2015).
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tion would support the idea that DFS are games of skill. I show there are skilled

players that target certain contests to maximize expected profits.

Multiple legal journal articles have discussed the theory behind whether

DFS is a game of chance or skill. Trippiedi (2014) differentiates between season-

long contests and daily contests in that players in season-long contests can only be

owned by one team so there is significant strategy in acquiring players that does

not exist in the daily game. He argues that many of the elements that make season-

long contests games of skill, such as acquiring sleepers and other pickups with the

long-term in mind, are not prevalent in DFS. On the other hand, Meehan (2015)

argues that DFS is a game of imperfect information where utilizing game theory

can lead to consistent profits over time. Ehrman (2015) identifies managing one’s

bankroll as a skill in DFS. In particular, skillful players will have an understanding

of their profit margins at various buy-in levels and league sizes. Both papers agree

that DFS is a game of skill.

To my knowledge, the only paper that has applied an empirical approach

to the chance versus skill question is Easton and Newell (2019). They use a linear

programming lineup-based approach where they randomly compile a roster (for

both football and baseball), and analyze how that lineup performs against a team

selecting players based on a particular strategy (in football) and against other real-

life teams (in baseball). They find convincing evidence that rejects the null hy-

pothesis that DFS is a game of chance. However, they set a low standard for what

constitutes as skill, thus rejecting the possibility that some baseline level of skill

exists where chance becomes the deciding factor in whether a participant wins. If

5



skill level is homogeneous among participants, chance becomes the predominant

factor since nobody would benefit from any one particular strategy. In contrast,

the player pricing approach used in this paper sets a higher standard for rejecting

the null that it is a game of chance, looking at the market pricing mechanism to

determine if there exists a strategy (skill) to beat the market. I look at particular

selection strategies and player attributes and utilize a maximum likelihood econo-

metric model to determine whether these strategies are properly incorporated into

player prices. Finally, I check for heterogeneity in skill level. Even with a more

stringent definition of what constitutes a skill-based contest, this paper ultimately

supports the conclusions from Easton and Newell (2019) that DFS is a game of

skill and not chance.

Section 2 discusses gambling legislation and how the chance versus skill

question plays a role. Section 3 introduces both the logistic regression approach to

determine DraftKing pricing efficiency and the non-parametric tests looking for

the existence of skilled players. Section 4 discusses the data and the particular

variables used in the models. Sections 5 and 6 identify key results from the two

empirical approaches. Section 7 provides summarizing and concluding remarks.

1.2 Legal Background

Gambling legislation was first introduced as part of Chapter 50 of the Federal

Wire Act of 1961.

Whoever being engaged in the business of betting or wagering know-
ingly uses a wire communication facility for the transmission in inter-

6



state or foreign commerce of bets or wagers or information assisting
in the placing of bets or wagers on any sporting event or contest, or
for the transmission of a wire communication which entitles the re-
cipient to receive money or credit as a result of bets or wagers, or for
information assisting in the placing of bets or wagers, shall be fined
under this title or imprisoned not more than two years, or both.11

This law essentially banned interstate gambling and national online gambling op-

erations. For example, a person in New York would not be allowed to receive

payment from a gambling operation in New Jersey without physically travelling

to that state to place the wager and collect the winnings. Thirty years later the

Professional and Amateur Sports Protection Act of 1992 (PASPA) would restrict

intrastate gambling.

It shall be unlawful for—
(1) a government entity to sponsor, operate, advertise, promote,

license, or authorize by law or compact, or
(2) a person to sponsor, operate, advertise, or promote, pursuant

to the law or compact of a government entity, a lottery, sweepstakes,
or other betting, gambling, or wagering scheme based, directly or
indirectly (through the use of geographical references or otherwise),
on one or more competitive games in which amateur or professional
athletes participate, or are intended to participate, or on one or more
performances of such athletes in such games. 12

Essentially, PASPA compelled states to outlaw sports betting. Nevada was grand-

fathered into the law, giving Vegas a monopoly on legal sport betting for over 25

years. In May 2018, the United State Supreme Court ruled that PASPA violated

11Federal Wire Act of 1961. Pub. 18 U.S. Code 1084—Transmission of wagering information
penalties. Legal Information Institute https://www.law.cornell.edu/uscode/text/18/1084

12Professional And Amateur Sports Protection Act of 1992. Pub. 28 U.S. Code § 3702—
Unlawful Sports Betting. Legal Information Institute
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the 10th Amendment since it compelled states to pass (or in this case not pass)

particular legislation.

The overturn of PASPA has opened the door for states to pass their own

rules and regulations regarding sports gambling, including DFS. With that said,

states still have to pass legislation and the Federal Wire Act still prohibits interstate

gambling (including interstate online gambling). In absence of state legislation,

the legality of such operations is unclear and up to judicial interpretations of state

and federal laws already on the books.

In 2006, Congress passed the Unlawful Internet Gambling Enforcement

Act (UIGEA) creating a carve-out for fantasy sports in the Federal Wire Act.

Specifically, the law specifies that the term ‘bet’ or ‘wager’ does not include:

Participation in any fantasy or simulation sports game or educational
game or contest in which (if the game or contest involves a team or
teams) no fantasy or simulation sports team is based on the current
membership of an actual team that is a member of an amateur or
professional sports organization.13

According to the UIGEA, this exception holds only if prizes and awards are made

known before joining the contest, and if “all winning outcomes reflect the relative

knowledge and skill of the participants.” The rational behind this carve-out was

that fantasy sports are games of skill and not synonymous with gambling that

constitutes chance.

While this exemption is well accepted for season-long fantasy contests, its

13Unlawful Internet Gambling Enforcement Act of 2006. 31 U.S. Code § 5362—Definitions.
Legal Information Institute
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interpretation is less clear for DFS. In season-long contests, players act like team

managers by drafting rosters, making player transactions, and setting lineups over

a full season. These leagues generally have entry fees and the money is kept in

a prize pool where the person with the best performing team wins. DFS contests

also have entry fees with a predetermined prize pool. However, these contests

operate under a much shorter time frame and only involve building a single (per

entry) lineup. While season-long player performance is relatively predictable,14

a player’s performance in a particular contest is much more variable. The obvi-

ous question then is whether there exists a strategy to beat the market, or if the

large variation in actual player performance is simply due to chance. A follow-up

question is whether there is an opportunity for skilled players to exist. If there are

strategies for skilled players to incorporate and there is evidence skilled players

exist, it can be concluded that DFS is a game of skill and should not be subject

to the Federal Wire Act under the UIGEA exemption. The uncertainty in the an-

swers to these questions has led multiple states to challenge the legality of DFS

contests.

A more notable legal dispute took place in New York, one of the largest

paid-entry DFS markets, where Attorney General Eric Schneiderman issued cease-

and-desist orders to DraftKings and FanDuel. This set off a chain reaction of other

state attorney generals looking into DFS. Following back-and-forth court proceed-

ings that essentially maintained the status quo, and heavy lobbying efforts by the

14The word relatively should be emphasized here. While season-long player projections do a
better job predicting season-long outcomes compared to daily projections predicting daily out-
comes, there is plenty of variation in both.
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industry, New York legislators passed legislation legalizing DFS.15

1.3 Empirical Approach

This study addresses the chance versus skill question in DFS in two stages. First,

I examine the efficiency of DraftKings’ player pricing mechanism using a player-

versus-player logistic model approach. Second, I look for the existence of player

skill “types” by examining the distribution of lineup scoring outcomes using non-

parametric tests for stochastic dominance and modality.

1.3.1 Player-vs-Player Approach

When picking a linuep on DraftKings, participants select one quarterback (QB),

two running backs (RB), three wide receivers (WR), a tight end (TE), a flex player

(FLEX), and a Defense (Def).16 For the flex position, participants can chose to

start an additional RB, WR, or TE. Participants are given 50,000 units of virtual

currency to buy players, with better players costing more to buy.17 Since prices are

assigned in increments of 100, many players are assigned the same price which

is the basis of this player-versus-player model. If two players cost the same in a

given week, then conditional on playing the same position, their expected point

contributions should be equal.

15https://www.legalsportsreport.com/ny/
16Due to the uniqueness of the Def compared to the other positions, the position is excluded

from the analysis.
17 dPrice

dE(Performance) > 0 : the price of a player increases as their expected performance in-
creases.
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The outcome variable, yi, is defined as whether a player scores more points

than another player,

yi =

{ 1 if player m scores more than player n

0 otherwise
. (1.1)

Matchup i is a combination of two players m and n that play the same position,

pon = pom, and have the same salary in the same week, sn = sm, wn = wm. By

conditioning on equal salaries, the efficient market hypothesis suggests that the

participant should be indifferent between selecting either player m or n to their

lineup.

Whether a player scores more is only known ex-post, so the expected prob-

ability that player m scores more than player n when selecting a lineup, P (yi = 1),

is a latent variable. The latent variable, y∗i , is interpreted as the log odds ratio of

the probability of player m scoring more than player n given by

log

(
P (yi = 1)

P (yi = 0)

)
= y∗i = βm,poXi,m + βn,poXi,n + εi,m + εi,n. (1.2)

The variables of interest are contained in Xi,m and Xi,n. These covariates

include measures of experience, game-time weather conditions, team quarterback

ability, strength of opposing defense, team offensive line ability, injury status,

and position (for the FLEX model). Since each position has different objectives

and roles, coefficient estimates are allowed to vary by position. For example, a

running back is less likely to be impacted by an opposing pass defense than a

11



wide receiver, so the adjustments made in their pricing equations should differ.

Assuming that the covariates impact y∗i equally for players m and n, I can set

βm,po = −βn,po = βpo. After setting εi,m + εi,n = εi, Equation 1.2 becomes

y∗i = βpo (Xi,m −Xi,n) + εi, (1.3)

where Xi,m − Xi,n is the difference in the covariates for players m and n. The

error has a logistic distribution (Λ) given by

Λ(εi) =
1

1 + e−(εi)
. (1.4)

Using Equations 1.2 and 1.4 and setting Xi,m − Xi,n = Xi yields the following

probability model,

P (y = yi) = (Λ[βpoXi])
yi(1− Λ[βpoXi])

1−yi .18 (1.5)

Finally, maximum likelihood estimation is used to estimate the parameters from

Equation 1.5. The log-likelihood function is

LLF =
n∑
i=1

yilog(Λ[βpoXi]) +
n∑
i=1

(1− yi)log(1− Λ[βpoXi]). (1.6)

To allow for variation in the dependent variable, player m having a higher

point total than player n, identifying which of the players is m and which is n

18Team fixed effects are not necessary since much of the team specific variation is contained in
the covariates.
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is chosen at random. This disperses point differentials ensuring the model co-

efficients are estimating the effects of the covariates on the general outcome of

scoring more points. In a particular matchup, yi = 1 if player m scores more

points than player n. This holds true regardless of the scoring margin; player m

can score one more point than player n or 30 more points than player n, but yi

still equals one. If the majority of the higher point differential observations were

assigned such that yi = 1, while the majority of the low point differential obser-

vations were assigned such that yi = 0, estimates would no longer be estimating

their impact on the probability of winning, but rather their impact on the probabil-

ity of having a high or low scoring margin. Randomly assigning m and n within

pairs eliminates this concern.

The null hypothesis is that none of the covariates impact the probability of

winning since they are already accounted for in player salaries. The alternative

hypothesis is that at least one covariate does impact the probability of winning

and thus is not properly accounted for in the player salary. Under the null, DFS

is a game of chance since there does not exist a strategy that allows for increased

profit opportunities. Under the alternative, DFS is a game of skill since a skilled

participant could take advantage of market mispricing.

A follow-up question from this approach is whether participants adjust

their strategies to account for any mispricings. The more adjustments take place,

the less of an advantage there is to exploit by skilled participants. However, par-

ticipants adjusting would suggest they are incorporating skill in their lineup deci-

sions. I test whether participants make adjustments using an ordinary least squares
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model regressing the dependent variable, usage percentage, on the covariates used

in the previous maximum likelihood model.

1.3.2 Non-parametric Tests

Stochastic Dominance

DraftKings offers participants contests that vary in size, entry fee, and win condi-

tion. For size, the smallest contest in the sample has just 97 participants while the

largest has 676,700 participants. For entry fee, the cheapest contest in the sample

costs one dollar to enter, while the most expensive is $25. For win condition, there

are multiplier contests, tournaments (also known as progression contests or guar-

anteed prize pool contests), and winner-take-all contests. Multiplier contests pay

off to the top percentage of lineup scores. For example, the top half (payout 2x

entry fee), third (payout 3x entry fee), tenth (payout 10x entry fee), etc, disperse

about 90% of the pot with the remainder going to DraftKings. Tournaments pay

more the better you finish, with the biggest prize going to the person that finishes

in first place.19 Winner-take-all contests are exactly what they sound like.

Better or more experienced players may play in different types of contests

compared to beginners or newer players. They also may have a sense of where

newer players may play, and thus where they may have a better opportunity to win.

19For example, in Week 11 there was a contest called ‘Casual NFL $3K First Down’ (contest
ID: 64153809). This was a $1 entry fee tournament with 3,563 participants and the following
payoff breakdown: 1st $150.00, 2nd $100.00, 3rd $70.00, 4th $50.00, 5th $40.00, 6th $30.00,
7th $25.00, 8th $21.00, 9th $18.00, 10th $16.00, 11th-15th $14.00, 16th-20th $12.00, 21st-30th
$10.00, 31st-40th $8.00, 41st-50th $7.00, 51st-100th $6.00, 101st-150th $5.00, 151st-300th $4.00,
301st-450th $3.00, 451st-700th $2.00, 701st-3,567th $0.00.
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More-skilled players may also be more likely to play in higher stakes contests.

Contests with higher-skilled participants should have higher contest scores

on average. Using the test for stochastic dominance, I test to see if contests with

certain settings produce higher scores than other contest types. For example, I

test if higher entry fee contests have lineup score distributions that stochastically

dominate lower entry fee contests.

Econometrically, I am interested in weak first order stochastic dominance

of G over F , where G and F are lineup score cumulative distribution functions,

which corresponds to testing if

G(z) ≤ F (z) ∀ z ∈ R. (1.7)

Stochastic dominance means that at any point total, z, the probability of scoring

at most that many points will be greater in F than G. For the test for first or-

der stochastic dominance, the only noteworthy necessary assumptions are that F

and G are continuous functions, and the samples are independent and randomly

drawn from the population distributions F and G. When testing for stochastic

dominance, the null hypothesis is that G does stochastically dominate F for all

points z, while the alternative is that G does not stochastically dominate F for at

least one value of z.

Barrett and Donald (2003) propose a first order stochastic dominance test

statistic,

ŝj =

(
nm

n+m

)1/2

sup
z

(Ĝm − F̂n), (1.8)
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where n is the sample size for distribution F , m is the sample size for distribution

G, and Ĝm and F̂n are the empirical distribution functions given by,

F̂n = n−1

n∑
i=1

I(Xi ≤ z) and Ĝm = m−1

m∑
i=1

I(Yi ≤ z). (1.9)

In the empirical distribution function, I is the indicator function and {Xi}ni=1 and

{Yi}mi=1 are independent random samples from distributions with cumulative den-

sity functions F and G, respectively. Using results from Billingsley (1968), and

as described in McFadden (1989), it can be shown that

p̂ = exp(−2ŝ2j), (1.10)

where p̂ is the p-value from the test. These tests are conducted comparing the

individual contests against each other, as well as using aggregated data by contest

type. Figures 1.2a and 1.2b show examples of what the stochastic dominance test

looks like when applied to the data. The vertical lines in both figures illustrate

the point values (z) that maximize the difference between Ĝm and F̂n in Equation

1.8. The top figure provides an example comparing lineups in Week 9 across two

entry fees and rejects stochastic dominance in favor of no stochastic dominance.

The bottom figure provides an example comparing contest types in Week 6 and

rejects stochastic dominance in tournament contests over double-up contests, but

does not reject stochastic dominance in double-up over tournaments.

The final test in the section uses the stochastic dominance test to com-
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pare the actual contest point distributions for Week 1 of the 2018 NFL season

against a subsample from the set of potential lineups from the population. There

are 319,551,313,684 unique ways to have constructed a DraftKings lineup in 2018

Week 1 to add to a total salary of 50,000. Due to computational burdens, a random

subsample of about 1.1 million combinations is drawn from the set of possible

population combinations and used for this test. If DraftKings contests are truly

games of chance, than one would expect participant lineups to be random draws

from the population set of potential lineups. In that case, the population distribu-

tion would be the equivalent of a distribution of draws made by players with no

skill. However, if these contests do require at least some baseline level of skill, the

contest distributions should stochastically dominate the population distribution.

Bimodal Test

Another relevant feature of the lineup score densities is the number of modes. In

other applications, such as in Haruvy, Stahl, and Wilson (2001), the existence of

multimodality has been used to suggest evidence of multiple “types” in population

data. In this application, there may be participants of differing skill levels (high

and low type), experience (beginner and expert), or knowledge level (avid fan and

casual fan). The bootstrap test for multimodality could provide evidence that these

types exist in the population.

For any given contest, I test the null that the lineup score density is uni-

modal versus the alternative that the density has more than one mode. Silverman

(1981) proposes a methodology that produces a p-value to test this hypothesis.
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First, I identify h0, the smallest bandwidth for the epanechnikov kernel estimate

such that f̂(·|h0), the sample density, has one mode. Unimodality is determined

by examining the slopes of the sample density along a grid and determining the

frequency at which the sign changes from positive to negative, or vice versa. In the

case of unimodality, the sign should only change once from positive to negative.

Next, I draw a new sample of size n from the sample density, and find hj ,

the smallest bandwidth for sample j such that the density estimate using the new

sample has one mode. I repeat the process B times to obtain h1,...,hB. The p-value

of the test is

p̂ =
#{hj > h0}

B
. (1.11)

For a multimodal density, it takes a sufficiently large bandwidth, h0, to smooth it

such that it only has one mode, and thus will be more likely to reject unimodality.

This test is done for each contest and the results are broken down by the various

contest settings at the 10%, 5%, and 1% significance levels.

1.4 The Data

All of the player performance and DraftKings salary data used in this paper cover

NFL seasons between 2016 and 2018. Data on DraftKings contest lineups and

results only cover 2018.

Since the covariates in the player-vs-player approach represent the relative

differences between players m and n, each of these variables are calculated by

taking the difference between the observations. They test whether player expe-
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rience, quarterback ability, offensive line ability, opposing defense ability, injury,

and weather conditions are properly factored into DraftKings’ pricing mechanism.

Summary statistics for the covariates are in Table 1.3. The middle columns pro-

vide summary information for the observations in the sample, while the right-most

columns provide the average difference (in absolute value terms) in the covariates

for each position.

1.4.1 DraftKings Price Data

Historical DraftKings data, including prices and points scored, come from Ro-

toGuru.20 Prior to the contest becoming public, DraftKings sets player prices.

Once published, these prices do not change, even if the player is ruled out for the

game. Fantasy participants have 50,000 units of virtual currency to spend on their

lineups, with player prices ranging from 2,500 to 10,100.

Table 1.1 provides total salary ranges by position. Each position has a

designated minimum salary. The minimum QB salary was changed from 5,000

to 4,000 after 2016, but for the purposes of identifying a minimum QB level,

5,000 will be used. Even after reducing it, the minimum QB salary is significantly

higher than that of any other position. This is because even the worst QB will have

a relatively decent projectable floor. Meanwhile, backup RBs and WRs are much

more likely to score zero or few points, making them less worthwhile pickups.

In fact, the only reason a participant would select any minimum salary player is

because of the 50,000 unit salary cap constraint. A substantial number of player

20http://rotoguru1.com/cgi-bin/fyday.pl?game=dk
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matches are located at the minimum salary levels, as illustrated in Figure 1.3. To

account for this, additional models are included that exclude combinations with

minimum salary players.

Players score points based on their real-life offensive statistics on the field.

Table 1.2 lists each of the categories that are counted when calculating a player’s

score.21 QBs have unique passing categories, but they can also score points based

on their rushing production. RBs mostly score based on their contributions to the

running game, but they can also score points by catching passes from the quarter-

back. WRs and TEs mostly score points based on their catching production.22

1.4.2 Teammate and Opposing Player Ability

Football statistics are very teammate dependent. The best wide receiver in the

league will only make catches if his quarterback is able to throw the ball to him,

and the quarterback might only be able to do that if the offensive line is able to

provide him enough time to get rid of the football. This model addresses potential

teammate related factors on offense that may impact fantasy performance.

Player ability is measured using grades provided by Pro Football Focus.23

These grades attempt to factor out teammate ability and only measure the per-

formance of that player.24 More traditional quarterback performance metrics—

21https://www.draftkings.com/help/rules/nfl
22As an example, in Week 3 of the 2016 NFL season, Todd Gurley put up the following stats:

85 rushing yards (8.5 pts), 2 rushing TDs (12 pts), 1 reception (1 pt), -5 receiving yards (-0.5 pts).
Therefore, Gurley scored 21 points that week.

23Website subscription is required to access the data: https://www.profootballfocus.com/
24The exact formulas Pro Football Focus uses to calculate these grades are proprietary, but these

measures of player performance are well accepted by sport pundits and publications.
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passing yards and passing touchdowns—and offensive line metrics—pancakes

and sacks allowed—do a poor job as measures of individual player performance

and ability since they are strongly dependent on the performance of players around

them.

First accounting for the effects of the quarterback’s ability on WRs, RBs,

and TEs, the variables QB Overall Grade and QB Passing Grade measure the rel-

ative performance of the quarterback for player m versus player n. QB Overall

Grade is the difference in the relative overall QB grades by Pro Football Focus,

while QB Passing Grade only measures the difference in the relative passing QB

grades. The overall grade includes passing ability, as well as rushing ability, dis-

cipline, and other QB attributes. The passing grade only includes the QB’s ability

to pass the football. Models are estimated using each measure of QB ability sepa-

rately. Given the nature of the interaction between the QB and the other positions,

QB Passing Grade was used in the WR and TE models, and QB Overall Grade

was used in the RB and FLEX models. Both measures are averages of their in-

dividual game grades for the given season weighted by snaps per game, and the

projected starting quarterback for a given game is the player that actually started

that week.25

The offensive line also impacts the QB, WRs, RBs, and TEs. The linemen

give time for the QB to throw to his WRs and TEs, and they also provide block-

25In almost all cases, the team announces their starting quarterback ahead of time. Except due to
a last-second injury, rarely do teams deviate from their starting quarterback once it is announced.
Also, teams rarely switch QBs during a game unless there is an injury sustained or significantly
poor performance.
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ing for RB carries. Pro Football Focus provides two measures of offensive line

performance: a Run Blocking grade and a Pass Blocking grade. The variables

Run Blocking and Pass Blocking are again relative measures. The higher player

m’s grade, the better his offensive line compared to player n. Offensive lines are

made up of five or six players, so I averaged their individual grades over a full

season, weighted by their snaps per game. The overall line score was a weighted

average of the projected starters’ season grades, weighted by the total number of

snaps they were on the field for during the season. Full mathematical notation of

the different averaging derivations is available in Appendix A.1.

The opposing defense also has an obvious impact on an offensive player’s

performance. Pro Football Focus provides overall team defense grades, as well as

grades for particular defensive skillsets, including the ability to rush the passer,

defend the run, and defend the pass (pass coverage). The ability to rush the passer

measures defensive line performance on passing plays, while the ability to defend

the pass measures the ability of corners and safeties. Grades were averaged first

on an individual player basis for the season, and then on the projected starters for

the game. The differences in relative skillsets are measured by Run Defense, Pass

Rush, and Coverage Defense.

1.4.3 Player Experience, Injury Status, and Weather Conditions

The model accounts for player experience with data coming from Pro-Football

Reference.26 The attribute, League Tenure, is the number of years since the player

26https://www.pro-football-reference.com/
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was drafted. The variable measures the difference in the number of years the

players have been in the league. The more recent the draft year for player m, the

smaller League Tenure becomes. Players that are in the league longer have more

relative experience. Rookies have zero League Tenure.

Control variables are included for the injury status of the players. DraftK-

ings does not offer prices for players they know ahead of time will not be playing,

but they do include salaries for players that are either probable (Prob) or question-

able (Ques) on the injury report.27 If a player is ruled out after prices are released

but before matchups begin, that player will score zero points for the week. It is

assumed that the basic DFS contestant is aware of general injury status and will

choose not to select that player if he is not going to play due to injury. The vari-

ables Healthy vs Ques and Healthy vs Prob capture the impact on the probability

of scoring more points when one player in the matchup is healthy and the other

is either listed as day-to-day (less serious injury) or questionable (slightly more

serious injury). These variables should also capture the average decrease in per-

formance for players that do play as a result of the injury.

It is assumed that two players that are both healthy or both injured have

no distinct advantage over the other.28 The variable Healthy vs Ques takes on a

value of one if player m has an injury status of healthy and player n has an injury

status of questionable, negative one if player m is questionable while player n is

healthy, and zero otherwise. Health vs Prob is similarly calculated for healthy

27Injury data come from The Football Database https://www.footballdb.com/transactions/injuries.html?yr=2018
28This assumption is necessary since it is difficult to know from the data how debilitating the

injury is for either player.
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versus probable.

The final set of covariates includes measures for weather conditions. It is

more difficult to pass the ball when there is heavy snow and wind. Two weather

variables, Wind Speed and Bad Weather, control for the differences in relative

weather conditions. Wind Speed takes the absolute difference in mile per hour

wind speeds in games played by player m and n, where it is expected that rela-

tive wind differences should negatively impact quarterbacks. Bad Weather takes a

value of one if there was snow or heavy rain at the start of kickoff. All recent, his-

torical NFL weather data is available on NFLweather.com.29 For dome stadiums,

Wind Speed and Bad Weather both take values of zero.

1.4.4 Contest and Usage Data

For the 2018 NFL season, I obtained data from over a thousand DraftKings con-

tests. Each contest file includes data on participant usernames, players selected

for each lineup, the percentage of lineups players were picked for, lineup point

totals for each participant, and the payout format for the contest. I also have data

on the number of participants for each contest, each contest’s win condition, and

each contest’s entry fee.

After Week 4, I switched my data collection procedure, which allowed

me to capture significantly more contests. Table 1.4 provides a breakdown of

the number of contests in the sample by week and by various contest attributes.

Average point totals vary since certain NFL weeks are higher scoring, leading to

29http://www.nflweather.com/en/
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more fantasy points. The contests captured only make up a fraction of the total

contests hosted by DraftKings.

Searching for evidence of chance versus skill, I analyze lineups based on

whether they may come from ‘skilled’ players. To do so, I eliminate any contest

lineup that either includes players who were ruled out for the game or is incom-

plete. Blank lineups are not representative of a player’s skill level, and lineups that

include players who are out would likely represent very low skill (or low knowl-

edge) participants. When compiling population combinations for Week 1, those

players are also removed so that the population lineups compare more closely with

the contest lineups in the sample.

After checking to see if the pricing mechanism is efficient, I analyze

whether DFS contestants adjust their selection habits based on the potential in-

efficiencies in the pricing mechanism. For example, if having a better QB makes

it more likely for one RB to outperform another given equal salaries, when choos-

ing between two equally priced RB DFS participants should be more likely to

select the RB with the better QB. Usage data come from the contest data files and

are averaged across contests by week for each player.

1.5 Player Pricing Results

Coefficient estimates impacting the probability of winning for each of the posi-

tional matchups for the full data set are in Table 1.5. Estimates for matchups

excluding the minimum salary players are in Table 1.6. It should be noted that the
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sample sizes drop significantly between the two tables.

1.5.1 Player Experience, Weather, and Injury Results

In the full sample, League Tenure is negative and significant for QBs, WRs, and

TEs. Since player tenure and age are highly correlated (players are drafted into

the league around the same age), another way to interpret these results is that

younger QBs, WRs, and TEs perform better than their older counterparts, at least

among minimum level players. In the non-minimum sample, these results are

nonexistant.

The RB experience coefficients are flipped compared to the other posi-

tions. Positive and statistically significant coefficients for League Tenure in both

the full model and non-minimum model suggest that younger RBs are overvalued

and older RBs are undervalued. With less career data available, younger RB (es-

pecially rookies) projections can be higher than their actual abilities, while older

RBs have a more projectable outcome. There is also most likely survival bias here.

RBs tend to have short lifespans in the NFL, so those minimum salaried ones that

do make it past their first few years can probably provide added value when they

play.30

In terms of the effects of weather on player performance, there are many

takeaways for the full sample, but almost no evidence of mispricing in the non-

minimum sample. The one consistent result is a positive and statistically signif-

30https://www.statista.com/statistics/240102/average-player-career-length-in-the-national-
football-league/
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icant coefficient on Wind Speed for quarterbacks. This is a peculiar result given

that throwing the football with accuracy should be more difficult when it is ex-

ceptionally windy. The coefficients for Wind Speed and Bad Weather are negative

and statistically significant for RBs in the full model, as one would expect them to

perform worse when the weather is bad and it is windy. The same is true for wide

receivers when it is windy, given that quarterbacks should have a more difficult

time getting them the football. The coefficient for TEs is positive and statistically

significant, so maybe quarterbacks substitute more difficult longer throws to WRs

to less difficult, shorter throws to TEs when it is windy. Overall, the negative

and statistically significant coefficients on Wind Speed in both tables for the flex

position suggests increased wind speeds is generally bad for player performance.

Regarding injury for the full sample, results are inconsistent when compar-

ing healthy players with those deemed questionable. For healthy versus probable

players, results suggest that those labeled as probable are better picks. It is pos-

sible that without the injury designation, those probable players would have been

priced higher, potentially greater than the minimum. Players labeled as probable

are generally full participants and usually see no adverse affects from whatever in-

jury gave them the designation. In the non-minimum sample, the only statistically

significant coefficients come from RBs. Not surprisingly, healthy RBs perform

better than questionable RBs, who, unlike probable RBs, are likely adversely af-

fected by their injuries. This suggests avoiding RBs deemed questionable as their

prices have likely not been reduced enough to compensate for their injuries. The

same negative statistically significant coefficient on healthy versus probable sug-
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gests that probable RBs should not be penalized for their injuries as they are likely

to be full participants and not effected by their injuries.

1.5.2 Team and Opponent Ability Results

Football is a team game, and as such, player production is directly impacted by

the quality of teammates and opposing players. This subsection examines if the

ability of the team’s QB, offensive line, and opposing defense is properly priced

into a player’s DraftKings salary. Table 1.11 provides marginal effects for sta-

tistically significant results showing the change in the probability of player m

outperforming player n if the variables change from having no difference to the

average difference given in the sample.

First, there is evidence that the ability of the team’s QB is not properly

priced in DraftKings’ pricing mechanism. In both the full and non-minimum RB

models, the coefficients on QB Grade are positive and statistically significant.

This would suggest that, all else equal, taking RBs on teams with quality QBs

is a better bet. Better QBs are likely to have more opportunities in the red zone,

which leaves for more opportunities to score touchdowns. In the minimum model,

choosing the better QB increases the probability of selecting the correct player by

0.88%. That increases to 1.38% for the non-minimum model.

The coefficients flip between the two models for WRs. For the full sample,

the coefficient is negative, suggesting that minimum-salary players with better

QBs perform worse on average compared to players with worse QBs. This makes

sense when considering the makeup of minimum-salary WRs. Receivers with
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good QBs are likely to not be at the minimum simply because of the potential for

better performance. So the players likely at minimum salaries are those either with

bad QBs but are decent or with good QBs but are awful. The model suggests the

latter group does better on average. In the non-minimum sample, the coefficient

is positive with an average effect of 1.16%, suggesting that overall quarterback

ability is undervalued by the pricing mechanism.

Next, there is evidence that team blocking ability is mispriced for al-

most every position. While there is no statistically significant evidence in the

full model, the non-minimum model shows that Pass Blocking is significantly

overvalued for QBs. Choosing the QB with the better team pass blocking actually

decreases the probability of that player outperforming an equally priced player by

7.75%. This means that QBs likely receive too large of a price boost for having

an offensive line that does well blocking during passing plays. For RBs, Run and

Pass Blocking are both negative and statistically significant in the full model, and

Run Blocking is positive and statistically significant in the non-minimum model.

This means Run Blocking is generally undervalued in RB pricing, but among

minimum-salary players, it is better to go with better players with worse offensive

lines than worse players with better offensive lines. The positive Run Blocking

and negative Pass Blocking coefficients for TEs in the full model may suggest

something about the way TEs are used to blocking depending on the quality of

the offensive line, although the exact reasoning is unclear.

WR results for blocking are more peculiar. Pass Blocking is negative and

statistically significant in the full model, but not statistically significant in the
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non-minimum model. Run Blocking is negative and statistically significant in the

non-minimum model, but not the full model. The full model Pass Blocking story

for WRs is similar to the Run Blocking story for RBs. For Run Blocking, if the

team has a better offensive line, it will choose to run more, and thus there are less

opportunities for receivers. This feature is not properly captured in DraftKings

prices.

Finally, the most convincing evidence of inefficient pricing comes from

the opposing defense results. The individual defensive components paint a clear

picture of how opposing defense attributes are not efficiently factored into player

prices. Run Defense coefficients are negative and statistically significant for QBs

and WRs in both models. Being able to establish an effective run game makes

it easier to pass the football, so the better the rush defense, the less effective the

passing game will be, which negatively effects QBs and WRs. The same idea can

be applied to the negative coefficient for Coverage Defense for RB. Limiting the

effectiveness of the passing game has a negative impact on the running game.

That story also explains the negative Pass Rush and Coverage Defense

coefficients for QBs and WRs in the full model. Improving either of those units

makes it more difficult to pass the football, which suggests playing the matchups

in the secondary when choosing a minimum salary WR or QB. However, the

Coverage Defense coefficient is positive and statistically significant for WR in

the non-minimum model. While playing the matchups are beneficial at the lower

price level, it appears that Coverage Defense is underpenalized.

For RBs, the positive coefficient on Run Defense and the negative coef-
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ficient on Pass Rush in the non-minimum model indicate that DraftKings places

too much focus on overall defensive ability when pricing RBs instead of empha-

sizing their ability to stop the run. Run Defense is underpenalized and Pass Rush

is overpenalized.

The coefficients for TEs follow a slightly different narrative. The full sam-

ple has positive coefficients for Run Defense and Pass Rush, illustrating the role

the TE plays when the team does not have an effective run game or when the

QB is under pressure and needs a security net to target.31 There were not enough

observations to show evidence of mispricing for non-minimum TEs.

1.5.3 Splitting Results By Year

Up to this point, the results have been aggregated over three years of player

matchups. Tables 1.7, 1.8, 1.9, and 1.10 split each of the models by year to see

if mispricings are consistent or if they go away over time. Consistent mispricing

suggests there are long-term strategies that can be applied to selecting lineups.

First, I will briefly discuss the results for the minimum level players.

DraftKings is often updating its pricing strategy, which may result in varying esti-

mates across years. For example, most of the statistically significant RB estimates

in the full model vary across years including League Tenure, QB grade, Run and

Pass Blocking, and Coverage Defense. The same holds true for League Tenure,

Pass Rush, and Coverage Defense in the full TE model. Some of the estimates

31The TE is often called a QB’s security blanket because they are generally available to make
short completions when the QB has nobody else to target. Targeting the TE generally results in
minor but positive yards.
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do tend to zero. For example, Coverage Defense in the QB model, Run Defense

in the WR model, and Run and Pass Blocking in the TE model all tend towards

zero in 2018 after beginning statistically significant. The results that consistently

return the same sign are the attributes where mispricing has and continues to exist

and can be used strategically by participants looking for minimum level players.

The full list of strategies to finding diamonds-in-the-rough is in Appendix A.2.

The results of greatest interest to DFS participants are the ones that pertain

to the non-minimum players. In the aggregated sample for QBs, Pass Blocking

and Run Defense were both negative and statistically significant. Both variable

coefficients were negative when split out across the three seasons, but only statis-

tically significant in one season. So while there is some evidence that those trends

hold true across the three years, the small samples (120, 60, and 136 observations,

respectively) make it difficult to definitively make those conclusions.

For RBs, in cases where there were weaker signs of statistical significance,

the coefficients generally jump signs. This was the case for the QB Grade and Run

Blocking Grade. There was some evidence that League Tenure was consistently

positive, but 2018 was the only year the coefficient was statistically significant.

Run Defense was consistently positive and statistically significant, and Coverage

Defense was consistently negative and statistically significant. This supports the

earlier conclusion that overall defense was valued too highly in DraftKings’ pric-

ing mechanism for RBs, while run-specific defense was not valued highly enough.

The WR results show evidence of adjustments being made by DraftK-

ings. The Pass Rush coefficients jump around by year suggesting tinkering with
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the mechanism. Coverage Defense shows some evidence supporting the positive

and statistically significant coefficient in the aggregate model, although only one

season has a statistically significant result. Run Blocking and Run Defense both

show signs of mispricing existing at one point, but Run Blocking has trended to-

wards zero mispricing through the years, and Run Defense is still negative and

statistically significant, but also trending towards zero. This means it may only

be another season or two until DraftKings has Run Defense properly priced as it

does now with Run Blocking.

To make clear, the probability model in the previous tables should not be

used to make DraftKings wagers. For one, the model requires salaries of compa-

rable players to equal each other. It is not clear what exactly the optimal prices

should be. Second, there are almost surely additional characteristics that impact

player scoring that are either unobservable or not included in this model due to

data availability. Third, DraftKings is constantly changing their pricing mecha-

nism, so the particular characteristics mispriced at this point in time may not be

mispriced in future iterations of the mechanism.

1.5.4 Choosing Positions In The Flex Spot

Another strategic decision involves choosing which position to start in the FLEX

spot. Table 1.12 provides the positional coefficient estimates from the FLEX

model broken down by salary range. Since 3,000 is the floor salary for RBs and

WRs, Table 1.12 does not include any minimum-salary players. The results show

a shift in strategy depending on the amount of virtual currency the DFS participant
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plans to allocate to the FLEX position.

In the lowest range, 3,000–4,000, TEs appear to be the best bet in terms of

improving probability of selecting a player that scores more points. WRs are also

better than RBs in this range. This could be based on the opportunities available

to a lower string WR versus a backup RB. WRs have more opportunities to make

catches on the field, so the scoring potential is greater for the lower-level WRs.

For TEs, there is not much differentiation between the production of mid-level

and low-level TEs. Since their expectations are lower, there are starting calibar

TEs assigned low salaries. So the player is more likely to score because there may

be more starting TEs in this range compared to starters at other positions (and

starting players will have much higher scoring potentials than backups).

In the 4,000–5,000 range, there is still slight evidence that WRs are more

productive than RBs, although the difference between WRs and TEs has gone

away. When extending to the 5,000–6,000 range, no position seems to have a

distinct advantage over the other. From a positional standpoint, prices seem more

efficient in this range.

Finally, in the 6,000 range, RBs are now statistically better than WR. The

elite RBs produce the most points, and thus, at the higher salary ranges, picking

a RB is better than picking a receiver. There were not enough TE observations

in this range to produce statistically significant results, but just looking at the

coefficients suggests elite TEs are worse bets compared to their equally priced RB

counterparts. There is still no difference between WRs and TEs.

These results are consistent with what is seen in the data. Table 1.13 shows
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the average scoring breakdown by position for multiple salary ranges. In the lower

ranges, TEs tend to score more points. In the middle, no position seems to have a

distinct advantage. Then finally in the upper ranges, RBs seem to score the most.

1.5.5 Usage Analysis

Just because mispricing exists does not necessarily mean participants are taking

advantage of the arbitrage opportunity. If the average participant does not take

advantage of the mispricing, that provides more opportunities for skilled players

to gain an advantage. Appendix A.3 provides results from an OLS model with the

dependent variable being the difference in usage percentage for pairs of players.

Table 1.14 takes the statistically significant results from the OLS table and shows

in what direction (if at all) participants adjust their usage based on changes in the

covariates included in the model.

I look to see how usage spreads change based on the characteristics we

capture. In Table 1.14, the usage effects are captured for both the full sample and

the non-minimum sample. The change in probabilities (P) from the previous 2018

models are included next to the usages (U) to see if they are moving in the same

direction. The magnitudes cannot be directly compared since they operate under

different units, but the table does show the relative size of the change based on the

magnitude of the marginal effect (P) and the effect (U).

The majority of the coefficients in the usage OLS table did not return

statistically significant. Where there are adjustments made by participants, the

magnitudes of the effects are mostly negligible and do not match up with the
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mispricings. These results would suggest that participants are not recognizing

DraftKings’ mispricing.

This conclusion is even more noticeable in Table 1.15. The table sum-

marizes the success DFS contestants have in picking similarly priced players for

each position and breaks those percentages down based on the full model and the

non-minimum model. If participants were choosing at random, one would expect

the success rates to be around 50%. Some of the success rates are not statistically

different than 50%, the full sample QB and RB results for example. That means

the average participant is not using much skill in selecting these players. However,

the non-minimum samples for both of those positions are statistically greater than

50%, suggesting that for the more relevant players, participants are incorporating

some skill in selecting these players.

The results are flipped for WRs and TEs. The full sample success rates

for both positions came back statistically different than 50%. However, for TEs,

the success rate is under 50%, which means participants actually do worse than

50-50 at picking these players. The non-minimum WR success rate not being

statistically different than 50% means the average participant is not particularly

skilled at choosing non-minimum equally priced WRs.

So while there is mixed evidence, where in some cases, participants use

skill and make adjustments, and in other cases, they do not make adjustments,

there is clearly room for skilled players to improve their probability of winning.

The last column in Table 1.15 shows how a participant would have fared in picking

players had they fully taken advantage of the market mispricings discussed in
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this paper. Each sample is statistically greater than 50% and statistically greater

than the participant success rate. These differences represent opportunities for

skilled players to gain an advantage against other players and improve their win

probability.

This section has shown that there are mispricings in DraftKings pricing

mechanism, and that participants are not fully recognizing and adapting to them.

This means there are systematic opportunities for skilled players to improve their

win probability and potentially win more than lose. The next section will discuss

whether skilled players actually exist in the DraftKings universe.

1.6 Contest Scoring Distribution Results

This section details the results for the stochastic dominance and modality tests.

Combining the results from the two tests show that skilled players do exist in

DFS, and they strategically participate in profitable contest settings.

1.6.1 Tests For Stochastic Dominance

Tables 1.16, 1.17, and 1.18 show results for various specifications of the stochastic

dominance test. For each table, Panel A aggregates the lineups across contests into

groupings based on the specified setting, and provides the percentage of weeks

stochastic dominance is rejected between the groupings. A larger percentage in-

dicates stochastic dominance of G(x) over F(x) (the group on the top of the table

versus the group on the left side) is rejected more often. Conversely, a smaller

percentage indicates stochastic dominance is not rejected more often. Stochastic
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dominance rejection is conducted at the 5% significance level. Panel B is similar

except it tests each individual contest within the category against individual con-

tests in the other category. Some of the contests have small sample sizes, so it is

generally more difficult to reject than when using the aggregated results. Panel

C provides two sets of sample sizes. Along the diagonal are the number of con-

tests in the particular category. Off the diagonal are the number of unique sets of

individual contest combinations between the two designated groups.

Table 1.16 examines stochastic dominance between types of contests. Tour-

nament contests seem to reject stochastic dominance most frequently while double-

up contests reject stochastic dominance least frequently. Triple-up contests reject

stochastic dominance over double-up contests in 9 out of 16 weeks, while double-

up contests reject stochastic dominance over triple-up contests in only 6 out of

16 weeks. While not definitive, this would suggest higher scoring takes place

in double-up contests over triple-up contests. Both double-up and triple-up con-

tests stochastically dominate quadruple-up and deca-up contests. These results

are mostly supported by the individual contest results. The takeaway here is that

contests with more total winners will have higher scores and possibly attract more

skilled players.

Table 1.17 examines contests of different sizes. Tiny contests are defined

as having less than 1,500 participants, small contests have between 1,500 and

10,000 participants, medium contests have between 10,000 and 100,000, and large

contests have anything more than 100,000. As with contest type, there is a clear

stochastic dominance pattern pertaining to contest size. The aggregated large con-
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tests reject stochastic dominance over tiny and small contests in all 16 weeks, and

medium contests in 15 out of 16 weeks. Conversely, tiny and small contests fail to

reject stochastic dominance in medium and large contests in 11 out of 16 weeks.

There is some evidence that tiny lineups tend to outperform small lineups, but

the evidence is somewhat weak with tiny rejecting stochastic dominance only half

the time. Overall, it is clear that contests with fewer participants attracts higher

scoring participants.

Table 1.18 examines contests with different entry fees. Three dollar con-

tests reject stochastic dominance most frequently. One dollar contests fail to reject

stochastic dominance in 12 out of 16 against three dollar contests, but otherwise

reject stochastic dominance frequently against the other contest fees. On the other

end, $25 contests fail to reject the most frequently. Overall, while the cheaper con-

tests reject stochastic dominance more frequently, more expensive contests reject

less. This means higher entry fee contests are accompanied by higher scoring.

Each of the contest categories show clear patterns as it pertains to higher

scoring participants. When considering the chance versus skill question, it is help-

ful to consider what a contest score distribution might look like if lineups were

selected at random. Table 1.19 takes a random subsample of the potential set

of combinations in Week 1 that add to the 50,000 units and tests for stochas-

tic dominance against the various groups. As the results show, stochastic dom-

inance is completely rejected for the population over every category and failed

to reject in every week for each category type over the population. I also tested

stochastic dominance for each contest in Week 1 over the population. The small-
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est p-value among the contests was 0.974. The largest p-value among testing for

stochastic dominance of the population over the various contest distributions was

3.22∗10−56, virtually zero. This is clear evidence that the majority of participants

are not selecting from random and have some baseline level of skill.

1.6.2 Tests For Modality

The modality test was done for each contest. The null for each test is a unimodal

density for the contest lineup score density, and the alternative is a multimodal

density. Table 1.20 provides the percentage of contests in various categories and

significance levels that reject unimodality. Panel A analyzes the modality test by

contest type, Panel B by number of participants, and Panel C by entry fee.

The results in Panel A show weak evidence of bimodal densities across

contest types. Double-up contests have the highest rejection rates, and yet they

are still below 25%. The results in Panel B show no linear relationship between

contest size and the percentage of contests that reject modality. Tiny and large

contests both have smaller rejection rates compared to small and medium contests.

While small and medium contests reject unimodality at least 30% of the time at the

5% significance level, the main driver of those results come from one particular

contest category, as will be discussed in the subsequent paragraph.

The clearest evidence of rejecting unimodality comes from $25 contests

in Panel C. At the 10% significance level, unimodality is rejected in more than

53% of contests. At the 5% level, that drops to a still high 44%. As mentioned

in the previous two paragraphs, double-up results rejected unimodality slightly
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more often than other contest types and small and medium lineups reject modality

more often than the other two types. The last two columns in Panel C break down

the fee tests conditional on those contests being double-ups. Double-up contests

make up 65 of the 86 $25 contests in the sample, and reject unimodality in nearly

57% of contests. Of those 65 contests, 45 of them are classified as small. Even

in the $1–$10 results, the percentage rejecting unimodality seems to go up with

double-up contests.

The results in the previous subsection show that stochastic dominance was

rejected less often for higher dollar contest amounts. Combining that result with

the results from this section leads to the conclusion that more skilled participants

enter higher stakes contests, especially double-up contests. Rejecting unimodality

in a majority of these contest types suggests heterogeneity in player skill level in

these contests. There are participants with more skill who drive up the contest

averages, and the remaining participants have a normal, baseline skill level. There

could be more than two types of participants, although that is not tested in this

paper. Overall, these results suggest that there is heterogeneity in skill level, and

that skilled players likely see their largest profit margins in higher stakes double-

up contests.

1.7 Summary And Conclusions

Results in this paper provide clear evidence that DraftKings Fantasy Football is

a game of skill, not chance. Although this paper does not test for this result in
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other DraftKings sport offerings, it is likely those sports and contests have similar

mispricings, opportunities for skilled players to gain an advantage, and skilled

players who win more often than lose. Therefore DFS should be covered by the

exemption in the Federal Wire Act carved out by the Unlawful Internet Gambling

Enforcement Act, making it legal in all states without competing legislation. The

results for the logistic models in this paper provide evidence that certain aspects

of DraftKings’ pricing mechanism are not efficient relative to prices determined

by open market forces. Analyzing usage data shows that these mispricings are not

being accounted for by the average participant, providing skilled players with an

opportunity to beat the market and improve their expected winnings, which rejects

the efficient market hypothesis.

Non-parametric tests of stochastic dominance and modality show that the

average DraftKings Fantasy Football participant has a baseline level of ability,

supporting the results in Easton and Newell (2019), above what would be expected

if participants were randomly selecting lineups. These tests also show heterogene-

ity in skill level, as skilled players exist and target particular types of contests that

maximize their expected profits. Players with higher skill levels likely target some

of the mentioned inefficiencies in DraftKings’ pricing mechanism, along with in-

corporating other strategies not mentioned in this paper.

While results show heterogenity of skill level, they do not directly identify

the actual skill levels of specific players. Overall contest skill level is inferred

by the shape of the contest lineup densities. The results also do not specify to

what extent prices should be adjusted to obtain an efficient mechanism, nor do
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they specify an exact percentage as to how the mispricing impacts a participant’s

probability of winning their contest. Rather, this paper only illustrates that skilled

players exist, and there are arbitrage opportunities for them to improve their prob-

ability of winning. By doing so, the null hypothesis that DFS is a game of chance

can be rejected in favor of the alternative that it is a game of skill. That is not to

say there is not some chance involved. This paper does not directly measure how

much chance exists, even when skill level is present and heterogeneous across

players.

This paper shows that, even after allowing a reasonable baseline of skill,

the null hypothesis can still be rejected. The act of giving players of different skill

levels the opportunity to take advantage of inefficient pricing to improve their

winning odds suggests that DFS is a game of skill, where players with more skill

have positive expected earnings. This does not mean skilled players never lose.

Rather, it shows that in the long-run skilled players should win more often than

lose.

In the history of the NFL, only one team has ever gone undefeated. The

better teams generally do not win all their games, but do win more often than lose.

Yet most people would agree that NFL contests are games of skill; the teams with

better skilled players and better coaches implementing superior strategy are going

to win more often than not. As this paper has shown, the same holds true for DFS

contests. There are participants with more skill and strategies they can incorporate

to improve their probability of winning. Therefore, DFS should be considered a

game of skill under federal law.
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Figure 1.1: DFS contest layout

The figure is a layout of the screen DFS contestants see when selecting a lineup. The linuep
consists of one QB, two RBs, three WRs, a TE, a FLEX, and a DST. Contestants select players by
position, each player is given a salary, and each lineup is capped at spending $50,000 on salaries.
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Figure 1.2a: Stochastic dominance rejection example

This is an example of a stochastic dominance test, examining $1 contest lineups and $25 contest
lineups for Week 9. The test is conducted in both directions and the point total where the test
statistic is calculated is represented by a vertical line with the p-value next to it. The more solid
line represents the $1 contests while the other line represents the $25 contest.

Figure 1.2b: Stochastic dominance fail to reject example

This is another stochastic dominance test example, examining tournament contest lineups and
double-up contest lineups for Week 6. The more solid line represents the tournament contests
while the other line represents the double-up contest.
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Figure 1.3: Player salary and points scored scatterplots

Above are scatterplots of player salaries and points scored by position and season. Notice that the
majority of observations are clustered around the salary minimums. Also, notice that in most cases
as the salary increases so to does the points scored.
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Table 1.1: Salary Averages By Position

Position Avg Salary (Min Excluded) Min Salary Max Salary

QB 5,593 (5,662/6,116) 4,000/5,000 8,500
RB 4,097 (4,728) 3,000 10,100
WR 4,147 (4,848) 3,000 10,000
TE 2,935 (3,635) 2,500 7,400

FLEX 3,821 (4,069) 2,500 10,100

Notes: Because there are a large number of players worth the positional
minimums, averages are provided for the overall sample as well as for the
non-minimum observations. The QB minimum salary changed after 2016 from
5,000 to 4,500, so minimum excluded averages are calculated using both cutoffs.
Minimum salaries are set by DraftKings, but the maximum salary is the highest
priced player for the position.

Table 1.2: DraftKings Scoring Settings

Scoring Categories
Passing TD +4 Pts Rushing TD +6 Pts

25 Passing Yards +1 Pt 10 Rushing Yards +1 Pt
300+ Yard Passing Game +3 Pts 100+ Yard Rushing Game +3 Pts

Interception -1 Pt Fumble Lost -1 Pt
Receiving TD +6 Pts Special Teams TD +6 Pts

10 Receiving Yards +1 Pt 2 Pt Conversion +2 Pts
100+ Receiving Yard Game +3 Pts Offensive Fumble TD Recovery +6 Pts

Reception +1 Pt

Notes: This table contains the various DraftKings scoring categories for passing,
rushing, receiving, and defense/special teams. DraftKings did not change their
scoring settings during the sample.
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Table 1.3: Covariate Calculations and Summary Stats

Type Variable
Summary Data

Mean SD Min Max
Experience League Tenure 3.58 3.28 0 18
Quarterback QB Overall Grade 66.63 7.03 25.30 83.58

QB Passing Grade 65.62 7.05 25.60 82.87
Offensive Line Run Blocking 61.56 3.35 53.58 69.51

Pass Blocking 67.53 4.54 49.28 78.26
Opp Defense Run Defense 63.33 1.67 57.12 69.05

Pass Rush 63.08 2.46 55.77 72.08
Coverage Defense 62.53 2.06 53.19 67.86

Weather Wind Speed (mph) 3.40 3.31 0 18
Bad Weather 0.02 0.14 0 1

Type Variable
Mean Difference

QB RB WR TE
Experience League Tenure 4.78 2.63 2.68 3.04
Quarterback QB Overall Grade 8.24

QB Passing Grade 7.76 7.18
Offensive Line Run Blocking 3.03 3.03 3.16 3.05

Pass Blocking 4.99 5.11 4.90 4.83
Opp Defense Run Defense 1.55 1.80 1.80 1.80

Pass Rush 2.55 2.79 2.54 2.65
Coverage Defense 2.12 2.41 2.30 2.29

Weather Wind Speed (mph) 3.40 3.32 3.23 3.28
Bad Weather 0.04 0.04 0.04 0.04

Notes: Average absolute value differences are broken down by position. All
player grades come from Pro-Football Reference. The summary information are
averages for the players that make up the sample combinations.
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Table 1.4: Summary statistics for collected DraftKings contests

Week # Contests Mean Score Min Avg Max Avg

1 40 157.75 153.22 203.66
2 35 137.77 132.95 138.97
3 37 137.58 126.21 151.21
4 31 160.85 154.61 202.75
5 161 134.12 131.30 146.84
6 164 140.39 137.46 163.41
7 162 133.53 121.98 136.53
8 159 138.99 134.80 147.35
9 159 145.26 142.73 154.83
10 162 130.82 124.96 138.47
11 159 129.04 121.04 141.02
12 123 152.50 151.28 167.54
13 162 138.46 135.71 154.88
14 158 137.69 133.87 146.93
15 166 115.73 113.83 127.57
16 95 146.94 143.66 170.00

Notes: The mean provides the average of all contests aggregated for the week.
The minimums and maximums are the minimum contest averages and maximum
contest averages among the collected contests.
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Table 1.5: Aggregate Results: All Data, All Positions

Dependent variable: Probability of Winning

(QB) (RB) (WR) (TE) (FLEX)

League Tenure −0.044∗∗∗ 0.009∗∗∗ −0.019∗∗∗ −0.014∗∗∗ −0.019∗∗∗

(0.009) (0.003) (0.002) (0.002) (0.001)
QB Overall Grade 0.005∗∗∗ −0.003∗∗∗

(0.001) (0.0004)
QB Passing Grade −0.004∗∗∗ -0.0002

(0.001) (0.001)
Run Blocking −0.013 −0.022∗∗∗ −0.002 0.021∗∗∗ 0.005∗∗∗

(0.016) (0.003) (0.002) (0.002) (0.001)
Pass Blocking −0.011 −0.006∗∗∗ −0.003∗∗∗ −0.009∗∗∗ −0.006∗∗∗

(0.009) (0.002) (0.001) (0.001) (0.001)
Run Defense −0.101∗∗∗ 0.002 −0.016∗∗∗ 0.036∗∗∗ 0.009∗∗∗

(0.027) (0.005) (0.003) (0.004) (0.002)
Pass Rush −0.030∗ 0.003 −0.030∗∗∗ 0.013∗∗∗ −0.016∗∗∗

(0.016) (0.003) (0.002) (0.002) (0.001)
Coverage Defense −0.064∗∗∗ −0.015∗∗∗ −0.006∗∗ −0.006∗ −0.003∗

(0.020) (0.004) (0.003) (0.003) (0.001)
RB vs WR −0.219∗∗∗

(0.006)
WR vs TE −1.053∗∗∗

(0.026)
RB vs TE −1.269∗∗∗

(0.032)
Wind Speed 0.032∗∗∗ −0.012∗∗∗ −0.017∗∗∗ 0.012∗∗∗ −0.005∗∗∗

(0.011) (0.002) (0.002) (0.002) (0.001)
Bad Weather 0.121 −0.166∗∗∗ −0.025 0.103∗∗ −0.063∗∗∗

(0.290) (0.055) (0.036) (0.041) (0.017)
Healthy vs Questionable 0.101 0.037 0.159∗∗∗ −0.211∗∗∗ 0.026

(0.318) (0.044) (0.031) (0.033) (0.016)
Healthy vs Probable −0.503∗∗∗ −0.171∗∗∗ −0.002 −0.088∗∗∗ −0.088∗∗∗

(0.123) (0.039) (0.021) (0.023) (0.011)
Constant −0.163∗∗∗ −0.567∗∗∗ −0.455∗∗∗ −0.620∗∗∗ −0.526∗∗∗

(0.050) (0.010) (0.007) (0.008) (0.004)

Observations 1,741 40,324 80,164 69,732 318,939
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.0150



Table 1.6: Aggregate Results: Non-Minimum Data, All Positions

Dependent variable: Probability of Winning

(QB) (RB) (WR) (TE) (FLEX)

League Tenure −0.019 0.022∗∗ 0.012 −0.041 0.004
(0.019) (0.009) (0.008) (0.042) (0.003)

QB Overall Grade 0.007∗ 0.006∗∗∗

(0.004) (0.0002)
QB Passing Grade 0.006∗ 0.031

(0.003) (0.021)
Run Blocking 0.043 0.017∗ −0.023∗∗∗ −0.097 −0.010∗∗

(0.037) (0.010) (0.008) (0.067) (0.004)
Pass Blocking −0.070∗∗∗ −0.00002 −0.003 0.057 −0.001

(0.023) (0.007) (0.005) (0.059) (0.003)
Run Defense −0.144∗∗ 0.063∗∗∗ −0.059∗∗∗ 0.116 −0.021∗∗∗

(0.058) (0.016) (0.013) (0.095) (0.006)
Pass Rush 0.024 −0.056∗∗∗ 0.011∗∗∗ −0.105 −0.016∗∗∗

(0.038) (0.011) (0.009) (0.078) (0.004)
Coverage Defense 0.011 −0.020 0.024∗∗ 0.053 0.002

(0.049) (0.013) (0.010) (0.077) (0.005)
RB vs WR −0.187∗∗∗

(0.023)
WR vs TE −0.253∗∗∗

(0.042)
RB vs TE −0.389∗∗∗

(0.049)
Wind Speed 0.059∗∗ −0.003 −0.009 0.005 −0.009∗∗

(0.028) (0.009) (0.007) (0.056) (0.003)
Bad Weather −0.409 −0.045 −0.242 −0.123 −0.168∗∗

(0.736) (0.181) (0.161) (1.476) (0.075)
Healthy vs Questionable 1.043 0.459∗∗∗ 0.067 0.639 0.222∗∗∗

(0.750) (0.148) (0.087) (0.611) (0.046)
Healthy vs Probable −0.140 −0.171∗ 0.082 −0.692 −0.028

(0.226) (0.096) (0.072) (0.472) (0.035)
Constant −0.151 0.003 −0.064∗∗ −0.098 −0.036∗∗

(0.119) (0.037) (0.029) (0.207) (0.014)

Observations 316 3,071 4,728 113 20,211
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.0151



Table 1.7: Results By Year: All Data, QB and RB

Dependent variable: Probability of Winning
QB RB

(2016) (2017) (2018) (2016) (2017) (2018)

League Tenure −0.042∗∗∗ −0.038 −0.051∗∗ 0.026∗∗∗ 0.005 −0.033∗∗∗

(0.011) (0.026) (0.018) (0.005) (0.007) (0.006)
QB Overall Grade 0.009∗∗∗ −0.012∗∗∗ 0.004∗∗

(0.002) (0.002) (0.002)
Run Blocking −0.017 −0.119∗∗∗ 0.041 −0.066∗∗∗ 0.011∗∗ 0.032∗∗∗

(0.022) (0.040) (0.035) (0.005) (0.005) (0.007)
Pass Blocking 0.012 −0.004 −0.074∗∗∗ 0.005∗ −0.026∗∗∗ 0.002

(0.013) (0.024) (0.022) (0.003) (0.004) (0.004)
Run Defense −0.118∗∗∗ −0.055 −0.149∗∗ 0.040∗∗∗ −0.033∗∗∗ −0.040∗∗∗

(0.037) (0.068) (0.058) (0.008) (0.009) (0.010)
Pass Rush −0.014 −0.097∗∗ 0.006 −0.004 −0.011∗ −0.005

(0.021) (0.039) (0.041) (0.005) (0.006) (0.007)
Coverage Defense −0.037 −0.073∗ 0.004 −0.022∗∗∗ 0.023∗∗∗ −0.004

(0.029) (0.043) (0.055) (0.006) (0.007) (0.008)
Wind Speed 0.033∗∗ −0.023 0.052∗∗ −0.024∗∗∗ 0.005 0.002

(0.013) (0.045) (0.026) (0.003) (0.007) (0.004)
Bad Weather 0.335 −1.575∗∗ 0.385 −0.266∗∗∗ −0.305∗∗∗ 0.041

(0.351) (0.784) (0.949) (0.090) (0.091) (0.115)
Healthy vs Ques 0.101 0.220 14.245 0.117∗∗ −0.325∗∗∗ 0.616∗∗∗

(0.349) (1.082) (824.777) (0.053) (0.094) (0.145)
Healthy vs Prob −0.662∗∗∗ −0.629∗ −0.271 −0.151∗∗∗ −0.098 −0.298∗∗∗

(0.160) (0.358) (0.264) (0.056) (0.072) (0.085)
Constant −0.170∗∗∗ −0.205 −0.120 −0.475∗∗∗ −0.693∗∗∗ −0.628∗∗∗

(0.061) (0.135) (0.124) (0.015) (0.020) (0.021)

Observations 1,175 260 306 18,890 10,970 10,464
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.8: Results By Year: All Data, WR and TE

Dependent variable: Probability of Winning
WR TE

(2016) (2017) (2018) (2016) (2017) (2018)

League Tenure −0.031∗∗∗ −0.008∗∗ −0.020∗∗∗ −0.038∗∗∗ 0.023∗∗∗ −0.021∗∗∗

(0.003) (0.004) (0.004) (0.004) (0.004) (0.004)
QB Passing Grade −0.004∗∗∗ −0.002 −0.009∗∗∗ −0.08∗∗∗ −0.019∗∗∗ 0.015∗∗∗

(0.001) (0.002) (0.002) (0.002) (0.002) (0.001)
Run Blocking 0.028∗∗∗ −0.004 −0.029∗∗∗ 0.100∗∗∗ 0.027∗∗∗ −0.043∗∗∗

(0.004) (0.004) (0.004) (0.005) (0.004) (0.004)
Pass Blocking −0.016∗∗∗ −0.012∗∗∗ 0.023∗∗∗ −0.039∗∗∗ −0.004 −0.0001

(0.002) (0.002) (0.003) (0.003) (0.003) (0.003)
Run Defense −0.022∗∗∗ −0.006 0.005 0.038∗∗∗ 0.029∗∗∗ 0.026∗∗∗

(0.006) (0.006) (0.007) (0.007) (0.006) (0.007)
Pass Rush −0.033∗∗∗ −0.018∗∗∗ −0.049∗∗∗ 0.044∗∗∗ −0.039∗∗∗ 0.018∗∗∗

(0.004) (0.004) (0.005) (0.005) (0.004) (0.005)
Coverage Defense −0.019∗∗∗ −0.012∗∗∗ −0.024∗∗∗ −0.072∗∗∗ 0.029∗∗∗ −0.015∗∗∗

(0.005) (0.004) (0.006) (0.006) (0.005) (0.006)
Wind Speed −0.013∗∗∗ −0.031∗∗∗ −0.019∗∗∗ 0.002 0.003 0.029∗∗∗

(0.003) (0.004) (0.003) (0.002) (0.004) (0.003)
Bad Weather 0.077 −0.208∗∗∗ 0.062 0.125∗ −0.061 0.397∗∗∗

(0.053) (0.066) (0.074) (0.072) (0.065) (0.082)
Healthy vs Ques 0.447∗∗∗ −0.182∗∗∗ 0.231∗∗∗ −0.107∗ −0.025 −0.694∗∗∗

(0.047) (0.050) (0.088) (0.058) (0.057) (0.063)
Healthy vs Prob −0.114∗∗∗ 0.235∗∗∗ −0.132∗∗∗ −0.278∗∗∗ 0.009 0.064

(0.034) (0.036) (0.043) (0.039) (0.041) (0.041)
Constant −0.403∗∗∗ −0.477∗∗∗ −0.532∗∗∗ −0.575∗∗∗ −0.659∗∗∗ −0.656∗∗∗

(0.011) (0.013) (0.015) (0.014) (0.014) (0.014)

Observations 34,408 26,274 19,482 23,348 23,809 22,575
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.9: Results By Year: Non-Minimum Data, QB and RB

Dependent variable: Probability of Winning
QB RB

(2016) (2017) (2018) (2016) (2017) (2018)

League Tenure −0.026 −0.032 −0.028 0.012 0.016 0.026∗

(0.046) (0.055) (0.027) (0.020) (0.013) (0.016)
QB Overall Grade 0.015∗ −0.006 0.012∗

(0.009) (0.007) (0.007)
Run Blocking −0.010 −0.015 0.062 0.008 0.047∗∗∗ −0.019

(0.094) (0.098) (0.058) (0.025) (0.014) (0.020)
Pass Blocking −0.054 −0.076 −0.075∗∗ 0.002 −0.019∗ 0.021∗

(0.045) (0.068) (0.036) (0.014) (0.010) (0.013)
Run Defense −0.159 −0.384∗∗ −0.106 0.091∗∗ 0.058∗∗ 0.070∗∗

(0.117) (0.163) (0.092) (0.039) (0.026) (0.028)
Pass Rush 0.059 −0.018 0.040 −0.047∗∗ −0.072∗∗∗ −0.044∗∗

(0.068) (0.100) (0.060) (0.023) (0.017) (0.021)
Coverage Defense 0.004 −0.071 0.018 −0.032 0.001 −0.052∗∗

(0.092) (0.124) (0.085) (0.035) (0.019) (0.026)
Wind Speed 0.021 −0.199∗ 0.125∗∗∗ −0.003 0.001 −0.001

(0.045) (0.114) (0.045) (0.016) (0.018) (0.014)
Bad Weather −0.269 −18.316 0.845 −0.503 −0.004 0.272

(1.042) (3,956.180) (1.280) (0.411) (0.272) (0.325)
Healthy vs Ques 0.051 18.136 14.493 0.433∗ 0.571∗∗ 0.410

(0.944) (2,524.379) (1,029.108) (0.255) (0.269) (0.255)
Healthy vs Prob −0.088 −0.444 −0.200 0.124 −0.167 −0.343∗

(0.354) (0.653) (0.374) (0.245) (0.133) (0.176)
Constant −0.161 −0.095 −0.179 −0.055 0.007 0.029

(0.197) (0.323) (0.193) (0.076) (0.055) (0.066)

Observations 120 60 136 723 1,381 967
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.10: Results By Year: Non-Minimum Data, WR and TE

Dependent variable: Probability of Winning
WR TE

(2016) (2017) (2018) (2016) (2017) (2018)

League Tenure 0.050∗∗∗ 0.042∗∗∗ −0.031∗∗∗ 0.057 −0.145 0.058
(0.015) (0.016) (0.012) (0.079) (0.109) (0.112)

QB Passing Grade 0.009 0.006 0.010∗∗ 0.054 0.021 0.025
(0.007) (0.006) (0.004) (0.049) (0.080) (0.035)

Run Blocking −0.059∗∗∗ −0.031∗∗ −0.016 −0.322 −0.049 −0.014
(0.022) (0.014) (0.014) (0.211) (0.147) (0.203)

Pass Blocking 0.030∗∗ −0.015 −0.006 0.185∗ −0.089 0.167
(0.012) (0.009) (0.009) (0.106) (0.099) (0.108)

Run Defense −0.135∗∗∗ −0.045∗∗ −0.037∗ −0.124 0.169 −0.010
(0.030) (0.022) (0.022) (0.266) (0.225) (0.284)

Pass Rush 0.073∗∗∗ 0.018 −0.033∗∗ 0.029 −0.003 −0.639∗

(0.021) (0.014) (0.015) (0.147) (0.165) (0.332)
Coverage Defense 0.032 0.049∗∗∗ 0.024 0.002 0.280 −0.007

(0.026) (0.017) (0.017) (0.184) (0.206) (0.245)
Wind Speed 0.012 0.005 −0.022∗∗ −0.003 −0.282∗ −0.032

(0.014) (0.017) (0.009) (0.089) (0.162) (0.173)
Bad Weather −0.322 −0.119 −0.394 −17.093 15.789

(0.455) (0.254) (0.241) (2,399.545) (2,399.545)
Healthy vs Ques −0.035 0.141 0.017 1.115 −2.051 −1.102

(0.157) (0.150) (0.151) (1.140) (1.872) (1.680)
Healthy vs Prob −0.042 0.309∗∗ −0.037 −1.692 −1.420 −0.654

(0.176) (0.130) (0.101) (1.536) (1.364) (0.957)
Constant −0.184∗∗∗ 0.010 −0.059 0.190 −0.434 −0.651

(0.062) (0.050) (0.045) (0.381) (0.499) (0.634)

Observations 1,115 1,631 1,982 40 35 38
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 1.11: Marginal Effects For Statistically Significant Variables

Position QB RB WR TE
Sample (F) (NM) (F) (NM) (F) (NM) (F)

QB Grade 0.88% 1.38% -0.71% 1.16%
Run Blocking -1.53% 1.37% -1.81% 1.48%
Pass Blocking -7.75% -0.65% -0.40% -1.03%
Run Defense -3.68% -5.59% 2.76% -0.68% -2.64% 1.49%

Pass Rush -1.81% -3.79% -1.77% 0.76%
Coverage Defense -3.21% -0.80% -0.34% 1.39% -0.29%

Experience Controls Yes Yes Yes Yes Yes Yes Yes
Weather Controls Yes Yes Yes Yes Yes Yes Yes
Injury Controls Yes Yes Yes Yes Yes Yes Yes
Observations 1,741 316 40,324 3,071 80,164 4,728 69,732

Notes: Model results are given for the full (F) and non-minimum (NM) samples.
Marginal effects are calculated comparing the effects of there being no difference
in the variable versus the average difference in the variable. See Table 1.3 for the
average differences for each position. Non-minimum marginal effects were not
calculated for QBs because of the small sample.
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Table 1.12: Choosing Flex Position By Salary Range

Dependent variable: Probability of Winning

s ∈ (3000, 4000] s ∈ (4000, 5000] s ∈ (5000, 6000] s > 6000

RB vs WR −0.260∗∗∗ −0.087∗ 0.009 0.365∗∗∗

(0.028) (0.049) (0.085) (0.133)
WR vs TE −0.377∗∗∗ 0.038 0.210 −0.107

(0.051) (0.096) (0.176) (0.247)
RB vs TE −0.558∗∗∗ −0.259 0.186 0.265

(0.060) (0.217) (0.203) (0.328)

Observations 14,366 4,089 1,167 589

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Salary is represented by s. A positive coefficient means that a participant
is more likely to win selecting the first position over the second position,
conditional on the two having the same salary. The minimum salaries are 3,000
for RBs and WRs and 2,500 for TEs.
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Table 1.13: Points Scored By Salary Range And Position

Salary QB RB WR TE

2,500–3,000 1.65 2.57 2.78
3,001–4,000 2.33 6.26 6.80 8.51
4,001–5,000 8.74 10.20 10.06 10.68
5,001–6,000 16.98 12.24 12.23 11.11
6,001–7,000 19.74 15.93 14.54 15.77
7,001–8,000 21.14 19.26 16.85 15.55
8,001–9,000 26.31 21.83 18.92

9,001–10,100 25.83 20.38

Notes: Scoring is broken down by salary range and position to examine which
positions offer better returns for the flex spot given a predetermined level of
investment.
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Table 1.14: Comparing Probability And OLS Model Effects

QB RB WR TE
(F) (NM) (F) (NM) (F) (NM) (F)

P U P U P U P U P U P U P U

QB Grade NA NA NA NA ↑ ⇑ ⇓ ⇑ ⇑
Run Blocking ⇑ ⇓ ⇓
Pass Blocking ⇓ ⇓ ↑ ⇑ ⇑
Run Defense ⇓ ↑ ⇓ ⇑ ⇓ ⇑
Pass Rush ↓ ⇓ ⇓ ⇓ ↑
Coverage Defense ⇓ ⇓ ↓

For Prob Model: ME < 1% =↑; ME > 1% =⇑; ME > 5% =⇑
For Use Model: E < 0.5% =↑; E > 0.5% =⇑; E > 1% =⇑

Same applies for negative effects

Notes: ME are marginal effects for the average difference and E is the linear
effect on the difference in usage. Both effects are calculated by taking the
difference between having a zero difference and the average difference. The
single arrows denote a small effect, the double arrows denote a slightly stronger
effect, and the bolded double arrows denote the strongest effects. The cutoffs for
these are mostly arbitrary, but are meant to help the reader visualize the size of
the effects.
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Table 1.15: Usage Select Success Rate

Position Min Included Pairs Participant Success Rate Prob Model Success Rate

QB Yes 235 53.62% 63.83%∗∗∗

QB No 124 58.87%∗∗ 63.71%∗∗∗

RB Yes 7,169 50.13% 63.86%∗∗∗

RB No 869 53.74%∗∗ 57.54%∗∗∗

WR Yes 15,604 51.03%∗∗ 62.45%∗∗∗

WR No 1,790 49.11% 54.30%∗∗∗

TE Yes 18,614 48.94%∗∗∗ 65.77%∗∗∗

Notes: This table analyzes participants’ abilities to pick the higher scoring player
and comparing that to how someone would perform if fully and properly
incorporating the various player attributes. Results are provided for both the full
set of players and the set of players after removing minimum salary pairs. The
last column calculates an expected probability of winning by obtaining fitted
values using the coefficients from the logistic regressions for 2018 in Tables 1.7
through 1.10.
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Table 1.16: Type Stochastic Dominance Test Results

G
2x 3x 4x 10x GPP

F

2x 0.625 0.688 0.938 1.000
3x 0.375 0.750 0.938 0.938
4x 0.125 0.125 0.563 0.813

10x 0.375 0.313 0.188 0.875
GPP 0.563 0.313 0.063 0.125

Panel A: Aggregate Type Results

G
2x 3x 4x 10x GPP

F

2x 0.135 0.342 0.474 0.537
3x 0.117 0.198 0.391 0.472
4x 0.073 0.017 0.140 0.241

10x 0.137 0.068 0.050 0.155
GPP 0.169 0.091 0.068 0.082

Panel B: Individual Type Results

G
2x 3x 4x 10x GPP

F

2x 1,042
3x 15,115 192
4x 5,795 1,042 75

10x 25,633 4,584 1,788 321
GPP 29,215 5,261 2,031 8,895 391

Panel C: Individual Type Sample Sizes

Notes: In Panel A, the numbers in the table represent the percentage of weeks
during the 2018 NFL season that the aggregate contest type in G fails to reject
stochastic dominance at the 5% level over the contest type in F. In Panel B, the
numbers represent the percentage of times a contest in a particular week of type
G fails to reject stochastic dominance at the 5% level over a contest of type F in
the same week. In Panel C, the numbers along the diagonal represent the number
of unique contests of each type during the 2018 NFL season, and the numbers off
the diagonal represent the pairs of each combination of contest types.
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Table 1.17: Size Stochastic Dominance Test Results

G
Tiny Small Medium Large

F

Tiny 0.813 0.938 1.000
Small 0.500 0.938 1.000

Medium 0.313 0.313 0.938
Large 0.313 0.313 0.313

Panel A: Aggregate Size Results

G
Tiny Small Medium Large

F

Tiny 0.298 0.420 0.659
Small 0.290 0.677 0.874

Medium 0.202 0.467 0.868
Large 0.116 0.279 0.243

Panel B: Individual Size Results

G
Tiny Small Medium Large

F

Tiny 1,575
Small 22,219 196

Medium 14,882 1,902 158
Large 4,279 538 440 44

Panel C: Individual Size Sample Sizes

Notes: See comments under Table 1.16 for a description of the layout of this
table. This table looks at stochastic dominance as it relates to contest size. Tiny
contests are defined as having less than 1,500 participants, small contests have
between 1,500 and 10,000, medium contests have between 10,000 and 100,000,
and large contests have more than 100,000.
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Table 1.18: Fee Stochastic Dominance Test Results

G
$1 $2 $3 $5 $10 $12 $20 $25

F

$1 0.313 0.625 0.375 0.467 0.143 0.154 0.286
$2 0.875 0.875 0.250 0.333 0.786 0.923 0.286
$3 0.250 0.188 0.375 0.333 0.071 0.231 0.357
$5 0.875 0.938 0.875 0.467 0.929 0.923 0.357

$10 0.800 0.733 0.867 0.733 0.714 0.846 0.500
$12 0.714 0.429 0.786 0.429 0.643 0.769 0.500
$20 0.923 0.462 0.846 0.462 0.615 0.231 0.385
$25 0.857 0.857 0.857 0.857 0.429 0.857 0.923

Panel A: Aggregate Fee Results

G
$1 $2 $3 $5 $10 $12 $20 $25

F

$1 0.193 0.209 0.192 0.163 0.448 0.628 0.193
$2 0.155 0.169 0.152 0.116 0.383 0.538 0.105
$3 0.208 0.216 0.222 0.187 0.467 0.630 0.218
$5 0.256 0.248 0.241 0.177 0.478 0.672 0.217

$10 0.255 0.268 0.257 0.242 0.542 0.719 0.206
$12 0.236 0.169 0.282 0.198 0.204 0.731 0.302
$20 0.151 0.106 0.213 0.157 0.158 0.231 0.293
$25 0.341 0.343 0.341 0.357 0.301 0.718 0.813

Panel B: Individual Fee Results

G
$1 $2 $3 $5 $10 $12 $20 $25

F

$1 438
$2 11,744 307
$3 9,955 7,115 263
$5 13,139 9,412 7,984 343

$10 6,112 4,382 3,828 4,931 161
$12 784 543 478 607 299 24
$20 384 264 235 293 146 26 13
$25 2,663 1,875 1,635 2,095 1,030 149 75 72

Panel C: Individual Fee Sample Sizes

Notes: See comments under Table 1.16 for a description of the layout of this
table. This table looks at stochastic dominance as it relates to contest entry fees.
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Table 1.19: Week 1 Stochastic Dominance Test Versus Population

Type vs Type vs Pop Size vs Size vs Pop Fee vs Fee vs Pop
2x 0.000 1.000 Tiny 0.000 1.000 $1 0.000 1.000
3x 0.000 1.000 Small 0.000 1.000 $2 0.000 1.000
4x 0.000 1.000 Medium 0.000 1.000 $3 0.000 1.000
10x 0.000 1.000 Large 0.000 1.000 $5 0.000 1.000
GPP 0.000 1.000 $10 0.000 1.000

$12 0.000 1.000
$20 0.000 1.000
$25 0.000 1.000

Notes: The table is split up by test category. The left column in each is the name
of the category, the middle columns are the p-values for the population
distribution versus the test type stochastic dominance test, and the right columns
are the p-values for the type versus the population stochastic dominance test.
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Table 1.20: Modality Tests

Category n 10% 5% 1%

Type

2x 1,015 0.250 0.188 0.124
3x 181 0.160 0.077 0.022
4x 73 0.014 0.014 0.000

10x 309 0.074 0.036 0.000
GPP 370 0.100 0.062 0.027

Panel A: Modality test by contest type

Category n 10% 5% 1%

Size

Tiny 1,554 0.124 0.080 0.034
Small 194 0.438 0.330 0.253

Medium 156 0.385 0.301 0.224
Large 44 0.159 0.114 0.068

Panel B: Modality test by contest size

Category n 10% 5% 1% DU 5%

Fee

$1 512 0.154 0.102 0.053 200 0.165
$2 362 0.124 0.080 0.030 207 0.101
$3 310 0.132 0.081 0.042 202 0.089
$5 409 0.203 0.144 0.091 208 0.250

$10 197 0.218 0.168 0.117 132 0.227
$12 27 0.037 0.000 0.000 0 NA
$20 14 0.143 0.143 0.071 1 0.000
$25 86 0.535 0.442 0.326 65 0.569

Panel C: Modality test by contest entry fee

Notes: Each panel analyzes the percentage of contests that reject a unimodal
distribution at each designated significance level for the various contest
attributes. The last two columns of Panel C examine the number of double-up
contests analyzed for each entry fee, and the percentage of double-up contests at
each entry fee level that reject unimodality at the five percent level.
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CHAPTER 2

DOES BASEBALL ARBITRATION PRIORITIZE SKILL SETS

DIFFERENTLY THAN FREE AGENCY? A FRONTIER ESTIMATION

APPROACH

2.1 Introduction

Since the abolishement of the reserve clause in the 1970s, Major League Base-

ball (MLB) player salaries as a percentage of total baseball revenues have sky-

rocketed.1 The reserve clause gave teams full autonomy over the renewal of

player contracts, permitting teams to set player wages. The establishment of

free agency—an open market where teams bid against each other for players’

services—was a huge win for the players and their union, the MLB Player’s As-

sociation (MLBPA).

With the evolution of baseball analytical thinking and the increasing amount

of available data, the way in which teams value players in free agency has changed

over time. Over the past 20 years, team strategy has evolved, and so has the

methodology used to measure player contributions. Stemming from the “Money-

ball” revolution, teams’ strategies are more statistically driven, including a shift

from power focused production to on-base ability, and a shift away from tradi-

1While estimates vary depending on the data source and the benefits used to determine total
player compensation, actual player compensation as a percentage of total revenues is somewhere
near 50%. https://www.theringer.com/mlb/2018/2/21/17035624/mlb-revenue-sharing-owners-
players-free-agency-rob-manfred
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tional statistics (home runs, runs batted in, etc.) in favor of more advanced met-

rics.2 That mindset shift is illustrated by free agent salaries during that time period,

as shown by Hakes and Sauer (2007) and Brown, Link, and Rubin (2017), among

others.

However, before players can file for free agency, they must accrue a cer-

tain amount of Major League service time, which was negotiated as part of the

1973 MLB Collective Bargaining Agreement (the union’s contract with MLB,

also known as the Basic Agreement).3 During a player’s first three years of ser-

vice, he typically receives close to the Major League minimum salary since his

team has the right to dictate compensation terms, and after six years of service,

the player can enter free agency. If the player has between three and six years of

Major League service, he can elect for final-offer salary arbitration (FOA).4 Dur-

ing the arbitration process, the ball club and the player submit salary figures to an

arbitration panel, and the three-person panel chooses (via majority rule) which is

closer to the player’s appropriate salary.

While the literature provides clear evidence that the free agent market

evolves when presented with new ways to evaluate players, no paper has looked

2Moneyball was coined in Michael Lewis’s famous book “Moneyball: The Art of Winning
an Unfair Game”. The book details how the Oakland Athletics used analytics to find advantages,
despite having one of the lowest payrolls in the Major Leagues. Other teams began to mimic
the Athletics, and this shift to a more analytically minded approach is called the “Moneyball”
revolution.

3See http://www.mlbplayers.com/ViewArticle.dbml?DB˙OEM˙ID=34000ATCLID=211157624
4Players with less than three years of service time could also be eligible to file

for arbitration if they rank within the top 22% of service time for players with be-
tween two and three years of service. These players are known as Super Two players.
http://m.mlb.com/glossary/transactions/super-two

67



at whether the arbitration market evolves in a similar fashion. If it does, both

markets should value players similarly. Otherwise, there will have been a diver-

gence where the arbitration market continues to value attributes that are no longer

valuable. The results from this paper support that idea.

Using the frontier estimation free disposal hull (FDH) estimator, this paper

estimates unique arbitration markets for eligible players and identifies where they

fit in those markets. Hadley and Ruggiero (2006) first introduce the approach,

but do not account for separability concerns in their model. Separability is an is-

sue when environmental variables, such as a player’s position, service time, and

contract signing date, impact the location or shape of the frontier. In order to

implement a sensible second-stage model, separability must be satisfied. This

paper builds a unique arbitration market for each player, addressing these separa-

bility concerns and allowing for the implementation of a second-stage model. The

second-stage model captures the impact of different player attributes and environ-

mental variables on a player’s relative placement in his market.

The second-stage model provides evidence that power hitters are systemat-

ically overpaid in arbitration compared to a counterfactual system based on play-

ers’ wins above replacement (WAR), while players who specialize in getting on

base and drawing walks are underpaid. This is contrary to what has happened

in the free agent market where teams have reduced the amount spent on power

production and have increased the amount spent on on-base ability. There is no

evidence that defense or speed is mispriced in arbitration.

Empirical results allow for discussion on resulting market outcomes. Play-
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ers being undercompensated and overcompensated in the framrework of the arbi-

tration market does not simply result in a redistribution of funds from underval-

ued to overvalued players. Teams have the ability to release arbitration players

because their contracts are not fully guaranteed until the beginning of the MLB

season.5 Teams also have the option to non-tender a player prior to arbitration if

the team believes the player would make more through the process than what he

is worth on the open market.6 As Lock and DeSerpa (1986) note, a player will

be released or non-tendered if his minimum expected salary exceeds the team’s

perception of the player’s value.7 Meanwhile, players whose skills are underval-

ued have no recourse if they are underpaid. This has implications on arbitration

negotiations (threat of being non-tendered sometimes forces players to take pay

cuts) and potentially future contract extension negotiations.8

Section 2 provides an overview of the arbitration process. Section 3 gives

background of the data and estimation techniques used in determining a player’s

relative arbitration market value. Section 4 provides results from the empirical

5A player who is tendered a contract, but released prior to a specified date in the middle of
Spring Training, is entitled to 30 days pay. A player who is released after the previous date but
before the start of the season is entitled to 45 days pay. A player released after the start of the
season is owed his full contract. This all comes from the Basic Agreement.

6When a player’s contract expires, prior to that player having at least six years of service time
and being eligible to file for free agency, the team has to decide whether or not to tender the player
a contract. If the team chooses to tender a contract, the team will auto renew the contract near the
minimum salary (if the player is not arbitration eligible) or go through the arbitration process (if
the player is arbitration eligible). If the team chooses to non-tender a player, that player instantly
becomes a free agent eligible to sign with any team in baseball.

7The team’s perception of the player’s value is strongly based on the market’s perception of
that player’s value. If the team values the player less than the market does, the team can choose to
trade the player and enjoy the surplus.

8If a player accepts a lower salary in arbitration, that player may be more willing to except
lesser valued forward contracts (contract extensions) that buy out years of free agency.
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specifications. Section 5 summarizes the key conclusions and provides extensions

for future research.

2.2 The Arbitration Process

Arbitration was negotiated into the 1973 Collective Bargaining Agreement as a

way for player salary to increase without the team giving up exclusive rights to

the player’s services. Arbitration dictated that players with at least two full sea-

sons of Major League service time could elect to allow a third-party panel to

decide his salary. In 1975, with owners concerned about the potential negative

effects to profits caused by the dawning of free agency, Marvin Miller, head of

the player’s union, negotiated a free agency system where players could only file

for free agency after accumulating six years of service time. Therefore, today’s

arbitration system only covers players with between three and six years of service

(with the exception of Super Two players).9

In its basic form, the arbitration system was designed to provide players

with raises to their salaries as they reach closer to six years of service time. The

style of arbitration incorporated by baseball is known as final-offer arbitration

(FOA). In this setup, the player and the team submit salary figures to a panel of

arbitrators, and the panel chooses either the player’s or the team’s offer. FOA

differs from other forms of arbitration in that the arbitrators are unable to choose

a number between the two proposals.

The FOA process generally results in an increased rate of settlements due

9See https://baseballhall.org/discover/short-stops/free-agency-still-fuels-baseball
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to the exposed risk both sides face in relying on a hearing. The difference between

offers are often worth hundreds of thousands of dollars, if not millions. For exam-

ple, Jonathan Schoop of the Baltimore Orioles, going through his second season

of arbitration prior to the 2018 MLB season, submitted a $9 million salary fig-

ure to the arbitration panel, while the team submitted a $7.5 million salary figure.

Rather than taking what effectively would have been a $1.5 million gamble going

to an arbitration hearing, both parties settled at an $8.5 million salary.

From 2001–2018 (the time period for this paper’s sample), about 96% of

all eligible cases resulted in agreed upon settlements.10 Parties can either agree to

one-year settlements (most common) or multi-year extensions. For players that go

to a hearing, their case is decided by a panel of arbitrators. The panel is made up of

three individuals picked from a pool of labor arbitrators, not necessarily baseball

experts, jointly selected by the league and player’s association. Arbitrators have

prescribed criteria, as defined in the Basic Agreement, from which to evaluate

players.

The criteria will be the quality of the PlayerFLs contribution to his
Club during the past season (including but not limited to his overall
performance, special qualities of leadership and public appeal), the
length and consistency of his career contribution, the record of the
PlayerFLs past compensation, comparative baseball salaries, the ex-
istence of any physical or mental defects on the part of the Player,
and the recent performance record of the Club including but not lim-
ited to its League standing and attendance as an indication of public
acceptance.11

10This percentage includes both position players and pitchers. The percentages per group are
approximately the same.

11See http://www.mlbplayers.com/pdf9/5450407.pdf
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The most prominent tool arbitrators have to decide the value of a player’s

worth is comparable cases. In a typical hearing, the team will cite players who

it deems to be of similar or better statue to the player and argue for the player to

earn no more than those comparable contracts. Conversely, the player will cite

comparable cases who he deems to be of similar or worse statue to him and argue

for a salary greater than those players. It is common practice for the arbitration

panel to consider a player’s comparable market, the collection of potential compa-

rable cases, and assign that player’s true value based on where he fits within that

market.

The arbitration panel can only pick one of the two offers as the player’s

salary and cannot pick a middle-ground number. That, combined with the fact

that most cases end in settlements, leads one to question the magnitude of the role

the arbitration panel plays in the process. Dworkin (1977) and Wittman (1986)

model the decision making of the arbitration panel by assuming that the panel

establishes a “true” arbitration market price for the player and then selects the

offer which is closer to that true value. If that is in fact the case, the higher the

arbitration market values a player, the more that player can expect to earn, either

via a hearing (in expected value terms) or via a settlement. Hanany, Kilgour,

and Gerchak (2007) show that, depending on the relative risk preferences of the

two parties, there exists a set of settlement outcomes that dominate the expected

utility from going to a hearing, and this set of values is determined based on

the expected payoffs from going to a hearing. The greater the arbitration market

values the player (team), the greater (lower) the magnitude of the set of preferable
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settlement offers. Thus, in effect, the arbitration market’s value of players directly

impacts every eligible case, whether or not they go to a hearing.

Previous research in baseball arbitration focuses on the impact of bar-

gaining (Dworkin, 1977; Faurot and McAllister, 1992) and arbitration outcomes

(Wittman, 1986). Gustafson and Hadley (1995), although somewhat dated, esti-

mate the extent to which arbitration suppresses player contracts compared to what

players can earn in free agency. The arbitration exchangeability hypothesis, as

defined by Ashenfelter (1987), states that while each arbitrator has specific ten-

dencies and evaluative methods, the expectation is that they conform to the same

valuation in the long run. If they do not conform, or consistently favor one side

over the other, they can be replaced in future cases. So the most sensible strategy

for an arbitrator is to select a valuation system similar to what other arbitrators

would select. Faurot and McAllister (1992) discuss the shortfall of the arbitrator

exchangeability hypothesis in that it accounts for differences between arbitrators

but not for any systematic bias in their evaluative criteria. This paper’s main ques-

tion of interest is whether that systematic bias exists and in what direction in the

baseball arbitration market. More specifically, I am interested in whether the arbi-

tration system is structured to handle new information and correct for systematic

biases brought about by older evaluation criteria.
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2.3 Data and Methodology

This paper extends the double frontier approach used by Hadley and Ruggiero

(2006) to evaluate the MLB arbitration market. Free disposal hull (FDH) is a

production frontier estimator developed by Deprins, Simar, and Tulkens (1984).

FDH involves estimating production functions and the extent to which firms are

efficiently turning their inputs into outputs. In the double frontier setting, technical

efficiency is defined for both the player and the team.

For the player, technical efficiency is defined as the highest salary a player

could expect to earn in arbitration given his abilities and performance to date.12

Let x ∈ IRp
+ and y ∈ IRq

+ denote p player inputs and q player outputs, respectively.

Using notation from Park, Simar, and Weiner (2000), and following standard pro-

duction assumptions described in the efficiency literature, the estimated player

frontier is

Ψ̂P (Sn) =
{

(x, y) ∈ IRp+q
+ | y ≤ Yi , x ≥ Xi , (Xi,Yi) ∈ Sn

}
. (2.1)

For the team, technical efficiency is the lowest possible salary it could expect to

have to pay a player in arbitration given his abilities and performance to date. This

frontier is given by

Ψ̂T (Sn) =
{

(x, y) ∈ IRp+q
+ | y ≥ Yi , x ≤ Xi , (Xi,Yi) ∈ Sn

}
. (2.2)

12Arbitration only considers past performance, not expectations of future performance. In the
free agent market, teams pay players based on how they expect the players to perform. Arbitration
rewards players based on past contributions.
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The player has the upper frontier Ψ̂P and the team has the lower frontier Ψ̂T as

illustrated in Figure 2.1.

2.3.1 Inputs and Outputs

The player and team frontiers are constructed using one input and one output. The

input is the player’s Wins Above Replacement (WAR). Wins above replacement

is considered the best publicly available measure of the value of a player’s total

contributions to a team. The measure is comparable between teams since it con-

trols for ballpark effects, comparable between leagues since it controls for league

effects, and compare across seasons since it controls for year effects.13 While in-

dividual teams may value player attributes differently, and the roster composition

and strategy of particular teams make certain attributes more valuable in different

settings, the internal team valuation of a player is not relevant in the arbitration

decision.14 Instead, the arbitration system produces its own valuation of player

production, which may prioritize skills differently than WAR and differently than

team’s internal calculations. Any conclusions drawn in this paper regarding arbi-

tration valuation mispricing are in comparison to a counterfactual in which arbi-

tration salary is conditioned on a player’s WAR. The empirical approach used in

this paper is easily reproducible for any player production input.

The output is the player’s salary. Salary data come from Wasserman’s

13For example, if MLB makes a change to the baseball resulting in more total runs scored, WAR
accounts for that change in run scoring.

14The arbitration panel will take park factors into account. For example, the Colorado Rockies
are known to play in a ballpark that is strongly conducive to offensive performance. Arbitrators
acknowledge that when they analyze player production.
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baseball database.15 Nominal yearly base salary is the primary metric for ex-

amining player arbitration compensation, but this paper also considers additional

measures, including nominal salary raise, real yearly base salary, and real salary

raise.16 From speaking to those working in the industry, salary raise can actually

be more important than base salary for certain cases, especially for second year (2

SAE) and third year (3 SAE) arbitration eligible players.

Table 2.1 summarizes the different salary figures for various groups of

players in the sample. The first four rows break down average salary figures by

position. Middle infielders (MI) earn the highest average salary in arbitration,

and catchers (C) earn the lowest. Corner infielders (CI) and outfielders (OF) earn

comparable salaries. The bottom three rows break down average salary figures

by service year. Consistent with the findings from Gustafson and Hadley (1995),

players with more years of service earn higher salaries in arbitration. First-time

arbitration eligible players tend to earn higher raises, but those figures include

their pre-arbitration salaries, which tend to hover around the Major League min-

imum salary. Excluding pre-arbitration salaries from the average raise for first

time arbitration players, the three groups earn close to the same raise on average.

Players earn money in arbitration based on their performances and abilities

in both the platform season (the season prior to arbitration) and throughout their

careers. To quantify a player’s ability and production, this paper uses WAR—a

15Wasserman Media Group is a sports marketing and talent management company based in Los
Angeles. Salary data come from their baseball team sports division.

16Salary figures are adjusted for inflation using GDP deflator numbers from FRED (Federal
Reserve Economic Data) with 2009 as the base year.
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measurement that quantifies everything a player does to impact a game including

the player’s production with the bat, on the base paths, and in the field defensively.

A player worth one WAR is by definition worth one win to his team over a poten-

tial replacement level player.17 Players with equal WAR are said to have provided

the same amount of wins to their teams, and thus, all else equal, should receive

the same financial compensation in arbitration.

To test the robustness of WAR as the input measure, I also run model

specifications that include plate appearances (PA) as the input instead. Plate ap-

pearances removes much of the context behind a player’s production. On one

hand, using PA as the input allows for a more agnostic view of production, with

a player’s efficiency estimate measuring how well players turn their opportunities

into salary. One of the drawbacks of using WAR as the input is that the compo-

nents used in the second stage impact the WAR value. For example, if a player

increases his power production or on-base production, by definition he will have

a higher WAR. The same is not true of PA. On the other hand, the number of plate

appearances a player accumulates is not necessarily a representative measure of

a player’s production or his input to his team winning. There is also a strong

relationship between the number of plate appearance a player receives and the

magnitude of his various counting stats such as home runs (HR), runs batted in

(RBI), hits (H), stolen bases (SB), etc. This makes disentangling a player’s profile

from his raw production difficult in the second-stage model. I use both WAR and

17See FanGraphs’ stat glossary for a discussion on replacement level.
https://www.fangraphs.com/library/misc/war/replacement-level/
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PA to see if second-stage results are sensitive to the input specification.

The difficulty in using WAR, PA, or any other value-based stat is figuring

out how much weight should be given to a player’s platform value versus career

value. While it is possible to include platform and career numbers as separate

inputs, doing so comes at the cost of added complexity and limits the ability to

clearly define a player’s contract zone (it is easier to define a two-dimensional

shape than a three or more dimensional shape).18 Instead, this paper uses two

different weighting schemes. The first utilizes the dimension reduction technique

introduced by Wilson (2018). This approach takes advantage of collinearity by

taking a weighted average based on an eigendecomposition. Table 2.2 provides

distributional summary stats for the RX values obtained from the dimension re-

duction approach, where RX is the ratio of the largest eigenvalue to the sum of

all eigenvalues. The RX value relays the percentage of total information from

the joint inputs captured by the weighting mechanism in the single-dimension

reduced input. Each arbitration market goes through a dimension reduction pro-

cedure, providing unique RX values. The average RX value for the WAR input is

0.9077, meaning, on average, about 91% of the available information for the plat-

form and career WAR values is captured by the dimension reduction technique.

A first quartile RX value of 0.8713 shows dimension reduction is capturing a suf-

ficient amount of information in most cases. The average RX value for platform

and career PA is even greater at 0.9850.

18The contract zone is the feasible set of potential salaries a player could earn in arbitration. See
Section 3.3 for more details.
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Alternative to the dimension reduction approach, a composite WAR mea-

sure is calculated using a simple, multivariate, ordinary least squares regression to

determine the relationship between a player’s salary and his platform and career

value, controlling for position and service time. The relative magnitudes of the

coefficients are used to weight the importance of platform versus career.19 Values

of composite WAR are slightly different depending on the salary output measure-

ment used. Distributions for the different composite WAR measures are shown in

Figure 2.2. Most players in the sample, over 80%, have between 0 and 5 compos-

ite WAR, while about 15% of the sample have more than 5 composite WAR.

2.3.2 The Arbitration Market

When determining how much a player earns in arbitration, he is compared to

other players in his “arbitration market”. In a hearing, a team identifies compa-

rable cases to the player and argues why the player should earn no more than

them. Meanwhile, the player will identify comparable cases that make him look

favorable and argue why he should earn more than them. The player’s arbitration

market is determined based on his service time and position. For example, the case

of a 3 SAE catcher is generally only compared to other cases of 3 SAE catchers.

Catchers are expected to provide less offense compared to other positions due to

their responsibilities to the pitching staff; so to not penalize them, their produc-

tion is compared to other catchers.20 There are differing offensive skillsets at other

19A full derivation of composite WAR is available in the Appendix.
20A catcher has to help call the game for the pitcher, which requires an immense amount of

additional preparation. So while most offensive players need to study the tendencies of the oppos-
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positions as illustrated in Table 2.3, and those differences are generally captured

in the arbitration process. Corner infielders and outfielders show more offensive

ability, while middle infielders show more speed and defensive ability.

An arbitration market is filled with player comparables (comps) which help

dictate the player’s arbitration salary. Arbitration markets are generally filled with

more recent comps, but when the market lacks depth, it is common to see team

and player representatives use comps from over a decade ago. In determining

which comps compose a player’s market, for empirical estimation purposes, the

following procedure is used:

[label=)]

1. All comps had to be of the same service year and similar position group.21

2. All comps had to sign their contract prior to the arbitration player signing
his. Once a player signs his deal, his case can be immediately used as a
comp in subsequent cases, even in the same year.

3. All comps had to have signed one-year settlement deals—arbitration cases
that ended in either multi-year deals or arbitration hearing decisions are not
included.

4. The initial arbitration market is composed of all comps with cases settled
within the previous five seasons. If the initial group is composed of less than

ing pitcher, catchers need to do that plus study the tendencies of the opposing batters as well. In
addition, catching is generally a much more physically demanding position, as the player spends
half of the game crouched down behind the plate.

21Players are clustered together based on the similarity of their positions. First and third base-
man (corner infielders - CI) are generally less defensively demanding positions, and thus typically
are more power oriented. Middle infielders and center fielders (second baseman, shortstops, and
center fielders - MI) are generally much more athletic and strong defensive players, but are not tra-
ditionally your best hitters. Left fielders and right fielders (Outfielders - OF) are grouped together.
Catchers (C) have their own positional group, and designated hitters are usually included in the CI
group.
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30 comp cases, an additional previous year was pulled. This process con-
tinues until either the arbitration market consists of 30 cases or the previous
10 years of comps are pulled.

5. The player is only included in the sample if his market has more than 10
comp cases.

Because arbitration markets update the moment a player signs his contract ev-

ery arbitration market is unique. Hadley and Ruggiero (2006) ignore the strategic

nature of the available comparable cases prior to signing and have instead opted

for a static setting where all cases are compared to each other.

Hadley and Ruggiero (2006) also did not consider the impact environmen-

tal variables had on the frontiers, failing to account for separability. Separability

holds when environmental variables have no effect on the shape or location of the

frontier. Given a set of r environmental variables, z ∈ IRr
+, separability holds

when

Ψz = Ψ, ∀ z , (2.3)

where Ψz :=
{

(x, y) | x can produce ywhen z = Z
}
. With the addition of envi-

ronmental variables, the data sample Sn is now Sn = {(Xi, Yi, Zi)}ni=1.

Simar and Wilson (2007) identify multiple issues that arise from ignoring

separability concerns, the most pressing being that efficiency estimates lose oper-

ational meaning when environmental variables affect the frontier. Environmental

variables can affect production in two ways. The first is that the environmental

variables can influence the distribution of efficiency.22 The second is that the en-

22As a practical example, suppose there are two otherwise identical accounting firms, with
similar employee and capital inputs, working in two different types of office spaces. Also, suppose
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vironmental variables can impact the shape and location of the frontier.23 The first

case motivates second-stage efficiency models and does not violate separability.

The second case violates separability, rendering inference useless.

In this setting, environmental variables that most likely violate separabil-

ity include: a player’s position, a player’s service time, and a player’s previous

salary.24 Differences between positions and the reasons why those differences

may affect arbitration salary were mentioned previously. Players with different

service times, but the same ability, would face different frontiers simply because

arbitrators only consider comps in the same service class. Player salaries are also

partially conditioned on the amount of money the player made in the previous

season. By building arbitration markets that condition on similar service time and

similar positions, and by using raise as the output variable for second- and third-

year players, the resulting frontiers are not affected by separability. Additional

environmental variables used later on in the second-stage models are all assumed

to not affect the frontier, but rather the distribution of the efficiency measures. See

the first firm works in the nicer offices with noise cancelling walls and on-site kitchens. That
company would likely have the better efficiency score, meaning they are able to complete more
tax returns. That being said, the quality of the office space does not necessarily preclude either
office from completing the same amount or the technically efficient amount of returns. In this
example, the quality of the office space is an environmental variable that impacts the distribution
of efficiency.

23Continuing with the example from the previous footnote, suppose the two accounting firms
complete different types of tax returns. Suppose one firm completes tax returns for individuals
and the other completes tax returns for businesses. Because they are two very different types of
returns, the technically efficient amount they would be able to complete are inherently different.
Therefore, the type of tax returns the firms complete is an environmental variable that affects the
shape or location of the frontier.

24Current tools make proving separability difficult. Testing separability is computationally pos-
sible, and will be tested in future versions of this paper, but for now intuitive economic reasoning
is still the best way to identify these potential issues.
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Section 3.5 for more details on this.

2.3.3 Relative Contract Position

The composite WAR and arbitration salaries for the player and each comp in the

arbitration market make up the sample used to estimate the player and team fron-

tiers. A player’s contract zone is defined as the set of feasible salaries he can

expect to earn in arbitration, given by the salary points along a vertical line at

some input level connecting the player and team frontier. A player’s relative dis-

tance between the two frontiers, or relative location along the contract zone, is

called his relative contract position (RCP). Refer back to Figure 2.1 and suppose a

player’s arbitration salary and composite WAR puts him on the illustrated contract

zone directly in the middle of the player and team frontiers. In that case, his RCP

would be 0.5. As the salary approaches the team frontier, RCP approaches zero.

As the salary approaches the player frontier, RCP approaches one. As introduced

in Hadley and Ruggiero (2006), the equation for RCP is

RCPi =
SALi − CZLi
CZHi − CZLi

, (2.4)

where SALi is defined as player i’s final arbitration salary, CZHi is the top of the

contract zone along the player frontier for player i, and CZLi is the bottom of the

contract zone along the team frontier for player i. Calculating CZHi and CZLi

require estimating efficiency relative to each frontier.

Estimating CZHi is fairly straightforward using the Shephard (1970) out-
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put distance function, λ(x, y | Ψ). The vector of efficiency estimates, λ̂, from Ψ̂

is estimated by

λ̂(x, y | Ψ̂FDH) = sup
{
λ | (x, λy) ∈ Ψ̂FDH

}
. (2.5)

This equation is estimated using the FEAR package in R (Wilson, 2008). By

definition, each of the estimates, λ̂i, must be less than or equal to one, where a

value of one indicates that the salary is along the estimated player frontier. After

extracting λ̂i for player of interest i, CZHi can be estimated using

ˆCZHi =
SALi

λ̂i
. (2.6)

As an example, if the estimated efficiency is 0.5 and the player’s arbitration salary

is $1 million, the upper bound of the contract zone is $2 million.

Calculating the bottom, team frontier is slightly trickier, especially since

it would appear unnecessary in most practical economic applications to reduce

outputs without also reducing inputs. In order to complete FDH estimation, the

data are transformed along the x-y axis. Swapping the axes and utilizing the FDH

estimator and the Shephrad (1970) input distance function, θ(x, y | Ψ), recovers

a vector θ̂ in a similar way as was done to recover λ̂. Figure 2.3 illustrates the

transformation process. Note that by estimating in the input direction, relative

efficiency is still being derived for the intended output. By definition of the Shep-

hard input distance function, the values in θ̂ must be greater than or equal to one,
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where a value of one indicates that the salary is along the team frontier. After

estimating θ̂i for the player i of interest, CZLi is calculated by

ˆCZLi =
SALi

θ̂i
. (2.7)

Similar to the previous example, if the estimated efficiency equals two and the

salary the player earned is $1 million, the CZL for that player is $500,000. Using

the $2 million CZH from the previous example, the estimated contract zone would

be [$0.5 million, $2 million] for that player and the estimated RCP for that player

would be one-third.

With CZL and CHL estimated, RCP can be calculated using Equation 2.4.

Figure 2.4 provides an example of the RCP estimation procedure using FDH. An

RCP between zero and one means the player received a salary within the frame-

work of the previous market. However, an RCP of zero or one indicates the player

establishes a new part of the market not previously defined. In an ex-post analy-

sis, this does not present any issues. However, this does limit the model’s ability

to predict arbitration salary ex-ante for future players that may exist outside the

market.

Another concern is potential bias in the efficiency measures. Kneip, Simar,

and Wilson (2015), establish for the FDH estimator that the bias term is said to

be negligible if p + q < 2. Since this paper uses one input and one output for

a given specification, and the underlying measure, RCP, is a construction of effi-

ciency estimates from two different frontiers, the bias for the efficiency estimates

85



is estimated using the subsampling bootstrap method in Kneip, Simar, and Wilson

(2008).

2.3.4 Testing Convexity Assumption

The assumptions made about the shape of the frontier directly impact the result-

ing efficiency estimates. While estimators, such as data envelopment analysis

(DEA), assume convexity in the production frontier, FDH makes no such assump-

tion. This paper checks for convexity in the player and team frontiers using a test

introduced by Kneip, Simar, and Wilson (2016).25

When the frontier is convex, both FDH and DEA will be consistent. But

when the frontier is not convex, only FDH will be consistent. Korostelëv, Simar,

and Tsybakov (1995) establish that the estimated frontier under DEA, assuming

variable returns to scale, Ψ̂V RS,n, converges to the true frontier, Ψ, at rate n
2

p+q+1 .

The estimated frontier under FDH, Ψ̂FDH,n, converges to Ψ at rate n
1
p+q . Since the

DEA-VRS estimator has a faster rate of convergence, failing to reject convexity

may suggest better results using the DEA-VRS estimator.

Kneip et al. (2016) propose splitting the sample, runing FDH on one group

and VRS on the other, and then comparing mean efficiencies using the following

25Theorem 4.1 in Kneip et al. (2015) establishes consistency and other properties for mean
efficiency estimates needed for the test. The theorem relies on appropriate regularity conditions
discussed in the paper.
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test statistic,

τ̂n1,k,n2,k
=

(µ̂1,n1,k
− µ̂2,n2,k

)− (B̂1,k,n1 − B̂2,k,n2)√
σ̂2
1,γ,n1

n1,k
+

σ̂2
2,γ,n2

n2,k

−→ N(0, 1), (2.8)

where k is the convergence rate for either FDH or VRS, σ̂2
i,γ,ni

is the variance of

the bootstrapped efficiency estimates for group i ∈ {1, 2} where group 1 is the

FDH group and group 2 is the VRS group, γ is the efficiency estimator λ for the

player frontier and θ for the team frontier, and ni is the group sample size. The B̂

terms are the bias for both sample means. Kneip et al. (2016) suggests using the

generalized jack knife bootstrapping method to estimate the biases for the sample

means. Rejecting the null means rejecting convexity (DEA-VRS) in favor of non-

convexity (FDH). This test is done for each arbitration market for both the team

and player frontiers.

2.3.5 Second-Stage Model

The main purpose of this paper is to identify skillsets that may be overvalued or

undervalued in the arbitration process. Two players, with otherwise identical win

contributions and all else equal, should earn the same salary. This paper looks

to determine whether players with different profiles (power hitter vs. an elite

defender for example) are compensated differently in arbitration.

These player attributes are captured in various environmental variables

with summary stats in Table 2.3. Measures similar to those used in Hakes and
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Sauer (2007) are the key batting related skillsets. These include a player’s ability

to hit for average (“BAT”), ability to get on base (“EYE”), and ability to hit for

power (“POWER”).26 A player’s ability and production in the platform year is

highly correlated with his career production. To account for this, a career variable

and a growth variable are used for each attribute. The career variable captures

a baseline of the player’s ability. The growth variable captures the percentage

difference between a player’s career production (excluding the platform year) and

the platform year. For example, from 2007–2010 Jacoby Ellsbury produced 1.390

Power. In 2011, Ellsbury produced 1.717 Power. So for his 2012 arbitration case,

Ellsbury had 1.390 career power value and 0.23 power growth value.27

In addition to those offensive measures, environmental variables that cap-

ture defensive ability are also included. In the base model, whether a player has

played multiple positions defensively during his career proxied for his defensive

abilities. Just under half the players in the sample have played multiple positions.

Catchers, not surprisingly, show the least positional flexibility, while outfielders

show the most positional flexibility. More detailed defensive specifications and a

variable capturing a player’s speed are included to test the sensitivity of the base

model. Baseball Reference provides data on the number of appearances a player

makes at a particular position. The main variables used to dictate defensive per-

formance are whether a player won a Gold Glove award (given each season to

the player deemed to have the best defensive season at a particular position) and

26Derivations for these are in the Appendix.
27Power g = Power p−Power c

Power c
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Total Zone (TZ) per 1,350 innings (an advanced defensive stat provided by Base-

ball Reference). Players’ TZ scores are standardized based on their performances

relative to the league and positional group and identified as “Great” if finishing in

the top 20th percentile, “Good” if between the top 20th and 40th percentile, “Av-

erage” if between the top 40th and 60th percentile, “Poor” if between the top 60th

and 80th percentile, and “Bad” if in the bottom 20th percentile. This paper looks

at these attributes measured both during the platform year as well as accumulated

over a full career.

The Basic Agreement mentions additional criteria in which to determine

a player’s salary in arbitration, including career consistency, team performance,

and any physical defects. Career consistency is measured as the percentage of

seasons in which a player accumulated within 80% of his best season WAR. A

consistent player is defined as one that puts up similar WAR numbers each season.

An example of an inconsistent player is a one-hit-wonder—a player who has one

great season but is otherwise mediocre. Injury history accounts for the number

of days the player spent on the disabled list (DL) in the platform season and his

career (excluding the platform year). The average number of days a player spends

on the DL during the platform year is just under 30 days, while the total career

number is over 110 days. Finally, team win percentage is included as a measure

of team performance.

The second-stage model is estimated using an approach similar to the one

introduced in Simar and Wilson (2007), but is extended to estimate RCP in the

double-frontier setting. They recommend a bootstrapped, truncated regression
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process in estimating the second-stage model, instead of the often-used censored

normal (tobit) specification. The tobit model is often used because a number of

efficiency estimates tend to equal one (or in this setting an RCP equalling one or

zero), suggesting censoring may be taking place at full efficiency. But as Simar

and Wilson (2007) note, the true underlying model does not have that mass point

feature, and the mass point of full efficiency estimates is simply a consequence of

the bias in the estimated efficiencies. Truncation occurs at the two RCP endpoints:

zero and one.

As mentioned earlier, it is assumed that these second-stage variables sat-

isfy separability requirements. The null hypothesis being tested in the second

stage is that the environmental variables are properly priced into arbitration and

thus have no effect on a player’s pay outside of their contributions to winning.

If separability does not hold for a given environmental variable, for example if

power impacts the shape or location of the frontier, then by definition the null hy-

pothesis is incorrect in favor of the alternative that the environmental variable does

impact the frontier. Suppose power hitters face a stochastically dominant contract

zone compared to contact hitters (and therefore the frontiers are located in differ-

ent places), as illustrated in Figure 2.5. In that case, there may not be evidence of

mispricing in the second stage because RCP estimates could be similar. Simply

facing a stochasitcally dominant contract zone would indicate that power hitters

are overcompensated in arbitration relative to on base hitters. Therefore, obtain-

ing statistically significant results in the second-stage are sufficient to rejecting

the null hypothesis, regardless of if separability holds. In absence of statistically
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significant results, testing for separability in the second-stage variables can pro-

vide a secondary source of evidence to test the alternative hypothesis. This paper

leaves testing separability in these variables for future work and analyzes just the

second-stage results.

2.4 Results

2.4.1 RCP Distribution

Table 2.4 provides the mean and standard deviation for an array of RCP specifi-

cations. Unsurprisingly the mean real RCP estimates are slightly lower than the

nominal ones. The arbitration player is always going to be the most recent player

in his market, so when adjusting salaries for inflation, he will get the biggest

downward adjustment, moving him closer to the bottom frontier.

The bias correction reduces the RCP slightly for each specification. This

makes sense considering the nature of the two frontiers. The lower bound of the

team frontier is the minimum salary point since the team cannot pay lower than

that amount. Meanwhile, there is no theoretical bound for the player frontier. This

means there is more room for bias towards the upper frontier, leading to downward

adjusting bias corrections.

In regards to the input weighting approach, the WAR RCP estimates were

greater for the dimension reduction method in the salary specifications and greater

for the composite method in the raise specifications. In each of the PA specifica-

tions, the composite RCP estimates are greater. This suggests that the frontier
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approach is sensitive to the inputs used and the mechanism used to weight them in

the career versus the platform, which will be apparent in some of the second-stage

model estimates.

Figure 2.6 displays a multi-dimensional density plot of the RCP distri-

bution for different WAR levels for the bias adjusted composite weighting ap-

proach (the images are similar for the dimension reduction weighting specifica-

tions). There are more observations at the lower WAR levels, which is supported

by the WAR density plot in Figure 2.2. Mass points at zero and one RCP are

consistent across WAR levels.

2.4.2 Second-Stage Model Results

Base Model RCP Specifications

Table 2.5 provides results for the base models for various combinations of inputs,

input weighting approaches, and real outputs. The career variables have larger

magnitudes in the salary arguments than the raise arguments, which makes sense

since the salary argument is going to rely more heavily on total career production.

The growth variables show more evidence of statistical significance in the raise

arguments.

Eye estimates are mostly negative, especially in the career WAR specifica-

tions. While the various specifications are negative, the composite input weight-

ing scheme shows stronger effects of Eye on RCP than the dimension reduction

technique. So while the magnitudes are dependent on the input-output specifica-
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tions, these results provide somewhat strong evidence that Eye is undervalued in

arbitration.

The Bat coefficients are less conclusive. The larger magnitudes in the PA

specifications point to an emphasis on counting stats. A higher batting average is

also associated with more hits (H) and runs batted in (RBI), and a player with more

plate appearances and a higher batting average will have even more of those stats.

While PA is non-decreasing with each additional at-bat, WAR can increase or

decrease depending on the result of the appearance. Thus, WAR does a better job

capturing the ability to get hits without capturing these counting stat effects. The

signs also flip between positive or negative depending on the weighting scheme.

Given the noise in the coefficients, it is difficult to come to any conclusions about

Bat.

The most conclusive results are in the Power numbers. As was speculated,

Power growth and career return positive and statistically significant in nearly all

of the model specifications. The magnitudes are greater in the PA specification—

more PAs means more HRs—but the steadily positive and statistically significant

results indicate that hitters who hit for power have a greater RCP and are thus

better compensated in arbitration relative to their win production.

Table 2.6 takes some of the coefficient estimates for Power and Eye from

Table 2.5 and calculates the impact of increasing the career variable by one stan-

dard deviation and the growth variable by one percentage point. This is done using

the average estimated 2017 contract zone length for the designated specification.

Standard deviation values for Power and Eye are computed using player stats from
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2001–2017. The table suggests that increasing career power by one standard de-

viation could cause a player to be overpaid in arbitration by at least $340,000

in salary or over $170,000 in raise. Increasing eye has an even greater negative

effect. Increasing career eye by one standard deviation could cause a player to

be underpaid by over $450,000 in salary or $260,000 in raise.28 It is important

to remember that the second-stage results hold the input level constant. Power

cannot increase by one standard deviation with WAR remaining constant without

decreasing some other attribute. So it is difficult to make conclusions about the

impact of the mispricing.

In the base model, defensive ability is proxied by whether the player is

versatile enough to play multiple positions. The effect is negative or close to zero

for each of the specifications, but generally not statistically significant. In this

initial model, there is not enough evidence to suggest defense is mispriced. A

different model with more detailed defensive metrics is analyzed in Table 2.8.

Going back to Table 2.5, the additional environmental variables provide

some interesting results. Career consistency is not statistically significant and is

generally inconclusive with signs flipping depending on the specification. While

the disabled list coefficients are inconclusive, the plate appearance variable in the

WAR specifications is positive and statistically significant. In fact, the marginal

effects on plate appearances are fairly substantial, most likely capturing the impact

of counting stats, which, as mentioned previously, play a major role in arbitration

28These figures are in 2009 dollars. Converting them to 2017 dollars puts these values at
$390,000 in salary and $190,000 in raise for power and $510,000 in salary and $294,000 in raise
for eye.
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outcomes. Having an additional 100 plate appearances means an increase in RCP

between 0.245 and 0.419. Including these PA variables in the WAR model likely

separates the counting stat nature of the variables that make up Eye, Bat, and

Power, allowing for an analysis of the profiles illustrated by those variables rather

than intertwining them with playing time effects. Finally, team win percentage is

not statistically significant in any of the model specifications.

Model With Speed and Defense

Table 2.7 builds on Table 2.5 by including variables capturing a player’s speed, in-

cluding his ability to steal bases, advance on flyballs, and advance on the basepaths

in other situations when possible. Because catchers and first basemen are gener-

ally slower players, the speed variable is interacted with an indicator variable that

equals one if the player does not primarily play either of those two positions. This

allows for the effects of speed to vary between the two sets of positions. The

only time the coefficient is statistically significant is in the PA composite specifi-

cation. Part of this is surely due to the increased opportunity in accumulated steals

that is afforded by a player with more plate appearances. Therefore, these is no

substantial evidence that speed players are mispriced in arbitration.

Table 2.8 introduces more detailed defensive variables. Gold Gloves, and

player awards in general, are strongly relied upon by arbitrators. By analyzing

defensive ability and Gold Glove status (Gold Glove winner or Gold Glove final-

ist), the model can evaluate whether defense is properly priced in arbitration and

whether Gold Glove status is an effective proxy for defensive performance. Re-
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sults are mixed. They differ between the WAR and PA specifications and between

the dimension reduction and composite weighting schemes. The WAR coeffi-

cients are mostly negative, but that could be related to how WAR treats defensive

ability compared to the TZ variable.29 After including actual measures of de-

fensive performance, multi-position eligibility is now negative and statistically

significant across the majority of the specifications. This indicates that defensive

versatility, often displayed from utility players, is an undervalued asset in arbi-

tration. Overall, there is not much evidence to support that defensive ability is

mispriced, but there is evidence to support that versatility is.30

2.4.3 Convexity Test

Table 2.9 shows the results for the FDH versus DEA-VRS convexity test. The

number in the table is the percentage of arbitration markets where convexity

(DEA-VRS) is rejected in favor of non-convexity (FDH). Rejection is defined

in each market at the 90%, 95%, and 99% confidence levels. The top part of the

table tests convexity using the dimension reduction weighting technique, while

the bottom part of the table uses the composite weighting approach.

The obvious takeaway is that convexity is rejected much more often for the

29The career variables are being compared with the excluded “awful” variable which captures
players who ranked in the bottom 20% for their position.

30Included in the model, not published in the table also statistically insignificant, were various
interactions between Gold Glove status and defensive ability. In addition to Gold Glove status, var-
ious other defensive award status combinations were used. This includes number of Gold Gloves
won in the previous three seasons (with prior three season performance interactions) and number
of times finishing as a Gold Glove finalist (including interactions). None of these specifications
produced statistically significant results on defense, partly due to a collinearity issue (in some
cases there were zero observations in a given bucket).
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player frontier than the team frontier. A potential theory for this has to do with

the salary floor at the lower end of the frontier. A salary floor may lead to more

observations clustered around the minimum (when they may otherwise be lower),

leading to a convex shape (potentially exhibiting constant returns to scale). This

theory is supported by the jump in rejection rate for the raise specification over the

salary specification. There is no required minimum raise, so there is less likely to

be a mass clustering of observations at the minimum points.31

One issue with this testing approach is that the various tests are not in-

dependent of one another. Many of these markets will share comparable cases,

meaning the samples used to construct the frontiers are not independent of one

another. Another issue with this testing approach is that there is no theory to

suggest when it would be appropriate to conclusively reject convexity in favor of

non-convexity over the full sample. Based on the results of this test, it would

seem that convexity should not be assumed for the player frontier, but it may

be an acceptable assumption for the team frontier. With that said, convexity is

rejected in at least a sizeable percentage of team frontier cases, which would sup-

port not assuming convexity at all. FDH is consistent under both convexity and

non-convexity, so it seems like the appropriate tool given the general uncertainty

about the convexity assumption.

31Teams are not allowed to cut players’ salaries by more than 20%. So while there is a minimum
raise of sorts, that minimum is negative and not relevant here.
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2.5 Conclusions

Baseball arbitration, while providing incentives for good player performance and

getting contracts closer to true market value than what was possible under the Re-

serve Clause, suppresses overall contracts. But the arbitration market does more

than suppress salaries; it also transfers wealth between different player profiles. It

does so due to market divergence where the arbitration market prioritizes player

skillsets differently than would the free agent market. This is prompted by a sys-

tem that makes its decisions using player comparables, whose salaries were deter-

mined during a period that valued players differently than they are today.

Results show that power hitters are overcompensated in the arbitration

market compared to similarly productive on-base (Eye) players. This trend is

counter to what previous work has argued has taken place in the free agent mar-

ket. Previous work show that the marginal returns to on-base skill are now better

compensated in the open market in relation to its impact on winning (and similarly

for power hitters). Conclusions based on defensive ability and speed are limited

given the limited availability of quality variables used to measure them.32

Future work in this area will look at the evolution process of the free agent

and arbitration market, specifically over the past 20 years. This paper does not

analyze time series trends, so while results provide evidence of systematic pricing,

they say nothing about the rate at which new information enters each market. In

general, the Moneyball revolution has led to major improvements in how teams

32Statcast data measuring defensive ability is fairly recent and only covers the past few seasons
of data.
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value defense and other previously lesser-valued skill sets. In a general economic

context, this could provide empirical evidence to the downside of relying upon

precedence in making current decisions.33

Another extension for future research is to analyze whether the current

iteration of final-offer arbitration is ideal for the players. Because teams have the

ability to release players before the arbitration process at no cost (non-tender prior

to arbitration) or after arbitration for a percentage of the salary, this issue may be

more than just a redistribution of wealth between players. If power players, who

get overpaid in relation to players of other skill sets, can be released, then the only

players that remain are those who are either underpaid relative to what arbitration

should award, or underpaid relative to their market worth (or both). This would

essentially be a redistribution of money from the players to teams.

33The most obvious context would be in legal proceedings where public sentiment has changed
but the law has not. Another obvious context would be in other labor market settings where better
data allow for a more accurate measure of an employee’s marginal revenue product, yet where
salary decisions are being made based on antiquated criteria.
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Figure 2.1: Generic arbitration market

The top frontier is the player frontier and the bottom frontier is the team frontier. The vertical
dotted line at 5 WAR represents a potential contract zone, with upper and lower bounds, for a
player of that skill level.
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Figure 2.2: WAR distribution by output type

Displayed are distributions of the WAR input depending on the output type used to calculate it.
The WAR value used comes from the composite measure.
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Figure 2.3: Lower frontier rotation

When rotating the axes, arbitration salary is now along the X-axis and WAR is along the Y-axis.
The team frontier is now on top, and the player frontier is located on the bottom.
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Figure 2.4: FDH double frontier example

Above is an example of an estimated double frontier using the FDH estimator, illustrating how
RCP is measured for a particular player. In the example above, the player of interest, filled in
black, has an RCP of 0.22. That means he is closer to the team frontier (the bottom of the contract
zone) than the player frontier (the top of the contract zone). The salary locations of the top and
bottom of the contract zone are indicated by the top and bottom horizontal dotted lines.
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Figure 2.5: If separability does not hold

This is what the actual frontiers could look like if separability did not hold for two different types
of hitters. For example, if power hitters face a different frontier than on-base hitters, the RCP
estimates from the first stage would be misleading and the results from the second stage model
would be useless. However, this setup would support the initial hypothesis that certain attributes
are mispriced in arbitration.
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Figure 2.6: RCP distribution by WAR

This figure is a breakdown of the density of the different RCP estimates by WAR total for the
bias adjusted composite weighting approach. The figure looks similar for the dimension reduction
weighted specifications.
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Table 2.1: Salary Summary Statistics.

N Nominal Salary ($) Real Salary ($) Nominal Raise ($) Real Raise ($)
C 107 2,258,038 2,161,452 1,315,418 1,269,056
MI 265 3,877,244 3,801,798 2,099,801 2,065,967
CI 175 2,927,212 2,911,142 1,729,651 1,721,894
OF 191 2,969,175 2,930,704 1,666,164 1,658,315
1 SAE 365 1,957,572 1,946,003 1,957,572 1,946,003
2 SAE 210 3,314,453 3,267,516 1,340,023 1,321,680
3/4 SAE 163 5,229,463 5,100,231 1,772,337 1,733,311

Notes: Nominal and real salary and raise are broken down by service time and
position. For the positions, C, MI, CI, and OF refer to catchers, middle infielders
(second basemen, shortstops, and centerfielders), corner infielders (first basemen,
third basemen, and designated hitters), and outfielders (left fielders and right
fielders), respectively. The raise salary for first time arbitration eligible players is
equal to their actual salary since their previous salary would have been the league
minimum. All real variables are in terms of 2009 dollars.
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Table 2.2: RX Values, Information Captured By Dimension Reduction Technique

WAR (mean RX : 0.9077)
Min 1st Quartile Median 3rd Quartile Max

0.7343 0.8713 0.9059 0.9518 0.9878

PA (mean RX : 0.9850)
Min 1st Quartile Median 3rd Quartile Max

0.9649 0.9775 0.9834 0.9935 0.9981

Notes: RX values capture the amount of information retained from the
dimension reduction approach going from two inputs to one. Each arbitration
market goes through a dimension reduction procedure, so each market has its
own RX value for WAR and PA. The numbers in the table are summary statistics
of the distribution of the individual arbitration market RX values.
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Table 2.3: Second-Stage Variable Summary Statistics

Summary Stats Position Averages
Variable Mean SD Min Max C MI CI OF
Eye g 0.051 0.302 -1.000 3.052 0.103 0.032 0.074 0.029
Eye c 0.085 0.025 0.027 0.168 0.086 0.080 0.083 0.092
Bat g 0.019 0.141 -1.000 1.703 0.045 0.021 0.016 0.004
Bat c 0.261 0.022 0.178 0.324 0.245 0.262 0.264 0.265

Power g 0.020 0.113 -1.000 0.793 0.032 0.015 0.035 0.005
Power c 1.565 0.172 1.158 2.035 1.548 1.481 1.629 1.630
Speed p 0.655 3.334 -9.800 14.00 -1.500 2.458 -0.941 0.925
Speed c 1.912 7.549 -19.80 34.90 -3.209 6.651 -2.938 3.171

MultiPos c 0.477 0.500 0 1 0.065 0.457 0.429 0.780
TZ p 1.034 13.58 -73.10 75.20 -0.285 1.830 1.621 0.131
TZ c 0.890 10.36 -38.90 64.20 0.074 2.181 0.170 0.216

GG w p 0.038 0.191 0 1 0.009 0.057 0.040 0.026
GG f p 0.083 0.276 0 1 0.075 0.098 0.097 0.052
PA p 449.9 165.7 0 744 318.4 481.9 492.2 440.4
PA c 1213.4 640.4 64 6661 808.6 1261.9 1406.3 1196.1

DLDays p 29.2 53.4 0 192 35.7 28.7 22.7 32.0
DLDays c 111.1 135.7 0 661 124.3 109.4 99.0 117.3

Consistency c 0.297 0.144 0 1 0.278 0.308 0.293 0.295
Win Pct 0.509 0.065 0.315 0.716 0.511 0.504 0.509 0.514

Notes: Summary stats for variables used in the second-stage model. Growth
variables are denoted by g and career variables are denoted by c. The last four
columns provide means by position.
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Table 2.4: Mean RCP For Different Efficiency Specifications

Input: Wins Above Replacement (WAR)
Bias Corrected: Yes No

Weighting: Comp Red Comp Red

Nominal Salary
0.5011 0.5059 0.5038 0.5092

(0.4150) (0.4062) (0.4146) (0.4056)

Real Salary
0.4512 0.4572 0.4537 0.4603

(0.4162) (0.4038) (0.4160) (0.4036)

Nominal Raise
0.5000 0.4782 0.5034 0.4836

(0.4071) (0.3832) (0.4064) (0.3821)

Real Raise
0.4529 0.4414 0.4562 0.4468

(0.4058) (0.3788) (0.4055) (0.3781)

Input: Plate Appearances (PA)
Bias Corrected: Yes No

Weighting: Comp Red Comp Red

Nominal Salary
0.6249 0.5700 0.6264 0.5722

(0.4116) (0.4143) (0.4110) (0.4137)

Real Salary
0.5346 0.5136 0.5359 0.5157

(0.4269) (0.4186) (0.4293) (0.4183)

Nominal Raise
0.6108 0.5380 0.6129 0.5420

(0.4098) (0.3979) (0.4089) (0.3969)

Real Raise
0.5456 0.4963 0.5477 0.5005

(0.4183) (0.3984) (0.4177) (0.3977)
Notes: Standard deviation in parentheses; Comp is the

composite weighted platform and career input
specification; Red is the platform and career

dimension reduction weighted input specification.
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Table 2.5: Real Base Model With Attribute Growth Variables

Output Real Salary Real Raise
Input WAR PA WAR PA
Weighting Comp Red Comp Red Comp Red Comp Red
Model # (1a) (2a) (3a) (4a) (5a) (6a) (7a) (8a)
Eye g -0.599 -0.156 0.001 -0.377 -0.289∗∗ -0.036 0.641 -0.089

(0.405) (0.145) (0.149) (0.570) (0.146) (0.107) (1.683) (0.181)
Eye c -13.01∗ -5.797∗∗∗ -2.018 -0.648∗ -6.998∗∗∗ -3.887∗∗∗ 38.21∗ 0.550

(7.246) (2.110) (1.966) (5.646) (2.254) (1.378) (21.16) (2.214)
Bat g -0.608 0.320 0.517 6.191 -0.731∗ 0.834∗∗∗ 13.84∗∗∗ 3.283∗∗∗

(0.807) (0.364) (0.418) (5.584) (0.402) (0.295) (5.260) (1.084)
Bat c -4.296 -2.960 1.963 31.78 -4.046∗ -1.950 85.16∗∗∗ 14.09∗∗∗

(4.895) (2.267) (2.278) (28.71) (2.302) (1.679) (19.77) (4.874)
Power g 0.246 0.192 0.944∗ 3.145 0.080 0.646∗∗ 13.83∗∗ 1.798∗∗

(0.774) (0.393) (0.501) (3.058) (0.373) (0.307) (5.738) (0.728)
Power c 0.984 0.641∗∗ 1.237∗∗∗ 3.074 0.521∗∗ 0.517∗∗∗ 10.71∗∗∗ 1.537∗∗∗

(0.664) (0.263) (0.389) (2.819) (0.251) (0.185) (3.481) (0.537)
PA p 0.004∗∗ 0.002∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.002) (0.001) (0.001) (0.000)
MultiPos c -0.258 -0.098 -0.065 -0.678 -0.142∗ -0.031 -1.138 -0.058

(0.193) (0.075) (0.081) (0.644) (0.076) (0.053) (0.914) (0.096)
Consistency c 0.084 0.013 -0.312 -0.498 -0.351 0.236 0.567 0.409

(0.536) (0.263) (0.304) (1.032) (0.266) (0.192) (2.870) (0.358)
DLdays p 0.002 0.000 0.000 -0.001 0.000 0.000 -0.005 -0.002∗∗

(0.002) (0.001) (0.001) (0.002) (0.001) (0.001) (0.008) (0.001)
tmWinPct -0.835 -0.299 -0.654 -4.459 0.434 0.041 5.258 -0.800

(1.170) (0.546) (0.659) (4.394) (0.542) (0.426) (6.481) (0.786)
Constant -0.587 -0.353 -1.469 -10.25 -0.214 -0.959 -44.62∗∗∗ -5.464∗∗∗

(1.614) (0.768) (0.941) (9.748) (0.749) (0.601) (9.035) (1.997)
Observations 276 304 202 268 303 378 262 324

Notes: Standard errors in parentheses, ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
all numbers rounded to nearest thousandths
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Table 2.6: Monetary Impact Of Mispricing Power and Eye

Model # (1c) (2c) (5c) (6c)
2017 Avg Contract Zone: $2,200,000 $2,533,000 $1,566,000 $2,157,000
Variable ∆
Power c 1 SD (0.211) $457,000 $343,000 $172,000 $235,000
Power g 1% (0.01) $5,400 $4,800 $1,200 $13,900
Eye c 1 SD (0.031) -$887,000 -$455,000 -$340,000 -$260,000
Eye g 1% (0.01) -$13,200 -$4,000 -$4,500 -$800

Notes: Approximates the impact of a 1 standard deviation (SD) change or a 1
percentage point change in various variables from Table 2.5. One SD calculations
were done using MLB data from 2001–2017. The magnitude of changing RCP
depends on the size of the contract zone. The above numbers are for the real
salary and real raise WAR specifications and take the average contract zone
length for the 2017 arbitration cases. Career numbers are rounded to the nearest
thousand dollars and growth numbers are rounded to the nearest hundred dollars.
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Table 2.7: Real Base Model With Speed and Attribute Growth Variables

Output Real Salary Real Raise
Input WAR PA WAR PA
Weighting Comp Red Comp Red Comp Red Comp Red
Model # (1b) (2b) (3b) (4b) (5b) (6b) (7b) (8b)
Eye g -0.591 -0.158 -0.010 -0.213 -0.314∗∗ -0.039 0.619 0.122

(0.368) (0.155) (0.144) (0.415) (0.148) (0.110) (1.435) (0.173)
Eye c -11.37∗ -5.930∗∗ -2.443 -2.815 -6.340∗∗∗ -3.509∗∗ 23.76 -0.396

(6.020) (2.309) (1.934) (5.144) (2.206) (1.421) (41.09) (2.122)
Bat g -0.584∗∗ 0.277 0.459 5.219 -0.826∗∗ 0.832∗∗∗ 8.570 3.137∗∗∗

(0.731) (0.386) (0.400) (3.912) (0.411) (0.303) (14.42) (0.985)
Bat c -4.554 -3.134 2.309 27.89 -4.606∗ -2.776 51.82 13.66∗∗∗

(1.583) (2.472) (2.227) (20.90) (2.374) (1.788) (86.76) (4.496)
Power g 0.090 0.193 0.883∗ 2.455 -0.096 0.568∗ 8.792 1.666∗∗

(0.697) (0.419) (0.477) (2.078) (0.372) (0.313) (14.84) (0.661)
Power c 0.848 0.662∗∗ 1.204∗∗∗ 2.757 0.291 0.406∗∗ 6.783 1.497∗∗∗

(0.578) (0.291) (0.373) (2.108) (0.249) (0.194) (11.35) (0.502)
PA p 0.004∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.002) (0.001) (0.001) (0.000)
MultiPos c -0.306 -0.109 -0.046 -0.578 -0.119 -0.034 -0.603 -0.055

(0.190) (0.081) (0.078) (0.465) (0.077) (0.056) (1.123) (0.092)
Consistency c -0.094 -0.044 -0.311 -0.557 -0.372 0.235 0.256 0.344

(0.497) (0.283) (0.295) (0.874) (0.271) (0.200) (1.787) (0.335)
DLdays p 0.002 0.000 0.000 -0.001 0.000 0.001 -0.002 -0.002∗∗

(0.002) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001)
tmWinPct -0.460 -0.359 -0.677 -4.159 0.419 -0.022 4.926 -0.919

(1.057) (0.588) (0.635) (3.426) (0.551) (0.440) (9.099) (0.758)
Speed˙p 0.027 0.023 -0.074∗ -0.062 -0.030 0.023 0.146 -0.029

(0.062) (0.032) (0.040) (0.109) (0.033) (0.022) (0.315) (0.039)
X C/1B -0.040 -0.027 0.079∗ 0.097 0.003 -0.044 -0.172 0.037

(0.068) (0.035) (0.043) (0.128) (0.035) (0.025) (0.363) (0.042)
Constant -0.360 -0.297 -1.485 -8.699 0.220 -0.619 -28.29 -5.134∗∗∗

(1.496) (0.835) (0.919) (6.959) (0.761) (0.619) (47.88) (1.790)
Observations 267 294 202 264 294 368 259 320

Notes: Standard errors in parentheses, ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
all numbers rounded to nearest thousandths
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Table 2.8: Real Base Model With Speed, Defense, and Attribute Growth Variables

Output Real Salary Real Raise
Input WAR PA WAR PA
Weighting Comp Red Comp Red Comp Red Comp Red
Model # (1c) (2c) (3c) (4c) (5c) (6c) (7c) (8c)
Eye g -0.468 -0.136 0.018 -0.149 -0.270∗∗ -0.037 0.537 0.016

(0.308) (0.153) (0.134) (0.272) (0.126) (0.111) (0.682) (0.159)
Eye c -9.538∗∗ -5.253∗∗ -2.509 -0.565 -6.543∗∗∗ -3.520∗∗ 12.54 -0.641

(4.848) (2.167) (1.808) (3.204) (1.902) (1.456) (10.18) (1.930)
Bat g -0.276 0.276 0.264 3.605∗∗ -0.765∗∗ 0.819∗∗∗ 5.922∗ 2.551∗∗∗

(0.651) (0.380) (0.373) (1.747) (0.362) (0.308) (3.497) (0.734)
Bat c -4.229 -3.193 1.214 18.20∗∗ -4.373∗∗ -3.098∗ 36.49∗ 11.28∗∗∗

(4.156) (2.368) (2.048) (8.901) (2.045) (1.817) (20.99) (3.453)
Power g 0.064 0.182 0.814∗ 1.600 -0.069 0.562∗ 5.316 1.503∗∗∗

(0.643) (0.414) (0.429) (1.002) (0.318) (0.317) (3.432) (0.554)
Power c 0.614 0.638∗∗ 1.050∗∗∗ 1.993∗∗ 0.242 0.387∗ 5.089∗ 1.321∗∗∗

(0.486) (0.283) (0.315) (0.997) (0.221) (0.198) (2.861) (0.403)
PA p 0.004∗∗ 0.002∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.002) (0.001) (0.001) (0.000)
MultiPos c -0.324∗ -0.164∗ -0.007 -0.431∗ -0.130∗ -0.057 -0.445 -0.048

(0.177) (0.084) (0.074) (0.237) (0.068) (0.057) (0.406) (0.084)
Consistency c -0.031 -0.009 -0.385 -0.513 -0.395 0.166 -0.075 0.358

(0.464) (0.280) (0.274) (0.580) (0.240) (0.201) (1.119) (0.311)
DLdays p 0.002 0.000 0.000 -0.001 0.001 0.001 -0.002 -0.002∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.003) (0.001)
tmWinPct -0.580 -0.324 -0.812 -3.639∗ 0.407 0.006 2.935 -1.139

(0.975) (0.564) (0.583) (1.953) (0.479) (0.442) (2.981) (0.695)
Great Defense p -0.510 -0.109 0.439∗ 1.220 -0.485∗∗ -0.029 0.338 0.414

(0.418) (0.231) (0.260) (0.785) (0.199) (0.169) (1.000) (0.289)
Good Defense p -0.667∗ -0.169 0.196 0.965 -0.559∗∗∗ -0.052 -0.803 0.358

(0.402) (0.195) (0.200) (0.663) (0.176) (0.138) (0.926) (0.259)
Average Defense p -0.762∗ -0.123 -0.023 1.118 -0.591∗∗∗ -0.013 -0.473 0.309

(0.452) (0.225) (0.210) (0.721) (0.196) (0.159) (0.970) (0.271)
Poor Defense p -0.684∗ -0.155 0.130 1.017 -0.398∗∗ -0.065 -0.615 0.319

(0.396) (0.187) (0.188) (0.662) (0.159) (0.132) (0.853) (0.246)
Great Defense c -0.187 0.348 -0.234 0.991 -0.323 0.235 2.637 0.241

(0.493) (0.305) (0.274) (0.723) (0.256) (0.219) (1.891) (0.304)
Good Defense c 0.070 0.168 0.052 0.756 -0.002 0.118 3.283∗ 0.059

(0.396) (0.250) (0.200) (0.615) (0.184) (0.179) (1.970) (0.254)
Average Defense c 0.105 0.091 0.023 1.319∗ 0.011 0.090 3.281∗ 0.320

(0.420) (0.261) (0.199) (0.779) (0.191) (0.182) (1.978) (0.266)
Poor Defense c 0.114 0.325 0.013 0.742 -0.069 0.201 3.187∗ 0.193

(0.389) (0.249) (0.188) (0.596) (0.180) (0.172) (1.911) (0.247)
Gold Glove Winner p -0.186 -0.194 0.200 1.260 -0.079 -0.115 13.07

(0.875) (0.554) (0.573) (1.438) (0.246) (0.315) (13.07)
Gold Glove Finalist p -0.402 -0.134 0.437∗ 0.491 0.085 -0.023 -0.053

(0.538) (0.276) (0.231) (0.568) (0.242) (0.211) (0.294)
Constant 0.429 -0.367 -1.043 -7.190∗ 0.915 -0.604 -22.14∗ -4.586∗∗∗

(1.411) (0.843) (0.840) (3.715) (0.693) (0.646) (11.97) (1.462)
Observations 263 288 202 259 290 362 258 315

Note: Standard errors in parenthesis, all numbers rounded to ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
nearest thousandths, all models include speed variables
and interactions between Gold Glove status and platform ability.
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Table 2.9: Testing Convexity Assumption

Red Player Frontier (Ψ̂P ) Team Frontier (Ψ̂T )
Input Output 10% 5% 1% 10% 5% 1%
WAR Salary .426 .347 .211 .347 .262 .176

PA Salary .651 .576 .421 .376 .302 .213
WAR Raise .329 .277 .167 .413 .343 .273

PA Raise .492 .397 .262 .440 .384 .316

Comp Player Frontier (Ψ̂P ) Team Frontier (Ψ̂T )
Input Output 10% 5% 1% 10% 5% 1%
WAR Salary .490 .417 .250 .161 .118 .070

PA Salary .841 .824 .750 .138 .116 .085
WAR Raise .483 .374 .252 .215 .176 .105

PA Raise .824 .781 .686 .254 .211 .161

Notes: Mean efficiency is measured for each arbitration market using the
jackknife sampling method. DEA-VRS, which assumes convexity, is rejected if
mean efficiency for the FDH sample group is statistically different than mean
efficiency for the DEA-VRS sample group. The table above shows the
percentage of arbitration markets where convexity is rejected for each frontier
using different inputs, outputs, and weighting schemes at different confidence
intervals.
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CHAPTER 3

MODELING THE COMPLETE BASEBALL ARBITRATION PROCESS

3.1 Introduction

The previous chapter discussed the role of comparable contracts in baseball arbi-

tration and illustrated how the system undervalues and overvalues certain player

types. This chapter takes a more holistic approach to analyzing the baseball ar-

bitration process. When the Major League Baseball Player’s Union (MLBPA)

begins negotiation with Major League Baseball (MLB) owners for the new Col-

lective Bargaining Agreement (CBA), arbitration will be one of many contentious

negotiating battlegrounds. This paper extends prior theoretical research by con-

structing a model to analyze the elements of the arbitration process that are harm-

ful to players. This model can be used in future research when analyzing arbitra-

tion outcomes.

The previous chapter discusses details on who is eligible to file for arbitra-

tion. The arbitration process consists of multiple elements, which I will summa-

rize. First, teams have the opportunity to decide whether to engage in arbitration

proceedings, with the ability to non-tender a player. If a player is non-tendered, he

is released and becomes a free agent. If the player is tendered a contract, he and

the team have the opportunity to negotiate a settlement offer that would preclude

the parties from going to an arbitration hearing. In the absence of a settlement,

115



the team and player submit salary figures to the arbitration panel in anticipation

of going to a hearing. Prior to the hearing, the parties have one final opportunity

to come to a settlement. If a settlement is not reached, the parties proceed to a

final-offer arbitration (FOA) hearing. In an FOA hearing, the arbitration panel

must select one of the two submission offers as the player’s salary.

To date, no theoretical research has attempted to model the entire base-

ball arbitration process. So far, research has addressed the figure submission and

second period bargaining stages. Wittman (1986) identifies the existence of an

equilibrium using the Nash bargaining concept that results in a settlement. Fau-

rot and McAllister (1992) also use the Nash bargaining concept and introduce a

basic model to analyze the second bargaining period. Hanany, Kilgour, and Ger-

chak (2007) produce a more general model for bargaining that identifies mutually

improving settlements by allowing for differing bargaining processes other than

Nash. However, they do provide an example with the Nash bargaining solution

and link to a theoretical framework the general observation that most cases end in

settlements.

These papers do not analyze the first bargaining period, nor the team’s

non-tender decision. Teams incorporate various negotiation strategies that dic-

tate their willingness to negotiate, and this willingness can differ in each of the

two bargaining periods. The ‘file-and-trial’ strategy is one of the more popular

approaches, where teams will not negotiate with players after salary offers have

been submitted, which can impact bargaining outcomes. In this paper, I model the

complete arbitration process.
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These papers also fail to address the reality that arbitration contracts are

not fully guaranteed. If a player is released during Spring Training but before 16

days prior to the start of the regular season, the player is only entitled to 30 days

termination pay. If a player is released after that point, but prior to the start of

the regular season, the player is entitled to 45 days termination pay. Only after

the season starts does the contract become fully guaranteed. If a salary arbitration

outcome is sufficiently bad for the team, it can choose to release the player, which

I account for in my arbitration model.

I also add to the discussion of risk preferences in baseball arbitration.

Wittman (1986) shows that in arbitration figure exchange strategy, the more risk

averse party moves away from his preferred position to a less favorable figure,

but one that increases his probability of winning the hearing. I add to the discus-

sion by showing how the effects of risk preferences on player salary change under

various circumstances.

Finally, I analyze a potential impact of the market mispricing discussed

in the previous chapter. I provide an illustration of how players could be made

collectively worse off by mispricing, and teams collectively better off. I do not

identify the extent to which players are made worse off, rather I identify scenarios

where they could be. Further research is necessary to quantify these findings based

on market mispricing and other features of the arbitration process.

Section 2 presents the arbitration model using a backward induction ap-

proach. Section 3 introduces the simulation procedure used to tease out some

of the comparative statics. Section 4 identifies key results from the simulations.
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Section 5 provides summarizing and concluding remarks.

3.2 Arbitration Model

I model the arbitration process, hereby called the ‘game’, using a backward induc-

tion approach. The game consists of two active participants, the team and player.

The game also consists of an arbitration panel that does not have a strategic ob-

jective other than to determine which salary submission figure is closest to their

perception of the player’s true arbitration market value. Figure 3.1 depicts the

game, with solid dots indicating decision nodes for at least one of the participants.

First, the team decides whether to tender the player a contract. If it non-tenders the

player, the player becomes a free agent and the game is over. If the team tenders

the player a contract, the game proceeds to the first bargaining period. During this

bargaining stage, both sides either come to a settlement or not. If a settlement is

reached, the player earns the settlement amount. If a settlement is not reached, the

participants proceed to the arbitration figure exchange stage. Simultaneously, the

participants publicly submit salary figures to the arbitration panel. The exchange

is followed by a second bargaining period. If a settlement is not reached during

this period, the arbitration case goes to a hearing, where the arbitration panel de-

cides which of the two exchange numbers to award the player for the upcoming

season. After the arbitration panel makes a decision, the team has the ability to

keep or release the player.

It is assumed that each participant looks to maximize its gains from the
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arbitration process. The participants are looking to maximize

Ui(x) = xri , (3.1)

where Ui is the utility function for participant i ∈ {t, p}, and t and p are the

team and player, respectively. The salary the player earns or the surplus the team

enjoys is represented by x. Player and team risk preferences are captured by ri,

with ri > 1 indicating risk seeking preferences, ri < 1 indicating risk aversion

preferences, and ri = 1 indicating risk neutral preferences. This is not the only

feasible utility specification, but it has the benefit of allowing for various risk

preferences.

Since the model is solved using backward induction, the remainder of this

section will follow the backward path of the game, detailing the strategic decision

making at each point.

3.2.1 Release Decision

If the game reaches this point, the team makes this final move. Based on the

salary awarded to the player, S, the team decides whether to keep the player and

pay S or release the player and pay dS, where d is the percentage of the contract

guaranteed to the player after the arbitration decision. The team will decide to

keep the player if Ut(Xm − S) ≥ Ut(−dS), where Xm is the player’s free agent

market value. This condition can be rewritten as Xm − S ≥ −dS, or

Xm ≥ S(1− d). (3.2)
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A team will only release the player if the non-guaranteed portion of the player’s

contract is greater than the player’s market value. The guaranteed part is a sunk

cost and not relevant to the decision.

If the team chooses to keep the player, the player’s payoff is S. If the team

chooses to release the player, it is assumed that the player will sign with another

club at his free agent market wage, and earn Xm.

3.2.2 Arbitration Decision

When an arbitration case goes to a hearing, an arbitration panel, consisting

of three arbitrators, decides the player’s salary. The panel is given two contract

figures, a and b, and must pick from those two. In final-offer arbitration, the

arbitrators are unable to select a middle-ground figure. The salary figures come

from the salary figure exchange, where a is the player’s submission and b is the

team’s submission.

The panel has to select the figure that they deem closest to their perception

of the player’s arbitration market value, XA. The arbitrators will compare XA

with the midpoint of the two salary figure submissions,

M(a, b) =
a+ b

2
. (3.3)

If the midpoint is greater than XA, the arbitration panel selects the team’s submis-

sion b as the winner. If the midpoint is less than XA, the arbitration panel selects

the player’s submission a as the winner.
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The exact value of XA is unknown by the participants. The following as-

sumptions are made regarding the participants’ beliefs on how XA is generated.

The player has a true arbitration market value, A, known to both participants.

The arbitration panel selects a value XA from a known function, f with cumu-

lative distribution function, F . The median of f is A, so half the XA draws are

below A and half are above A. Assumption 3.2.2 is straightforward. By examin-

ing the results of previous arbitration cases, participants can form beliefs about the

player’s true arbitration market value, A. The function, f , in Assumption 3.2.2,

acknowledges the idea that there is a certain level of subjectivity in setting XA.

Another assumption is needed when defining the behavior of the arbitration panel.

The arbitrator exchangability hypothesis holds. There are no individual biases in

the selection of XA. The arbitration exchangeability hypothesis, as defined by

Ashenfelter (1987), states that while each arbitrator has specific tendencies and

evaluative methods, the expectation is that they conform to the same valuation in

the long run. If they do not conform, or consistently favor one side over the other,

they can be replaced in future cases. So the most sensible strategy for an arbitrator

is to select a valuation system similar to what other arbitrators would select. Mak-

ing this assumption allows f to be predictable across arbitration panels, regardless

of the arbitrators selected. Rather, differences in XA come from random one-off

subjective differences in opinion that are not predictable ahead of time.

By extension, the cumulative distribution function, F , provides the prob-

ability of the team winning the arbitration case, given a midpoint level, M . We

know that as M increases, either due to increases in a or b, the probability that it
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is greater than XA also increases. Since the team wins if M > XA, increasing M

increases F .

The team’s probability of winning the arbitration hearing can be repre-

sented using F , given by F (a, b). Alternatively, the probability of the player win-

ning the hearing is given by 1 − F . When the team wins the hearing, the player

is awarded b. When the player wins the hearing, he is awarded a. However, what

both parties actually end up paying is dependent on the team’s keep or cut deci-

sion in the next period. Using the condition in Equation 3.2, define the expected

utility for the team of going to an arbitration hearing as

ht(a, b) := F [I(Xm ≥ b(1− d))Ut(Xm − b)+

I(Xm < b(1− d))Ut(−bd)] + (1− F )[I(Xm ≥ a(1− d))Ut(Xm − a)

+I(Xm < a(1− d))Ut(−ad)],

(3.4)

and the expected utility for the player from going to an arbitration hearing as

hp(a, b) := F [I(Xm ≥ b(1− d))Up(b) + I(Xm < b(1− d))Up(Xm)]+

(1− F )[I(Xm ≥ a(1− d))Up(a) + I(Xm < a(1− d))Up(Xm)],

(3.5)

where I(·) is the indicator function. The expected utilities, ht and hp, clearly

depend on Xm, A, d, a, and b. The first three in that list are given for a particular

arbitration case. The last two are selected strategically in the arbitration exchange

period described in Section 3.2.4.

The arbitration panel plays an important role in this game. Although most
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cases do not reach this stage, the threat of reaching it drives how players are val-

ued throughout the game. In theory, the greater the arbitration market values the

player, the more that player should expect to earn, which improves the player’s op-

timal bargaining position, and alters his salary figure exchange strategy. A greater

arbitration market value also impacts the non-tender decision at the beginning of

the game. If the player is expected to earn a higher salary through the arbitration

process, the team might be more inclined to non-tender the player.

3.2.3 Second Bargaining Period

Prior to going to an arbitration hearing, the participants have an opportunity to

negotiate a settlement. At this stage in the game, the two exchange numbers, a

and b, are known, as are the expected utilities, ht and hp, from going to a hearing.

Just as was done in Faurot and McAllister (1992), I use a Nash bargaining concept

to derive an equilibrium solution at this stage in the game. Optimal negotiated

salaries will generate utility gains for both participants over what would come

from going to a hearing. From Faurot and McAllister (1992):

If bargaining satisfies the axioms of Nash (1950), the agreement that
maximizes the product of the utility gains, relative to not negotiat-
ing an agreement, is the unique solution to the bargaining problem.
Negotiating this agreement is Nash bargaining.

Nash bargaining is solved by optimizing the gains from utility,

x̄2(ht, hp) =y {[Ut(Xm − y)− ht][Up(y)− hp]}, (3.6)
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where x̄2 is the solution to the Nash bargaining problem, and (Ui() − hi) are the

gains from bargaining for i ∈ {t, p}.

The team will agree to the settlement offer if

Ut(x̄2) ≥ ht(a, b) (3.7)

and earn a surplus of Xm − x̄2. The player will agree to the settlement offer if

Up(x̄2) ≥ hp(a, b) (3.8)

and earn a salary of x̄2. If either Equation 3.7 or 3.8 do not hold, a settlement will

not occur and the game continues to the arbitration hearing.

Settlements do not always occur, even if they are Pareto efficient. In reality,

there are breakdowns in negotiations that can cause the parties to go to a hearing.

There may be hard feelings between the team and player, an unwillingness to ne-

gotiate, or really anything else that leads to a case not resulting in a settlement.

To account for this, I introduce a variable k2, which captures the probability of

a breakdown in negotiations during this stage of the process. Both participants

should have a good sense of the other’s negotiating tactics, and thus should have

a good sense of how likely a breakdown in negotiations will occur. If a break-

down occurs, the participants proceed to a trial, even if there would have been an

amenable settlement offer.
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3.2.4 Arbitration Salary Figure Exchange

During this stage of the game, participants simultaneously submit salary figures to

the arbitration panel to be considered during the hearing. This subgame is solved

using a Nash equilibrium solution concept. The team will submit b, such that it

maximizes its expected utility. The player will submit a, such that it maximizes

his expected utility.

The participants have to consider whether there will be a mutually bene-

ficial settlement offer later in the game. Recall that x̄2 is a function of the two

submission figures. If there will be a mutually improving settlement offer, the

participants will be making their decisions with respect to producing their best

possible settlement outcome. If there will not be a Pareto improving settlement

offer, the participants will make their submissions looking to optimize ht and hp.

First, assume there will not be a settlement in the second period. The

team will look to pick the value of b that maximizes ht. Setting ∂ht
∂b

= 0 and

solving for b provides the team’s best response function with respect to a, bBR(a).

Meanwhile, the player will look to pick the value of a that maximizes hp. Setting

∂hp
∂a

= 0 and solving for a provides the team’s best response function with respect

to b, aBR(b). The point where bBR(a) and aBR(b) intersect, (a∗l , b
∗
l ), represents the

Nash equilibrium of the arbitration exchange subgame.

Next, assume there is, in fact, a mutually improving settlement offer during

the second bargaining period. Now, the participants are looking to maximize their

utility from a potential settlement. However, they also have to consider the pos-
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sibility of negotiations breaking down, k2, when picking submission offers. The

more likely negotiations are to break down, the closer (a∗s2, b
∗
s2), the Nash equilib-

rium submissions when there is a preferred mutually improving settlement, will

be to (a∗l , b
∗
l ). When k2 = 1, the two solutions will be equal. The team is now

selecting b that maximizes

(1− k2)Ut(x̄2(a, b)) + k2ht(a, b), (3.9)

while the player is selecting a that maximizes

(1− k2)Up(x̄2(a, b)) + k2hp(a, b). (3.10)

Solving for the best response functions, and finding where they intersect, produces

a Nash equilibrium (a∗s2, b
∗
s2). Plugging those values into Equation 3.6 produces

the Nash bargaining settlement value, x̄2.

If (a∗l , b
∗
l ) exists, but (a∗s2, b

∗
s2) does not, (a∗l , b

∗
l ) is chosen as the result

of this game. If (a∗s2, b
∗
s2) exists, but (a∗l , b

∗
l ) does not, (a∗s2, b

∗
s2) is chosen as the

result. As long as non-tender is not the optimal strategy for the team, at least

one of (a∗l , b
∗
l ) or (a∗s2, b

∗
s2) will always exist. Conjecture 3.2.4 holds true in

simulations discussed later.

Finally, if both equilibrium outcomes exist, the participants have to decide

between them. The team will choose b∗s2 and the player will choose a∗s2 if

Xm − x̄2 ≥ ht(a
∗
l , b

∗
l ) (3.11)
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and

x̄2 ≥ hp(a
∗
l , b

∗
l ). (3.12)

If either of these conditions do not hold, meaning if either participant (or both)

prefers the submission strategy that results in a hearing, the team will choose b∗l

and the player will choose a∗l . Define the team’s final arbitration submission as b∗,

and the player’s final arbitration submission as a∗.

3.2.5 First Bargaining Period

This stage is similar to that of the second bargaining period. Knowing what a∗ and

b∗ will be if the salary figure exchange takes place, the Nash bargaining solution,

x̄1, can easily be calculated. First, define the team’s expected utility from not

settling in the first bargaining period as

Ht =


(1− k2)Ut(x̄2(a∗, b∗)) + k2ht(a

∗, b∗) if Eq 3.11, 3.12 hold

ht(a
∗, b∗) otherwise

, (3.13)

and the player’s expected utility from not settling in the first bargaining period as

Ht =


(1− k2)Up(x̄2(a∗, b∗)) + k2hp(a

∗, b∗) if Eq 3.11, 3.12 hold

hp(a
∗, b∗) otherwise

. (3.14)

The solution to the bargaining problem at this stage is

x̄1(Ht, Hp) =y {[Ut(Xm − y)−Ht(a
∗, b∗)][Up(y)−Hp(a

∗, b∗)]}. (3.15)
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The team will agree to the settlement offer, x̄1, if

Ut(x̄1) ≥ Ht(a
∗, b∗), (3.16)

and earn a surplus of Xm − x̄1. The player will agree to the settlement offer if

Up(x̄1) ≥ Hp(a
∗, b∗), (3.17)

and earn a salary of x̄1. If the conditions in Equations 3.16 or 3.17 do not hold,

a settlement will not occur and the game continues to the arbitration figure ex-

change. As with the second bargaining period, there is some chance negotiations

will break down, captured by k1.

3.2.6 Non-tender Decision

The first stage of the game, and last step in backward induction, is the team’s

decision on whether to tender the player a contract. That decision will depend

on the team’s expected utility if it tenders the player a contract. First, define the

team’s expected utility from tendering as

T =


(1− k1)Ut(Xm − x̄1) + k1Ht(a

∗, b∗) if Eq 3.16, 3.17 hold

Ht(a
∗, b∗) otherwise

. (3.18)

Therefore, the team will decide to tender the player a contract if T > 0, meaning

if the team expects to get positive surplus value.
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If the team tenders the player a contract, the player goes through the arbi-

tration process, and, on expectation, gets a utility of

PU =


(1− k1)Up(x̄1) + k1Hp(a

∗, b∗) if Eq 3.16, 3.17 hold

Hp(a
∗, b∗) otherwise

. (3.19)

and a salary of

PS = (1− k1)x̄1 + k1((1− k2)x̄2 + k2(F [b∗I(Xm ≥ b∗(1− d))+

I(Xm < b∗(1− d))Xm] + (1− F )[a∗I(Xm ≥ a∗(1− d))+

I(Xm < a∗(1− d))Xm]))

(3.20)

if Equations 3.16 and 3.17 hold, and

PS = (1− k2)x̄2 + k2(F [b∗I(Xm ≥ b∗(1− d))+

I(Xm < b∗(1− d))Xm] + (1− F )[a∗I(Xm ≥ a∗(1− d))+

I(Xm < a∗(1− d))Xm])

(3.21)

otherwise. If the team non-tenders the player, the player signs as a free agent for

Xm.

3.3 Simulation Approach

To analyze different features of the arbitration process, I use the model discussed

in the previous section to simulate player salary outcomes. I run 100,000 sim-

ulations each for various model specifications to calculate the player’s expected
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salary, the frequency cases are settled, and the frequency players are non-tendered.

I can also calculate optimal exchange figures.

For each simulation, the range of potential player arbitration salaries is

from 10 to 20. I choose smaller, simpler numbers to simplify the analysis. When

estimating effects for different players in future work, the range can be adjusted.

Outcomes are simulated given different input parameters. The following variables

are assigned values as part of the simulation: A, Xm, rp, rt, d, k1, k2, and σ. A is

the player’s true arbitration value, and in the simulation can take an integer value

between 11 and 19, inclusive. Xm is the player’s free agent market value, and in

the simulation is assigned a value of 15, 20, or 40. The two risk variables for the

player and team, rp and rt, respectively, can take on values of 0.5, 0.8, or 1. A risk

value of one indicates risk neutrality, and a risk value less than one indicates risk

averse preference. For the simulations, it is assumed that the team will never be

more risk averse than the player.1 The release percentage fee, d, takes on a value

of 0, 0.17, or 1 in the simulation. A release percentage fee of one is the equivalent

to a fully guaranteed contract, while a release fee of zero is the equivalent to a

fully non-guaranteed contract. A release percentage fee of 0.17 corresponds to a

release fee of about one-sixth of the salary.2

1The player’s arbitration salary is likely to constitute a large percentage of the player’s total
income compared to the percentage of the team’s total payroll. For example, if the player’s salary
increases by $100,000, that will certainly increase the player’s income by a much larger percentage
than the increase in the team’s payroll. So in theory, players have more to lose in the arbitration
process than teams do.

2Depending on when the player is released, the team could be responsible for termination
pay. In the case of releasing the player after the arbitration hearing, but before mid-way through
Spring Training, the release fee is 30-days salary, which is one-sixth of a full MLB season. For
the purposes of this paper, only the 30-day timeline is relevant for any arbitration decisions. If a
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The probability that negotiations break down in either of the two nego-

tiation periods, represented by k1 and k2, and the uncertainty in the spread of

the arbitration panel’s valuation, represented by σ, are discussed in more details

throughout this section. Note that the purpose of this simulation exercise is to

identify circumstances where players may be worse off. Further research is nec-

essary to identify which scenarios are closest to that of a representative arbitration

case, and therefore, how much worse off by the rules of the game players actually

are.

3.3.1 Functional Form For Arbitrators Decision

In addition to Assumption 3.2.2, I incorporate an additional assumption when

assuming a functional form for F . The density, f , has positive support over the

range [L,C], whereL is the bottom support andC is the upper support. The upper

support can be interpreted as a player’s ceiling, the most a player can expect to

earn in arbitration, while the lower support, the player’s floor, is the minimum a

player can expect to earn. These supports can also be used to characterize the

player’s comparable market. The upper support represents the most favorable

comparable to the player, while the lower support represents the least favorable.

Alternatively to Assumption 3.3.1, one could choose a functional form that does

not have defined boundaries. The normal distribution, for example, would fit that

criteria. I choose to incorporate bounded supports to better mimic the comparable

player gets released after that, it is likely that the arbitration salary was not the driving factor for
the release.
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based market setup.

Therefore, I assume a variation of the truncated normal distribution for F .

First, define the normal truncated probability density function as

g(M) =
φ(M−A

σ
)

σ(Φ(C−A
σ

)− (Φ(L−A
σ

))
, (3.22)

whereM is the midpoint as calculated in Equation 3.3, φ is the probability density

function for the standard normal distribution, Φ is its cumulative distribution func-

tion of the standard normal distribution, A is the player’s true arbitration market

value, L and C are where left and right truncation occurs, respectively, and σ is

the standard deviation of the function. In this application, σ can be interpreted as

the participants’ joint uncertainty in the spread of the arbitrator panel’s valuation.

Certain arbitrators may be more predictable than others, which would result in a

lower σ. In the simulation, σ can take on values of 0.5, 1, 2, or 5.

Next, define f(M) as the density function for the arbitrator’s valuation of

the player’s arbitration value, XA, given some midpoint, M , as

f(M) =



0.5g(M)∫A
L g(M)dM

M < XA,

0.5g(M)∫ C
A g(M)dM

M > XA,

0.25g(M)∫A
L g(M)dM

∫ C
A g(M)dM

M = XA.

(3.23)

If the midpoint is closer to the upper boundary, more weight is given to the points

to the right of A in order for F (A) = 0.5. The probability that the arbitrator
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selects the team’s submission is given by F (M), and is calculated using

F (M) =

∫ M

L

f(M)dM. (3.24)

The probability that the arbitration panel selects the player’s submission is 1 −

F (M).

3.3.2 Estimating Best Response Functions

The functional complexity of F (M), ht, and hp, necessitates the use of other

estimation procedures to find aBR(b) and bBR(a) and solve for a∗ and b∗ in the

arbitration salary figure exchange stage of the game. I estimate best response

curves for both the player and team, and then estimate where the curves intersect

to determine the Nash equilibrium of the game.

First, I restrict salaries to the range of feasible salary outcomes, salaries

between 10 and 20, inclusive. For the team, for every potential submission by

the player between 10 and 20 in intervals of 0.25, I determine the team’s optimal

submission in response. Next, I estimate a line for the best response function us-

ing a sixth degree polynomial, where the best responses represent the dependent

variable, and the player submissions are the explanatory variable. Then, I repeat

this process for the player, estimating a sixth degree polynomial for the best re-

sponse function for the player given various team salary submissions. Finally, I

find where the two best response functions intersect.

For example, suppose Xm = 40, A = 15, rt and rp = 1, d = 0, σ = 1,
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and k1 and k2 = 1. Figure 3.2a shows each participant’s best responses for salary

submissions by the other participant. Next, Figure 3.2b shows estimates of the

best response functions using sixth degree polynomials, with the intersection of

the two curves illustrated. In this example, a∗ = 16.267 and b∗ = 13.733.

This best response function estimation procedure does better when the

best responses look like they come from a smooth function. Suppose instead that

Xm = 15 instead of 40 like in the previous example. As can be seen in Figure

3.3a, when the team’s submission is 15 or less, the player will always respond

with a salary submission of 15. When the team’s submission is greater than 15, the

player’s best response is to submit a salary of 20. Unlike in the previous example,

these best responses clearly do not come from a smooth function. Figure 3.3b

shows the estimated best response curves, and it should be immediately apparent

that the estimated best response curve for the player does a poor job estimating

the true best response curve. In this example, a∗ = 14.887 and b∗ = 13.326.

While the estimates are going to be more widely off in this situation, there are

clear takeaways. With the lower market value, the player’s submission is much

lower in this example than in the previous example. The player knows that if he

is awarded a contract that is too large, the team will release him. Thus, there is

no additional expected benefits from raising his offer past the free agent market

value.
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3.3.3 Potential Negotiation Breakdown

For any set of model parameters, I run 100,000 simulations to see how arbitration

and salary outcomes vary. Before running the simulations, I identify whether the

model determines that a settlement would occur in the first bargaining period or

the second bargaining period if that stage is reached, whether the player would

be non-tendered, and whether both parties would ultimately prefer to proceed to

a trial. Then, I simulate the model, incorporating k1 and k2, the probability of a

breakdown in negotiations occurring in the first and second bargaining periods,

respectively. While a settlement may be optimal, a breakdown in negotiations

could occur, leading to a less-than-optimal outcome.

Let (k1, k2) = B1,2 be a pair of breakdown probabilities incorporated

into the model parameters. Among model simulation parameters, B1,2 can take

the value of (1, 1), (0.9, 0.9), (0.05, 0.95), (0, 0), (0.05, 1), or (0.5, 0.5). When

B1,2 = (1, 1), negotiations will not occur, and the team can either non-tender

the player or expect to go to trial. When B1,2 = (0.9, 0.9), negotiations will

almost surely not result in a settlement, but a settlement is possible. Having

B1,2 = (0.05, 0.95) or B1,2 = (0.05, 1) mirrors the file-and-trial strategy, where

teams refuse to negotiate with players after the exchange deadline, thus putting

more pressure on a settlement to occur during the first settlement period. When

B1,2 = (0.5, 0.5) whether settlement talks break down is essentially a coin flip in

each period. Finally, when B1,2 = (0, 0), a settlement will always occur, if that is

the optimal outcome.
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Suppose B1,2 = (0.5, 0.5) and the model predicts for a settlement to occur

during the first bargaining period, or during the second bargaining period if not

during the first. During the simulation, negotiations will break down during the

first bargaining period with probability 0.5. If negotiations do not break down, a

settlement occurs and the simulation is complete. If negotiations do break down,

a settlement does not occur and the game continues. When the game reaches the

second bargaining period, again, with probability 0.5 negotiations break down. If

negotiations do not break down, a settlement is reached and the game is over. If

negotiations do break down, the game proceeds to the arbitration hearing.

3.4 Simulation Results

Simulations provide results for three different arbitration scenarios. The first set

of results assume that the player’s free agent market value exceeds his true arbi-

tration market value. The second set of results allow for the possibility that the

arbitration market value exceeds the free agent market value. The third set of re-

sults introduces the effects of a release fee. Each model is run using a censored

regression with censoring occurring at 10 and 20 for the player salary models, and

0 and 1 for the percentage of simulations ending in settlement models.

3.4.1 Base Model Results

Table 3.1 provides various model specifications and variable interactions when

Xm ∈ {20, 40}. The dependent variable in each (a) column is player salary, and

the dependent variable in each (b) column is the percentage of simulations that end
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in settlements. The models assume that the release fee is zero. The table illustrates

the results for differing probabilities of negotiation breakdown, differing levels of

risk preferences, and differing spreads in the expected beliefs of the arbitration

panel’s valuation of the player.

Models 1a and 3a show clear evidence that a higher breakdown probability

in negotiations is better for a player’s expected salary. Models 1b, 2b, and 3b show

the anticipated result that increasing the probability of negotiation breakdown de-

creases settlements. The biggest effects on player salary occur when breakdown

probability is higher in the second bargaining period. The first bargaining period

precedes the arbitration figure exchange date, while the second bargaining period

precedes the actual arbitration hearing. There is no additional opportunity to settle

after the second bargaining period, so if one of the parties more strongly prefers a

settlement outcome, it is likely to cost that party more to secure that outcome in

the first bargaining period than the second. Given that the player has more to lose

than the team as a percentage of total income/payroll costs, it would make sense

that increasing the likelihood of breakdown in settlement talks would increase ex-

pect salary. The player has less of an opportunity to sell off risk and uncertainty

and take a lower salary by settling.

While none of the breakdown coefficients listed in model 2a are statisti-

cally significant, the interactions between breakdown probability and risk prefer-

ences illustrate an interesting picture. Table 3.2 shows the results for the interac-

tion terms from model 2a in Table 3.1. As with the results from models 1a and 3a,

the coefficients are all positive, and are greater as the probability of breakdown in
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the second period increases. However, magnitudes are greatest, and statistically

significant, when the team is risk neutral and the player is risk averse. When both

parties are somewhat risk neutral, probability of breakdown has no statistical im-

pact on player salary. However, when the team is risk neutral and the player is

risk averse, reducing the ability for parties to settle is better for player salary. This

is consistent with the story discussed in the previous paragraph.

These results would suggest that the ‘file-and-trial’ strategy incorporated

by some teams may actually be detrimental, rather than beneficial, to their payoffs.

A team that incorporates the strategy will not negotiate with players after the first

bargaining period, instead choosing to submit figures and go directly to a trial. The

thinking is that the threat of ceasing negotiations would pressure players in the

earlier bargaining period to come to an agreement. This strategy is the equivalent

of having the probability of breakdown in the second period equal to one. As

the previous results suggested, removing bargaining in the second period actually

increases players expected salary by preventing them from selling off risk and

taking lower settlements. Therefore, the ‘file-and-trial’ strategy may actually be

inefficient for teams.

The overall risk aversion story is supported in models 1a and 3a as well.

When the team is risk neutral and the player is risk averse, expected salary goes

down. Models 1b and 3b show that any sort of risk aversion on the side of players

will increase the likelihood of a settlement. Risk aversion is even relevant when

it relates to the uncertainty of the arbitration panel’s valuation. A large uncer-

tainty consistently negatively affects the player. This is consistent with Faurot and
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McAllister (1992) who showed in their model that the difference between opti-

mal salary proposals is proportional to the standard deviation of the distribution

of the arbitrator’s notion of a fair settlement. The more uncertainty in the arbi-

tration panel’s valuation, the more there is for a player to lose from going to an

arbitration hearing since the range of potential valuations is greater. But it also

appears that there is an optimal level of valuation uncertainty for the player. For

each of the uncertainty variables, the coefficients are negative in models 1a, 2a,

and 3a, and positive and statistically significant for models 1b and 3b. In models

2a and 3a, the coefficient magnitude is smallest (in absolute value terms) for a

valuation uncertainty of 2. While there is a major difference between the coef-

ficients in model 3a for valuation uncertainties of 0.5 and 5, the gap disappears

when considering the interaction terms. The only statistically significant interac-

tions in model 3a between r, the set of combinations of risk preferences for the

team and player, and σ are (1, 0.5) risk preferences interacted with 0.5 uncertainty

(−1.073 coefficient with 0.184 standard error) and (1, 0.8) risk preferences inter-

acted with 0.5 uncertainty (−1.150 coefficient with 0.183 standard error). When

the player is risk averse and the team is risk neutral, the player is made worse off

when breakdown probability is low, and uncertainty in arbitration panel valuation

is sufficiently different than some optimal uncertainty value.

Table 3.3 breaks down the player’s average arbitration salary from the sim-

ulations, given the conditions in the models from Table 3.1, by risk of breakdown

in negotiations, risk preferences, and arbitrator valuation uncertainty. In each box,

the top left value sets σ = 0.5, the top right value sets σ = 1, the bottom left value
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sets σ = 2, and the bottom right value sets σ = 5. Consistent with the previous

results, the highest player salaries are the ones in which the probability of a break-

down in negotiations equals one in the second bargaining period. Salary offers are

closest to 15 when both parties are risk neutral. Players earn their lowest salaries

when the team is risk neutral, the player is very risk averse, and there is little or

no likelihood of a breakdown in negotiations.

3.4.2 Arbitration And Free Agent Market Value

Table 3.4 compares models when free agent market value is 15, versus when it

equals either 20 or 40. Since the range of true arbitration market values and do-

main of arbitration panel valuations is between 10 and 20, there are instances

where either of these values will be greater or equal to a free agent market value

of 15. That is not the case for free agent market values of 20 and 40. Analyzing

models under both scenarios illustrates the effects of having a market value less

than the arbitration value.

The first set of results in Table 3.4 examines the impact of a player’s true

arbitration valuation on his expected salary, compared to a true arbitration value at

15. The right columns show the obvious result that as arbitration value increases,

so does the player’s salary. The left columns tell a slightly different story. Below

the free agent market value of 15, the coefficients are negative and decrease as the

arbitration value gets smaller. But above 15, the coefficients are stagnant. There

is no positive benefit for the player to have an arbitration market value worth 16

versus 17 versus 18. The effects are the same. This is because in every simulation,
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the team chooses to non-tender the player if his true arbitration value is greater

than his market value. So in each case, the player is non-tendered, becomes a free

agent, and earns a salary equal to his free agent market wage.

Whether players are collectively better or worse off by market mispricing

depends on the prevalence of mispricing in the market. For instance, suppose there

are two players, Player A with an arbitration market value of 12, and Player B with

an arbitration market value of 18, both with free agent market values of 15. They

have the same free agent market values, but mispricing in the arbitration market

results in different arbitration market valuations. Player A with the 12 arbitration

valuation is 1.943 units worse off, while Player B with the 18 arbitration valuation

is 1.201 units better off. In this scenario, players are collectively made worse off

and teams collectively made better off by 0.742 units. This provides one example

of how arbitration market mispricing may lead to a redistribution from players to

teams.

The remainder of Table 3.4 examines differences in the effects of break-

down probability, risk preferences, and panel valuation uncertainty between the

two free agent market value groups. The effects of breakdown probability and

risk tolerance are clearly weaker. Since teams will non-tender players with mar-

ket values less than true arbitration values, the only players proceeding through the

arbitration process are those who are priced below market value. Since a player

will be released if their arbitration salary is greater than his market value, players

have incentives to reduce their submission figures, which, in kind, will incentivize

teams to increase their submission offers, reducing the amount being risked by
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going to an arbitration hearing. Settlements will be less attractive since players’

risk preferences will have less of an impact on their decision making.

3.4.3 Release Fees

Table 3.5 introduces release percentage fee into the model, and interacts it with

different variables. A release fee of one represents a fully guaranteed contract, and

a release fee of zero represents a non-guaranteed contract. Panel A shows the esti-

mates for release fee percentage on player salary. Both variables are positive and

statistically significant, indicating that, in general, higher release fees are good for

players. A 100% release fee, fully-guaranteed contract, is even better than a 17%

release fee, partially-guaranteed contract. With release fees, it becomes costlier

for teams to release players, giving players slightly more bargaining power.

Panel B looks how interactions between release fee and true arbitration

value impact player salary. All of the coefficients are negative, but the arbitra-

tion valuations greater than 15 have much stronger, and statistically significant,

negative effects. Panel C analyzes interactions between release fee and free agent

market value. For a market value of 15, the coefficient is positive and statisti-

cally significant, while the coefficient for a market value of 20 is statistically zero.

Combining results from Panels B and C suggest that the release fee is most bene-

ficial to players who are not likely to be non-tendered, but have an opportunity to

earn more than the market value.

For example, suppose the player’s arbitration value is 14 and his market

value is 15. According to the model, the team will tender the player a contract. If a
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settlement is not reached and an arbitration hearing occurs, the player could poten-

tially earn more than the market value of 15. If the release fee is zero, the contract

is non-guaranteed, the team will choose to release the player if his earnings are

greater than his market value. If the contract is partially or fully-guaranteed, the

player could earn more than the market value, and the team may decide to keep

the player if the cost to release him is greater than the cost to keep him. This

opportunity to earn more than his market value will give the player more leverage

in negotiations.

Panel D shows no interaction effects between risk aversion uncertainty and

release fee percentage.

3.5 Conclusions

This paper supports many of the conclusions regarding risk aversion in previous

work, while addressing aspects of the arbitration process that had not previously

been addressed. Player salaries are unequivocally higher when players do not have

the opportunity to negotiate a settlement. While individual players may prefer to

trade away risk and accept lower salaries, the MLBPA has an incentive to maxi-

mize arbitration salaries. Once a player agrees to a lower settlement, that lower

contract becomes a comparable case for future players, which serves to lower

those future players’ arbitration market values. Players collectively are better off

when individuals behave neutrally in their risk preferences.

The model in this paper provides a theoretical framework for future work

on baseball arbitration. One such topic is the impact of market mispricing on ar-
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bitration outcomes, numerically analyzing how market mispricing makes players

collectively worse off. Future work may consider applying other bargaining so-

lutions besides Nash, or may apply a more mathematical framework to finding

the salary figure exchange team and player best response functions. Finally, fu-

ture work may manipulate this model to accommodate other final-offer arbitration

settings.

144



Figure 3.1: Arbitration model

This is a visual representation of the arbitration game. Decision nodes, where either the team,
player, or both, make a move in the game, are emphasized with black dots. Simultaneous moves
is illustrated with a doted oval.
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Figure 3.2a: Smooth best responses

For a given salary submission by one participant, this shows the other participant’s best response
that maximizes expected utility.

Figure 3.2b: Smooth best response functions

This uses the best responses in Figure 3.2a to estimate best response functions using sixth degree
polynomials. The intersection of the two best response functions is the Nash equilibrium of the
salary figure exchange subgame. In this example, the player’s optimal submission is 16.267 and
the team’s optimal submission is 13.733.
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Figure 3.3a: Best responses with market mispricing

For a given salary submission by one participant, this shows the other participant’s best response
that maximizes expected utility, except this time with Xm = 15.

Figure 3.3b: Best response functions with market mispricing

This uses the best responses in Figure 3.3a to estimate best response functions using sixth degree
polynomials. In this example, the player’s optimal submission is 14.887 and the team’s optimal
submission is 13.326. Note that the estimated best response functions are less accurate compared
to those in Figure 3.2b.
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Table 3.1: Base Model Results

Model # (1a) (1b) (2a) (2b) (3a) (3b)

Breakdown
Probability
(B1,2)

(1st Period,
2nd Period)

(0.05, 0)
0.043 −0.054∗∗ −0.0002 0.000 0.046 −0.054∗∗

(0.080) (0.022) (0.179) (0.037) (0.077) (0.022)

(0.05, 0.5)
0.043 −0.292∗∗∗ −0.210 −0.106∗∗∗ 0.045 −0.293∗∗∗

(0.080) (0.022) (0.179) (0.040) (0.077) (0.021)

(0.05, 1)
0.421∗∗∗ −0.326∗∗∗ 0.010 −1.097 0.422∗∗∗ −0.326∗∗∗

(0.082) (0.022) (0.185) (176.0) (0.079) (0.022)

(0.5, 0.5)
0.216∗∗∗ −0.521∗∗∗ −0.001 −0.106∗∗∗ 0.219∗∗∗ 0.523∗∗∗

(0.080) (0.022) (0.179) (0.040) (0.077) (0.022)

(0.5, 1)
0.423∗∗∗ −0.764∗∗∗ 0.010 1.097 0.424∗∗∗ −0.764∗∗∗

(0.082) (0.023) (0.185) (176.0) (0.079) (0.022)

(1, 1)
0.424∗∗∗ −2.440 0.010 −1.097 0.425∗∗∗ −2.369∗∗∗

(0.082) (97.13) (0.185) (176.0) (0.079) (57.85)
(0, 0) Excluded

Risk
Tolerance (r)

(Team,
Player)

(0.5, 0.5)
−0.085 1.84∗∗∗ −0.228 2.129 −0.215∗ 1.293∗∗∗

(0.069) (0.021) (0.178) (162.1) (0.129) (0.042)

(0.8, 0.5)
−0.103 1.195∗∗∗ −0.210 2.129 0.031 1.311∗∗∗

(0.069) (0.021) (0.176) (160.0) (0.129) (0.042)

(1, 0.5)
−0.467∗∗∗ 1.182∗∗∗ −0.923∗∗∗ 2.129 −1.355∗∗∗ 1.313∗∗∗

(0.070) (0.021) (0.178) (162.4) (0.130) (0.042)

(1, 0.8)
−0.340∗∗∗ 1.142∗∗∗ −0.691∗∗∗ 1.186∗∗∗ −1.186∗∗∗ 1.265∗∗∗

(0.070) (0.021) (0.180) (0.044) (0.130) (0.041)
(1, 1) Excluded

Panel
Valuation
Uncertainty
(σ)

0.5
−0.085 1.84∗∗∗ −0.228 2.129 −0.215∗ 1.293∗∗∗

(0.069) (0.021) (0.178) (162.1) (0.129) (0.042)

2
−0.103 1.195∗∗∗ −0.210 2.129 0.031 1.311∗∗∗

(0.069) (0.021) (0.176) (160.0) (0.129) (0.042)

5
−0.467∗∗∗ 1.182∗∗∗ −0.923∗∗∗ 2.129 −1.355∗∗∗ 1.313∗∗∗

(0.070) (0.021) (0.178) (162.4) (0.130) (0.042)
1 Excluded

Controls A, Xm A, Xm A, Xm

Interactions None B1,2 ∗ r r ∗ σ,A ∗Xm

Obs 2,328 2,328 2,328 2,328 2,328 2,328
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: The dependent variable in each column (a) is the player’s salary. The dependent variable
in each column (b) is the percentage of simulations that result in a settlement. In these models,
Xm ∈ {20, 40} and d = 0. 148



Table 3.2: Xm ∈ {20, 40} Breakdown Risk Interactions

r
(0.5, 0.5) (0.8, 0.5) (1, 0.5) (1, 0.8)

B1,2

(0.05, 0)
0.024 0.015 0.097 0.086

(0.251) (0.249) (0.252) (0.253)

(0.05, 0.5)
0.021 0.015 0.099 0.087

(0.251) (0.249) (0.252) (0.253)

(0.05, 1)
0.305 0.217 0.883∗∗∗ 0.665∗∗

(0.258) (0.257) (0.261) (0.260)

(0.5, 0.5)
0.149 0.107 0.470∗ 0.364

(0.251) (0.249) (0.252) (0.253)

(0.5, 1)
0.288 0.220 0.900∗∗∗ 0.672∗∗∗

(0.258) (0.257) (0.261) (0.261)

(1, 1)
0.270 0.221 0.917∗∗∗ 0.678∗∗∗

(0.258) (0.257) (0.261) (0.261)

Notes: This table provides the interaction effects between negotiation breakdown
probability (B1,2) and risk preferences (r) in model 2a in Table 3.1. For r, the
team risk level is listed first, followed by the player risk level. For B1,2, the
probability of breakdown in the first negotiating period is listed first, followed by
the probability of breakdown in the second negotiating period.
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Table 3.3: Salary Breakdown

r
0.5, 0.5 0.8, 0.5 1, 0.5 1, 0.8 1, 1

B1,2

0, 0
14.501 14.518 14.994 14.497 12.313 14.487 12.650 14.994 14.963 14.999
15.101 14.998 15.002 14.683 14.957 14.748 14.983 14.561 14.998 14.998

0.05, 0
14.526 14.543 14.994 14.522 12.445 14.512 12.765 14.993 14.963 14.998
15.101 15.017 15.002 14.700 14.957 14.748 14.983 14.561 15.002 14.993

0.05, 0.5
14.525 14.543 14.994 14.522 12.445 14.513 12.764 14.994 14.963 15.000
15.099 15.007 15.002 14.700 14.958 14.751 14.983 14.562 14.998 14.995

0.05, 1
15.213 15.014 15.210 14.999 15.015 14.988 15.018 14.760 15.020 14.763
15.540 15.101 15.220 14.790 15.426 14.721 15.452 14.791 15.471 14.998

0.5, 0.5
14.751 14.764 14.994 14.746 13.626 14.740 13.799 14.995 14.962 14.998
15.074 15.093 15.002 14.842 14.967 14.781 14.987 14.572 14.998 14.996

0.5, 1
15.212 15.010 15.210 15.000 15.016 14.993 15.018 14.763 15.020 14.763
15.519 15.055 15.219 14.802 15.444 14.773 15.460 14.813 15.470 15.001

1, 1
15.210 15.005 15.209 15.000 15.016 15.000 15.019 14.763 15.020 14.764
15.497 15.006 15.221 14.811 15.462 14.827 15.470 14.829 15.471 15.000

Notes: This table compares average salaries using the assumptions from the models in Table 3.1,
by probability of negotiations breaking down (B1,2), risk preferences (r), and arbitration panel
valuation uncertainty (σ). In each box, the upper left value assumes σ = 0.5, the upper right
value assumes σ = 1, the lower left value assumes σ = 2, and the lower right value assumes
σ = 5.
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Table 3.4: Varying Market Value Model

Xm = 15 Xm ∈ {20, 40}
Category Variable Estimate Std. Error Estimate Std. Error

Arbitration
Value
(A)

11 −2.657∗∗∗ 0.079 −3.602∗∗∗ 0.092
12 −1.943∗∗∗ 0.078 −2.845∗∗∗ 0.089
13 −0.919∗∗∗ 0.078 −1.831∗∗∗ 0.094
14 −0.032 0.078 −0.870∗∗∗ 0.090
16 1.201∗∗∗ 0.078 0.644∗∗∗ 0.092
17 1.201∗∗∗ 0.078 1.761∗∗∗ 0.094
18 1.201∗∗∗ 0.078 2.800∗∗∗ 0.089
19 1.201∗∗∗ 0.078 3.360∗∗∗ 0.090

Breakdown
Probability

(B1,2)

(0.5, 0) 0.016 0.069 0.043 0.080
(0.05, 0.5) 0.016 0.069 0.043 0.080
(0.05, 1) 0.181∗∗∗ 0.069 0.421∗∗∗ 0.082
(0.5, 0.5) 0.093 0.069 0.216∗∗∗ 0.080
(0.5, 1) 0.184∗∗∗ 0.069 0.423∗∗∗ 0.082
(1, 1) 0.186∗∗∗ 0.069 0.424∗∗∗ 0.082

Risk
Tolerance

(r)

(0.5, 0.5) −0.085 0.069
(0.8, 0.5) −0.103 0.069
(1, 0.5) −0.111∗∗ 0.045 −0.467∗∗∗ 0.070
(1, 0.8) −0.153∗∗∗ 0.045 −0.340∗∗∗ 0.070

Panel
Uncertainty

(σ)

0.5 −0.117∗∗ 0.045 −0.416∗∗∗ 0.060
2 −0.211∗∗∗ 0.052 0.180∗∗∗ 0.060
5 −0.111∗∗ 0.052 0.118∗ 0.064

Observations 753 2,328
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: For r, the team risk level is listed first, followed by the player risk level.
For B1,2, the probability of breakdown in the first negotiating period is listed
first, followed by the probability of breakdown in the second negotiating period.
For Xm = 15, the team is assumed to be risk neutral. For both models, it is
assumed that d = 0.

151



Table 3.5: Release Fee Interactions

Release Fee % Estimate Std. Error
0.17 0.174∗ 0.099
1.00 0.260∗∗∗ 0.099
0.00 Excluded

Panel A: Release Fee on Player Salary

Release Fee d = 0.17 d = 1.00
Estimate Std. Error Estimate Std. Error

A = 11 −0.214∗ 0.119 −0.307∗∗∗ 0.119
A = 12 −0.177 0.116 −0.291∗∗ 0.116
A = 13 −0.189 0.121 −0.268∗∗ 0.121
A = 14 −0.178 0.118 −0.247∗∗ 0.118
A = 15 Excluded
A = 16 −0.256∗∗ 0.120 −0.333∗∗∗ 0.120
A = 17 −0.245∗∗ 0.120 −0.338∗∗∗ 0.120
A = 18 −0.244∗∗ 0.116 −0.327∗∗∗ 0.116
A = 19 −0.247∗∗ 0.117 −0.314∗∗∗ 0.117

Panel B: Release Fee on Player Salary by Arbitration Value

Release Fee d = 0.17 d = 1.00
Estimate Std. Error Estimate Std. Error

Xm = 15 0.159∗∗ 0.069 0.185∗∗∗ 0.069
Xm = 20 −0.000 0.070 −0.000 0.070
Xm = 40 Excluded

Panel C: Release Fee on Player Salary by Free Agent Market Value

Release Fee d = 0.17 d = 1.00
Estimate Std. Error Estimate Std. Error

rp = 0.5 0.036 0.069 0.014 0.069
rp = 0.8 0.019 0.069 0.005 0.069
rp = 1.0 Excluded

Panel D: Release Fee on Player Salary by Player Risk Preference

Notes: These panels analyze the effect of release fees on player arbitration
salaries. Panel A examines the release fees themselves, while Panels B-D
examine interaction effects between release fees and arbitration value, free agent
market value, and risk preferences, respectively. This model assumes that the
team is risk neutral.
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Kneip, Alois, Byeong U Park, and Léopold Simar (1998). “A note on the conver-
gence of nonparametric DEA estimators for production efficiency scores”. In:
Econometric theory 14.6, pp. 783–793.

Kneip, Alois, Léopold Simar, and Paul W Wilson (2008). “Asymptotics and con-
sistent bootstraps for DEA estimators in nonparametric frontier models”. In:
Econometric Theory 24.6, pp. 1663–1697.

– (2015). “When bias kills the variance: Central limit theorems for DEA and FDH
efficiency scores”. In: Econometric Theory 31.2, pp. 394–422.

– (2016). “Testing hypotheses in nonparametric models of production”. In: Jour-
nal of Business & Economic Statistics 34.3, pp. 435–456.
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Park, Byeong U, Léopold Simar, and Ch Weiner (2000). “The FDH estimator for
productivity efficiency scores: asymptotic properties”. In: Econometric Theory
16.6, pp. 855–877.

Rodenberg, Ryan (2017). Daily fantasy sports state-by-state tracker.
Sabermetrics Library: Replacement Level.
Shephard, Ronald W (1970). “Theory of cost and production functions Princeton

University press”. In: Princeton, New Jersey.
Silverman, Bernard W (1981). “Using kernel density estimates to investigate mul-

timodality”. In: Journal of the Royal Statistical Society: Series B (Methodolog-
ical) 43.1, pp. 97–99.

Simar, Leopold and Paul W Wilson (2007). “Estimation and inference in two-
stage, semi-parametric models of production processes”. In: Journal of econo-
metrics 136.1, pp. 31–64.

Trippiedi, Michael (2014). “Daily fantasy sports leagues: Do you have the skill to
win at these games of chance”. In: UNLV Gaming LJ 5, p. 201.

Vardhman, R (2017). The Unstoppable Growth of Fantasy Sports [Infographic] -
Facts Stats.

Which Daily Fantasy Sports Sites Allow Which States?
Wilson, Paul W (2008). “FEAR: A software package for frontier efficiency anal-

ysis with R”. In: Socio-economic planning sciences 42.4, pp. 247–254.
– (2018). “Dimension reduction in nonparametric models of production”. In: Eu-

ropean Journal of Operational Research 267.1, pp. 349–367.
Wittman, Donald (1986). “Final-offer arbitration”. In: Management Science 32.12,

pp. 1551–1561.

155



Appendices

156



APPENDIX A

CHAPTER 1

A.1 Covariate Equations

The following equations were used to calculate the covariates, where t is the week

of the season:

• QB Overall Grade:
∑17

t=1QBOverallt
TotalSnapst
TotalSnaps

, where TotalSnapst are

snaps in that game and TotalSnaps are snaps over the full season

• QB Passing Grade:
∑17

t=1QBPassingt
PassingSnapst
PassingSnaps

, where PassingSnapst

are passing snaps in that game and PassingSnaps are passing snaps over

the full season

• Run Blocking: 1
n

∑n
i=1

∑17
t=1RunBlockingn,t

RunningSnapsn,t
RunningSnapsn

, where n is

the number of players along the offensive line for that game (usually five)

• Pass Blocking: 1
n

∑n
i=1

∑17
t=1 PassBlockingn,t

PassingSnapsn,t
PassingSnapsn

, where n is

the number of players along the offensive line for that game (usually five)

• Defense Grade:
∑n

i=1
Snapsn
Snaps

∑17
t=1OverallDefenseGraden,t

Snapsn,t
Snapsn

, where

n is the total numbers of starters on defense, Snaps is the total number of

snaps taken by the defense, and Snapsn is the total number of snaps by one

particular player
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• Run Defense:
∑n

i=1
RunSnapsn
RunSnaps

∑17
t=1RunDefenseGraden,t

RunSnapsn,t
RunSnapsn

• Pass Rush:
∑n

i=1
PassRushSnapsn
PassRushSnaps

∑17
t=1 PassRushGraden,t

PassRushSnapsn,t
PassRushSnapsn

• Coverage Defense:
∑n

i=1
CoverageSnapsn
CoverageSnaps

∑17
t=1CoverageGraden,t

CoverageSnapsn,t
CoverageSnapsn

The covariates are calculated for a given player or positional unit for a particular

season.
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A.2 Diamonds In The Rough

Results from Table 1.5 and Tables 1.7 and 1.8 support that the following strate-

gies can be incorporated when selecting minimum-salary players in DraftKings

contests:

• Quarterbacks:

1. Select younger QBs.

2. Select QBs facing better quality run defenses.

3. Select QBs playing in very windy games.

• Running Backs:

1. RBs listed as probable are really good bets to outperform healthy RBs.

• Wide Receivers:

1. Select older WRs.

2. Select WRs with lower quality QBs.

3. Select WRs with lower quality pass blocking offensive linemen.

4. Select WRs facing lower quality pass rushes and coverage defenses.

5. Select WRs playing in less windy games.

• Tightends:

1. Select TEs playing higher quality run defenses.
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2. Select TEs playing in bad weather (snow/heavy rain).

3. Questionable TEs could prove valuable if they play.
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A.3 Usage Regression Results

OLS Results For Usage Regressions By Position

D
ependentvariable:

D
ifference

In
U

sage
Percentage

(Q
B

F)
(Q

B
N

M
)

(R
B

F)
(R

B
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M
)

(W
R

F)
(W

R
N

M
)

(T
E

F)

L
eague

Tenure
−

0.020
0.007

−
0.003

−
0.013

0.004
0.037

−
0.000

(0.035)
(0.072)

(0.006)
(0.047)

(0.003)
(0.027)

(0.001)
Q

B
G

rade
−

0.001
−

0.009
−

0.0002
−

0.001
−

0.000
(0.002)

(0.020)
(0.001)
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A.4 Data Sources

• DraftKing Points and Salary Data: http://rotoguru1.com/cgi-bin/fyday.pl?game=dk

• Experience and Lineup Data: https://www.pro-football-reference.com/

• Injury Data: https://www.footballdb.com/transactions/injuries.html?yr=2018

• NFL Player Grades (subscription required): https://www.profootballfocus.com/

• NFL Weather Data: http://www.nflweather.com/en/
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APPENDIX B

CHAPTER 2

B.1 Composite WAR Derivation

Composite WAR is calculated using weights created by a simple OLS regression

(B.1)
salaryi,j = β0,j + β1,j ∗ pWARi + β2,j ∗ cWARi + β3,j

∗ posi + β4,j ∗ SAEi + β5,j ∗ pWARi ∗ SAEi
+ β6,j ∗ cWARi ∗ SAEi,

where i is a given player’s arbitration case, j includes the different types of salary

measures (real and nominal, base and raise), pWAR and cWAR are platform and

career WAR values, pos is a player’s position, and SAE is the player’s year of

arbitration service. After getting the coefficients from Equation B.1, composite

WAR is calculated using the relative magnitude of the coefficients of the platform

and career coefficients

(B.2)
WARi,j =

β1,j + β5,j ∗ SAEi
β1,j + β2,j + (β5,j + β6,j) ∗ SAEi

∗ pWARi

+
β2,j + β6,j ∗ SAEi

β1,j + β2,j + (β5,j + β6,j) ∗ SAEi
∗ cWARi.

B.2 Offensive Environmental Variable Calculations

The following equations make up the calculations for the offensive skill environ-

mental variables used in the second-stage model:
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• Eye = UBB+HBP
PA

, where UBB is the total number of unintentional walks

(intentional walks are not counted) a player accumulates in a season (or

career), HBP is the number of hit by pitches, and PA is the total number

of plate appearances.

• Bat = H
AB

, where H is the total number of hits a player accumulates in a

season (or career), and AB is the number of at-bats (which removes walks,

HBPs, and sacrifice hits from plate appearances). This stat is equivalent to

the well-known batting average number seen on a player’s baseball card.

• Power = TB
H

, where TB is the total number of bases a player accumulates

in a season (or career) via hits (a single results in one base, a double in

two bases, a triple in three bases, and a home run in four bases). This stat

captures how many bases a player averages whenever he gets a hits. A

player with more power is going to accumulate more bases on average.

164


	Clemson University
	TigerPrints
	8-2019

	Essays on Pricing Mechanisms in Sport Economic Markets
	Jeremy Mitchell Losak
	Recommended Citation


	TITLE PAGE
	Title Page
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTERS
	DAILY FANTASY SPORTS: A GAME OF CHANCE OR SKILL?
	 Introduction
	 Legal Background
	 Empirical Approach
	 Player-vs-Player Approach
	 Non-parametric Tests

	 The Data
	 DraftKings Price Data
	 Teammate and Opposing Player Ability
	 Player Experience, Injury Status, and Weather Conditions
	 Contest and Usage Data

	 Player Pricing Results
	 Player Experience, Weather, and Injury Results
	 Team and Opponent Ability Results
	 Splitting Results By Year
	 Choosing Positions In The Flex Spot
	 Usage Analysis

	 Contest Scoring Distribution Results
	 Tests For Stochastic Dominance
	 Tests For Modality

	 Summary And Conclusions

	DOES BASEBALL ARBITRATION PRIORITIZE SKILL SETS DIFFERENTLY THAN FREE AGENCY? A FRONTIER ESTIMATION APPROACH
	 Introduction
	 The Arbitration Process
	 Data and Methodology
	 Inputs and Outputs
	 The Arbitration Market
	 Relative Contract Position
	 Testing Convexity Assumption
	 Second-Stage Model

	 Results
	 RCP Distribution
	 Second-Stage Model Results
	 Convexity Test

	 Conclusions

	MODELING THE COMPLETE BASEBALL ARBITRATION PROCESS
	 Introduction
	 Arbitration Model
	 Release Decision
	 Arbitration Decision
	 Second Bargaining Period
	 Arbitration Salary Figure Exchange
	 First Bargaining Period
	 Non-tender Decision

	 Simulation Approach
	 Functional Form For Arbitrators Decision
	 Estimating Best Response Functions
	 Potential Negotiation Breakdown

	 Simulation Results
	 Base Model Results
	 Arbitration And Free Agent Market Value
	 Release Fees

	 Conclusions

	REFERENCES
	Chapter 1
	 Covariate Equations
	 Diamonds In The Rough
	 Usage Regression Results
	 Data Sources

	Chapter 2
	 Composite WAR Derivation
	 Offensive Environmental Variable Calculations


