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Abstract

This work develops Bayesian spatio-temporal modeling techniques specifically aimed at studying

several aspects of our motivating applications; to include vector-borne disease incidence and air

pollution levels. A key attribute of the proposed techniques are that they are scalable to extremely

large data sets which consist of spatio-temporally oriented observations. Largely, the scalability of

our modeling strategies is accomplished in two primary ways. First, through the introduction of

carefully constructed latent random variables we are able to develop Markov chain Monte Carlo

(MCMC) sampling algorithms that consist primarily of Gibbs steps. This leads to the fast and

easy updating of the model parameters from common distributions. Second, for the spatio-temporal

aspects of the models, a novel sampling strategy for Gaussian Markov random fields (GRMFs) that

can be easily implemented (in parallel) within MCMC sampling algorithms is used. The performance

of the proposed modeling strategies are demonstrated through extensive numerical studies and are

further used to analyze vector-borne disease data measured on canines throughout the conterminous

United States and PM2.5 levels measured at weather stations throughout the Eastern United States.

In particular, we begin by developing a Poisson regression model that can be used to

forecast the incidence of vector-borne disease throughout a large geographic area. The proposed

model accounts for spatio-temporal dependence through a vector autoregression and is fit through a

Metropolis-Hastings based Markov chain Monte Carlo (MCMC) sampling algorithm. The model is

used to forecast the prevalnce of Lyme disease (Chapter 2) and Anaplasmosis (Chapter 3) in canines

throughout the United States. As a part of these studies we also evaluate the significance of vari-

ous climatic and socio-economic drivers of disease. We then present (Chapter 4) the development

of the chromatic sampler for GMRFs. The chromatic sampler is an MCMC sampling technique

that exploits the Markov property of GMRFs to sample large groups of parameters in parallel. A

greedy algorithm for finding such groups of parameters is presented. The methodology is found
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to be superior, in terms of computational effort, to both full block and single-site updating. For

assessing spatio-temporal trends, we develop (Chapter 5) a binomial regression model with spatially

varying coefficients. This model uses Gaussian predictive processes to estimate spatially varying

coefficients and a conditional autoregressive structure embedded in a vector autoregression to ac-

count for spatio-temporal dependence in the data. The methodology is capable of estimating both

widespread regional and small scale local trends. A data augmentation strategy is used to develop

a Gibbs based MCMC sampling routine. The approach is made computationally feasible through

adopting the chromatic sampler for GMRFs to sample the spatio-temporal random effects. The

model is applied to a dataset consisting of 16 million test results for antibodies to Borrelia burgd-

oferi and used to identify several areas of the United States experiencing increasing Lyme disease

risk. For nonparametric functional estimation, we develop (Chapter 6) a Bayesian multidimensional

trend filter (BMTF). The BMTF is a flexible nonparameteric estimator that extends traditional one

dimensional trend filtering methods to multiple dimensions. The methodology is computationally

scalable to a large support space and the expense of fitting the model is nearly independent of the

number of observations. The methodology involves discretizing the support space and estimating a

multidimensional step function over the discretized support. Two adaptive methods of discretiza-

tion which allows the data to determine the resolution of the resulting function is presented. The

BMTF is then used (Chapter 7) to allow for spatially varying coefficients within a quantile regres-

sion model. A data augmentation strategy is introduced which facilitates the development of a

Gibbs based MCMC sampling routine. This methodology is developed to study various meteorolog-

ical drivers of high levels of PM2.5, where PM2.5 is a particularly hazardous form of air pollution

consisting of particles less than 2.5 micrometers in diameter.
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Chapter 1

Introduction

Spatial data arise in a variety of applications, including epidemiology, environmental science, and

ecology. Spatial data consist primarily of two types: areal and point process. Areal data occur when

observations are pooled over a spatial unit, such as when the total number of cases of a disease are

reported at a county or state level. Point process data consists of observation(s) directly associated

with a particular point in space, such as the latitude-longitude or the street address. In recent years,

a variety of techniques for analyzing both types of these data have been developed. As the size of

the typical spatial data set continues to grow over time, much of the research in spatial statistics

focuses on developing computationally scalable methodologies. The Bayesian paradigm has proven

to be especially useful for the development of these scalable methodologies.

One of the most flexible and widely used spatial modeling tools for point process data is the

Gaussian process (GP). As a special case of a stochastic process, a Gaussian process has the property

that every finite collection (taken in say space or time) of realizations obeys a multivariate normal

distribution. In general, GPs are governed by a mean and covariance function. The covariance

between two locations is typically a function of the distance between them, and a variety of different

covariance functions have been explored. For more on Gaussian processes, see Cressie [1993]. For

an overview of recent developments and extension of Gaussian processes, see Gelfand and Schliep

[2016] and Heaton et al. [2017b].

Gaussian process models have been extended in many ways. Palacios and Steel [2006]

develop a similar process for t-distributions. Zhang and El-Shaarawi [2009] develop a skew Gaussian

process to allow for differing behavior in the left and right tails of the distribution. Lum and
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Gelfand [2012] extend Gaussian processes to the quantile regression context via the asymmetric

Laplace distribution. Banerjee et al. [2003] and Banerjee and Gelfand [2003] develop methods for

quantifying the degree of smoothness of Gaussian process realizations.

One drawback to Gaussian process models is that the dimension of the associated multivari-

ate normal distribution is equal to the number of observations. Furthermore, the covariance matrix

of this distribution is dense, making GPs computationally expensive when the number of observa-

tions is large. A number of techniques have been developed to address this problem. One of the more

commonly used techniques is the Gaussian predictive process (GPP), which reduces the dimension

of the problem by defining a parent process at a set of knot locations. Estimation is performed at

the knot locations and the process is interpolated to the observation locations via kriging. As the

number of knots is typically much smaller than the number of observation locations, this results in

significant computational savings. For more on Gaussian predictive processes, see Banerjee et al.

[2008]. Another dimension reduction technique is the nearest neighbor Gaussian process model. In

this model, the full conditional distribution of the random variable associated with each location

is assumed to depend only on a subset of the other locations (the nearest neighbors). This results

in a sparse covariance matrix for the joint distribution. For more on nearest neighbor Gaussian

processes, see Datta et al. [2016b]. Covariance tapering [Furrer et al., 2006] makes use of the fact

the covariance between two locations approaches 0 as the distance between the locations increases.

Covariance tapering assumes a compact support which creates a sparse covariance matrix for the

joint distribution.

In contrast, Gaussian Markov random fields (GMRFs) are one of the most frequently used

techniques for modeling areal data, with conditional autoregressive (CAR) models being the most

commonly used. GMRFs are multivariate Gaussian random vectors defined via sparse precision

matrices which induce conditional independence properties among the components of the random

vector. For more on GMRF’s see Rue and Held [2005b]. CAR models are GMRF’s whose precision

matrix is based on the spatial structure of the data. For example, CAR models typically specify

that two locations are conditionally independent if and only if they are not adjacent to each other

spatially. For more on CAR models, see Banerjee et al. [2014a]. A number of extensions to GMRFs

and CAR models have been developed in recent years. One extension to the original CAR model is

the Besag-York-Mollie (BYM) model, which combines a CAR model with a set of independent spatial

random effects. See Besag et al. [1991a] for more on Besag-York-Mollie models. Rue and Tjemland
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[2002], Song et al. [2008], and Lindgren et al. [2011b] study the relationship between GMRF’s and

Gaussian processes. Brezger et al. [2007] and Yue and Speckman [2010] extend GMRF’s to allow

for varying degrees of smoothness. Brown et al. [2017a] study CAR models with neighborhood

structures other than those based on physical adjacency.

Spatio-temporal data arises in a variety of applications, including meteorology, the social

sciences, and disease forecasting. Modeling the temporal component in these data can be done in a

variety of ways, most of which consist of combining a spatial method such as a CAR or BYM model

with a technique from time series analysis, such as an autoregressive structure, moving average

model, random walk, or spline-based method. For example, Knorr-Held and Besag [1998] combine

a CAR model with a random walk in time, while MacNab and Dean [2001] combine a CAR model

with a spline-based temporal structure. Sometimes, separate spatial structures are fit for each time

point, such as in Waller et al. [1997b] and Knorr-Held and Besag [1998] who fit a BYM model at each

time point. Anderson and Ryan [2017] provide a review and comparison of different spatio-temporal

modeling techniques.

Spatio-temporal techniques are frequently used for disease mapping and forecasting. Waller

et al. [1997b] provide a general Bayesian framework for disease mapping that allows for spatio-

temporal interaction. Knorr-Held and Besag [1998] present a Bayesian model for mapping lung

cancer risk with an additive spatio-temporal structure. Martinez-Beneito et al. [2008] combine CAR

spatial structures with temporal autogregressive structures. Johnson et al. [2017] use heteroskedas-

tic Gaussian processes to forecast dengue fever. Bhatt et al. [2017] use a Gaussian process stacked

generalization to develop a disease mapping model based on a GP with a nonlinear mean function.

Knorr-Held and Raer [2000] develop a Bayesian method for identifying geographic clusters of in-

creasing disease risk. Anderson et al. [2014] develops a two-stage Bayesian method for identifying

clusters of high disease risk, in which clusters are first identified using a hierarchical clustering algo-

rithm, and then separate models are fit to each cluster. Anderson and Ryan [2017] compare several

different spatio-temporal models for disease mapping.

Trend filtering, popularized by Hodrick and Prescott [1997], is a commonly used technique

for the analysis of time series data. Trend filtering estimates the underlying trend in the data by

smoothing out the effects of noise or seasonal cycles. Trend filters penalize the kth order derivatives

over the observed time points. There are many variants on trend filtering. The original method,

Hodrick-Prescott trend filtering, penalizes the squared backwards finite difference approximation
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to the second derivative of the estimated trend function. Seung-Jean et al. [2009] propose another

widely used variant of trend filtering, which uses an l1 penalty to create a piecewise linear estimator.

Tibshirani [2014] connects Seung-Jean et al. [2009]’s l1 trend filter to smoothing splines and locally

adaptive regression splines and demonstrates that the l1 trend filtering estimate will converge to

the true trend function if the correct tuning parameter is used. An efficient algorithm for fitting

trend filters to data is developed by Ramdas and J. Tibshirani [2014]. Several Bayesian trend filters

have recently been developed, including Faulkner and Minin [2018] and Roualdes [2015]. Both these

methods are based on shrinkage priors. There have been a few attempts to extend trend filtering

to two or more dimensions. For example, Seung-Jean et al. [2009] propose a straightforward two

dimensional extension of their one-dimensional `1 trend filter. However this extension requires data

to be collected on a regular grid, which limits its usefulness.

The remainder of this work is organized as follows. First, we develop a Bayesian spatio-

temporal model for disease forecasting and apply it to Lyme disease (Chapter 2) and Anaplasmosis

(Chapter 3) data collected throughout the conterminous United States. We then develop (Chapter

4) the chromatic sampler for Gaussian Markov random fields, a fast MCMC sampling strategy that

relies on parallel updating. Making use of the chromatic sampler, a ‘Bayesian model with spatially

varying coefficients for assessing trends in disease risk is proposed (Chapter 5). Finally, a novel

Bayesian multidimensional trend filtering method is proposed (Chapter 6) and used to develop

(Chapter 7) a varying coefficient quantile regression model designed to study the spatially oriented

effects of various meteorological drivers on high air pollution levels. We then conclude (Chapter 8)

with a summary discussion and a brief overview of potential topics for future work.
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Chapter 2

A Bayesian Spatio-Temporal

Model for Forecasting the

Prevalence of Antibodies to

Borrelia burgdorferi, Causative

Agent of Lyme Disease, in

Domestic Dogs within the

Contiguous United States

2.1 Introduction

Lyme disease, the most common zoonotic tick-borne disease in the United States and Europe Mead

[2015], is caused by bacterial spirochetes from the Borrelia burgdorferi sensu lato complex, and is

transmitted by ticks in the genus Ixodes Stanek et al. [2012], Steere et al. [2004]. Borrelia burgdorferi
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can infect and cause acute and/or chronic Lyme disease in both humans and dogs. Clinically, there

are similarities in disease presentation, and diagnosis and treatment follow similar guidelines. In

2014, the Centers for Disease Control and Prevention (CDC) reported 30,000 confirmed human

Lyme disease cases, with an estimated 329,000 additional probable cases based on medical claims

information from a large insurance database Nelson et al. [2015], Hinckley et al. [2014]. The Com-

panion Animal Parasite Council (CAPC) reported 250,880 dogs, out of 4 million dogs tested, were

positive for antibodies to B. burgdorferi in 2015 RNC [2012-current]. While the cost of Lyme disease

diagnosis and treatment in dogs is not documented, the cost to the US healthcare system for care

of humans with Lyme disease is substantial: treatment of Lyme disease and post-treatment Lyme

disease syndrome (PTLDS) cost between $712 million and $1.3 billion annually Adrion et al. [2015].

The incidence of disease has been increasing steadily over the last decade McNabb et al. [2007], and

as the number of cases increase, the economic impact of Lyme disease is expected to increase as well.

Clinical Lyme disease manifests similarly in people and dogs, with infection most commonly

causing transient fever, anorexia, and arthritis Wormser et al. [2006], Littman et al. [2006]. Early

erythema migrans lesions have been observed in up to 75% of human patients Steere et al. [2003a], but

are no longer considered pathognomonic for Lyme disease Wormser et al. [2006], Steere et al. [2003a].

Chronic disseminated disease in humans may lead to musculoskeletal, neurologic, dermatologic,

and rarely cardiac disease Cohn et al. [2012], Costello et al. [2009], Arvikar and Steere [2015],

Thompson et al. [2009], Bachur et al. [2015]. Chronic disease in dogs is more often associated with

arthropathy but case reports of renal, neurologic, cardiac, and dermatologic disease exist Littman

et al. [2006], Little et al. [2010b], Detmer et al. [2016]. Time to the onset of disease after infection,

the incubation period, differs between dogs and humans. Dogs have been reported to have an

extended two to five month incubation period before becoming symptomatic Littman et al. [2006],

in contrast to three to 30 days in humans Arvikar and Steere [2015]. The first signs of clinical

disease in dogs are non-specific, including fever, general malaise, lameness, and swelling of local

lymph nodes. These symptoms are likely to be overlooked by dog owners because they are transient,

lasting only a few days Krupka and Straubinger [2010]. Detecting the later stages of disease require

recognition of pain, however, a standardized protocol for pain assessment in veterinary species is

lacking Wiseman-Orr et al. [2004], Mathews et al. [2014], Benito et al. [2013] and mainly relies on dog

owners to report disease symptoms. The assessment of pain in dogs can be difficult as they cannot

self-report and is often reported by the owner as lethargy, decreased activity, or difficulty getting
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up, walking, or navigating stairs. It is often not until the dogs exhibit the characteristic shifting

leg lameness several months after infection that owners note any abnormalities. Finally, Lyme

disease is most commonly diagnosed by measurement of antibodies specific for B. burgdorferi (termed

seropositivity). In humans, seropositivity is assessed in a two-step process involving an enzyme-linked

immunosorbent assay (ELISA) and Western blot analysis of serum Branda et al. [2010], Lipsett et al.

[2015]. Veterinary wellness exams commonly include annual screening for exposure to B.burdgorferi,

as well as Ehrlichia spp., Anaplasma spp., and Dirofilaria immitis (etiologic agent of Heartworm

disease) using a rapid, in-house ELISA platform (SNAPr3Dxr, SNAPr4Dxr and SNAPr4Dxr

Plus, IDEXX Laboratories, Inc.). In this point-of-care assay, seropositivity against B.burgdorferi

is established using the late phase C6 antigen that is indicative of disseminated disease Stillman

et al. [2014], Bacon et al. [2003], Embers et al. [2016], Nyman et al. [2006], Wagner et al. [2012a].

Specifically in dogs, seroconversion to B. burgdorferi antigen C6 can occur as early as 3-4 weeks post-

infection when bacterial burden is high Wagner et al. [2012a]. Multiplex assays suggest antibodies to

OspC, OspF, and C6 are characteristic of the intermediate stage of infection (at least 3-4 weeks post-

infection), while antibodies to OspF and C6, in the absence of antibodies to OspC, are suggestive of

late infection stage Wagner et al. [2012a]. Data from point-of-care tests for C6 seropositivity have

been used to develop distribution maps of B. burgdorferi seroprevalence in domestic dogs throughout

the United States Little et al. [2014], Bowman et al. [2009].

In the United States, B. burgdorferi is transmitted by Ixodes scapularis on the East coast

and Midwest and Ixodes pacificus on the West coast, while a variety of wildlife species (e.g., mice,

squirrels, shrews) serve as reservoirs Mead [2015]. Although not infected with B. burgdorferi, deer

and migratory birds play an important role in maintaining and transporting tick vectors Scott

[2016], Madhav et al. [2004]. The risk of Lyme disease exposure is therefore related to abundance

of a suitable reservoir and exposure to infected ticks. Overall, 96% of human Lyme disease cases

reported by the CDC are from 14 states (Connecticut, Delaware, Maine, Massachusetts, Maryland,

Minnesota, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, Virginia,

and Wisconsin) Adams et al. [2014]. Prevalence of exposure in dogs is similarly high in these states,

although the range is expanded beyond the core areas of human cases within these states and

into neighboring states such as Ohio, West Virginia and North Dakota RNC [2012-current]. While

dogs show no age-specific epidemiological risk profile, children 5-9 years of age are at highest risk

of Lyme disease, followed by adults aged 45-59 years RNC [2015]. This bimodal distribution of
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human risk is attributed to increased contact with the environment and exposure to infected ticks.

Recent assessment of vector distribution identified a 45% increase in Ixodes spp. range over the

last 18 years Eisen et al. [2016a], with I. scapularis firmly established in twice as many counties

in the North-Central and Northeastern US as previously believed. Importantly, the Northeastern

and North-Central range of I. scapularis appears to be merging in the Ohio River Valley, forming a

contiguous range of potential vector establishment.

The dynamic change in Ixodes spp. ranges suggests ongoing monitoring of these medically

important vectors, while important, will be challenging and economically unfeasible on an annual

basis. Understanding and forecasting spatial and temporal patterns of risk of exposure to B. burgdor-

feri is thus critical for targeting use of vaccines, preventives measures, and educational campaigns

to best protect humans and veterinary species. Building on previously reported risk assessment and

surveillance tools for vector-borne disease Bowman et al. [2016b], Liu et al. [2016], we now report

on a novel predictive model of canine B. burgdorferi exposure using a Bayesian approach to factor

assessment and forecasting. As previously described, Bayesian modeling offers a number of advan-

tages over classical approaches Gelman et al. [2014], Harrison and West [1999]. The probabilistic

likelihood-based methods are highly flexible and are able to adapt to data availability constraints.

These methods are also capable of assessing predictive significance of various covariate factors. The

use of data augmentation Markov chain Monte Carlo (MCMC) methods to sample from a posterior

distribution provides the opportunity to treat missing data, such as absence of serologic data from

certain counties, as latent (missing) variables, even in large populations Besag and Mondal [2013],

Hosking et al. [2008]. Finally, a forecast of future seroprevalence, conditional on the past history of

data, are easily constructed. The Bayesian methods capably quantify uncertainty both in terms of

the potential stochasticity of the disease process and the model parameter estimates.

In what follows, eight factors previously purported to influence canine B. burgdorferi sero-

prevalence will be examined: annual precipitation, annual relative humidity, annual temperature,

elevation, percentage forest coverage, percentage surface water coverage, population density, and me-

dian household income Stich et al. [2014]. After assessment, a predictive model using the significant

factors is developed, and annual B. burgdorferi seroprevalence forecasts are constructed. A compar-

ison of actual versus predicted 2015 prevalence is conducted. Intended uses of annual B. burgdorferi

seroprevalence forecasts for veterinary medicine include: 1) provision of an evidence-based tool used

to encourage the year-round use of tick preventive to reduce exposure, and 2) promotion of annual
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use of diagnostic testing in areas where the disease is emerging. Finally, based on previous work

using canine Lyme disease prevalence to assess human disease risk Little et al. [2010b], Mead et al.

[2011a], we highlight the use of canine disease forecast maps to inform risk for human disease in an

effort to reduce the burden of human disease on the US healthcare system.

2.2 Materials and Methods

2.2.1 Data Structure

The observed data consist of test results from 11,937,925 B. burgdorferi ELISAs performed from

2011 to 2015 in the contiguous United States. The test detects antibodies produced in response to

the C6 peptide found on the outer membrane protein, VlsE, of B. burgdorferi during infection Levy

et al. [2008]. Detection of antibodies does not indicate an active infection, as they will persist over

time, even after the infection is resolved. Nor is this a quantitative test, so the time since infection is

not known. The seroprevalence reported is a representation of the prevalence of dogs that have been

exposed to B. burgdorferi, not the prevalence of clinically ill dogs. It is also important to note that

the C6 ELISA does not detect antibodies to current vaccines Ting Liang et al. [2000], so vaccinated

dogs will not test positive unless the vaccine has failed and the dogs experienced exposure resulting

in disseminated infection. The data were provided by a commercial diagnostic laboratory available

to veterinary clinics within the study area, IDEXX Laboratories, Inc., and included the county in

which the testing clinic resides and the month in which the test was conducted RNI. The submitted

samples represent a population of dogs provided veterinary care. No information was available on

demographic details of the individuals tested, such as age, sex or breed of dog, nor the travel or

testing history of the dog, or the reason why the tests were conducted. Overall, there were 759,103

positive tests, for an empirical prevalence of 0.0635. For the purposes of fitting the model, the data

were aggregated by county and by year. Table 2.1 shows the eight considered factors thought to be

associated with B. burgdorferi prevalence, along with the time period for which data on each factor

is available and the level of geographic aggregation (county, state, etc.). For further discussion,

including the source of each factor, see Stich et al. [2014], Wang et al. [2014a].

An empirical estimate of the prevalence within each county was constructed in the usual

fashion after aggregating the serologic data over the available five year time span; i.e., these estimates

were obtained as the proportion of positive tests observed within each reporting county. Figures 2.1
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Factors and Notation Data period Scale

Annual temperature: Xs,1(t) 1895 - 2015 Climate Division
Annual precipitation: Xs,2(t) 1895 - 2015 Climate Division
Annual relative humidity: Xs,3(t) 2006 - 2015 Climate Division
Elevation: Xs,4(t) 2012 County
Percentage forest coverage: Xs,5(t) 2012 County
Percentage surface water coverage: Xs,6(t) 2010 County
Population density: Xs,7(t) 2011-2014 County
Median household income: Xs,8(t) 1997-2014 County

Table 2.1: Factors purported to influence B. burgdorferi seroprevalence.

Note, Xs,k(t) is used to denote the value of the kth factor in the sth county during the tth year.

and 2.2 display the empirical prevalences and the total number of tests, respectively, within each

reporting county. From Figure 2.1, one will note that there appears to be a great deal of positive

spatial correlation. Moreover, in studies such as these temporal dependence is expected in the data.

Thus, to provide an accurate analysis these spatio-temporal dependencies have to be accounted for

in the model. Further, from Figure 2.2, one will note that some counties report relatively small

number of tests, thus the interpretation of the aforementioned empirical estimates may be slightly

misleading, if one does not consider this effect. For example, a county reporting only 20 test results,

with 1 being positive, results in an empirical estimate of 5%, where as the same empirical estimate

would be obtained for a county reporting 2000 test results, with 100 being positive. The salient

point, more faith should be placed in the latter estimate, when compared to the former, since it is

derived from more information.
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Figure 2.1: County level raw prevalences for B. burgdorferi antibodies in domestic dogs aggregated

from 2011-2015.
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Figure 2.2: Total number of serologic test results for B. burgdorferi antibodies in domestic dogs

collected within each county during the years of 2011-2015.

In order to construct a baseline B. burgdorferi antibody prevalence map, the empirical preva-

lences displayed in Figure 2.1 were subjected to an ensemble of spatial smoothing techniques. First,

weighted head-banging was applied to the empirical prevalences, to acknowledge spatial correlation

and diminish the influence of counties which reported only a few tests. For example, there were

57,785 test results reported in South Carolina during the year of 2015, of which 606 were positive,

translating to an empirical prevalence estimate of 1%. Further, in Colleton county, South Carolina,

only 13 test results were reported, of which 3 were positive, translating to an empirical prevalence

estimate of 23%. Obviously, it is inappropriate to believe that the true prevalence is anywhere near

as high as the empirical estimate tends to suggest in Colleton county, and that this effect would

have been mitigated if more serologic data were available in this region. In the absence of addi-

tional serologic data, weighted head-banging provides a robust prevalence estimate at a given spatial

location by combining over information that is available in near by areas, thus, for the most part

circumventing the small sample size issue. This smoothing procedure used 45 triples and weighted

the prevalence of each county proportional to the number of tests from that county. For further
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details on weighted head-banging and its uses within the context of disease mapping see Wang et al.

[2014a]. Second, in order to render a spatially smooth and complete map Kriging was implemented

to interpolate the prevalences of counties not reporting data. Kriging was implemented in ArcGIS

using the default parameter settings Environmental Systems Research Institute [2016]. Figure 2.3

provides the baseline B. burgdorferi antibody prevalence map resulting from this process, and should

be thought of as a baseline for B. burgdorferi prevalence in domestic dogs within the contiguous

United States. Tincubation conditions and hat is, this figure depicts the general spatial trend of B.

burgdorferi prevalence in domestic dogs, and will serve as a device which allows one to assess the

performance of Bayesian spatio-temporal model developed in the subsequent section, with respect

to capturing these trends.
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0.5%-1%
1%-2.5%
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10%<

Figure 2.3: Head-banged baseline map showing B. burgdorferi antibody prevalences in domestic

dogs for an average year during 2011-2015.
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2.2.2 Statistical Model

This section describes the statistical model and the techniques used to fit it. The purpose of the

model is twofold: to identify environmental and societal risk factors which are significantly associated

with the prevalence of B. burgdorferi antibodies in dogs and to predict future trends in the prevalence

of B. burgdorferi antibodies in dogs.

Let Ys(t) and ns(t) denote the number of positive and total tests conducted in county s

during year t, respectively, for counties s ∈ {1, . . . , S} and years t ∈ {1, . . . , T}. It is important

to note that these values are the raw counts available in the data set; i.e., they are not the post

smoothed values resulting from the construction of the baseline map. The available serologic data

exhibits both positive spatial and temporal correlation; that is, prevalences in adjacent counties

or in successive years tend to have similar values. Thus, to account for these effects this analysis

considers using a spatio-temporal model to analyze these data; for additional information about

spatial and spatio-temporal models, see Banerjee et al. [2014b], Besag [1974b], Lopez-Quilez and

Munoz [2009], Martinez-Beneito et al. [2008], Nobre et al. [2005], Xia and Carlin [1998], Cressie and

Wikle [2011b]. In particular, this work uses a Bayesian hierarchical model, which models spatio-

temporal dependence through the use of random effects. The details of the distribution of these

random effects are described in totality below. In the considered model, the number of positive

tests were assumed to follow a Poisson distribution, which is a common choice for modeling count

data Lopez-Quilez and Munoz [2009], Martinez-Beneito et al. [2008], Nobre et al. [2005], Xia and

Carlin [1998]. Under this specification, the number of tests which are serologically positive for B.

burgdorferi antibodies in county s during year t (i.e., Ys(t)) is assumed to be distributed as

Ys(t)|ns(t), ps(t) ∼ Poisson {ns(t)ps(t)} , (2.1)

log {ps(t)} = β0 +

p∑
k=1

βkXs,k(t) + ξs(t), (2.2)

where log(·) denotes the natural logarithm, ′ denotes the transpose of a matrix (or vector), ∼ reads

“has the distributional type,” and | reads “given.” Thus, Eq (2.1) reads “Ys(t) given ns(t) and ps(t)

follows a Poisson distribution with mean ns(t)ps(t).” Furthermore, Xs(t) = (Xs,1(t), . . . , Xs,p(t))
′ is

a vector of covariate information for county s at time t, β = (β0, . . . , βp)
′

is the corresponding vector

of regression coefficients, and ps(t) is interpreted as the prevalence of B. burgdorferi antibodies in
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dogs residing in county s at time t. The random effects, ξs(t), are used to account for the spatio-

temporal dependence, so that the positive test counts (i.e., Ys(t)’s) are conditionally independent of

each other given the total number of tests, the factor information, and the random effects. Note, this

does not imply that the Ys(t)’s are independent across varying space s or time t, only that they are

conditionally independent once the spatio-temporal correlation is accounted for through the random

effects and the other covariate information.

Eq (2.2) specifies the relationship between the prevalence ps(t) and the covariate information

Xs(t) and the random effect ξs(t). This specification is standard for Poisson regression models Lopez-

Quilez and Munoz [2009], Martinez-Beneito et al. [2008], Nobre et al. [2005], Xia and Carlin [1998].

In general, different spatio-temporal models specify different structures for the {ξs(t)}. By far, one

of the most popular models for areal data is the conditional autoregresive (CAR) model, and it is

the one used here Banerjee et al. [2014b]. To further expound on how the CAR model is used in

this analysis, it is noted that both spatial and temporal correlation is accounted for through the

following multivariate autoregressive model

ξ1 = φ1, (2.3)

ξt = ϕξt−1 + φt, for t = 2, . . . , T, (2.4)

φt ∼ CAR(τ2; ρ), for t = 1, . . . , T, (2.5)

where ξt = (ξ1(t), . . . , ξS(t))
′

and φt = (φ1(t), . . . , φS(t))
′

are random vectors. Eq (2.5) specifies

that φt are independent and identically distributed random vectors whose distribution follows a

CAR model Besag [1974b], Banerjee et al. [2014b]. From Eq (2.4) it is apparent how the model

accounts for temporal correlation. That is, in the multivariate autoregressive model depicted above,

time-dependence is modeled through a temporal autoregressive model of order one (AR(1)), which

is a staple among time series analysis Brockwell and Davis [2002b]. Eq (2.4) relates year t to year

t−1. The parameter ϕ is the temporal correlation between consecutive years and lies within (−1, 1).

This ensures a causal and stationary solution to the time series model Brockwell and Davis [2002b].

To examine the treatment of spatial correlation, let φ = (φ1, ..., φS)′ follow a CAR model,

where for the ease of exposition the dependence on t has been suppressed, and it is noted that the

subscripts correspond to the S spatial locations. There are several different kinds of CAR models.

Usually, CAR models are defined by assigning a univariate distribution for each φs, whose mean
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and variance depends on the spatial relationship between location s and the other locations. This

approach uses the CAR model proposed in Besag [1974b], which specifies the conditional distribution

for each φs to be

φs | φ−s, τ2, ρ,W ∼ N

(
ρ

∑
s′ 6=s ws,s′φs′∑
s′ 6=s ws,s′

,
τ2∑

s′ 6=s ws,s′

)
, for s = 1, . . . , S. (2.6)

Here, φ−s = (φ1, . . . , φs−1, φs+1, . . . , φS)
′

is an S − 1 dimensional vector that includes every φs′

except φs. N(µ, σ2) denotes a normal distribution with mean µ and variance σ2. The S ×S matrix

W is defined by W = {ws,s′}, where ws,s′ = 1 if the s′th and sth counties are adjacent and ws,s′ = 0

otherwise.

The parameter τ2 in Eq (3.4) scales the variance structure. Moreover, the conditional

variance of φs, given φ−s, is inversely proportional to the number of counties bordering it. That is,

the φs for counties with more neighbors have a smaller overall variance. This agrees with intuition; if

county s has many neighbors, the model has more information to use in estimating φs, and thus the

variance of φs should be smaller. In Eq (3.4), ρ ∈ [0, 1] controls the correlation between bordering

counties. The conditional mean of φs, given φ−s, is the average of the φs′ of the neighboring counties

weighted by ρ. Thus, as ρ increases so does the degree of dependence between φs and the φs′ of the

neighboring counties.

Using Eq (3.4), it can be shown that the joint distribution of φ is given by the following

multivariate normal distribution

φ ∼ N(0,Γ), Γ = τ2 (D− ρW)
−1
,

where W is the adjacency matrix described above and D is an S × S diagonal matrix whose sth

diagonal element is the number of neighboring counties for county s.

The model is fit using Bayesian Markov Chain Monte Carlo (MCMC) techniques, with

posterior samples being used to derive point estimates of the parameters (β, ϕ, ρ, and τ2). Thus, to
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complete the Bayesian model formulation, the following prior distributions are specified

βk ∼ N(0, 1000), for k = 0, . . . , p; (2.7)

ϕ ∼ Uniform(−1, 1); (2.8)

ρ ∼ Uniform(0, 1); (2.9)

τ−2 ∼ Gamma(0.5, 0.05). (2.10)

In particular, a diffuse prior distribution is placed on βk, for k = 0, ..., p. This specification permits

the prior to exert little, if any, influence on the posterior distribution, thus allowing the data to

primarily drive the analysis and subsequently the conclusions. Uninformative (flat) prior distribu-

tions are assigned for ϕ and ρ, for the same reasons. Here “uninformative” means that all possible

values of the parameter have equal probability under the prior distribution. The prior for τ−2 is

chosen as a conjugate prior. Here “conjugate” means that the posterior and prior distributions

are from the same distributional family, which simplifies computation. A posterior sampling al-

gorithm was developed, in the usual fashion, to sample all model parameters and random effects

from the posterior distributions. This MCMC sampling algorithm uses a combination of Gibbs and

Metropolis-Hastings steps. To complete model fitting, Ys(t) for counties not reporting test results

were treated as latent variables, and were sampled along with the model parameters. The posterior

sampling algorithm was conducted using code written in R and C++. For more information about

Bayesian models and MCMC methods, see Gelman et al. [2014].

2.3 Results

2.3.1 Model Assessment

This analysis first considered a full model consisting of all 8 climate, geographic, and societal factors.

After fitting the full model, credible intervals were computed. Credible intervals are the Bayesian

counterpart to frequentist confidence intervals. Table 2.2 provides the point estimates (i.e., the

median of the posterior samples) of the regression coefficeints along with 98.75% highest posterior

density (HPD) credible intervals for each of the 8 coefficients. These intervals reflect a 90% familywise

error rate using a standard Bonferroni correction for multiple comparison. For more information
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about Bayesian credible and HPD intervals, see Gelman et al. [2014].

Factor Estimate 98.75 % HPD Interval

Percentage forest coverage 4.719 [3.535, 5.828]
Percentage surface water coverage 0.518 [0.230, 0.858]
Elevation 0.058 [0.025, 0.089]
Annual relative humidity 0.005 [-0.001, 0.012]
Annual temperature -0.037 [-0.053, -0.020]
Annual precipitation 0.011 [-0.048, 0.072]
Population density -3.442e-5 [-5.545e-5, -1.320e-5]
Median household income 0.001 [-0.002, 0.004]

Table 2.2: Parameter estimates for the full model

Table 2.2 indicates that annual relative humidity, annual precipitation, and median house-

hold income are not significant predictors of B. burgdorferi seroprevalence because their credible

intervals contain 0. Removing combinations of these predictors results in 7 potential reduced mod-

els. Each of these potential models was fit, and the only model to have all significant predictors was

the model which excluded all three of the predictors listed above. This model was selected as the

reduced model, and the results for this model are summarized in Table 2.3. The posterior medians

of the remaining model parameters are ϕ = 0.9404, ρ = 0.9997, and τ2 = 0.5958, and these point

estimates validate the claim of strong positive spatial and temporal dependence.

Factor Estimate 95 % HPD Interval

Percentage forest coverage 4.698 [3.781, 5.629]
Percentage surface water coverage 0.501 [0.244, 0.788]
Elevation 0.052 [0.026, 0.085]
Annual temperature -0.039 [ -0.053, -0.018]
Population density -3.610e-5 [-5.283e-5, -2.059e-5]

Table 2.3: Parameter estimates for the reduced model.

Most of the predictors in the reduced model behave intuitively. The coefficients for percent

forest and water coverage are positive, and the coefficient for population density is negative, as

one might expect. Note that the coefficient of elevation is positive and the coefficient of annual

temperature is negative, which may appear to be counterintuitive, for further discussion see the

Discussion section. In order to assess how well the Bayesian spatio-temporal model explains the

data, the correlation between the baseline and model estimated prevalences was computed. In

particular, a baseline estimate for each county was extracted from Figure 2.3, and is denoted as p̃s,

for s = 1, ..., S. A model based estimate for each county was then constructed by averaging over

18



the 5 yearly estimates available from the fitted (reduced) model; i.e., the model estimate for the sth

county is given by p̂s = 5−1
∑5
t=1 p̂s(t), where p̂s(t) is the prevalence estimate resulting from the

fitted (reduced) model for the sth county during the tth year. Let P̃ and P̂ denote the collection of

baseline and model based estimates, respectively, after removing counties not reporting data. The

correlation between these two sets was 0.894 indicating that the Bayesian spatio-temporal model

provides a good fit to these data.

2.3.2 Forecasting

Under the Bayesian spatio-temporal model, forecasting B. burgdorferi seroprevalence in domestic

dogs is tantamount to forecasting the factor levels and the spatio-temporal random effects. In this

section, the methods used to forecast these variables are elucidated. First, since the primary goal

of this work is to provide for a one year ahead forecast, it is reaonable to assume that certain risk

factors are static; i.e., the current years value can be used as the forecasted value since expected

changes are negligible. These variables include, forestation, water coverage, and elevation. Thus,

the risk factors that need to be forecasted for each county are annual temperature and population

density.

To forecast annual temperature, historical temperature records were collected from 1895 to

2015 for each county and modeled as an AR(1) model. The AR(1) model for an annual temperature

series {Ft} (previously denoted by {Xs,1(t)} for county s and time t) adheres to the following

difference equation

Ft = δ + γFt−1 + ωt,

where {ωt} is zero mean white noise. Standard statistical software packages (e.g., R and SAS) can

be used to easily fit AR(1) models. Let δ̂ and γ̂ denote estimates of δ and γ, respectively, and using

these estimates a prediction of the annual temperature at year t+ 1 from temperatures from year 1

to year t is obtained as

F̂t+1 = δ̂ + γ̂Ft.

In the proposed forecasting method, F̂t+1 is used as next year’s annual temperature value. For more

information, see Harrison and West [1999].

Forecasting the county population density for next year requires the county areas and their

recent population counts. The US Census provides reliable county population counts for 2010 and
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estimated state populations for the years of 1969-2014. A simple linear regression model, with time

being the independent variable, was fitted to this state level population data. From this model the

county population can be forecasted by first predicting the state population and then partitioning

this value into the counties within the state at a proportion that agrees with 2010 Census. The

forecasted population density is then obtained by dividing the county population by the county’s

area.

To forecast the spatial and temporal random effects a year in advance, Eq (2.4) is used. In

particular, since the φt’s are independent and identically distributed over various years, given values

of τ2 and ρ (available from the posterior samples), φt+1 is generated randomly from the multivariate

normal distribution N(0, τ2(D − ρW)−1). Then ξt+1 is set to ξt+1 = ϕξt + φt+1. This process is

repeated for each pair of ρ and τ2 available from the posterior sample, thus yielding a sample of the

next year’s random effects, for further details see Gelman et al. [2014], Harrison and West [1999].

In order to assess the fidelity of the proposed forecasting methods, the 2015 test and factor

data were removed and the reduced model was fit to the data collected during the years of 2011-

2014. The methods described above were then implemented to forecast the 2015 prevalence of B.

burgdorferi antibodies in domestic dogs. Figures 2.4 and 2.5 present the observed and forecasted

B. burgdorferi seroprevalences, respectively, for 2015. Further, Figure 2.6 quantifies the localized

predictive capability of the proposed approach by depicting the squared difference between the

observed and forecasted B. burgdorferi seroprevalences for counties reporting more than 25 test

results during 2015. From this figure, one will note that the proposed approach provides an accurate

regional forecast throughout the contiguous United States. Note, counties reporting fewer than

25 tests were excluded for the small sample size issues discussed previously. To provide a global

assessment of the predictive capacity of the proposed forecasting technique, the weighted correlation

(with county weights being set to be the number of tests reported; i.e., ns(t)) between the observed

and forecasted prevalence estimates was computed, after removing counties not reporting data, with

a value of 0.978 being obtained. Thus, this finding tends to suggest that the proposed approach can

be used to accurately forecast future trends in B. burgdorferi seroprevalence within the contiguous

United States. Here the weighted correlation between two sets, say A = {as}Ss=1 and B = {bs}Ss=1,
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is defined as

Corr(A,B) =

∑S
s=1 ws(as − ā)(bs − b̄)√∑S

s=1 ws(as − ā)2
∑S
s=1 ws(bs − b̄)2

(2.11)

where ws denotes the weight assigned to the sth observation and

ā =

∑S
s=1 wsas∑S
s=1 ws

b̄ =

∑S
s=1 wsbs∑S
s=1 ws

.

Note, the purpose of a weighted correlation is identical to that of the usual correlation, with the

exception that it accounts for unequal sample sizes through the weights. Figure 2.7 presents the 2016

forecast of B. burgdorferi prevalence within the contiguous United States, after smoothing (Kriging

with default parameters were used in the software ArcGIS).
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Figure 2.4: Observed B. burgdorferi antibody prevalence in domestic dogs for 2015.
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Figure 2.5: Forecasted B. burgdorferi antibody prevalence in domestic dogs for 2015.
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Figure 2.6: Localized predicitve capacity: squared difference between the observed and forecasted

B. burgdorferi seroprevalences for counties reporting more than 25 test results during 2015.
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Figure 2.7: Forecasted B. burgdorferi antibody prevalence in domestic dogs for 2016.

2.4 Discussion

The objective of this study was to evaluate the space-time patterns and the environmental and

socioeconomic drivers of canine B. burgdorferi prevalence in the contiguous U.S. using a Bayesian

hierarchical modeling approach. Our data were based on serologic testing results for B. burgdorferi

C6 antigen between 2011-2015. Bayesian hierarchical models have advantages over frequentist ap-

proaches for analyzing infectious disease datasets with inherent space-time dependency Hanzlicek

et al. [2016], Bowman et al. [2016b], Raghavan et al. [2014, 2016], such as clusters of cases that may

be linked due to specific environmental drivers. This is particularly relevant for vector-borne disease

as the spatial distribution of most vectors is largely determined by environmental and climatologic

conditions and the presence of suitable reservoir hosts Mead [2015], Nieto et al. [2010], Ogden et al.

[2013, 2014]. As such, we included relevant ecological covariates, where available, in our model to

help explain variability in our aggregated dataset and to strengthen inferences from our Bayesian

spatio-temporal model.
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The majority of the predictors in our reduced model of covariates are biologically relevant.

The coefficients for percent forest and water coverage are positive, and the coefficient for population

density is negative, supporting the established role of vector and vertebrate host ecology in disease

transmission Ogden et al. [2007]. Tick vectors rely on specific environmental and microhabitat

factors for survival while off the host Parham et al. [2015]. The ecology of B. burgdorferi is complex

and involves numerous vertebrate species that may serve different roles such as reservoirs, dilution

hosts, and hosts for the ticks (i.e., white-tailed deer), and all of these are impacted by habitat and

anthropogenic changes Levi et al. [2016]. Interestingly, the coefficient of elevation is positive and

the coefficient of annual temperature is negative, which is counterintuitive to our understanding

of tick ecology and consensus opinion that ticks in the Eastern United States rarely inhabit high

elevations (i.e,. Appalachian Mountains) Nieto et al. [2010], Ogden et al. [2013, 2014]. This apparent

paradox is likely due to the fact that Lyme disease is more prevalent in the Northeastern United

States Adams et al. [2014], which compared with the rest of the country, has a relatively low annual

temperature and relatively high elevation. It is important to remember that the proposed model

relates the mean of the response to the predictors in a linear fashion and is fitted jointly within the

range of the observed data. That is, the relationship between the predictors and the prevalence of

Lyme disease is only valid for predictor levels within the range of the observed predictor values, with

validity declining at the margins. Further, extrapolations to factor levels not in the range of the

considered data set will likely lead to contradictions. Thus the positive coefficient of elevation does

not imply that Lyme disease prevalence will continue to increase at extreme elevations, nor does the

negative coefficient of annual temperature imply that Lyme disease seroprevalence will continue to

increase at extremely low temperatures.

Similar to reported incidence of human Lyme disease Adams et al. [2013], we observe higher

2011-2015 aggregated B. burgdorferi seroprevalence in dogs from Connecticut, Delaware, Maine,

Massachusetts, Maryland, Minnesota, New Hampshire, New Jersey, New York, Pennsylvania, Rhode

Island, Vermont, Virginia, and Wisconsin. However, in contrast, based on data from dogs, we ob-

served an expansion of this endemic range to include Northern California, Southeastern Oregon,

Southwestern Idaho, Eastern Colorado and Northern New Mexico (Figure 2.1). Perhaps most strik-

ing is the recognized expansion of seropositive dogs on the northern border of the contiguous U.S.

along the Canadian border, including North Dakota, and the border of Northern Montana and Idaho.

The westward expansion of canine B. burgdorferi seroprevalence from Minnesota into North Dakota
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mirrors recent reports that Lyme disease is poised to be a significant human public health concern

in North Dakota Stone et al. [2015]. Further, this observation supports and extends recent concern

over northward expansion of B. burgdorferi infected ticks into Canada from the Northeastern and

Midwestern United States Gasmi et al. [2016], Nelder et al. [2014].

From five years of historical diagnostic tests, our data show that a Bayesian model can

capably quantify B. burgdorferi seroprevalence, which ultimately will support qualitative decision-

making and surveillance in disease management and response. When comparing actual to forecasted

B. burgdorferi seroprevalence in 2015, a weighted correlation of 0.978 was achieved, demonstrating

significant predictive skill. Finally, using our predictive forecast model we report forecasted 2016 ca-

nine B. burgdorferi seroprevalence. Of note is the apparent convergence of B. burgdorferi infection of

dogs from the Northeastern and Mid-Central United States in the Great Lakes region, encompassing

Indiana, Ohio, Illinois, Kentucky and Michigan. This observation is supported by recent reports of

encroaching I. scapularis into this region Eisen et al. [2015], and suggests annual testing of dogs in

these states, as well as North Dakota and bordering Canadian provinces is strongly warranted. As an

adjunct to annual testing, year-round use of acaracides in dogs can reduce tick infestation, thereby

reducing the potential for not only B. burgdorferi transmission, but also several other important

canine tick-borne pathogens Spencer et al. [2003], Wengenmayer et al. [2014]. Finally, vaccination

of dogs against Lyme disease to prevent B. burgdorferi infection has been shown to be effective in

controlled experimental infection studies LaFleur et al. [2009], Rhodes et al. [2013], Conlon et al.

[2000], Zoetis [2016] and in protection against natural infection in dogs living in endemic areas Levy

et al. [1993], Levy [2002]. In endemic areas, dogs that are vaccine protocol-compliant are significantly

less likely to become infected with B. burgdorferi Eschner and Mugnai [2015]. Vaccine studies have

concluded that emphasis should be placed on vaccinating dogs at risk for Lyme disease before they

are exposed to infected ticks Levy [2002]. As such, we suggest the forecasted areas with an increased

likelihood of B. burgdorferi transmission outside of the established endemic areas should provide

veterinary practitioners with evidence-based options for recommendation of Lyme disease vaccines

to clients and protection of dogs against emerging disease.

Limitations to this study include selection bias of the canine population. As mentioned

above, samples were submitted for testing by veterinary clinics, and therefore represent dogs under

the care of a veterinarian. This suggests that the data are a conservative estimate of the prevalence

in domestic dogs because dogs at the highest risk of tick exposure would be those that receive no
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veterinary care, those from lower socioeconomic families, or are owned by clients who decline these

additional tests during wellness visits. Additionally, a lack of knowledge about the distribution of

tick-borne pathogens may limit the testing that veterinarians request; however, these tests are often

run during routine heartworm testing so this latter issue is likely a minimal concern. Additional

bias could be introduced through variations by region in the use of the diagnostic tests (i.e. whether

it is used predominately for wellness visits or for cases in which the disease is suspected prior to

testing) or variations by region in the use of reference laboratory services and products. It is also

recognized that travel history is not controlled for and will account for some of the cases outside

endemic regions. Despite these limitations, these data are acquired on a monthly basis RNC [2012-

current], and thus provide a robust and timely source of information about the dynamic change of

canine B. burgdorferi seroprevalence across the contiguous US, and holds promise for longitudinal

studies to better understand the dynamic nature of vector-borne disease over time. There is also

evidence that other tick vectors are involved in sustaining the enzootic cycle of B. burgdorferi ss,

such as Ixodes affinis, Maggi et al. [2010] and so it is important when interpreting these results

to consider the possibility of other vectors of B. burgdorferi. However, I. affinis is believed to be

uncommonly found on dogs and does not feed on humans so its impact is considered to be minimal.

Though the proposed technique could be used to construct long-term forecasts, caution

should be taken. In particular, our approach makes use of forecasted values of the significant factors,

with some factors being assumed to be static throughout time (e.g., forestation and surface water

coverage). This assumption is reasonable in the short-term, but would obviously be problematic over

a much larger time span; e.g., twenty to fifty years. Moreover, in general, when forecasting future

trends one should be cautious of long-term forecasts, due to possible violations of assumed model

forms not apparent in the available data; e.g., changes in population density that may be spatially

variable throughout time. Thus, we promote the use of our approach to provide only short-term

forecasts of spatial trends in B. burgdorferi seroprevalence.

Similar to domestic dogs, spatial risk models for human Lyme disease are needed to address

the rise in human Lyme disease incidence. Ideally, spatial risk models for human Lyme disease would

be based on vector abundance inclusive of pathogen burden Eisen and Eisen [2008], Daniels et al.

[1998]. In comparison to other vector-borne diseases, Lyme disease risk assessment is facilitated by

the observation that B. burgdorferi prevalence in Ixodes spp. from Lyme disease endemic regions

is relatively high Eisen and Eisen [2008], Scott et al. [2016], Hutchinson et al. [2015]. Canine B.
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burgdorferi seroprevalence has been cited as one potential tool for Lyme disease risk assessment in

humans Mead et al. [2011a], Millen et al. [2013a]. As noted by Mead et al. Mead et al. [2011a], canine

B. burgdorferi seroprevalence greater than 5% at the county level was associated with human risk of

Lyme disease Mead et al. [2011a], while less than 1% canine seroprevalence was associated with little

to no risk for human cases of Lyme disease Millen et al. [2013a]. We further this suggestion that the

use of canine B. burgdorferi seropositivity has merit as a risk assessment tool in both endemic and

non-endemic regions. In particular, areas where B. burgdorferi seroprevalence is greater than 1%,

but increases over time, may be an area to focus tick-prevention messages as these areas may be at

an increased risk for human Lyme disease. As such, we believe that with further research into the

relationship between human and canine Lyme disease, canine B. burgdorferi seropositivity has the

potential to function as an early warning system for geographic expansion and emerging infection

risk in humans Little et al. [2010b], and support targeted vector surveillance efforts to monitor

Ixodes spp. B. burgdorferi infection in a cost-effective manner. As the increasing incidence of Lyme

disease continues to put pressure on the United States healthcare system Adrion et al. [2015], the

use of canine B. burgdorferi seroprevalence to ultimately forecast spatial and temporal patterns of

risk of human Lyme disease is a promising tool for targeting public health educational campaigns

and resources for vector surveillance to best protect humans and veterinary species from disease.
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Chapter 3

A Bayesian Spatio-Temporal

Model for Forecasting Anaplasma

Species Seroprevalence in

Domestic Dogs within the

Contiguous United States

3.1 Introduction

Canine anaplasmosis is caused by gram-negative intracellular bacteria of the family Anaplasmataceae

within the order Rickettsiales Dumler et al. [2001]. Anaplasma spp. bacteria are transmitted through

the bite of infected ticks, with different tick species transmitting distinct types of Anaplasma bacte-

ria in different regions of the country. A. phagocytophilum is transmitted by Ixodes scapularis and

I. pacificus and maintained in a vectorreservoir-host system similar to that of Borrelia burgdorferi

(the causative agent of Lyme disease), with the highest canine A. phagocytophilum seroprevalence

reported in the Northeast, upper Midwest and along the west coast of California Qurollo et al.

[2014]. Although an important canine pathogen, A. phagocytophilum is also zoonotic and causes
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human disease in the same regions where Lyme disease occurs. In contrast, A. platys is presumed to

be transmitted by Rhipicephalus sanguineus, and has relatively low prevalence across the contiguous

United States with a slightly higher prevalence seen in the southern states Qurollo et al. [2014].

Dogs in the southern U.S. (Florida, Georgia, North and South Carolina, Tennessee and Texas) show

equivalent seroconversion to both A phagocytophilum and A. platys Qurollo et al. [2014], suggesting

exposure to multiple tick vectors. Veterinary wellness exams commonly include annual screening for

exposure to Anaplasma spp., as well as Ehrlichia spp., Borrelia burdgorferi and Dirofilaria immitis

(heartworm disease agent) using a rapid, in-house enzyme-linked immunosorbent assay (ELISA)

platform (SNAPr4Dxr and SNAPr4Dxr Plus Test, IDEXX Laboratories, Inc., Westbrook, ME,

USA) Drouin et al. [2004], O’Connor et al. [2006]. These tests detect antibodies to both A. phago-

cytophilum and A. platys on a single spot and therefore no in-house speciation is possible. Of four

million dogs tested for exposure to Anaplasma spp. in 2015, over 100,000 dogs were seropositive.

Seroreactivity on these tests are interpreted by veterinary clinicians to indicate tick exposure and a

history of transmission of Anaplasma spp.

Many, if not most, dogs remain asymptomatic following exposure to Anaplasma spp.. For

example, in areas such as the northeastern US where disease is endemic, as many as 60% of dogs

may have antibodies specific for Anaplasma spp. and the majority of these dogs do not have

overt evidence of clinical disease Beall et al. [2008], Bowman et al. [2009]. When symptomatic,

dogs infected with A. phagocytophilum most commonly present with lethargy, fever and anorexia

Little [2010]. Thromobocytopenia is a hallmark of symptomatic A. phagocytophilum and A. platys

infection Greig et al. [1996], Kohn et al. [2008], Poitout et al. [2005], presumably because of platelet

destruction Lilliehook et al. [1998]. Both splenomegaly and lymphadenopathy are reported and are

thought to be associated with reactive lymphoid hyperplasia Lilliehook et al. [1998]; however it is

critical to note that this is not specific to anaplasmosis as experimental infection of dogs with Ehrlicia

canis, E. chaffeensis, A. platys and A. phagocytophilum results in similar histopathological lesions in

lung, liver and spleen Nair et al. [2016]. Finally, lameness due to neutrophilic polyarthritis, vomiting,

diarrhea, neurologic abnormalities and epistaxis have been described Greig et al. [1996], Kohn et al.

[2008], Poitout et al. [2005]. Because the majority of seropositive dogs are asymptomatic, current

recommendations for veterinary care in Anaplasma spp. seroreactive dogs include a complete blood

count with platelet count to determine if treatment is necessary Little [2010].

Illnesses caused by tick-borne pathogens in animals and humans have increased over the
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last decade Adams et al. [2015], due in part to the geographic expansion of tick populations beyond

previously recognized endemic zones Eisen et al. [2016a]. In a previous study, we evaluated poten-

tial explanatory factors for Anaplasma seroreactivity in dogs and and found seroprevalence increases

with increasing precipitation and forestation coverage and decreases with increasing temperature,

population density, relative humidity, and elevation McMahan et al. [2016]. Also, socioeconomic sta-

tus and deer/vehicle collisions were positively and negatively correlated with canine Anaplasma spp.

seroprevalence, respectively McMahan et al. [2016]. Given that many Anaplasma spp. infections are

asymptomatic or mild, the relative distribution of disease risk is likely under-appreciated, particu-

larly in non-endemic zones. As such, it would be advantageous to accurately forecast Anaplasma

spp. seroprevalence on a local scale, providing an a priori alert to veterinarians in emerging areas

of disease. Annual forecasts of emergent infection can inform veterinary and public health officials

to shifting areas of infection, particularly in temperate regions of the US where Anaplasma spp.

seroprevalence is generally absent, rare, or prevalence is highly influenced by annual variation in

biotic or abiotic factors.

In the current study, we utilize the explanatory variables derived from our previous study

to develop an Anaplasma spp. seroprevalence forecast model that uses Bayesian methods to account

for the strong spatial and temporal dependencies that exist in Anaplasma spp. seroprevalence

between counties and across time. Controlling for this autocorrelation, e.g. the similarity between

observations as a function of time, provides us with estimates conducive to forecasting changes in

the prevalence of exposure to Anaplasma spp. in space and time. The model described herein

considers the climate, geographical, and societal factors included in the previous model, with the

exception of deer/vehicle collisions, as potential predictors. We report on the fidelity of the forecast

model by analyzing the relationship between predicted and actual Anaplasma spp. prevalence in

2015, and forecast the prevalence for 2016. Finally, we discuss the potential of canine Anaplasma

seroprevalence to inform human practitioners, as human anaplasmosis is growing in recognition as

a significant problem when present as a co-infection with Borrelia burgdorferi and is implicated in

complicated, protracted Lyme disease Caulfield and Pritt [2015].
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3.2 Materials and Methods

3.2.1 The data and baseline map construction

The data analyzed in this article consists of 11,437,537 Anaplasma spp. serology test results for

dogs (obtained from IDEXX Laboratories, Inc. RNI). The tests were conducted in the contiguous

United States from 2011 to 2015 and 3.21% were positive (i.e., 367,663 positive tests) for antibodies

to Anaplasma spp. Along with the binary outcomes (positive or negative) the data also provides the

county in which the test was conducted, and subsequently the analysis presented herein considers

the county level aggregated totals; i.e., the number of positive and negative test results observed

within each of the contiguous United States counties during the years of 2011 to 2015. As mentioned

above, the tests are reported in the county in which the test was performed. No information is given

on the travel or residence of the individual animal. In some cases, the county of testing may not be

the county of exposure. There is also no testing history of the dogs or the reason why the tests were

conducted, so repeat testing within the year may have occurred.

The explanatory factors considered here are those believed to be related to Anaplasma spp.

seroprevalence in dogs, for which up to date data are available on a wide geographic scale. Table 3.1

presents the factors considered in our statistical analysis; i.e., climatic variables (annual temperature,

precipitation, and relative humidity), geographic variables (county elevation, forestation coverage,

and surface water coverage), and socio-economic variables (population density and median household

income). For further details about these factors, such as their geographical distributions, please see

McMahan et al. [2016]. Fine scale data on tick population levels is desirable for this analysis, but,

to our knowledge, does not exist.

Figure 3.1 provides a spatial depiction of the empirical Anaplasma spp. seroprevalence,

after aggregating over the five years of available data. Here the empirical prevalence for each county

is defined to be the number of positive tests divided by the total number of tests conducted. This

figure tends to suggest a large degree of spatial correlation; i.e., empirical prevalences from counties

close to each other tend to be similar. Moreover, within a given county the empirical prevalences also

possess this property across time. These observations lead to the belief that both positive spatial

and temporal correlation exists in our data. Thus, to offer a reliable evaluation of the putative

factors, as well as to develop a predictive model, these effects must be taken into account. In the

next section, a Bayesian regression model which acknowledges and accounts for both the spatial and
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Factor Data period Scale Notation Range

Annual temperature (F) 1895 - 2015 CD Xs,1(t) [34.59, 77.14]
Annual precipitation (in) 1895 - 2015 CD Xs,2(t) [0.30, 10.73]
Annual relative humidity (%) 2006 - 2015 CD Xs,3(t) [17.98, 88.73]
Elevation (ft) 2012 C Xs,4(t) [10, 14495]
Perc. forest coverage (%) 2012 C Xs,5(t) [0.00, 32]
Perc. surface water coverage (%) 2010 C Xs,6(t) [0.00, 91]
Population density (ppsm) 2011-2014 C Xs,7(t) [0.10, 36041.11]
Median household income ($) 1997-2014 C Xs,8(t) [20990, 125635]

Table 3.1: Factors purported to be associated with Anaplasma spp. seroprevalence.

For further discussion, including the source of each factor, see Wang et al. [2014a]. Note the
following abbreviations are used: persons per square mile (ppsm), climate division (CD), county
(C).

temporal correlation is presented. It is worthwhile to note that some counties report relatively small

number of test results, thus the interpretation of the empirical estimates depicted in Figure 3.1 may

be slightly misleading, if one does not consider this effect. That is, a county reporting only 20 test

results, with 1 being positive, results in an empirical estimate of 5%, whereas the same empirical

estimate would be obtained for a county reporting 2000 test results, with 100 being positive. The

salient point, more faith should be placed in the latter estimate, when compared to the former, since

it is derived from a higher sample size.

In order to create a “baseline” map for Anaplasma spp. seroprevalence, the empirical esti-

mates depicted in Figure 3.1 were further processed through a series of spatial smoothing techniques.

First, a weighted head-banging algorithm was applied to the empirical prevalences. This procedure

accomplishes two primary tasks; first, it acknowledges spatial correlation by forming a spatially

oriented prevalence estimate through incorporating information from surrounding areas, and sec-

ond, it down weights the influence of prevalence estimates which are derived from a relatively small

number of tests. For example, in Colorado during 2015, 14,908 test results were reported, of which

112 were positive, translating to an observed prevalence of approx 0.75% for the state. Further, in

Gunnison county, Colorado, only 3 test results were reported, of which 1 was positive, translating to

an observed prevalence of 33%, which is obviously a small sample size issue. Weighted head bang-

ing directly acknowledges the available sample size from each county when computing the spatially

oriented prevalence estimate. Weighted head banging was implemented using thirteen triples and

the county level weights were chosen to be proportional to the number of county level observations
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Figure 3.1: Empirical county-by-county Anaplasma spp. seroprevalence aggregated over 2011-2015.

which were reported over the five-year period; i.e., counties reporting more data were given more

weight. In order to render a spatially complete map, Kriging (a common spatial interpolation tech-

nique) was used to interpolate prevalence estimates for counties not reporting data. This technique

was implemented in ArcGIS using the default settings. Figure 3.2 provides our “baseline” map for

Anaplasma spp. seroprevalence in domestic dogs within the contiguous United States. The “base-

line” map presented in Figure 3.2 suggests two endemic zones of canine Anaplasma seroprevalence in

the North-Central and Northeastern US, with lower but apparent seroprevalence in the Mid-Atlantic

region, the Dakotas, and Western Texas.

3.2.2 Model

This section outlines the model used to perform the spatio-temporal statistical analysis. As was

previously alluded to, the available data exhibits both positive spatial and temporal correlation, and

are measured on areal units (i.e., counties). Thus, to analyze these data, we employ a Bayesian

hierarchical spatio-temporal regression model, where autocorrelated random effects are utilized to

account for the spatial and temporal dependence. The use of Bayesian models for such analyses is
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Figure 3.2: Baseline map of Anaplasma spp. seroprevalence.

omnipresent in similar application areas; for further discussion and a modern review see Cressie and

Wikle [2011b], Lopez-Quilez and Munoz [2009].

For modeling purposes, the number of positive tests and total tests for county s at year t

are denoted by Ys(t) and ns(t), respectively, where s ∈ {1, . . . , S} and t ∈ {1, . . . , T}. Following the

proposals of Lopez-Quilez and Munoz [2009], Nobre et al. [2005], Xia and Carlin [1998], Martinez-

Beneito et al. [2008], we relate the observed testing data to the factor information through the use

of a Poisson regression model. Thus, the first level of our Bayesian hierarchical Poisson regression

model is given by:

Ys(t)|ns(t), ps(t) ∼ Poisson {ns(t)ps(t)} , (3.1)

log {ps(t)} = β0 +

8∑
k=1

βkXs,k(t) + ξs(t). (3.2)

In Eq (3.1), ps(t) denotes the Anaplasma spp. seroprevalence of county s at time t, ∼ means has the

distributional type and the symbol | indicates given quantity(ies). Proceeding with this notation,

Eq (3.1) indicates that when ns(t) and ps(t) are known, the number of positive tests, the Ys(t), are
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conditionally independent across all the counties and they each follow a Poisson distribution with

mean ns(t)ps(t). In Eq (3.2), log(·) denotes the natural logarithm, Xs,k(t) is the kth factor measured

on county s at time t (see Table 3.1), the βk are regression coefficients, and ξs(t) are spatio-temporal

random effects used to account for the spatial and temporal dependence.

In order to capture spatial dependence, the proposed approach makes use of a conditional

autoregressive (CAR) model. The CAR model was first proposed by Besag [1974b], and has since

seen numerous modifications and adaptations; e.g., see Banerjee et al. [2014b]. The version used

here, which was adopted from Stern and Cressie [1999], is now described. Let φ = (φ1, . . . , φS)′

denote a random vector which follows a CAR model. Under our specification, one has that

φ ∼ N(0, τ2 (D− ρW)
−1

), (3.3)

where W = {ws,s′} is a S×S neighborhood adjacency matrix and D is a S×S diagonal matrix whose

sth diagonal element denotes the number of counties bordering the sth county. The neighborhood

adjacency matrix is constructed such that ws,s′ = 1 if the sth and s′th counties border one another,

and ws,s′ = 0 otherwise. For notational convenience, we denote the relationship depicted in Eq (3.3)

as φ ∼ CAR(τ2, ρ). Under this specification, it can be shown that the conditional distribution of φs

is given by

φs | φ−s, τ2, ρ,W ∼ N

(
ρ

∑
s′ 6=s ws,s′φs′∑
s′ 6=s ws,s′

,
τ2∑

s′ 6=s ws,s′

)
, for s = 1, . . . , S, (3.4)

where φ−s = (φ1, . . . , φs−1, φs+1, . . . , φS)
′

is a vector of random effects for all counties except the

sth one. In Eq (3.4), the conditional expectation of φs, given its neighbors’ random effects, is

the scaled (by ρ ∈ [0, 1]) average of the random effects of its neighbors. Therefore, ρ controls the

spatial autocorrelation between bordering counties, with ρ = 0 indicating spatial independence and

ρ close to 1 indicating strong spatial dependence. The parameter τ2 is a scaling variance parameter,

and the conditional variance of φs is inversely proportional to the number of neighboring counties.

Consequently, the conditional variance of φs is smaller (larger) than the conditional variance of φs′

if the sth county has more (fewer) neighbors than the s′th county. This is reasonable since more

neighbors relates to more information, and hence more certainty (i.e., a smaller variance).

Motivated by Nobre et al. [2005], our proposed model captures the spatial and temporal
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dependence through a multivariate autoregressive model of order one which is given by

ξ1 = φ1;

ξt = ϕξt−1 + φt, for t = 2, . . . , T ; (3.5)

φt ∼ CAR(τ2, ρ), for t = 1, . . . , T,

where, ξt = (ξ1(t), . . . , ξS(t))
′

and φt = (φ1(t), . . . , φS(t))
′

for t = 1, . . . , T . Note, in our proposed

model the spatial random effects φt are independent and identically distributed according to the

CAR model described in Eq (3.3). The parameter ϕ controls the temporal correlation between

consecutive years and lies within (−1, 1), this ensures a causal and stationary solution to the time

series model (see Brockwell and Davis [2006]). Moreover, in the proposed model ϕ = 0 indicates

temporal independence, while ϕ close to 1 indicates strong positive temporal correlation.

To complete the Bayesian model, the following prior distributions were specified:

βk ∼ N(0, 1000), for k = 0, . . . , 8; (3.6)

ϕ ∼ Uniform(−1, 1); (3.7)

ρ ∼ Uniform(0, 1); (3.8)

τ−2 ∼ Gamma(0.5, 0.05). (3.9)

Note, the prior distributions placed on the βk are independent and weakly informative so that

estimation and inference for these parameters are based mainly on the data. Priors for ϕ and

ρ are uninformative, and were chosen for the same reason. For ease of computation, the prior

for τ−2 was chosen due to conjugacy (the posterior and prior distributions are from the same

distributional family). A Markov chain Monte Carlo (MCMC) posterior sampling algorithm for

the model parameters and random effects was constructed, which made use of a combination of

Gibbs and Metropolis-Hastings sampling steps Gelman et al. [2014]. In the algorithm, the response

variable (i.e., Ys(t)) associated with counties not reporting data were treated as missing data and

were subsequently sampled along with the other model parameters. The MCMC sampling algorithm

was written and implemented in C++ and R.
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3.3 Results

3.3.1 Model Assessment

A primary goal of this work was to evaluate the putative factors (see Table 3.1) with respect to their

association with Anaplasma spp. seroprevalence within domestic canines in the contiguous United

States. To accomplish this task, a full model with all eight factors was fitted to the data. From this

fit, point estimates (means of posterior samples) and 95% highest posterior density (HPD) credible

intervals were obtained for all regression coefficients; for further discussion and details about HPD

intervals see Gelman et al. [2014]. Table 3.2 provides the point estimates and HPD intervals for each

of the eight regression coefficients.

Factor Estimate 95% HPD Interval

Annual temperature (F) -0.021 [-0.036, -0.008]
Annual precipitation (in) -0.004 [-0.053, 0.037]
Annual relative humidity (%) -0.001 [-0.008, 0.004]
Elevation (ft) 0.032 [0.002, 0.061]
Percentage forest coverage (%) 3.039 [1.914, 4.045]
Percentage surface water coverage (%) 0.398 [0.130, 0.692]
Population density (ppsm) -2.765e-5 [-4.473e-5, -0.976e-5]
Median household income ($) 0.002 [-0.001, 0.005]

Table 3.2: Parameter estimates from the full model.

From Table 3.2, one can ascertain that 3 of the considered factors were insignificant in the

full model at the considered significance level; i.e., the 95% HPD intervals for the regression coeffi-

cients associated with annual precipitation, annual relative humidity, and median household income

contain zero. In order to develop a parsimonious model that only contains significant factors, 7

reduced models were fit to the data, each containing a different combination of the 3 questionable

explanatory factors. In each of these additional model fits, these 3 factors were again deemed to

be insignificant. Therefore, our selected model makes use of 5 explanatory factors; i.e., annual tem-

perature, percentage forest coverage, percentage surface water coverage, elevation, and population

density. Table 3.3 provides the point estimates of the regression coefficients along with 95% HPD

intervals for the factors belonging to the selected model. In addition, the point estimates of the

other model parameters are ϕ = 0.935, ρ = 0.999, and τ2 = 0.639, which reaffirms the assertion

that strong positive spatial and temporal correlation are present in the data.

In order to assess the adequacy of our selected model, a figure analogous to Figure 3.2 was
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Table 3.3: Parameter estimates from the selected model.
Factor Estimate 95% HPD Interval
Annual temperature (F) -0.019 [-0.031, -0.004]
Percentage forest coverage (%) 2.881 [1.855, 4.065]
Percentage surface water coverage (%) 0.389 [0.112, 0.675]
Elevation (ft) 0.033 [0.005, 0.058]
Population density (ppsm) -3.090e-5 [-4.635e-5, -1.464e-5]

created using the model based estimates of the county level prevalences. In particular, our fitted

model provides a yearly prevalence estimate for each county, regardless of whether the county reports

data. Thus, to obtain a single prevalence estimate for each county, we averaged over the 5 yearly

estimates available from the model fit; i.e., our aggregated estimate for the sth county is given by

p̂s = 5−1
∑5
t=1 p̂s(t), where p̂s(t) is the prevalence estimate resulting from the selected model for

the sth county during the tth year. Figure 3.3 provides a depiction of these results, after Kriging

(again default settings were used in ArcGIS). By comparing these two figures one will note that

the proposed Bayesian spatio-temporal model appears to provide a good fit to these data. In fact,

the correlation between the sets of estimates depicted in Figure 3.2 and Figure 3.3 is 0.902, thus

confirming that a strong agreement exists between the empirical and model based estimates. Note,

this summary measure did not consider estimates from counties not reporting data.

3.3.2 Forecasting

In this section we provide details on how the model developed in the previous section can be utilized

to construct a forecast of future trends of Anaplasma spp. seroprevalence across the contiguous

United States. Essentially, our strategy relies on forecasting the value of the 5 significant explanatory

factors as well as the spatio-temporal random effects for the upcoming year. Since forestation, water

coverage, and elevation are relatively stable over time, the forecasted values of these factors are

simply taken to be their most recent observations. In order to forecast annual temperature and

population density, we make use of the same techniques outlined in Bowman et al. [2016a].

The spatio-temporal random effects for the next year were predicted using the relationship

depicted in Eq (3.5). In particular, for each value of τ2, ρ, ϕ and ξt which are available from the

posterior sample, we obtain a predicted value of the spatio-temporal random effect for the next

year as ξt+1 = ϕξt +φt+1, where φt+1 was randomly generated from a N(0, τ2(D− ρW)−1). This
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Figure 3.3: Aggregated model-based estimates of Anaplasma spp. seroprevalence.

process generates posterior predictive samples (see Gelman et al. [2014] for additional details) of

ξt+1, which can then be used to forecast next year’s Anaplasma spp. seroprevalence.

In order to assess the fidelity of the proposed forecasting procedure, the 2015 test and

factor data were removed, and our approach was used to forecast the 2015 county level prevalences

using the 2011-2014 test and factor data only. Figure 3.4 and Figure 3.5 present the forecasted and

observed prevalences during 2015, respectively. The weighted correlation between the forecasted and

observed prevalences (for counties reporting data in 2015), is 0.987, demonstrating that Anaplasma

spp. seroprevalence can be accurately forecasted through the proposed approach. Here, a weighted

correlation, with weights being set to be equal to ns(t), is used to account for different sample sizes

within each county, for further discussion see Bowman et al. [2016a]. Figure 3.6 provides our 2016

forecast of canine Anaplasma spp. seroprevalence within the contiguous United States.
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Figure 3.4: 2015 forecasted Anaplasma spp. seroprevalence.

3.4 Conclusion and Discussion

In this study, we present for the first time a fully Bayesian approach to forecasting canine Anaplasma

spp. seroprevalence in the absence of detailed information on the distribution and abundance of the

two primary vectors of disease: Ixodes spp, and Rhipicephalus sanguineus and pathogen prevalence

in vectors. Surveillance of these medically important vectors remains of high importance; however,

annual analysis of vector distribution and molecular characterization of pathogen burden will remain

economically and logistically unfeasible in many areas in the face of changing climate and habitats.

As such, we have developed a model for forecasting spatial and temporal patterns of risk of exposure

to Anaplasma spp. based on canine seroprevalence data. Data in our study are limited by lack

of detailed Anaplasma species specificity; however, from the recent species-level serologic analysis

conducted by Qurollo et al., we can infer that the majority of observed Anaplasma spp. seropreva-

lence in the Northeast, upper Midwest and west coast of California is likely the result of exposure

to A. phagocytophilum, and seroprevalence in the southern and western US due to exposure to ei-

ther A. platys or A phagocytophilum Qurollo et al. [2014]. In California, there is a higher liklihood
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Figure 3.5: 2015 observed Anaplasma spp. seroprevalence.

of the antibodies being due to A phagocytophilum exposure whereas positives in Texas and other

southeastern states is due to A. platys exposure.

A major strength of our surveillance effort is that Anaplasma spp. seroprevalence data are

acquired on a monthly basis RNC [2012-current], providing a robust and timely source of information

about the dynamic change of Anaplasma spp. exposure across the contiguous US. These data

hold strong promise for longitudinal studies to best understand the dynamic nature of Anaplasma

spp. prevalence over time. For veterinary healthcare practitioners specifically, this information is

of critical importance as disease is often mild or unapparent in the dog, requiring both a working

knowledge of risk paired with an impetus to pursue further diagnostics to determine when treatment

is necessary for the health of the dog. Similarly, a deeper understanding of risk enhances educational

opportunities, with the potential to prevent the indiscriminate use of antibiotics Lathers [2001] in

asymptomatic dogs without thrombocytopenia or other significant blood count changes. Finally,

even if dogs with Anaplasma spp. are asympotomatic, this exposure indicates tick infestation which

may have or will lead to infection with other tick borne pathogens that may need to be considered.

The forecast model uses 5 years of historical data acquired from IDEXX Laboratories, Inc
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Figure 3.6: 2016 forecasted Anaplasma spp. seroprevalence.

and previously published relevant covariate factors McMahan et al. [2016] to help explain variability

in our aggregated dataset and to strengthen inferences from our Bayesian spatio-temporal model.

As previously described in our explanatory model of Anaplasma spp. seroprevalence, the preva-

lence of seropositivity increases with increasing precipitation and forestation coverage and decreases

with increasing temperature, population density, relative humidity, and elevation. Socioeconomic

status and deer/vehicle collisions were positively and negatively correlated with canine Anaplasma

seroprevalence, respectively McMahan et al. [2016].The potential drivers of infection in the cur-

rent model vary some from the previously published model because of the differences in statistical

methods used. For forecasting, a Bayesian model was chosen because of the ability to control for

confounding caused by spatial and temporal autocorrelation seen in disease prevalence data. The

associations of annual temperature, forest coverage, and population density remain similar between

our previous explanatory model and our forecast model. In contrast, percentage of water coverage

was significant in a Bayesian model, but not in the explanatory model McMahan et al. [2016]. Ele-

vation was found to have a positive association in a Bayesian forecast model, whereas the association

was negative in the explanatory model. This can be explained in part by the distribution of the
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two Anaplasma spp. of dogs. Anaplasma phagocytophilum is the primary cause of seropositivity in

dogs in many regions of the United States, and this pathogen is found in high prevalences in the

northeastern United States, a region that is higher in elevation and lower temperature, compared to

the non-endemic regions of the South and southeastern United States. We acknowledge a limitation

in our seroprevalence dataset that it is a ”presenceabsence” model presented at a crude spatial scale,

and as such covariates such as elevation are perceived as uniform over large geographical areas. By

extending our model to include climate variables over a similarly large spatial area it was revealed

that the association at the regional level is related to the climatic conditions. Despite the aformen-

tioned limitations, using data from 2011-2014 we evaluated observed versus forecasted Anaplasma

spp. seroprevalence in 2015, resulting in a weighted correlation between the two maps of 0.987.

Given the striking fidelity of our forecast model, we report our 2016 forecast for canine Anaplasma

seroprevalence in the contiguous United States.

Using our described methodology, canine Anaplasma spp. seroprevalence is forecasted to

be high in regions of the US endemic for Ixodes scapularis: the Mid-central and Northeastern

states of Connecticut, Delaware, Maine, Massachusetts, Maryland, Minnesota, New Hampshire,

New Jersey, New York, Pennsylvania, Rhode Island, Vermont and Wisconsin. Six of these states:

New York, Connecticut, New Jersey, Rhode Island, Minnesota, and Wisconsin, account for 90%

of all reported cases of human anaplasmosis due to infection with A. phagocytophilum Dahlgren

et al. [2015]. Beyond these endemic boundries, we observed moderate to high frequency of canine

Anaplasma spp. seroprevalence in Northern California, North Dakota and Texas. Our forecast

of canine Anaplasma spp. seroprevalence in Texas is notable given a recent study by Movilla et

al. who documented, for the first time, canine seroprevalence of Anaplasma spp. in several states

of Mexico Movilla et al. [2016]. The authors reported the highest seroprevalence in northwestern

Mexico (16.4%), with the lowest in the north-central states of the country (0.6%). Wildlife species

in Texas have been documented to harbor A. phagocytophilum as well Yabsley et al. [2006]. It is well

established that incursions by humans into natural habitats make the boundary between wildlife,

humans and domestic animals more permeable, and thereby make the spillover of vector-borne

disease more likely. Collectively, the presence of Anaplasma spp. in both domestic dogs in Mexico

and wildlife in the south-central US indicate a greater need for annual testing of dogs for Anaplasma

spp. in southern US border states. Similarly, evidence of canine Anaplasma spp. seroprevalence in

Northern California and along the Canadian border suggests annual testing for Anaplasma spp. in

44



these regions during veterinary wellness visits is strongly advised.

Human infection with A. phagocytophilum has been reported in non-endemic regions of the

United States, including southeastern and south-central states Dahlgren et al. [2016, 2015], where

high levels of Ixodes spp. transmitting A. phagocytophilum have yet to be documented. As such,

there remains some controversy regarding true establishment of human anaplasmosis outside of

endemic states Dahlgren et al. [2016, 2015]. The Centers for Disease Control and Prevention (CDC)

suggests some of these human cases may be due to patient travel to states with higher levels of disease,

or the misdiagnosis of anaplasmosis in patients actually infected with another tick-borne disease,

such as ehrlichiosis or Rocky Mountain Spotted Fever. Our canine seroprevalence data indicate that

Anaplasma spp. are being transmitted to dogs in Northern Texas and Northern California, as well as

along the Canadian border in North Dakota and Montana, although the species is unknown. While

canine seroprevalence for B. burgdorferi is an established surveillance tool for human Lyme disease

Mead et al. [2011b], Millen et al. [2013b], it remains to be determined whether canine Anaplasma

seroprevalence can provide a similar risk assessment tool for human epidemiologists. Regardless,

as A. phagocytophilum is a potential zoonotic pathogen, it is important to be aware that these

organisms are enzootic in non-endemic regions of the United States and, and in particular, in the

regions bordering the south-central US. Finally, it is important to note that while canine Lyme

disease caused by Borrelia burgdorferi and transmitted by Ixodes spp. is now increasing in the

Great Lakes region of the US as Ixodes ticks converge from the Mid-Central state and Northeastern

states Eisen et al. [2016a], a similar pattern of elevated Anaplasma spp. seroprevalence was not

evident in our current dataset. It is unclear whether Ixodes scapularis ticks in this region do not

harbor Anaplasma spp. or whether canine test data are currently too sparse in this region to detect

notable increases in seroprevalence.

While canine anaplasmosis is most often asymptomatic and self-limiting, there is growing

recognition in human and veterinary medicine that Anaplasma spp. may represent a significant

health threat as a co-morbidity. Indeed, co-infection with Ixodes-borne pathogens is prevalent and

increasingly problematic worldwide Diuk-Wasser et al. [2016]. In humans, most co-infections in-

volve two of the three major human pathogens, B. burgdorferi sensu lato, A. phagocytophilum, and

Babesia spp. Such co-infections have been documented to occur in up to 28% of I. scapularis ticks in

Lyme disease-endemic areas in the US Swanson et al. [2006]. Co-infection with multiple tick-borne

pathogens can increase Lyme disease severity and has been attributed to long-term sequela in pa-
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tients. Human patients with these concurrent illnesses experienced a greater number of symptoms

for a longer duration than patients with Lyme disease alone Krause et al. [2002], Steere et al. [2003b].

Co-exposure of dogs to B.burgdorferi and A. phagocytophilum has been reported, with co-exposure

rates greatest in the Northeast (6.2%) and Mid-Atlantic region (1.8%) of the US Qurollo et al. [2014].

Veterinary patient outcomes in the presence of co-infection are not as thoroughly defined; however,

clinically ill dogs that are seropositive for B.burgdorferi and A. phagocytophilum have been noted

to be twice as likely to have lameness, joint pain, and joint effusion than dogs with single infections

Beall et al. [2008], Eberts et al. [2011]. In general, veterinary clinicians are increasingly concerned

co-infections complicate interpretation of clinical manifestations of disease and therefore potentially

confound treatment Qurollo et al. [2014]. As such, in Ixodes endemic regions annual screening for

multiple vector-borne pathogens is strongly warranted. Beyond annual screening, year-round use of

acaracides in dogs can reduce tick infestation, thereby reducing the potential for tick-borne pathogen

transmission Spencer et al. [2003], Wengenmayer et al. [2014].

There are a few limitations to this study that need to be addressed. As mentioned above,

samples are submitted by veterinary clinics, indicating that this population of dogs are under the

care of a veterinarian. This suggests that these data are representative of a subpopulation of dogs

that are more likely to receive tick preventatives and thus more protected from exposure to ticks.

Therefore, prevalence estimates presented here are likely to be conservative. A second limitation

to note is the county of testing. For a small sample of dogs, the county of testing may not reflect

the county of residence, and may also misclassify the county of exposure for dogs exposed while

traveling. Unfortunately, counties of residence and travel history are not known for these data, so

interpretations are made with these limitations in mind.

In summary, we have forecasted the distribution of the canine seroprevalence at the national

level with available canine serology data and easily accessible climate, geographical, and societal

factors. The high degree of fidelity between actual vs. forecasted seroprevalence in this model and

ease of data input provides veterinary and public health officials with an invaluable tool for informing

emerging risk of exposure to Anaplasma spp. disease potential, and importantly the possibility of

risk of co-infection with other tick-borne disease. Information should be shared with dog owners

to better facilitate appropriate preventative care of healthy animals and diagnosis and treatment

of ill patients. As we continue to learn more about the association between the distributions of

anaplasmosis in humans and dogs, this forecasting model may become useful for public health
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practitioners as well as a critical source of information on the ecology and changing distribution of

Anaplasma spp.
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Chapter 4

Sampling Strategies for Fast

Updating of Gaussian Markov

Random Fields

4.1 Introduction

Markov random fields (MRFs) are critical tools in a variety of challenging applications, including

disease mapping [Waller et al., 1997a], medical imaging [Higdon, 1998, Brown et al., 2014], and gene

microarray [Xiao et al., 2009, Brown et al., 2017a]. Awareness of these models was raised after the

seminal work of Besag [1974a]. Since then, they have become popular for modeling temporally- or

spatially-dependent areal data due to their interpretability and computational tractability afforded

by the conditional independence induced by the Markov property. This property is particularly

important for modern Markov chain Monte Carlo [MCMC; Gelfand and Smith, 1990] methods.

Indeed, the ease with which Markov random fields can be incorporated into a Gibbs sampling

algorithm [Geman and Geman, 1984] has contributed to their popularity in Bayesian statistics.

Gaussian Markov random fields [GMRFs; Rue and Held, 2005a] are simply MRFs in which

the conditional distribution of each (scalar) random variable is Gaussian. In the statistics literature

they are commonly referred to as condtionally autoregressive [CAR; Banerjee et al., 2015b] mod-

els. GMRFs are specified by explicitly defining the precision (inverse covariance) matrix instead
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of a covariance function as in Gaussian process modeling [Schabenberger and Gotway, 2005]. This

approach may result in an improper distribution such as the intrinsic autogressive model [IAR; Be-

sag and Kooperberg, 1995b]. Further, GMRFs do not usually yield stationary processes due to a

so-called “edge effect” in which the marginal variances vary by location. Corrections can be made

to yield a stationary process such as a periodic boundary assumption [Fox and Norton, 2016] or

algorithmic specification of the precision matrix [Dempster, 1972]. Sometimes the effect can simply

be ignored with little effect on inference [Besag and Kooperberg, 1995b]. Efforts have been made to

use GMRFs to approximate Gaussian processes with specified covariance functions [e.g., Rue and

Tjemland, 2002, Song et al., 2008, Lindgren et al., 2011a], but much work still remains.

Belonging to the Gaussian class of distributions, GMRFs are the most widely studied Markov

random fields; see Rue and Held [2005a] for an overview of relevant work. This includes techniques

for efficiently sampling from GMRFs. While both single-site and block samplers are straightforward

in principle, they can be problematic when working with extremely high-dimensional data. Block

sampling involves Cholesky factorizations of large precision matrices and thus carries high computa-

tional and memory costs. While a GMRF prior induces sparsity which can be exploited to economize

such calculations, conditional posterior precision matrices arising in Bayesian models may depend

on parameters that change in each iteration of an MCMC algorithm, which can make repeated cal-

culations extremely time consuming. Single-site samplers work by only considering scalar random

variable updates. In addition to being more loop-intensive than block samplers, single-site samplers

are known to exhibit slow convergence when the variables are highly correlated [Carlin and Louis,

2009].

There is a trade-off between computational and statistical efficiency when using high-

dimensional GMRFs inside an MCMC algorithm. These competing goals have led to recent innova-

tions in alternative sampling approaches for GMRFs. Some of these approaches require considerable

expertise in numerical analysis or message passing interface (MPI) protocol, but others are rela-

tively easy to implement and hence can be quite useful for statisticians. Specifically, the recently

proposed chromatic Gibbs sampler [Gonzalez et al., 2011a] is easy to implement and is competitive

with or even able to dramatically improve upon other existing strategies. It allows a practitioner to

parallelize sampling and to take advantage of ‘vectorized’ calculations in a high-level language such

as R [R Core Team, 2016] without requiring extensive expertise in numerical analysis.

The chromatic sampler appearing in Gonzalez et al. [2011a] was motivated by and demon-
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strated on binary MRFs. However, it is straightforward to carry over the same idea to the Gaussian

case. In this chapter, we discuss block updating and single-site updating of GMRFs, and compare

them to chromatic sampling. Rather than focusing on theoretical convergence rates or an otherwise

overall “best” approach, we view these approaches through the lens of a practitioner looking for

easily implemented yet efficient algorithms. To the best of our knowledge, this work is the first time

chromatic Gibbs sampling has been directly compared to the standard approaches for sampling of

GMRFs.

There exist fast approximation methods for estimating features of a posterior distribution

without resorting to Markov chain Monte Carlo. One of the most popular of these is integrated

nested Laplace approximation [INLA; Rue et al., 2009], the R implementation of which is the R-INLA

package [Lindgren and Rue, 2015]. Such approximation methods are useful when certain quantities

need to be estimated quickly, but they are only approximations and thus are not interchangeable

with Markov chain Monte Carlo algorithms that converge to the exact target distribution. Indeed,

INLA provides the most accurate approximations around the posterior median and can disagree

with MCMC in tail probability approximations [Gerber and Furrer, 2015]. These disagreements

are more pronounced in cases where the full conditional distribution of the random field is non-

Gaussian (for which INLA uses Laplace approximations) and the GMRF is used as a proposal in a

Metropolis-Hastings algorithm. Further, the R-INLA package is a “black box” that works well for a

set of pre-defined models. For more flexibility to manipulate non-standard models, there is the need

to break open the black box to more specifically customize an algorithm. In the context of GMRFs,

this requires more direct interaction with the random fields, motivating this work. Efficient strategies

such as those considered here are not intended to be substitutes for INLA or other approximation

methods. Rather, they are complementary procedures that are useful when one is interested in

direct MCMC on challenging posterior distributions.

In Section 4.2, we briefly motivate our sampling problem and review GMRFs. We then

compare chromatic sampling to block updating and single-site sampling of GMRFs. In Section 4.3

we compare the performance of single-site sampling, block updating, and the chromatic approach

in a study using a simple Bayesian model with spatial random effects on high-dimensional regular

lattices as well as a real application involving non-Gaussian polling data. We conclude in Section

4.4 with a discussion.
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4.2 MCMC Sampling for Gaussian Markov Random Fields

4.2.1 Motivation

Suppose we have observed data βy = (y1, . . . , yn)T arranged in an areal (lattice) structure, where

each yi is a value summarizing an area i, i = 1, . . . , n. For instance, yi might be the number of

positive disease cases observed in county i in the United States, or the expression level of the ith gene

along a chromosome. In the examples we consider in Section 4.3, yi is either the observed intensity

at pixel i in an image or the number of votes cast for a particular candidate in voting precinct i in

the state of New York. Suppose further that the yi’s are correlated as a function of “neighborhoods”

so that the distribution of yi is determined by the nearby values.

It is often reasonable to assume that this dependence in βy is explained by an unobservable

process βx = (x1, . . . , xn)T , where xi is the realization of the process at node i. A typical Bayesian

analysis of this problem takes the yi’s to be conditionally independent given βx; yi | βx indep.∼ F (· |

βx), i = 1, . . . , n. In other words, the correlation is assumed to be completely explained by βx.

For more flexibility and to more fully account for sources of uncertainty, one might assume that the

distribution of βx is determined by a parameter vector βθ (usually of much smaller dimension than

βx) which is itself assigned a hyper-prior. Thus, the Bayesian model is

βy | βx ∼ f(· | βx)

βx | βθ ∼ πx(· | βθ)

βθ ∼ πθ(·).

(4.1)

Inference proceeds by evaluating (or estimating) characteristics of the posterior distribution, deter-

mined via Bayes rule as π(βx,βθ | βy) ∝ f(βy | βx)πx(βx | βθ)πθ(βθ). We are concerned in this

work with models in which βx | βθ follows a GMRF.

In modern Bayesian analysis, it is common for the posterior to have no known closed form.

Hence, expectations with respect to this distribution cannot be evaluated directly. If one can obtain

a sample from this distribution, though, laws of large numbers allow us to approximate quantities

of interest via Monte Carlo methods. The most common approach approach to obtaining a sample

from a posterior distribution is Markov chain Monte Carlo (MCMC), particularly Gibbs sampling.

One reason for the popularity of Gibbs sampling is the ease with which the general algo-
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rithm can be constructed. It proceeds simply by initializing a chain at (βx0,βθ0) and, at iteration

t, sampling βxt ∼ π(βx | βθ(t−1),βy) and then βθt ∼ π(βθ | βxt,βy). Under suitable condi-

tions, ergodic theory [e.g., Robert and Casella, 2004] establishes that the resulting Markov chain

{(βxt,βθt) : t = 0, 1, · · · } has π(βx,βθ | βy) as its limiting distribution. In practice, implementing

this algorithm can be challenging due to the need to draw βx | βθ,βy thousands of times, which is

computationally expensive when βx is high dimensional. This challenge is not entirely circumvented

when βx follows a GMRF, as we discuss in the sequel.

4.2.2 Gaussian Markov Random Fields

Consider a Gaussian Markov random field (GMRF) βx = (x1, . . . , xn)T , where xi is the realization

of the field at node i, i = 1, . . . n. The density of βx is given by

π(βx | βµ) ∝ exp

(
−1

2
βxTβQβx+ βbTβx

)
, (4.2)

where βµ ∈ Rn and βb = βQβµ. If βQ is nonsingular, then this distribution is proper (i.e.,∫
π(βx | βµ)dβx <∞) and the normalizing constant is (2π)−n/2det(βQ)1/2. Intrinsic GMRFs are

such that the βx variables have linear constraints so that βQ is rank deficient. In this case, we may

define the density with proportionality constant (2π)−(n−k)/2det∗(βQ)1/2, where n − k is the rank

of βQ and det∗(·) is the product of the n− k non-zero eigenvalues of βQ [Hodges et al., 2003, Rue

and Held, 2005a]. Such improper GMRF models are common in Bayesian disease mapping [Waller

et al., 1997a] and linear inverse problems [Bardsley, 2012], as they are easily interpretable.

GMRFs may be specified according to an undirected graph G = (V, E), where V indicates

nodes (i.e., the vertices) and E = {(i, j) : i ∼ j} is the edge set where i ∼ j if and only if node i

is connected to (i.e., a neighbor of) node j. The precision matrix βQ is determined by (βQ)ij 6= 0

if and only if (i, j) ∈ E . Specifying the density through the precision matrix βQ instead of a

covariance matrix induces a Markov property in the random field [Rue and Held, 2005a, Theorem

2.2]. For any node i, xi | βx(−i) d
= xi | βxN (i), where βx(−i) = (x1, . . . , xi−1, xi+1, . . . , xn)T ,

N (i) = {j : (i, j) ∈ E} is the neighborhood of node i, and βxβA := (xi : i ∈ βA)T for some

index set βA. That is, xi is conditionally independent of the rest of the field given its neighbors.

Most GMRFs assume that each node has relatively few neighbors, resulting in a sparse precision

matrix βQ. The sparsity of the precision matrix combined with the intuitive and easily-interpretable
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Markov property has led to GMRFs being widely used to model dependence in areal data. Indeed,

there exists user-friendly software that facilitates incorporating GMRFs into Bayesian spatial models

without detailed knowledge of their construction. Examples include the GeoBUGS package in WinBUGS

[Lunn et al., 2000] and the R package CARBayes [Lee, 2013].

With the need to model extremely large datasets with nontrivial correlation has come the

need for efficient sampling techniques whereby posterior distributions of fully Bayesian models can

be simulated. When periodic boundary conditions on βx ∈ Rn can be assumed (i.e., each xi has the

same number of neighbors, including the edge nodes), Fox and Norton [2016] note that the sampling

problem can be diagonalized via the Fast Fourier Transform (with complexity O(n log n)), whence

a sample can be drawn by solving a system in O(n) operations. They propose reducing the total

number of draws from the conditional distribution of βx by using a “marginal-then-conditional”

sampler in which the MCMC algorithm operates by completely collapsing over βx and subsequently

sampling βx using only the approximately independent draws of the hyperparameters obtained

from a full MCMC run on their marginal distribution. In many applications, though, the periodic

boundary assumption may not be realistic, and sampling from the marginal distribution of hyper-

parameters can itself be challenging. To avoid the computational difficulties associated with full

GMRFs, Cai et al. [2013] propose using a pairwise graphical model as an approximate GMRF for

high-dimensional data imputation without specifying the precision matrix directly. The authors

admit, however, that this procedure is very hard to implement [Cai, 2014, p. 7]. In cases where

we are given βQ and βb in (4.2) with the goal of estimating βµ, Johnson et al. [2013] express the

Gibbs sampler as a Gauss-Seidel iterative solution to βQµ = βb, facilitating the “Hogwild” parallel

algorithm of Niu et al. [2011] in which multiple nodes are updated simultaneously without locking

the remaining nodes. In the Gaussian case, Johnson et al. [2013] prove convergence to the correct

solution when the precision matrix βQ is symmetric diagonally dominant. Motivated by Johnson

et al. [2013], Cheng et al. [2015] use results from spectral graph theory to propose a parallel algorithm

for approximating a set of sparse factors of βQl, − 1 ≤ l ≤ 1, in nearly linear time. They show

that it can be used to construct iid samples from an approximate distribution. This is opposed to

a Gibbs sampler, which produces approximately independent samples from the correct distribution

(possibly after thinning). Similar to the Gauss-Seidel splitting considered by Johnson et al. [2013],

Liu et al. [2015] propose an iterative approach to approximating a draw from a GMRF in which the

corresponding graph is separated into a spanning tree and the missing edges, whence the spanning
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tree is randomly perturbed and used as the basis for an iterative linear solve.

The aforementioned algorithms can be difficult to implement and require substantial knowl-

edge of graph theory, numerical analysis, and MPI programming. This makes such approaches

inaccessible to many statisticians who nevertheless need to work with large random fields. Further,

they are iterative routines for producing a single draw from an approximation to the target distribu-

tion. This feature makes them less appealing for users who work in R or MATLAB (The MathWorks,

Natick, MA). It is well-known that loops should be avoided in these languages to avoid repeated

data type interpretation and memory overhead issues. In response to these difficulties while still

faced with the problem of efficient updating of GMRFs inside a larger MCMC algorithm, additional

R packages have been made available which are beneficial for manipulating the sparse matrices as-

sociated with GMRFs, including Matrix [Bates and Maechler, 2016], SparseM [Koenker and Ng,

2016], and spam [Furrer and Sain, 2010a, Gerber and Furrer, 2015].

4.2.3 Block and Single-Site Gibbs Sampling

In this section, it is helpful to distinguish between sampling βx directly from a prior GMRF and from

the full conditional distribution of βx derived from an hierarchical Bayesian model with a GMRF

prior on βx. For an unconditional GMRF, the distribution is of the form βx ∼ N(βµ,βQ−1),

where βµ and βQ are generally unrelated. When drawing from the full conditional distribution as

in a Gibbs sampler, the distribution is of the form βx ∼ N(βQ−1p βb,βQ
−1
p ), where βQp 6= βQ is

an updated precision matrix. For example, in a typical linear model βy | βx,βΣ ∼ N(βAx,βΣ)

with βA fixed and βx ∼ N(βµ,βQ−1), standard multivariate normal theory yields βx | βy,βΣ ∼

N(βQ−1p βb,βQ
−1
p ), where βQp = βATβΣ−1βA+ βQ and βb = βATβΣ−1βy + βQµ.

Two approaches to updating GMRFs inside a Markov chain Monte Carlo algorithm are

so-called single site sampling in which individual sites are updated one at a time using the available

full conditional distributions, and block Gibbs sampling in which the entire random field is updated

all at once via sampling from a known multivariate Gaussian distribution induced by the GMRF.

Block sampling improves the convergence of Gibbs samplers in the presence of a posteriori correlated

variables by allowing the chain to move more quickly through the sample space [Liu et al., 1994].

The drawback is in the manipulation and solution of large covariance matrices necessary for both

random variable generation and evaluation of the likelihood in a Metropolis-Hastings algorithm

[Metropolis et al., 1953, Hastings, 1970]. Single site updating uses the conditional distributions
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of each scalar random variable, thus avoiding large matrix computations. In single-site sampling,

though, statistical efficiency may be sacrificed as updating a group of possibly highly correlated

parameters one at a time can result in slow exploration of the parameter space, slowing convergence

of the Markov chain.

An appealing feature of GMRFs is the ability to specify the distribution of βx through a

complete set of full conditional distributions, {p(xi | βx(−i)) : i = 1, . . . , n}. For instance, we can

assume each xi | βx(−i) ∼ N(ηi, σ
2
i ), with ηi = µi +

∑
j∼i cij(xj − µj) and σ2

i > 0, where cij are

specified weights such that cij 6= 0 if and only if i ∼ j and cii = 0 for all i. Specification of a

Markov random field through these so-called local characteristics was pioneered by Besag [1974a],

after which such models came to be known as conditional autoregressive (CAR) models. Besag

[1974a] used Brook’s Lemma and the Hammersley-Clifford Theorem to establish that the set of full

conditionals collectively determine a joint density, provided a positivity condition holds among βx.

In this case, we have that βQij = (I(i = j) − cijI(i 6= j))/σ2
i , where I(·) is the indicator function.

The condition σ2
j cij = σ2

i cji, for all i, j, is necessary to ensure symmetry of βQ. The ease with

which these full conditional distributions can be incorporated into a Gibbs sampling algorithm has

led to a dramatic increase in the popularity of CAR models over the past twenty years or so [Lee,

2013, Banerjee et al., 2015b].

In single-site Gibbs sampling, we sequentially draw from each univariate distribution with

density p(xi | βx(−i)), i = 1, . . . n. This requires using βx(−i) to calculate ηi prior to drawing

from each of the n conditional distributions, meaning that single-site updating essentially becomes

an O(n2) operation. This algorithm has little regard for the ordering of the nodes, making such

sampling strategies very easy to implement. Compared to block updating, though, many more Gibbs

scans are required to sufficiently explore the support of the distribution. This approach is the most

iteration-intensive of any of the approaches considered here. As such, its implementation in R can

result in a large amount of overhead associated with loops, considerably slowing the entire routine.

Efficient block sampling schemes for GMRFs are discussed in Rue [2001] and Knorr-Held

and Rue [2002]. What most of these schemes have in common is the use of a Cholesky factorization

of the precision matrix and using the factorization to solve a system of equations. For the case

typically encountered in a Gibbs sampler, Rue and Held [2005a] provide an algorithm for simulating

from N(βQ−1p βb,βQ
−1
p ). This algorithm, presented in Algorithm 1 in Appendix A, requires one

Cholesky factorization and three linear solves via forward or backward substitution.
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In general, for a matrix of dimension n× n, the Cholesky factorization is an O(n3/3) oper-

ation and each linear solve costs O(n2) flops [Golub and Van Loan, 1996]. This can be particularly

onerous in a fully Bayesian approach in which hyperpriors are assigned to hyperparameters βθ that

appear in the precision matrix βQp ≡ βQp(βθ). However, the key to making block updating fea-

sible on high-dimensional data lies in the computational savings that can be achieved when βQp is

sparse. Sparse matrix algebra is itself a non-trivial problem requiring specialized knowledge beyond

the expertise of many statisticians. Indeed, concerning this point, Rue and Held [2005a, p. 52]

recommend “leaving the issue of constructing and implementing algorithms for factorizing sparse

matrices to the numerical and computer science experts.” In practice, most statisticians will rely on

special functions for sparse matrices such as those found in the Matrix [Bates and Maechler, 2016],

SparseM [Koenker and Ng, 2016], or spam [Furrer and Sain, 2010a] packages in R. Of these three,

spam is the most specifically tailored for repeatedly sampling GMRFs in MCMC.

For simulating posterior distributions via block Gibbs sampling, we are interested in drawing

from full conditional distributions. In this case, sparsity of the entire precision matrix is contingent

upon the sparsity of βATβΣ−1βA. This is often the case in practice. For instance, in disease

mapping and related applications, it is common to place a spatially correlated random effect at each

location to encourage smoothing of the incidence rate over space [e.g., Waller et al., 1997a, Banerjee

et al., 2015b]. In terms of the linear model, this can be expressed as βy−βXβ = βZγ +βε, where

βXβ corresponds to fixed effects and βγ contains the spatially-varying effects. With site-specific

random effects, βZ is diagonal or block diagonal. The diagonal case (e.g., βZ = βI) is especially

amenable to efficient block Gibbs sampling as well as chromatic sampling, since the underlying graph

G for the full conditional distribution is exactly the same as the prior graph.

For a fully Bayesian model, the full conditional precision matrix associated with the GMRF

will in general depend on parameters that are updated in each iteration of an MCMC routine,

meaning that the Cholesky factorization has to be recomputed on each iteration. Often, though, the

neighborhood structure and thus the sparsity pattern of the Cholesky factor remain fixed. The sparse

matrix implementation in the spam package exploits this fact to accelerate repeated block GMRF

updates. After finding the initial Cholesky factorization using so-called supernodal elimination

trees [Ng and Peyton, 1993], spam stores the symbolic factorization and only performs numeric

factorizations on subsequent iterations. Even with sparse matrix algebra, though, block sampling

βx from a GMRF in very high dimensions can be problematic due to the computational cost of even
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an initial factorization as well as the associated memory overhead [Rue, 2001, p. 331].

4.2.4 Chromatic Gibbs Sampling

Consider the graph representation of the GMRF, G = (V, E). The local Markov property says that

xi ⊥ βx−(i,N (i)) | βxN (i), where βx−(i,N (i)) denotes all x except xi and the neighborhood of xi, and

⊥ denotes (statistical) independence. An extension of the local Markov property is to let C ⊂ V

denote a separating set, or cut, of G such that nodes in a set A ⊂ V are disconnected from nodes in

B ⊂ V after removing the nodes in C from the graph. Then the global Markov property states that

βxA ⊥ βxB | βxC . Chromatic sampling exploits this property by partitioning the nodes according

to a graph coloring whereby each subset can be updated simultaneously in parallel.

A coloring f : V → {1, . . . , k}, k ∈ N, is a collection of labels assigned to nodes on a graph

so that no two nodes that share an edge have the same label. A k-coloring induces a partition of

the nodes {A1, . . . ,Ak}, where Aj = f−1({j}) ⊂ V. For example, Figure 4.1 displays a 4-coloring

that could be used for data that lie on a regular two-dimensional lattice; e.g., imaging data. Given a

k-coloring of the MRF graph, we can determine a cut Cj corresponding to each color j by assigning

all nodes that are not of that color to be in the cut; i.e., Cj = Acj , j = 1, . . . , k. Defining cuts in

this way for j = 1, . . . , k, we have that xi | βxCj

indep.∼ N(ηi, σ
2
i ), for all i ∈ Aj , where each ηi and

σ2
i depend on βxCj . That is, all nodes of the same color are conditionally independent and can be

sampled in parallel, given the rest of the field. The use of graph colorings in this way leads Gonzalez

et al. [2011a] to term the approach chromatic Gibbs sampling.

� � � � · · · � �
� � � � · · · � �
� � � � · · · � �
� � � � · · · � �
... ... ... ... . . . ... ...

� � � � · · · � �
� � � � · · · � �

1

Figure 4.1: An example of a k-coloring (k = 4) for nodes on a regular two-dimensional lattice. Each

symbol represents a different label.

Algorithm 1 presents a general chromatic Gibbs sampler for GMRFs. An advantage of
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Input: Current state of GMRF, βx(t), a k-coloring of the MRF graph,
{Aj : j = 1, . . . , k}.

Output: New draw βx(t+1) from the GMRF.

1 for j = 1 to k do
2 For i ∈ Aj , calculate conditional means and standard deviations ηi, σ

2
i using

βx
(t+1)
A1

, . . . ,βx
(t+1)
Aj−1

,βx
(t)
Aj+1

, . . . ,βx
(t)
Ak

3 Draw βxAj
∼ N

[
(η1, . . . , η|Ac

j |)
T , diag(σ2

i , i = 1, . . . , |Acj |)
]

4 end

5 Return βx(t+1)

Algorithm 1: Chromatic Gibbs step updating of a GMRF.

using this approach is in step 3 of the algorithm. When updates of the random variables indexed

by Aj is distributed across several processors, the computational effort of updating the entire field

can be dramatically reduced, even compared to the approximate linear complexity obtained from

sparse matrix factorization. Given p processors and a k-coloring of a Markov random field over n

nodes, the chromatic Gibbs sampler generates a new sample in approximately O(n/p+k) operations

[Gonzalez et al., 2011a, p. 326]. Of course, the best computational savings will be achieved by using

the chromatic index for the coloring (i.e., the minimum k so that a k-coloring of G exists).

The minimal coloring problem for a graph is NP-Complete and thus very challenging except

in simple situations. On regular lattices with commonly assumed neighborhood structures (e.g.,

Figure 4.1), such colorings can be found by inspection without complicated algorithms. Algorithm

2 is a greedy algorithm for finding a coloring on an arbitrary graph, including irregular lattices that

would be encountered in, e.g., disease mapping and climate studies. This algorithm is not guaranteed

to find an optimal coloring. It is relatively quick compared to searching for the minimal coloring,

though, and any such coloring can be effective, as we demonstrate in Section 4.3. It is important

to observe that for fixed sparsity patterns (and hence fixed Markov graphs) that we consider here,

graph coloring is a pre-computation. It is only required to run the algorithm once prior running

MCMC.

Most computers today have parallel processing capabilities, and any distributed processing

over p processors can reduce the computational burden by an approximate factor of 1/p. Regardless

of the number of processors available to the user, though, savings can still be realized when working

in a high-level language such as R by ‘vectorizing’ the updating of the conditionally independent

sets. Vectorizing still ultimately uses a for loop on each set of nodes, but the loops are performed in
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Input: MRF graph G = (V, E).
Output: k-coloring partition {A1,A2, . . . Ak}, for some k.

1 Set j = 1 and A0 = ∅
2 while V\ ∪j−1l=0 Al 6= ∅ do

3 Ij ← V\ ∪j−1l=0 Al
4 Aj ← ∅
5 while |Ij | > 0 do
6 i← min Ij
7 Aj ← Aj ∪ {i}
8 Ij ← Ij\ ({i} ∪ N (i))

9 end
10 j ← j + 1

11 end
12 k ← j − 1
13 Return {A1, ...,Ak}
Algorithm 2: Greedy algorithm for k−coloring the nodes of an MRF graph.

a faster language such as C or Fortran. It also minimizes the overhead associated with interpreting

data types; i.e., vectorizing allows R to interpret the data type only once for the entire vector instead

of repeatedly for each element of the vector.

4.3 Numerical Illustrations

In this section we compare chromatic sampling to block Gibbs updating and single-site sampling

with both simulated data on large regular arrays and real, non-Gaussian (binomial) data on an irreg-

ular lattice. We emphasize that the computational improvements are realized without direct parallel

processing. We simply vectorize the simultaneous updating steps, thereby avoiding direct for loops

in R. To implement the block Gibbs sampler, we use the spam package [Furrer and Sain, 2010a],

since it is specifically tailored for GMRFs inside MCMC routines by storing the sparsity structure

for repeated use. To make the spam functions as efficient as possible, we follow the authors’ sugges-

tion and turn off the symmetry check and safe mode options (options(spam.cholsymmetrycheck=

FALSE, spam.safemodevalidity= FALSE)).

4.3.1 Simulated Imaging Problem

Image analysis involves attempting to reconstruct a true latent image, where the ‘image’ may mean

a true physical structure as in clinical medical imaging, or an activation pattern or signal as in,
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e.g., functional magnetic resonance imaging [fMRI; Lazar, 2008]. The available data consist of pixel

values corresponding to color, often on the grayscale taking integer values from 0 to 255. The true

values are assumed to have been contaminated with error due to the image acquisition process. This

area is one of the original motivating applications for Markov random fields [Besag, 1986, Besag

et al., 1991b].

There is growing interest in the statistical analysis of ultra-high dimensional imaging data.

For example, structural MR images of the human brain may consist of 20-40 two dimensional slices,

each of which has 256× 256 resolution or higher. Spatial Bayesian models for even a single slice of

such data can involve GMRFs over lattices of dimension n = 2562 [Brown et al., 2017b] and thus are

very computationally challenging when drawing inference via Markov chain Monte Carlo. Motivated

by such applications, we consider images consisting of p×p pixels, each of which has an observed value

yij = xij + εij , where xij is the true value of the (i, j)th pixel in the latent image and εij represents

the corresponding contamination. To simulate the data, we take the error terms to be independent,

identically distributed N(0, 0.12) random variables. The true image in this case is a rescaled bivariate

Gaussian density with xij = 5 exp{−‖βvij‖2/2}/π, where βvij = (vi, vj) ∈ [−3, 3]× [−3, 3] denotes

the center of the (i, j)th pixel, evenly spaced over the grid, and ‖ · ‖ denotes the usual Euclidean

norm. Figure A.10 depicts the true generated image (in 50 × 50 resolution) and its corrupted

counterpart. To study each of the three sampling algorithms, we consider first an image with

dimension n = p× p = 502.

Figure 4.2: True image (left panel) and corrupted image (right panel) for the simulated image reconstruction

example. (These particular images have resolution 50 × 50.)

The assumed model for the observed image is given by βy = β1β0+βγ+βε, where βy ∈ Rn
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is the vector of the observed pixel values, β1 = (1, . . . , 1)T ∈ Rn, β0 ∈ R is a constant intercept

parameter, βγ is the vector of spatial effects, and βε is the vector of errors assumed to follow a

N(β0, σ2βI) distribution. To capture local homogeneity of the images, we assume the spatial random

effects obey an intrinsic autoregressive (IAR) model [Besag and Kooperberg, 1995b, Banerjee et al.,

2015b]; i.e., βγ ∼ N
(
β0, τ2(βD − βW )−1

)
, where βW = {wij := I(i ∼ j)}ni,j=1 is the incidence ma-

trix of the underlying graph and βD = diag
(∑n

j=1 wij : i = 1, . . . , n
)

. Here we assume each pixel

has a first-order neighborhood structure in which each interior pixel has eight neighbors. We ignore

edge effects induced by the perimeter pixels of the image. We specify inverse gamma priors for the

variance components and a flat prior for the intercept; i.e., σ2 ∼ InvGam(α, α), τ2 ∼ InvGam(α, α),

and π(β0) ∝ 1. To approximate vague priors for the variance components, we take α = 0.001. It has

been observed that an inverse gamma prior on τ2 sometimes can yield undesirable behavior in the

posterior [Gelman, 2006]; but our focus is on sampling the random field and thus we use this prior

simply for convenience. For posterior sampling, our modeling assumptions lead to a Gibbs sam-

pler having the following full conditional distributions: β0|βy,βγ, σ2 ∼ N
(
β1T (βy − βγ)/n, σ2/n

)
,

σ2|βy,βγ, β0 ∼ InvGam
(
α+ n/2, α+ ‖βy − β1β0 − βγ‖2/2

)
,

τ2|βγ ∼ InvGam
(
α+ n/2, α+ βγT (βD − βW )βγ/2

)
, and βγ|βy, σ2, τ2 ∼ N

(
βQ−1p βb,βQ

−1
p

)
,

where βQp = σ−2βI + τ−2(βD − βW ) and βb = (βy − β1β0)/σ2.

To implement the Gibbs sampler, three separate sampling strategies are employed, with the

only difference being how we sample the full conditional distribution of βγ. First, since βQp is

sparse, we consider full block Gibbs sampling based on Algorithm 1 in Appendix A to sample βγ

in a single block. The second strategy is single-site Gibbs sampling using the local characteristics,

γi|βγ(−i),βy, σ2, τ2 ∼ N(µi, σ
2
i ), i = 1, . . . , n, where µi = σ2

i (σ−2yi + τ−2
∑
j∈N (i) wijγj) and

σ2
i = τ2σ2{σ2(βD)ii+τ

2}−1. The single-site approach obviates the need to work with large matrices.

The final sampling strategy we implement is chromatic Gibbs sampling discussed in Subsection 4.2.4.

This approach uses the coloring depicted in Figure 4.1 as a 4-coloring of the pixels in the image.

Following the notation in Subsection 4.2.4, we have that γi | βγCj
,βy, σ2, τ2

indep.∼ N(µi, σ
2
i ), i ∈

Aj , j = 1, ..., 4, where µi and σ2
i are determined from the local characteristics. Observe that all of the

necessary conditional means and variances for a given color can be computed simultaneously through

matrix multiplication and addition on vectors of dimension |Acj | < n, as opposed to the iterative

updating of these quantities in the single-site sampler. An important feature of the chromatic

sampler is that γi | βγCj
,βy, σ2, τ2, i ∈ Aj , can be drawn simultaneously.
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We implement the three sampling strategies so that each procedure draws 10, 000 realiza-

tions from the Monte Carlo Markov chain to approximate the posterior distribution of the model

parameters. For each approach, three chains are run using dispersed intial values. We assess conver-

gence of the chains via trace plots, Gelman plots [Brooks and Gelman, 1998], scalar and multivariate

potential scale reduction factors, and plots of cumulative ergodic averages of scalar hyperparameters.

We discard the first 8000 iterations as a burn-in period and assess convergence using the last 2000

realizations of each Markov chain. The simulations, coded entirely in R, are carried out on a Dell

Precision T3600 desktop running Windows 7 with an Intel Xeon 3.30 GHz CPU and 64 GB of RAM.

Figure 4.3 displays the trace plots and empirical autocorrelation functions for the hyperpa-

rameters σ2 and τ2 for chromatic, block, and single-site sampling. We see very similar behavior in

terms of autocorrelation across all three sampling approaches. From Supplementary Figure A.1, we

glean that each sampling approach has approximately converged in the σ2 and τ2 chains after 6,000

iterations, although the block sampler has the longest convergence time according to the Gelman

plots. While each approach produces estimates of σ2 and τ2 that tend to the same value, the single-

site approach evidently has larger Monte Carlo standard error than the other two approaches. This

partly explains the slight difference in empirical distribution from the single-site sampler versus that

of the chromatic and block samplers, as depicted in Figure 4.4. Regardless, the joint and marginal

distribution estimates largely agree. This agreement is also evident in Figure 4.5, which displays the

posterior mean estimates of the true image β0β1 + βγ, the primary quantity of interest. To assess

exploration of the posterior distributions, the Figure also depicts point-wise ratios of sample stan-

dard deviations for each pair of algorithms. All three samplers produce distributional estimates that

are virtually indistinguishable, and the approximate convergence (as measured by the multivariate

potential scale reduction factors) is about the same.
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Figure 4.3: MCMC Trace plots (two left columns) and empirical ACF plots (two right columns) of single

chains each for σ2 and τ2 for the 50×50 regular array example. The top, middle, and bottom rows are from

the chromatic, block, and single-site chains, respectively.
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Figure 4.4: Left panel: Scatterplot and estimated marginal posterior densities (left) and empirical CDFs

(right) from the three sampling approaches in the 50 × 50 array example. The left panel was created using

code available at https://github.com/ChrKoenig/R_marginal_plot.
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Sampler CPU Time (s) ESS ACT CES

Chromatic 26.29 84.64 23.63 0.31
Block 65.86 65.26 30.65 1.00
Single-Site 6268.1 68.97 29.00 90.89

Table 4.1: CPU times to draw 2,000 realizations (including 8,000 burn-in iterations) from one τ2 Markov
chain under each sampling approach in the 50 × 50 array example. Also reported are the effective sample
sizes (ESS), autocorrelation times (ACT), and costs per effective sample (CES).
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Figure 4.5: Posterior mean estimates of the true image obtained from each sampling approach (top row)

along with pairwise standard deviation ratios (bottom row) in the 50 × 50 array example. The multivariate

potential scale reduction factors for the βϕ := β0β1 + βγ chains are 1.22, 1.21, and 1.21 for chromatic,

block, and single-site samplers, respectively.

The advantage of the chromatic approach versus the other two is in the computational

cost incurred to obtain each sample. The CPU time required to draw 10,000 realizations from one

Markov chain each under each sampling approach is displayed in Table 4.1. Of course, the same

number of samples from two algorithms is not guaranteed to provide the same quality of posterior
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approximation. To accommodate the different convergence characteristics of the three algorithms

while still considering total computation time (including the burn-in period), we measure also the

cost per effective sample [Fox and Norton, 2016], CES := N−1κT , where T is the total computation

time, N is the size of the retained sample from the Markov chain (after burn-in), and κ is the

integrated autocorrelation time [Kass et al., 1998, Carlin and Louis, 2009]. This quantity measures

the total computational effort required to generate an effectively independent sample from the target

distribution. Table 4.1 displays these metrics for the τ2 chains under each sampling approach. Here

we see a 70% improvement in computational effort between independent samples compared to block

Gibbs sampling. Single-site sampling is by far the worst performer. It is interesting to note that

in this case, the chromatic sampler has the shortest autocorrelation time of the three methods

considered.

To further study the performance of block sampling versus chromatic sampling, particularly

how they scale with regular arrays of increasing dimension, we repeat the model fitting procedure

using data simulated as before, but with images of size p × p, for p = 80, 128, 256. To create a

more challenging situation, which slows convergence of any MCMC algorithm via poorly identified

parameters, we also add considerably more noise to the images by assuming V ar(βε) = 502βI

instead of 0.12βI as before. This makes the underlying spatial field much more weakly identified by

the data and thus more strongly determined by the prior. Hence the GMRF parameters (β0,βγ,

τ2) will be more strongly correlated in the posterior. For each p, we run the same model with the

same prior specifications. We again run each MCMC algorithm for 10,000 iterations, treating the

first 8,000 as burn-in periods.

Supplementary Figures A.2 through A.8 display diagnostics and posterior mean estimates

produced by the different sampling procedures under p = 50, 80, 128 with noisy data. The single-site

sampler was not computationally feasible for images with resolution p = 80 or higher and so was not

considered. As expected, we see the autocorrelation in the τ2 chains dramatically increased with

the noisy data, regardless of the sampling approach, whereas the data-level variance σ2 remains

well identified. For the 50 × 50 case, the three approaches still produce parameter estimates that

agree with each other, as evident in Supplementary Figure A.4. Considerable differences between

chromatic sampling and block updating become apparent at p = 80 and p = 128. While the

σ2 chains still agree, we see very poor convergence of the β0 chain under chromatic sampling, in

contrast to the much better posterior exploration afforded by the block updates. The ability to

66



estimate β0 directly affects the estimate of the hyper-variance τ2 due to the trade-off between mean

and covariance structure that is inherent in any spatial model. Here we see the benefit of block

updates on the conditional spatial field. The deterioration of convergence in the β0 and τ2 chains

is due to the weak identifiability of the underlying field. In many imaging problems, however, the

quantity of interest is actually a function of the individual parameters. In this case, we are only

interested in βϕ := β0β1 + βγ, meaning that we want to explore the so-called embedded posterior

distribution of βϕ. The parameter βϕ is well identified under both sampling approaches, as evident

in Supplementary Figure A.7 and Figure 4.6, which display the posterior mean estimates of the

underlying images in the 80 × 80 and 128 × 128 cases, respectively. Again, the estimates of the

latent image obtained from chromatic and block sampling are virtually identical. This phenomenon

echoes the observation of Gelfand and Sahu [1999] that even when a Gibbs sampler is run over a

vague (or improper) posterior distribution, inferences can still be drawn for certain lower dimensional

estimands.
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Figure 4.6: Simulated data and posterior mean estimates of the the true image from the chromatic and

block sampling approaches in the noisy 128× 128 array example. The multivariate potential scale reduction

factors for the βϕ := β0β1 + βγ chains are approximately 1.00 for both samplers.

Figure 4.7 displays the total CPU time required to complete 10,000 iterations for p =

50, 80, 128, 256. The single site sampler is only feasible in the p = 50 case, as it is by far the

most inefficient implementation in R due to the nested loops that result from sequential updating.

Chromatic sampling requires much less computing time, and scales at a lower rate than block

updating, due in part to the fact that no Cholesky factorizations are required. Such factorizations

with even sparse matrices can be expensive, and repeated multivariate Gaussian draws are still
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required even when the symbolic factorization is stored throughout the MCMC routine. There

is also considerable memory overhead associated with both sparse Cholseky block updating and

chromatic sampling. The total required memory for Cholesky-based block updating depends on

the storage scheme used by the sparse matrix implementation. The spam implementation in our

example uses a variant of the so-called compressed sparse row format [Sherman, 1975]. Chromatic

sampling, on the other hand, requires no matrix storage at all, but only lists of identifiers associated

with each graph color. The right panel of Figure 4.7 illustrates the consequent savings in memory

requirements and how they scale with arrays of increasing dimension. In fact, block updating for

256× 256 was not possible due to memory limitations. The Cholesky factorization failed, returning

Cholmod error: ‘problem too large’. In contrast, we see that chromatic sampling scales to

extremely large problems, even to a 512 × 512 array with CPU time 1893.19 seconds (results not

shown).
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Figure 4.7: CPU time (left) and total memory required (right) for chromatic and block Gibbs sampling to

complete 10,000 iterations for simulated noisy p × p arrays. The CPU time for single-site sampling is also

displayed for the p = 50 case. In both plots, the y axis is on the log scale.

4.3.2 Binomial Election Data on an Irregular Lattice

Here we examine the performance of the block Gibbs and chromatic sampling strategies on an

irregular lattice, since both the structure of βQ and the possible colorings of the underlying graph

are more complicated. Moreover, we illustrate the performance of these procedures when applied

to non-Gaussian data. In particular, we examine geographical trends in voter preference using

binomial outcomes. The data were obtained from the Harvard Election Data Archive (https:
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//dataverse.harvard.edu).

Our data consist of polling results from the 2010 New York Governor’s race in which Demo-

cratic candidate Andrew Cuomo defeated Republican candidate Carl Paladino and Green Party

candidate Howie Hawkins. During this election, the state of New York had n = 14, 926 precincts,

with polling data being available on 14, 597 precincts. The 329 precincts for which data are unavail-

able is attributable to improper reporting or lack of voter turnout.

Let Yi be the number of votes cast for the Democratic candidate out of mi total votes in

precinct i, i = 1, . . . , n. Then we assume that Yi|pi,mi
indep.∼ Bin(mi, pi), where g−1(pi) = β0 + γi,

g(·) is the usual logistic link function, and γ = (γ1, ..., γn)T is a vector of random effects inducing

spatial homogeneity. We suppose that βγ follows a proper IAR model; i.e., βγ ∼ N(β0, τ2(βD −

ρβW )), where βD and βW are as defined in Section 4.3.1. Here, the “propriety parameter” ρ ∈

(λ−11 , λ−1n ) ensures that the precision matrix is non-singular, where λ1 < 0 and λN > 0 are the

smallest and largest eigenvalues of βD−1/2βWβD−1/2, respectively [Banerjee et al., 2015b]. Proper

IARs are sometimes used as approximations to the standard IAR when a proper prior distribution

is desired. For simplicity, we fix ρ = 0.995. The model is completed with the prior assumptions that

β0 ∼ N(0, 1000) and τ2 ∼ InvGam(1, 1).

Under the logistic link, we can simplify posterior sampling via data augmentation. This tech-

nique exploits the fact that exp(η)a(1+exp(η))−b = 2−b exp(κη)
∫∞
0

exp(−ψη2/2)p(ψ|b, 0) dψ, where

η ∈ R, a ∈ R, b ∈ R+, κ = a−b/2, and p(·|b, 0) is the probability density function of a Pólya-Gamma

random variable with parameters b and 0 [Polson et al., 2013]. Using this identity, the observed data

likelihood can be written as π(Y|β0,γ, ) ∝
∏n
i=1 exp{κiηi} ×

∫∞
0

exp(−ψiη2i /2)p(ψi|mi, 0)dψi, where

Y = (Y1, ..., Yn)T , ηi = β0 + γi and κi = Yi − mi/2. Thus, by introducing ψi as latent random

variables, we have that

π(Y ,ψ|β0,γ) ∝ exp{−
(
(β0β1 + βγ)TDψ(β0β1 + βγ)− 2κT (β0β1 + βγ)

)
/2}

n∏
i=1

p(ψi|mi, 0),

where ψ = (ψ1, ..., ψn)T , κ = (κ1, ..., κn), and Dψ = diag(ψ). By including βψ in the MCMC

algorithm, we induce a Gaussian full conditional distribution on βγ, facilitating GMRF updates

without having to tune a Metropolis-Hastings algorithm. Additional implementation details are

provided in Appendix A.

In order to implement chromatic sampling, a coloring of the underlying Markov graph has
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Sampler CPU Time (s) ESS ACT CES

β0 Chromatic 222.06 2445.74 2.04 0.0935
β0 Block 294.16 2732.82 1.83 0.1018
τ2 Chromatic 222.06 1916.63 2.61 0.1155
τ2 Block 294.16 2186.021 2.29 0.1332

Table 4.2: CPU times to draw 5,000 realizations (including 5000 burin-in iterations) from one
Markov chain under each sampling approach in the New York election example. Also reported are
the effective sample sizes (ESS), autocorrelation times (ACT), and costs per effective sample (CES).

to be found. Using the greedy algorithm given in Algorithm 2, we obtain a 7-coloring, so that the

chromatic sampler can update the entire n = 14, 926-dimensional field in seven steps. The coloring

is depicted in Supplementary Figure A.11.

We implement Gibbs sampling with both the block Gibbs and chromatic updates for 10, 000

iterations, discarding the first 5, 000 as a burn-in period. The simulations are run on a desktop

using Windows 10 with an Intel Core i5-3570 3.40GHz CPU with 16GB of RAM. The trace plots

and empirical ACF plots for β0 and τ2 are depicted in Supplementary Figure A.12, along with the

Gelman plots of these two parameters in Supplementary Figure A.13. We see adequate convergence

in the same number iterations under both sampling approaches. Table 4.2 summarizes the results

for both samplers in terms of CPU time and cost per effective sample of the intercept and variance

terms. We again see a savings in CPU time under chromatic sampling, so much so that it offsets the

slightly larger autocorrelation time. Thus we are able to obtain effectively independent samples with

less computational effort. The posterior mean maps of the voter Democratic preference (pi) obtained

under each sampling strategy are displayed in Figure 4.8. We see essentially identical results under

both strategies.

70



0.092828 - 0.100000
0.100001 - 0.200000
0.200001 - 0.300000
0.300001 - 0.400000
0.400001 - 0.500000
0.500001 - 0.600000
0.600001 - 0.700000
0.700001 - 0.800000
0.800001 - 0.900000
0.900001 - 1.000000

0.092719 - 0.100000
0.100001 - 0.200000
0.200001 - 0.300000
0.300001 - 0.400000
0.400001 - 0.500000
0.500001 - 0.600000
0.600001 - 0.700000
0.700001 - 0.800000
0.800001 - 0.900000
0.900001 - 1.000000

Figure 4.8: Posterior mean maps of voter preference for the Democratic candidate in the binomial election

example obtained from the full block Gibbs (top), and chromatic Gibbs (bottom) sampling.

4.3.3 Summary

These numerical experiments illustrate potential improvements that chromatic Gibbs sampling can

offer versus the two most common strategies of block sampling via sparse linear algebra and single-

site sampling via local characteristics. In simulated image reconstruction, we find that for every

considered resolution, the chromatic sampler is computationally much cheaper than the full block

Gibbs and single-site samplers. As the dimension increases, we do observe differences between

chromatic and block sampling with respect to sampling the GMRF precision parameter and intercept

term. This is partly due to the correlation between the random field and the precision parameter

that is known to occur as the dimension of the GMRF increases [Rue and Held, 2005a, Agapiou

et al., 2014]. Even in this case, however, both approaches are able to estimate the posterior mean of

the latent field and obtain equivalent recovery of the quantity of interest. The chromatic sampler is

able to do so much more quickly and with much less memory overhead, the latter of which allows the

chromatic sampler to scale to images of extremely large dimension beyond the capability of standard
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Cholesky factorization routines available in R. The potential advantages extend to irregular arrays

and non-Gaussian data, as demonstrated in the election data example.

4.4 Discussion

Over the last twenty years, Gaussian Markov random fields have seen a dramatic increase in pop-

ularity in the applied Bayesian community. In this work, we discussed approaches for simulating

from Gaussian Markov random fields that are commonly used in practice. We compared the two

dominant approaches in the statistics literature, single-site and block updating, to chromatic Gibbs

sampling. Each procedure has theoretical guarantees, but our criteria have been pragmatic; i.e., how

can statisticians effectively lower the computational cost of sampling from the target distribution

without resorting to esoteric knowledge from graph theory, numerical analysis, or parallel program-

ming? Taking this view, we have shown that chromatic sampling is competitive with and often able

to improve upon single-site and full block Gibbs.

Motivated by large-scale clinical imaging data, we illustrated potential advantages on a

regular array with Gaussian response, finding that chromatic sampling scales to settings where

memory limitations prevent direct sparse matrix manipulations. We also considered a real example

with binomial election data on an irregular lattice with almost 15,000 areal units, showing that

chromatic sampling is useful even without a provably optimal coloring of the MRF graph. Both

block sampling and chromatic sampling tend to be far superior to single-site sampling when one is

trying to avoid direct iterations in R.

While facilitating parallel or vectorized simultaneous updates, each individual draw under

chromatic sampling is still at the level of a single site. Thus, for variables that are highly correlated

in the target distribution, convergence can be slow. To handle this, Gonzalez et al. [2011a] propose

also a “splash sampler” to combine the blocking principle of updating sets of correlated variables

together with the parallelizability afforded by graph colorings. Splash sampling is more involved than

simple chromatic sampling. It requires careful construction of undirected acyclic graphs subject to a

known tree width determined by individual processor limitations, and hence much more computing

effort and more familiarity with graph theory. In the Gaussian case, splash sampling would require

repeated Cholesky factorizations, each on matrices of smaller dimension, but without being able to

save the sparsity structure. In the presence of highly correlated variables in the target distribution
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with GMRF updates, it might be preferable to use ordinary block updates with sparse matrix algebra

and the algorithms suggested by Rue [2001]. However, our numerical experiments demonstrate that

the gain in computational efficiency from the simple chromatic sampler can still outweigh the loss of

statistical efficiency. This leads to an overall improvement in a variety of situations without resorting

to more sophisticated approaches that might be inaccessible to most statisticians.

In this chapter, we examined the performance of chromatic sampling versus single-site and

block Gibbs on high density data in which the entire study region is sufficiently sampled and in

which a first-order Markov neighborhood can capture the salient features of the data. This situation

is applicable to many, but not all, analyses of areal data. There remains the issue of how chromatic

sampling would perform in the presence of sparse observations from an underlying smooth process,

where the autocorrelation of the Markov chain would be expected to be higher than in the high-

density case. We leave this question for future work.

Given the current trajectory of modern data analysis, the utility of GMRFs is not likely

to diminish anytime soon. However, with their use comes the need for efficient yet accessible sam-

pling strategies to facilitate Bayesian posterior inference along with appropriate measures of uncer-

tainty. This area remains an active area of research among statisticians, computer scientists, and

applied mathematicians. Fortunately, the increasingly interdisciplinary environment within which

researchers are operating today makes it more likely that significant advancements will be widely

disseminated and understood by researchers from a wide variety of backgrounds. This is no doubt

a promising trend which will ultimately benefit the broader scientific community as a whole.

Supplementary Material

Appendix A contains additional figures referred to in the text and details concerning the

posterior sampling algorithm used in the election example.

73



Chapter 5

A Large Scale Spatio-Temporal

Binomial Regression Model for

Estimating Seroprevalence Trends

5.1 Introduction

Lyme disease is a vector-borne disease that impacts both humans and several other mammalian

species, with domestic dogs often contracting the infection [Little et al., 2010a]. Disease results via

infection by Borrelia burgdorferi, a spirochetal bacteria that is transmitted by ticks. In the United

States, B. burgdorferi is the only known etiologic agent of Lyme disease in dogs; other species can

cause Lyme in Europe and Asia. Lyme incidence in humans is considered emerging, with a growing

number of high incidence counties being reported [Adams, 2017]. Humans and dogs are infected by

the same vectors [Little et al., 2010a]; hence, the risks of exposure for both are related. In fact, dogs

are viewed as sentinels for regional Lyme risk in humans [Mead et al., 2011c]. The effects of Lyme

disease are usually more severe in humans, often debilitating.

Dogs are regularly tested for exposure to B. burgdorferi as part of annual wellness examina-

tions. Commonly, veterinarians use a serologic test that detects antibodies against the C6 peptide

that is present in the blood of Lyme-exposed animals. The presence of C6 is indicative of an inter-

mediate or late-term infection and is often detectable 3 to 6 weeks after exposure [Wagner et al.,
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2012b]. Among dogs that are infected, only about 5% develop any clinical signs of Lyme disease

[Levy and Magnarelli, 1992]. The remaining dogs may either clear the infection without developing

the disease, or are subclinically infected and never show symptoms. The routine Lyme testing done

on dogs provides an opportunity to measure the proportion of exposed dogs in the relatively healthy

canine population that visits veterinary clinics and is tested. This proportion is a prevalence based

on serologic (blood) tests and is therefore called a seroprevalence (henceforth shortened to preva-

lence). In this population, the national prevalence is about 6%, but county Lyme prevalence can

exceed 40% in some cases.

Monitoring prevalence is useful for many reasons. Prevalence rates indicate exposure risk

within a region, allowing veterinarians to provide effective preventative care and make testing rec-

ommendations. Indirectly, prevalence can help identify the range of Ixodes spp. tick vectors. This is

important because Ixodes spp. also transmit other pathogens, including Anaplasma spp., Ehrlichia

muris eauclairensis and Babesia microti [Nelder et al., 2016], several of which are also zoonotic. The

shared tick vector and extensive Lyme data for dogs makes them a good sentinel for quantifying

human Lyme risk. In short, trends in dog prevalence should aid our understanding of Lyme risk

changes for humans.

The goal of this chapter is to identify US regions that are experiencing increasing dog Lyme

prevalence. Our data are 16,571,562 serologic B. burgdorferi tests conducted on domestic dogs in

the conterminous United States (US) from January 2012 - December 2016, aggregated by county

and month. Figure 5.1 displays the raw prevalence estimates (the proportion of positive tests) after

aggregating over all sixty months in the study. Data were reported from 69,876 county-month pairs.

To locate where prevalence is increasing, our model needs to have a spatially-varying temporal trend

component. To make reliable inferences, the strong positive spatio-temporal dependence of the tests

needs to be taken into account. The size of this data set and its large spatio-temporal support

(about 3100 distinct counties or county-equivalent regions).

Gaussian processes (GPs) are popular geostatistical modeling tools due to their flexibil-

ity and ability to quantify uncertainty in nonparametric regressions [O’Hagan, 1978],[Neal, 1998].

Good GP modeling overviews are Cressie [1993], Rasmussen and Williams [2006], Cressie and Wikle

[2011a], and Gelfand and Schliep [2016]. Banerjee et al. [2015a] discuss Bayesian aspects of GPs.

Objective prior specification for GP models is studied in Berger et al. [2001]. GPs have become

standard tools in a wide variety of applications, including oceanography [Jona-Lasinio et al., 2012],
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water quality analysis [Zhang and El-Shaarawi, 2009], image classification [Morales-Álvarez et al.,

2017], neuroimaging [Lazar, 2008], and computer experiments [Santner et al., 2003]. GPs have also

been previously used to model disease prevalence, including dengue fever [Johnson et al., 2017],

malaria [Andrade-Pacheco et al., 2015], and influenza [Senanayake et al., 2016]. Gelfand et al. [2003]

allowed GP linear model coefficients to vary smoothly over space, an approach used here to allow

for regional prevalence trends.

GP modifications and algorithms for analyzing big spatial data have received significant re-

cent attention, including fixed rank kriging [Cressie and Johannesson, 2008] and LatticeKrig [Nychka

et al., 2015]. Both methods employ basis function expansions of spatial random effects to reduce

the dimensions of the covariance matrices in the model. Katzfuss [2017] takes a similar approach,

applying basis functions to a succession of refined resolutions. Spatial partitioning [e.g., Sang et al.,

2011, Heaton et al., 2017a] can be used to split regions into smaller, more manageable sub-regions

with computation being accelerated via a conditional independence assumption. Covariance taper-

ing [Furrer et al., 2006] uses a covariance structure with compact support to induce sparsity. Nearest

neighbor processes [Datta et al., 2016a] achieve computational efficiency by conditioning on a subset

of nearby observations. A similar idea is used by Gramacy and Apley [2015] to find the largest num-

ber of neighbors that are computationally feasible for prediction, optimally chosen by minimizing a

prediction variance. Heaton et al. [2017b] provide an overview and comparison of these and other

procedures. Our approach involves Gaussian predictive processes (GPPs) [GPPs; Banerjee et al.,

2008] and is discussed further in Section 5.2.

The most common approach for modeling spatially dependent areal data involves Gaussian

Markov random fields [GMRFs; Rue and Held, 2005b], with Gaussian conditional autoregressive

(CAR) models [Banerjee et al., 2015a] being particularly popular. As special cases of Markov random

fields [Besag, 1974a], GMRFs are collections of jointly distributed Gaussian variables satisfying a

Markov dependence structure quantified through a precision matrix. GMRFs are extended to flexible

degrees of smoothness in Brezger et al. [2007] and Yue and Speckman [2010]. Brown et al. [2017a]

adjust the CAR precision matrix to build a unified model for independent and dependent cases

and study neighborhood structures other than those based on physical adjacency. GMRF and GP

connections are explored in Rue and Tjemland [2002], Song et al. [2008], and Lindgren et al. [2011b].

CAR models are by now standard in disease mapping problems [e.g., Waller et al., 1997b].

To achieve our goals, a large scale spatio-temporal binomial regression model is developed

76



that has both GPP and CAR components. The former is used to capture regionally varying trends

by treating the trend coefficient as a non-parametric surface over space, while the latter accounts for

local heterogeneity. Through data augmentation steps and a novel sampling strategy, a modeling

framework is developed that is computationally scalable to large non-Gaussian spatio-temporal data

sets. In particular, straightforward Gibbs sampling is facilitated via a data augmentation step

involving latent Pólya-Gamma variables. To avoid computationally expensive matrix calculations, a

chromatic sampling strategy is used in our Gibbs sampler. Our methodology easily handles missing

data. The finite sample properties of our approach are studied via simulation before our Lyme

analysis is conducted.

The remainder of this chapter is organized as follows: Section 5.2 describes the model and

our GPP and CAR structures. Section 5.3 discusses model fitting procedures, emphasizing com-

putational tractability with large spatio-temporal data. Section 5.4 presents a simulation study

supporting our approach and Section 5.5 analyzes the canine serology data described above. Con-

cluding remarks are offered in Section 5.6.

5.2 Modeling Methods

Let Yst denote the number of cases (e.g., positive B. burgdorferi tests) observed in nst tests taken in

region s at time t, for s = 1, . . . , S and t = 1, . . . , T . Set Y s = (Ys1, . . . , YsT )′, Y = (Y ′1, . . . ,Y
′
S)′ ∈

RST , ns = (ns1, . . . , nsT )′, and n = (n′1, . . . ,n
′
S)′ ∈ NST . In addition to the disease tests, the

covariates Zstq and Xstp, for q = 1, . . . , Q and p = 1, . . . , P , are assumed available in region s

at time t. The Zstq are covariates whose effects are constant over the study area, while Xstq are

covariates whose associated effects vary by region.

To relate the observed test data to the covariates, a Bayesian generalized linear mixed model

[McCullagh and Nelder, 1989, Diggle et al., 1998, Banerjee et al., 2015a] is adopted. Our general

model is the binomial regression: Yst|nst, pst ∼ Binomial(nst, pst) with

νst := g−1(pst) = Z ′stδ +X ′stβ(`s) + ξst; s = 1, . . . , S; t = 1, . . . , T, (5.1)

where g : R → (0, 1) is a known link function (e.g., logistic) relating the linear predictor νst to the

prevalence pst, Zst = (1, Zst1, . . . , ZstQ)′ ∈ RQ+1, Xst = (Xst1, . . . , XstP )′ ∈ RP , δ = (δ0, . . . , δQ)′

77



are global regression coefficients, β(·) = (β1(·), . . . , βP (·))′ are spatially varying regression coeffi-

cients, `s = (`s1, `s2)′ is a vector of spatial coordinates (e.g., latitude and longitude) that identifies

the centroid of region s, and ξst is a spatio-temporal random effect. Following Gelfand et al. [2003],

the spatially varying regression coefficients are regarded as unknown smooth surfaces over the study

region. To model these unknown surfaces while maintaining computational tractability, GPPs are

used.

A GP is a stochastic process whose finite dimensional distributions are multivariate normal.

A GP βp(·), given a covariance parameter θp and denoted

βp | θp ∼ GP(µp(·), C(·, ·;θp)),

is uniquely determined by its mean and covariance, µp(`s) := E[βp(`s)] and C(`s, `s′ ;θp) :=

Cov(βp(`s), βp(`s′)) = σ2
pρp(`s, `s′ ;θp), where ρp(·, ·;θp) is a correlation function depending on θp.

For smoothing and interpolation, a constant mean is often assumed [Bayarri et al., 2007]. Our work a

priori posits that µp(·) ≡ 0 for all p. Thus, βp = (βp(`1), . . . , βp(`S))′, S ∈ N, follows a multivariate

normal distribution with mean 0 and covariance matrix Cp = σ2
pRp, where (Rp)ss′ = ρp(`s, `s′ ;θp).

In general, the covariance matrix inversions and factorizations needed to calculate quantities in our

posterior distributions are O(S3) in computational time. In Markov chain Monte Carlo algorithms,

these operations will need to be repeated thousands of times. Thus, as S grows large, GPs quickly

become computationally unwieldy.

To reduce the dimension of the problem, our GPP employs a “parent” process based on a

strategically chosen set of knots and interpolates to points of interest via kriging. Let {`∗1, . . . , `∗S∗p}

denote the knot set with S∗p � S. Define β∗p = (βp(`
∗
1), . . . , βp(`

∗
S∗p

))′ and note that β∗p|σ2
p,θp

ind∼

N(0,C∗p), for all p, where C∗p = σ2
pR
∗
p and (R∗p)ss′ = ρp(`

∗
s, `
∗
s′ ;θp). The GPP simply replaces βp

with β̃p := E(βp|β∗p;θp) = R̃∗p(R
∗
p)
−1β∗p, where R̃∗p is an S × S∗p matrix whose (s, s′)th element

is ρp(`s, `
∗
s′ ;θp). When S∗p is not large, (R∗p)

−1 can be quickly computed. For more on GPPs, see

Banerjee et al. [2008].

Fully specifying a GPP requires specifying its knot locations. Banerjee et al. [2008] discuss

several methods of knot selection, including placing them on a regular grid, selecting them at random

from the observation locations, and methods that place more knots in areas with more observations.

Finley et al. [2009] suggest choosing knot locations to minimize conditional variances at observation
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locations. Guhaniyogi et al. [2011] propose an adaptive knot selection strategy where knot locations

are treated as a point process. Following Eidsvik et al. [2012], our knots are chosen via K-means

clustering with S∗p clusters; i.e., using K-means clustering, the S counties are partitioned into S∗p

clusters based on their locations `s. The knot locations are taken as the centroids of the S∗p clusters.

For further details on K-means clustering, see Hartigan and Wong [1979].

A variety of ways exist to model spatio-temporal dependence of areal data. Some commonly

used methods include intrinsic CAR models, proper CAR models, and the so-called Besag-York-

Mollie (BYM) models for disease mapping problems. These methods can be extended to handle

spatio-temporal correlation in many ways. For examples, a separate BYM model can be fit at each

time point [Waller et al., 1997b], or a CAR model can be combined with a spline-based temporal

structure [MacNab and Dean, 2001], or a local autoregressive model in time [Congdon and Southall,

2005]. For a thorough review and comparison of existing spatio-temporal models, see Anderson and

Ryan [2017]. A county-by-county exploratory analysis of our Lyme data suggests that a first order

autoregressive model is sufficient for handling temporal dependence. Thus, following Rushworth

et al. [2014] and Lee and Lawson [2014], a first-order vector autoregression is used with GMRF

errors:

ξt = ζξt−1 + φt, (5.2)

where ξt = (ξ1t, ...ξSt)
′, ζ ∈ (−1, 1) is a parameter controlling temporal correlation, and ξ0 =

0 is taken as a starting condition. We assume the φts to be independent and identically dis-

tributed as a proper intrinsically autoregressive model [Besag and Kooperberg, 1995a]; i.e., φt ∼

N
(
0, τ2(D − ωW )−1

)
, where τ2 > 0 and ω ∈ (0, 1) is a so-called “propriety parameter” that ensures

the precision matrix is non-singular [Banerjee et al., 2015a]. The neighborhood matrix W ∈ RS×S

is such that (W )ss′ is equal to 1 if and only if location s is adjacent to location s′, s 6= s′, zero

otherwise, and

D = diag

 S∑
j=1

(W )sj , s = 1, . . . , S

 .

To avoid confounding with the intercept, the standard sum-to-zero constraint

T∑
t=1

S∑
s=1

ξst = 0,
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is imposed.

The proposed model is completed by specifying prior distributions on the regression coef-

ficients and the variance and correlation parameters. In the absence of strong prior information,

hyperparameters are chosen to induce vague prior distributions. A Gaussian prior is assumed for the

global regression coefficients, and inverse Gamma (IG) priors are placed on variance components. A

truncated Gaussian prior with support (−1, 1) is specified for ζ. A Beta(αω, υω) prior is placed on

ω to concentrate it close to unity, since previous empirical work has shown that ω ≈ 1 is necessary

to induce noticeable spatial association [Banerjee et al., 2015a]. These specifications lead to the

following hierarchy:

Yst|nst, νst indep.∼ Binomial (nst, pst = g(νst)) , s = 1, . . . , S; t = 1, . . . , T ;

β∗p|σ2
p,θp

indep.∼ N(0, σ2
pR
∗
p(θp)), p = 1, . . . , P ;

σ2
p
indep.∼ IG(ασ2

p
, υσ2

p
), p = 1, . . . , P ;

θp
i.i.d.∼ π(θp), p = 1, . . . , P ;

δ ∼ N(0, σ2
δI), σ2

δ > 0;

ξt|ξt−1, τ2, ω, ζ ∼ N
(
ζξt−1, τ

2(D − ωW )−1
)
, t = 1, . . . , T ;

τ2 ∼ IG(ατ2 , υτ2), ατ2 , υτ2 > 0;

ω ∼ Beta(αω, υω), αω, υω > 0;

ζ ∼ Truncated-Normal(0, σ2
ζ ,−1, 1), σ2

ζ > 0,

(5.3)

where νst = Z ′stδ +X ′stβ̃(`s) + ξst, β̃(`s) = (β̃1(`s), ..., β̃P (`s))
′, and ξ0 = 0. Each coefficient in

β̃(`s) is obtained from the P predictive processes via β̃p = R̃
∗
p(R

∗
p)
−1β∗p. Appropriate (identical)

priors for θ1, . . . ,θP depend on the correlation function selected in the GPP model.

While the combination of a continuous support GPP and a discrete support GMRF has not

been extensively used previously, it is motivated in our application. Since the β̃` coefficients contain

trends that are thought to vary smoothly over space, we appeal to GP models since an explicit

covariance function allows for the direct imposition of smoothness assumptions and a meaningful

prediction function through kriging — the latter is useful for estimating seroprevalence trends at

unobserved locations. The spatio-temporal random effects, on the other hand, are of secondary

interest and serve only to smooth the extra-regression variability beyond that explained by the
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predictors. Since they are defined over an areal lattice, a CAR model is a natural choice. In

Appendix B, we consider replacing the GPP with a CAR model on the regression coefficients and

empirically study the results via simulation. We find that the GPP model is able to produce reliable

estimates of both “regional” and “local” trends, while the CAR model only estimates local trends.

Since both models reliably estimate local trends and the GPP model can also accurately estimate

regional trends, the GPP model is used. For further discussion of local and regional trends, including

the differences between them, see Section 5.5 and Appendix B.

5.3 Posterior Sampling

5.3.1 Data Augmentation

We assume conditional independence given the covariate effects and spatio-temporal effects and ob-

serve that Y depends on the regression coefficients and random effects only through ν = (ν11, . . . , ν1T , ν21, . . . , νST )′.

Hence, the likelihood is

f(Y |ν) ∝
T∏
t=1

S∏
s=1

g(νst)
Yst{1− g(νst)}nst−Yst . (5.4)

To develop a posterior sampling algorithm, let g(·) be the logistic link. Other link functions are pos-

sible and can be implemented following Albert and Chib [1993] or Gamerman [1997]. Metropolis-

Hastings steps [Metropolis et al., 1953, Hastings, 1970] can be used either component-wise or in

blocks, but such samplers can be difficult to tune in high dimensions. To facilitate the derivation

of a Gibbs sampler for the regression coefficients and spatio-temporal random effects, a data aug-

mentation scheme is used that leads to sampling these parameters from Gaussian full conditional

distributions.

Our data augmentation approach follows Polson et al. [2013] and relies on the fact that

exp(ν)a{1 + exp(ν)}−b = 2−b exp(κν)
∫∞
0

exp(−ψν2/2) p(ψ|b, 0)dψ, where a ∈ R, b ∈ R+, κ =

a − b/2, and p(· | b, 0) is the probability density function of a Pólya-Gamma random variable with
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parameters b and 0. From these, under the logistic link, (5.4) can be written as

f(Y |ν) ∝
T∏
t=1

S∏
s=1

exp(κstνst)

∫ ∞
0

exp(−ψstν2st/2)p(ψst|nst, 0)dψst

∝
T∏
t=1

S∏
s=1

∫ ∞
0

fY,ψ(Yst, ψst | νst)dψst,

where κst = Yst − nst/2 and fY,ψ is the joint density of (Yst, ψst). By introducing the ψst as latent

random variables to be sampled via MCMC, we obtain

fY ,ψ(Y ,ψ | ν) ∝ exp(−ν′Dψν/2 + κ′ν)

T∏
t=1

S∏
s=1

p(ψst|nst, 0),

where ψ = (ψ11, . . . , ψ1T , ψ21, . . . , ψST )′, Dψ = diag(ψ), and κ = (κ11, . . . , κ1T , κ21, . . . , κST )′.

Hence, data augmentation yields a Gaussian density in ν up to a normalizing constant. Consequently,

the full conditional distributions for most parameters take a known form and are easy to sample.

For specifics, the full conditional distribution of ψst is Pólya-Gamma, β∗p is multivariate normal,

δ is multivariate normal, σ2
p is inverse gamma, τ2 is inverse gamma, and ζ is truncated normal.

Appendix B provides additional conditional distributions.

From the data augmentation, a posterior sampling algorithm involving Gibbs steps for the

above parameters can be constructed in the usual manner. Metropolis-Hastings steps are used to

sample each θ` and ω. While the full conditional distribution of ξt is multivariate normal, sampling

from this high dimensional distribution is computationally expensive. For more efficient repeated

updates of ξt, the Markov structure of the CAR model is exploited to construct a chromatic sampler

that updates conditionally independent blocks of ξt in parallel. For further discussion, see Gonzalez

et al. [2011b] and Brown et al. [2017c].

5.3.2 A Note on Missing Data

In our application, data are not reported at all county-month pairs. To account for this, let R be

the set of all ordered pairs (s, t) for which tests are observed. The augmented likelihood is

f(Y (R),ψ(R) | ν(R)) ∝ exp(−ν(R)′Dψ(R)ν(R)/2 + κ(R)′ν(R))
∏

(s,t)∈R

p(ψst|nst, 0),
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where ν(R) = Z(R)δ + X(R)b̃ + I(R)ξ and the convention that A(R) is the matrix formed by

retaining the rows of A whose indices are in R is used. Here, Z = (Z ′1, . . . ,Z
′
S)′ ∈ RST×(Q+1)

with Zs = (Zs1, . . . ,ZsT )′. Similarly, X =
⊕S

s=1Xs ∈ RST×SP with Xs = (Xs1, . . . ,XsT )′,

I is the identity matrix, and b̃ = (β̃
′
(`1), . . . , β̃

′
(`S))′ ∈ RSP . Since ξ ∈ RST is the vector of

spatial random effects over all locations within the study region for all time points, a well-defined

full conditional distribution for ξ is obtained, provided that the prior on ξ is proper. This joint

density representation permits the imputation of any missing effects via posterior realizations.

5.4 A Simulation Study

This section studies via simulation how well our methods estimate model coefficients and how GPP

knot selection influences results. Data were generated on a regularly spaced S×S grid over 60 time

points, where S = 13, and then drawing Yst|nst, pst indep.∼ Binomial(nst, pst) observations, where

g−1(pst) = δ0 + β̃1(`s)t/60 + ξst, s = 1, . . . , S2; t = 1, . . . , 60,

and g(·) is the logistic link. The test counts nst were randomly sampled from a discrete uniform

distribution ranging from 100 to 200. The random effects ξst are generated from the CAR model

defined in Section 5.2 with ζ = 0.9, τ2 = 0.005, ω ∈ {0.00, 0.55, 0.90}, and a neighborhood matrix

W set so that two areas are neighbors if and only if they share a common edge or corner. The ω

values 0.00, 0.55, and 0.90 correspond to no, weak, and strong spatial dependence, respectively. The

true intercept was set to δ0 = −1 and the surface β̃1(·) at each study location is generated from the

GPP model in (1). Specifically, a realization of the parent process is first simulated on a 5× 5 grid

of equally spaced knots. The parent process took µ1(`∗s) ≡ 1 and ρ(`∗s, `
∗
s′ ; θ1) = θ

d2
ss′

1 , where dss′ is

the Euclidean distance between `∗s and `∗s′ , θ1 = 0.6, and σ2
1 = 1.5. The resulting β̃1(·) is depicted

in Figure 5.2. Using this surface, 500 independent data sets were generated from the model for each

ω.

Our model was fitted to each data set using three separate knot set configurations. The

first configuration uses the same knots as those generating the true surface, representing an ideal

situation. The other two configurations take 4 × 4 and 7 × 7 grids of equally spaced knots. For

priors in (1), we take ασ2
1

= υσ2
1

= ατ2 = υτ2 = 2, σ2
δ = 1000, αω = 900, υω = 100, and σ2

ζ = 10.
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In the GPP, the correlation function was taken as ρ(`s, `s′ ; θ1) = θ
d2
s,s′

1 , the same as the true GPP.

A Uniform(0, 1) prior on θ1 was used. For each data set, 5,000 MCMC iterates are retained after

a burn-in of 5,000 samples. Convergence of the chains were assessed via trace plots and judged

acceptable.

Figure 5.3 summarizes our results for the temporal trend parameter β̃1(·) when ω = 0.90.

This includes a spatial depiction of the arithmetic average of the 500 point estimates, as well as

empirical biases and mean squared errors. Here, for each data set, a point estimate of β̃1(·) was

obtained as the mean of the 5,000 retained MCMC iterates. Supplementary Figure B.1 summarizes

results for the other ω values. The methods estimate the spatially varying regression coefficient

well for every considered ω; i.e., the mean estimates show little bias and have a relatively small

mean squared error. Estimator variability increases near the region’s edges — this boundary effect

is expected and is common in non-parametric regressions. Figure 5.3 shows little practical difference

for the estimates obtained under the three different knot configurations, suggesting that the methods

can recover the true coefficient surface across the entire study region (assuming the model is correct

up to choice of knots).

Two additional simulations were conducted. The first simulation examined the performance

of the proposed methodology in the presence of missing data. The second study examined the effects

of increasing spatial dimension. Results for these are presented in Appendix B. The results indicate

that the proposed methodology performs well in these more challenging situations.

5.5 Lyme Analysis

5.5.1 Background

Our data contain 16,571,562 tests on domestic dogs living throughout the conterminous United

States from January 2012 - December 2016. The data were provided by IDEXX Laboratories,

Inc. to the Companion Animal Parasite Council (CAPC), who made them available online at https:

//www.capcvet.org. The data are aggregated by month and county; 69,876 county-month pairs

report at least one test.

In general, the spatial distribution of a vector-borne disease is strongly influenced by regional

environments and the vector’s hosts (e.g., deer populations), leading to correlated data [Legendre,
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1993]. A strong spatial correlation is seen in these data, as indicated by Figure 5.1 and a Moran’s

I statistic of 0.378 (p-value ≈ 0). Such data are also positively temporally correlated. Figure 5.4

displays raw county-level prevalence estimates aggregated over all 12 months in the two years of

2012 and 2016. A comparison of these graphics suggest where a significant increase in prevalence is

expected, including Western Pennsylvania, Virginia, West Virginia, Minnesota, and Iowa.

5.5.2 Model Building and Seasonality

As an exploratory step, a county-by-county time series analysis of prevalence was conducted for 672

counties reporting a sufficient amount of data; i.e., counties reporting 10 or more positive tests each

month. Following Dunsmuir and Scott [2015], a binomial generalized linear model with only a linear

time trend (on the logit scale) was fitted to each county’s time series. The partial autocorrelations

of the Pearson residuals were used to assess autoregressive orders in the usual manner. From this

analysis, a first-order autoregressive (AR(1)) model was deemed reasonable for most counties. Next,

a generalized linear AR(1) model with the mean structure described above was fitted to each county.

Histograms of the probability integral transformations were constructed and used to assess suitability

of the AR(1) model. These results support an AR(1) model to account for temporal dependence,

providing justification for the form taken in (5.2). For more details on this analysis, see Appendix

B.

Given the seasonality of tick activity, seasonality could also be present in Lyme prevalence.

Though no strong evidence of seasonality surfaced in our exploratory analysis, a more thorough

investigation of seasonality was conducted by fitting the model

νst = δ0 + β̃1(`s)I1(t) + β̃2(`s)I2(t) + β̃3(`s)I3(t) + β̃4(`s)t+ ξst, (5.5)

where t denotes time (rescaled to the unit interval) and Ip(t) is a seasonal indicator for p = 1, 2, 3.

Seasons are defined as follows: Winter (December-February), Spring (March-May), Summer (June-

August), and Fall (September-November), where winter is regarded as the baseline. This model

allows for spatially varying seasonal effects and spatially varying trend effects. While covariates

such as county level temperatures and precipitations are available, these are not used in this fit since

our goal is to quantify trends, not determine the specific drivers of these trends.

Model (5.5) was fitted with the prior specifications and correlation functions described
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in Section 5.4. Two specifications for the GPP model were considered, using 50 and 100 knots,

respectively. In both cases, knot placement for all GPP models was done by K-means clustering. For

sampling, 30,000 MCMC iterates were generated, with the last 10,000 being retained for inference.

Convergence of the MCMC chains was assessed using trace plots. We stress the computational

scalability of this approach. This model contains four a priori independent coefficient surfaces, each

replete with 3,109 spatial locations and 186,540 spatio-temporal random effects.

Two primary findings arise. First, there are no appreciable differences between the estimates

using 50 and 100 knots. As both specifications are computationally feasible, all subsequent analyses

used 100 knots. Second, there is evidence of seasonality in the location parameters, but these appear

constant across space. In particular, Figure 5.5 depicts 95% credible intervals for each county level

seasonal effect. These intervals all contain a common non-zero value, indicating that a spatially

constant seasonal effect is reasonable. Thus, the simpler model

νst = δ0 + δ1I1(t) + δ2I2(t) + δ3I3(t) + β̃1(`s)t+ ξst, (5.6)

was considered. Credible intervals at level 95% indicate that the model can be further reduced to

νst = δ0 + δ1I
∗
1 (t) + β̃1(`s)t+ ξst, (5.7)

where I∗1 (t) is a seasonal indicator that equals one if t is between March and November, and zero

otherwise. Approximate 95% credible intervals for δ0 and δ1 are [−3.95,−3.82] and [−0.20,−0.10],

respectively.

For further insight, the model in (5.7) was compared to the nonseasonal model

νst = δ0 + β̃1(`s)t+ ξst. (5.8)

For this model, an approximate 95% credible interval for δ0 is [−4.08,−4.03]. Figure 5.6 displays

estimates of β̃1(·) from both models. Very similar large-scale patterns in the estimated trends

are seen. In short, while seasonality exists in the location parameters, its effect on trends seems

negligible.

The temporal trend surface β̃ represents a regional effect estimated at a particular area

by incorporating information from a relatively large swath of surrounding areas. While regional
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trends are useful for estimating trends in areas with few tests, it may be desirable to separate local

effects from regional trends to provide a county-level assessment. Appendix B demonstrates how our

modeling framework facilitates such a separation. Specifically, county-specific trends are estimated

as follows. Let υ
(g)
s be the least-squares estimate of the county s slope obtained at by fitting a simple

linear regression to {(t, ν(g)st ) : t = 1, ..., T}, where ν
(g)
st is the gth posterior draw of νst obtained from

the MCMC output. Then υ
(g)
s can be regarded as a realization of the linear time trend at county s.

Using the {υ(g)s } as a random sample from the marginal posterior distribution of υs, point estimates

and inferences can be obtained for county-level trends.

5.5.3 Results

Figure 5.6 displays the estimated posterior mean of the regional temporal trend surface β̃1. The

regional rate of Lyme prevalence change between January 2012 and December 2016 is positive in

all states that are currently recognized as having high human Lyme disease incidence [Centers for

Disease Control and Prevention, 2017], including portions of the Northeast and the Upper Midwest.

The rate of increase varies by region, with high incidence regions generally exhibiting the greatest

changes. These regions include Maine, West Virginia, Virginia, and the northern parts of Minnesota

and Wisconsin.

Figure 5.7 displays estimated posterior means of the county-level trends υs, s = 1, . . . , 3109.

Figure 5.8 shows counties where local trends are significantly positive, assessed using approximate

95% equal-tailed credible intervals. Increasing local trends are seen in much of the Northeast, ex-

tending southwards through West Virginia and Virginia, and into North Carolina and Tennessee.

This region includes localities where Lyme disease is reportedly increasing. Increasing local trends in

parts of northwestern Minnesota, northern Wisconsin, and southeastern Iowa are also apparent. In

the Great Lakes region, increasing trends are observed in Eastern Ohio, Indiana, and Western Michi-

gan. In much of eastern New England, where human Lyme was first documented, the prevalence

appears stable, albeit high.

5.6 Discussion

This chapter developed a computationally feasible binomial regression model for large spatio-temporal

data that can identify localized trends. Our novel approach combined several recent advances in

87



large-scale spatial modeling and MCMC sampling. The end product is a flexible, scalable method-

ology for modern spatio-temporally referenced count data.

Our proposed approach was used to identify regions of the US experiencing increasing ca-

nine Lyme risk. Since human and canine risk are similar, such regions are likely also experiencing

increasing human exposure. While human Lyme disease data may not be publicly available and, in

many regions, scarce due to lack of testing, our canine prevalence data had over 16 million tests.

The size of the spatial domain created computational challenges. While monthly and county-level

aggregation reduced the size of the response vector from 16,581,562 tests to 69,876 county-month

pairs, a binomial response in an MCMC context typically requires sampling via Metropolis-Hastings

steps, which can be difficult to tune in extremely high dimensions (over 180,000, in our case). Un-

der the logistic link, a recently proposed Polyá-Gamma data augmentation was used to facilitate

direct Gibbs sampling on full conditional distributions. GPPs were used to model smoothly vary-

ing, high-dimensional coefficients through a low-dimensional representation. Local spatio-temporal

heterogeneity was captured by random effects following a time-varying Gaussian CAR distribution.

Chromatic sampling was used to facilitate efficient updating of the GMRFs in our MCMC algorithm.

This study was motivated by the rise in Lyme disease cases in the United States [Adams,

2017] and, in particular, rising incidence in states not traditionally considered Lyme-endemic. Our

results suggest that 1) canine prevalence is rising in tandem with human cases [Kugeler et al.,

2015, Hendricks and Mark-Carew, 2017, Centers for Disease Control and Prevention, 2017], 2) Lyme

prevalence rates are increasing most in areas where the pathogen has recently encroached, and 3)

prevalence in dogs is rising in states traditionally not considered to be of high Lyme risk [Centers

for Disease Control and Prevention, 2017], suggesting that human risk is also increasing in these

areas. Several recent studies have recognized increasing Lyme risk in traditionally low incidence

areas. These areas include Illinois [Herrmann et al., 2014], Iowa [Lingren et al., 2005], North Dakota

[Russart et al., 2014], Ohio [Wang et al., 2014b], and Michigan [Lantos et al., 2017]. Significant

increases in canine prevalence are also seen in some areas that have not yet reported significant

human incidence. Given the proximity of these locations to recognized high-incidence areas, it is

reasonable to infer that canine prevalence is more sensitive to changes in Lyme risk and can be used

as an early warning system to signal changes in human risk. West Virginia, Western Pennsylvania,

and Eastern Ohio are such areas and can be viewed as a leading edge of rising prevalence in Lyme’s

westward expansion. This is supported by evidence in increased reports of ticks in these regions
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[Eisen et al., 2016b].

Examining local, as opposed to regional, trends shows that some adjacent counties have

trends in opposite directions. To fully understand this heterogeneity, further ecological analyses are

needed. Possible factors to consider include the presence of urban centers, degree of forestation or

other habitat factors, tick populations, reservoir presence and densities, vaccination, and preven-

tative medication use. Medication use is likely driven by socioeconomic factors, whereas the other

factors are related to climate or changing habitats.

Our approach made several simplifying assumptions. The link function in the model was

treated as known, which might be a strong assumption. As poorly specified link functions can in-

duce bias in the estimates of the covariate effects [Neuhaus, 1999], relaxing this assumption could

be fruitful. We also assumed that the spatially varying coefficients followed independent and iden-

tically distributed Gaussian processes. A more flexible approach would allow these coefficients to

be correlated through a multivariate GP [Ver Hoef and Barry, 1998]; however, multivariate GPs

are more difficult to use and challenges remain in their development [e.g., Fricker et al., 2013]. The

observed prevalence rates suggest that smoothness of the random effects may change by region,

suggesting that a heteroskedastic GP might be more appropriate [Binois et al., 2016]. Further, GM-

RFs are known to oversmooth salient features [Smith and Fahrmeir, 2007]. However, approximating

GPs with GMRFs via stochastic partial differential equations to maintain computational feasibility

[Lindgren et al., 2011b] could prove promising for our application.

In addition to statistical challenges, future applications of our model include human Lyme

disease and heartworm disease, ehrlichiosis, and anaplasmosis in dogs. The ecological, entomological,

and environmental implications of the dog Lyme prevalence analysis presented here is the subject

of ongoing research.

5.7 Supplementary Material

The supplementary material is contained in Appendix B. Appendix B.1 provides the full conditional

distributions required to develop the proposed sampling procedure, Appendix B.2 provides additional

simulation results, and Appendix B.3 provides details about the exploratory data analysis conducted

in Section 5.5.
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Figure 5.1: Observed seroprevalence of B. burgdorferi, aggregated over January 2012 to December

2016. White counties are those that did not report any test results.
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Figure 5.2: The true β̃1 surface used to generate the independent data sets in the simulation example.
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Figure 5.3: Summary of the posterior estimates of β̃1 obtained in the simulation example when

ω = 0.90. Presented results include the sample mean of the posterior estimates (top row), empirical

bias (middle row), and empirical mean squared error (bottom row). From left to right the columns

correspond to the use of a 4× 4, 5× 5, and 7× 7 grid of knots.
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Figure 5.4: Raw reported canine seroprevalences in 2012 (top) and 2016 (bottom). White counties

did not report any tests.
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Figure 5.5: A summary of the spatially varying seasonal effects estimate from (5); i.e., estimates

(ordered from smallest to largest) of β̃1 (left panel), β̃2 (center panel), and β̃3 (right panel). Included

are the posterior mean, and upper and lower endpoints of 95% credible intervals. The red horizontal

line is included to demonstrate that all of the credible intervals contain the same constant, thus

indicating that a constant seasonal effect might be appropriate.
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Figure 5.6: Estimate of the regional trend β̃1 from the seasonal model (5.7) (top) and nonseasonal

model (5.8) (bottom) used to analyze the seroprevalence data.
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Figure 5.7: County-level trends. The top graphic displays the posterior mean estimate of υs from

model (7), and the bottom from model (8).
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Figure 5.8: Counties where υs was significantly positive at the 95 % confidence level. The top

graphic corresponds to model (7), and bottom to model (8).
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Chapter 6

A Bayesian Multidimensional

Trend Filter

6.1 Introduction

Nonparametric estimation is a popular statistical tool because it requires only very general assump-

tions about the nature of the function being estimated; e.g., smoothness, monotonicity, etc. While

this freedom allows for the estimation of a broad class of functions, too much freedom can result

in overfitted models with poor predictive performance. To avoid this pitfall, most nonparameteric

techniques penalize rapid changes in the estimated function to avoid data chasing. Attempts to

extend the penalty structure as the dimension of the covariate space increases are often cumbersome

and require extensive tuning, increased computational expense, and apriori assumptions about in-

teractions between covariates. In this work, we propose a nonparametric estimator whose penalty

structure extends elegantly with the dimension of the covariate space.

Two of the most widely used frequentist methods for nonparametric estimation are kernel

smoothing and spline regression. Kernel smoothers estimate the underlying function with a weighted

average of the observed values. Perhaps the most well-known kernel smoother is the Nadarya-Watson

estimator, proposed in Nadaraya [1964] and Watson [1964], which weights observations using a kernel

function of a pre-specified bandwidth. Other forms of kernel regression include the Priestly-Chao

estimator [Priestley and Chao, 1972] and the Gasser-Müller estimator Gasser and Müller [1979].
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For a nice comparison of these methods, see Jones et al. [1994]. Spline-based techniques regress the

response on spline basis functions. Some important considerations for spline-based methods include

the choice of the spline basis, the degree of the splines, and the number and placement of knots. For

an introduction to spline-based methods and for further discussion see Marsh et al. [2001]. Smoothing

splines are regularized nonparametric estimators which impose a penalty on the second derivative

of the estimators. See Wang [2011] for a nice overview of various smoothing spline methods. P-

splines are a related regularized spline regression technique which penalize the difference between the

coefficients of adjacent splines. Since their initial development in Eilers and Marx [1996], p-splines

have received much attention, including extensions to the Bayesian framework (see Lang and Brezger

[2004] and Yue et al. [2012]). Unfortunately extending spline-based regression techniques to higher

dimensions is plagued by the ‘curse of dimensionality’. In particular, the problem of knot placement

is difficult in multiple dimensions. The most commonly used method for extending spline models to

higher dimensions is to express the multidimensional spline-based function as the tensor product of

one dimensional splines, as in Stone [1994], He and Shi [1996], and Lang and Brezger [2004]. Such

tensor product based approaches suffer from a number of drawbacks, including the need to tune

multiple smoothing parameters.

Gaussian processes are a flexible class of nonparametric functional estimators with a straight-

forward extension to multiple dimensions and are often used as an alternative to spline regression

or kernel smoothing if the covariate space is multidimensional. See Cressie [1993], Rasmussen and

Williams [2006], or Cressie and Wikle [2011a] for an overview of GP models. GP models have

been particularly widely used in the Bayesian context. See Banerjee et al. [2015a] or Berger et al.

[2001] for more on the Bayesian aspects of GP modeling. While GP models are easily extendable to

multiple dimensions, they are computationally expensive for large datasets. Many variants of and

approximations to GPs have been developed in an attempt to make GP based models scalable to

large datasets. Once such approach is covariance tapering [Furrer et al., 2006] which uses a com-

pactly supported covariance function to induce a sparse covariance structure. Other methods such

as fixed rank kriging [Cressie and Johannesson, 2008], and [Nychka et al., 2015]’s Lattice Kriging

method use basis functions to produce a smaller covariance matrix. One commonly used technique

is the Gaussian predictive process (GPP) model of Banerjee et al. [2008], which estimates a parent

GP at a small set of knot locations and uses kriging to interpolate the process to the remaining

locations. For a overview of the various GP approximation procedures, see Heaton et al. [2017b].
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Trend filtering is a common nonparametric technique for time series data. Typically, trend

filters are used to estimate the underlying mean function by smoothing out the effects of noise and

seasonal cycles. These methods penalize discrete order derivatives over the observed time points.

Hodrick and Prescott [1997] popularized trend filtering. Their estimator minimizes the function

g : RT → R defined by:

g(φ1, ..., φT ) =

T∑
t=1

(yt − φt)2 + λ

T∑
t=3

{(φt − φt−1)− (φt−1 − φt−2)}2 .

where yt is the observation from time t, φt is the estimate of the trend at time t, and λ is a

smoothness parameter. This method was initially explored in Leser [1961]. Note that the penalty

term is the squared backwards finite difference approximation to the second derivative of φ. Since

Hodrick and Prescott’s work, trend filtering has been the subject of considerable attention. One of

the most notable developments is that of Seung-Jean et al. [2009], who use an l1 penalty to create

a a piecewise linear trend filtering estimator. Their l1 method minimizes the function g : RT → R

g(φ1, ..., φT ) =
1

2

T∑
t=1

(yt − φt)2 + λ

T−1∑
t=2

|(φt−1 − φt)− (φt − φt+1)|.

Tibshirani [2014] explores the connection between Seung-Jean et al. [2009]’s method and smoothing

splines and locally adaptive regression splines and proves that given the correct tuning parameter,

the l1 trend filter will converge to the true trend function. Ramdas and J. Tibshirani [2014] present a

fast algorithm for fitting trend filter models based on the alternating direction method of multipliers.

Sadhanala and J. Tibshirani [2017] develop an extension to additive models, in which each additive

component is estimated with a trend filter. An informed method for selecting the penalty parameter

λ is presented in Yam.

Recently, trend filtering has been extended to the Bayesian framework. A Bayesian exten-

sion of the Hodrick Prescott method is explored in Trimbur [2006] with inverse gamma and beta

priors on the smoothness parameter. Faulkner and Minin [2018] develop a Bayesian trend filtering

method called shrinkage prior Markov random fields (SPMRF). The SPMRF is a one dimensional

nonparametric Bayesian method which places shrinkage priors on the kth-order differences in func-

tion values. Faulkner and Minin [2018] explore different options for shrinkage priors and frame

their method in the context of Gaussian Markov random fields. Roualdes [2015] develops another
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Bayesian trend filter for time series data based on shrinkage priors. Our method differs from these

approaches because it is designed for point process data collected over two or more dimensions,

rather than one dimensional time series data.

We provide a straightforward approach to nonparameteric estimation over a multidimen-

sional covariate space. Our method uses a specially constructed Gaussian Markov random field

(GMRF) prior distribution to discourage abrupt changes in the estimated function. This prior

distribution places an l2 penalty on an approximation to the derivative of the estimated function,

making our method a multidimensional extension of trend filtering methods. This GMRF is defined

with respect to a mesh, or discretization of the support space. We provide an adaptive method

for selecting the mesh which allows the data to determine the overall level of discretization. Our

proposed Bayesian multidimensional trend filter avoids the problems of knot placement and tun-

ing parameter selection that plague higher dimensional spline-based estimators. It is also immune

to the large sample size problems of GP models, as the computational expense of our method is

nearly independent of the number of observations. Furthermore, the method exploits the chromatic

sampling strategy of Brown et al. [2017c] to avoid the inversion and/or Cholesky decomposition of

large matrices, making it fast and computationally scalable to a large number of observations or

a high dimensional covariate space. Additionally our trend filter estimates the underlying trend

function across the entire covariate space, not just at the locations at which data was observed.

Our method estimates complex interactions between covariates at no additional cost and does not

require assumptions about which sort of covariate interactions may be present in the model.

The remainder of the chapter is organized as follows. We develop our methodology in Section

6.2. Section 6.3 describes an efficient, computationally scalable MCMC model fitting procedure, as

well as an adaptive method for discretizing the covariate space. In Section 6.4 we present the results

of a simulation study comparing the multidimensional trend filter to GP and GPP models. We

find that our method is comparable or superior to the other models in terms of bias and MSE, and

also faster that the other methods by an order of magnitude. We demonstrate the performance of

our method for Gaussian and non-Gaussian data applications in Section 6.5. Section 6.6 provides

concluding remarks.
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6.2 Methodology

Suppose we have a vector of n observations Y = (y1, y2, ..., , yn)′, and we assume a generalized linear

model where the mean structure of the ith observation is related to a linear predictor ηi via a link

function g. We assume the following form for ηi:

ηi = xiβ + f(zi),

where xi = (xi1, ..., x1p) is a vector of covariates which are assumed to have linear effects, β =

(β1, β2, ..., βp)
′ is the associated vector of covariate effects, and zi = (zi1, ..., zir) is a vector of

covariates having an unknown functional relationship to the response. We estimate the unknown

function f(zi) via the Bayesian multidimensional trend filter.

Here we are assuming that z1, z2, ..., zn are points that may lie anywhere within an r-

dimensional hyperrectangle Z, defined using a set of points a1 < b1, a2 < b2, ..., ar < br, where Z =

{(w1, ..., wr)
′ : aj ≤ wj ≤ bj for j = 1, ..., r}. Recall that a hyperrectangle is the generalization of a

rectangle to higher dimensions, and is formally defined as the Cartesian product of intervals. Before

applying our method, we split Z into a mesh M consisting of disjoint hyperrectangles c1, c2, ..., cQ

whose union is Z.

We estimate the unknown function f with a multidimensional step function f̃ , defined with

reference to the mesh M . That is, for w ∈ Z, f̃(w) =
∑Q
q=1 φqI(w ∈ cq) where I(w ∈ cq) = 1 if

w ∈ cq and 0 otherwise. Our model on ηi then becomes

ηi = xiβ +Giφ,

where φ = (φ1, φ2, ..., φQ)′ and Gi = (I(wi ∈ c1), I(wi ∈ c2), ..., I(wi ∈ cQ)). In vector form we

have

η = Xβ +Gφ,

where η = (η1, η2..., ηn)′, X = (x′1,x
′
2, ...,x

′
n)′, and G = (G′1,G

′
2, ...,G

′
n)′.

Trend filtering methods impose a penalty on a derivative of the estimated function to en-

courage smoothness and prevent overfitting. In the one dimensional setting, the derivative of the

trend function can be easily approximated using forward, backwards, or centered difference meth-
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ods. In the multidimensional setting, the concept of a derivative encompasses a much broader class

of mathematical objects, including partial derivatives, gradients, directional derivatives, mixed par-

tials, Hessian matrices, etc. While one could penalize any of these objects, one simple and easily

interpretable quantity to penalize is
Q∑
q=1

d2q
(
φq − φq

)2
,

N(q) denotes the set of hyperrectangles which share an edge or a corner with cq, dq = |N(q)| and

φq = dq
−1∑

j∈N(q) φj is the average functional estimate in the neighboring hyperrectangles. Note

that cq 6∈ N(q). The above is an l2 penalty on the difference between the step function value in cq and

the average function value at all the surrounding hyperrectangles, weighted by the squared number

of neighbors of cq. This weighting is chosen for two reasons. The first is that it will enforce greater

smoothness on the interior of Z and allow for some added flexibility on the boundaries of the region.

Secondly, when the hyperrectangle sizes are unequal, larger hyperrectangles will tend to have more

neighbors than smaller hyperrectangles. By placing a weaker penalty on smaller hyperrectangles,

we allow for additional flexibility in finely discretized areas. We also note that this penalty may be

re-expressed as

Q∑
q=1

 ∑
q′∈N(q)

(φq − φq′)


2

.

Note that for cq, this quantity is the squared average of the first order difference approximation to

the derivative, where the average is taken over all neighboring hyperrectangles.

The trend filtering methodology is introduced via the prior distribution of φ. We assume

π(φ|τ2) ∝ exp

{
− 1

2τ2

Q∑
q=1

 ∑
q′∈N(q)

(φq − φq′)

2}
,

which induces the penalty structure considered above. This prior distribution can be expressed as

the following intrinsic Gaussian Markov random field

π(φ|τ2) ∼ N(0, τ−2M), τ2 > 0.

where M = (D −W )(D −W ) is the precision matrix, W is the Q × Q adjacency matrix of

the hyperrectangles, and D is diagonal with number of neighbors of each hyperrectangle on the
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diagonal. That is, letting Aqq′ denote the (q, q′)th entry of the matrix A, we have that W qq′ = 1

if hyperrectangles q and q′ share an edge or a corner, and 0 otherwise, and Dqq =
∑Q
q′=1W qq′ .

The l2 penalty on the average of first order approximation to the derivative gives our method its

interpretation as a multidimensional trend filter.

We note that M is not invertible, and thus the trend filtering prior is improper. A similar

situation arises with intrinsic conditional autogressive (ICAR) models. One solution is introduce a

propriety parameter ρ, and take M∗ = (D − ρW )2. Letting λ1 and λQ denote the smallest and

largest eigenvalues of D−1/2WD−1/2, respectively, we have that (D − ρW ) is invertible provided

1
λ1
≤ ρ ≤ 1

λQ
; thenM∗ is the product of invertible matrices and is thus invertible. See Banerjee et al.

[2015a], section 4.3 for more details. Alternatively, one can use the improper prior and proceed with

appropriate caution. Intrinsic GMRFs are known to give rise to difficulties concerning the variance

parameter τ2. See Lavine and Hodges [2012] or Lindqvist and Taraldsen [2017] for more details and

various techniques for avoiding these complications.

6.2.1 A Note about Higher Order Penalties

We note here that our method can be extended to higher order penalties which induce a smoother

estimator. For k ≥ 1, define Mk = (D −W )2k. Consider for k = 2:

φ′M2φ = {(D −W )(D −W )φ}′ {(D −W )(D −W )φ} .

For a vector a, let (a)q denote the qth entry of the vector. Note that

{(D −W )(D −W )φ}q = d2q
(
φq − φq

)
−

 ∑
q′∈N(q)

dqφq − dq′φq′


=

∑
q′∈N(q)

{
dq(φq − φq)− (dqφq − dq′φq′)

}
,

and thus

φ′M2φ =

Q∑
q=1

 ∑
q′∈N(q)

{
dq(φq − φq)− dq(φq −

dq′

dq
φq′)

}2

.

This penalty is loosely analogous to a penalty on the second derivative. Recall that (φq − φq) is the

average of the first order approximation to the derivative taken over the neighborhood of cq, and
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(φq − φq′) is the difference between the average function in the neighborhood of cq and the average

function value in the neighborhood of c′q, and is thus loosely approximates the first derivative of

φ. Thus in the case where dq′ = dq, we have that the expression above is the difference of two

approximations to the first derivative, and thus may be thought of as an approximation to the

second derivative.

6.3 Model Fitting Procedure

The model is fit using Markov chain Monte Carlo (MCMC) methods to obtain a sample from the

posterior distribution. The exact sampling algorithm will depend on the choice of data likelihood.

Here we provide a general technique that allows for computationally efficient sampling under different

likelihood functions. Our model fitting procedure uses chromatic sampling to update large groups of

the φq terms in parallel [Brown et al., 2017c]. We first provide the details for the Gaussian likelihood,

and then explain how to generalize the approach.

6.3.1 Sampling Under the Gaussian Likelihood

Under the Gaussian likelihood, we have

f(Y |β,φ, σ2) ∼ N(Xβ +Gφ, σ2In), σ2 > 0,

where In denotes the n × n identity matrix. Taking π(σ2) ∼ Inverse Gamma (IG)(ασ2 , βσ2), and

π(β) ∼ N(0, γ2Ip), γ
2 > 0 we obtain the following full conditional distributions:

f(β|Y ,φ, σ2, τ2) ∼ N
(
σ−2ΣβX

′(Y −Gφ),Σβ
)

f(φ|Y ,β, σ2, τ2) ∼ N
(
σ−2ΣφG

′(Y −Xβ),Σφ
)

f(σ2|Y ,β,φ) ∼ IG (n/2 + ασ2 , (Y −Xβ −Gφ)′(Y −Xβ −Gφ)/2 + βσ2)

f(τ2|φ) ∼ IG (Q/2 + ατ2 ,φMφ/2 + βτ2) ,

where Σβ = (σ−2X ′X+γ−2Ip)
−1 and Σφ = (σ−2G′G+τ−2M)−1. In this context, the construction

of a Gibbs sampling procedure is straightforward. However in practice, Q may be quite large,

rendering both vector block updates of φ and single site updating via looping prohibitively slow. To
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speed up computation, we propose the chromatic sampling approach of Brown et al. [2017c], which

relies on parallel univariate updating to avoid looping.

The full conditional distribution of φ is multivariate Gaussian with a sparse precision matrix.

Block Gibbs sampling from this full conditional is feasible when the number of hyperrectangles Q is

relatively small [Furrer and Sain, 2010b], but becomes computationally prohibitive as Q increases.

Single site updating is feasible for moderate values of Q, but as Q grows this approach suffers

from poor mixing. Furthermore, it requires extensive looping, which is known to be slow in R and

MATLAB. Rather than block or single site sampling, we employ chromatic sampling [Gonzalez et al.,

2011b, Brown et al., 2017c]. The chromatic sampler exploits the conditional independence proprieties

of the matrix M to parallelize single-site updates, which avoids Cholesky decompositions of large

matrices and other time consuming matrix computations. Let {A1, . . . ,AK} be a partition of the set

{1, 2, ..., Q} in which Ak is an index set identifying a collection of hyperrectangles such that for all

q, q′ ∈ Ak, M qq′ = 0. Brown et al. [2017c] provide a greedy algorithm for finding such a partition.

For a vector a = (a1, . . . , aQ)′ and an index set C, define a(C) := (aq : q ∈ C)′. The Markov property

of the matrix M implies that the elements of φ(Ak), given φ(Ack), are conditionally independent.

Therefore, by conditioning on φ(Ack), the elements of φ(Ak) can be sampled from their univariate full

conditional distributions in parallel (or through ‘vectorized’ calculations). This approach is suitable

for a very large number of hyperrectangles (e.g., Q > 100000) when they are sparsely connected.

This is a highly desirable property in our case, as it allows the user to impose a very fine mesh over Z,

even if the dimension of Z is large. For further details, see Brown et al. [2017c], who compare block

sampling to chromatic sampling for GMRFs. Chromatic sampling requires the following univariate

full conditional distribution of φq:

f(φq|Y ,β,φ−q, σ2, τ2) ∼ N(µφq
, σ2
φq

),

where µφq
= σ2

φq

[
τ−1{ 12 (2DW −W 2 +D)φ}q + σ−2{G′(Y −Xβ)}q

]
, σ2

φq
= {σ−2gq + τ−2(d2q +

dq)}−1, gq denotes the number of observations in the qth hyperrectangle, and φ−q denotes φ without

the qth component.
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6.3.2 Sampling Under the Bernoulli and Binomial Likelihood

Under the Bernoulli or binomial likelihood, we assume the probability of success for yi is given by

pi = g(ηi), giving rise to the following likelihood

f(β,φ|Y ) ∝
n∏
i=1

{g(ηi)}yi{1− g(ηi)}ni−yi ,

where ni is equal to the number of trials associated yi. To facilitate the construction of a Gibbs

based sampling procedure, we introduce latent data ψ = (ψ1, ..., ψn)′, giving rise to the following

augmented likelihood having Gaussian form

f(β,φ|Y ,ψ) ∝
n∏
i=1

exp

{
−1

2
(hiη

2
i − 2kiηi)

}
,

where the his and kis will depend on the chosen likelihood and link function.

Following Albert and Chib [1993], under the Bernoulli likelihood and the probit link, we

take hi = 1 and ki = ψi. In this framework, ψi ∼ N(ηi, 1), ψi > 0 if yi = 1, and ψi ∼ N(ηi, 1),

ψi < 0 if yi = 0. Here the full conditional distribution of the ψi is truncated Gaussian with mean ηi

and variance 1, with a support set of (0,∞) if yi = 1 and (−∞, 0) if y1 = 0. Under the logistic link,

we follow the method of Polson et al. [2013] and take the ψis to be Pólya-Gamma(ni, 0) random

variables with hi = ψi and ki = yi − ni/2. In this framework, the full conditional distribution of ψi

is Pólya-Gamma(ni, ηi). In either case, proceeding in this fashion leads to Gaussian full conditional

distributions for β and φ, and an inverse gamma full conditional distribution for τ2; i.e.,

f(β|Y ,ψ,φ, τ2) ∼ N
[
Λβ{X ′(HGφ+K)},Λβ

]
f(φ|Y ,ψ,β, τ2) ∼ N

[
Λφ{G′(HXβ +K)},Λφ

]
f(τ2|φ) ∼ Inverse Gamma (Q/2 + ατ2 ,φMφ/2 + βτ2) ,

where Λβ = (X ′HX+γ−1Ip)
−1, Λφ = (G′HG+τ−2M)−1, H is a diagonal matrix with Hii = hi

and K = (k1, ..., kn)′. As the full conditional distribuiton of φ is again multivariate normal with a

sparse precision matrix, we can contruct an efficient Gibbs based chromatic sampling approach for

the Bernoulli and binomial likelihoods. The univariate full conditional distribution needed for the
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chromatic sampling approach is

f(φq|Y ,φ−q,β, τ2) ∼ N(γφq , λ
2
φq

),

where λφq
= δ2q

[
τ−1{(2DW −WW +D)φ}q +

{
G′(HXβ +K)

}
q

]
and λ2φq

= {(G′HG)qq +

τ−2(d2q + dq)}−1.

6.3.3 Mesh Selection

Implementing the multidimensional trend filter requires imposing a mesh M on the region Z. A

straightforward approach is to impose a regular partition over Z, as described in Section 6.2. How-

ever, as demonstrated by a simulation study presented in Section 6.4, using too few or too many

hyperrectangles can inflate bias and MSE. To address this issue, we propose a method of adaptively

refining the mesh M . Our method is similar to that of Finley et al. [2009], who propose an adaptive

method of knot selection for Gaussian predictive process models. Our adaptive refinement method

is similar, though for us hyperrectangles play the role of knots. We outline our method as follows:

1. Specify an initial mesh M0 using a partition P consisting on Q0 hyperrectangles and define a

set of hyperrectangles which are eligible for refinement. This may be all hyperrectangles, all

hyperrectangles exceeding a certain size, all hyperrectangles in certain regions, etc. Set t = 1.

2. Fit the model using the current mesh Mt, consisting of Qt hyperrectangles.

3. For each hyperrectangle, calculate

eq =
1

dq

n∑
i=1

(yi − xiβ̂ − φ̂q)2 · I(wi ∈ cq).

4. Attempt to minimize
∑Qt

q=1 eq, by selecting the hyperrectangle(s) having the largest values

of eq for refinement. We refine a hyperrectangle cq by splitting it into equally sized pieces.

That is we split each interval used to define cq into two intervals of equal length, and define

a partition of cq using these intervals. This results in 2r disjoint hyperrectangles of equal size

whose union is cq. We refine the L hyperrectangles having the largest eq values. Note that

refining all hyperrectangles in each iteration is a special case in which we impose finer and

finer regular meshes on the support space.
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5. Set t = t+ 1 and return to Step 2 until the stopping criterion has been reached.

We propose two possible stopping criteria. The first method, similar to the approach of

Finley et al. [2009], is to specify a maximum number of hyperrectangles QM , and terminate the

refinement once Qt = QM . The second approach is to run the algorithm either for a pre-specified

number of iterations, or until no hyperrectangles are eligible for refinement. After the algorithm

terminates, a measure of goodness of fit is calculated for each model fit, and the mesh from the

model with the best goodness of fit metric is selected as the final mesh. We explore this second

approach, the nonuniform adaptive mesh refinement via a simulation study in the next section, and

compare it the uniform adaptive mesh refinement in which we refine all hyperrectangles in each

iteration successively impose a finer and finer regular mesh.

6.4 Simulation Study

We use a simulation study to compare our method to some other commonly used nonparametric

estimation techniques. Specifically we compare the multidimensional trend filter using a single mesh

(the nonadaptive trend filter) to a GPP model and the nonuniform and uniform adaptive trend filter

to a GP model. For our simulation study, we generated n observations from the following model

yi = f(zi) + εi, (6.1)

where zi = (z1i, z2i), f(·) is a function from R2 → R, and {εi}ni=1 are iid N(0, 2) random errors. For

each n ∈ {500, 1000, 2000, 5000}, and each of the three functions f shown in Table 6.1, we generated

500 independent data sets. For each data set, the observation locations {zi}ni=1 where randomly

selected from a two-dimensional continuous uniform distribution on [0, 50] × [0, 50]. The distances

between locations were re-scaled to improve the numerical stability of the GP model. For these

simulations, the data was re-scaled so that |yi| < 1, for i = 1, ..., n.

For each dataset, f was estimated using the nonadaptive, nonuniform adaptive, and uniform

adaptive trend filters, a GPP with 100 knots placed on a regular grid, and a GP. Due to the

computational expense of the GP model, it was fit to only 100 of the 500 datasets for n = 500, 1000

and 2000. Fitting the GP model to datasets of size 5000 was computationally prohibitive. The

nonadaptive trend filter was fit using a 30× 30 square. The adaptive mesh trend filter models were
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Bimodal
Function

f(zi) =
exp

{
− (zi1−20)2+(zi2−20)2

250

}
+

exp
{
− (zi1−40)2+(zi2−40)2

250

}

Stairstep
Function

f(zi) =


1 0 ≤ zi2 ≤ 10

3 10 < zi2 ≤ 20

5 20 < zi2 ≤ 30

7 30 < zi2 ≤ 50

Spike
Function

f(zi) =


0 0 ≤ zi2 ≤ 10

3− 1
5 |zi2 − 25| 10 < zi2 ≤ 40

0 40 < zi2 ≤ 50

Table 6.1: Caption

initialized using a mesh consisting of a 12 × 12 square grid. For the uniform adaptive mesh trend

filter, the mesh was successively refined 3 times, so that the model was fit using a 12× 12, 24× 24,

48 × 48, and 96 × 96 regular grid. A fivefold cross validation score was computed for each mesh,

and the mesh having the best score was selected as the final mesh. For the nonuniform adaptive

mesh trend filter, the set of hyperrectangles eligible for refinement in each iteration was the set of

hyperrectangles that (1) contained at least one observation, and (2) had been refined less than 4

times (i.e. all hyperrectangles larger than 1/16 their original size). Note that the first criterion is

necessary to ensure eq > 0. In each iteration, we refine the 100 hyperrectangles with the largest mean

estimated squared error eq among those hyperrectangles which had been refined less than 4 times.

The model was run until no more hyperrectangles were eligible for refinement, which occurs when all

hyperrectangles meeting criteria (2) contain no observations. A fivefold cross validation score was

computed in each iteration, and the mesh from the iteration with the smallest score was selected as

the final mesh. For both the GP and GPP models, we assumed the mean function µ(z) = 0 for all

z. The covariance function for the GP was specified as ρ(zi, zj : γ) = γdzi,zj where γ ∈ (0, 1) is a

model estimated parameter and dzi,zj
is the Euclidean distance between zi and zj . The covariance

function for the parent process for the GPP’s was specified as ρ(z∗i , z
∗
j : γ) = γ

dz∗
i
,z∗

j , where dz∗i ,z∗j

is the Euclidean distance between knots z∗i and z∗j .

We report the empirical bias, empirical MSE, empirical standard deviation, and model

fitting time in Table 6.2. The bias, MSE, and standard deviation values reported in Table 6.2

represent means over all 500 datasets and over all n observation locations. The time denotes the

time to fit a single model, on a computer running Microsoft Windows 10 Home with an Intel(R)

Core(TM) i5-3570K CPU and 16 GB of RAM. We see that the bias, MSE, and standard deviation
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of all three trend filtering methods are small, and decrease as the sample size increases. The GPP

model is an approximation to the GP model which sacrifices some flexibility in exchange for reduced

computational expense. Similarly, the nonadaptive trend filter sacrifices the flexibility of a refinable

and adaptive mesh for computational savings. We can think of the nonuniform adaptive mesh trend

filters and the GP model as more robust modeling techniques, with the non-adpative trend filter and

GPP models being low dimensional approximations, and the uniform adaptive trend filter falling

somewhere in between. Thus we primarily compare the performance of the GPP model to the non-

adaptive trend filter and the GP model to the uniform and nonuniform adaptive trend filter. We

see that the performance of the non-adaptive trend filter is comparable to that of the GPP model.

Similarly, the performance of the uniform and non-uniform adaptive trend filter is comparable to

that of the GP. Furthermore, the trend filtering methods are scalable to values of n which are

not feasible for the GP model. Note that the computation time for the non-adaptive and uniform

adaptive trend filter is nearly constant as n increases, while the GPP computation time increases

like O(n) and the GP increases like O(n3). The computation time for the nonuniform adaptive mesh

trend filter appears to increase substantially with n, but this an artifact of the relative sizes of n

and the number of hyperrectangles. In this simulation, the maximum number of hyperrectangles in

the adaptive mesh method before no hyperrectangles will meet criterion (2) is 962 = 9216. However,

because there are at most n = 5000 observations, the algorithm often terminates before reaching the

maximum mesh size because all the hyperrectangles meeting criterion (2) contain no observations.

This happens much sooner for the smaller sample sizes, resulting in fewer iterations and hence the

lower computation time. Once the observations are sufficiently dense, the algorithm will run for the

full 31 iterations needed to exhaust crierion (2) before running out of eligible hyperrectangles to

refine. Hence the computational time will grow much more slowly with n after this threshold has

been reached.

We note that while the GPP and GP model estimate f only at the observation locations,

the trend filtering methods estimate f over the covariate space. The estimated functions for the

regular mesh trend filter and the adaptive mesh trend filter for n = 5000 are shown in Figure 6.1.
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n NATF GPP UATF NUATF GP

Bimodal Function

500 Bias -0.0018 -0.3935 0.0025 0.0020 -0.0005

MSE 0.0509 0.3065 0.04855 0.0492 0.0513

SD 0.1739 0.1848 0.1799 0.2073 0.0267

Time 24.94 sec 3.38 min 16.81 min 59.93 min 27.13 min

1000 Bias -0.0028 -0.2051 0.0007 -0.0004 -0.0012

MSE 0.0299 0.2170 0.0276 0.0287 0.0325

SD 0.1537 0.2779 0.1680 0.1814 0.2557

Time 24.93 sec 7.70 min 16.73 min 1.89 hrs 3.46 hr

2000 Bias -0.00004 -0.0564 -0.0027 0.0007 -0.0013

MSE 0.0168 0.1065 0.0166 0.0178 0.0205

SD 0.1338 0.2667 0.1460 0.1534 0.22251

Time 27.56s 19.25 min 17.00 min 2.68 hr 25.13 hr

5000 Bias 0.0003 -0.0130 -0.0002 -0.0005

MSE 0.0086 0.0378 0.0087 0.0097

SD 0.1065 0.1677 0.1154 0.1192

Time 28.10 sec 56.33 min 16.27 4.77 hr

Stairstep Function

500 Bias 0.0010 0.0005 -0.0011 0.0067 0.0063

MSE 0.2561 0.2513 0.2619 0.2748 0.2790

SD 0.3910 0.3590 0.3968 0.4222 0.4337

Time 25.22 sec 2.56 min 16.48 min 58.70 min 28.24 min

1000 Bias 0.0003 0.0001 -0.0036 -0.0038 -0.0056

MSE 0.2236 0.2224 0.2319 0.2357 0.2303

SD 0.3299 0.2859 0.3524 0.3994 0.4120

Time 25.97sec 4.50 min 16.46 min 1.99 hr 3.53 hr

2000 Bias 0.0017 0.0018 0.0010 0.0001 -0.0022

MSE 0.1878 0.1913 0.1801 0.1902 0.2004

SD 0.2945 0.2323 0.3649 0.4048 0.4049

Time 24.81 sec 8.46 min 16.28 min 3.01 hr 25.47 hrs

5000 Bias 0.0007 0.0007 -0.0005 -0.0005

MSE 0.1370 0.1572 0.1318 0.1334

SD 0.2767 0.1721 0.3169 0.3613

Time 25.19 sec 21.35min 16.33 min 4.90 hr

Spike Function

500 Bias 0.0023 -0.0520 -0.0034 0.0074 0.0054

MSE 0.1019 0.2899 0.1022 0.1126 0.4922

SD 0.3513 0.5069 0.3786 0.4076 0.2688

Time 25.36 sec 2.41 min 15.74 min 59.80 min 27.61 min

1000 Bias -0.0029 -0.0006 0.0027 0.0014 0.0041

MSE 0.0650 0.1062 0.0644 0.0745 0.2915

SD 0.2946 0.3215 0.1348 0.3373 0.2624

Time 25.46 sec 4.65 min 15.74 min 2.14 hr 4.50 hr

2000 Bias 0.0003 0.0002 -0.0006 0.0018 -0.0032

MSE 0.0419 0.0411 0.0412 0.0499 0.1500

SD 0.2448 0.2173 0.2596 0.2803 0.2591

Time 25.85 sec 8.85 min 16.14 min 3.24 hr 25.94 hr

5000 Bias - 0.0001 0.0001 -0.0002 0.0003

MSE 0.0263 0.0233 0.0229 0.0291

SD 0.1896 0.1502 0.1981 0.2167

Time 25.68 sec 20.78 min 16.42 min 5.04 hr

Table 6.2: The empirical bias, empirical MSE, empirical standard deviation, and model fitting time

for three functions define in Table 6.1 under the nonadaptive mesh trend filter (NATF), Gaussian

predictive process (GPP), uniform adaptive trend filter (UATF), and nonuniform adaptive trend

filter (NUATF), and the Gaussian process model (from left to right).
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Figure 6.1: Results from the simulation study for the non-adaptive trend filter (column 1), uniform

adaptive trend filter (column 2), and nonuniform adaptive trend filter (column 3) for the bimodal

function (rows 1-2), the stairstep function (rows 3-4) and the spike function (rows 5-6) having 5000

observations. Depicted are the posterior mean estimate (rows 1,3,5), and empirical bias (rows 2,4,6).

An additional simulation study was used to explore the effect of varying levels of discretiza-

tion by comparing the nonadaptive trend filter at several different resolutions to the nonuniform

adaptive mesh method. Data was generated as described above, with f(z) = sin{ 2π50 (z1 + z2)}. We
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considered 4 different meshes for the nonadaptive trend filter: 10×10, 20×20, 40×40, and 80×80,

and 4 sample sizes: n = 500, 1000, 2000, and 5000. The adaptive mesh was initialized using a 10

by 10 grid. The 100 hyperrectangles having the largest value of eq were selected for refinement in

each iteration. In each iteration, the hyperrectangles eligible for refinement were those which (1)

contained at least 1 observation and (2) had been refined less than 4 times. These configurations

result in an 80 by 80 grid as the largest possible mesh before criterion (2) is exhausted, which allows

for adequate comparison to the different size regular meshes studied in the simulation. The estimate

of f̃ from the iteration having smallest fivefold cross validation score was selected as the final model.

q = 10 20 40 80 NUATF

n = 500

Bias 0.0019 -0.0013 -0.0062 -0.3672 0.0124

MSE 0.1288 0.0967 0.1035 0.4467 0.1021

SD 0.1257 0.1229 0.0999 0.2060 0.3739

n = 1000

Bias -0.0012 0.0043 0.0011 -0.0716 0.0031

MSE 0.0932 0.0631 0.0615 0.1176 0.0624

SD 0.0850 0.0884 0.0742 0.0736 0.3089

n = 2000

Bias -0.0022 0.0002 0.0005 0.0109 -0.0013

MSE 0.0492 0.0349 0.0348 0.0567 0.0398

SD 0.2271 0.2433 0.2248 0.2086 0.2522

n = 5000

Bias 0.0010 -0.0003 -0.00008 -0.0017 - 0.0004

MSE 0.0555 0.0268 0.0202 0.0267 0.0220

SD 0.0272 0.0355 0.0315 0.0286 0.1926

Table 6.3: The empirical bias, empirical MSE, and empirical standard deviation from the nonadap-

tive mesh with a 10×10, 20×20, 40×40 and 80×80 grid, and the nonuniform adaptive trend filter

(from left to right).

The emprical bias, empircal MSE, and emprical standard deviation from the simulation
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study comparing the nonadaptive and nonuniform adaptive trend filter are shown in Table 6.3. The

values in the table are averages over all 500 datasets and all observation locations. Note that for the

nonadaptive trend filter, the bias and MSE tend to decrease and then increase as the number cells

increases, indicating using a finer grid increases model performance up to a point, but using too fine

a grid decreases performance. We note that the nonuniform adaptive mesh performs comparably to

the best performing nonadaptive mesh for each sample size, indicating that the adaptive procedure

is resulting in a near optimal mesh.

6.5 Data Application

In this section, we demonstrate the performance of the multidimensional Bayesian trend filter for

Gaussian and binomial data, and compare it to the performance of the GPP model.

6.5.1 The Gaussian Case

For the Gaussian case, we use temperature data obtained from the National Oceanic and

Atmospheric Administration (NOAA). The data set consists of the minimum daily temperature from

January 1, 2017 recorded at 7276 weather stations across the contiguous United States. Figure 6.2

shows the raw data. For this application, we take Z to be the two dimensional latitude-longitude

space of the contiguous US, and apply the following model:

yi = f(zi) + εi,

where yi is the observed temperature from the ith weather station, zi is the location of the ith

station and the εis are assumed to be iid N(0, σ2).

The nonadaptive trend filter was fit using a mesh of 5956 hyperrectangle of width 0.4 degrees.

The nonuniform adaptive trend filter was initialized with a mesh of square hyperrectangles of width

2 degrees. The model was iterated 80 times, with the 50 hyperrectangles having the largest mean

estimated squared error eq being refined in each iteration. Fivefold cross validation was used to

assess goodness of fit, and the iteration having the smallest score was selected as the final model.

The GPP model utilized the same mean and covariance functions described in the simulations. The

parent process was defined on a regular grid of 109 knots, and interpolated out to a regular grid of
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955 cells. Each iteration was run for 4000 MCMC iterations and the first 2000 were discarded as

burn in. Convergence was assessed with trace plots.

Figure 6.2 displays the results from both model fits. The results are from the two trend

filter models are very similar, with the adaptive mesh results being somewhat smoother. The GPP

model provides a coarser fit.
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-29 - -16
-15 - -12
-11 - -8
-7 - -5
-4 - -2
-1 - 2
3 - 6
7 - 12
13 - 21
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-1 - 2
3 - 6
7 - 12
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Figure 6.2: The observed minimum daily temperature in degrees Celsius for January 1, 2017 (top

left), and estimated minimum daily temperature using the non-adaptive trend filter (top right),

nonuniform adaptive trend filter (bottom left), and GPP model (bottom right).

6.5.2 The Binomial Case

For the binomial case, we use a dataset of test results for antibodies to borrelia Burgdoferi, the

bacteria which causes Lyme disease. These tests were conducted in domestic dogs across the United

States from January 1st, 2017 to December 31st, 2017. These tests are aggregated by county, so that

the final dataset consists of the number of tests conducted in each county and the number of those

tests which were positive. Not all counties report test results. Figure 6.3 displays the raw data. For

this application, Z is again the two dimensional latitude-longitude space of the contiguous US. We
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assume the following generalized linear model:

yi|ni, pi ∼ Binomial(ni, pi)

ηi = g−1(pi) = f(zi)

where yi is the number of positive tests from county i, ni is total number of tests from county i, pi

is the unknown disease prevalence in county i, zi is the location of the centroid of county i, and g(·)

is the logistic link function.

We fit the model using the nonadaptive trend filter using grid of hyperrectangles of dimension

1.7×0.7 degrees. The nonuniform adaptive trend filter was initialized using a mesh consisting squares

of width 2 degrees, and was iterated 42 times, and the 50 hyperrectangles having the smallest values

of eq were refined in each iteration. The mesh having the smallest fivefold cross validation score was

selected as the final model. The GPP model used the same mean and covariance functions used in

the simulation study, and the parent process was defined using 100 knot locations randomly selected

from the centroids of the counties at which data was observed. The parent process was interpolated

out to the remaining county centroids.

Figure 6.3 displays the results from nonadaptive trend filter, the nonuniform adaptive trend

filter and the GPP models. The results are fairly similar, with the most notable differences being

in the western part of the country. As there is very little data reported in these regions, the higher

variability is perhaps not surprising. We note that nonuniform adaptive trend filter model produces

a more gradiated estimate in the Midwest and Mid-Atlantic areas where there is more data and

prevalence is changing rapidly over space, while producing a rather coarse fit in the Western part of

the country where data is scarce. This behavior suggests that the adaptive mesh is performing as it

was designed to.
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Figure 6.3: The observed 2017 Lyme disease prevalence (top left), and estimated prevalence using

the nonadaptive trend filter (top right), nonuniform adaptive trend filter (bottom right) and GPP

model (bottom left).

6.6 Conclusion

This chapter presents a computationally efficient and flexible multidimensional nonparametric es-

timator. The Bayesian multidimensional trend filter has several advantages over existing nonpara-

metric estimators. The computational cost of the trend filter is nearly independent of the number

of observations, and it scales well to a large covariate space. The trend filter extends naturally to

several dimensions without the need for tensor products or a painstaking tuning process. Further-

more, our method provides an estimate of the trend function across the entire covariate space, not

only at observation locations. The method is easily interpretable in the context of trend filtering,

with the prior distribution on the trend parameters being a penalty on abrupt changes in the trend

function. We also develop an adaptive method of descretization which allows the data to determine

the resolution of the trend filtering estimator.

We compared the performance of the multidimensional Bayesian trend filter to Gaussian

process and Gaussian predictive process models via a simulation study. We found that the perfor-

mance of the nonadaptive trend filter is comparable to that of the GPP, and the performance of
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the uniform and nonuniform adaptive trend filter is comparable to that of the GP models. The

nonadaptive trend filter is by far the fastest method, particularly as the sample size gets large. For

example, for 2000 observations, the regular mesh model takes only 28 seconds to run, while the

GPP model takes 20 minutes and the GP model takes over 24 hours. These differences become even

more pronounced for a sample size of 5000 observations, for which the GP model is computationally

infeasible.

While this work focused on two dimensional spatial applications of the Bayesian multidi-

mensional trend filter, the method is easily extendable to a variety of other applications. Other

extensions include allowing the prior variance parameter of the trend filter (τ2) to vary with space

to induce stronger penalties in certain areas, and extending the adjacency concept to a larger neigh-

borhood to induce more smoothness. Several aspects of the adaptive mesh trend filter merit further

exploration, including the effect of different refinement criteria, the effect of refining more or fewer

hyperrectangles in each iteration, and the effect of different measures of goodness of fit for selecting

the final mesh. We hope to explore these extensions further in future work.
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Chapter 7

A Bayesian Approach to

Identifying Meteorological Drivers

of High PM2.5 Levels through

Spatial Quantile Regression and

Multidimensional Trend Filtering

7.1 Introduction

Air pollution has long been a public health concern. One form of air pollution considered espe-

cially dangerous is PM2.5, particulate matter less than 2.5 micrometers in diameter. Because of its

small size, PM2.5 can become entrapped in the lungs and even enter the bloodstream, making it

extremely hazardous to human health. Numerous studies have linked exposure to PM2.5 to respira-

tory problems and cardiovascular disease [Chai et al., 2019, Dabass et al., 2016, Polezer et al., 2018,

Wang et al., 2015, Weber et al., 2016]. Each year, an estimated 3.2 million deaths are attributed to

PM2.5 worldwide [Jerrett, 2015]. Reducing the public health burden of PM2.5 requires understanding

what factors determine PM2.5 levels; understanding which factor or combinations of factors cause
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dangerous spikes in PM2.5 is of special importance.

Our data consists of daily PM2.5 measurements taken at 174 Environmental Protection

Agency stations spread across the Eastern United States from 2010 to 2014. Nearly 60% of the US

population lives East of the Mississippi River, and the region also has a higher concentration of coal

burning power plants than the rest of the country, making the Eastern United States a region of

particular interest [Muyskens et al., 2017]. Meteorological variables such as temperature, humidity,

and wind speed are known to be associated with PM2.5 levels [Porter et al., 2015]. Furthermore,

the effects of these covariates have been shown to change over space [Russell et al., 2017]. For this

reason it is necessary to allow the effects of covariates to be spatially dependent when modeling

PM2.5 levels over a large spatial area. We develop a Bayesian quantile regression for this data in

which the effects of meteorological covariates are allowed to change with space. As the effects of

meteorological drivers on PM2.5 levels are believed to change seasonally as well as spatially, we fit

our model to the summer and winter PM2.5 data separately. The data exhibits spatio-temporal

dependence which must be accounted for in the model to allow for reliable inference; toward this

end, we include spatio-temporal random effects in our model.

Quantile regression models are commonly used by researchers who wish to draw inference

about areas of the response distribution other than the mean, such as the median or the tails.

This technique relates covariates to a given quantile of the conditional distribution of the response.

Quantile regression was first proposed in Koenker and Bassett [1978]. The rth regression quantile

β∗ is a solution to

min
β∈Rk

 ∑
i:yi≥Xiβ

r|yi −Xiβ|+
∑

i:yi<Xiβ

(1− r)|yi −Xiβ|

 ,

where Xi is the k-dimensional vector of covariates associated with observations yi. Since the work

of Koenker and Bassett [1978], quantile regression methods have been developed extensively.

Koenker [2005] provides a nice overview of the body of work on quantile regression up to

2005. We review a few of the more recent advancements here. Wu and Liu [2009] explore variable

selection for quantile regression using two methods: SCAD (smoothly clipped absolute deviation)

and adaptive LASSO. Single index quantile regression, a method in which multiple covariates are

related to the quantile of interest via a single link function, is developed in Wu et al. [2010]. Bondell

et al. [2010] propose a constrained method of quantile estimation to prevent individually estimated
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quantile curves from crossing each other. A broadly generalizable method of local partitioned quan-

tile regression is explored in Zhang [2017]. Firpo et al. [2009] develops a quantile regression technique

that regresses the recented influence function of the response quantile on covariates.

There are several existing Bayesian approaches to quantile regression. Gelfand et al. [2003]

develop a Bayesian method for estimating median residual life using Dirichlet processes. Kottas

and Krnjajić [2009] develop a Bayesian semiparametric method for quantile regression, which uses

a parametric estimator for the quantile function and a nonparametric estimator for the error dis-

tribution. Yu and Moyeed [2001] develop a Bayesian approach to quantile regression based on the

asymmetric Laplace likelihood. As the asymmetric Laplace likelihood is not particularly tractable

for posterior sampling, several different MCMC sampling procedures have been proposed. Choi

and Hobert [2013] present a data augmentation MCMC algorithm and sandwich MCMC algorithm

for the Laplace likelihood. Kozumi and Kobayashi [2011] present an MCMC algorithm based on a

location-scale mixture representation of the asymmetric Laplace distribution. We use this approach

for our implementation.

There are a few techniques for applying quantile regression to spatially correlated data.

Hallin et al. [2009] develop a local linear quantile estimator for spatial data. Reich et al. [2011]

develop a Bayesian method for spatial quantile regression which uses splines whose coefficients are

functions of the quantile and spatial location. Gaussian processes are used to ensure the coefficients

change smoothly with space. As their method is not feasible for large datasets, they also present

an approximation method which can be used for larger datasets. Russell et al. [2017] develop a

methodology for simultaneously identifying and estimating significant spatially varying covariate

effects for a given regression quantile.

In this chapter, we present a Bayesian approach to spatio-temporal quantile regression.

This method incorporates the multidimensional Bayesian trend filter of the previous chapter into

the asymmetric Laplace model of Yu and Moyeed [2001]. Covariate effects are allowed to change

through space using the multidimensional Bayesian trend filter. The trend filter estimates a covariate

effect surface that changes smoothly through space. Furthermore, it produces an estimate of this

surface over the entire spatial support, not only at the locations at which data was observed. The

spatio-temporal dependence in the data is modeled using random effects embedded in a vector

autoregression. Our methodology has several advantages over existing techniques. We account

for both spatial and temporal dependence via the random effects. Russell et al. [2017] perform
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quantile regression for a similar dataset, but ignore the temporal dependence in the data. Our

method is fast and computationally scalable to large datasets and large spatio-temporal supports.

The multidimensional trend filter uses Gaussian Markov random fields to estimate smoothly varying

surfaces, allowing for fast model fitting via sparse matrix algebra. Finally the Bayesian framework

allows for the straightforward assessment of predictor significance without appealing to asymptotics.

The remainder of the chapter is organized as follows. We present our methodology in Section

7.2. We demonstrate the effectiveness of our method with a simulation study in Section 7.3 before

applying it the PM2.5 data in Section 7.4. Section 7.5 contains a discussion of our findings, and

Section 7.6 provides concluding remarks.

7.2 Methodology

In our PM2.5 analysis, we have daily observations of PM2.5 from air quality monitoring stations

taken over several years, though some observations are missing. We wish to study the effects of a

set of meteorological covariates on abnormally high PM2.5 events. These effects are believed to vary

through space, so rather than estimating a single covariate effect, we estimate an effect surface across

the entire study area. As the data presents with heavy spatio-temporal dependence, spatio-temporal

random effects are included in the model.

Suppose we have responses yst and covariate information xstp collected at locations `1, `2, ..., `S

where s = 1, ..., S indexes spatial location, t = 1, ..., T , indexes times and p = 1, ..., P indexes the dif-

ferent covariates. We make use of the multidimensional Bayesian trend filter of the previous chapter

to estimate the spatially varying covariate effects. The multidimensional trend filter is a nonparam-

eteric estimator consisting of a multidimensional step function and a regularization penalty. In the

two dimensional case, the support space is discretized into a set of Q rectangular cells, (c1, c2, ..., cQ)

and the step function is estimated at each cell. Specifically, we define φp = (φ1p, φ2p, ..., φQp)
′

to be the vector of step function values associated with covariate p estimated at each grid cell in

the spatial support of our study area. The regularization penalty is enforced through the prior

distribution on φp. This prior distribution is given by π(φp) ∼ Normal(0, τ−1M) where τ2p > 0,

M = (D −W )(D −W ), and τ−1M denotes the precision matrix of the distribution (throughout,

the notation Normal(µ,A) will denote a normal distribution with mean µ and precision matrix A).

Here W is the adjacency matrix of the grid of Q cells, i.e. W ij = 1 if cells i and j share an edge
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or a corner and 0 otherwise, and D is a diagonal matrix with Dii =
∑Q
j=1W ij . As the rows of

(D −W ) sum to 0, M is not invertible, and thus π(φ) is an intrinsic Gaussian Markov random

field. This prior distribution imposes a penalty on the average of the first order approximation to

the derivative at each grid cell.

Define the function I so that I(s) = q where cq is the cell containing location `s. We assume

the following model for the rth quantile of our data:

yst = υ +

P∑
p=1

xstpφI(s)p + ψI(s)t + εst, (7.1)

where υ is a global intercept, and the εst terms are independent errors following the asymmetric

Laplace distribution with parameter r. Thus the probability density function of εst, π(·), is given

by π(εst) = r(1 − r) exp{εst(r − I(εst < 0)}. The ψst terms are spatio-temporal random effects

included to model the spatio-temporal dependence in the data. These random effects will also be

modeled using the multidimensional Bayesian trend filter. Thus for t = 1, .., T we define ψt =

(ψ1t, ψ2t, ..., ψQt)
′ to be the vector of spatio-temporal random effects from time point t estimated

over the Q grid cells.

Following Kozumi and Kobayashi [2011], we can express the asymmetric Laplace errors as

a mixture of exponential and normal random variables, allowing us to rewrite equation 7.1 as

yst = υ +

P∑
p=1

xstpφI(s)p + ψI(s)t + θzst + λ
√
zstust, (7.2)

where θ = 1−2r
r(1−r) , λ

2 = 2
r(1−r) , {zst}

iid∼ Exponential(1) and {ust} iid∼ Normal(0, 1).

To completely specify the model, we assign the prior distributions to all the unknown pa-
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rameters.

φp
ind.∼ Normal(0, τ−2p M) for p = 1, ..., P

τ2p
ind.∼ Inverse Gamma(ατ2 , βτ2) for p = 1, ...P

ψ1 ∼ Normal(0, γ−2M)

ψt
ind.∼ Normal(ζψt−1, γ

−2M) for t = 2, 3, ..., T

γ2
iid∼ Inverse Gamma(αγ2 , βγ2)

ζ
iid∼ Truncated Normal(0, σ2

ζ ,−1, 1)

zst
iid∼ Exponential(1) for (s, t) such that yst is observed

ust
ind.∼ Normal(0, 1) for (s, t) such that yst is observed.

The model is fit using Markov chain Monte Carlo (MCMC) methods. Using equation 7.3 we

are able to construct a Gibbs based posterior sampling procedure. In particular, we have normal full

conditional distributions for υ, the φps, and the ψts, generalized inverse Gaussian full conditional

distributions for the zsts, inverse gamma full conditionals for the τ2p s and γ2hs and truncated normal

full conditionals for the ζhs.

7.3 Simulation Study

A simulation study was conducted to assess the effect of differing amounts of missing data and

differing quantiles of interest on the model. For the simulation study, we took S = 150, and

generated the `ss from a continuous uniform distribution on [0, 5] × [0, 5]. We took υ = 3 for the

intercept, set P = 2 and generated the xstp and ust from a standard normal distribution, and the zst

from an exponential(1) distribution. For r ∈ {0.5, 0.95} and k ∈ {0.5, 0.75, 1}, data was generated

at kST of the location-time pairs using:

yst = υ + xst1f1(`s) + xst2f2(`s) + ψst + θzst + λ
√
zstust, (7.3)

where f1(`s) = sin(`s1) + cos(`s2) and f2(`s) = exp
[
1
4

{
(`s1 − 2.5)2 + (`s2 − 2.5)2

}]
. Note that if `s

and `s′ are in the same grid cell, then φsp = φs′p, but fp(`s) 6= fp(`s′). The functions f1 and f2 used

for data generation are shown in Figure 7.1. A 10×10 regular grid was used for the two dimensional
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trend filter for a total of Q = 100 grid cells. As previously mentioned, we wish to analyze summer

and winter PM2.5 data separately. While allowing for temporal dependence between observations

made in the same season of the same year, we assume temporal independence between years. For

our simulation study, we take the number of years to be R = 4, and the length of each season

to be M = 10, for a total of T = RM = 40 time points. The spatio-temporal random effects

are realizations from the prior distributions specified in Section 7.2, with a slight modification to

allow for temporal independence between years. Specifically, we assume ψt
ind.∼ Normal(0, γ−2h M)

if t corresponds to the first day of year h, and ψt
ind.∼ Normal(ζhψt−1, γ

−2
h M) for all other days

in year h. We take γ2h = 0.5 and ζh = 0.95 for all h, and generate the random effects from the

prior distributions given above. For each combination of r and k, 500 independent datasets were

generated, and the model was fit to each.

Results are summarized in Table 7.1, which contains the empirical bias, empirical MSE,

empirical standard deviation and empirical 95% coverage probabilities for each simulation configu-

ration, averaged over all S locations and all 500 datasets. The posterior mean estimate, empirical

bias, empirical MSE, empirical standard deviation and empirical 95% coverage probabilities for the

covariate surfaces f1 and f2 are depicted in Figures 7.2 and 7.3, respectively.
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Bias MSE SD 95 % Coverage

n = ST , r = 0.5

f1 0.0010 0.0375 0.2511 97.59

f2 0.0028 0.0136 0.1447 98.39

υ 0.0005 0.0009 0.0290 100.00

n = 0.75ST , r = 0.5

f1 0.0014 0.0434 0.2738 98.09

f2 -0.0033 0.0171 0.1567 98.05

υ -0.0030 0.0012 0.0337 100.00

n = 0.5ST , r = 0.5

f1 0.0013 0.0545 0.3085 98.48

f2 0.0058 0.0227 0.1741 97.44

υ 0.0012 0.0019 0.0417 100.00

n = ST , r = 0.95

f1 0.0014 0.0945 0.4010 98.74

f2 0.00046 0.0499 0.2256 94.28

υ 0.0175 0.0061 0.0706 100.00

n = 0.75ST , r = 0.95

f1 -0.0032 0.1202 0.4368 98.49

f2 0.0088 0.0576 0.2471 94.51

υ 0.0317 0.0084 0.0825 100.00

n = 0.5ST , r = 0.95

f1 -0.0109 0.1552 0.4911 98.49

f2 0.0093 0.0766 0.2784 94.14

υ 0.0452 0.0127 0.1035 100.00

Table 7.1: The table gives the empirical bias, empirical MSE, empirical standard deviation, and

empircal 95% coverage probabilities averaged over all S observed data locations and all data sets.
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Figure 7.1: The functions f1 and f2 used for data generation.

Figure 7.2: Simulation results for f1. From left the right the columns display the posterior mean

estimate, the empirical bias, the empirical MSE, the empirical standard deviation, and 95% empirical

coverage probabilities. From top to bottom the rows correspond to 0% missing data with r = 0.5,

25% missing data with r = 0.5, 50% missing data with r = 0.5, 0% missing data with r = 0.95, 25%

missing data with r = 0.95, and 50% missing data with r = 0.95.
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Figure 7.3: Simulation results for f2. From left the right the columns display the posterior mean

estimate, the empirical bias, the empirical MSE, the empirical standard deviation, and 95% empirical

coverage probabilities. From top to bottom the rows correspond to 0% missing data with r = 0.5,

25% missing data with r = 0.5, 50% missing data with r = 0.5, 0% missing data with r = 0.95, 25%

missing data with r = 0.95, and 50% missing data with r = 0.95.

The simulation study indicates that the methodology performs well overall, with slight

decreases in performance when a large amount of data is missing. We also see slight increases in

bias, MSE, and standard deviation on the boundaries. This phenomena is widely observed among

nonparameteric spatial estimators.
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Figure 7.4: The air quality monitoring stations used in the winter analysis (left) and the summer
ananlysis (right).

7.4 Data Application

7.4.1 The Data

The PM2.5 response was recorded at 174 Environmental Protection Agency stations spread across

the Eastern United States from 2010 to 2014. As the meteorological drivers of PM2.5 are thought

to differ between summer and winter months, we perform separate analysis for the summer months

(June- August) and Winter (December - February). Some of the EPA stations had large temporal

gaps in the reported data, and so only 150 of the stations were used for the winter analysis and 140

for the summer analysis. The stations involved in each analysis are depicted in Figure 7.4. The

study period contained 5 complete summer seasons and 4 complete winter seasons.

The meteorological covariates included in this analysis come from the North American

Regional Reanalysis. These covariates include wind speed, daytime and nighttime air temperature,

daytime and nighttime height of the planetary boundary layer (HPBL), lower tropospheric stability

(LTS), downward shortwave radiative flux (DSRF), percent cloud cover, precipitation, and relative

humidity. wind speed is the average of the previous 48 hour period, relative humidity, daytime air

temperature and daytime HPBL are daytime averages, nighttime air temperature and nighttime

HPBL are nighttime averages, LTS is the average of the previous 24 hour period, DSRF and percent

cloud cover are averages of the previous day, and precipitation is a daily presence/absence indicator.

For more information on the covariates, see NAR.
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7.4.2 Results

We use our proposed methodology to perform four separate analyses; i.e., we analyze the winter

PM2.5 data at the 0.5 and 0.95 quantiles and the summer PM2.5 data at the same two quantiles. In

the interests of parsimony, we include only those covariates found to be significantly related to the

PM2.5 response by Russell et al. [2017]. For the winter analysis, this was wind speed, daytime and

nighttime air temperature, daytime and nighttime HPBL, LTS, relative humidity and percent cloud

cover. For the summer analysis we include wind speed, daytime and nighttime air temperature,

DSWRF, precipitation, relative humidity and cloud cover. We discretized the study area for the

trend filter using a regular grid consisting of squares of width 1.5 degrees latitude by 1.2 degrees

longitude. We used the prior distributions specified in Section 7.2 with ατ2 = βτ2 = αγ2 = βγ2 = 1,

and σ2
ζ = 1000. The model was run for 4000 MCMC iterations, with first 2000 discarded as burn-

in. Convergence was assessed using trace plots. For each of the four models, we report both the

estimated covariate effect surfaces and regions of significance for each covariate. Significance was

assesed using 95% credible intervals. In particular, if the 95% credible interval for φpq was completely

positive (negative), then the pth covariate was deemed significantly positively (negatively) related

to the response in the region spanned by cell q.

Figure 7.5 shows the estimated covariate effect surfaces for the winter PM2.5 data at the 0.5

quantile. Figure 7.6 depicts regions of significance for these covariate surfaces. We find that wind

speed and nighttime air temperature are significantly negatively related to median PM2.5 levels for

most of the study region, and daytime HPBL is significantly negatively related for much of the

northern portion of the study area. Daytime air temperature and relative humidity are significantly

positively related to median PM2.5 levels for large portions of the study region, particularly in the

western and southern areas. Nighttime HPBL, LTS, and percent cloud cover were significantly

related to median PM2.5 levels only for isolated areas.
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Figure 7.5: The figure depicts the posterior mean estimate of the covariate effect surfaces from the

winter data for the 0.5 quantile.

132



Windspeed
Insignificant
Significantly Negative
Significantly Positive

Daytime Air Temperature
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 Relative Humidity
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Percent Cloud Cover
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Figure 7.6: The figure depicts the regions of significance of the covariate effect surfaces from the

winter data for the 0.5 quantile. Those regions for which a 95% credible interval contained 0 were

deemed insignificant.

Figure 7.7 shows the estimated covariate effect surfaces for the winter PM2.5 data at the 0.95

quantile. Figure 7.8 depicts regions of significance for these covariate surfaces. Wind speed appears

to be the strongest driver of the 0.95 quantile of winter PM2.5 levels, having a significantly negative

relationship over much of the study area. Nighttime air temperature is significantly negatively
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related to the 0.95 quantile of winter PM2.5 in the midwest and portions of the Carolinas, while

daytime HPBL is significantly negatively related for much of the northeastern portion of the study

area. Daytime air temperature and relative humidity are significantly positively related to the 0.95

quantile of winter PM2.5 levels in parts of the western and southern study regions. Nighttime HPBL

and percent cloud cover are only significant in isolated areas, and LTS is not significant anywhere

in the study region.
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Figure 7.7: The figure depicts the posterior mean estimate of the covariate effect surfaces from the

winter data for the 0.95 quantile.
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Figure 7.8: The figure depicts the regions of significance of the covariate effect surfaces from the

winter data for the 0.95 quantile. Those regions for which a 95% credible interval contained 0 were

deemed insignificant.

Figure 7.9 and Figure 7.10 show the estimated covariate surfaces and the regions of signifi-

cance (respectively) for the summer data at the 0.5 quantile. We see that wind speed is significantly

negatively related to median summer PM2.5 levels over much of the study area, with nighttime

air temperature and precipitation being significantly negatively related to the response in isolated
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areas. Daytime air temperature is significantly positively related to median summer PM2.5 levels

over almost all of the study area. DSWRF is significantly positively associated with the response

in mid-Atlantic region, and relative humidity is significantly positively related in the midwest and

parts of New England. Percent cloud cover was not significantly related to median summer PM2.5

levels anywhere in the study area.
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Figure 7.9: The figure depicts the posterior mean estimate of the covariate effect surfaces from the

summer data for the 0.5 quantile.
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Figure 7.10: The figure depicts the regions of significance of the covariate effect surfaces from the

summer data for the 0.5 quantile. Those regions for which a 95% credible interval contained 0 were

deemed insignificant.

Figure 7.11 and Figure 7.12 show the estimated covariate surfaces and the regions of signifi-

cance (respectively) for the summer data at the 0.95 quantile. We see that wind speed is significantly

negatively related to high PM2.5 levels in the central part of the study region. Daytime air temper-

ature is significantly positively related to the response across most of the study region, and relative
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humidity is significantly positively related across much of the northern portion of the study area.

The other covariates (nighttime air temperature, DSWRF, precipitation and percent cloud cover)

were insignificant across all or almost all of the study area.

Windspeed
-0.38 - -0.32
-0.31 - -0.28
-0.27 - -0.24
-0.23 - -0.20
-0.19 - -0.16
-0.15 - -0.12
-0.11 - -0.08
-0.07 - -0.04
-0.03 - 0.00
0.01 - 0.05

Daytime Air Temperature
0.37 - 0.42
0.43 - 0.49
0.50 - 0.56
0.57 - 0.63
0.64 - 0.70
0.71 - 0.77
0.78 - 0.84
0.85 - 0.91
0.92 - 0.98
0.99 - 1.11

Nighttime Air Temperature
-0.41 - -0.36
-0.35 - -0.30
-0.29 - -0.24
-0.23 - -0.18
-0.17 - -0.12
-0.11 - -0.06
-0.05 - 0.00
0.01 - 0.06
0.07 - 0.12
0.13 - 0.19

DSWRF
-0.17 - -0.15
-0.14 - -0.10
-0.09 - -0.05
-0.04 - 0.00
0.01 - 0.06
0.07 - 0.10
0.11 - 0.15
0.16 - 0.20
0.21 - 0.25
0.26 - 0.30

Precipitation
-0.33 - -0.30
-0.29 - -0.25
-0.24 - -0.20
-0.19 - -0.15
-0.14 - -0.10
-0.09 - -0.05
-0.04 - 0.00
0.01 - 0.05
0.06 - 0.10
0.11 - 0.15

Relative Humidity
-0.24 - -0.18
-0.17 - -0.09
-0.08 - 0.00
0.01 - 0.09
0.10 - 0.18
0.19 - 0.27
0.28 - 0.36
0.37 - 0.45
0.46 - 0.54
0.55 - 0.66

Percent Cloud Cover
-0.57 - -0.49
-0.48 - -0.42
-0.41 - -0.35
-0.34 - -0.28
-0.27 - -0.21
-0.20 - -0.14
-0.13 - -0.07
-0.06 - 0.00
0.01 - 0.02
0.03 - 0.07

Figure 7.11: The figure depicts the posterior mean estimate of the covariate effect surfaces from the

summer data for the 0.95 quantile.
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Figure 7.12: The figure depicts the regions of significance of the covariate effect surfaces from the

summer data for the 0.95 quantile. Those regions for which a 95% credible interval contained 0 were

deemed insignificant.

7.5 Discussion

We note that Russell et al. [2017] also perform a spatial quantile regression for the 0.5 and 0.95

quantiles of a PM2.5 response over the eastern United States. However our method has two sub-
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stantial advantages over that of Russell et al. [2017]: more reliable inference and reduced estimation

uncertainty. Failing to model temporal dependence, when present, often leads to unreliable infer-

ence. In particular, neglecting temporal dependence tends to inflate variance estimators and alter

the width of confidence intervals. While Russell et al. [2017] ignore the temporal dependence in the

data, our method models temporal dependence via a vector autoregression. This approach yields

more accurate inference because the random effects are able to capture the temporal autocorrelation

in the data. By accounting for an additional source of variation in the data, our method reduces

the overall uncertainty in parameter estimation. Our improved inference allows us to detect some

relationships missed by Russell et al. [2017].

For the winter PM2.5 data, our analysis detected a much larger region of significance for the

0.5 quantile for daytime air temperature than that of Russell et al. [2017]. Our analysis also found

that for the 0.5 quantile, LTS was significantly negatively to the response for an isolated region while

Russell et al. [2017] found that LTS was significantly positively related to the response for several

isolated regions. For the 0.95 quantile, our analysis did not find LTS to be significant anywhere,

while Russell et al. [2017] found LTS to be significantly positively related for much of the study

area. It is likely that the LTS covariate effect in Russell et al. [2017]’s model was confounding with

the unmodeled temporal dependence. Our model, which accounts for the temporal dependence, was

able to distinguish between the two. Both analyses found a significant positive relationship between

daytime air temperature and the 0.95 quantile of the response in Michigan; however our analysis

also found regions of positive significance in the lower Midwest and South, while Russell et al. [2017]

found a significantly negative relationship in Eastern Pennsylvannia. Again, we hypothesis this

spurious relationship was due to unmodeled temporal dependence. Russell et al. [2017] found a

somewhat larger region of positive significance at the 0.95 quantile for daytime HPBL than did our

analysis.

Our findings for the summer analysis identify several relationships not found in Russell et al.

[2017]. Our analysis found a small region of negative significance in the Midwest for nighttime air

temperature at the 0.5 quantile, while Russell et al. [2017] did not find any regions of significance.

Both analyses found relative humidity to be significantly positively related to the response at the

0.5 quantile in the Midwest and New England, but Russell et al. [2017] also found relative humidity

to be significantly negatively related to the response in a few isolated Southern areas. Our analysis

found two isolated regions of negative significance for precipitation at the 0.5 quantile, while Russell
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et al. [2017] found no regions of significance for precipitation. For the 0.95 quantile, Russell et al.

[2017] found a much larger region of negative significance for percent cloud cover than our analysis

did. Both analysis found relative humidity to be significantly positively related to the response at

the 0.95 quantile in the Midwest and New England, but Russell et al. [2017] also found relative

humidity to be significantly negatively related to the response in isolated Southern areas. It is

possible that these areas of negative significance are spurious relationships caused by confounding

with unmodeled temporal dependence. Our analysis found precipitation to be largely insignificant at

the 0.95 quantile except for a small region in Michigan, while Russell et al. [2017] found precipitation

to be significantly negatively related to the response in Kentucky and Tennessee.

7.6 Conclusion

We have developed a Bayesian quantile regression methodology that allows us to estimate the spa-

tially varying effects of meteorological covariates on PM2.5. We quantify the relationship between

PM2.5 and various meteorological covariates for both summer and winter data at the 0.5 and 0.95

quantile. Spatio-temporal random effects are included to account for the spatio-temporal depen-

dence in the data. Our findings include several new relationships not found by Russell et al. [2017],

who performed a similar spatial analysis while ignoring the temporal dependence in the data.

Our Bayesian methodology for estimating spatially varying covariate effects for quantile

regression uses multidimensional trend filtering to estimate spatially varying covariate effect surfaces.

The trend filter is also used to estimate spatio-temporal random effects. The model is fit via MCMC

methods. Re-expressing the asymmetric Laplace errors as a combination of normal and exponential

random variables allows for the construction of an efficient Gibbs-based MCMC sampling procedure.

A simulation study is used to assess the performance of the model and its fitting procedure. We find

that our methodology performs well, even when a large amount of data is missing.

This analysis presents several areas for potential future work. One might attempt to perform

a single analysis for all the data, rather than analyzing summer and winter data separately. The

multidimensional trend filter could be extended to three dimensions to allow the covariate effects

to change with time as well as with space. One might also estimate effects for multiple quantiles

simultaneously.
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Chapter 8

Conclusion

8.1 Discussion

This work summarizes several methodologies for Bayesian spatio-temporal modeling. Chapters 2 and

3 provide disease forecasting methodologies for Lyme disease and Anaplasmosis. These methodolo-

gies produce an annual disease forecast for the contiguous United States, and allow for the assessment

of significant drivers of disease. Chapter 4 outlines the chromatic sampler for Gaussian Markov ran-

dom fields, a fast MCMC sampling strategy for fitting models with high dimensional GMRFs. The

chromatic sampler is compared to two of the most commonly used GMRF sampling strategies: block

updating and single site updating. The chromatic sampler is found to be the fastest approach when

the dimension of the underlying GMRF is sufficiently large. Chapter 5 outlines a Bayesian spatio-

temporal model for assessing disease trends. This model is then used to identify regions of the

country seeing increasing Lyme disease risk. The methodology allows for the simultaneous estima-

tion of both regional and local trends, and employs data augmentation and the chromatic sampler to

create a computationally efficient sampling strategy. Chapters 6 and 7 examine a novel nonparamet-

ric estimator, the Bayesian multidimensional trend filter. The multidimensional trend filter provides

a computationally efficient way to estimate trends or covariate effects for spatio-temporal models

with a large support space, though the methodology is not limited to spatio-temporal applications.

Chapter 6 develops the methodology, and provides an adaptive, data-driven way for determining the

level of resolution of the resulting estimator. Chapter 7 extends the methodology to the quantile

regression framework to estimate spatially varying covariate effects for regression quantiles. The
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methodology is then used to estimate the spatially varying meteorological drivers of extreme PM2.5

events.
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Appendix A Supplementary Material for Chapter 4

Here the reader may find additional material relating to Chapter 4, including more details about

the binomial regression model for the election data, as well as Supplementary Figures discussed in

the main text.

A.1 SUPPLEMENTARY ALGORITHMS AND FIGURES

Input: Mean factor βb, precision matrix βQp.
Output: Draw βx from a N(βQ−1p βb,βQ

−1
p ) distribution.

1 Find the Cholesky factor βQp = βLLT

2 Solve βLw = βb

3 Solve βLTβµ = βw
4 Sample βz ∼ N(β0,βI)

5 Solve βLTβv = βz
6 Compute βx = βµ+ βv
7 Return βx

Algorithm 3: Sampling from a typical GMRF-based full conditional encountered in
block Gibbs sampling [Rue and Held, 2005a].
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Figure A.1: Left panel: Gelman plots [Brooks and Gelman, 1998] of the potential scale reduction
factors versus chain length for the 50× 50 regular array example. Right panel: Cumulative averages

σ̂2
(k)

and τ̂2
(k)
, k = 1, . . . , 2, 000 calculated from three independent chains. In the right panel, the

top, middle, and bottom rows correspond to chromatic, block, and single-site sampling, respectively.
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Figure A.2: Left panel: MCMC Trace plots of single chains each for σ2 and τ2 for the noisy 50× 50
regular array example. Right panel: Empirical ACF plots for these chains. The top, middle, and
bottom rows are from the chromatic, block, and single-site chains, respectively.
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Figure A.3: Left panel: Gelman plots [Brooks and Gelman, 1998] of the potential scale reduction
factors versus chain length for the noisy 50 × 50 regular array example. Right panel: Cumulative

averages σ̂2
(k)

and τ̂2
(k)
, k = 1, . . . , 2000 calculated from three independent chains. In the right

panel, the top, middle, and bottom rows correspond to chromatic, block, and single-site sampling,
respectively.
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Figure A.4: Left panel: Scatterplot and approximate marginal posterior densities estimated from
the three sampling approaches for the noisy 50× 50 regular array example. Right panel: Empirical
CDFs based on the output. The left panel was created using code available at https://github.

com/ChrKoenig/R_marginal_plot.
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Figure A.5: Posterior mean estimates of the the true underlying image obtained from each sampling
approach in the 50 × 50 regular array example. The multivariate potential scale reduction factors
for the βϕ := β0β1 + βγ chains are approximately 1 for each sampler.
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Figure A.6: MCMC Trace plots of single chains each for σ2, τ2, and β0 chains in the noisy 80 ×
80 regular array example. The top and bottom rows are from the chromatic and block chains,
respectively.
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Figure A.7: Posterior mean estimates of the the true underlying image obtained from the chromatic
and block sampling approaches in the noisy 80×80 regular array example. The multivariate potential
scale reduction factors for the βϕ := β0β1 + βγ chains are approximately 1.00 for both samplers.
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Figure A.8: MCMC Trace plots of single chains each for σ2, τ2, and β0 chains in the noisy 128 ×
128 regular array example. The top and bottom rows are from the chromatic and block chains,
respectively.
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Figure A.9: Posterior mean estimate of the the true underlying image obtained from chromatic
sampling in the noisy 256 × 256 regular array example. The estimate is based on the last 2,000 of
10,000 iterations of the Markov chain.
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Figure A.11: 7-Coloring of the 14, 926 precincts in New York found via Algorithm 2.
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Figure A.12: Left panel: MCMC trace plots of single chains for the β0 and τ2 chains from the
New York election data example. Right panel: Empirical ACF plots for these chains. The top and
bottom rows are from the chromatic and block chains, respectively.
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chain length for the New York election example.
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A.2 DETAILS PERTAINING TO THE SPATIAL BINOMIAL REGRES-

SION MODEL

It is assumed that γ = (γ1, ..., γn)T obeys a CAR model, which is given by N(0, τ2(D −

ρW )−1), with ρ being known. The model is completed by specifying the following priors: β0 ∼

N(0, σ2
0) and τ2 ∼ IG(ατ2 , βτ2), where the hyperparameters are chosen so these priors are vague.

Thus, the unknown parameters that are to be sampled via Markov Chain Monte Carlo (MCMC)

are β0, ψ, γ, and τ2, with the only difference between the full block Gibbs and chromatic sampler

being how the γ are sampled; i.e., the former samples all of these elements in a single block while

the latter samples independent blocks of these elements from their univariate full conditionals.

To create a posterior sampling algorithm, it is first noted that the full conditional dis-

tribution of β0 is given by β0|ψ,γ,Y ∼ N(µβ0
, σ2
β0

), where µβ0
= σ2

β0
(1Tκ − 1TDψψ) and

σ2
β0

= (1TDψ1 + σ−20 )−1. Next, the full conditional distribution of τ2 is given by τ2|γ ∼ IG(ατ2 +

n/2, βτ2 + γT (D − ρW )γ/2). The full conditional distribution of the latent ψi are again Pólya-

Gamma; i.e., ψi|β0, γi ∼ PG(mi, ηi), for i = 1, ..., n. For further details, see Polson et al. [2013].

The full conditional distribution of γ is γ|Y , β0, τ2,ψ ∼ N(µγ ,Σγ), where µγ = Σγ(κ−Dψ1β0)

and Σγ = {Dψ + τ−2(D − ρW )}−1. Through similar arguments, it is easy to show that the

univariate full conditional distribution of γi is given by γi|γ(−i), Yi, β0, τ
2, ψi ∼ N(µγi , σ

2
γi), where

µγi = σ2
γi(τ

−2ρ
∑
j∈N (i) γj − ψiβ0 + κi) and σ2

γi = (ψi + τ−2Dii)
−1.
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Appendix B Supplementary Material for Chapter 5

B.1 Full Conditional Distributions

This section provides the full conditional distributions of all unknown parameters from the model

in chapter 5. To provide for the most general setting possible, these derivations account for possible

missing data in time and space. The notation defined in Section 5.3.2 is used. For ease of exposition

in the following derivations, the dependencies of these full conditional distributions on remaining

parameters are suppressed.

The full conditional distribution of the latent ψst’s is Pólya-Gamma(nst, νst). For further

details on the structure of the Pólya-Gamma distribution, as well as sampling strategies, see Polson

et al. [2013]. Exploiting the normal form in ν, it is easy to establish that the full conditional

distribution of β∗p is N(µβ∗p ,Σβ
∗
p
), where

µβ∗p = Σp

{
T p(R)′Xp(R)′κ− T p(R)′Xp(R)′Dψνβ∗p

}
,

Σβ∗p =
{
T p(R)′Xp(R)′DψXp(R)T p(R) +C∗−1p

}−1
.

In the expression above, we define T p by stacking the matrix R̃
∗
p(R

∗
p)
−1 on itself T times, � denotes

the Hadamard product, and

νβ∗p = Z(R)δ +
∑
p′ 6=p

Xp′(R)� T p′(R)β∗p′ + I(R)ξ.

Similarly, the full conditional distribution of δ is N(µδ,Σδ), where

µδ = Σδ {Z(R)′κ−Z(R)′Dψνδ} ,

Σδ =
{
Z(R)′DψZ(R) + σ−2δ I

}−1
,

and here

νδ =

P∑
p=1

Xp(R)� T p(R)β∗p + I(R)ξ.

The full conditional distribution of σ2
p is IG

(
S∗p/2 + ασ2

p
,β∗pR

∗−1
p β∗p/2 + υσ2

p

)
and the full condi-
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tional distribution of τ2 is IG(α∗τ2 , β∗τ2), where

α∗τ2 = TS/2 + ατ2 ,

β∗τ2 =
1

2

(
ξT1 {D − ωW }ξ1 +

T∑
t=2

{ξt − ζξt−1}T {D − ωW }{ξt − ζξt−1}
)

+ υτ2 .

The full conditional distribution of ζ is Truncated-Normal(µ∗ζ , σ
∗
ζ ,−1, 1), where

µ∗ζ = σ2∗
ζ

T∑
t=2

ξ′t−1Aξt,

σ2∗
ζ =

(
T∑
t=2

ξ′t−1Aξt−1 + σ−2ζ

)−1
,

and A = τ−2(D − ωW ). We turn our attention to the spatio-temporal random effects. The full

conditional distribution of ξt is N(µξt ,Σξt), where

µξt = Σξt
{
I(Rt)′κt − I(Rt)′Dψt

νξt + ζA(ξt−1 + ξt+1)
}
,

Σξt =
{
I(Rt)′Dψt

I(Rt) + (1 + ζ2)A
}−1

for t = 1, ..., T − 1,

Σξt =
{
I(Rt)′Dψt

I(Rt) +A
}−1

, for t = T.

Here, Rt is the collection of ordered pairs (s, t) indexing data that were collected during the tth time

period, I is an identity matrix, Dψt
= diag{ψ(Rt)}, κt = Y (Rt)− n(Rt)/2, ξ0 = ξT+1 = 0, and

νξt = Z(Rt)δ +
P∑
p=1

Xp(Rt)� T p(Rt)β∗p.

The aforementioned full conditional distributions of ξt can be used if the number of spatial units is

relatively small. When faced with a large number of areal units, it is suggested that the chromatic

sampler discussed in Brown et al. [2017c] be used. To accomplish this, one need only have a

“coloring” of the areal units and know the full conditional distributions of the ξst. A coloring of the

areal units can be obtained using the algorithm in Brown et al. [2017c]. The (scalar) full conditional
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distribution of each ξst is N(µξst , σ
2
ξst

), where

µst =
σ2
st

τ2
{
ω(1 + ζ2)wsξt − gstτ2(ψstν

∗
st − κst) + ζds(ξs,t−1 + ξs,t+1)− ζωws(ξt−1 + ξt+1)

}
σ2
st =

{
gstψst +

ds(1 + ζ2)

τ2

}−1
,

for t = 1, ..., T − 1, and

µst =
σ2
st

τ2
{
ωwsξt − gstτ2(ψstν

∗
st − κst) + ζdsξs,t−1 − ζωwsξt−1

}
σ2
st =

{
gstψst +

ds
τ2

}−1
.

for t = T . Here, ws denotes the sth row of W , ds denotes the sth diagonal element of D, ν∗st =

Zstδ+
∑P
p=1Xstpβ̃p(ls), and gst = 1 if (s, t) ∈ R and zero otherwise. The full conditional distribution

of θp has density

exp

(
−1

2

{
β̃
′
p �Xp(R)′

[
DψXp(R)� β̃p + 2

(
Dψνβ∗p − κ

)]
+ β∗Tp C

∗−1
p β∗p

})
det{C∗p}

−1
2 ,

where the remaining parameters in the conditioning are understood. In general, a Metropolis-

Hastings step can be used to sample θp, but the appropriate proposal distribution depends on the

form of the selected correlation function.

Similarly, the full conditional distribution of ω has density

π(ω | ·) ∝ exp

{
−1

2

T∑
t=1

(ξt − ζξt−1)′A(ξ − ζξt−1)

}
det{A}T

2 ωαω−1(1− ω)vω−1,

where A = τ−2(D − ωW ). A Metropolis-Hastings step is used to sample ω.

B.2 Additional Simulation Results

B.2.1 Investigation of a CAR Model for the Spatially Varying Coefficients

There are many possible models that could be used for the spatially varying coefficients. Gelfand

et al. [2003] suggest various ways of defining spatially and spatio-temporally varying coefficients via

GP models. Motivated by this work, our proposed methodology uses GPP models to account for

spatially varying coefficients. In the case of areal data, a CAR model is a viable alternative for the
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spatially varying coefficients. Suppose that, rather than using a GPP for β̃p as described in section

5.2, we use a Gaussian CAR model for βp. This results in the following hierarchical model:

Yst|nst, νst indep.∼ Binomial (nst, pst = g(νst)) , s = 1, . . . , S; t = 1, . . . , T ;

βp|σ2
p,θp

indep.∼ N
(
0, σ2

p(D − θpW )−1
)
, p = 1, . . . , P ;

σ2
p
indep.∼ IG(ασ2

p
, υσ2

p
), p = 1, . . . , P ;

θp
i.i.d.∼ π(θp), p = 1, . . . , P ;

δ ∼ N(0, σ2
δI), σ2

δ > 0;

ξt|ξt−1, τ2, ω, ζ ∼ N
(
ζξt−1, τ

2(D − ωW )−1
)
, t = 1, . . . , T ;

τ2 ∼ IG(ατ2 , υτ2), ατ2 , υτ2 > 0;

ω ∼ Beta(αω, υω), αω, υω > 0;

ζ ∼ Truncated-Normal(0, σ2
ζ ,−1, 1), σ2

ζ > 0,

(1)

where νst = Z ′stδ +X ′stβ(`s) + ξst and β(`s) = (β1(`s), ..., βP (`s))
′ with βp(`s) being the sth ele-

ment of βp.

We make two conjectures concerning the relative performance of the CAR-based model to the GPP-

based model. We empirically evaluate both conjectures:

Conjecture 1: If the spatially varying regression coefficients are smooth, the GPP

model yields smaller biases and mean squared errors than the CAR model. To evaluate

this conjecture, we generated 500 replicate data sets exactly as in Section 5.4. In addition to fitting

the GPP-based model to the data as in Section 5.4, we also fit supplemental model (1) to each data

set, using the following priors:

β1|σ2
1 ,θ1 ∼ N

(
0, σ2

1(D − θ1W )−1
)
,

σ2
1 ∼ IG(2, 2),

θ1 ∼ Beta(900, 100).

Figure B.2 summarizes the parameter estimates obtained under both models. The true coefficient
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surface is depicted in Figure 5.2 of the corresponding manuscript. From these results, we see that

our proposed GPP approach has smaller empirical bias and empirical mean squared errors than the

CAR approach.

Conjecture 2: If the spatially varying regression coefficients at a specific geographic

region (e.g., county) is comprised of both a smooth “regional” effect (i.e., a smooth

surface over the study area) plus “local” heterogeneity, the proposed GPP approach

can distinguish between and estimate these two effects. By contrast, the CAR model

can only estimate the local effects. To evaluate this conjecture, we simulated 500 replicate data

sets generated as described previously, with the exception that we now add a random draw from

a CAR model to the “regional” (low-frequency) coefficient surface to create an underlying smooth

surface with local heterogeneity. Both the regional and local effect surfaces are provided in Figure

B.3. The proposed GPP approach (i.e., model (3) in the corresponding manuscript) and the CAR

model (i.e., supplemental model (1) described above) were again fit to each data set. Model fitting

(i.e., prior specifications, number of MCMC iterates sampled, etc.) proceeded in the same manner

as described for both the GPP and CAR models. Figure B.4 presents a summary of the estimates of

the local effects obtained by both models. Similarly, Figure B.5 presents a summary of the estimates

of the regional effects obtained by the GPP model. Only an estimate from the GPP is displayed,

since it is not possible to produce a (sensible) estimate of regional effect under the CAR model.

In this analysis, local and regional trends based on the GPP model fits are parsed out using the

technique outlined in Section 5.5.

From these results, we observe that both procedures provide reliable estimates of the local

trends, with the CAR model performing slightly better. This finding is somewhat expected, since

the combination of the CAR model on the regression coeffcients and the CAR model on the random

effects allow the model to closely adapt to the observed data. However, only the GPP model allows

us to estimate both the regional and local trends, at the cost of slightly more bias in the local trend

estimates. Again, this is reasonable since most nonparametric smoothers give biased estimates.

This study demonstrates that the GPP model is able to provide an estimate of both the

regional and local trends, while other techniques such as the CAR model cannot. This point is

buttressed by the fact that, in our application, we are more interested in the larger scale trends than

we are the local deviations from these trends. Elaborating, from a scientific perspective, the regional
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trends are of interest because they provide more general information on disease trends and indicate

broad patterns in disease spread over time. Alternatively, from a public health perspective, local

trends are valuable for a variety of reasons, including assessing disease risk, evaluating the effective-

ness of local preventative measures, and informing health-care providers about local anomalies in

disease prevalence. Hence, it is useful to have a model capable of estimating both types of effects

simultaneously. This ultimately motivates our proposed model.

B.2.2 Investigation of the Effects of Missing Data

Here, a simulation study is conducted to assess the performance of our approach in the presence of

randomly missing data. The same data generating process described in Section 5.4 is used to create

500 independent data sets, using a 13× 13 grid, τ2 = 0.005, and ω = 0.9. Prior to model fitting, we

randomly remove 25%, 50%, and 75% of the generated observations. We fit the models in the exact

same fashion described in Section 5.4.

Figure B.6 displays the results. We see consistent reliable recovery of the underlying surface,

with only slight increases in bias and mean squared errors, even with more than half of the data

missing. This suggests that the proposed approach is robust to randomly missing observations in

the sense of still being able to estimate the underlying quantities of interest.

B.2.3 Investigation of the Effects of a Larger Spatial Support

In this study, 500 independent data sets are again generated in the same fashion as described in

Section 5.4, with the exception that the data are on a 30 × 30 regular grid; i.e., S = 30. The

dimension of this problem is thus 302 = 900. The true surface for the spatially varying coefficients

is a single realization from a GPP on this grid with 49 regularly spaced knots. This surface and the

results of the simulation study are shown in Figure B.7. In this case, both the bias and the mean

squared errors are smaller than when the data are on a 13×13 grid. This is sensible since the larger

spatial support provides the model with more information. This study illustrates that our proposed

approach is feasible to being fit for larger spatial data sets without sacrificing the quality of the

resulting estimates.
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B.3 Exploratory Analysis

To reasonably specify our model, we conducted an initial exploratory analysis to suggest potential

model structures. This analysis is conducted marginally, using counties that reported tests during

every month of the study period and reported at least 10 positive tests. Of the 3,109 counties, 672

counties met this criteria. Our analysis had two stages.

First, for each county we fit, via maximum likelihood, the following ordinary generalized

linear model with a binomial likelihood and logistic link:

Yst|nst, pst ∼ Binomial(nst, pst), (2)

where pst = exp(δ0s + δ1st)/{1 + exp(δ0s + δ1st)}. Following the guidance in Dunsmuir and Scott

[2015], we examined the Pearson residuals from these fits to determine if an autoregressive correlation

structure can adequately model the temporal correlation. Specifically, Pearson residuals are used

to compute the partial autocorrelation functions (PACFs). Generally, a significant PACF at lag 1

with no significant PACF at lags greater than 1 is generally considered as solid evidence that an

AR(1) structure is appropriate [Brockwell and Davis, 2002a]. We find that 374 of the 672 models

have significant PACFs at one or more lags. Figure B.8 provides a summary of the PACFs across

the various model fits.

Based on the results of the first stage, a generalized linear autoregressive model of order

1 was fitted to each county level time series, using the glarma package in R [Dunsmuir and Scott,

2015]. In other words, the distributional assumption is the same as in (2), but with pst = exp(δs0 +

δs1t+Zst)/{1+exp(δs0 +δs1t+Zst)} and Zst = φs1(Zs,t−1 +es,t−1). In this implementation, the est

are taken to be the Pearson residuals. As discussed in Dunsmuir and Scott [2015], histograms of the

probability integral transformations are constructed from these model fits to assess model suitability.

Under a suitable model, these transforms should look like draws from a uniform distribution. Figure

B.9 presents histograms of the probability integral transformations from a randomly selected subset

of the counties. The fit of the model appears to be adequate for most counties.
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Figure B.1: Summary of the posterior estimates of β̃1 obtained in the correlation simulation example.

Results include the sample mean of the posterior estimates (first row), empirical bias (second row),

empirical absolute bias (third row) and empirical mean squared error (fourth row). From left to

right, the columns correspond to strongly correlated (ω = 0.90), weakly correlated (ω = 0.55), and

uncorrelated data (ω = 0.00). These results use a 5× 5 grid of knots.
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Figure B.2: Summary of the posterior estimates of β̃1 obtained from the simulation designed to

illustrate the differences between the performance of the proposed GPP model and a CAR variant.

Results include the sample mean of the posterior estimates (top row), empirical bias (middle row),

and empirical mean squared error (bottom row). The left column corresponds to the GPP model,

the right column is for the CAR model. The true varying coefficient surface is provided in Figure

5.2 of the manuscript.
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Figure B.3: True varying coefficient surfaces used to generate data in the simulation that illustrates

the differences between the performance of the proposed GPP model and a CAR variant. The

regional and local trends are provided on the left and right, respectively.
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Figure B.4: Summary of the posterior estimates of the local trend (right panel in Figure B.3)

obtained from the simulation designed to illustrate the differences between the performance of the

proposed GPP model and a CAR variant. Presented are the posterior mean estimate (top row),

the empirical absolute bias (middle row), and the empirical MSE (bottom row) associated with

estimating the local trend through the use of the proposed GPP model (left column) and the CAR

variant (right column).
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Figure B.5: Summary of the posterior estimates of the local trend (left panel in Figure B.3) obtained

from the simulation designed to illustrate the differences between the performance of the proposed

GPP model and a CAR variant. Results include the posterior mean estimate (top row), the empirical

absolute bias (middle row), and the empirical MSE (bottom row) associated with estimating the

regional trend through the use of the proposed GPP model. Note that the CAR variant does not

provide an estimate of this quantity.
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Figure B.6: Summary of the posterior estimates of β̃1 obtained in the missing data simulation.

Results include the sample mean of the posterior estimates (first row), empirical bias (second row),

empirical absolute bias (third row), and empirical mean squared error (fourth row). From left to

right, the columns correspond to 0%, 25%, 50% and 75% missing data.
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Figure B.7: Summary of the posterior estimates of β̃1 obtained in the simulation designed to assess

a larger spatial support. Results show the true spatially varying coefficient surface used for data

generation (top left), the posterior mean estimate of this surface (top right), the empirical bias

(bottom left), and the empirical mean square error (bottom right).
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Figure B.8: Summary of the estimated PACFs obtained in stage 1 of the data exploration. A

histogram of all lags having significant spikes across all counties is provided.
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Figure B.9: Histograms of the probability integral transformations from the glarma models from 6

randomly selected counties.
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