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ABSTRACT 

 

Electrostatic and geometric factors are critical to modeling the interactions  

and solvation effects of biomolecules in the aqueous environments of biological cells 

as they respectively influence the polar and non-polar components of the associated 

free energies. Conventional protocols use a hard-sphere model of atoms to devise and 

study the underlying thermodynamics. But this traditional model tends to overlook 

some of the important biophysical aspects at the cost of oversimplification of the 

representation of the solute-solvent environments. Here an alternative and physically 

appealing model of atoms – a Gaussian-based model, is presented which replaces the 

hard-sphere model with a smooth density-based description of atoms. This 

dissertation explains the derivation of a physically appealing dielectric distribution 

from the Gaussian schematic to model the electrostatics of biomolecules using the 

implicit-solvent/Poisson-Boltzmann (PB) formalism. It also demonstrates the 

advantages of using it for computing geometric properties of a molecule such as its 

volume and surface area (SA) for estimating non-polar portions of the free energy. 

While highlighting the qualitative importance of the Gaussian-based model, it offers 
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conceptual proofs towards its validity through computational investigations of 

explicit solvent simulations. It also reports the key features of the Gaussian-based 

model, which impart to it the capacity of accurately capturing the crucial biophysical 

factors that characterize biomolecular properties, namely – the effect of intrinsic 

conformational flexibility and salt distribution. The non-triviality of these factors 

and their portrayal through the Gaussian models are meticulously discussed. A major 

theme of this work is the implementation of the Gaussian model of dielectric 

distribution and volume/SA estimation into the PB solver package called Delphi. 

These developments illustrate the manner in which the utility of Delphi has been 

expanded and its reputation as a popular tool for modeling solvation effects with 

appreciable time-efficacy and accuracy has been enhanced. 



 

 

iv 

DEDICATION 

 

Dedicated to 

my cat (Maxwell), 

my lovely sister (Annie), 

the summer of 2018 in Manchester, U.K. 

and 

the fine group of scientists who have made me want to be like them! 



 

 

v 

ACKNOWLEDGMENTS 

I express my heartfelt thanks to my supervisor, Prof. Emil Alexov, for the 

advisor that he has been. I acknowledge the unbiased and selfless support he has 

shown towards me, which has allowed me to grow in my career path. I thank him 

for putting up with my demands – the kinds of projects I wished to work on and the 

kinds I didn’t. I am grateful for the moral, logistic and most importantly the 

emotional support he has consistently provided me on various occasions. I wish to 

thank him for all of this and more and very importantly, for letting me freely 

collaborate internally as well as externally. 

I am thankful to the members of my doctoral committee – Dr. Feng Ding for 

his overall knowledgeability about the subject matter and his help in certain 

discussions on various occasions, Dr. Hugo Sanabria for his amicability and the time 

he invested in educating me and others on some crucial topics of the field and Dr. 

Bradley Meyer for being an awesome, experienced and often joyful mentor overall 

(star-formation codes, summer school and football). Their individual advices have 

been priceless. I also thank them for adjusting through some emergencies I had to 

encounter in this time.  



 

 

vi 

I am also deeply grateful to my collaborators – Dr. Shan Zhao from University 

of Alabama for inspiring me to orient my thoughts in more “mathematical” sense, 

Dr. Emilio Gallicchio from Brooklyn College for his time, ideas and patience while 

training me and Dr. Richard Henchman from the University of Manchester for the 

quality time we spent discussing scientific and other non-scientific topics and for 

helping me get into extended topics of research and thinking like a chemist! 

I am also extremely fortunate to have had the chance to hone my skill as a 

computer programmer, while working on Delphi. It would have been very difficult 

had I not had the support of Dr. Chuan Li, Dr. Lin Li, Dr. Zhe Jia and Dr. Lin 

Wang. They have walked me through the struggles of coding a big program and 

inspired me to learn more and more. I will also thank Dr. Shailesh Panday in this 

respect as well. My lab mates certainly cannot go unnoticed. I am thankful for their 

presence in general, for the times we spent discussing science or otherwise, criticizing 

each other, learning together, uniting as a team to oppose or support an idea and 

most importantly, venting! I am thankful to Yunhui Peng, Swagata Pahari, Mihiri 

Hewa and Mahesh Koirala in that regard. They have helped me through thick and 

thins by staying together. 



 

 

vii 

I am also joyously thankful for the friends I have made through this time – 

Abhishek Desai, Monsur Islam, Bishwambhar Sengupta, Judhajit Roy and Vaidehi 

Paliya. Their stance beside me has been of the greatest emotional support. In fact, I 

cannot thank them enough! I am also thankful to the batch of people who I have 

had the chance to interact with and share good memories in the classes we took 

together. With that I also thank the faculty of the PandA at Clemson, especially – 

Dr. Catalina Marinescu, Dr. Dieter Hartmann and Dr. Antony Valentini for igniting 

in me the interest to pursue fundamental understandings of physics. In that spirit, I 

will also thank Dr. Timo Heister and Dr. Fei Xue from the Department of 

Mathematics for the amazing training I received in their classes. 

I am most certainly grateful to the resources provided by Clemson University 

in the form library services and computing services, especially the Palmetto 

computing  cluster where most of my work was done. I was also fortunate to have 

received help from the office staff of PandA – Amanda, Lori, Risé, Celeste and Debra, 

who have never hesitated no matter how trivial the job was. 

I will also acknowledge the sources of my research assistantship during my 

time as a PhD candidate here - NSF DMS/Mathematical Biology, grant number 

1812597 and NIH, R01GM093937. 



 

 

viii 

Not the least, I am extremely thankful to my parents and my lovely sister, 

Annie, for what they have done in order to get me here. Their countless sacrifices 

can never be compensated for. I very certainly cannot forget the important role of 

Amelia Abbott and her parents, Ed and Charlotte Abbott, who have been a constant 

source of assurance through this time. Had it not been for Amelia and my dear cat, 

Maxwell, I would have been more devastated than usual! 

There is no way I can cover all the elements that have shaped the invaluable 

experience I have gained in the past 5 years. For better or worse, I am fortunate to 

have come across all of them.  

 



 

 

ix 

TABLE OF CONTENTS 

ABSTRACT ............................................................................................... ii 
DEDICATION .......................................................................................... iv 
ACKNOWLEDGMENTS ........................................................................... v 
TABLE OF CONTENTS .......................................................................... ix 
LIST OF TABLES .................................................................................. xiii 
LIST OF FIGURES..................................................................................xiv 
1 INTRODUCTION ................................................................................... 1 

1.1 Electrostatics in Molecular Biology ............................................... 1 
1.2 Electrostatics through computational models: The indispensable 

role of solvent. ................................................................................................... 5 
1.3 Poisson-Boltzmann (PB) formalism of continuum electrostatics ... 9 

1.3.1 Domain of the PBE ................................................................. 13 
1.3.2 Dielectric boundaries and solute-solvent interfaces ................... 14 

1.4 Total Solvation Energy in continuum electrostatic models ........... 20 
1.4.1 Polar Solvation energy ............................................................. 24 
1.4.2 Non-polar solvation energy ...................................................... 26 

1.5 Delphi: A PBE solver package ..................................................... 27 
1.5.1 Finite Difference representation ............................................... 27 
1.5.2 Overview of Delphi’s workflow ................................................. 30 
1.5.3 Applications of Delphi through packages and webservers ......... 33 

1.6 Summary ..................................................................................... 35 
1.7 Outline of the dissertation ........................................................... 36 

2 GAUSSIAN-BASED MODEL OF ATOMS AND DERIVATION OF A 
SMOOTH DIELECTRIC FUNCTION ................................................................. 38 

2.1 Gaussian model of atoms ............................................................. 39 
2.1.1 Super Gaussian model of atoms ............................................... 43 

2.2 Gaussian-dielectric model for protein-protein interactions 
(Barnsase-Barstar) ........................................................................................... 46 

2.3 Modeling salt contribution using the Gaussian-based model ........ 48 
2.4 Water distribution across lipid bilayers using Gaussian-based 

dielectric model ................................................................................................. 52 



 

 

x 

2.5 Summary ..................................................................................... 54 
3 CONCEPTUAL VALIDITY OF THE GAUSSIAN MODEL: EVIDENCE 

FROM EXPLICIT WATER MD SIMULATIONS ............................................... 57 
3.1 Revisiting the motivations behind the Gaussian-based dielectric 

model 58 
3.2 Molecular dynamics of a protein in explicit water ........................ 62 

3.2.1 Selection of a protein with cavity waters .................................. 62 
3.2.2 Molecular Dynamics................................................................. 64 
3.2.3 Force-field and water model combinations ............................... 65 

3.3 Analysis: Tempo-spatial properties of cavity and bulk water ....... 66 
3.3.1 Occupancy of the cavities ........................................................ 67 
3.3.2 Cavity vs bulk water: Mean residence time .............................. 69 
3.3.3 Cavity vs bulk water: Dipole rotational relaxation time ........... 80 

3.4 Solvent exposure and dipole orientational relaxation timescales of 
protein residues ................................................................................................. 87 

3.5 Summary ..................................................................................... 91 
4 USING THE GAUSSIAN-BASED DIELECTRIC MODEL TO 

REPRODUCE ENSEMBLE AVERAGE POLAR SOLVATION ENERGY OF A 
PROTEIN FROM A SINGLE CONFORMATION .............................................. 93 

4.1 Motivation .................................................................................. 94 
4.2 Methods ...................................................................................... 97 

4.2.1 Set of representative proteins ................................................... 97 
4.2.2 Structure preparation............................................................... 98 
4.2.3 Energy minimization ................................................................ 99 
4.2.4 MD simulations ....................................................................... 99 
4.2.5 Ensemble average polar solvation energy from PB vs alchemical 

MD methods 100 
4.2.6 Polar Solvation energy of energy minimized structures........... 104 
4.2.7 Modified Gaussian-based smooth dielectric model in Delphi ... 105 

4.3 Results and Discussion .............................................................. 107 
4.3.1 Ensemble average from Energy minimized structures ............. 107 
4.3.2 Role of salt-bridges (SBs)in the energy minimized structures . 117 
4.3.3 Gaussian-based smooth dielectric model to mimic the 

fluctuations of the SBs. ............................................................................... 124 
4.4 Summary ................................................................................... 128 



 

 

xi 

5 DESCRIBING MOLECULAR GEOMETRY BY GAUSSIAN BASED 
MODEL OF ATOMS: A NOVEL GRID BASED ALGORITHM FOR 
DETERMINING MOLECULAR VOLUME AND SURFACE AREA ................ 131 

5.1 Variations in the Non-polar solvation free energy models........... 131 
5.1.1 Need for efficient algorithms .................................................. 134 

5.2 The Gaussian model of computing molecular volume and surface 
area 136 

5.2.1 Gaussian product theorem for computing volumes and SA of 
overlapping regions...................................................................................... 136 

5.3 Identifying overlapping atom pairs and computation of volume and 
SA 140 

5.3.1 Grid-based algorithm for finding overlapping atoms ............... 142 
5.3.2 Depth-first traversal method for computing total volume and 

surface area of overlap information .............................................................. 148 
5.4 Validation of the algorithm ....................................................... 152 

5.4.1 Validation of the volume/SA output ...................................... 153 
5.4.2 Effect of positioning in the grid box ....................................... 155 
5.4.3 Accuracy in predicting overlapping atoms .............................. 156 

5.5 Performance of the algorithm .................................................... 158 
5.6 Results and Discussion .............................................................. 160 

5.6.1 Volume and surface area computed using the Gaussian model:
 161 

5.7 Physical appeal of the Gaussian model ...................................... 164 
5.8 Gaussian model to compute solvent excluded volumes ............... 168 

5.8.1 Volume of Interstitial Regions:............................................... 172 
5.8.2 Physical Appeal of the 𝑅𝑜𝑓𝑓𝑠𝑒𝑡-based Gaussian model. ......... 174 

5.9 Limitations of the Gaussian model with large 𝑹𝒐𝒇𝒇𝒔𝒆𝒕 ............. 177 
5.10 Summary ................................................................................... 180 

6 COMPENDIUM ................................................................................... 182 
APPENDICES ........................................................................................ 187 

A.1 Parameters for Energy minimization: ..................................... 187 
A.2 Parameters for MD simulation: .............................................. 187 
A.3 Schematic of the Gaussian-based smooth dielectric function with 

exponential decay function. ......................................................................... 188 



 

 

xii 

A.4 Anti-correlation of Coulombic energy and Polar solvation free 
energy 192 

A.5 Fluctuations of all the salt bridges identified across the 74 
proteins. 194 

A.6 Changing Polar solvation free energy with internal dielectric 
distribution 196 

A.7 Average Dielectric distribution using the Gaussian-based 
dielectric model ........................................................................................... 197 

A.8 Effect of grid-resolution on neighbors identified by the grid-
based algorithm ........................................................................................... 200 

A.9 Roffset to obtain the best match with respect to the solvent 
excluded volumes (SEVs): ........................................................................... 202 

A.10 Roffset to obtain the best match with respect to the volume of the 
interstitial regions in the solute ................................................................... 203 

A.11 Root Mean Square Relative Difference (RMSRD) .................. 205 
A.12 Interpreting boxplots ............................................................. 205 
A.14 Copyright permission for Chapter 5 ....................................... 207 

REFERENCES ........................................................................................ 209 
  



 

 

xiii 

LIST OF TABLES 

Table 4.1: Average relative error and average absolute error from the ensemble 
average polar solvation energy of that from the optimized crystal and energy 
minimized structures. .................................................................................. 111 

Table 4.2: The percentage of cases (out of the 74 proteins) where the difference in 
the ensemble average polar solvation energy and polar solvation energy of 
optimized crystal and EM structure obtained using TRAD-1 dielectric method 
is negative. These cases would require decreasing the protein internal dielectric 
below 1 to correct for the error incurred by the TRAD-1 model, which is 
physically invalid. ....................................................................................... 113 

Table 5.1: The Atom Overlap Matrix or AOM (top panel) and the neighbor list of 
atoms inferred from it (bottom panel) for the 5-atom example molecule obtained 
using the grid-based neighbor search algorithm. For clarity only the upper 
triangular part of the symmetric matrix is shown. ....................................... 147 

Table 5.2: Comparison between van der Waals volumes and surface area of proteins 
and surface area of individual atoms obtained using the Gaussian model and the 
hard-sphere model. The comparison is quantified by the slope, intercept of the 
linear regression fit, correlation (R2) and the root mean square relative 
difference (RMSRD) .................................................................................... 162 

 
 

  



 

 

xiv 

LIST OF FIGURES 

Figure 1.2.1: Explicit versus Implicit solvent models. A cartoon representation 
showing a solvated protein system with the left half of the box represented using 
a continuum approach (implicit solvent) and right half represented using explicit 
solvent model. ................................................................................................ 7 

Figure 1.3.1: Conventional representation of solvated system in the 
continuum electrostatics approach. A cartoon illustration of the continuum 
electrostatic setup with implicit solvent model. The region colored in cyan 
represents that which is occupied by the solvent and electrolyte ions (with 
dielectric 𝜖𝑜𝑢𝑡) and the region colored in gray represents that which is occupied 
the solute (with dielectric 𝜖𝑖𝑛). The solid black boundary separating the two 
regions denotes the dielectric boundary. The dashed boundary that envelopes 
the solute and intrudes in to the solvent region is the ion-exclusion surface which 
separates the regions that are accessible and inaccessible to the electrolytes. The 
atoms comprising the solute retain their charges and they are colored arbitrarily 
to highlight the complexity and inhomogeneity of charge placement in the 
solute. ........................................................................................................... 16 

Figure 1.4.1: Thermodynamic cycle of solvation. The solvation energy is the 
sum of the various polar and non-polar components which originate from several 
transformations, which when put together, emulate the transfer of a solute from 
one medium to another. The cycle illustrates a series of these unrealistic 
transformation whose energies can be used to obtain the total solvation energy 
of the solute in question. The theory is based on the state-function nature of 
free energy. The exact transfer is shown in the top panel. But this is equivalent 
to following steps (a) through (f) in an anticlockwise manner. ....................... 22 

Figure 1.5.1: Discretization of the space by Delphi. The figures illustrate how 
the domain of the PBE is discretized into regularly sized cubes by Delphi in 
order to solve the PBE suing the numerical finite difference method. (a) The 
computational box with M grid points per side. (b) An expanded view of a cube 
with side length ‘h’ showing the positioning of the grid points and the mid-
points. The solid black line outlines the cube’s edges and the dashed lines 
represent the edges of the neighboring cubes (applicable for the non-boundary 



 

 

xv 

cubes only) (c) Points where an arbitrary charge (𝑞0), the dielectric values (𝜖𝑖) 
and electrostatic potentials (𝜙𝑖) are assigned................................................. 30 

Figure 1.5.2: Delphi’s workflow. The schematic presents the order of the 
functions/operations performed by Delphi in order to solve the PBE. Based on 
the ‘User input’, the IO class updates default global values of Delphi (stored in 
the Global Data Container). This triggers the Space, Solver and Energy classes 
to follow in this order as they receive parameters from the data container, use 
them and update them for the next order of execution. The arrows in the 
schematic indicate the direction of the flow of data in the form of various 
variables used throughout the run of Delphi. ................................................. 32 

Figure 2.1.1: Gaussian model of atoms vs hard-sphere model of atoms. (a-
c) From left to right, in the top panel, the hard-sphere representation of a one-
atom system, a two-atom system and a real protein, IL-1β (PDB: 2NVH) is 
show. In the bottom panel, the equivalent Gaussian model representations are 
shown. (d) Dielectric distribution obtained using the Gaussian model (solid blue 
line) and the hard-sphere model (dashed red line), along an arbitrarily chosen 
axis, cutting through the slice of the protein in (c) is shown. The reference 
dielectric (𝜖𝑟𝑒𝑓) is set at 4 and the solvent dielectric (𝜖𝑜𝑢𝑡) is 80. ................ 42 

Figure 2.1.2: Gaussian and Super-Gaussian forms. (a) For a single atom of 
radius 2 (with σ=0.93), the profile of atomic probability function, 𝜌𝑖(𝑟 − 𝑟𝑖), is 
shown for ‘m’ ranging from 1 through 4. As the value of m increases, the profile 
appears to take the form of a hard-sphere Heaviside function. (b) The dielectric 
distribution obtained with ‘m’ from 1 through 4, along an arbitrarily chosen 
axis, cutting through the slice of a protein (PDB: 2NVH). The reference 
dielectric (𝜖𝑟𝑒𝑓) is set at 4 and the solvent dielectric (𝜖𝑜𝑢𝑡) is 80. (c) For m=1 
through m=4, the Gaussian model’s depiction for this protein is shown. ....... 45 

Figure 2.2.1: Dielectric at the binding interface of a protein-protein 
complex. For Barnase-Barstar protein complex (PDB 1X1X), the dielectric 
value at the center of the binding interface (marked by the red dot in the left 
Figure) is plotted as a function of the distance by which the monomers are 
separated in space along an arbitrary direction. Both, the Gaussian and the 
hard-sphere models are used to illustrate the profile and also highlight the 
difference between the two. ........................................................................... 47 

Figure 2.3.1: Salt treatment using the Gaussian model. (a) The penalty term 
added to a salt’s electrostatic energy obtained after solving PBE is plotted as a 



 

 

xvi 

function of position in space. The space contains of a solute, represented by a 
rectangular slab of width 4Å (filled with pink color). Everything outside is 
assumed to be filled by the solvent. (b) An illustration of the salt concentration 
distribution generated using Delphi around the Barnase-Barstar complex (PDB: 
1X1X). (c) Salt concentration at the binding interface of the Barnase-Barstar 
complex (computed at the red point shown in the cartoon representation of the 
complex) is plotted as a function of the distance of separation of the monomers.
 ..................................................................................................................... 52 

Figure 2.4.1: Dielectric distribution and water’s radial distribution 
function across a lipid bilayer membrane. The Figure shows the 
normalized values of the radial distribution function of water’s oxygen atom and 
the dielectric distribution obtained using the Gaussian model along the 
transverse direction perpendicular to a lipid membrane’s plane. The membrane 
region is depicted by a rectangular slab of 38 Å width which is the typical value 
of the POPC head-to-head distance (bilayer thickness). The normalization is 
done with respect to the maximum value of the corresponding data. In the case 
of dielectric, the maximum value was 80 (solvent dielectric). ......................... 53 

Figure 3.2.1: A protein and its cavity with crystal waters. The protein 
interleukin-1β (IL-1β) with PDB ID: 2NVH is shown on top-left corner. The 
protein is known to have five different cavities in its crystal structure of which 
4 of them are occupied by crystal waters (Cavity 1-4). Cavity 1 and 2 contain 
two water molecules and cavity 3 and 4 contain one water molecule. Cavity 5 
is the central non-polar cavity with no water present in it in the crystal 
structure. All the cavities are labelled and the water oxygen atoms are labelled 
and shown as red spheres. The volume of these cavities are also reported as 
mentioned in Ref[111]. ................................................................................... 63 

Figure 3.3.1: Occupancy of cavities. Histograms in this Figure show the typical 
occupancy of the 5 cavities in 2NVH. The data is collected across 2000 snapshots 
from all the MD runs performed using AMBER99SB/TIP3P (top) and 
OPLSAA/TIP4P(bottom) force-field/water-model combinations. .................. 69 

Figure 3.3.2: Concentric hydration shells in the bulk volume. An illustration 
of the division of the bulk of the solvent into 5 concentric shells is shown. Each 
shell is 3Å thick and placed in the manner shown. Each of these shells are 
treated as hydration sites in their own rights and their label (1 through 5) 



 

 

xvii 

indicate their distance from the molecular surface of the protein (2NVH in this 
case). ............................................................................................................. 74 

Figure 3.3.3: Index correlation function (ICF) of the cavity waters. ICF of 
cavity waters computed across the three MD runs using AMBER99SB/TIP3P 
(top) and OPLSAA/TIP4P (bottom) are shown for each of the 4 cavities. 
Cavity 5 is excluded because no water molecule was ever found to visit it. .... 75 

Figure 3.3.4: Index correlation function (ICF) of the water in the bulk’s 
hydration shell. ICF of waters in the five different hydration shells in the 
bulk, computed across the three MD runs using AMBER99SB/TIP3P (top) and 
OPLSAA/TIP4P (bottom), are shown. The respective bi-exponential fits are 
also shown using lines of the same color as the respective data points. .......... 77 

Figure 3.3.5: Distance-dependence of the parameters of the bi-exponential 
fit to the ICF of the hydrations shells in the bulk. The plots show the 
value of  four parameters (labelled as: 𝑎0,𝑤, 𝜏1, 𝜏2) in each of the concentric 
hydration shells. Their values, obtained through simulations using 
AMBER99SB/TIP3P (left) and OPLSAA/TIP4P (right) combinations are 
shown. ........................................................................................................... 79 

Figure 3.3.6: Rotational auto-correlation function (RAF) of the cavity 
waters. RAF of cavity waters computed across the three MD runs using 
AMBER99SB/TIP3P (top) and OPLSAA/TIP4P (bottom) are shown for each 
of the 4 cavities. Cavity 5 is excluded because no water molecule was ever found 
to visit it. For these plots, the solid lines denote the mono-exponential fit curve.
 ..................................................................................................................... 84 

Figure 3.3.7: Rotational auto-correlation function (RAF) of the water in 
the bulk’s hydration shell. RAF of waters in the five different hydration 
shells in the bulk, computed across the three MD runs using 
AMBER99SB/TIP3P (top) and OPLSAA/TIP4P (bottom), are shown. Though 
obscured, the respective mono-exponential fits are also shown using solid lines 
of the same color as the respective data points. ............................................. 85 

Figure 3.3.8: Distance-dependence of the parameters of the mono-
exponential fit to the RAF of the hydrations shells in the bulk. The 
plots show the value of  two parameters (labelled as: 𝑎0, 𝑎𝑛𝑑	𝜏𝑅) in each of the 
concentric hydration shells. Their values, obtained through simulations using 
AMBER99SB/TIP3P (left) and OPLSAA/TIP4P (right) combinations are 



 

 

xviii 

shown. The typical values of thee quantities can be inferred from the scales of 
the y-axes of the plots. .................................................................................. 86 

Figure 3.4.1: Solvent exposure and dipole orientational relaxation 
timescales of protein residues. For all the three MD runs, the dipole 
orientational relaxation timescales (𝜏𝑅) are plotted versus the relative solvent 
accessibility surface area (SASA) of the residues of the protein with PDB ID 
2NVH. ........................................................................................................... 89 

Figure 4.1.1: Can the Gaussian-based dielectric model reproduce ensemble 
average properties from a single structure? This illustration provides a 
visual description of the question being asked in this chapter. Essentially, it 
highlights the “gap” that, if filled, will offer a promising and faster alternative 
to the conventionally used methods of computing polar components of solvation 
free energy while still retaining the physical meaningfulness. ......................... 97 

Figure 4.2.1: Explicit solvent thermodynamic integration vs Implicit 
solvent PBE: The comparison of the polar solvation energies of 19 net-neutral 
proteins obtained from explicit solvent thermodynamic integration (TI) 
simulations and implicit solvent Poisson-Boltzmann (PB) calculations using the 
traditional 2-dielectric model with Delphi is shown. For both the cases, the 
protein structures were kept rigid. The TI simulations were performed by the 
authors of Ref[138, 139]. The Pearson correlation (r) and RMSD (in kcal/mol) 
of the comparison are also mentioned. ......................................................... 104 

Figure 4.3.1: Performance of the Gaussian and the traditional 2-dielectric 
model in predicting the ensemble average polar solvation energy. The 
Figure shows the density distribution of the difference, ∆𝐺𝑝𝑜𝑙𝑎𝑟𝑠𝑜𝑙𝑣 −
∆𝐺𝑝𝑜𝑙𝑎𝑟𝑠𝑜𝑙𝑣𝐸𝑀, obtained when Gaussian or traditional dielectric models are 
used on (a) crystal (aka. Xtal) structure (* added protons are optimized) and 
structures minimized (b) In Vacuo (c) in GBIS and (d) in explicit solvent 
(TIP3P). The labels ‘TRAD-x’ and ‘GAUSS-x’ indicate the traditional 2-
dielectric and Gaussian-based smooth dielectric distributions, respectively. ‘x’ is 
the protein’s internal dielectric value. The dashed vertical line is at the zero 
mark in each plot. ....................................................................................... 109 

Figure 4.3.2: Differences in the structural properties of the energy 
minimized configurations. Boxplots showing (a) the distribution of the 
number of SBs in the energy minimized (EM) structures from the three 
environments, (b) the number of SBs for in vacuo and GBIS EM structures 



 

 

xix 

relative to that from explicit water environment, (c) the backbone structural 
RMSD of the structures relative to the crystal structure after minimization in 
the corresponding environment, (d) the number of intra-protein hydrogen bonds 
in the EM structures after minimization in different environments. The dotted 
horizontal line in (b) indicates the unity mark. ........................................... 122 

Figure 4.3.3: Polar solvation free energy and the number of salt bridges. The 
difference of the ∆𝐺𝑝𝑜𝑙𝑎𝑟𝑠𝑜𝑙𝑣	, computed using the traditional 2ε dielectric 
model ∆∆𝐺𝑝𝑜𝑙𝑎𝑟𝑠𝑜𝑙𝑣 of the in vacuo and solvent minimized structures is plotted 
as a function of the difference of the number of salt-bridges in those structures. 
Left plot corresponds to GBIS and the right plot corresponds to explicit solvent 
(TIP3P). The quality of the linear fit (dotted red line) is quantified by the 
square of Pearson coefficient (r2). ................................................................ 124 

Figure 4.3.4: Effectiveness of a dielectric model revealed by its ability to capture the 
dynamics of salt bridges. The error in ∆𝐺𝑝𝑜𝑙𝑎𝑟𝑠𝑜𝑙𝑣 from using (a) traditional 2-
dielectric method and (b) the Gaussian-based smooth dielectric model with in 
vacuo minimized structures with respect to the ensemble average (expressed as 
∆𝐺𝑝𝑜𝑙𝑎𝑟𝑠𝑜𝑙𝑣 −	∆𝐺𝑝𝑜𝑙𝑎𝑟𝑠𝑜𝑙𝑣𝐼𝑛	𝑉𝑎𝑐𝑢𝑜) are plotted as a function of the 
population of the salt bridges which were present for more than 50% of the 
frames in its MD generated ensemble (occupancy > 50%). The solid black lines 
depict the linear model fits to these comparisons and the r2 value is mentioned 
for each of these linear fits. All energy units are kcal/mol. .......................... 126 

Figure 4.3.5: Dielectric values assigned by models around salt-bridges. 
Boxplots showing the distribution of the average dielectric constant assigned by 
the Gaussian-based smooth dielectric model in the locality of the salt-bridges 
(SBs) which have an occupancy < 50%(red) and > 50% (blue). .................. 127 

Figure 5.3.1: An illustration of the grid-based algorithm designed for 
identifying atom pairs that overlap in space. (a) The algorithm of 
identifying overlapping atom pairs is visually illustrated. Each atom is shown 
as a colored circle surrounded by a square of the same color depicting the local 
box that is searched for grid-points in its vicinity. The systematic flow of the 
steps is indicated by the label on the top-right corner of each panel in the 
Figure. Two atoms ‘i’ and’ ‘j’ that overlap update the atom overlap matrix 
(AOM) element 𝐴𝑂𝑀𝑖, 𝑗 to True. At each step, new indices of AOM that get 
updated to True are shown in red. The numeric labels placed at different regions 
are meant to indicate the integer label on the grid-points present in a region. 



 

 

xx 

(b) A rooted tree constructed using the neighbor list of all the atoms in the 
molecule and an additional dummy atom with index ‘0’. Each level or order is 
marked using grey horizontal bars. From top to bottom, levels of increasing 
orders are shown. ........................................................................................ 146 

Figure 5.3.2: Solvent accessibility based filter for determining atomic and molecular 
surface areas. (Left) Illustration of the physical basis of the function used to 
compute cutoff atom-specific surface area and filter out the contribution of 
atoms with negative surface area terms. (Right) The output yielded by the 
filtering function.......................................................................................... 152 

Figure 5.4.1: Validation of the grid-based algorithm for identifying 
overlapping atom pairs. Comparisons of (a) the molecular volumes and (b) 
the molecular surface areas of 74 proteins obtained using the grid-based 
algorithm in conjunction with the Gaussian-model and obtained using AGBNP. 
(c) Percent relative difference (RMSRD) of the molecular volumes of the 74 
proteins with respect to the values output by AGBNP as a function of the scale 
or grid-resolution. (d) Volume and (e) surface area of Barstar (PDB: 1X1X, 
chain D) plotted as a function of the offset in its position from the center of the 
grid box. (f) Percentage of falsely missed atom pairs overlapping in space (False 
Negatives) by the grid-based algorithm plotted as a function of the grid-
resolution (grids/Å)..................................................................................... 155 

Figure 5.5.1: Performance. The average run time as a function of the number of 
atoms in the solute and grid resolution (grids/Å). 74 proteins were used for the 
test and the average time was computed by averaging over 10 runs on each 
protein. Since the standard deviations of the runtimes were infinitesimally small, 
error bars depicting them are deliberately not shown. ................................. 160 

Figure 5.7.1: Profile of the change in the van der Waals (vdW) volume 
and surface area. Profile of the change in vdW volume of the Barsnase-Barstar 
complex as a function of the distance of separation of the monomers obtained 
(a) using the Gaussian model and (b) using the hard-sphere model. Profile of 
the change in vdW surface area obtained (c) using the Gaussian model trend 
and (d) using the hard-sphere model. The solid blue lines in (a) and (c) depict 
a non-linear fit to the profiles obtained using the Gaussian model in order to 
emphasize the overall smoothness of the trend. The vdW volume and surface 
area using the hard-sphere models were computed using 3V[183] with a probe 
of radius 0.0Å. (e) Change in the number of contacts, i.e. atom pairs from either 



 

 

xxi 

monomer found to be within 4Å distance, as a function of the distance of 
separation of the monomers. (f) A cartoon representation of the setup in which 
the monomers of the Barnase-Barstar complex were separated for obtaining the 
above profiles of volume and surface area changes. ...................................... 166 

Figure 5.8.1: Optimization of Roffset input to the modified Roffset -based Gaussian model 
wrt the solvent excluded volume obtained using a hard sphere model. 
Distributions and relative percent deviations (RMSRD) are computed for the 
protonated and minimized crystal structures of 74 proteins. (a) Schematic 
showing the basis of the modified Roffset -based Gaussian model in which the 
excess volume of a solvent exposed atom (shown in yellow), obtained by 
augmenting its van der Waals radius by some Roffset, is subtracted out when the 
correction is applied. (b) Distribution of volume output by the modified Roffset -
based Gaussian model (blue) computed with various Roffset values ranging from 
0.0 through 1.2 Å, compared with the distribution of the hard-sphere solvent 
excluded volumes (pink) for the same set of proteins. Each distribution is 
represented by a boxplot (see Appendix A.12). The dashed lines connecting the 
medians of the boxes highlight the overall trend. (c) %RMSRD of the volume 
from the Gaussian model with respect to the solvent excluded volume as a 
function of Roffset. ......................................................................................... 172 

Figure 5.8.2: Comparison of the volume of the interstitial regions in the structure 
obtained using the modified Roffset -based Gaussian model and the hard-sphere 
model. Distributions and relative percent deviations (RMSRD) computed for 
the protonated and minimized crystal structures of 74 proteins. (b) Distribution 
of 𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑛𝑡𝑒𝑟𝑠𝑡𝑖𝑡𝑖𝑎𝑙 computed using the modified Roffset -based Gaussian 
model (blue) computed with various Roffset values ranging from 0.0 through 1.2 
Å, compared with the distribution of 𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑛𝑡𝑒𝑟𝑠𝑡𝑖𝑡𝑖𝑎𝑙 computed using the 
hard-sphere model by ProteinVolume[176] (pink). Each distribution is 
represented by a boxplot (see Appendix A.12). The dashed lines connecting the 
medians of the boxes highlight the overall trend. (b) %RMSRD of the 
𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑛𝑡𝑒𝑟𝑠𝑡𝑖𝑡𝑖𝑎𝑙 from the Gaussian model with respect to the 
𝑉𝑜𝑙𝑢𝑚𝑒𝑖𝑛𝑡𝑒𝑟𝑠𝑡𝑖𝑡𝑖𝑎𝑙 from hard-sphere model as a function of Roffset. ............. 173 

Figure 5.8.3: Profile of the change in the Roffset based Gaussian volume. (a) 
Change in the volume of the Barsnase-Barstar complex output by the modified 
Roffset-based Gaussian model. The solid blue line depicts a smooth fit to 
emphasize the smooth trend. Inset: Difference of the volume output by the 



 

 

xxii 

modified Roffset-based and the unmodified Gaussian model, that is supposed to 
depict the volume of solvent inaccessible crevices in the complex’s structure, as 
a function of separation distance. (b) Change in the solvent excluded volume 
(SEV) of the complex computed using 3V[183] with a probe of radius 1.4Å as a 
function of the separation distance of the monomers. Inset: Volume of reentrant 
regions and solvent inaccessible crevices obtained by subtracting the van der 
Waals volume of the dimer from its SEV. The shaded region (gray) emphasizes 
the length scale of separation that is comparable to the diameter of the solvent 
probe (2.8Å). ............................................................................................... 176 

Figure 5.9.1: Breakdown of the Gaussian model of molecular volume and surface 
area. Comparison of the van der Waals volume from the Roffset-based Gaussian 
model (without correction of the excess solvent-exposed volume) and hard-
sphere models when augmented radii for atoms are used. Distributions and 
percent deviations (RMSRD) are computed for the protonated and minimized 
crystal structures of 74 proteins.  (a) Distribution of volume output by the Roffset-
based Gaussian model (blue) computed with various Roffset values ranging from 
0.0 through 1.2 Å, compared with the distribution of hard-sphere volumes (pink) 
computed using the same set of augmented radii. Each distribution is 
represented by a boxplot (see Appendix A.12). The dashed lines connecting the 
medians of the boxes highlight the overall trend. (b) %RMSRD of the volume 
obtained using the Roffset-based Gaussian model with respect to the volume 
output by the hard-sphere model as a function of Roffset. .............................. 179 

  



1 INTRODUCTION

This chapter introduces the fundamental concepts and tools that form the 

basis of the work presented in this dissertation. It discusses the significance of 

electrostatics in molecular biology and presents a detailed description of a theoretical 

formalism, called the Poisson-Boltzmann (PB) model, which faithfully describes the 

electrostatics of simple as well as complex biomolecular systems. It also lays the 

essential groundwork required for understanding the modus operandi of Delphi, a 

popular tool for solving the PB equation (PBE) to study the electrostatics of 

biomolecular systems. This tool is the platform on which all of the novelties 

characterizing this work are implemented. The last sections of this chapter highlight 

the use and range of application of the PB model in conjunction with Delphi in order 

to emphasize on the impact of this work. 

1.1 Electrostatics in Molecular Biology 

Charged groups are omnipresent in living cells by virtue of the biological 

molecules that comprise them. Of the 20 naturally occurring Amino acids (AA), 5 of 
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them tend to carry a net non-zero charge in physiological conditions. All the 5 

nucleotide bases that make up a nucleic acid (DNA/RNA) carry a net negative 

charge. Lipid molecules, which are the primary ingredient of the cell and cell 

organelle membranes, also feature an inhomogeneous distribution of charged groups 

which eventually lead to their amphiphilic properties. These general facts allude to 

the ubiquitous role of electrostatic forces and the essential interactions driven by 

them. 

But the mere presence of charged groups does not suffice in explaining role 

that electrostatics interactions play in conducing the observable stability and 

integrity of living cells. It is rather amazing that the typical values of charges (~1e 

or 1e-19 C) and masses (1 a.m.u. or 1e-27 kg) carried by the atoms in these groups and 

their placement within Angstrom range distances do not lead to an instantaneous 

disintegration of the cells because of the high velocities they may acquire as a result 

of the forces they feel. Simple classical mechanics will easily show that these velocities 

might be orders of magnitudes higher than the velocity of light! This is a clear 

indication of the presence of other factors that control the effects electrostatic 

interactions and preserve the basis of life as we know it.  
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A key element to structural and functional integrity of living cells is the 

presence of solvent (typically water) which tune the electrostatic interactions 

occurring at the atomic and cellular levels. 65-90% of the cell mass is water and 

owing to its high polarizability, it acts as high dielectric constant medium that 

“screens” the electrostatic forces and the resultant shielding paves way for other 

forces to contribute at par with the otherwise dominant electrostatic forces. In 

addition, the it also provides a physical matrix for diffusional motion of “freely” 

moving (bio) molecules before they “sense” the presence of nearby molecules though 

electrostatic forces.  In fact, when taken out of the water phase and placed in a 

different environment such as vacuum, air, alcohol etc., these macromolecules are 

almost always rendered dysfunctional[1]. Therefore, when studying macromolecular 

property, any model of should account for the presence of water and its effects on 

the relevant processes.  

Electrostatic solvation effects are critical to a wide array of phenomena 

observed in molecular biology. They are quintessential to processes that scale from 

atomic to mesoscopic to macroscopic levels. Those pertaining to atomic levels are 

best explained using quantum mechanics. But most of the effects of interest to 

molecular biology occur at length scales that can be described using classical 
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mechanics. On account of their long-ranged nature, electrostatic and solvation effects 

guide intramolecular interactions, like the interaction of secondary structure 

elements and domains that build up biomolecules, and play a vital role in influencing 

properties such as the stability of protein structural folds[2, 3], protein assemblies[4] 

and bound complexes[5-8]. It is also instrumental to interaction across different 

media and phases that constitute biomolecular systems[9], surface charge-charge 

interactions[10] and molecular recognition[11] and optimal orientation for binding[6]. 

Electrostatic forces are also integral to pH dependent functional or stability changes 

of biomolecules which is evident from the fact that alterations of native water phase 

characteristics such as pH, salt concentration and presence of other molecules, can 

also cause complete unfolding and abolishment of macromolecular interactions[12-

16]. At the mesoscopic level, it is critical to the shelf-life of colloidal mixtures 

comprised of suspended particles as it plays alongside the Brownian motion occurring 

therein[17, 18] and formation of gels[19]. At the macroscopic level, the significance 

of electrostatics in the dynamics of complex fluids and soft matter have been 

meticulously studied and used for modeling them, e.g. electro-osmotic effects[20]. 
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1.2 Electrostatics through computational models: The 

indispensable role of solvent. 

Most of our understanding of the importance of electrostatics and their 

machinery have come from collaborative experimental and computational studies. 

Computational studies, in general, have helped dissect the origins and the basis of 

the electrogenic properties observed in biomolecules while ingenious experimental 

observations have provided a benchmark for them. With improvements in both the 

fields, our understanding about the cellular level processes have only gotten deeper 

and much more refined.  

Computational models of solvated biomolecular systems can be classified into 

many types. A conventional routine of classification is the method through which 

the solvent is represented. This is because the method of treatment of solvent is a 

key determinant of the tractability and accuracy of a model. Solvents are far more 

numerous than solute atoms in a typical setup which is justified by the fact that 

they comprise a major volume of any system. Along with the mobile ions (solvated 

in the pure solvent), the solvent therefore contributes with a significantly large 
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number of degrees of freedom compared to the solute. The contribution is made 

towards the energetics of solvent-solvent as well as solute-solvent interactions.  

In the explicit solvent model (see Figure 1.2.1), all of the solvent degrees of 

freedom are accounted for alongside the solute degrees of freedom. The solute and 

solvent (with ions), are both represented with atomistic level of details and each 

atom exists in its own right. Though descriptively accurate, the consideration of all 

the solvent atoms bears an expensive computational overhead and therefore limits 

the ability of the model to sample information that are more relevant to the topic of 

study. For instance, oftentimes it is the behavior of the solute that is of interest than 

and the depiction of the solute in a “sea” of explicitly represented solvent atoms only 

adds to the total cost of the simulation.  
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Figure 1.2.1: Explicit versus Implicit solvent models. A cartoon representation 
showing a solvated protein system with the left half of the box represented using a 
continuum approach (implicit solvent) and right half represented using explicit 
solvent model.  

Thermodynamically, the extra set of details can be unnecessary as most of 

the solvent molecules are indistinguishable and it would suffice to consider their 

average effect only. This forms the basis of the implicit solvent models which is a 

mean-field approach of representing solvated biomolecular systems. The 

contributions of the solvent degrees of freedom are “integrated out” and their 

presence is only implicitly accounted for through a mean-force and probability 

distribution (see Ref [21]). Typically, this is done by representing the solvent region 
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of the system as a medium with some dielectric value. In parallel, the solute region 

is represented as a cavity of its own size, with a different dielectric value. The 

resultant dielectric continuity of the individual phases allows for time-inexpensive 

computation of energies and forces in the system, in particular, the electrostatic 

energies and forces. Its long-ranged nature is well approximated in this framework 

while dramatically reducing the larger number of computational operations 

associated with its calculation in the explicit solvent framework. Therefore, implicit 

solvent models have been indispensable to continuum electrostatic models of 

studying solvation effects. Despite this simplicity of solvent’s representation, the 

implicit solvent models have faithfully been able to reproduce results obtained using 

explicit solvent models and therefore provide a precise and time efficient alternative 

to the latter[22].  

The widely used formalisms of continuum electrostatics are the Poisson-

Boltzmann equation (PBE) model (see Review article[23]), Generalized Born (GB) 

model (see Review article[24]) and polarizable continuum model[25, 26]. Each of 

these formalisms carry their own specialties and limitations. While the polarizable 

continuum models are most effectively applicable for smaller compounds due to its 

quantum mechanics based roots, the GB model is well suited for integration with 
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high-throughput protocols like the classical molecular dynamics (MD) 

simulations[27, 28]. The PBE formalism isn’t well suited for integration with high-

throughput protocols and is best used with static structures. But it works utterly 

well with systems of any size and geometric peculiarity and is treated as a benchmark 

for other heuristic models, e.g. the GB model[29].  

1.3 Poisson-Boltzmann (PB) formalism of continuum 

electrostatics 

Poisson-Boltzmann formalism of continuum electrostatics model combines the 

Poisson equation for solving the potential distribution in space with the Boltzmann 

law which dictates the distribution of implicit charges in it. The Poisson equation 

(given in equation 1), relates the displacement vector field with the charge density 

of the system and can be formally derived from Maxwell’s first equation (or the 

Gauss’ law).  

 𝛻P⃗ ⋅ 𝐷PP⃗ = 4𝜋𝜌(𝑟) 

−𝛻P⃗ ⋅ W𝜖(𝑟)𝛻𝜙(𝑟)X = 4𝜋𝜌(𝑟) (1) 

The electric displacement field vector (𝐷PP⃗ ) is proportional to the local electric 

field (𝐸P⃗ ) via the local dielectric value (𝜖), i.e. 𝐷PP⃗ = 𝜖	𝐸P⃗ , and the electric field in turn 
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is the negative gradient of the electrostatic potential 𝜙. This potential 𝜙 is the result 

of the charges present in the system and is the unknown which is solved for.  

The charges (𝜌) in a solvated system arise from two sources – the fixed solute 

charges and the charges of the mobile ions whose effects are implicitly considered 

through the solvent phase. This yields the following: 

 𝜌(𝑟) = 𝜌YZ[\](𝑟) + 𝜌_`aZb\(𝑟)	

= c𝑞Z𝛿(𝑟 − 𝑟ePP⃗ ) +c𝑒𝑧Z𝑐Z∘𝑒hi\jkl(m⃗)
no

Z

 
(2) 

 

The solute atomic charges (a total of N) are denoted by 𝑞p and the solute’s 

charge density is given by the first summation on the right-hand side. The second 

term expresses the charge density due to the mobile ionic species present in the 

system (a total of ‘I’ with respective valence 𝑧Z and bulk concentration 𝑐Z°). This 

expression originates from the canonical probability of finding an electrolyte/mobile 

ion at a position 𝑟, on account of its potential energy (𝑒𝑧Z𝜙(𝑟)) there, which is guided 

by the Boltzmann law. The above equations collectively express a precursor to the 

differential form of the PB equation. 
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𝛻P⃗ ⋅ r𝜖(𝑟)	𝛻P⃗ 	𝜙(𝑟)s

= −4𝜋c𝑞p𝛿(𝑟 − 𝑟pPPP⃗ )
o

p

− 4𝜋c𝑒𝑧Z𝑐Z∘𝑒hi\jkl(m⃗)
n

 (3) 

 

The above expression is further resolved. Ionic species in a solvent are 

rendered by the salt in it and salts are ionic compounds made up of cation(s) and 

anion(s) bound by an ionic bond. In the solution, the screening of the electrostatic 

forces between the ions due to the solvent causes them to disperse. As a result, the 

mobile ion species, which come in charge pairs because of the salt’s electro-neutrality, 

contribute equally to the ionic charge density term. Due to opposite polarities, the 

summation of that exponential term can be decomposed into two different terms 

which account for the positive and negative charged ionic species (𝐼t/𝐼h).  
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4𝜋c𝑒𝑧Z𝑐Z∘𝑒hi\jkl(m⃗)

n

= 4𝜋c|𝑒𝑧Z|𝑐Z∘𝑒hi\jkl(m⃗)
nw

− 4𝜋c|𝑒𝑧Z|𝑐Z∘𝑒ti\jkl(m⃗)
nx

= −8𝜋c𝛽𝑒{𝑧Z{𝑐Z°sinh(𝜙(𝑟))
��b�

 (4) 

 

The final outcome, with some rearrangements and introduction of new terms, 

is referred to as the Non-linear form of the PB equation or NLPB, which is a 

nonlinear  

 
𝛻P⃗ ⋅ r𝜖(𝑟)	𝛻P⃗ 	𝜙(𝑟)s − 𝜅�{ sinhW𝜙(𝑟)X = −4𝜋c𝑞p𝛿(𝑟 − 𝑟pPPP⃗ )

o

p

 
(5) 

 

The term 𝜅�{  is known as the modified Debye-Hückel parameter which 

disregards the solvent dielectric value that is typically used in it (see Ref[30]). 𝜅� is 

a function of the ion concentration and determines the Debye length (𝑙� =
�
��

), a 

factor that indicates the rate of exponential decay of the electrostatic potential in 
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the solvent medium. With a larger salt concentration, Debye length is lowered 

meaning the screening effect is higher and vice versa. 

In the limit of lower salt concentration, the exponential term directing the 

implicit presence of the mobile ions can be approximated by a linear first order term 

given by the Taylor series expansion (𝑒[ ≈ 1 + 𝑥 + [�

{!
+ [�

�!
+ ⋯). This produces the 

Debye-Hückel equation, also known as the linear form of the PB equation or LPB. 

In this work, LPB is the default form unless otherwise is stated. 

 
𝛻P⃗ ⋅ r𝜖(𝑟)	𝛻P⃗ 	𝜙(𝑟)s − 𝜅�{𝜙(𝑟) = −4𝜋c𝑞p𝛿(𝑟 − 𝑟pPPP⃗ )

o

p

 
(6) 

 

1.3.1 Domain of the PBE 

The domain of the PBE refers to the 3D space in which it is solved. Though 

the solvent is theoretically depicted as an infinitely spread structure-less medium, a 

boundary is used to bound the entire box and “limit” the extent of the solvent region 

for computational convenience.  

The boundary of the box also serves the purpose of providing the boundary 

conditions for solving this 2nd order differential equation. The boundary may contain 
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the scalar value of the potential on it (Dirichlet boundary condition) or its gradient, 

in terms of the electric fields (Neumann boundary condition). Computationally, the 

boundary conditions are used to initiate the iterative protocol of solving the PBE 

and after some defined convergence of the potential values in the domain, the final 

potential field is delivered. This is the basis of many of the computational packages 

concocted to solve PBE, including Delphi. More of its details are discussed in the 

later parts of this chapter.  

1.3.2 Dielectric boundaries and solute-solvent interfaces 

The volume contained by the boundary is conventionally divided into a 

solute/molecule region and the solvent region (with implicit mobile ions) and the 

distinction is made via the dielectric values assigned to these regions (see Figure 

1.3.1). Solvent, presumably more polarizable, is assigned a higher value of dielectric, 

𝜖`�� (e.g. 80 for water) and the solute is assigned a lower value, 𝜖Zp (typically in the 

range of 1 - 20). The strict surface separates the two media and its primary purpose 

is to identify what regions are accessible to the solvent. It also provides other 

auxiliary information about the system such as the regions accessible to implicit 

mobile ions (which are part of the solvent) and the region occupied by the solute 
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atoms which are explicitly represented as opposed to the solvent phase. The physical 

discontinuity introduced by the surface is routinely supplemented by some interface 

continuity conditions on it [31, 32]. These interface continuity conditions ensure that 

the potential at the interface between two media are continuous and so is the normal 

component of the electric displacement vector. 

 𝜙(𝑟)|�� = 		𝜙(𝑟)|��,																	𝜖�𝛻P⃗ 𝜙(𝑟) ⋅ 𝑛� = 𝜖{𝛻P⃗ 𝜙(𝑟) ⋅ 𝑛� (7) 

 

Though the solute-solvent interface, also known as the “dielectric boundary”, 

provides a simplistic segregation of the different regions in the solvated system, it 

presents some conceptual and computational challenges.  
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Figure 1.3.1: Conventional representation of solvated system in the 
continuum electrostatics approach. A cartoon illustration of the continuum 
electrostatic setup with implicit solvent model. The region colored in cyan represents 
that which is occupied by the solvent and electrolyte ions (with dielectric 𝜖`��) and 
the region colored in gray represents that which is occupied the solute (with dielectric 
𝜖Zp). The solid black boundary separating the two regions denotes the dielectric 
boundary. The dashed boundary that envelopes the solute and intrudes in to the 
solvent region is the ion-exclusion surface which separates the regions that are 
accessible and inaccessible to the electrolytes. The atoms comprising the solute retain 
their charges and they are colored arbitrarily to highlight the complexity and 
inhomogeneity of charge placement in the solute.  

 

A major conceptual difficulty is the lack of an exact and conclusive definition 

of the dielectric boundary. Dielectric boundary, whose purpose is to identify the 

regions with different polarizabilities and composition (e.g. solute region, ion-

exclusion region and solvent region), are known to be used in various forms with 

varying justifications[33]. A routinely used surface is called the solvent-accessible 

surface (SAS) which defines a geometric surface around the solute and marks the 

regions strictly accessible/inaccessible to the solvent. The surface, in essence, is the 

locus of the center of a “solvent probe molecule” represented using a hard-sphere of 

some radius (1.4Å for water) as it probes the volume around the solute while 

constantly maintaining a tangential contact with at least one of the solute’s atoms 

the size of their Van der Waals radius[34].  When the probe radius is set to 0, the 
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resultant surface is called the Van der Waals surface (VdWS). Another widely used 

surface definition is the molecular or the solvent-excluded surface (MS or SES; also 

called the Connolly surface) which is the union of the surfaces of tangential contact 

of the solvent probe and the solute atoms[35, 36]. Other surface definitions include 

van der Waals (VDW) surface, Gaussian surface, spline surface, geometric flow 

surface, blobby and skin surfaces[37].   

On the other hand, a major computational challenge is its easy integration 

with high throughput molecular mechanics algorithms (see Ref. [38, 39]). Central to 

any molecular mechanics program is efficient and precise calculation of atomic forces. 

But solving PBE to garner these forces is nontrivial, especially when the shape and 

charge distribution of the solute is complicated (a feature prerogative of 

biomolecules). Popular numerical schemes like the Finite difference (FD) method[40, 

41], Finite Element (FE) method[42] and Boundary element (BE) method[43] work 

by discretizing the space of interest and the final outcomes can be sensitive to the 

resolution of the discretization. The finesse or the resolution spawns a tradeoff 

between the accuracy of the outcome and the computation time, which if not 

addressed smartly, can make a protocol very inaccurate or extremely time intensive, 
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none of which resonate with the central idea of high-throughput molecular mechanics 

algorithms.   

The nontriviality in solving the PBE numerically has theoretical and 

computational bottlenecks, which can often be coupled. Theoretically, the 

“discontinuity” in the dielectric distribution introduces “singularities”, cases where 

the numerical schemes used to solve the PBE breaks down. This dielectric 

discontinuity has other physical issues which add to the overall nontriviality of 

solving PBEs. For example, the dielectric separation requires that physical forces, 

besides the Coulombic force, also be calculated in order to correctly describe the 

solute-solvent interactions and account for the effects of “dielectric stress” on the 

surface atoms [44-47]. Numerically, the outcome of force calculation can depend on 

the method adopted for solving PBE and the definition of the dielectric boundary[48, 

49]. On top of that, any small change in the macromolecular conformation can alter 

the dielectric border between macromolecule(s) and water phase which can lead to 

additional instability[39, 45, 50-52]. 

Regardless, the convenient separation of the solute and solvent regions into 

strictly disjoint zones overlook very vital properties of the solvent in regions local to 

the interface. For instance, they overlook the physical nature of interactions between 
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macromolecule and water and the ability of water molecules to mediate binding 

based on its location around the macromolecule (e.g. Ref [53]). This also overlooks 

the fact that the hydrophobic surface patches or cavities are naturally not very 

hydrated, while the hydrophilic patches are [54-56]. Therefore, a physically sound 

protocol that delivers a dielectric surface should not only account for the geometry 

but also consider the physio-chemical properties of a macromolecular surface. 

Recently, the matched interface and boundary (MIB) method was introduced 

[57, 58]. The method rigorously enforces the solution and flux continuity conditions 

at the biomolecule-solvent dielectric [59, 60]. Similarly, the Variational implicit 

solvent method (VISM) was proposed to account for differential hydration depending 

on the physicochemical and structural characteristics of the biomolecule[61]. 

 Besides accounting for the physio-chemical properties of the 

macromolecule-water interface, it is equally important to consider the fact that 

biomolecules do not stay “frozen” in their environment. This is the typical approach 

of applying PBE or other implicit solvent formalisms, in that they operate with one 

conformation at one time. Molecular flexibility continuously updates local 

interactions of solvent-exposed atoms with the solvent and other solute atoms. In 

addition, a strict boundary between the two phases (solute-solvent phases) is not 
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physically sound by virtue of the constant motion and interaction of the solute-

solvent atoms [62]. Inspired by these challenges, a solvation model known as a 

Gaussian-based smooth dielectric distribution model [63] was developed whose design 

is motivated by the Gaussian model of atoms[64]. This dissertation is built around 

this model and extensively discusses its mathematical formalism, integration with 

PBE and its applications. 

 

1.4 Total Solvation Energy in continuum electrostatic 

models  

The total energy of a solvated system can be described using a simple 

decomposition into various energy terms, each with their own physical underpinnings 

and contributions. Since energy is a state function, it has been conceptually and 

numerically advantageous to define the total energy as the sum of energies stemming 

from polar and non-polar solute-solvent interactions and gas-phase potential energy 

terms stemming from the intra-solute interactions. Although it’s not realistic, it 

provides a concrete basis for the decomposition. The total energy of the system, thus 

is equal to, the work done to place the solute from the gas-phase (or vacuum) into 



 

 

21 

the bulk of the solvent which requires creating a cavity in the bulk the size of the 

solute and allowing intra-solute and solute-solvent interaction through short and 

long-range forces. Figure 1.4.1 presents a visual cue for these processes and 

illustrates the thermodynamic cycle that describes the various energy terms involved 

in the process. 

The solvation energy (𝛥𝐺�`b�) is defined as the energy of transferring the 

solute into the solvent which invites contributions from the polar and non-polar 

effects (𝛥𝐺�`b� = 𝛥𝐺�`b�
�`b�m + 𝛥𝐺�`b�

p� ). The polar effect originates from the interaction 

of the solute charges with the polarizability induced in the solvent as a result. The 

non-polar effect originates from the rearrangement of the solvent’s structure in the 

vicinity of the cavity created by the solute’s presence and the short-range dispersion 

forces acting between them. Respectively, the energy terms are referred to as the 

polar and the non-polar parts of the total solvation energy[65]. 
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Figure 1.4.1: Thermodynamic cycle of solvation. The solvation energy is the 
sum of the various polar and non-polar components which originate from several 
transformations, which when put together, emulate the transfer of a solute from one 
medium to another. The cycle illustrates a series of these unrealistic transformation 
whose energies can be used to obtain the total solvation energy of the solute in 
question. The theory is based on the state-function nature of free energy. The exact 
transfer is shown in the top panel. But this is equivalent to following steps (a) through 
(f) in an anticlockwise manner. 

A different variation of this decomposition is also used; typically in the so-

called Variational implicit solvent models[66]. The formulation invokes a strict role 

(c) (d)

(e)

(f )
∆Gsolv
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of the dielectric boundary (𝛤) to indicate solute-solvent separation and seek the point 

at which the total solvation energy is at its extremum. By  deliberately discarding 

some of the energy terms from the functional of total solvation energy mentioned in 

Ref[66] (which are not extremely relevant to this introduction), the expression 

acquires a functional form: 

 𝛥𝐺�`b�[𝛤] = �𝑃�𝑑𝑉
�

+ �𝛾𝑑𝑆
�

� + 𝛥𝐺�`b�
�`b�m (8) 

 

In the above expression, the terms in parentheses add up to yield the non-

polar component of the solvation energy and it is clear that it depends on the solute’s 

volume and surface area. In 5, these particular topics are addressed exclusively when 

the models of determining the non-polar solvation energy are discussed in the 

framework of Delphi’s finite difference setup.  

In the subsections that follow, each of these terms are conceptually introduced 

and appropriate references for their detailed discussion, present in later chapters, are 

mentioned. 
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1.4.1 Polar Solvation energy 

As mentioned above, the polar solvation energy is the work associated with 

allowing the solute charges to interact amongst themselves through Coulombic forces 

in a low dielectric medium and to interact with the field induced in the high dielectric 

solvent medium. 

In effect, it is equal to the difference of the total electrostatic energy of the 

solute in the two media across which it is transferred. Conventionally, it is 

understood that the solute is transferred from the gas-phase (equivalent to vacuum) 

into a solvent (typically an aqueous solvent). In the solvent, the total electrostatic 

energy is the sum of the electrostatic interaction energy of the solute charges with 

solvent (and mobile ions) and with other solute charges. In this arrangement, the 

total electrostatic energy in the continuum solvent framework can be decomposed 

into a coulombic term (𝐺 `�b), arising from the interaction amongst the solute 

charges occurring in a lower dielectric medium and a reaction-field term (𝐺mY), which 

signifies the interaction of the solute with the polarized solvent medium. When 

implicit ions are included in the equation, a further contribution is made to the 
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reaction field term. By taking the difference of the total electrostatic energy in the 

two setups (zero in the gas-phase), the polar solvation energy can be expressed as 

 𝛥𝐺�`b�
�`b�m = 𝐺 `�b + 𝐺mY (9) 

 

In the limit of lower magnitude of solute charges, linear form of PBE can be 

invoked and the total electrostatic energy in that case amounts to the sum of the 

total electrostatic potential energy of individual solute atoms. The total potential 

“felt” by an atom is the sum of those arising from the Coulombic fields of other 

solute atoms (inside the dielectric cavity) and those arising due to the reaction field 

induced in the solvent due to the solute charges. 

 
𝛥𝐺�`b�

�`b�m =
1
2c𝑞Z𝜙Z

o

Z

=
1
2c𝑞Z(𝜙 `�b,Z + 𝜙mY,Z)

o

Z

 
(10) 

 

In the PBE formalism, the above method is popularly used to determine the 

polar component of the solvation energy. In fact, this formula is integral to Delphi’s 

energy calculations and is used throughout this work, unless otherwise is stated. 
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1.4.2 Non-polar solvation energy 

 The non-polar term, as mentioned, indicates the work done to create 

a cavity amidst the bulk solvent which can fit the solute atoms. This invites a 

relationship of 𝛥𝐺�`b�
p�  with the volume and surface area (SA) of the solute, both 

geometrical estimators of its size, which intends to capture the repulsion of the water 

molecules from the relatively less polar solute as the cavity is created. This is also 

known as the hydrophobic effect.  

But drawbacks of this simple linear non-polar model have come under light 

and they have led to refinement of the non-polar energy models to include an 

additional dispersion energy term (the term deliberately discarded in equation 8)[67]. 

The dispersion term is meant to capture the effect of turning on the Van der Waals 

(vdW) interactions between the hypothetically uncharged solute and the solvent 

once the cavity is created. The addition of this term has been shown to improve the 

quality of predictions made by non-polar energy models[68, 69]. 

 



 

 

27 

1.5 Delphi: A PBE solver package 

 Delphi is a popularly used computer program that solves the PBE to 

deliver the potential distribution in the space of a solvated biomolecular system. The 

program, currently written in C++, is available for download (latest being version 

8.0+) at no cost from http://compbio.clemson.edu/delphi[70, 71]. The software is 

designed to operate on Linux and Mac operating systems with new features for MPI 

and OpenMP parallelization which can be used for investigating larger mesoscopic 

systems like the virus assembly.  

1.5.1 Finite Difference representation 

Delphi uses a finite difference method to solve the PBE[40, 41]. Since its 

inception, it was designed to use this technique to deliver electrostatic potential 

distribution in space by discretizing it (a.k.a its domain). The space contains the 

solute (protein, DNA, RNA and small molecules) approximately at its center by 

default and a volume of solvent continuum surrounding it. The electrostatic potential 

is used to determine different energy terms (per the user’s request) but most 
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commonly it is used to obtain the polar of the electrostatic component of the 

solvation energy (e.g. equation 10). 

To enable finite difference PB calculation, the analytical PBE is manipulated 

to fit into the discretized space for which the derivation is well explained in some of 

the first works on Delphi[40, 41]. Essentially, the integral form of Gauss’s law 

(equation 1) is obtained by volume integration of the gradient and the charge density 

term and the resultant bounding surface integral leads to the following expression 

which can be solved iteratively. 

 
𝜙¡ = ¢

(∑ 𝜖Z𝜙Z¤
Z¥� ) + 4𝜋𝑞¡ℎ

W∑ 𝜖Z¤
Z¥� X + (𝜅�ℎ){

§ 
(11) 

 

The purpose of discretization is to provide points in 3D space at which the 

potential (𝜙¡) and other quantities will be determined to yield a field. In Delphi’s 

glossary, these points are referred to as the grid points. The discretization is regular 

and isotropic, which results in a cubical box with sides long enough to accommodate 

the solute in question with a layer of solvent’s continuum around it. This box is and 

will also be referred to as the computational box. The computational box is the union 

of non-overlapping cubes of side length h which indicate the resolution of the 
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discretization. With a total of M grid points along each direction (aka grid size), the 

total side length of the computational box equals 𝑀ℎ. A factor called scale is defined 

as 1/ℎ which tells the number of grid points placed per Angstrom. The charges in 

the solute are “projected” onto the nearest grid points in space. The total charge on 

a grid point then amounts to 𝑞¡. The space dependent dielectric value is specified 

between two grid points, i.e. at midpoints. Midpoints are likewise located at regular 

distances (h) and a distance of ℎ/2 from the nearest two grid points. Ultimately, the 

2nd order nature of PBE and leads to the above expression (equation 11) where the 

potential 𝜙¡ on a grid point with a total charge 𝑞¡ depends on the potential of the 

6 of the nearest neighbors [𝜙Z]Z¥�¤  and the dielectric values at the midpoints that 

connect them with it [𝜖]Z¥�¤ . Figure 1.5.1 provides an illustration for a single cube 

and its vicinity and shows how they are juxtaposed to form a larger computational 

box. 
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Figure 1.5.1: Discretization of the space by Delphi. The figures illustrate 
how the domain of the PBE is discretized into regularly sized cubes by Delphi in 
order to solve the PBE suing the numerical finite difference method. (a) The 
computational box with M grid points per side. (b) An expanded view of a cube with 
side length ‘h’ showing the positioning of the grid points and the mid-points. The 
solid black line outlines the cube’s edges and the dashed lines represent the edges of 
the neighboring cubes (applicable for the non-boundary cubes only) (c) Points where 
an arbitrary charge (𝑞¡), the dielectric values (𝜖Z) and electrostatic potentials (𝜙Z) 
are assigned.  

 

Typically, the user provides what is called a perfil that suggests the size of 

the box, in that the value of this parameter (in %) suggests the upper bound of the 

volume the solute must occupy in the larger cubical box. There are other parameters 

that the user can provide to supply similar information, but they are left out of this 

particular discussion to stay within the intended scope. For more details, one is 

referred to the Delphi’s user manual1.   

1.5.2 Overview of Delphi’s workflow 

The workflow of Delphi entails a sequential operation of various 

computational classes. A general outline of the program, with all of its classes is 

                                       

1 See http://compbio.clemson.edu/downloadDir/delphi/delphi_manual8.pdf . 
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shown in Figure 1.5.2. Each of these classes have their special functions and are all 

connected through a global data container. The data container is populated with 

default as well as user provided values for all the variables that are used during a 

Delphi run.  

The work presented by means of this dissertation were mostly focused on 

modifying the ‘Space’ class and the ‘Energy’ class of the Delphi program. The 

contents in Chapter 2, 3 and 4 have been implemented through changes in the ‘Space’ 

class and the contents in Chapter 5 have been implemented through changes in, 

both, ‘Space’ and ‘Energy’ classes. At times, the term ‘module’ will be used to denote 

a ‘class’. Needless to say, the addition of new features also involved some changes in 

the ‘IO’ class and other minor alterations in other classes, but they are not discussed 

here for the sake of brevity and relevance.  
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Figure 1.5.2: Delphi’s workflow. The schematic presents the order of the 
functions/operations performed by Delphi in order to solve the PBE. Based on the 
‘User input’, the IO class updates default global values of Delphi (stored in the Global 
Data Container). This triggers the Space, Solver and Energy classes to follow in this 
order as they receive parameters from the data container, use them and update them 
for the next order of execution. The arrows in the schematic indicate the direction 
of the flow of data in the form of various variables used throughout the run of Delphi. 
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1.5.3 Applications of Delphi through packages and webservers 

Delphi’s widespread popularity is a testimony of its contribution to the 

scientific studies that based on understanding the role of electrostatics in molecular 

biophysics. As emphasized so far, electrostatics is a crucial element of molecular 

biophysics studies and with the variety of applications that Delphi has been involved 

in, it only shows the range of topics that come under its ambit.  

Delphi is used by the community worldwide, directly and indirectly. Direct 

use of Delphi is possible through its standalone version (downloadable from 

http://compbio.clemson.edu/delphi) and through its web-server 

(http://compbio.clemson.edu/sapp/delphi_webserver). Indirect use of Delphi is 

possible through other packages and webservers that operate on Delphi. 

DelphiPka[72] is a tool that uses Delphi internally to determine the protonation state 

of the polar residues in a protein (or nucleotide bases of DNA/RNA) at a given pH 

value. pH determined protonation states are crucial to understanding the pH-

dependent binding affinities of molecules and their mutants[14, 73].  DelphiPka’s 

services are also made available through an exclusive webserver[74]. On top of this, 

three other webservers make use of Delphi to predict the effect of missense mutations 
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on the binding affinity of protein-protein complexes (SAAMBE)[75, 76], protein-

DNA complexes (SAMPDI)[77] and the folding free energy of a protein 

(SAAFEC)[78].   

Delphi has also been enhanced with features that allow the computation of 

the surface potentials around a biomolecule[79]. This feature is useful in predicting 

the ζ-potential of proteins and other biomolecules. This bears an additional 

advantage since this potential is typically inferred from the electrophoretic mobility 

of the solute/particle in question spawned by an external field due to its presence in 

an electrolyte buffer. The relationship is based on numerous classical and rather ideal 

assumptions about the structure of the molecule and typically none of them are valid 

for proteins by virtue of its complicated geometric shape and inhomogeneous charge 

distributions. With Delphi’s PBE solving capacity, this module can deliver the 

average and the distribution of electrostatic potential at any distance from the 

surface of a molecule of any shape and charge distribution. The role of explicit non-

specific surface bound ions, whose positions were predicted using another Delphi-

based web-tool called BION[80], is very critical to the surface potential distribution 

and its average value.  
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Another use of Delphi’s machinery is made by DelphiForce, a package[81] and 

a webserver[82] that predicts the force on a group(s) of atoms due to the charges 

from another group(s) of atoms. These force calculations differ from the typical qE 

Coulombic forces in that the forces are computed from the gradient of the potential 

which in turn is computed by considering the presence of varying dielectric 

environments. DelphiForce has been used in past works to observe the role of 

electrostatic forces on the mechanism of translocation of motor transport proteins on 

the microtubules inside the cells[83]. It has also proved handy in determining the 

effects of mutations in the proteins involved in this mechanism by means of changes 

incurred in the electrostatic forces at play[84]. 

With new features of Delphi underway, it is expected that its utility as a 

robust and versatile computational package will expand.  

1.6 Summary 

 This introductory chapter presents the fundamental concepts used in 

the rest of this dissertation. First, the importance of studying electrostatic forces and 

interaction in molecular biophysics is discussed with emphasis on the role of solvent 

and solvation effects. Then the computational schemes currently available for such 
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studies are presented and their distinctions are clarified. The relevance of the 

Poisson-Boltzmann formalism to this work is stated and its key concepts are 

presented in order to lay the groundwork for the developments presented here. 

Finally, the implementation of the PBE formalism in Delphi, a C++ based PBE 

solver, is presented.  

1.7 Outline of the dissertation 

Following this introductory chapter, the dissertation is laid out to present the 

conceptual basis and the applications and implementation of the Gaussian-based 

model of dielectric distribution and computing molecular volume and surface area.  

1. Chapter 2 outlines the Gaussian description of solute atoms and 

emphasizes its use to obtain an inhomogeneous space-dependent 

dielectric distribution with no dielectric boundary between the solute 

and the solvent regions. It presents the qualitative aspects of the 

Gaussian-based dielectric distribution model for solving PBE and 

attempts to illustrate its physically appealing characteristics.  

2. In Chapter 3, the focus is shifted towards demonstrating results from 

explicit solvent MD simulations that enforce the idea behind an 
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inhomogeneous dielectric distribution and how Gaussian-model can 

effectively capture it.  

3. In Chapter 4, the ability of the Gaussian model to reproduce ensemble 

averaged polar solvation effects is presented. The chapter highlights 

the features of the Gaussian dielectric model that enable it to do so 

with fair success and how this feature provides it an edge over the 

traditional 2-dielectric setup. 

4. In Chapter 5, the integration of the Gaussian-based atomic model with 

Delphi’s finite difference platform is meticulously discussed to show its 

use for computing non-polar components of the solvation free energy.  

5. Chapter 6 presents the concluding remarks and is drafted as a 

compendium of the contents of this dissertation. 
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2 GAUSSIAN-BASED MODEL OF ATOMS AND DERIVATION OF 

A SMOOTH DIELECTRIC FUNCTION 

 

In this chapter, the Gaussian based model of atoms is introduced by means 

of its mathematical formulation. The use of a modified version of this model to derive 

an inhomogeneous and continuous dielectric distribution is presented. This model 

delivers a smooth transition of dielectric properties from the macromolecular interior 

to the solvent phase, eliminating any unphysical surface separating the two phases. 

Using various examples of macromolecular binding, its utility is demonstrated and 

comparisons with the conventional 2-dielectric model are illustrated. Some additional 

abilities of this model, viz. to account for the effect of electrolytes in the solution and 

to render the distribution profile of water across a lipid membrane, are also 

showcased. The contents of the chapter resemble with that of a work previously 

published[85]. 
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2.1 Gaussian model of atoms 

The Gaussian model of atoms is inspired by the seminal work of Grant and 

Pickup[64]. The idea behind the Gaussian model of atoms is to represent each atom 

as an atom-centered Gaussian density function as opposed to a hard sphere. Some 

new conventions and symbolisms are adapted here to describe the model. An atom 

‘i’ with Van der Waals radius 𝑅Z and coordinate 𝑟ePP⃗  is described in a Gaussian 

representation via a density function given by  

 𝑔Z = 𝑝Z𝑒𝑥𝑝	(−𝛼Z(𝑟 − 𝑟Z)) (12) 

 

 

Argument α« of Gaussian exponent function can be further expressed using a 

dimensionless parameter 𝜅 and height factor 𝑝Z such that  

 𝛼Z =
𝜅
𝑅Z{

 

𝑝Z =
4𝜋
3 r

𝜅
𝜋s

�
{ (13) 

The above relations ensure that the volume, obtained from the volume 

integral of this density function, equals the hard-sphere volume (𝑉Z =

�
𝜋𝑅Z�) of the 

atom.  
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This Gaussian model can be conditioned to yield a probability function by 

removing the height factor and yielding a dimensionless factor bound between 0 and 

1. As reported in Ref [86], the space-dependent function can be expressed as a 

function of scaling factor 𝜎 and atom-wise radius 𝑅Z. 

 𝜌Z(𝑟) = 𝑒𝑥𝑝�−
|𝑟 − 𝑟ePP⃗ |{

𝜎{𝑅Z{
�	∀	𝑖 ∈ 𝑎𝑡𝑜𝑚𝑠 (14) 

 

This can be used to obtain a collective probability function (𝜌_`b(𝑟)) which 

indicates the probability of finding a solute atom anywhere in the space of interest. 

In the specific context of solving for potentials, the space is the volume occupied by 

the computational box where PBE is to be solved. From the collective spatial 

probability, the space-wide dielectric distribution (𝜖(𝑟)) can be determined using a 

linear relationship with a reference solute dielectric (𝜖m\Y) and the solvent dielectric 

values (𝜖`��).  

 𝜌_`b(𝑟) = 	1 −±(1 − 𝜌Z(𝑟))
Z

 
(15) 

 𝜖(𝑟) = 𝜌_`b(𝑟)𝜖m\Y + W1 − 𝜌_`b(𝑟)X𝜖`�� (16) 
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The result is a smooth Gaussian-based dielectric function throughout the 

entire computational space. The necessity of such an approach is evident from the 

other works[87, 88], which show that the water molecules in the proximity of the 

macromolecule and inside its cavities, have different dielectric responses from those 

far out in the bulk region. Moreover, an inhomogeneous dielectric distribution in the 

region between the molecules also highlight how the long-range electrostatic 

interactions are affected in the process of recognition before binding[81]. The 

Gaussian-based smooth dielectric model has been implemented in Delphi[71, 89] 

Please also note that the solute dielectric is denoted by 𝜖m\Y in the context of the 

Gaussian dielectric model instead of 𝜖Zp but the two terms are synonymous. Both of 

them technically imply the same quantity which is the lowest dielectric value in the 

solvated system. 

In Figure 2.1.1, the Gaussian based model of atoms derived from the atomic 

probability function is illustrated. The figure shows cases of a system with only 1 

atom, 2 atoms and for a real protein (PDB: 2NVH). For comparison, the hard-sphere 

equivalents are also shown.  
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Figure 2.1.1: Gaussian model of atoms vs hard-sphere model of atoms. 
(a-c) From left to right, in the top panel, the hard-sphere representation of a one-
atom system, a two-atom system and a real protein, IL-1β (PDB: 2NVH) is show. 
In the bottom panel, the equivalent Gaussian model representations are shown. (d) 
Dielectric distribution obtained using the Gaussian model (solid blue line) and the 
hard-sphere model (dashed red line), along an arbitrarily chosen axis, cutting through 
the slice of the protein in (c) is shown. The reference dielectric (𝜖m\Y) is set at 4 and 
the solvent dielectric (𝜖`��) is 80. 
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2.1.1 Super Gaussian model of atoms 

A variant of the Gaussian model has recently been proposed, known as the 

Super-Gaussian model of atoms[90]. The authors of this work demonstrated the use 

of this model in conjunction with a third parameter, 𝜖²��, which defines an upper 

bound for the dielectric of the interstitial cavities in a protein’s structure. Leaving 

this parameter aside, the formalism of the Super-Gaussian model is fundamentally 

similar to that of the Gaussian model of atom except for an additional power of the 

exponent. Retaining the symbolic references of equation 14, the atomic probability 

in the Super-Gaussian model can be expressed as: 

 
𝜌Z(𝑟) = 𝑒𝑥𝑝 �−�

|𝑟 − 𝑟ePP⃗ |{

𝜎{𝑅Z{
�
_

�	∀	𝑖 ∈ 𝑎𝑡𝑜𝑚𝑠 (17) 

 

When the factor m equals 1, the expression becomes identical to our Gaussian 

model of atoms. For higher values (typically integers), it acquires a Super-Gaussian 

form. In the limit of higher m values, the expression begins to take the form of hard-

sphere representation with abrupt transitions in 𝜌 and 𝜖. Regardless, with the above 

expression for 𝜌, equation 15 and equation 16 forms can be unambiguously applied. 

As mentioned above, the authors of Ref [90], have used an additional gap epsilon to 
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formulate the model. For this discussion, it has been left out as our approaches and 

motivations differ.  

In Figure 2.1.2(a, b) the effects of m on the atomic probability function (𝜌) 

and therefore on the dielectric distribution (𝜖) are shown. As m increases, the 

dielectric profile visually becomes sharper, though its mathematical continuity is 

infinitely preserved. As is evident, at m=6, the profile is highly similar to the profile 

obtained using the hard-sphere model shown in Figure 2.1.1(d). In Figure 2.1.2(c), 

the change in the visual appearance of the protein (PDB: 2NVH) due to the value 

of m is also illustrated. 
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Figure 2.1.2: Gaussian and Super-Gaussian forms. (a) For a single atom of 
radius 2 (with σ=0.93), the profile of atomic probability function, 𝜌Z(|𝑟 − 𝑟Z|), is 
shown for ‘m’ ranging from 1 through 4. As the value of m increases, the profile 
appears to take the form of a hard-sphere Heaviside function. (b) The dielectric 
distribution obtained with ‘m’ from 1 through 4, along an arbitrarily chosen axis, 
cutting through the slice of a protein (PDB: 2NVH). The reference dielectric (𝜖m\Y) 
is set at 4 and the solvent dielectric (𝜖`��) is 80. (c) For m=1 through m=4, the 
Gaussian model’s depiction for this protein is shown.  
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2.2 Gaussian-dielectric model for protein-protein 

interactions (Barnsase-Barstar)  

The Barnase-Barstar complex from Bacillus amyloliquefaciens, where 

Barnase (Bn) is an extracellular ribonuclease and Barstar (Bs) is its intracellular 

inhibitor, has been used extensively in previous studies (e.g. Ref [91-93]). An 

experimental study of their water mediated-interaction has reported that the water 

molecules (H2O) crystallized at the  interface have different B-factors[53]. The 

different B-factors have been attributed to the number of H-bonds these water 

molecules made with either or both monomers and their ability, henceforth, their 

ability to reorient and respond to local electrostatic field.  

The Gaussian-based dielectric model is used to provide a description of the 

dielectric distribution at the interface of Bn-Bs complex (PDB: 1X1X) as its 

monomers are moved apart in space. For comparison, the same is done with the 

traditional 2-dielectric model or the hard-sphere model. The results are shown in 

Figure 2.2.1 for configurations where the monomer centers are moved apart by 

distances in the range of 0-10Å.  
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Figure 2.2.1: Dielectric at the binding interface of a protein-protein 
complex. For Barnase-Barstar protein complex (PDB 1X1X), the dielectric value 
at the center of the binding interface (marked by the red dot in the left Figure) is 
plotted as a function of the distance by which the monomers are separated in space 
along an arbitrary direction. Both, the Gaussian and the hard-sphere models are 
used to illustrate the profile and also highlight the difference between the two. 

 

One can appreciate the lack of sharp change in the dielectric achieved with 

the Gaussian model, suggesting a smooth change of dielectric constant value in the 

space between the monomers as they are moved apart. Even at very low separations, 

the space between the Bn and Bs exhibits a dielectric between 𝜖m\Y and 𝜖`�� but not 

identical to 𝜖m\Y. Such a trend depicts how the space between interfaces begin to 

gain higher dielectric constant mimicking the increased flexibility of interfacial 

residues upon separation and increased probability of water molecules to enter there. 
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This also resonates with the observation that the interfacial water molecules, when 

there is very little room between interfaces, have different mobility compared to the 

bulk water due to plausible interactions with the monomers.  

2.3 Modeling salt contribution using the Gaussian-based 

model 

The Gaussian-model was refined to appropriately model the presence of 

implicit electrolytes in the solvent phase. The presence of electrolytes in the PBE 

models is accounted for by their Boltzmann distribution, i.e. their concentration in 

the solvent phase is proportional to the Boltzmann factor corresponding to the 

electrostatic energy of an ion at some point in the solvent region. In the 2-dielectric 

setup, the salt is homogeneously accessible to all the region that lies outside the ion-

exclusion surface. The smooth dielectric transition due to the Gaussian-based 

dielectric model eliminates the provision of a clearly demarcated solvent region which 

therefore, challenges its ability to incorporate the non-trivial effects of salt on binding 

[94, 95]. This issue has been investigated and solved in a recent work published by 

our lab [96]. The publication that presented this idea was also able to demonstrate 
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the ability of this feature to predict the effect of salt on the binding affinity, as shown 

earlier by Bertonati et. al. [95] using the conventional 2-dielectric model.  

The solution to this problem was inspired by the fact that charges, which 

migrate to regions with different dielectric constants, sustain a (de)-solvation energy 

or a “penalty”. In the Gaussian-based model, this penalty is expressed by the 

absolute value of the energy of transfer across two dielectric media of a 

centrosymmetric ion obtained using the Born formalism. In SI units, the expression 

acquires the following form 

 ∆𝐺�\p�b�³(𝑟) = +
𝑁µ𝑧Z{𝑒{

8𝜋𝜖¡𝑟¡
¶
1
𝜖(𝑟) −

1
𝜖`��

· (18) 

Here 𝑁µ is Avogadro’s constant, e is the elementary charge and 𝜖(𝑟) – space-

dependent dielectric at a calculated by Gaussian-based model. The penalty term 

influences an ion’s ability (of charge	𝑞Z = 𝑧Z𝑒 and radius 𝑟¡) to be present at some 𝑟 

in the solvent medium which when added to the electrostatic potential there 

(−𝑞Z𝜑(𝑟)) renders the following expression for PBE: 
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𝛻P⃗ ∙ [𝜖(𝑟)𝛻𝜙(𝑟)]

= −4𝜋»𝜌�`b��\(𝑟)

+c𝑞Z

o

Z¥�

𝑐Z°𝑒𝑥𝑝�
−𝑞Z𝜙(𝑟) + ∆𝐺�\p�b�³(𝑟)

𝑅𝑇 �½ 
(19) 

 

Quantities φ(r⃗), and ρÁÂÃÄÅÆ(r⃗) are the electrostatic potential and charge 

density of a solute at r⃗, respectively; cZ° is the bulk ion concentration and T is the 

temperature.  

Figure 2.3.1(a) shows the profile of the ∆𝐺�\p�b�³ term as a function of the 

coordinate being probed. As one approaches the solute region (denoted by a 

rectangular slab of 4Å width), the penalty term increases non-linearly to the point 

that its presence inside the solute region drops to zero following the Boltzmann 

distribution.  

Figure 2.3.1(b) presents a visual description of the distribution of salt 

obtained by the modified PBE formalism in a plane from the computational box that 

contains the Barnase-Barstar complex. It can be seen that ions can propagate inside 
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the binding interface if there are small cavities allowing for transient ions to come 

in.  
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Figure 2.3.1: Salt treatment using the Gaussian model. (a) The penalty term 
added to a salt’s electrostatic energy obtained after solving PBE is plotted as a 
function of position in space. The space contains of a solute, represented by a 
rectangular slab of width 4Å (filled with pink color). Everything outside is assumed 
to be filled by the solvent. (b) An illustration of the salt concentration distribution 
generated using Delphi around the Barnase-Barstar complex (PDB: 1X1X). (c) Salt 
concentration at the binding interface of the Barnase-Barstar complex (computed at 
the red point shown in the cartoon representation of the complex) is plotted as a 
function of the distance of separation of the monomers.  

 

In  

Figure 2.3.1(c), the change in the salt concentration in the binding interface 

region of the complex is shown as its monomers are separated away in an arbitrary 

but consistent direction.  

 

2.4 Water distribution across lipid bilayers using Gaussian-

based dielectric model 

Lipid bilayer membranes in animal cells are exposed to the extra-intracellular 

fluids, which are aqueous electrolyte solutions. These membranes sustain very high 

hydrostatic and osmotic pressures (as high as 18KPa [97]) to preserve the shape of 

the cell and contain the cytoplasmic contents. Therefore, interaction, diffusion and 
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permeation of water with and across lipid membranes are vital for osmoregulation 

and cell lysis. Subsequently, any lipid-water model should be appropriately 

represented for a computational study. 

 

Figure 2.4.1: Dielectric distribution and water’s radial distribution 
function across a lipid bilayer membrane. The Figure shows the normalized 
values of the radial distribution function of water’s oxygen atom and the dielectric 
distribution obtained using the Gaussian model along the transverse direction 
perpendicular to a lipid membrane’s plane. The membrane region is depicted by a 
rectangular slab of 38 Å width which is the typical value of the POPC head-to-head 
distance (bilayer thickness). The normalization is done with respect to the maximum 
value of the corresponding data. In the case of dielectric, the maximum value was 80 
(solvent dielectric).  

Using the Gaussian-based dielectric model, it is shown that the dielectric 

distribution across a lipid membrane matches well with the averaged distribution of 
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water surrounding it which is computed from a 12ns explicit water NPT-MD 

simulation of a POPC-lipid bilayer patch. The results are illustrated in Figure 2.4.1. 

For better perspective, the values are normalized with respect to their respective 

maximum (e.g. 80 for dielectric constant). It can be seen that water molecules 

propagate inside the membrane resulting in a smooth profile from bulk water density 

to zero density in the core of the lipid bilayer. The dielectric constant profile 

replicates the trend by smoothly decreasing from 80 in the bulk phase to lower values 

inside the membrane.  This finding provides additional support for our claim that 

the Gaussian-based dielectric function mimics the effect of water molecules near the 

macromolecular interfaces. The shaded region in Figure 2.4.1 is a crude 

representation of the membrane slab of thickness 38Å; the typical thickness of POPC 

membranes [98].  

2.5 Summary 

This chapter presents the mathematical formulation of the Gaussian-based 

description of atoms as opposed to the conventional hard-sphere model. From there, 

the derivation of the dielectric function using the Gaussian function as its basis is 

presented. The model’s qualitative aspects are exhibited through three different 
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examples that show the ability of the Gaussian model to capture a realistic 

distribution of the solvent around biomolecules. In addition to the qualitative appeal, 

previous studies have also reported its success in predicting pKa’s [72], optimum pH 

and proton transfer analysis[73], predicting change in binding free energy upon 

mutation[99, 100], etc. It has also been shown that this dielectric model along with 

salt contribution outperforms the tradition 2-dielectric model in predicting the pKa 

shifts of ionizable and polar residues incurred due to the protein’s configuration[101]. 

As the recent advances in solvation models continue to provide a more 

realistic picture of macromolecular behavior in water, efforts are also needed in 

developing time-inexpensive models for solvation and binding that can deliver 

experimentally measurable quantities. This is of importance because relevant 

experimental techniques deliver quantities that are ensemble averaged and are not 

merely pertinent to measurements made on a single molecule. At present, ensemble 

averaged quantities can be obtained by protocols like MM/PBSA[102] and 

MM/GBSA[103], which are rather time-consuming. The Gaussian-based dielectric 

model, with its current abilities, can reproduce the ensemble average polar 

component of solvation energy from a single energy-minimized structure of a protein, 

which is discussed in detail in Chapter 4.  
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3 CONCEPTUAL VALIDITY OF THE GAUSSIAN MODEL: 

EVIDENCE FROM EXPLICIT WATER MD SIMULATIONS 

 

In the previous chapters, the key concepts relevant to this dissertation have 

been discussed. A major highlight of Chapter 1 is the introduction of the continuum 

electrostatic in the framework of implicit solvent models using PBE formalism. It 

discusses how this model offers a viable alternative to the explicit solvent models of 

biomolecular systems by emphasizing the concreteness of its physical assumptions 

and its ability to be time-efficient. In those descriptions, the typical setup of a 

solvated biomolecular system is discussed and the concept of distinct but 

homogeneous dielectric media is presented. Chapter 2 presents an alternative way of 

representing such systems using a Gaussian-based model of atoms from which a 

Gaussian-based smooth dielectric model is derived. Its central idea of delivering a 

smooth, molecular-surface-free dielectric distribution is demonstrated through 

various examples that reflect the physical appeal and simplicity of this model. 

However, the discussions of the Gaussian model have been more perspective-oriented 

and qualitative. The aim of the current chapter is to present a Proof of Concept of 
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the Gaussian-based dielectric model using observations from explicit solvent MD 

simulations and eventually show the validity of the central assumptions of this 

model. 

3.1 Revisiting the motivations behind the Gaussian-based 

dielectric model 

The Gaussian-based model of dielectric distribution was first presented in Ref 

[104]. Later Li et. al.,[86] presented an alternative formalism of this model with the 

aim of generating a surface-free description of solvated biomolecular systems which 

would mimic the effect of conformational dynamics of the solute on solvation. As 

opposed to the traditional practice of representing the space as a disjoint union of 

two distinct dielectric media, solute and the solvent, the Gaussian model proposes 

that the presence of a strict dielectric surface is unphysical and that dielectric value 

must be smoothly and continuously distributed in space.  

The origin of the idea behind the Gaussian-based dielectric model is rooted in 

reality. In physiological conditions, biomolecules are very dynamic and the effects of 

this flexibility must be considered in order to determine the correct solvation 

energies. These conformational dynamics entails both, small and large frequency 
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motions of the various units that build a biomolecule which emerge from the intra-

molecular and inter-molecular forces of interaction and kinetic energies possessed by 

the constituent atoms. This flexibility continuously updates local interactions of 

solvent-exposed atoms with the solvent and other solute atoms. As a result, local 

structural and energy changes are constantly underway. Since dielectric distribution 

affects the structure-energy relations via screening of the electrostatic interactions 

within the solute and between the solute and solvent[105, 106], the effects of the 

conformational dynamics can be correctly captured using a dielectric model that 

respects the role of the varying local environments harbored in the system. In other 

words, an inhomogeneous dielectric distribution model can serve the purpose by 

retaining the simplicity and time-efficacy of the implicit solvent models, on one hand, 

and preserving the local structural phenomena, on the other. The Gaussian-based 

dielectric model was designed exactly for this reason.  

The key assumption of the Gaussian-based dielectric model is that the regions 

with higher packing density (high 𝜌(𝑟)) will experience restricted motion compared 

to those regions with looser packing (low 𝜌(𝑟)). This translates to the ability of the 

atoms in either region to respond to an external electric field by virtue of its ability 

to rotate its dipole moment vector in order to minimize the effects of the 
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“perturbation”. Due to higher packing, the dipole moment due to the group of atoms 

in those regions will feature very large rotational correlation times while those in the 

loosely packed regions will feature just the opposite. This implies that the highly 

packed regions will possess low polarizability (and therefore lower dielectric value) 

and the loosely packed regions will exhibit high polarizability (and therefore higher 

dielectric). In a sense, this assumption establishes an inverse relationship between 

the local structural packing density and the local dielectric value. MD simulation 

studies have been able to demonstrate such space-dependent dielectric properties of 

proteins[107, 108], specifically that the dielectric values are higher moving away from 

the center of a protein. 

This relation also scales perfectly to the solvent medium. By representing the 

solvent region as a uniform structure-less dielectric medium, the traditional 2-

dielectric setup automatically disregards the important solute-solvent interactions 

that are dominant at the interface. These interactions tend to anchor the solvent 

molecules at the interface and bereave them of their bulk properties. As a result, the 

residence time of water molecules is higher close to the solute or at any hydration 

site where interaction with the solute is viable[109, 110] and solvent mobility 

(translation and diffusion) is limited. Therefore, as one probes the solvent region, it 
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is safe to say that the dielectric value will gradually increase with the distance from 

the solute’s surface. In addition, solvent molecules locked in the cavities and other 

interstitial accessible regions of the solute may exhibit dielectric properties which are 

very unlike that of the bulk and perhaps closer to that of the solute.  

Energetically, the interaction of the polar groups of the solute with the solvent 

can have significant effect on its stability. There is an anti-correlation of the 

structural stability and the solvation energy, in that, favorable intramolecular 

Coulombic interactions imply a relatively unfavorable solvation energy and vice 

versa (Appendix A.4). This establishes a balance between the two factors since 

both the energies are summed up when computing the polar binding free energy of 

a macromolecular complex in a solution.  

The motivation of the Gaussian-based dielectric model, thus, is to be able to 

mimic the conformational flexibility in a system through a smooth dielectric 

distribution model and deliver solvation energy that matches well with experimental 

observations.  
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3.2 Molecular dynamics of a protein in explicit water 

3.2.1 Selection of a protein with cavity waters 

For this particular study, a protein with cavity waters in its crystal structure 

was sought. The protein of choice was the interleukin-1β (IL-1β) whose crystal 

structure is known to harbor 5 different internal cavities of which four are occupied 

by water (PDB ID: 2NVH) [111]. The same protein has also been used by Hazra et. 

al. [90] to present a Super-Gaussian model of dielectric distribution that emphasizes 

the importance of a distinct cavity dielectric value in addition to that of a solute and 

solvent. Figure 3.2.1 shows the crystal structure of this protein and separately 

highlights the cavities (and its waters wherever found). 
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Figure 3.2.1: A protein and its cavity with crystal waters. The protein 
interleukin-1β (IL-1β) with PDB ID: 2NVH is shown on top-left corner. The protein 
is known to have five different cavities in its crystal structure of which 4 of them are 
occupied by crystal waters (Cavity 1-4). Cavity 1 and 2 contain two water molecules 
and cavity 3 and 4 contain one water molecule. Cavity 5 is the central non-polar 
cavity with no water present in it in the crystal structure. All the cavities are labelled 
and the water oxygen atoms are labelled and shown as red spheres. The volume of 
these cavities are also reported as mentioned in Ref[111].  

 

Cavity 1 (45 Å3) Cavity 2 (40 Å3)

Cavity 3 (16 Å3) Cavity 4 (16 Å3) Cavity 5 (39 Å3)
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3.2.2 Molecular Dynamics   

This protein was solvated in a bath of explicit solvents after removing all the 

crystal waters, including those that are present in the cavity. This was done to see 

if water molecules placed artificially find their way to and through these cavities 

during a MD run. Before running the MD simulations, the protein’s crystal structure 

was protonated using the AMBER99SB force-field[112]. On protonation, all the 

Arginine (ARG), Histidine (HIS) and Lysine (LYS) residues had a charge of +1e 

and all the Glutamic acid (GLU) and Aspartic acid (ASP) residues had a charge of 

-1e. The total charge on the protein was -1. The protonated crystal structure was 

solvated in a bath of explicit water molecules with water molecules assigned the 

TIP3P form[113]. To make the system electrically neutral, Na and Cl ions were added 

while desiring that their concentration be 0.15M.  First, 10000 steps of steepest 

descent minimization were performed while harmonically restraining the heavy 

atoms in the protein in order to guide the solvated system to the nearest local energy 

minimum. This was followed by 3 independent 200ps of isothermal-isochoric (NVT) 

equilibrations which subsequently branched off to 3 independent runs. Each NVT 

equilibration was followed by a 2ns long isothermal-isobaric (NPT) equilibration 
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period with temperature set at 300K and pressure set at 1 atm. During both the 

equilibration phases, the harmonic restraints on the heavy atoms were retained. After 

equilibrations, the system was allowed to evolve for 30ns under NPT conditions and 

no harmonic restraints. During the runs, the non-bonded forces were only applied 

within a cut-off of 12Å and the list was updated every 10 steps (20fs; each time-step 

was 2fs). The simulations were done using Periodic boundary conditions to minimize 

boundary effects and Particle-Mesh-Ewald (PME)[114] was employed for long range 

non-bonded electrostatic force-calculations. 

Configurations of the solvated system were sampled every 10ps. For analysis, 

only the last 20ns of the total 30ns per run was used which yielded a total of 2000 

frames per run. In total 6000 frames were, therefore, analyzed. All the simulations 

and most analyses were carried out using the GROMACS package (v 5.0.5)[115, 

116]. 

3.2.3 Force-field and water model combinations 

In the preceding paragraph, the use of AMBER99SB force-field with TIP3P 

water model is mentioned. All of the processes were also repeated using the OPLS 

force-field[117] in conjunction with TIP4P water models. This was done to gauge 
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qualitative differences in water behavior incurred due to differences in the force-

field/water-model combinations.   

3.3 Analysis: Tempo-spatial properties of cavity and bulk 

water 

The trajectory worth 20ns per run was analyzed to answer three main 

questions.  

a) Were the cavities in the protein able to attract water during the 

simulation (occupancy)?  

b) What was the typical residence time of the water occupying the 

cavities and how that differed from the non-cavity waters? 

c) What was the dipole rotational relaxation time of these category of 

waters? 

The last two analyses were also done to probe any space-dependent features 

of the water in the bulk, i.e. the residence and the dipole rotational relaxation time 

of water as a function of its distance from the surface of the protein were evaluated. 

Each of these questions are answered respectively in the following paragraphs. 
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3.3.1 Occupancy of the cavities 

In each of the sampled snapshot of the solvated system, the number of water 

present in each of the 5 cavities were examined. A water was deemed to be present 

in a cavity at a certain time if any of its atoms (H, O, H) lay within 3 Å from the 

center of mass of the protein residues lining that cavity at that time. If at least one 

water fit this definition, the cavity was occupied at that time. For runs made using 

AMBER99SB/TIP3P and OPLSAA/TIP4P combinations, the occupancy is 

presented in the form of a histogram in Figure 3.3.1. for each of the five cavities, 

the histogram shows the typical number of water molecules present in them through 

each run.  

As is evident, cavities 1 and 2, showed the tendency to have 1-3 water 

molecules occupying it at most times, though odd cases of no water molecule being 

present in them are also noticeable. Cavities 3 and 4 were typically found to be 

occupied by one water molecule for a vast majority of the simulation when the 

AMBER99SB/TIP3P combination was used. For the OPLSAA/TIP4P combination, 

cavity 3 was mostly unoccupied. Only for run labelled ‘1’, it was found to contain 

one water throughout. Cavity 4, on the other hand, maintained its occupancy at 1 
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though there are visible cases when it had no water molecules and very rarely two 

water molecules. Cavity 5 featured zero occupancy consistently across all runs 

through both combinations. 

Overall these observations align well with the experimental occupancies of 

these cavities [111]. All the cavities except Cavity ‘5’, were typically occupied by 

water molecules. These observations address the first question pointed out at the 

start of this section by indicating that indeed, cavity waters are detected during MD 

runs even though the crystal cavity waters were removed before executing these runs. 

These observations also lay the groundwork for the next set of analyses where 

differences in the tempo-spatial properties of cavity and non-cavity (or bulk) water 

molecules are examined.  

Of a special note is the behavior of Cavity ‘5’ which retains its non-polar 

nature in full glory. It is an interesting subject of examination but it is beyond the 

scope of the current study. In fact, cases like this highlight the limitations of the 

model like the Gaussian-based dielectric model which are derived fundamentally from 

geometric features and not from biochemical features. 
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Figure 3.3.1: Occupancy of cavities. Histograms in this Figure show the typical 
occupancy of the 5 cavities in 2NVH. The data is collected across 2000 snapshots 
from all the MD runs performed using AMBER99SB/TIP3P (top) and 
OPLSAA/TIP4P(bottom) force-field/water-model combinations.  

3.3.2 Cavity vs bulk water: Mean residence time 

Essentially, the mean residence time of water at a hydration site tells the 

“average” time a given water molecule might spend residing there. It can be 

computed in various ways[118] but for this study, the definition adopted by Makarov 
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et. al. [110] was used. Like theirs, the concept of time correlation function was used. 

The idea was to compute the probability of finding the same water molecule (through 

its index in a structure file) some time 𝛥𝑡 later from a “starting point” and obtain 

an average of those probabilities for all the valid “starting” points in the trajectory. 

Mathematically, this is given by: 

 𝑃(𝛥𝑡)

= É
#((𝑤𝑎𝑡𝑒𝑟	𝑝𝑟𝑒𝑠𝑒𝑛𝑡	𝑎𝑡	𝑡¡ + 𝛥𝑡) ∩ (𝑤𝑎𝑡𝑒𝑟	𝑝𝑟𝑒𝑠𝑒𝑛𝑡	𝑎𝑡	𝑡¡))

#(𝑤𝑎𝑡𝑒𝑟	𝑝𝑟𝑒𝑠𝑒𝑛𝑡	𝑎𝑡	𝑡¡)
Ì
�Í

 
(20) 

In the above equation, the correlation is computed for a set of time lags 𝛥𝑡 

and for a fixed value of it, the average probability is computed by averaging over all 

the “starting points” denoted using 𝑡¡. The probability, as such, is determined by 

calculating the number (#) of water indices common in snapshot at time 𝑡¡ and 

(𝑡¡ + 𝛥𝑡) and dividing that number by the total number of water molecules present 

at time 𝑡¡. For the rest of this chapter, the term 𝑃(𝛥𝑡) will be referred to as the 

Index correlation function (ICF). 

Once the ICFs were computed, the profile was fit using a bi-exponential curve, 

whose form was inspired by the work of Makarov et. al.[110]. The idea behind using 

a bi-exponential curve instead of a mono-exponential curve was that hydration sites 
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can be visited by water which may tend to stay for shorter as well longer periods of 

time. The authors posit that both kinds of diffusion behavior are possible and must 

be accounted for. They also admit that this form doesn’t capture the true behavior 

as it is more complicated than a binary perception they adopt. The curve has the 

following expression: 

 
𝑃(𝛥𝑡) = 𝑎¡ Î(1 − 𝑤)𝑒

hÏ�Ð� + 𝑤𝑒h
Ï�
Ð�Ñ (21) 

 

The annotations of the various symbols are as follows: Term 𝑎¡ denotes the 

occupancy of the site in question and ranges from 0 to 1 where 1 implies fully 

occupied by water. Weight factor 𝑤 indicates the weightage of the term that is 

associated with water molecules with longer residence times and therefore (1 − 𝑤) is 

associated with those with shorter residence times. If 𝑤 is closer to 1, the site is likely 

to be occupied with water with tendency to stay there for prolonged periods of time 

and vice versa. The corresponding residence times are given by 𝜏{ and 𝜏�. Thus, 

when assessing the values of these four parameters, they must not be interpreted 

independently of each other. Of specific interest is the value of 𝜏� or the short 

residence time as the typical values lie within the range of the simulation time. 
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For cavity as well as the bulk waters, the ICFs were computed. For the 

former, the ICFs for each cavity was computed individually. For the bulk, an 

extended set of analyses were performed. The bulk solvent region was divided into 5 

different concentric shells, each 3 Å thick, that were positioned 0, 3, 6, 9 and 12Å 

away from the solvent exposed residues of 2NVH (identified using NACCESS[119]). 

A schematic illustrating this division of the bulk volume into 5 concentric shells is 

presented in Figure 3.3.2. The ICFs were then fit using the bi-exponential curve 

and the resulting values of the parameters were compared. The ICFs for the four 

cavities (Cavity ‘5’ is excluded because it had no water) are plotted in Figure 3.3.3 

and that of the 5 hydration shells around the protein are plotted in Figure 3.3.4. 

Upon comparing the two plots, a clear visual distinction can be made. 

Speaking qualitatively, the decay rate of the ICF of the cavity waters is much slower 

than those in the bulk hydration shells. In other words, the timescale of decay was 

larger for the former. With a bi-exponential fit, the value of 𝜏� (the short mean 

residence time) was also obtained. The typical value of 𝜏� for cavity waters was in 

the ballpark of 3000ps vs ~20ps or less for the hydration shells in the bulk.  

This is a clear quantitative proof from an explicit water MD that the local 

environment of a water molecule has a profound effect on its mean residence time. 
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This qualitative finding is not novel. It is well resolved that water in the vicinity of 

proteins residues tends to interact with them and is therefore, anchored to that 

region. For example, the water at the interface of the Barnase-Barstar complex 

mediates their binding and therefore must feature properties very different from the 

bulk[53]. In the particular case of our study, the cavity water molecules interact with 

several residues, especially those that line the cavity and depending upon the 

hydrophobicity of these residues the mean residence time is influenced (see Figure 

3.2.1). If the residues are polar or charged, it would interact favorably with water 

via H-bonds or salt-bridges or both. Energetically, it imparts more favorability to 

the solvation energy. If they were non-polar, residence time can be expected to be 

lower. As a matter of fact, Cavity 5, with its completely non-polar lining, does not 

harbor a single water molecule.  

 In the bulk region, comprised of disjoint hydration shells, water only in the 

first two shells appear to be affected by the protein’s configuration. For shells farther 

away (more than 6Å away from the surface of the protein), the interactions with the 

protein are very weak. At such positions, the water molecules are only affected by 

the surrounding water molecules. By virtue of their smaller weights and hydrogen 



 

 

74 

binding abilities, the water molecules in those regions diffuse very freely and feature 

bulk-like properties.  

 

Figure 3.3.2: Concentric hydration shells in the bulk volume. An illustration 
of the division of the bulk of the solvent into 5 concentric shells is shown. Each shell 
is 3Å thick and placed in the manner shown. Each of these shells are treated as 
hydration sites in their own rights and their label (1 through 5) indicate their distance 
from the molecular surface of the protein (2NVH in this case).  
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Figure 3.3.3: Index correlation function (ICF) of the cavity waters. ICF 
of cavity waters computed across the three MD runs using AMBER99SB/TIP3P 
(top) and OPLSAA/TIP4P (bottom) are shown for each of the 4 cavities. Cavity 5 
is excluded because no water molecule was ever found to visit it.  
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Figure 3.3.4: Index correlation function (ICF) of the water in the bulk’s 
hydration shell. ICF of waters in the five different hydration shells in the bulk, 
computed across the three MD runs using AMBER99SB/TIP3P (top) and 
OPLSAA/TIP4P (bottom), are shown. The respective bi-exponential fits are also 
shown using lines of the same color as the respective data points. 

However, some interesting inferences can be made about the bulk water 

properties of the system. In addition to being remarkably different from the cavity 

waters, the bulk water was found to show distance-dependent attributes. After the 

bi-exponential fit to the ICF of the bulk hydration shells, computed using equation 

20, a comparison of the fit parameters indicated that the residence times (𝜏�, 𝜏{), 

occupancy (𝑎¡) and the weight factor (𝑤) vary as a function of distance from the 

surface of the protein. These variations provide insights into the effect of the local 

environment on bulk properties. 

As is evident from Figure 3.3.5, the profile indicates that closer to the 

protein’s surface, the short-term residence times (𝜏�) are larger. The profile of the 

long-term residence time (𝜏{) shows a contradictory behavior.  However, the latter 

behavior must be interpreted carefully and in conjunction with the weight factor, 

which is indicative of the likelihood that a water might stay for prolonged durations. 

Though 𝜏{ tends to increase with distance from the surface of the protein, the weight 

factor decreases. Collectively it indicates that the likelihood of prolonged residence 
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times in the bulk are very low and with increasing distance from the surface, long 

term water molecules are highly unlikely. 

Overall, a gradual transition of the water’s temporal properties is evident 

from these analyses. The fact that the different force-field/water-model combinations 

do not introduce any noticeable difference in the profiles of these quantities suggests 

that these properties are intrinsic to the water as a chemical entity (Figure 3.3.3, 

Figure 3.3.4 and Figure 3.3.5). In essence, its local environment seems to be a 

critical factor in influencing its mean residence time. 
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Figure 3.3.5: Distance-dependence of the parameters of the bi-
exponential fit to the ICF of the hydrations shells in the bulk. The plots 
show the value of  four parameters (labelled as: 𝑎¡, 𝑤, 𝜏�, 𝜏{) in each of the concentric 
hydration shells. Their values, obtained through simulations using 
AMBER99SB/TIP3P (left) and OPLSAA/TIP4P (right) combinations are shown.  
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3.3.3 Cavity vs bulk water: Dipole rotational relaxation time 

In this section , the differences in the spatial properties of the water in the 

bulk and in the cavities are analyzed. Like the above analyses of mean residence 

times, the gradient of bulk properties as a function of the distance from the surface 

of the protein is also examined.  

The quantity of interest in this context is the orientational relaxation time of 

the water molecules and is derived using a 2nd order rotational autocorrelation 

function (RAF) of its dipole moment vector [120]. The functional form of the function 

is 

 𝐶{(Δ𝑡) = ⟨𝑃{(𝑢�(𝑡¡ + Δ𝑡) ⋅ 𝑢�(𝑡¡))⟩�Í (22) 

 

The function 𝑃{(𝑥) is the 2nd order Legendre’s polynomial given by: 

 𝑃{(𝑥) =
3𝑥{ − 1

2  (23) 

Dipole moment’s ability to “rotate” in a region, as a response to any external 

field, is a critical indicator of the local polarizability. In RAF, this ability to “rotate” 

in space is quantified by the average angle the total dipole moment vector sweeps in 

some time period Δ𝑡. Essentially, the argument to the 𝑃{(𝑥) is the cosine of the angle 
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between the unit vector of the dipole moment at some time 𝑡¡ and a later time 𝑡¡ +

Δ𝑡.  For a fixed value of the time-gap or Δ𝑡, different starting or reference times, 𝑡¡, 

will feature different angles (and different cosines) whose average is of interest in 

this analysis.  

To better understand its implications, it is important to understand how the 

average of the function looks like. Say there was a dipole moment vector that never 

underwent any rotation. In that case, the average angle for any time-gap is 0, which 

implies that the cosine is 1. Therefore, RAF will yield a value of 1 because  

 ⟨𝑃{(𝑥 = 1)⟩ = 1 (24) 

 

On the other extreme is the case of a dipole moment which is freely rotating 

in space and therefore sampling all the angles in the range of 0 to 180° (or 0 to 𝜋 

radians, cosine +1 to -1). For that vector, the RAF will yield 0 since, 

 ⟨𝑃{(𝑥)〉 =
1
2
� 𝑃{(𝑥)𝑑𝑥
�

h�
= 0 (25) 

 

 All the intermediate behavior should lie within these limits.  
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The water molecules in the cavities and in the hydration shells were subjected 

to the above assessments. In addition to this, the data from equation 22 was fit using 

a mono-exponential curve to determine the time-scale of orientational 

relaxation[120]. For the lack of a better justification, bi-exponential fit wasn’t used 

in this case. The fit function had the following form: 

 𝐶{(Δ𝑡) = 𝑎¡𝑒
h×�ÐØ (26) 

 

The coefficient 𝑎¡ is not occupancy in this definition but simply a 

dimensionless scaling factor present there to provide an optimal fit of the curve to 

the actual RAF profile. 𝜏Ù denotes the dipole orientational relaxation time. 

Essentially, it is indicative of the timescale required for a dipole moment vector to 

rotate in response to an external stimulus. A larger value will suggest that the dipole 

moment takes longer to respond and therefore, the medium in question has a lower 

polarizability. Respectively, a smaller value will indicate a more polarizable medium. 

The results of the analyses are presented in the plots in Figure 3.3.6 and 

Figure 3.3.7.A clear visual distinction of the RAF profiles of the cavity and the bulk 

hydration shells is evident. As was observed with the ICF profiles in the section 

Cavity vs bulk water: Mean residence time, the cavity RAF have a slower decay rate 
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than the bulk hydration shells. The difference is in fact more stark than that of the 

ICF profiles. After fitting the observed data to the mono-exponential expression in 

equation 22, the values of two parameters - 𝑎¡ and 𝜏Ù were also determined. Of 

special interest is the latter, the rotational relaxation timescale. For the cavity 

waters, the value of 𝜏Ù was as low as 400ps and as high as 6000ps. It’s also worth 

mentioning that the fit obtained with the mono-exponential expression showed poor 

fit quality and therefore the exact values are not very meaningful in an absolute 

sense. However, they provide a good relative estimate when the contrast with bulk 

water timescales are also considered. For the bulk hydration shells, the typical values 

of 𝜏Ù were below 5ps; nearly 1000 times smaller than that of the bulk. This is a vivid 

proof of the significant difference of the polarizabilities of the water molecules locked 

in protein cavities and those present in the bulk. This aligns well with the common 

understanding that water molecules occupying interstitial sites of the protein are 

involved in interactions with proteins and are stripped off their bulk-like properties. 



 

 

84 

 

Figure 3.3.6: Rotational auto-correlation function (RAF) of the cavity 
waters. RAF of cavity waters computed across the three MD runs using 
AMBER99SB/TIP3P (top) and OPLSAA/TIP4P (bottom) are shown for each of 
the 4 cavities. Cavity 5 is excluded because no water molecule was ever found to visit 
it. For these plots, the solid lines denote the mono-exponential fit curve. 

In addition to the difference between the cavity and bulk waters, space-

dependent profile of the rotational relaxation timescales was also observed across the 

bulk hydration shells. The variation of the fit parameters, 𝑎¡ and 𝜏Ù, as a function 

of the distance from the protein’s surface is evident from the plots in Figure 3.3.8.  
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Figure 3.3.7: Rotational auto-correlation function (RAF) of the water 
in the bulk’s hydration shell. RAF of waters in the five different hydration shells 
in the bulk, computed across the three MD runs using AMBER99SB/TIP3P (top) 
and OPLSAA/TIP4P (bottom), are shown. Though obscured, the respective mono-
exponential fits are also shown using solid lines of the same color as the respective 
data points. 
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Figure 3.3.8: Distance-dependence of the parameters of the mono-
exponential fit to the RAF of the hydrations shells in the bulk. The plots 
show the value of  two parameters (labelled as: 𝑎¡, 𝑎𝑛𝑑	𝜏Ù) in each of the concentric 
hydration shells. Their values, obtained through simulations using 
AMBER99SB/TIP3P (left) and OPLSAA/TIP4P (right) combinations are shown. 
The typical values of thee quantities can be inferred from the scales of the y-axes of 
the plots. 

As one probes the water molecules farther away from the protein’s surface, 

the value of 𝜏Ù tends to decrease. This means that rotational motions are restricted 

closer to the surface and there is more leeway farther away from it. Once again, this 

is not unexpected because water molecules engage in solute-solvent interactions, via 

H-bonds and salt-bridges when they are in the vicinity of the protein. Thereupon, 
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the rotations are only favorable to certain configurations. Farther out in the bulk, 

the degeneracy is higher and therefore orientational changes aren’t very costly. These 

general inferences appear to be valid for either combinations of the force-fields and 

the water models and therefore reflect a property intrinsic of the water as a chemical 

entity.  

Overall, there is a spatial variance of the dipole rotational relaxation time 

and in a general sense an inhomogeneity in its distribution as a property of the 

solvent. This inhomogeneity emanates from the differences in the local environments 

of the water molecules. Of major significance is the relevance of these inferences to 

the established relationship of the dipole orientational ability and the dielectric of a 

medium. Our inferences from explicit solvent MD simulations establish that local 

effects are critical in influencing the dielectric properties of a region.  

3.4 Solvent exposure and dipole orientational relaxation 

timescales of protein residues 

A similar set of calculations were also performed for the residues of the protein 

under investigation. The 2nd order rotational auto-correlation function (equation 22) 

was computed using the dipole moment information of each of the 153 residues and 
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using the mono-exponential fit (equation 26), their rotational orientational relaxation 

timescales were estimated. The objective of this exercise was to seek if solvent 

exposure of a residue influences its rotation timescale. This is expected to give an 

overview of the effect of the solute-solvent interactions from the perspective of a 

protein. The results of this analyses are shown in Figure 3.4.1 where the timescale 

𝜏Ù is plotted against the solvent accessibility of the residues which were computed 

using NACCESS[119]. An inverse relationship is visible in these plots. For a guide 

to the eye, the data is fit using a curve which has an overall negative slope.  
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Figure 3.4.1: Solvent exposure and dipole orientational relaxation 
timescales of protein residues. For all the three MD runs, the dipole 
orientational relaxation timescales (𝜏Ù) are plotted versus the relative solvent 
accessibility surface area (SASA) of the residues of the protein with PDB ID 2NVH.  

Upon a careful observation and comparison of the typical values of 𝜏Ù of the 

protein residues and bulk waters, one can notice the difference in scales or the order 

of magnitudes. Whereas the bulk water molecules exhibited timescales of in the 

ballpark of 1-5ps, with the ones close to the surface featuring a timescale of 5ps, the 
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protein residues exhibited typical values in the nanosecond regime. Thus, their 

relaxation is more restricted and this justifies lower dielectric values for the proteins. 

The fundamental reason is the structural constraints present in the protein 

emanating from its 3D structure. Protein residues are restrained by the backbone 

and other side-chain/side-chain and side-chain/backbone intramolecular interactions 

which do not typically permit low frequency, high amplitude motions in the 

nanosecond regime. Nevertheless, inferences made using MD trajectories are very 

helpful and can be corroborative to the design of the dielectric models. 

By merging these inferences with the inferences regarding the environment-

dependent polarizability of water, it can be reasoned that it is best if a dielectric 

distribution model of a solvated biomolecular system assigns lower dielectric values 

to the protein regions and higher dielectric values to the bulk by simultaneously 

maintaining a smooth and gradual gradient of the dielectric values across them. 

Farther away from the protein’s atoms, the local dielectric must increase till it 

reaches the maximum value, which is that of the bulk solvent. The solute-solvent 

interface should be assigned an intermediate dielectric value which would reflect the 

combined effect of increased mobility of the protein atoms/groups at the interface 

and relatively restricted mobility of the solvent there. That the Gaussian-based 
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dielectric model exactly captures this gradient through its formalism (see section 2.1) 

has already been shown by Li et. al.[86] and Chakravorty et. al.[121]  

3.5 Summary 

In this chapter, several observations are presented and discussed to make a 

case that the local environments are critical to determining the properties of the 

solvent. By choosing and analyzing the trajectory of a protein with internal cavities, 

the differences in the tempo-spatial properties of the cavity and bulk water molecules 

are analyzed. The observations are connected to the dielectric properties that they 

may acquire and how their local environments can be influential in that regard. The 

restricted ability of the cavity waters to rotate as freely as the bulk waters is 

demonstrated. The variation of the rotational abilities of the bulk water molecules 

as a function of the distance from the protein’s surface is also presented extensively. 

Simultaneously, the effect of solvent exposure on a residue’s dielectric response 

(through rotational timescales) is also shown. All of the inferences are shown to 

indicate that inhomogeneous dielectric distribution best captures the conformation 

dynamics which are intrinsic to the solvated biomolecular systems. Through these 
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efforts, the validity of the conceptual basis of the Gaussian-based smooth dielectric 

distribution is strengthened.  



 

 

93 

4 USING THE GAUSSIAN-BASED DIELECTRIC MODEL TO 

REPRODUCE ENSEMBLE AVERAGE POLAR SOLVATION 

ENERGY OF A PROTEIN FROM A SINGLE CONFORMATION 

 

Typically, the ensemble average polar component of solvation energy 

(∆G�`b�
ÛÂÃÜÝ) of a macromolecule is computed using molecular dynamics (MD) or Monte 

Carlo (MC) simulations to generate conformational ensemble and then single/rigid 

conformation solvation energy calculations are performed on each of those snapshots. 

The primary objective of this chapter is to demonstrate that the PB model using a 

Gaussian-based smooth dielectric function can reproduce the ensemble average 

(∆G�`b�
ÛÂÃÜÝ) of a protein from a single structure. It is shown that the Gaussian dielectric 

model can reproduce the ensemble average ∆G�`b�
ÛÂÃÜÝr〈∆G�`b�

ÛÂÃÜÝ〉s from an energy 

minimized structure of a protein. The best case, however, is when it is paired with 

an in vacuo minimized structure. In other minimization environments (implicit or 

explicit waters or crystal structure) the traditional two-dielectric model can still be 

selected with which the model produces correct solvation energies. The observations 

reported in this chapter reflect the model’s ability to appropriately mimic the motion 
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of residues, especially those forming salt-bridges and how that is a key factor in 

deciding a dielectric model’s ability to reproduce the ensemble average value of polar 

solvation free energy from a single structure. The contents of this chapter have been 

published previously[121] (copyright permission2). 

4.1 Motivation 

A routine protocol for computing the average solvation energy is to obtain a 

representative ensemble of structures (snapshots) by MD/MC simulations and then 

perform TI, FEP or Bennett Acceptance Ratio (BAR) calculations on each of the 

snapshots (while keeping each of them rigid)[122-124]. But these methods are 

extremely demanding of computational time and resources, since a typical ensemble 

may consist hundreds or thousands of snapshots. One can, alternatively, also subject 

these snapshots to PB modeling and obtain the corresponding polar solvation energy. 

The calculated polar solvation energies together with non-polar solvation energies 

                                       

2 Reprinted (adapted) with permission from (J. Chem. Theory Comput. 2018, 

14, 2, 1020-1032). Copyright (2018) American Chemical Society. 
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delivered from surface area/volume of individual snapshots are expected to represent 

an experimentally measured solvation energy. Such an approach is an essential 

component of energy calculations employing molecular mechanics Poisson-

Boltzmann surface area (MM/PBSA)[102] and molecular mechanics Generalized 

Born surface area (MM/GBSA)[103] methods. However, the bottleneck of 

MM/PBSA and MM/GBSA approaches is the generation of representative ensemble 

of structures, which is very expensive computationally, especially if applied for large 

scale modeling.   

As an alternative to explicit modeling of conformational changes, one can also 

mimic the effect of these changes on the solvation energy via appropriate dielectric 

constant of the macromolecule. Dielectric distributions are known to affect the 

structure-energy relations via screening of the electrostatic interactions within the 

solute and between the solute and solvent[105, 106]. However, biological 

macromolecules are not rigid bodies and experimentally observable quantities are 

ensemble averaged. The traditional two-dielectric PB calculations cannot mimic 

these conformational changes within an ensemble because it uses two distinct but 

respectively uniform dielectric constants for the solute and water phase. This 

drawback has motivated the idea and usage of heterogeneous dielectric 
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distributions[104, 125-129]. They have been shown to yield better predictions for 

protein folding[78] and binding free energies[130] when benchmarked against 

experimental data  while at the same time, they can also reveal the effects of 

mutations on these processes[131].   

The objective, therefore, is to examine if the Gaussian-dielectric model, by 

virtue of its physically justified heterogeneity, can successfully capture the local 

effects of conformational changes on the solvation properties. The primary goal was 

to be able to render this average computationally, by incorporating the effects of the 

aforementioned dynamics while still preserving the time efficacy of the implicit 

solvent models, and thus to serve as a starting point for developing a fast and efficient 

single structure MM/PBSA method. Figure 4.1.1 provides an illustration on a 

cartoon plot to better represent the motivations behind the works reported in this 

chapter. 
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Figure 4.1.1: Can the Gaussian-based dielectric model reproduce 
ensemble average properties from a single structure? This illustration 
provides a visual description of the question being asked in this chapter. Essentially, 
it highlights the “gap” that, if filled, will offer a promising and faster alternative to 
the conventionally used methods of computing polar components of solvation free 
energy while still retaining the physical meaningfulness. 

  

4.2 Methods 

4.2.1 Set of representative proteins 

Protein structures for this work were obtained from the Protein Data Bank 

(PDB) [132]. To obtain a dataset of reasonable size that can be managed in parallel 

with extensive MD simulations data, the resolution of the structures was limited 
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between 0.8 and 0.99 Å with at most 200 amino acids. Besides we required the 

structures to be monomeric. The proteins retrieved were required to have at most 

30% sequence similarity. In addition, it was ensured that 3these structures did not 

contain a ligand or modified residue. This search yielded 74 globular proteins from 

the PDB as of April 29, 20173.  

4.2.2 Structure preparation 

The protein structures were prepared for MD simulations using GROMACS 

v5.0.5[116] with atomic parameters of the AMBER99SSB[133] force field. All the 

titratable residues were kept in their charged states. To build the explicit water 

solvated systems, these structures were solvated using TIP3P water molecules[113] 

and ions were added wherever neutralization was needed.  

                                       

3 PDB ID of 74 proteins used: 1AHO, 1C75, 1CBN, 1G6X, 1IQZ, 1IUA, 1J0P, 
1L9L, 1M1Q, 1MC2, 1NWZ, 1OK0, 1TG0, 1TQG, 1VB0, 1VBW, 1W0N, 1X6X, 
1X8Q, 1XMK, 1ZUU, 1ZZK, 2FDN, 2FMA, 2FWH, 2H5C, 2IDQ, 2NLS, 2O9S, 
2PNE, 2XOD, 2XOM, 3AGN, 3E4G, 3FSA, 3GOE, 3IP0, 3KFF, 3LL2, 3LZT, 
3O5Q, 3PUC, 3UI4, 3V1A, 3VOR, 3WCQ, 3WDN, 3WGE, 3X2L, 3X32, 3ZR8, 
3ZSJ, 3ZZP, 4A02, 4ACJ, 4AQO, 4EIC, 4G78, 4GA2, 4HGU, 4HS1, 4MZC, 4NPD, 
4O6U, 4O8H, 4TKB, 4WEE, 4XDX, 5CMT, 5HB7, 5IG6, 5JUG, 5L87, 5TIF 
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4.2.3 Energy minimization 

The explicit water solvated systems were subjected to 10,000 steps of steepest 

descent (SD) energy minimization using GROMACS v5.0.5[116]. The heavy atoms 

were harmonically restrained to their original positions with a force of 1000 

kJ/mol/nm while everything else in the system was set free to move.  

Two other minimizations, involving only the protein structures, were also 

carried out. These were performed in vacuo and Generalized Born Implicit Solvent 

(GBIS)[134] environments. Only 5000 SD steps were used since the system size was 

drastically smaller than the explicit water systems. For both of these cases, cutoffs 

for the non-bonded interactions were lifted but all the heavy atom harmonic 

restraints were retained. For GBIS minimization, the external dielectric was set at 

80.0 (emulating water environment) and that for in vacuo was 1.0. The parameters 

for minimizations are provided in Appendix A.1.  

4.2.4 MD simulations 

Post energy minimization, only the explicit water solvated systems were 

subjected to 3 independent MD simulations for 20ns each (with different initial 
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atomic velocities) to allow versatility in the resulting ensemble of structures. Prior 

to production phase of the MD, they were equilibrated under constant volume-

temperature (NVT) conditions for 500ps (with heavy atoms harmonically restrained) 

followed by 2000ps (=2ns) of constant pressure-temperature (NPT) equilibration at 

300K temperature and 1 atm pressure (with the same restraints). In the 20ns MD 

that followed, the restraints were lifted. The initial 10ns of was discarded as they 

were considered to not have equilibrated yet. The structures for analysis were 

sampled from the last 10ns at every 10ps. This yielded 1000 snapshots per MD run, 

all of which were subjected to PB based solvation free energy calculation after 

stripping off the explicit water molecules (and ions for neutralization wherever 

present). For all the equilibrations and MD, particle mesh Ewald (PME)[114] based 

electrostatic calculations were invoked in conjunction with periodic boundary 

conditions. The parameter configurations for equilibration and MD are provided in 

the Appendix A.2. 

4.2.5 Ensemble average polar solvation energy from PB vs alchemical MD methods 

Three independent MD simulations in explicit water rendered 3000 

thermodynamically weighted configurations per protein[135], which we shall refer to 
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as its ensemble. For each member of the ensemble, the polar component of the 

solvation free energy (∆𝐺�`b�m�`b� ) was computed to obtain ensemble average[103, 136, 

137]. The method used for this purpose requires an explanation, which is provided 

below. 

Ideally to compute the ∆𝐺�`b�m�`b�  for a molecule, alchemical free energy 

calculation methods in explicit solvent setups are preferred. Thermodynamic 

integration based molecular dynamics (TI-MD) is an example of such a method. 

Authors of Ref.[138, 139] have calculated the polar component of the solvation free 

energy of 19 proteins using TI-MD. These values were computed by fixing the 

protein’s structure in space and coupling the partial atomic charges to a coupling 

parameter ‘l’ which was varied from 0 to 1. As the protein’s electrostatic properties 

traverse a set of alchemical intermediate states due to  l, the energy cost associated 

with it in the presence of explicit water molecules is calculated and eventually 

summed up to render the total solvation energy (polar + non-polar component). 

Should the protein structure be allowed to move, the resultant energy cost would 

include effects of protein molecular mechanical energies which cannot be resolved to 

get the exclusive polar solvation energy. This procedure can be iteratively applied 
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on each “snapshot” of an ensemble (from MD/ Monte Carlo) to determine the 

ensemble solvation energy.  

Delphi[70, 71] calculates and outputs the polar component of solvation energy 

of a “snapshot”, which is termed “corrected reaction field energy”. To examine if the 

PB-based calculations provide similar or identical polar solvation energies as TI-MD, 

the ∆𝐺�`b�m�`b�  for the 19 proteins used by the authors of the aforementioned work[138, 

139] were computed while preserving the structural coordinates, charges and radii. 

A scale of 2.0 grids/Å, a ‘perfil’ of 70 and the traditional 2-dielectric method was 

used while setting the protein internal dielectric to 1.0 and solvent dielectric to 80.0. 

The ∆𝐺�`b�m�`b�  values from both methods are compared (Figure 4.2.1). It is evident 

that Delphi delivers ∆GÁÂÃß
ÛÂÃÜÝ almost precisely identical to that obtained by TI-MD in 

explicit water (correlation = 0.99 and RMSD = 17.93 kcal/mol). This reinforces the 

claim that, provided the structures are rigid, PB calculations with Delphi (with 

protein internal dielectric=1 and solvent dielectric = 80) can deliver ∆𝐺�`b�m�`b�  that 

would otherwise require a much longer TI-MD runs. Therefore, by using Delphi with 

the above protocols to calculate ∆𝐺�`b�m�`b�  for each “snapshot”, the ensemble polar 

solvation energy was calculated in a manageable time. 
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Figure 4.2.1: Explicit solvent thermodynamic integration vs Implicit 
solvent PBE: The comparison of the polar solvation energies of 19 net-neutral 
proteins obtained from explicit solvent thermodynamic integration (TI) simulations 
and implicit solvent Poisson-Boltzmann (PB) calculations using the traditional 2-
dielectric model with Delphi is shown. For both the cases, the protein structures were 
kept rigid. The TI simulations were performed by the authors of Ref[138, 139]. The 
Pearson correlation (r) and RMSD (in kcal/mol) of the comparison are also 
mentioned. 

 

4.2.6 Polar Solvation energy of energy minimized structures 

For each of the protein energy minimized (EM) structures (minimized in 3 

different environments), ∆𝐺�`b�m�`b�  was computed using the traditional 2-dielectric 

model as well the Gaussian-based smooth dielectric model[63]. With a scale of 2.0 

grids/Å, a ‘perfil’ of 70 was used for the former and that of 50 was used for the 

latter. For the Gaussian-model, a ‘sigma’ = 0.93 was applied. For all the calculations, 

the probe radius was set at 1.4 Å with zero electrolyte concentration and the external 

dielectric constant was set to 80 (emulating water environment).  The boundary 

potentials were determined using the dipole method.  

In the rest of the chapter, all the PB calculations performed using the 

traditional 2-dielectric method will carry a label ‘TRAD-x’ and that for the Gaussian-

based smooth dielectric method will carry a label ‘GAUSS-x’. ‘x’ in these labels 
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indicate the protein internal dielectric constant. For instance, ‘TRAD-1’ and 

‘GAUSS-1’ will identify as the corresponding methods with protein internal dielectric 

set at 1.  

4.2.7 Modified Gaussian-based smooth dielectric model in Delphi 

A modification was incorporated in the algorithm that computes the polar 

solvation energy using the Gaussian-based smooth dielectric function in Delphi. The 

key idea of the Gaussian-based approach is that a strict surface doesn’t separate the 

solute interior from the external medium, as is assumed in the traditional 2-dielectric 

models. The mathematical details are presented in equations 14-16. This delivers a 

position-dependent dielectric distribution (ϵ(𝑟)) when the solute is present in a 

medium of dielectric constant ‘ϵÂÄÅ’.  

In the original implementation of the Gaussian-based model in Delphi, the 

polar component of solvation energy is calculated by taking the difference of the grid 

energies obtained from modeling a solute in (i) external solvent medium (medium-1) 

and (ii) medium with dielectric constant same as the internal dielectric constant 

(medium-2). However, this requires building a surface between solute and medium-

2, a surface that does not conceptually exist in a surface-free approach of the 
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Gaussian-based model and therefore is artificially drawn when calculating grid 

energies in medium-2. For that a user-specified dielectric value is used to delineate 

the iso-dielectric surface. 

In this work, two-fold modifications were made. First, the “surface” was 

drawn based on a user-defined probability (𝜌áâ) instead of a dielectric value. This is 

done to fix the solute “volume” regardless of the 𝜖m\Y value of the internal reference 

dielectric constant since different ϵÂÄÅ can influence the position of the iso-dielectric 

surface but not that of a iso-probability surface. In this work, we used the atomic 

density value of 0.759, which corresponds to a dielectric of 20 for 𝜖m\Y = 1. Second, 

a smoother transition from this “surface” to the external region for medium-2 was 

made using an exponential function. By fixing the medium-2 as vacuum (𝜖`�� = 1), 

the smoothing term secures the surface-less approach of the Gaussian-based model 

to a great extent. This results in the following dielectric distribution when the 

external medium is vacuum: 

 𝑖𝑓	𝜌Zp(𝑟) ≥ 	𝜌áâ:	ε′(𝑟) = 	ε(𝑟) 

𝑖𝑓	𝜌Zp(𝑟) < 	𝜌áâ:	ε′(𝑟)

= 	1 + (𝜀(𝑟) − 	1)𝑒h(ékê(m⃗)héëì)WíîïðhíñòóX (27) 
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Here, 𝜖(𝑟) is the dielectric value of a 3D point when the solute is present in 

vacuum and 𝜖(𝑟) is the dielectric value assigned to that point when the protein’s 

presence in solvent was modelled. This form ensures that far away from the surface, 

the dielectric value is close to 1 and near the surface, it is close to the value that 

corresponds to 𝜌áâ . The above schematic is shown in Appendix A.3 for an arbitrary 

placement of atoms along a single dimension.  

4.3 Results and Discussion 

4.3.1 Ensemble average from Energy minimized structures  

The ∆𝐺�`b�m�`b�  of the protein structures obtained after minimization in three 

different environments - in vacuo, Generalized Born Implicit Solvent (GBIS) and 

explicit water (TIP3P), were compared with the ensemble average polar solvation 

energy, 〈∆GÛÂÃÜÝÁÂÃß 〉	(procedure outlined in the Methods). For the sake of completeness, 

the crystal structure of the proteins was also subjected to this comparison. The 

crystal structures were, first protonated and then energy minimized while its heavy 

atoms were heavily restrained (force constant of 1e6 KJ mol-1nm-2) to keep the 
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backbone atoms positions unchanged. We shall refer to these structures as optimized 

crystal structures hereafter. 

The results of these comparisons are shown in terms of probability 

distribution of the differences of ensemble average 〈∆𝐺�`b�m�`b� 〉 and the ∆𝐺�`b�m�`b�  of the 

EM and optimized crystal structures (Figure 4.3.1). In the figure, the difference 

〈∆GÛÂÃÜÝÁÂÃß 〉 − ∆GÛÂÃÜÝÁÂÃß (𝐸𝑀), extends to both negative and positive values. Since both 

∆GÛÂÃÜÝÁÂÃß (𝐸𝑀) and 〈∆GÛÂÃÜÝÁÂÃß 〉 are negative, it is vital to understand how these 

differences should be interpreted. A negative difference implies 〈∆GÛÂÃÜÝÁÂÃß 〉 <

∆GÛÂÃÜÝÁÂÃß (𝐸𝑀), depicting that the ensemble average is more negative than the polar 

solvation energy of the EM structure. In terms of magnitudes, the EM structure 

∆GÛÂÃÜÝÁÂÃß  is smaller than the 〈∆GÛÂÃÜÝÁÂÃß 〉 (underestimation). On the other hand, a positive 

difference implies 〈∆GÛÂÃÜÝÁÂÃß 〉 > ∆GÛÂÃÜÝÁÂÃß (𝐸𝑀), i.e. the ensemble average is less negative 

than the corresponding polar solvation energy form the EM structure. Magnitude 

wise, the EM structure ∆GÛÂÃÜÝÁÂÃß  is larger than the 〈∆GÛÂÃÜÝÁÂÃß 〉 (overestimation).  

Therefore, if 〈∆GÛÂÃÜÝÁÂÃß 〉 − ∆GÛÂÃÜÝÁÂÃß (𝐸𝑀) 	≈ 0, such a case successfully reproduces the 

ensemble average using a EM structure alone. With this, we now turn to describing 

the trends observed in Figure 4.3.1. 
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Figure 4.3.1: Performance of the Gaussian and the traditional 2-dielectric 
model in predicting the ensemble average polar solvation energy. The 
Figure shows the density distribution of the difference, 〈∆𝐺�`b�m�`b� 〉 − ∆𝐺�`b�m�`b� (𝐸𝑀), 
obtained when Gaussian or traditional dielectric models are used on (a) crystal (aka. 
Xtal) structure (* added protons are optimized) and structures minimized (b) In 
Vacuo (c) in GBIS and (d) in explicit solvent (TIP3P). The labels ‘TRAD-x’ and 
‘GAUSS-x’ indicate the traditional 2-dielectric and Gaussian-based smooth dielectric 
distributions, respectively. ‘x’ is the protein’s internal dielectric value. The dashed 
vertical line is at the zero mark in each plot. 
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Both, Gaussian-based (GAUSS) and traditional (TRAD) dielectric models 

were used with the optimized crystal and EM structures to compare with 〈∆GÛÂÃÜÝÁÂÃß 〉. 

For the former, values of 1, 2, 4 and 8 were used as internal reference dielectric 

constant. For the latter, only a single value (=1) was used because values larger than 

1 resulted in highly underestimated ∆GÛÂÃÜÝÁÂÃß  with respect to the ensemble averaged 

〈∆GÛÂÃÜÝÁÂÃß 〉. In Figure 4.3.1, a visual inspection reveals that the traditional dielectric 

model (TRAD-1) has a very similar degree of agreement with the 〈∆GÛÂÃÜÝÁÂÃß 〉 when 

paired with the optimized crystal structure Figure 4.3.1(a) and structures optimized 

in solvent (Figure 4.3.1(c, d)). With the in vacuo optimized structure, the trend is 

conspicuously different (Figure 4.3.1(b)).  Quantitatively, when expressed in terms 

of the mean relative unsigned error, the best agreement is attained by the GBIS 

minimized structures, followed by the optimized crystal structure and structure 

minimized in explicit solvent (see Table 4.1). 
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Table 4.1: Average relative error and average absolute error from the ensemble 
average polar solvation energy of that from the optimized crystal and energy 
minimized structures. 

Minimization 
Environment 

Dielectric distribution model 
TRAD-1 GAUSS-1 GAUSS-2 GAUSS-4 GAUSS-8 

Crystal 
Structure* 

5.59% a 

(90.90) b 
19.34% 
(338.14) 

10.35% 
(180.00) 

5.31% 
(94.06) 

18.09% 
(312.99) 

In Vacuo 
15.26% 
(262.13) 

10.55% 
(179.48) 

5.13% 
(85.01) 

11.52% 
(206.69) 

25.76% 
(449.86) 

GBIS 
5.14 % 
(85.71) 

24.82 % 
(432.90) 

14.41% 
(248.53) 

5.16% 
(92.97) 

14.50% 
(250.07) 

Explicit Water 
(TIP3P) 

6.21% 
(101.12) 

20.07% 
(348.26) 

10.16% 
(174.61) 

5.30% 
(92.72) 

18.18% 
(315.74) 

*After optimizing the added hydrogens while restraining the heavy atoms in the 

crystal structure with a force constant of 1e6 KJ mol-1nm-2. 
a Mean relative unsigned error  
b In the parentheses, average absolute error (in kcal mol-1). 

 

It can, therefore, be tempting to use the GBIS minimized structure of a 

protein with the traditional model (internal 𝜖 = 1) to obtain its ensemble 〈∆GÛÂÃÜÝÁÂÃß 〉. 

However, it must be done with caution. This is because the low relative mean error 

value is a statistical result and when it comes to individual proteins, as the plots 

suggest, some of them feature an underestimation of 〈∆GÛÂÃÜÝÁÂÃß 〉 (〈∆GÛÂÃÜÝÁÂÃß 〉 −

∆GÛÂÃÜÝÁÂÃß (𝐸𝑀) < 0; left of the black lines in Figure 4.3.1. To attain a better agreement, 

these cases demand that the internal 𝜖 be less than 1. Such a modification is 
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physically unreasonable. In fact, such an underestimation is true for the majority of 

proteins regardless of the environment of optimization (Table 4.2). 

At the same time, the Gaussian-based dielectric model reveals a better 

agreement with the ensemble 〈∆GÛÂÃÜÝÁÂÃß 〉. This is also inferable visually from the figure, 

owing to the close placement of the peaks of the error distribution plots to the zero 

line. Unlike the traditional method, the Gaussian-based model offers a good match 

regardless of the minimization protocol. Quantitatively, the mean relative unsigned 

error varies depending on the 𝜖m\Y value used for a particular Gaussian-based model 

but there is always a case for all of the optimization environments where the mean 

relative unsigned error ≈ 5% (Table 4.1). For instance, GAUSS-4 has an error 

comparable to and better than what the TRAD-1 incurs for the optimized crystal 

structure and structures optimized in solvent. GAUSS-2 with in vacuo minimized 

structures, moreover, not only offers a better agreement with 〈∆GÛÂÃÜÝÁÂÃß 〉 than the 

TRAD-1 model but it offers the best agreement amongst all the cases (lowest mean 

relative unsigned error; 5.13%). Furthermore, with minor adjustments of the input 

parameters for the Gaussian-based model in Delphi (see Delphi Manual1), one can 

tune the degree of agreement. This circumvents the problem of having to use 

unreasonable dielectric values for proteins, unlike the traditional method. Therefore, 
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the in vacuo minimized structure, when paired with the Gaussian-based dielectric 

model, can offer the best approximation to the ensemble average polar solvation 

energy.  

Table 4.2: The percentage of cases (out of the 74 proteins) where the difference in 
the ensemble average polar solvation energy and polar solvation energy of optimized 
crystal and EM structure obtained using TRAD-1 dielectric method is negative. 
These cases would require decreasing the protein internal dielectric below 1 to correct 
for the error incurred by the TRAD-1 model, which is physically invalid. 

Minimization 

Environment 

% cases where 

 	÷〈∆GÛÂÃÜÝÁÂÃß 〉÷ > ÷∆GÛÂÃÜÝÁÂÃß (𝐸𝑀)÷ 

Crystal Structure 66.22 % 

In Vacuo 100.00 % 

GBIS 54.05% 

Explicit Water (TIP3P) 78.34 % 

 

Before delving into extensive analyses of the factors that influence the 

performance of the dielectric models, it is important that we address some of these 

trends observed for the traditional and Gaussian-based dielectric models in detail.  

Observations in Figure 4.3.1 indicates differences in the behavior of the 

traditional dielectric model (𝜖Zp = 1; 𝜖`�� = 80) when used with differently optimized 

structures. From the traditional model, the ∆GÛÂÃÜÝÁÂÃß  of the optimized crystal or 



 

 

114 

solvent-minimized structures is in good agreement with the 〈∆GÛÂÃÜÝÁÂÃß 〉 but that from 

the in vacuo EM structure is significantly underestimated. This can be understood 

as follows. 

 Upon a pairwise comparison of ∆GÛÂÃÜÝÁÂÃß  from TRAD-1 model, the following 

trend was observed: 

 ∆GÛÂÃÜÝÁÂÃß (𝐼𝑛	𝑉𝑎𝑐𝑢𝑜)

> r∆GÛÂÃÜÝÁÂÃß (𝑋𝑡𝑎𝑙) ≈ 	∆GÛÂÃÜÝÁÂÃß (𝑇𝐼𝑃3𝑃)

> 	∆GÛÂÃÜÝÁÂÃß (𝐺𝐵𝐼𝑆)s ≈ 〈∆GÛÂÃÜÝÁÂÃß 〉 (28) 

 

When these comparisons were extended to protein coulombic energies, the 

following was seen (protein dielectric = 1.0).  

 𝑈 `�b(𝐼𝑛	𝑉𝑎𝑐𝑢𝑜)

< W𝑈 `�b(𝑋𝑡𝑎𝑙) ≈ 	𝑈 `�b(𝑇𝐼𝑃3𝑃)

< 	𝑈 `�b(𝐺𝐵𝐼𝑆)X ≈ 〈𝑈 `�b〉 (29) 

 

A clear reversal of the trend in Equation 28 is seen in Equation 29. 

Furthermore, Figure A. 4 illustrates this comparison qualitatively as well as 

quantitatively. One can notice the differences of 𝑈 `�b and Δ𝐺�`b�m�`b�  of solvent-
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minimized (and optimized crystal) structures calculated w.r.t the in vacuo minimized 

structure. The opposite trends of comparison for these energy terms are evident.  

This is because a molecular structure with a high negative value of coulombic energy 

almost certainly contains oppositely charged particles placed more closely than in a 

structure with a less negative 𝑈 `�b. The former stabilizes the packing in the gas 

phase, but reduces interactions with water. This loss in favorability towards solvation 

comes from the closely placed charges of opposite polarities forming a very small 

dipole. The smaller dipole consequently “annihilates” the atomic charges, thus 

compromising the favorable electrostatic interaction that could have existed with the 

polar solvent. As a result, the solvation is unfavorable relative to a configuration 

with a higher (less negative) 𝑈 `�b. Since the in vacuo EM structures are likely to 

have oppositely charged atoms (or residues) placed more closely due primarily to the 

absence of any de-solvation, they feature more negative 𝑈 `�b and therefore, 

relatively less favorable ∆GÛÂÃÜÝÁÂÃß . The other configurations incur the effects of the 

solvent and consequently have a less negative 𝑈 `�b but a more favorable ∆GÛÂÃÜÝÁÂÃß . 

This validates the good agreement that structures minimized in solvent have with 

the ensemble average, in terms of ∆GÛÂÃÜÝÁÂÃß  computed using traditional dielectric 
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model. This is because the ensemble comprises configurations generated in an explicit 

solvent environment (see section 4.2).  

The inherent heterogeneity of the dielectric distribution underlying the 

Gaussian-based model complicates the above analysis provided for the traditional 

method. Not only do the formulations for the coulombic energy become non-trivial, 

it is practically difficult to exactly pinpoint a surface that segregates the solute region 

from the solvent due to its surface-free nature[63]. This precludes a simple 

interpretation of the trends of ∆GÛÂÃÜÝÁÂÃß  obtained from the Gaussian model. 

Nonetheless, the Gaussian model preserves the general trend of the effects of 

dielectric constant on the ∆GÛÂÃÜÝÁÂÃß , i.e. increasing the solute dielectric decreases the 

latter’s absolute value. This is apparent from the density plots in Figure 4.3.1 where 

increasing the 𝜖m\Y of the Gaussian model shifts the peak to the left of the zero-mark, 

indicating that the deviation from the ensemble 〈∆GÛÂÃÜÝÁÂÃß 〉 increases, or that the 

∆GÛÂÃÜÝÁÂÃß  becomes less negative. These trends are separately depicted in the Figure 

A. 5, that compare how the solute internal dielectric affects ∆GÛÂÃÜÝÁÂÃß  for the two 

dielectric models. This inverse relation of the solute dielectric and ∆GÛÂÃÜÝÁÂÃß  prevails 

in systems as simple as a dipole embedded in a spherical cavity where the increase 
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of the cavity dielectric decreases ∆GÛÂÃÜÝÁÂÃß  value. Underlying this relationship is the 

fact that an increased solute dielectric increases the screening of the interaction of 

solute dipoles with water phase, thus making solvation less favorable.  

Figure 4.3.1 also indicates that using the same value for GAUSS’s 𝜖m\Y and 

TRAD’s 𝜖Zp yields a more negative value for the former. This is because the ∆GÛÂÃÜÝÁÂÃß  

calculated with Gaussian-based smooth dielectric model (as implemented in Delphi) 

depends not only on the reference value of internal dielectric constant (𝜖m\Y), but 

also on the “surface” that separates the solute from the external medium. The 

numerical demarcation of this “surface”, drawn based on a cut-off of effective 

dielectric value (iso-dielectric surface)[63] or effective atomic density (iso-density 

surface, 𝜌áâ) results in solute-solvent (solute-vacuum) interface being placed, in some 

regions, slightly inside the traditional molecule surface. This decreases the effective 

size of the solute thus making the  ∆GÛÂÃÜÝÁÂÃß  more negative than what the traditional 

2-dielectric model would deliver. 

4.3.2 Role of salt-bridges (SBs)in the energy minimized structures 

So far, the results have indicated that a Gaussian-based smooth dielectric 

distribution (GAUSS-2) in conjunction with in vacuo minimized structure reproduces 
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the ensemble average, 〈∆GÛÂÃÜÝÁÂÃß 〉, with smallest mean relative unsigned error (Table 

4.1). They have also indicated that ∆GÛÂÃÜÝÁÂÃß  for optimized crystal or EM structures 

obtained with different dielectric models exhibit different but reasonably good 

agreements when compared with ensemble 〈∆GÛÂÃÜÝÁÂÃß 〉. To determine the causes for 

these differences, several structural properties of the minimized structures were 

tested and compared.  

It is well known that constant breaking and forming of salt bridges is a salient 

feature of protein dynamics[140-142] and their dynamics affects the dielectric 

distribution of the protein interior[127, 143]. For our purposes, the fluctuation 

between the closed/open forms of a SB is quantified in terms of occupancy. 

Occupancy is defined as the percent of the 3000 configurations (of the host protein) 

wherein the SBs were closed (O-N distance < 3.4 Å). Therefore, a SB with a 100% 

occupancy is never found to be broken in the ensemble while one with 0% occupancy 

is only identified in the minimized structure but never in the ensemble. Anything in 

between should be interpreted likewise. That the SB pairs identified across all the 

74 proteins featured fluctuations, is evident from the histogram of occupancies in 

Figure A. 4 in Appendix A.5, where occupancies pervade all the values from 0-

100%.  
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The results suggest that the population of the charged/titratable residues 

forming SBs is a clear cause that differentiates the abilities of minimized structures 

to reproduce the ensemble averages. The comparison of the population of salt bridges 

(in closed conformation) after minimization shows that the in vacuo protein EM 

structures have a higher number of these than the EM structures from the other two 

environments (Figure 4.3.2(a)). This has been further demonstrated by computing 

relative number of SBs using the number in the corresponding EM structure from 

explicit water environment for normalization (Figure 4.3.2(b)). From that, the in 

vacuo structures clearly exhibit a high population of salt bridges while the number 

of salt bridges in GBIS based minimized structures are slightly larger than the 

explicit water ones. In fact, more than 90% of the in vacuo structures have more SBs 

than the corresponding explicit water based EM structures. This indicates that 

incorporating solvent effects in any form (implicit or explicit) can have a similar 

influence on the salt bridge formation. Such an influence can be ascribed to the 

screening of coulombic forces due to higher solvent dielectric and the desolvation 

energy due to partial burial of the SB forming titratable groups when they form a 

salt bridge. At the same time, the absence of these effects in vacuum allows the 

residue pairs to orient their side chains in a manner that would allow them to stay 
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bonded via a stable SB (a closed salt-bridge). This argument also seconds the trend 

of coulombic energy of various configurations of a protein described in the preceding 

section. 

The significance of the number of charged residues and their ability to form 

salt bridges becomes more prominent upon examining how other structural features 

such as structural backbone RMSD and intra-protein hydrogen bond network vary 

after minimization in different environments. Energy minimization protocol is not 

expected to cause a significant change of a protein’s conformation, especially the 

backbone conformation, but it may result in different hydrogen positions. To verify, 

the structural RMSD of the backbone and number of intra-protein hydrogen bonds 

(hydrogen bonds within the atoms of a protein) after minimization, with respect to 

the corresponding crystal structure, were calculated.  The comparison for structural 

RMSD is shown in Figure 4.3.2(c). It is noticeable that large backbone changes did 

not occur post minimization regardless of the environment. Essentially, the backbone 

atomic positions were preserved. The RMSDs in all the cases were less than 0.5 Å. 

In the same way, Figure 4.3.2(d) illustrates the comparison for the number of intra-

protein hydrogen bonds. It is evident that all of the three environments yielded 

similar numbers after minimization. The above analysis indicates that EM in 
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different environments results is very similar backbone structures and intra-protein 

hydrogen bonds and therefore, cannot be the reason for the differences in the polar 

solvation energies. However, the number of closed SBs in the EM structures bear a 

qualitative correlation to the differences in their polar solvation energies. 
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Figure 4.3.2: Differences in the structural properties of the energy 
minimized configurations. Boxplots showing (a) the distribution of the number 
of SBs in the energy minimized (EM) structures from the three environments, (b) 
the number of SBs for in vacuo and GBIS EM structures relative to that from explicit 
water environment, (c) the backbone structural RMSD of the structures relative to 
the crystal structure after minimization in the corresponding environment, (d) the 
number of intra-protein hydrogen bonds in the EM structures after minimization in 
different environments. The dotted horizontal line in (b) indicates the unity mark. 

 

Seeking to find a quantitative association of the change in polar solvation 

energy ∆GÛÂÃÜÝÁÂÃß  and the number of SBs formed or lost upon solvation, the difference 

of ∆GÛÂÃÜÝÁÂÃß  (computed using the traditional method and expressed as ∆∆GÛÂÃÜÝÁÂÃß ) of the 

in vacuo minimized structure and the GBIS/Explicit solvent minimized structure 

against the difference in the number of SBs (Δ𝑁𝑢𝑚𝑏𝑒𝑟áý) in the two structures were 

plotted (Figure 4.3.3). As one can infer from the reasonably high r2 values (0.525 

and 0.884 for GBIS and Explicit Solvent, respectively) that a linear relation is 

evident. This is a clear indicative of how the solvent can affect the number of SBs 

and subsequently alter the polar solvation free energy. Moreover, since the ordinate 

in the plots is the true difference r∆∆GÛÂÃÜÝÁÂÃß = ∆GÛÂÃÜÝÁÂÃß (𝐼𝑛	𝑉𝑎𝑐𝑢𝑜) −

	∆GÛÂÃÜÝÁÂÃß (𝑖𝑛	𝑠𝑜𝑙𝑣𝑒𝑛𝑡)s, a greater loss of the SBs yields a more favorable solvation 
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(∆GÛÂÃÜÝÁÂÃß  is more negative). This is a direct consequence of the antagonistic relation 

between ∆GÛÂÃÜÝÁÂÃß  and the coulombic energy 𝑈 `�b. 

The above quantitative association of SBs and the polar solvation energy have 

further implications when the dynamics of the proteins are considered. In the next 

section, we draw more weight onto these inferences and demonstrate how the 

breaking and forming of SBs in MD simulations is well mimicked by the Gaussian-

model but not the traditional one. This, we show, influences the success or failure of 

a dielectric distribution model to reproduce ensemble average. 
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Figure 4.3.3: Polar solvation free energy and the number of salt bridges. The difference of 
the ∆𝐺�`b�m�`b� 	, computed using the traditional 2ε dielectric model W∆∆𝐺�`b�m�`b� X of the in 
vacuo and solvent minimized structures is plotted as a function of the difference of 
the number of salt-bridges in those structures. Left plot corresponds to GBIS and the 
right plot corresponds to explicit solvent (TIP3P). The quality of the linear fit (dotted 
red line) is quantified by the square of Pearson coefficient (r2). 

4.3.3 Gaussian-based smooth dielectric model to mimic the fluctuations of the SBs. 

To assess the implication of the fluctuation of the SBs on the ability of the 

either dielectric model to reproduce ensemble 〈∆GÛÂÃÜÝÁÂÃß 〉, the relation of the error of 

∆GÛÂÃÜÝÁÂÃß  from these models (for in vacuo EM structure) with occupancies of the SBs 

was sought. We plotted the error (〈∆GÛÂÃÜÝÁÂÃß 〉 − ∆GÛÂÃÜÝÁÂÃß (𝐼𝑛	𝑉𝑎𝑐𝑢𝑜)) against the 

number of SBs with occupancy < 50% (see  Figure 4.3.4). The plot indicates if the 

error incurred by a dielectric distribution model deteriorates as more of the SBs 

present in the EM structure break during the MD. One can notice, from the linear 

trend in  Figure 4.3.4(a), that it is indeed the case with the traditional model. At 

the same time from Figure 4.3.4(b), the error of the GAUSS-2 method is not only 

smaller than that of the TRAD-1 method but is independent of the occupancy of the 

salt-bridges.  

This indicates that as more of the SBs, extant in the EM structure, have a 

tendency to break and stay ‘broken’ during the MD, the traditional 2-dielectric 
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method fails to reproduce the 〈∆GÛÂÃÜÝÁÂÃß 〉 (r2 = 0.545). This can also imply that the 

ability of a dielectric model to capture ensemble 〈∆GÛÂÃÜÝÁÂÃß 〉 from a single structure 

significantly depends on its ability to mimic or capture the effect of fluctuations of 

the salt-bridges. This demonstrates that the Gaussian-based dielectric model 

(GAUSS-2) is able to capture the SB fluctuation’s effect resulting in smaller error 

(than the TRAD method) and calculated polar solvation energy has no dependence 

on the occupancy of the SBs (r2 = 0.011). 

This can be attributed to the very basis of the Gaussian-based model. As is 

described in Ref.[63] and elaborated in the Methods section, the dielectric assigned 

to a region depends on the local atomic density, i.e., a region with lower atomic 

density is assigned a higher dielectric value and vice-versa. Consequently, the less 

dense regions will also have more room for motion owing to lesser likelihood for steric 

clashes with other solute atoms. 
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 Figure 4.3.4: Effectiveness of a dielectric model revealed by its ability to capture the 
dynamics of salt bridges. The error in ∆𝐺�`b�m�`b�  from using (a) traditional 2-dielectric 
method and (b) the Gaussian-based smooth dielectric model with in vacuo minimized 
structures with respect to the ensemble average (expressed as ÷〈∆𝐺�`b�m�`b� 〉 −
	∆𝐺�`b�m�`b� (𝐼𝑛	𝑉𝑎𝑐𝑢𝑜)÷) are plotted as a function of the population of the salt bridges 
which were present for more than 50% of the frames in its MD generated ensemble 
(occupancy > 50%). The solid black lines depict the linear model fits to these 
comparisons and the r2 value is mentioned for each of these linear fits. All energy 
units are kcal/mol. 

 

As a result, the Gaussian-method would assign regions of potentially high 

mobility a higher dielectric constant. Therefore, if the Gaussian-method yields a good 

agreement with the ensemble 〈∆GÛÂÃÜÝÁÂÃß 〉, it must be able to capture the SB fluctuations 

appropriately. Thus, it is expected that it should assign relatively higher dielectric 

constant in the vicinity of those SBs which a lower occupancy (more room for 
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fluctuation) than around those which have a higher occupancy (due to spatial 

restrictions arising from higher atomic density). To assess if that is indeed true, the 

local dielectric around the O-N atom pairs of the SBs identified in the in vacuo EM 

structure are computed to determine its relation with SB occupancy. The results are 

depicted in Figure 4.3.5. 

 

Figure 4.3.5: Dielectric values assigned by models around salt-bridges. 
Boxplots showing the distribution of the average dielectric constant assigned by the 
Gaussian-based smooth dielectric model in the locality of the salt-bridges (SBs) which 
have an occupancy < 50%(red) and > 50% (blue). 

In fact, the SBs with lower occupancies (< 50%) have a higher local dielectric 

constant on an average compared to the SBs that have an occupancy of more than 

0

20

40

60

80

Av
er

ag
e 

Lo
ca

l D
ie

le
ct

ric
 v

al
ue

Salt−Bridge
Occupancy

< 50 %

> 50 %

In Vacuo
Local Dielectric vs occupancy

GAUSS−2



 

 

128 

50%. This ratio is significant provided that regions populated with salt-bridges have, 

in general, a higher average dielectric constant than the buried regions rich in non-

polar and polar residues[63] (see Figure A. 6).  

Therefore, being able to capture the effects of fluctuation of the salt-bridge 

residues plays pivotal role in the success of a dielectric distribution in reproducing 

the ensemble average solvation energy. 

4.4 Summary 

The primary objective was to ascertain if the Gaussian-based smooth 

dielectric distribution (as implemented in Delphi) for modeling the dielectric 

distribution can mimic the natural dynamics of a protein and therefore, yield its 

ensemble average polar solvation energy using a single structure alone. The 

Gaussian-based model, in parallel with the traditional 2-dielectric model, was paired 

with structures minimized in different environments (in vacuo, GBIS and explicit 

water) and crystal structure of 74 proteins to study its ability to approximate the 

ensemble 〈∆GÛÂÃÜÝÁÂÃß 〉. Our study shows that the traditional dielectric model is able to 

reproduce a protein’s 〈∆GÛÂÃÜÝÁÂÃß 〉 only with its crystal structure or a structure 

minimized in solvent. However, for most of the proteins, one would have to decrease 
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the dielectric internal dielectric (εin) to below 1, in order to achieve better 

approximations. This unreasonable modification can be circumvented by the use of 

Gaussian-based dielectric model. Not only does it yield a better agreement with the 

ensemble 〈∆GÛÂÃÜÝÁÂÃß 〉 for physically valid internal dielectric values (known as εref), its 

performance is appreciable regardless of the minimization environment. In fact, for 

most of the cases, Gaussian-based dielectric model performs better than the 

traditional model, even if subtly. Upon comparing the overall results, we show and 

therefore, suggest that the use of Gaussian-based dielectric model with 𝜖m\Y = 2, 

paired with a protein’s in vacuo minimized structure, is best suited for reproducing 

its ensemble average polar solvation energy.  

A detailed analysis revealed the reasons for the aforementioned differences in 

performance and other solvation energy trends. We found that the conformational 

states of SBs (open/closed) in a protein’s minimized structure play an important role 

in offering one dielectric model an advantage over the other in terms of reproducing 

its ensemble average polar solvation energy. This means that a dielectric model, that 

best mimics the flexibility of the SB forming residues from their configuration in the 

EM structure, is better at reproducing the ensemble average polar solvation free 

energy. The Gaussian-based dielectric model is shown to accomplish this and 
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therefore is capable of generating ensemble average polar solvation energy of a 

protein from its in vacuo energy minimized structure. Our findings can henceforth, 

serve as a starting point for developing a time-inexpensive single structure 

MM/PBSA method. 
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5 DESCRIBING MOLECULAR GEOMETRY BY GAUSSIAN 

BASED MODEL OF ATOMS: A NOVEL GRID BASED 

ALGORITHM FOR DETERMINING MOLECULAR VOLUME 

AND SURFACE AREA 

 

This chapter presents a novel method of implementing the Gaussian based 

atom model to compute solute/molecular volume and surface area (SA) in Delphi. 

The novelty lies in the exploiting Delphi’s finite difference setup designed to solve 

PBE to determine the pairs of atoms that overlap in space. The work in this chapter 

has also resulted into a publication[144] (copyright permission4). 

5.1 Variations in the Non-polar solvation free energy 

models 

Molecular geometry, best described by using the molecular volume (MV) or 

surface area (MSA) or both of a molecule, has served as a fundamental factor in 

                                       

4 See Appendix A.14 for copyright permissions. 
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modeling the non-polar properties of biological macromolecules. The prominent role 

of non-polar interactions in the formation of protein aggregates in solvent, protein-

drug binding and membrane formation is well documented[145-147]. Furthermore, 

binding free energy changes occurring due to mutations in proteins also conceive the 

important role played by the change in the surface area of the mutant sites in 

predicting the pathogenicity of the mutation[76, 99]. Besides binding, studies on 

folding and unfolding of proteins have signified the role of MV and MSA[78]. From 

a geometrical perspective, these quantities help differentiate the level of packing of 

native from non-native and unfolded states of proteins. From a thermodynamic 

perspective, changes in volume and surface area signify the effect of pressure of 

protein folding in isothermal conditions, which is essentially the condition inside a 

biological cell. In addition, pressure-induced unfolding or denaturation and the 

associated volume changes of a protein has also been shown to have a significant 

dependence on the volumes of the internal cavities in its native structure[148, 149].  

The non-polar component, which can be thought of as the energy required to 

create a cavity in the bulk of the solvent large enough to accommodate the solute in 

question, can be computed using various models. At the core of these models lies the 

assumption that the non-polar energy is related to the solute’s volume or surface 
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area (SA) or both. The use of different models and their inclusion in the protocol for 

computing free energy can largely depend on one’s understanding of the underlying 

physics and one’s expectations from these computations. Some empirical models 

assume a linear relationship between the non-polar energy and the molecular surface 

area (MSA)[150-156] while others also include the molecular volume (MV)[68, 157-

162]. By identifying some limitations of these linear models in describing the physical 

reality[163-165], recent models have suggested that in addition to the linear cavity 

term, an attractive van der Waals (vdW) term [67, 68, 158, 159, 161, 166-168] is also 

required to determine the total non-polar contribution to the free energy. Key 

variations amongst these different models originate from their definition of protein 

volume and SA. Most models use the solvent-accessible SA (SASA)[69, 153, 163, 

169-171] of the proteins to quantify the size of the cavity while some also justify the 

use of van der Waals surface area (vdWSA)[48, 166-168]. As for the volume, some 

use van der Waals volume (vdWV)[166, 168], others the solvent accessible volume 

(SAV) [161, 162]. In addition, these models may also differ in the method they use 

to represent individual solute atoms, for example, as classical hard-spheres that 

draws a strict boundary between the solvent and solute regions or as regions occupied 

by a smooth volume density (expressed as Gaussians) which promotes a strict-
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surface-free approach[85, 86] of describing solvated systems (which has been 

extensively discussed in the preceding chapters). 

5.1.1 Need for efficient algorithms 

This variety in non-polar energy models has called for different computational 

methods of computing volumes and SA. Besides differing on the model of atoms, 

these computational methods can also be distinguished in terms of the algorithm 

they use for identifying atomic overlaps[64, 172, 173] or that for delineating surfaces 

of contact of the probe and the solute atoms[33, 35, 174-176]. The use of one model 

over the other is certainly influenced by the time-efficacy and robustness besides the 

all-important physical meaningfulness. But as the number of structures in the 

Protein Data Bank (PDB) grows and genomic expansion studies are being 

undertaken widely, researchers are using a large number of structures in their studies 

and are sampling larger configurational spaces for a better and holistic understanding 

of biomolecular processes. As a result, the time-efficacy of a computational method 

has become a significant factor in influencing its choice over others.  

The idea of the algorithm presented in this chapter combines a novel grid-

based approach of identifying overlapping atoms and the analytical approach of 
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computing MVs and surface area using a Gaussian-based description of atoms[64]. 

The primary motivation is to integrate a method of computing MV and MSA, and 

therefore, a method of computing non-polar energy terms, into Delphi[70]. The use 

of a smooth Gaussian-based model will make this merger consistent with its smooth 

Gaussian-based approach of representing the dielectric distribution of solvated 

biomolecular systems[86, 104] (discussed in the preceding chapters). This integration 

is expected to provide a comprehensive platform for computing the free energy using 

a single package and thereby, offer a wide range of users a convenient way of 

analyzing and evaluating the energy of system configurations sampled from large-

scale simulations using the MM/PBSA protocol.  

The novel grid-based algorithm is designed to identify pairs of solute atoms 

that overlap in space by simultaneously using the robust grid-based finite-difference 

method that Delphi uses to solve the Poisson-Boltzmann Equation (PBE).  By doing 

so, it is shown that little to no additional time is spent in identifying overlapping 

atom pairs. After the pairs have been identified, a depth-first tree based algorithm, 

used by the popular AGBNP[166] package, is used to compute the volumes and 

surface areas.  
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5.2 The Gaussian model of computing molecular volume 

and surface area 

The mathematical basis of the Gaussian model of atoms has been extensively 

discussed in Chapter 2. This formalism is adapted from the seminal work of Grant 

and Pickup[64]. Of relevance to this chapter is the formalism that derives the volume 

and surface area of a molecule whose atoms are represented using the Gaussian 

model. Therefore, the preliminary concepts of Gaussian density are skipped here (see 

section 2.1 for details). The following shows how the volume and surface area are 

computed using the Gaussian models.  

5.2.1 Gaussian product theorem for computing volumes and SA of overlapping 

regions 

The product, 𝑔Zþ = 𝑔Z𝑔þ, of the Gaussian density functions of two atoms i and 

j describes the volume of their overlap. The product is itself a Gaussian density 

function centered at  

 𝑟eÿPPP⃗ =
𝛼Z𝑟ePP⃗ + 𝛼þ𝑟ÿPP⃗

𝛼Zþ
 (30) 
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where 𝑟ePP⃗ 	𝑎𝑛𝑑	𝑟ÿPP⃗  are their respective positions and 𝛼Z	𝑎𝑛𝑑	𝛼þ are the exponent 

scaling factors. In the product Gaussian term, the resultant Gaussian exponent 

acquires the form 

 𝛼Zþ = 𝛼Z + 𝛼þ (31) 

Correspondingly, in the Gaussian formalism the overlap volume, 𝑉Zþ, of two 

atoms is given by the volume integral of their product density 

 
𝑉Zþ = �𝑑𝑉𝑔Zþ
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where the resultant height factor 𝑝Zþ is given as 𝑝Zþ = 𝑝Z𝑝þ and the factor 

𝛬Zþ = 𝛼Z𝛼þ÷𝑟ePP⃗ − 𝑟ÿPP⃗ ÷
{. This strategy can be extended recursively to obtain analytic 

expressions of the Gaussian overlap volumes of any order. For instance, the third 

order overlap volume of atoms i, j and t is expressed as 
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Where 

 
𝑝Zþ� = 𝑝Zþ𝑝�	

(34) 
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𝛼Zþ� = 𝛼Zþ + 𝛼� 

 

And 

 𝑟eÿ�PPPPP⃗ =
𝛼Zþ𝑟eÿPPP⃗ + 𝛼�𝑟�PP⃗

𝛼Zþ�
 (35) 

 

To compute the MV, overlap volumes are added to or subtracted from the 

arithmetic sum of the hard-sphere volumes of all the atoms, based on their order 

(inclusion-exclusion formula). The alternative inclusion and exclusion ensure that 

there is no redundancy in the contribution by a certain overlap region to the total 

volume.  

 𝑉_`b\ �b\ = c
4
3𝜋𝑅Z

�

Z

− »c	𝑉Zþ
`�\mb��

Z+þ

− c 𝑉Zþ�
`�\mb��

Z+þ+�

+ c 𝑉Zþ��
`�\mb��

Z+þ+�+�

+ 	⋯½ 
(36) 

 



 

 

139 

The terms in the parenthesis of equation 36 in the right-hand side comprise 

the total overlap volume. Note that they occur with alternating signs of the form 

(−1)p where n is the order of the overlap. 

The surface area 𝑆𝐴Z of atom ‘i’, is defined as the derivative of the MV with 

respect to the radius of that atom. The total SA of the molecule is obtained from 

equation 37 as the sum of the individual atomic surface areas as 

 𝑆𝐴_`b\ �b\ =c𝑆𝐴Z
Z

	

=c»
𝜕𝑉Z
𝜕𝑅Z

−c
𝜕𝑉Zþ
𝜕𝑅Zþ

+c
𝜕𝑉Zþ�
𝜕𝑅Zþ,�

−c
𝜕𝑉Zþ��
𝜕𝑅Zþ,�,�

+ ⋯½
Z

 
(37) 

In the context of the Gaussian model, overlap volumes and their derivatives 

are available in analytic form. For a generic overlap term of order n, the derivative 

with respect to the radius of atom i is given by 

 𝜕𝑉Zþ⋯p
𝜕𝑅Z

=
𝜕𝑉Zþ⋯p
𝜕𝛼Z

¶
𝜕𝛼Z
𝜕𝑅Z

·	

=
2𝜅Z
𝑅Z�

-
3

2𝛼Zþ⋯p
+ ÷𝑟ePP⃗ − 𝑟eÿ⋯pPPPPPPPPP⃗ ÷

{.𝑉Zþ⋯p (38) 
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5.3 Identifying overlapping atom pairs and computation of 

volume and SA 

The above mathematical description of the model emphasizes on the 

importance of the overlapping volume and SA terms to these calculations. These 

terms are contributed by atoms that share a region, which means that each atom 

has its own set of neighboring atoms that affect its volume/SA. Typically, such pairs 

of atoms are found using a distance criterion, wherein two atoms, i and j, are said 

to be overlapping if: 

 ÷𝑟ePP⃗ − 𝑟ÿPP⃗ ÷ ≤ 𝑅Z + 𝑅þ + 𝜖 (39) 

where R represents their respective radius and 𝑟 designates their center 

coordinates, such as those provided in a PDB file. 𝜖, typically, has a small value that 

provides allowance for those pairs of atoms which wouldn’t overlap were they to be 

described as classical hard-spheres. Finding out this pair-list, also known as neighbors 

list, therefore, requires 𝑂(𝑁{) operations, in theory. Algorithms like cell-linked-

list[177], domain-decomposition method[178], Verlet list[179] and others[180-182] 

were contrived solely to cut down on the computation time and are mainly 

incorporated with MD simulation packages.  
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The grid-based approach makes use of the 3D setup of grids constructed by 

Delphi in order to solve the Poisson-Boltzmann equation (PBE) using finite 

difference method[41, 70]. The neighbor list of the atoms is computed in this 

symmetrical 3D mesh of grids (also called box) on which the molecule in question is 

projected into. The box is large enough to accommodate the molecule fully and have 

an additional space around it to account for the solvent phase. Based on the number 

of grids per Å (a.k.a resolution or “scale”), the fineness of the 3D mesh can be 

manipulated. The details of the grid construction can be found in (section 1.5.1).  

As is described in the section Overview of Delphi’s workflow in Chapter 1, the 

first step of Delphi’s algorithm is to determine the dielectric distribution of the 

system contained in the box (the Space module). With the information of the 

coordinate of the atoms and their radii, grid points are surveyed and based on its 

distance from the center, a dielectric value is assigned. Since evaluating all the grid 

points can be extremely expensive, only a cubic region around the atom in question, 

large enough to accommodate its spherical volume is scanned[70]. Consecutive atoms 

are projected onto to the grid points and a 3D dielectric distribution map is 

constructed. It is at this step the neighbor list of atoms is generated. As consecutive 

atoms are projected onto the grid, computation of neighbor list runs in parallel. It 
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uses the following criteria to identify neighbors: two atoms are considered as 

neighbors if the local cubic box around them share at least one grid point. If the 

boxes are larger, more neighbors will be identified and vice versa. However, 

overestimation of the number of neighbors will not necessarily overestimate the 

volume. It will simply increase the computation time.  

5.3.1 Grid-based algorithm for finding overlapping atoms 

To provide the exact schematic of this approach’s algorithm, an example 

molecule of 5 atoms is used for demonstration. Without any loss of generality, the 

grids are portrayed in 2D and the atoms are be described as circles of radius equal 

to their van der Waal radius. This is illustrated in Figure 5.3.1. In the figure, the 

flow of steps is represented by a number on each of the panel, going from ‘1’ through 

‘6’. 

Step (1). A mesh, large enough to encompass all the atoms of the input molecule, 

is defined. A labelling system is used wherein each grid point is labelled by 

an integer. To initialize our grid, we assign ‘0’ to each grid point. 

Step (2). A separate (𝑁 + 1)× (𝑁 + 1) square matrix, depicting atom pairs that 

overlap in space is defined. We will refer to the matrix as the atom-overlap 
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matrix or AOM. All the atoms in the molecule with indices 1, 2,⋯ , 𝑁 are 

considered along with a dummy atom of index 0. An element of this matrix 

is defined as 𝐴𝑂𝑀_,p ∈ [𝑇𝑟𝑢𝑒,𝐹𝑎𝑙𝑠𝑒] ∀	𝑚, 𝑛 ∈ [0,1,2,⋯ , 𝑁] such that if atoms 

m and n overlap in space, 𝐴𝑂𝑀_,p = 𝑇𝑟𝑢𝑒 otherwise False.  

Step (3). The first atom (with index ‘1’) in the list is placed onto the grid. As 

the grid-points in the vicinity of atom 1, contained in its local cubic box 

(shown as squares in the Figure), are surveyed by Delphi, grid points that 

lie within a distance of 𝑘𝑅� from the center of atom 1 (𝑟�PPP⃗ ), i.e. those that 

satisfy the distance criterion ÷𝑟²mZ] − 𝑟�PPP⃗ ÷ ≤ 𝑘𝑅�; 𝑘 ∈ ℤt, are made to undergo 

a change in their integer label. ‘k’ here is a factor that affects the volume of 

the box that is searched for grid points that fit the criteria. From the initial 

‘0’ label, they are assigned a label of ‘1’ since they lie in the vicinity of atom 

1. This change in label of the grids is accompanied by updating 𝐴𝑂𝑀¡,� =

𝑇𝑟𝑢𝑒. Essentially, the matrix element with row-index equal to the old label 

and column-index equal to the new label is updated to True.  

Step (4). The second atom (with index 2) is placed onto the grid. Grid points 

that satisfy the above distance criterion with respect to atom 2, are surveyed 

and their labels are updated accordingly. Those with ‘0’ are now labelled as 
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‘2’, causing 𝐴𝑂𝑀¡,{ = 𝑇𝑟𝑢𝑒 and those with ‘1’ are now labelled as ‘2’, causing 

𝐴𝑂𝑀�,{ = 𝑇𝑟𝑢𝑒.  

That 𝐴𝑂𝑀�,{ = 𝑇𝑟𝑢𝑒 exists implies that atoms 1 and 2 potentially overlap. 

Step (5). The third atom (index 3) is placed onto the grid. At this point, grid 

points are labelled as either ‘0’ or ‘1’ or ‘2’. Grid points satisfying the distance 

criteria with respect to atom-3 result into updating 𝐴𝑂𝑀¡,�, 𝐴𝑂𝑀�,� and 

𝐴𝑂𝑀{,� to True. 

Step (6). Similarly, atom 4 and 5 are treated and the corresponding elements in 

the AOM are updated. 

 

It must be noted here that since atoms are used in an increasing order of their 

index, the above procedure will only update the upper triangular block of the AOM. 

This doesn’t result in losing any information because if atoms ‘m’ and ‘n’ overlap 

(where m < n) due to 𝐴𝑂𝑀_,p = 𝑇𝑟𝑢𝑒, then it directly implies that 𝐴𝑂𝑀p,_ = 𝑇𝑟𝑢𝑒. 

 



 

 

145 

 



 

 

146 

Figure 5.3.1: An illustration of the grid-based algorithm designed for 
identifying atom pairs that overlap in space. (a) The algorithm of identifying 
overlapping atom pairs is visually illustrated. Each atom is shown as a colored circle 
surrounded by a square of the same color depicting the local box that is searched for 
grid-points in its vicinity. The systematic flow of the steps is indicated by the label 
on the top-right corner of each panel in the Figure. Two atoms ‘i’ and’ ‘j’ that 
overlap update the atom overlap matrix (AOM) element 𝐴𝑂𝑀Z,þ to True. At each 
step, new indices of AOM that get updated to True are shown in red. The numeric 
labels placed at different regions are meant to indicate the integer label on the grid-
points present in a region. (b) A rooted tree constructed using the neighbor list of 
all the atoms in the molecule and an additional dummy atom with index ‘0’. Each 
level or order is marked using grey horizontal bars. From top to bottom, levels of 
increasing orders are shown. 

 

The final AOM used to prepare the neighbor list. The following steps are 

performed. 

Step (1). For each atom, an empty neighbor list (to store integers or atom-

indices) is defined. 

Step (2). An iterator navigates through the upper triangular part of the 

symmetric AOM and checks for all the elements 𝐴𝑂𝑀_,p|𝑚 ≤ 𝑛 which are 

True. 

Step (3). For any 𝐴𝑂𝑀_,p = 𝑇𝑟𝑢𝑒, index n is appended to the neighbor list of 

atom m.  
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For our example molecule with 5 atoms, Table 5.1 shows the AOM (in the 

upper-triangular form) and the list of neighbors for each atom. The outcome can be 

confirmed by the arrangement of atoms in Figure 5.3.1(a). Also note that, atom 

with index ‘0’ is a dummy atom and it automatically has all the “real” atoms of the 

molecule in its neighbors list. This helps in the construction of a rooted tree that is 

used for computing overlap volumes and surface area.  

Table 5.1: The Atom Overlap Matrix or AOM (top panel) and the neighbor list of 
atoms inferred from it (bottom panel) for the 5-atom example molecule obtained 
using the grid-based neighbor search algorithm. For clarity only the upper triangular 
part of the symmetric matrix is shown. 

Atom Overlap Matrix (AOM) 
 0 1 2 3 4 5 
0 - T T T T T 
1  - T T - T 
2   - T T T 
3    - - - 
4     - T 
5      - 
‘True’ is represented as ‘T’ and ‘False’ is represented as ‘-‘ 
Neighbor List of the atoms 

Atom Index List of neighboring atoms 

0 (Dummy Atom) [1, 2, 3, 4, 5] 

1 [2, 3, 5] 

2 [3, 4, 5] 
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5.3.2 Depth-first traversal method for computing total volume and surface area of 

overlap information 

The neighbor lists of the atoms are used to construct a rooted tree of overlaps, 

the hierarchy of which follows the order n of the overlaps. Each node of the tree 

holds the value of the overlap volume which are arithmetically added, according to 

equation 36, to yield the total MV. For computational efficiency, overlap volume 

terms with values less than 0.001 A3 are neglected. A volume cutoff of this kind is 

necessary since the Gaussian overlap volume of two distant atoms, albeit 

infinitesimally small, will never be zero. In parallel to volume calculations, the SA 

term for each node is also computed and the total molecular SA is obtained.  

The basic premise of constructing a tree by a “depth-first” algorithm and 

using it for volume/SA computation is identical to the one used in reference [168]. 

Each atom is assigned an integer index (starting from 1) and a dummy atom with 

index ‘0’ is used to build a rooted tree with it being the designated root. Each 

3 [] 

4 [5] 

5 [] 
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subsequent level in the tree is assigned an order based on its distance from the root; 

the root is assigned an order 0 at the first step of the process. All the atoms are then 

defined as the children of the root, hence, forming the next level down the hierarchy 

with order 1. Each of these atoms then initiate a separate branch of the tree. The 

tree grows more levels by incorporating new nodes of the next order that contains 

the information of all the common neighbors of its ancestors. Eventually, a node of 

any order is designed to contain the information of all the neighbor common between 

itself and its ancestors. Computationally, a node of order ‘k’ is represented by an 

ordered list of ‘k’ atom indices such that the atom with the kth index is a common 

neighbor t of all the ‘k-1’ atoms preceding it. Geometrically, that implies that all the 

k-atoms overlap in space. For e.g. if a node (1, 2, 3, 7) exists for an arbitrary 

molecule, it would imply that atom-7 is a common neighbor of atoms-1, 2 and 3. It 

would also mean that the four atoms overlap in space. A branch of the tree is 

terminated when a new common neighbor isn’t found or when the volume of that 

particular node is smaller than the cutoff value (0.001 Å3, see above). For 

computational efficiency, we limited the order of nodes to 6. As the branch reaches 

a “dead-end”, the next branch from the top of the tree is worked upon in the same 

recursive manner till all the branches growing out of the root have been covered. For 
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our example case of the 5-atom molecule, Figure 5.3.1(b) is an illustration of its 

depth-first tree. 

It must be noted that, though the Gaussian-model projects a physically 

meaningful picture of a protein-solvent system, the mathematical formulation can 

harbor some unphysical issues. Therefore, it is necessary that they are eliminated 

correctly. An example is negative surface areas for deeply buried atoms surrounded 

by many neighboring atoms[168]. For such atoms, it is likely that certain orders of 

the overlap volume, which have a negative contribution to its total surface area, add 

up to be larger than its individual volume (e.g. order 2). To correct for this, we 

devised a physically appealing way of filtering the contribution of these atoms to the 

total SA. This filter uses a smooth sigmoid function of the form 

 

 𝑆𝐴YZb�\m\] , 𝑖 = 𝑆𝐴Z ¶
1

1 +	𝑒²(háµktáµ4òóñðð,k)
· (40) 

 

Here ‘i’ depicts an atom and 𝑆𝐴Z is the surface area computed by the Gaussian 

model. ‘g’ is a dimensionless constant with a value 5, assigned after optimization. 

𝑆𝐴 ��`YY,Z	 is a threshold value of an atom’s SA that decides its contribution to the 
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total SASA of the molecule. Only the atoms with values larger than the cutoff 

contribute. The cutoff is computed using a hard-sphere approximation and hence 

depends on the radius of a solvent-probe (𝑅�m`a\; 1.4 Å for water) and the radius of 

that atom (𝑅Z). An atom is considered solvent accessible if it can allow at least one 

solvent molecule (in its hard sphere form) to share a tangential plane with it. The 

cutoff, therefore, acquires the following form. 

 𝑆𝐴 ��`YY,Z = 𝑆𝐴Z -
1 − cos(𝜃)

2
. (41) 

 

where the angle ‘θ’ is the solid angle subtended by a cone of height 

𝑅�m`a\ + 𝑅Z and base radius 𝑅�m`a\. It can be expressed as 

 𝜃 = 2 tanh� �
𝑅�m`a\

𝑅�m`a\ + 𝑅Z
� (42) 

 

Figure 5.3.2 provides a visual reference which exemplifies the case of 

a solvent of probe radius 1.4 Å and an atom of radius 2 Å.  
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Figure 5.3.2: Solvent accessibility based filter for determining atomic and molecular 
surface areas. (Left) Illustration of the physical basis of the function used to compute 
cutoff atom-specific surface area and filter out the contribution of atoms with 
negative surface area terms. (Right) The output yielded by the filtering function. 

5.4 Validation of the algorithm  

The grid-based approach was validated at three different levels. First, the 

volumes and SAs for a library of 74 proteins of sizes ranging from 50 to 200 residues 

(used previously [121]) were calculated using implementation as well as AGBNP[166, 

168]  and then were compared to determine the numerical differences. Second, the 

effect of grid-resolution on the output of volume and SA was examined. Third, the 
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accuracy in identifying “correct” neighbors using the grid-based approach was 

evaluated by comparing the neighbors identified using a standard 𝑂(𝑁{) analytical 

approach (see Equation 39).  

5.4.1 Validation of the volume/SA output 

Figure 5.4.1(a, b) shows the comparison of the volumes and SA of 74 

proteins computed using our implementation of the Gaussian model and that of 

AGBNP. The quality can be adjudicated by the slope and intercept of a linear 

regression fit as well as the correlation (R2) accompanying the figures. Slopes 

approximately equal to 1.00 (with relatively infinitesimal intercepts) and correlations 

equal to 1.00 indicate that our implementation is precise. In addition, it is also 

acknowledged that the resolution of grids (“scale” in Delphi) can have an effect on 

the volume/SA value by having an effect on the neighbor search process. Therefore, 

different values of scale were also used and the resulting volume/SA outputs were 

compared with AGBNP. The results are shown in Figure 5.4.1(c) in terms of the 

root mean square relative difference (RMSRD; see Appendix A.11) incurred as a 

function of the grid resolution, which indicates that the differences are small, i.e., 

~0.40% at a low resolution of 1 grid/Å and ~0.15% at 2 grids/Å and become 
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infinitesimal (<0.1%) at 3 and 4 grids/Å. But since increased resolutions mean non-

linear increase in computational times (cubic power), one should consider a balance 

between accuracy and computational time. 
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Figure 5.4.1: Validation of the grid-based algorithm for identifying 
overlapping atom pairs. Comparisons of (a) the molecular volumes and (b) the 
molecular surface areas of 74 proteins obtained using the grid-based algorithm in 
conjunction with the Gaussian-model and obtained using AGBNP. (c) Percent 
relative difference (RMSRD) of the molecular volumes of the 74 proteins with respect 
to the values output by AGBNP as a function of the scale or grid-resolution. (d) 
Volume and (e) surface area of Barstar (PDB: 1X1X, chain D) plotted as a function 
of the offset in its position from the center of the grid box. (f) Percentage of falsely 
missed atom pairs overlapping in space (False Negatives) by the grid-based algorithm 
plotted as a function of the grid-resolution (grids/Å). 

 

5.4.2 Effect of positioning in the grid box 

For the second level of validation, the effect of differently positioning the 

solute inside the box was examined without changing the position of the grids. This 

was important because in the initial phase of a Delphi run, the coordinates of a 3D 

structure (from PDB for instance) are projected onto these grids using a distance-

dependent interpolation technique (see Chapter 1: Overview of Delphi’s workflow). 

For this test, Barstar (PDB ID: 1X1X, chain D) was chosen and its position was 

changed continually along an arbitrarily chosen direction (without loss of generality), 

by offsetting it’s coordinates from the center of the box in small incremental steps 

and computing the volume and SA using the Gaussian model. Figure 5.4.1(d, e) 

show the outcomes as a function of the offset distance for different values of scale. 
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A tendency to vary periodically w.r.t to the offset is seen in these plots. The 

periodicity also varies with grid resolution, in that, the period is inversely 

proportional to the number of grids/Å. This is because with different offsets, the 

projection of the atom coordinates on the grids changes and this affects the neighbors 

identified in the process and congruent grid placements occur in multiples of the grid 

resolution. Eventually, that results into variations in the volume and SA outputs. 

But these variations are minor in comparison to the average values (< 0.05%). This 

leads to a conclusion that the grid-based approach is appreciable precise and is only 

minutely sensitive to the arrangement of the grid points in the box.  

5.4.3 Accuracy in predicting overlapping atoms 

At the third level of validation, we evaluated our method’s accuracy in 

determining the “correct” neighbors. The above tests showed that our approach is 

minutely sensitive to the grid resolution and positioning of the solute in the box. 

This is because of the differences in the placement of the grids with respect to the 

atomic coordinates of the solute. In a standard approach, neighbor list for the atoms 

can be computed using a distance-based criterion where two atoms with coordinates 

separated by a distance lower than the sum of their radii are considered as neighbors 
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(Equation 39). But in our grid-based approach, two atoms are considered as 

neighbors if their box of grids surrounding the respective spherical volumes share 

common grid-points (see section Grid-based algorithm for finding overlapping atoms). 

Therefore, we compared the neighbor list yielded by the grid-based approach, at 

different grid resolutions, with that obtained by using the standard O(N2) approach. 

This test was expected to report neighbors that are common to both the approaches 

(True Positives) or are neighbors based on one approach and not the other (False 

Negatives or False Positives). The grid-based approach would ideally “pass” the test 

if it can identify at the very least all the neighbors that the standard approach would. 

Any additional neighbors detected (False Positives) would later be filtered out based 

on the volume of their shared region (i.e. < 0.001 Å3). However, if a vast percentage 

of neighbors is only found by the standard approach and not by the grid-based 

approach (False Negatives), it would question the method’s credibility. Our focus is 

to detect the percentage of such cases. Figure 5.4.1(f)  shows the outcomes. As a 

function of the grid resolution, the percentage of False Negative cases are plotted. 

Each boxplot depicts the range of percentage of False Negatives found across a 

library of 74 proteins and the solid black line close to the center of these boxplots is 

the median value of the distribution (See Appendix A.12). There are two major 
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observations: 1) The percentage of the False Negative cases are infinitesimally small 

(<0.4%) if not exactly 0.0 at a very coarse resolution of 0.5 grids/Å. With finer 

resolutions, the percentage drops to ~0.05%. This means that the grid-based 

approach could likely miss 1 in every 2000 neighbors identified using the standard 

approach. This imparts an added confidence in the accuracy of this approach. 

5.5 Performance of the algorithm 

We also assessed the time efficiency and complexity of the grid-based 

approach. Theoretically, it is an O(8NR3G3) complex algorithm, where ‘N’ is the 

number of atoms and ‘R’ is the average atomic radius and ‘G’ is the number of 

grids/Å. This is because for each atom out of N, a local cubical volume around its 

center is surveyed for the grid points which is later used by Delphi for assigning 

dielectric values and distributing charges. This local cube is of length proportional 

to 2R (average atomic diameter), making its volume 8R3 and the total number of 

grid points to be scanned equal to 8R3G3.   

But the integration of the grid-based algorithm in parallel with other grid-

based operations performed by Delphi makes it difficult to evaluate the exact time. 

Therefore, we measured the total time taken by the grid-based neighbor search 
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algorithm and the volume/SA computation using our implementation of the 

Gaussian model and subtracted it from the time taken by Delphi when these 

calculations are turned off. This gives an estimate of the average time efficiency as 

a function of grid resolution and size of the solute.  

Figure 5.5.1 plots the average time over 10 runs vs the number of atoms for 

different grid resolutions. It is clear that time taken for volume/SA computation 

along with the neighbor search part is typically < 3 sec for proteins with 1000-3000 

atoms. Also increasing the resolution appears to drastically increases the time. The 

effect is prominent when the number of atoms is more than 1000. This is because 

with increased resolution, the number of neighbors identified by our approach is 

much larger than that by the standard distance-based approach. In other words, the 

percentage of False Positives increase (see Figure A. 7). 
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Figure 5.5.1: Performance. The average run time as a function of the number of 
atoms in the solute and grid resolution (grids/Å). 74 proteins were used for the test 
and the average time was computed by averaging over 10 runs on each protein. Since 
the standard deviations of the runtimes were infinitesimally small, error bars 
depicting them are deliberately not shown. 

 

5.6 Results and Discussion 

The contents of this section review basic aspects of the Gaussian model and 

in addition also points out other aspects that have not been addressed meticulously 
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in the literature before. The idea is to emphasize the numerical accuracy, physical 

appeal and an inevitable limitation of the model.  

5.6.1 Volume and surface area computed using the Gaussian model: 

 The Gaussian model, as proposed by Grant and Pickup in their seminal work, 

delivers the van der Waals volume (vdwV) and surface area (vdWSA) of 

molecules[64]. Using our implementation with the grid-based neighbor search 

algorithm and the library of 74 proteins, it was found that the volumes delivered by 

it differ from the hard-sphere vdWV by ~7-8% (the latter was computed using the 

package ProteinVolume[176]). Another package called 3V[183] was also used for a 

thorough benchmarking and it was found that the difference, in this case, was smaller 

(difference  <1%). In terms of the surface area, the output from the Gaussian model 

differed by ~6-6.5% from the vdWSA computed using the hard-sphere model by 

FREESASA[184]. Once again for a thorough benchmark, another package called 

NACCESS[119] was also used and the difference was found to be ~4.5%. The exact 

values of these differences, expressed using RMSRD and the outcomes of a linear 

regression fit to the model comparisons are presented in Table 5.2. For all the 
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Gaussian model based calculations, a 𝜅 value of 2.227 was used[166, 168] (see 

Equation 2) and a resolution of 2 grids/Å was used for grid-based neighbor search.  

There are two major inferences we draw from these comparisons. First, our 

implementation of the Gaussian model precisely delivers the molecular vdWV and 

vdWSA indicating that the implementation correctly reproduces the expected 

behavior of the Gaussian model. Second, volumes/SA computed using the hard-

sphere model do not offer a strict reference for benchmark and validation. This is 

evident from comparing the results computed different software. Indeed, different 

packages implementing the hard-sphere model yield different values (Table 5.2).  

Table 5.2: Comparison between van der Waals volumes and surface area of proteins 
and surface area of individual atoms obtained using the Gaussian model and the 
hard-sphere model. The comparison is quantified by the slope, intercept of the linear 
regression fit, correlation (R2) and the root mean square relative difference 
(RMSRD) 

 RMSRD Slope Intercept Correlation (R2) 
van der Waals Volume of Proteins 
ProteinVolume 7.70% 1.08 7.40 Å3 0.999 
3V 0.24% 1.00 7.20 Å3 0.999 
van der Waals Surface Areas of Proteins 
FREESASA 5.9% 0.94 32.09 Å2 0.999 
NACCESS 4.3% 0.95 64.51 Å2 0.999 
van der Waals Surface area of individual atoms 
FREESASA 15.9% 0.89 0.70 Å2 0.953 
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The comparison between the two models was extended further to the level of 

surface areas of individual atoms. Using the two models, surface area of individual 

atoms across the 74 proteins were computed and compared. The result, also shown 

in Table 5.2, clearly indicates that the Gaussian model can deliver precise surface 

areas of individual atoms with a difference of only 15.9% with respect to the values 

computed using the hard-sphere model. This good quality of the agreement is also 

evident from the slope and intercept of the linear regression and a correlation of 

0.953. This ability to deliver proper surface areas of individual atoms provides the 

Gaussian model with an added advantage. Several packages like AGBNP[166, 168] 

and ACE[185], that run molecular dynamics using the Gaussian model, make use of 

this ability to correctly compute the energy and forces on individual atoms alongside 

the continuous and differentiable analytical expressions for this terms. In addition to 

this, atom-specific surface-tension coefficients used in conjunction with individual 

atomic surface areas have been shown to deliver non-polar part of the free energy in 

good agreement with that from explicit solvent simulations[69]. 
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5.7 Physical appeal of the Gaussian model 

In addition to numerical precision, one of the key features of a smooth 

Gaussian-based model is that the transition area between solute and the solvent 

phases does not have to be sharp. To demonstrate this, a profile of the change in the 

vdWV/SA of a protein complex as a function of the distance between the monomers 

is presented as they are separated in space. A test of the same nature was performed 

by Grant and Pickup in the process of parametrical optimization of the model[64]. 

For this study, chains A and D of the Barnase-Barstar complex (PDB ID: 1X1X) 

were separated in steps of 0.1Å starting from the bound state to 15Å away. At 15Å 

separation, the monomers are practically free (completely unbound).  
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Figure 5.7.1: Profile of the change in the van der Waals (vdW) volume 
and surface area. Profile of the change in vdW volume of the Barsnase-Barstar 
complex as a function of the distance of separation of the monomers obtained (a) 
using the Gaussian model and (b) using the hard-sphere model. Profile of the change 
in vdW surface area obtained (c) using the Gaussian model trend and (d) using the 
hard-sphere model. The solid blue lines in (a) and (c) depict a non-linear fit to the 
profiles obtained using the Gaussian model in order to emphasize the overall 
smoothness of the trend. The vdW volume and surface area using the hard-sphere 
models were computed using 3V[183] with a probe of radius 0.0Å. (e) Change in the 
number of contacts, i.e. atom pairs from either monomer found to be within 4Å 
distance, as a function of the distance of separation of the monomers. (f) A cartoon 
representation of the setup in which the monomers of the Barnase-Barstar complex 
were separated for obtaining the above profiles of volume and surface area changes. 

 

The profiles are shown in Figure 5.7.1. Clearly, the change in vdwV/SA 

obtained using the Gaussian model (Figure 5.7.1 (a, c)) has an overall smooth 

trend (if one momentarily overlooks the periodic effects arising from use of the grid-

based approach). In the completely unbound state, the volume and SA of the dimer 

is simply equal to the sum of these quantities for the individual monomers. On the 

contrary, the profile obtained using the hard-sphere model features some prominent 

bumps, discontinuities and noticeable regions of transitions. Between 1-2 Å of 

separation, the hard-sphere model yields an increase in the total volume of the 

complex and then it drops at around 2-3Å (Figure 5.7.1 (b)). Following this drop, 

it again increases monotonically till the total volume saturates at a value that equals 
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the sum of the volumes of the monomers. In terms of the surface area, there is a 

drastic initial increase till the monomers are separated by approximately 1Å after 

which there is a small discontinuity leading to a plateau in the profile (Figure 5.7.1 

(d)). Once separated by approximately 3Å, the profile acquires a monotonically 

increasing trend till it saturates to a value that equals the sum of the surface areas 

of individual monomers (occurs at ~8Å separation).  

Overall, the major difference in the profiles from the Gaussian and the hard-

sphere model occur at small separations. This can be attributed to the method used 

by these approaches to treat the intersection or overlap volumes. To elaborate, the 

number of contacts between the two monomers (chains A and D) is plotted as a 

function of the distance of separation in Figure 5.7.1 (e). A contact here is defined 

as a pair comprised of an atom from Barnase and an atom from Barstar whose 

centers are separated by no more than 4Å. As the monomers move farther apart, the 

number of contacts drops drastically at small separation distances and becomes zero 

at distances greater than 9Å. The region in between exhibits several abrupt 

transitions (2-9Å). The drastic and discontinuous drop in the region from 0-2Å 

explains the abrupt changes in the collective volumes of overlapping atoms at the 

interface. This is the cause for the bumps in the profile obtained using the hard-
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sphere model at that region. This is also the region that emphasizes the ability of 

the Gaussian model to deliver smoothly-changing volumes. In the case of the 

Gaussian model, the volume of the overlapping regions (regardless of the order) 

between the atoms at the interface has a continuous expression (see Equation 33) 

which eventually renders a smooth change of the two quantities. 

5.8 Gaussian model to compute solvent excluded volumes 

The solvent excluded volume (SEV) and the corresponding surface area 

(SESA) are considered more faithful representations of the geometry of the solute-

solvent interface than the van der Waals counterparts. These representations 

appropriately characterize those voids present in the solute structure, which are too 

small to fit a solvent molecule, as part of the solute phase. By virtue of this definition, 

SEVs are larger than the vdW volumes because the latter is a part of it. With our 

library of 74 proteins, SEVs were found to be 25% to 50% larger than their vdW 

volumes (average difference was ~38%).  

In an attempt to enable the Gaussian model to deliver SEVs, Gallicchio et. 

al.[168] incorporated a modification in the Gaussian model. The modification involves 

augmenting the radius of all the solute atoms by an offset term 𝑅`YY�\� so as to 
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account for the volume of crevices in the total volume. To enhance the physical 

appeal of this modification, an additional correction/modification was later 

incorporated [166]. The central idea of the modification was motivated by the fact 

that as 𝑅`YY�\� increases the atomic radii in order to account for the interstitial 

crevices in the structure, it also causes the solvent exposed atoms to expand further 

into the solvent region. Therefore, the excess volume of the solvent exposed atoms 

can be discarded by computing the volume of only the solvent-exposed region of the 

atoms and subtracting it from their volume obtained with modified atomic radii 

(𝑉Z
`YY�\�). This is illustrated in Figure 5.8.1(a) and Equation 43  expresses this 

correction term.  

 𝑉Z = 𝑉Z
`YY�\� − 𝑉Z

�`b�\p�h\[�`�\]	m\²Z`p 

𝑉Z =
𝑆𝐴Z

`YY�\�W𝑅Z + 𝑅`YY�\�X
3

Î1 − �
𝑅Z

𝑅Z + 𝑅`YY�\�
�
�

Ñ (43) 

 

The expression in Equation 43 ensures that the correction is only applied to 

the solvent exposed atoms with 𝑆𝐴Z
`YY�\� ≠ 0 computed using augmented atomic 

radii. 
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We added this modification in our implementation of the Gaussian model and 

evaluated a series of values of 𝑅`YY�\� to find the value that yields the best agreement 

with the SEV computed using hard-sphere model with a solvent probe of radius 

1.4Å. 𝑅`YY�\� was systematically varied from 0.1-1.2Å and we found that 0.9Å gives 

the best agreement with a RMSRD of 2.3% (Figure 5.8.1 (b, c)). The goodness of 

the agreement is also confirmed by the quality of the linear regression which has a 

slope of 0.95, y-intercept of 326.22 and correlation of 1.00. In Table A. 1 we list the 

slope and intercept of the linear regression, correlation and the RMSRD for all the 

Roffset values in this range.  

Although this empirical approach delivers a good agreement, the analysis so 

far as only emphasized on the numerical aspect. It was, therefore, important to 

examine if this modification is realistic in nature and if it retains the physical appeal 

of the Gaussian model. Two different approaches were used to address this - 1) if 

this modification truly accounts for the volume of the crevices in the structure and 

2) if offers a physically meaningful description of the SEV. 
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Figure 5.8.1: Optimization of Roffset input to the modified Roffset -based Gaussian model 
wrt the solvent excluded volume obtained using a hard sphere model. Distributions 
and relative percent deviations (RMSRD) are computed for the protonated and 
minimized crystal structures of 74 proteins. (a) Schematic showing the basis of the 
modified Roffset -based Gaussian model in which the excess volume of a solvent exposed 
atom (shown in yellow), obtained by augmenting its van der Waals radius by some 
Roffset, is subtracted out when the correction is applied. (b) Distribution of volume 
output by the modified Roffset -based Gaussian model (blue) computed with various 
Roffset values ranging from 0.0 through 1.2 Å, compared with the distribution of the 
hard-sphere solvent excluded volumes (pink) for the same set of proteins. Each 
distribution is represented by a boxplot (see Appendix A.12). The dashed lines 
connecting the medians of the boxes highlight the overall trend. (c) %RMSRD of the 
volume from the Gaussian model with respect to the solvent excluded volume as a 
function of Roffset. 

5.8.1 Volume of Interstitial Regions: 

A simple formula was used to derive the volume of the interstitial regions of 

solutes. By subtracting out the volume obtained with no 𝑅`YY�\� (original model) 

from the volume obtained with a non-zero 𝑅`YY�\�, the interstitial volume or 

𝑉Zp�\m��Z�Z�b were obtained (Equation 44). 

 𝑉Zp�\m��Z�Z�b(𝑅`YY�\�) = 𝑉𝑜𝑙𝑢𝑚𝑒 :Ùñðð;ïó<¡	–𝑉𝑜𝑙𝑢𝑚𝑒: Ùñðð;ïó¥¡ (44) 
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Figure 5.8.2: Comparison of the volume of the interstitial regions in the structure 

obtained using the modified Roffset -based Gaussian model and the hard-sphere model. 
Distributions and relative percent deviations (RMSRD) computed for the protonated 
and minimized crystal structures of 74 proteins. (b) Distribution of 𝑉𝑜𝑙𝑢𝑚𝑒Zp�\m��Z�Z�b 

computed using the modified Roffset -based Gaussian model (blue) computed with 

various Roffset values ranging from 0.0 through 1.2 Å, compared with the distribution 
of 𝑉𝑜𝑙𝑢𝑚𝑒Zp�\m��Z�Z�b computed using the hard-sphere model by ProteinVolume[176] 
(pink). Each distribution is represented by a boxplot (see Appendix A.12). The dashed 
lines connecting the medians of the boxes highlight the overall trend. (b) %RMSRD 
of the 𝑉𝑜𝑙𝑢𝑚𝑒Zp�\m��Z�Z�b from the Gaussian model with respect to the 

𝑉𝑜𝑙𝑢𝑚𝑒Zp�\m��Z�Z�b from hard-sphere model as a function of Roffset. 

 

By using the interstitial volumes obtained with the hard-sphere model using 

ProteinVolume[176] as a reference, the interstitial volumes computed using 𝑅`YY�\� 

of 0.9Å were found to lie within 10.5%. In addition, a linear regression fit yielded a 

slope of ~0.81 and a correlation of ~0.99. That the other values of 𝑅`YY�\� did not 
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perform as well as 0.9Å, as is evident from Figure 5.8.2, confirms that the numerical 

match obtained with this 𝑅`YY�\� has a realistic foundation as well. In Table A. 2, 

the slope and intercept of the linear regression, the correlation and the RMSRD for 

all the 𝑅`YY�\� t values that were used are listed. The above calculations were done on 

the library of 74 proteins. 

 

5.8.2 Physical Appeal of the 𝑅`YY�\�-based Gaussian model. 

In terms of physical appeal, the same case of Barnase-Barstar complex was 

used; separating the monomers from their bound state to a completely unbound 

state, to profile the change in volume. Except in this particular study, the vdW 

volume was replaced with the SEV from hard-sphere model and the volume from the 

modified 𝑅`YY�\�-based Gaussian model. For the latter, we used 𝑅`YY�\� of 0.9Å. The 

profiles are shown in Figure 5.8.3. Clear differences are visible in the trends obtained 

from the two models. That the profile of the volume from the modified RÂ??ÁÆÅ-based 

Gaussian model has a better physical foundation than the hard-sphere model is 

justified in the following two paragraphs. 
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The volume from the modified 𝑅`YY�\�-based Gaussian model features a 

smooth monotonic decrease from an initial value to the value that equals the sum of 

the volumes of the individual monomers (Figure 5.8.3(a)). The inset in the plot 

shows the volume derived from equation 44 and shows that the excess volume 

computed by the RÂ??ÁÆÅ-based Gaussian model (after the correction of the excess 

solvent exposed volume) monotonically and smoothly decreases as the separation 

increases. This smooth decrease can be better understood in terms of the change of 

average dielectric properties of the region between the monomers.  As the monomers 

move apart, they gradually allow solvent molecules to occupy this region. But as the 

solvent molecules begin to enter the space between the interfaces, the interfacial 

residues from either monomer are expected to favorably interact with it to 

compensate for the loss of favorable interactions in the bound state. Consequently, 

the solvent molecules are not as mobile as their counterparts in the bulk and, 

therefore, tend to have a lower dielectric response, as has also been observed 

experimentally[53]. This is the foundation reflected in the Gaussian-based smooth 

dielectric model proposed by us[86]. 



 

 

176 

                                

 
Figure 5.8.3: Profile of the change in the Roffset based Gaussian volume. 
(a) Change in the volume of the Barsnase-Barstar complex output by the modified 
Roffset-based Gaussian model. The solid blue line depicts a smooth fit to emphasize 
the smooth trend. Inset: Difference of the volume output by the modified Roffset-based 
and the unmodified Gaussian model, that is supposed to depict the volume of solvent 
inaccessible crevices in the complex’s structure, as a function of separation distance. 
(b) Change in the solvent excluded volume (SEV) of the complex computed using 
3V[183] with a probe of radius 1.4Å as a function of the separation distance of the 
monomers. Inset: Volume of reentrant regions and solvent inaccessible crevices 
obtained by subtracting the van der Waals volume of the dimer from its SEV. The 
shaded region (gray) emphasizes the length scale of separation that is comparable to 
the diameter of the solvent probe (2.8Å). 

 

For the case of hard-sphere model, on the other hand, the volume increases 

from the initial value in the bound state till the separation is approximately 2Å. 

Subsequently, there is a drastic drop in the volume in the region from 2-4Å (shaded 

region in Figure 5.8.3(b)). The size of this region is typical of the solvent probe’s 
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diameter and drop occurs because the concave reentrant surfaces, previously 

bounding the solvent inaccessible crevices at the interface between the monomers, 

disappear at this degree of separation. The inset plot in Figure 5.8.3(b) shows this 

loss of the solvent inaccessible volume bound by the reentrant surfaces. This volume 

is simply derived by subtracting the SEV of the dimer system from its vdW volume. 

The sudden loss of reentrant volume at the interfacial region implies that solvent 

molecules can enter this region and retain the dielectric response in bulk. Although, 

this model of dielectric distribution is conventional in PB modeling of solvated dimer 

systems, it fails to capture the possibility of interaction of the newly exposed 

interfacial residues with the solvent.  

5.9 Limitations of the Gaussian model with large 𝑹𝒐𝒇𝒇𝒔𝒆𝒕 

There is a practical risk associated with using radius offsets comparable in 

magnitude to the radius of atoms (e.g. RÂ??ÁÆÅ of 0.9 Å). The Gaussian model of Grant 

and Pickup was designed and optimized to deliver vdW volume and SA but only in 

the limit of weakly overlapping atoms[186, 187]. Thus, augmenting the atomic radius 

also increases the degree of overlap of atoms and this brings the Gaussian model very 

close or likely beyond its limit of applicability. With large overlaps and by virtue of 
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the Gaussian product theorem (Equation 4), the volume of the overlapping regions 

is overestimated with respect to what a hard-sphere model would deliver with the 

same set of augmented radii. Mathematically, as the overlapping region of any two 

atoms grows in volume, the volume of the atom pair grows proportionally to the 

product of the volumes of the individual atoms (V2, where V is the volume of one 

atom). Geometrically, however, if two atoms of similar volumes overlap significantly 

in space, the volume of the atom pair is proportional to the volume of the larger of 

the two atoms (or V). This fundamental problem can lead to errors in volume and 

SA estimates.  

To test the effect of offsets, the van der Waals volume using the Gaussian 

model and the hard-sphere model were computed when both the models were 

provided with augmented atomic radii. This deliberately increased the degree of 

overlap of atoms due to their increased radii. By systematically varying RÂ??ÁÆÅ from 

0.0-1.2Å, their distribution was compared and the relative differences were measured 

(Figure 5.9.1).  The overall trend indicates that as the value of RÂ??ÁÆÅ is increased, 

the Gaussian and hard-sphere volumes start to deviate appreciably. Volumes 

obtained from the Gaussian model increase exponentially while volumes obtained 

using the hard-sphere model saturate after a certain point. With no offset, the 
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volumes from the two models deviate only by ~7% (the difference in the vdW 

volumes) but this increases to ~41% when the radii are augmented by an offset of 

1.0Å and to ~55% when augmented by an offset of 1.2Å. This exponential deviation 

reflects the overestimation of the overlap volumes that is geometrically incorrect.  

 

Figure 5.9.1: Breakdown of the Gaussian model of molecular volume and surface area. 
Comparison of the van der Waals volume from the Roffset-based Gaussian model 
(without correction of the excess solvent-exposed volume) and hard-sphere models 
when augmented radii for atoms are used. Distributions and percent deviations 
(RMSRD) are computed for the protonated and minimized crystal structures of 74 
proteins.  (a) Distribution of volume output by the Roffset-based Gaussian model (blue) 
computed with various Roffset values ranging from 0.0 through 1.2 Å, compared with 
the distribution of hard-sphere volumes (pink) computed using the same set of 
augmented radii. Each distribution is represented by a boxplot (see Appendix A.12). 
The dashed lines connecting the medians of the boxes highlight the overall trend. (b) 
%RMSRD of the volume obtained using the Roffset-based Gaussian model with respect 
to the volume output by the hard-sphere model as a function of Roffset. 
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This aspect of the Gaussian model will pose methodological issues if it used 

to compute the solvent accessible surface area (SASA) of solutes using the definition 

used by the hard-sphere model. By that definition, SASA is essentially the van der 

Waal surface area obtained when the radius of each atom is augmented by the radius 

of the solvent probe (typically 1.4Å). But if an RÂ??ÁÆÅ value of 1.4Å is used in order 

to obtain SASA using the Gaussian model, it will be asked to operate beyond its 

range of applicability. Though this idea was titillated by Grant and Pickup in their 

original work[64], Weiser et. al.[186] emphasized the issue with such an approach. 

Weiser et. al.[186] also discussed other parametrical modifications to obtain SASA 

but carefully described their limitations too. 

5.10 Summary 

This chapter presents a novel grid-based algorithm of identifying overlapping 

pairs of atoms in conjunction with the analytical approach of a Gaussian-based 

model[64] for computing MVs and surface areas(SAs). The primary motivation for 

this design was to integrate into Delphi[70], a new feature for determining non-polar 

parts of the free energy. This grid-based algorithm makes a simultaneous use of a 

cubic 3D grid-map constructed for Delphi’s finite-difference based operations and by 
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doing so, it incurs very little to no time in identifying the pairs of atoms that overlap 

in space. The validation of the grid-based algorithm in terms of the final volume/SA 

output, accuracy in identifying overlapping atom pairs and time-efficacy shows that 

the method is robust and credible for an integrated use with future versions of Delphi 

for MM/PBSA analyses. The integration of the Gaussian-based model of volume/SA 

with the Gaussian-based model of dielectric distribution of Delphi[86] also promotes 

a description of solvated biomolecular systems devoid of unphysical and 

discontinuous dielectric separation. This work brings us one step closer to having an 

integrated platform for MM/PBSA calculations using a physically appealing, surface-

free approach to evaluate the thermodynamics of solvation, binding and 

folding/unfolding of proteins in the framework of implicit solvent models.  
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6 COMPENDIUM 

Electrostatic and geometric properties, respectively, deliver the polar and the 

non-polar components of the solvation and binding free energy of a molecular system. 

The polar component signifies the stability of the molecule in a solvent bath 

(typically water) resulting from the balance between the intramolecular electrostatic 

interactions and molecule-solvent interactions. The non-polar component, on the 

other hand, signifies the work required to place a low-dielectric value cavity in the 

bulk of a polar, higher-dielectric solvent. By virtue of the state-function nature of 

the free energy, these components, add together to provide the energy of transfer of 

the molecule in question from gas-phase to the solvent.  

This dissertation presents a detailed account of a Gaussian-based model of 

atoms designed to model electrostatic and geometric properties of biological 

molecules. The particular design of this model is constructed to work in conjunction 

with the Poisson-Boltzmann (PB) formalism of continuum electrostatic model. The 

design is motivated by the understanding that biomolecules and solvent constantly 

interact with each other and update their configurations and that these interactions 

are critical to its function and stability.  
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In the conventional setup, the solute region is depicted using a low dielectric 

value while the solvent region is assigned a higher dielectric value. The solute region 

is characterized by its constituent atoms represented by explicit positions, partial 

charges and radii (obtained from a force-field) while the solvent region is represented 

as a structureless dielectric continuum. A dielectric boundary is conventionally used 

to mark the separation of the two piecewise homogeneous dielectric regions. This is 

also referred to as the 2-dielectric model. But this arrangement overlooks the 

important solute-solvent interactions which are largely influenced by the density of 

atoms in the local environments. It also neglects the effect of the solvent molecules 

that find way into the interstitial regions in the solute’s structure by treating them 

at the same footage as the bulk solvent. These elements can discount the critical 

solvation effects that can lead to a misinterpretation of the energies output by solving 

PBE.  

In the Gaussian-based setup, the atoms of the solute are represented by 

smooth functions which symbolize the volume of a space that they occupy. By doing 

so, a smoother transition of dielectric values is established and a strict dielectric 

boundary, which imposes theoretical as well as numerical challenges, is discarded. 

With a matured and justified mathematical basis, the Gaussian-based model can be 
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used for estimating the polar component of the solvation free energy and determine 

geometrical attributes of the molecule which subsequently can be used to obtain the 

non-polar component as well. 

In Chapter 1, the aforementioned concepts are extensively described. Since a 

major fraction of this work involved working with computational package called 

Delphi, its functionality, algorithm and applications are also introduced.  

In Chapter 2, the mathematical details of the Gaussian-based atomic model 

and the derivation of a smooth Gaussian-based dielectric model from it are presented. 

The chapter provides a detailed understanding of the motivations of this model and 

illustrates its ability to resolve some key challenges retained in the conventional 2-

dielectric setup. It also emphasizes the approach used to account for the contribution 

of the electrolyte/salt concentration in the Gaussian model. Through qualitative 

means mostly, the chapter offers a visual clarity of the Gaussian-based atomic and 

dielectric model and its ability to represent molecular systems and phenomena in a 

physically appealing way. 

In Chapter 3, observations that support the idea of Gaussian-based model 

and its likes are presented and are carefully interpreted. Since the idea of the 

continuum electrostatics is to “average-out” the effect of the numerous solvent 
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degrees of freedom present in the explicit solvent representation, an attempt to assess 

observations made from explicit solvent simulations is discussed. It is shown that a 

simple averaging can ignore some very interesting features and structural attributes 

of the solvent and overlook the effect of local packing of atoms. The observations 

offer concrete evidence for an inhomogeneous dielectric model that provides 

differential treatment to the solvent as well as the solute depending largely on their 

local environments. Overall it presents a proof of concept of the Gaussian-based 

atomic model and its appropriate use for modeling a corresponding dielectric 

distribution. 

Chapter 4 highlights the ability of the Gaussian-based model to faithfully 

reproduce the ensemble averaged solvation energy of a library of protein molecules 

using a single configuration respectively. The observations reflect the capacity of the 

Gaussian model to capture the effects of configurational flexibility on the ensemble 

averaged energies from energy minimized configurations only. In the discussions that 

follow, the underlying reasons for such are investigated and the conclusive 

importance of the dynamics of salt-bridges in a protein’s structure is presented at 

good length. The outcome of the study presented in that chapter paves way for a 
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faster and a physically meaningful way of estimating ensemble average energy, which 

are more reasonable of a quantity to compare against experimental data. 

Chapter 5 shifts the focus to the use of the Gaussian-based atomic model for 

determining the volume and surface area of a molecule. This transition is meant to 

highlight the versatility of this model by showing that it can similarly be used for 

estimating the non-polar component of solvation and binding free energies. Though 

not conceptually novel, the contents of the chapter are arranged around a novel grid-

based algorithm of identifying overlapping atoms, which as an information is key to 

the computation of molecular volume and surface area. The motivation of this 

development was to expand the use of Delphi beyond the calculation of the 

electrostatic or polar components of solvation free energy. The ability introduced 

thereafter makes Delphi’s energy calculations more versatile and impactful as it can 

now estimate the total solvation free energy in a consistent manner.  

Through the contents – the observations and their interpretations, presented 

here, the meaningfulness of the Gaussian-based atomic model for modeling 

electrostatic and geometric properties of biological molecule is demonstrated. These 

works also pave ways for future developments that are bound to be promising. Some 

of these works are currently underway.  
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APPENDICES 

A.1 Parameters for Energy minimization:  

Energy minimization (EM) in explicit water, GBIS or in vacuo were 

performed using 10000, 5000 and 5000 steepest descent (SD) steps, respectively. 

Minimization was terminated when the maximum force went below 100 KJ/mol/nm. 

A cut-off of 1.2 nm was used for the non-bonded forces for minimization in explicit 

water but they were revoked for GBIS and in vacuo minimizations. For the explicit 

water systems, periodic boundary conditions (PBC) with particle mesh-Ewald 

summation (PME) were also used to account for the long-range electrostatic 

calculations. For the other two minimizations, none of these were invoked.  

A.2 Parameters for MD simulation:  

All the MD simulations (equilibration and production phases) were carried 

out in explicit water environments. The same cut-offs along with PBC and PME 

were continued into these steps. The equilibration for all the proteins (in explicit 

water environments) started with constant volume-temperature (NVT) equilibration 
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and then was followed by constant pressure-temperature (NPT) equilibration and 

finally production phase. For each protein, 3 independent MD simulations were 

carried out, which means that three different initial velocities (by different random 

seeds) were used. Velocity rescaling was used to maintain constant temperature 

(300K) and Parrinello-Rahman barostat was used to maintain constant pressure (1 

atm). Harmonic restraints, with force constants of 1000 KJ/mol/nm2, were imposed 

on the protein heavy atoms for the NVT/NPT and the first 10ns of the production 

phase. Only the last 10ns of the production phase was used for sampling 

conformations. The other ancillary values were kept at their default values suggested 

by GROMACS. All the motion along covalent bonds in the system were constrained 

using the LINCS algorithm. 

A.3 Schematic of the Gaussian-based smooth dielectric function with exponential 

decay function. 

Two-fold modifications were made in the method of its implementation in 

Delphi.  
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(i)  The “surface” separating the solute phase from the external medium 

(medium-2) when computing the reaction field energy is drawn not based 

on a dielectric value but on the atomic density value (ρSF). This is done 

to fix the solute “volume” regardless of the ‘eref’ value of the internal 

reference dielectric constant since the ‘eref’ can influence the position of the 

dielectric-based surface but not that of a density-based surface.  

(ii) A smoother transition from this rather discontinuous “surface” to the 

external region for medium-2 was incorporated using an exponential 

function. Setting medium-2 as vacuum (e2 = 1), the smoothing term in 

the following form allows the smooth exponential decay (equation 27).  

 



 

 

190 

 

0 50 150 250

0
20

40
60

80

Gaussian in Water

Grid Index

ε 
(x

)

0 50 150 250

0
20

40
60

80

ρSF based Surface

Grid Index

ε 
(x

)

80 95 110

5
15

0 50 150 250

0
20

40
60

80

Expon. decay

Grid Index

ε 
(x

)

80 95 110

5
15

0 50 150 250

0
20

40
60

80

Gaussian in Water

Grid Index

ε 
(x

)

0 50 150 250

0
20

40
60

80

ρSF based Surface

Grid Index

ε 
(x

)

80 95 110

5
15

0 50 150 250

0
20

40
60

80
Expon. decay

Grid Index

ε 
(x

)

80 95 110

5
15

0 50 150 250

0
20

40
60

80

Gaussian in Water

Grid Index

ε 
(x

)

0 50 150 250

0
20

40
60

80

ρSF based Surface

Grid Index

ε 
(x

)

80 95 110

5
15

0 50 150 250

0
20

40
60

80

Expon. decay

Grid Index

ε 
(x

)

80 95 110

5
15

0 50 150 250

0
20

40
60

80

Gaussian in Water

Grid Index

ε 
(x

)

0 50 150 250

0
20

40
60

80

ρSF based Surface

Grid Index

ε 
(x

)

80 95 110

5
15

0 50 150 250
0

20
40

60
80

Expon. decay

Grid Index

ε 
(x

)

80 95 110

5
15

ε re
f = 

8.
0

ε re
f = 

4.
0

ε re
f = 

2.
0

ε re
f = 

1.
0



 

 

191 

Figure A. 1: The schematic illustrating the Gaussian-based smooth dielectric 
distribution of a 1D array of atoms placed arbitrarily. The schematic is shown for 
four different values of εref (1, 2, 4, 8). The left panel shows the distribution when 
the external medium is water (ε=80). The middle panel shows the distribution after 
demarcating a density-cutoff based “surface” that separates the solute from the 
medium-2 (vacuum here; ε=1) which is drawn when calculating solvation energy. 
The right panel shows the distribution that incorporates the exponential decay that 
allows a smoother transition of the dielectric from the “surface” to the external 
regions.  

Here, e’(r) is the dielectric value of a 3D point when the solute is present in 

vacuum and e(r) is the dielectric value assigned to that point when the protein’s 

presence in solvent was modelled. This form ensures that far away from the surface, 

the dielectric value is close to 1 and near the surface, it is close to the value that 

corresponds to 𝜌áâ . The schematic for these modifications can be visualized in 

Figure A. 1.  
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A.4 Anti-correlation of Coulombic energy and Polar solvation free energy 

 

Figure A. 2: The inversely proportional relation of the Coulombic interaction energy 
and the Polar component of the solvation free energy. The data presented here 
pertains to the 2000 configurations of the protein 2NVH sampled from 20ns MD 
trajectory performed under NPT conditions. Both, the Coulombic energy (𝑈 `�b`_aZ ) 
and the polar solvation energy (𝐺�`b�

�`b�m) were computed using Delphi using an internal 
dielectric value of 1 and solvent dielectric of 80. 
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Figure A. 3: Comparison of (a) ∆𝐺�`b�m�`b�  and (b) 𝑈 `�b of the 74 proteins minimized 
in different environments. The percent difference of the mean of the corresponding 
energy components w.r.t to that of the in vacuo minimized structure are also noted 
in parentheses. Legend: “In Vacuo” – structure minimized in vacuum, “Opt Xtal” 
– optimized crystal structure, “Expl Water” – Explicit solvent (TIP3P) and 
“GBIS” – Generalized Born Implicit solvent. 
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A.5 Fluctuations of all the salt bridges identified across the 74 proteins. 

To illustrate that the salt-bridges (SBs) present across the 74 proteins (484 in 

total), their occupancies in the MD generated ensembles was calculated. Occupancy 

of an SB was defined as the number of frames that SB was closed (O-N Distance < 

3.2 Ang) over the total number of frames (3000). This was expressed in percentage, 

and therefore, a SB with 100% occupancy was always closed in the ensemble and 

that with 0% occupancy in the ensemble was only present in the minimized structure 

but not in the ensemble. Any intermediate value must be understood accordingly.  
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Figure A. 4: Histogram showing the distribution of occupancies of all the salt-bridges 
that were identified across all the 74 proteins. 

 

For all the SBs, their occupancies were computed using the aforementioned O-

N distance criterion and the resulting distribution of the occupancy values are shown 

as a histogram in Figure A. 4. The histogram depicts that there are about 30 SBs 

that were always closed (occupancy ~ 100%) and around 25 of them never existed in 

the ensemble of their corresponding host protein. The rest of the SBs have variable 

occupancies ranging between 0-100%. This clearly indicates that in the MD generated 

ensembles, SBs were in general found to fluctuate between open and closed states 

(break and form respectively). 
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A.6 Changing Polar solvation free energy with internal dielectric distribution 

As one changes the protein dielectric (𝜖Zp	for the traditional 2-dielectric model 

or   𝜖m\Y	for the Gaussian-based smooth dielectric model), the value of the ∆GÛÂÃÜÝÁÂÃß  

changes. This change is inversely proportional. Due to the relatively simpler nature 

of the traditional dielectric model, it follows a 1/ε relationship. The analysis is done 

for structures minimized in vacuo and in solvent (GBIS/Explicit solvent).  

The εin values were set to 1, 2, 4 and 8 for the traditional dielectric model 

(TRAD) and the same values were used for εref of the Gaussian-based dielectric model 

(GAUSS). For the latter, sigma was equal to 0.93 and a density based “surface” was 

used to demarcate the protein region when computing the energies in vacuum 

(required in solvation energy calculation using Delphi). For more details, please see 

the preceding section or the METHODS in the main material. These calculations 

were applied to all the 74 proteins in our database and the resulting trends are 

illustrated in the form of boxplots. The results are shown in Figure A. 5. 
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Figure A. 5: Boxplots showing the distribution of ∆𝐺�`b�m�`b�  from 74 proteins for each 
of the internal dielectric values (1,2,4,8) when applied using the traditional dielectric 
model (left) and the Gaussian-based dielectric model (right). The top panel (a, b) 
show the trend for in vacuo minimized structures and the middle (c, d) and bottom 
(e, f) show that for structures minimized in GBIS and explicit solvent, respectively. 

 

A.7 Average Dielectric distribution using the Gaussian-based dielectric model 

The regions rich in the non-polar, polar and titratable residues across all the 
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in terms of its Euclidean distance from the geometric center of the protein that 

contains it (host protein) normalized by the protein’s radius of gyration (Rgyr). This 

was done to attain uniformity across the proteins which have variable sizes and 

geometry.  

After applying the Gaussian-based model to the proteins using Delphi, the 

respective ‘epsilon maps’ were generated. The average dielectric at a radial distance 

from the center of a protein was calculated by identifying all the grid points that lie 

in a spherical shell of that radius and thickness 0.2 Ang and averaging the dielectric 

values on them.  

Figure A. 6 shows how the average dielectric constant obtained from the 

Gaussian-based dielectric model features at different regions of the proteins in terms 

of the population of the non-polar, polar and titratable residues. In addition, we also 

determined plotted the distribution of the salt-bridge forming titratable residues as 

a function of the normalized distance. All the calculations were done using the in 

vacuo minimized structures of the 74 proteins. 
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Figure A. 6: Plots showing the average dielectric value (c) obtained from the 
Gaussian-based dielectric model features at different regions of the proteins in terms 
of the population of the non-polar, polar and titratable residues (a). In addition, the 
salt-bridge forming titratable residues are also considered (b). 
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A.8 Effect of grid-resolution on neighbors identified by the grid-based algorithm 

The grid-based algorithm presented in the work is designed to identify the 

pair of atoms that overlap in space. That a neighbor is a “true” neighbor was verified 

by examining if the distance between their centers was less than or equal to the sum 

of their atomic radii plus some allowance (equation 12 in the main article). If a 

neighbor is found using both methods, we have a “True positive” case. But if it is 

not a neighbor based on the distance criteria but based on the grid-based algorithm, 

it is a “False Positive” case. The opposite renders a “False Negative” case. 

For the purposes of validation of the algorithm, we computed the percentage 

of “False negative” and “False positive” cases. The former tells the number of 

neighbors wrongly discarded. The latter population will provide an assessment of the 

extra number of neighbors found using the grid-based algorithm compared to the 

distance-based method. The former can have an effect on the accuracy of the 

computed volumes and surface areas because of the absence of certain pairs which 

should have been actually present (see Figure 3(f) in the main article). The latter, 

however, only increases the number of neighbors that will be dealt with while 

computing volume overlaps and other related terms using the Gaussian model’s 
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formulation. The more the number of extra pairs identified in the process, more the 

amount of time taken to complete all the computation.  

Grid-resolution was found to have an effect on the number of “False negative” 

cases (see Figure A. 7) and is likely the cause for increased runtime (Figure 5.5.1 

in the main article). With increase in the number of grids/Å, the population of the 

“False positive” cases grows.   
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Figure A. 7: Percentage of atom pairs estimated to be overlapping in space using 
the grid-based algorithm and not using the distance criteria (also termed as the 
“False positives”) plotted as a function of the scale or grid-resolution (grids/Å). For 
each value of grids/Å, the distribution of the percent of “False positives” is obtained 
using the data from our library of 74 proteins. Each distribution is represented using 
a boxplot, the design of which represents the median and the inter-quartile range of 
the distribution. 

 

A.9 Roffset to obtain the best match with respect to the solvent excluded volumes 

(SEVs): 

The value of Roffset input to the modified Gaussian model[64] was 

systematically varied from 0.0 to 1.2 Å in steps of 0.1Å to seek the one that offered 

the least percent difference from the SEV computed by the package 3V[183] using a 

solvent probe of radius 1.4Å.  A non-zero offset is expected to increase the volume 

occupied by each atom artificially and by doing so, make the Gaussian model account 

for the small crevices and interstitial regions in the structure in the solute volume. 

For each Roffset, the volume computed by the modified Gaussian model was compared 

with SEV and the goodness of agreement was quantified by the slope and intercept 

of a linear regression, a correlation coefficient (R2) and root mean square relative 
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difference (RMSRD). For each Roffset, the values of these quantities are listed in Table 

A. 1. 

Table A. 1: Slope and intercept of the linear regression, correlation coefficient and 
%RMSRD quantifying the quality of the agreement provided by the volume computed 
by Roffset –based modified Gaussian model and the SEV computed using a hard-sphere 
probe of radius 1.4Å with 3V[183]. 

Roffset (Å) Slope Intercept (Å3) Correlation 
(R2) 

%RMSRD 

0.0 0.70 355.27 0.999 26.7 
0.1 0.71 356.56 0.999 26.3 
0.2 0.72 359.51 0.999 25.3 
0.3 0.73 362.77 0.999 23.7 
0.4 0.75 365.06 0.999 21.4 
0.5 0.78 365.63 0.999 18.5 
0.6 0.82 362.45 0.999 15.0 
0.7 0.86 358.84 0.999 11.0 
0.8 0.90 342.49 0.999 6.6 
0.9 0.95 326.22 1.000 2.3 
1.0 1.00 308.74 1.000 3.5 
1.1 1.05 292.86 1.000 8.2 
1.2 1.10 279.82 1.000 12.9 

A.10 Roffset to obtain the best match with respect to the volume of the interstitial 

regions in the solute 

These Roffset values were also assessed in order to find the one that offered the 

best match with the volume of the interstitial regions, computed using the package 
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ProteinVolume[176]. This volume is somply the difference of the SEV and the van 

der Waals volume of a solute. For the Gaussian model, the equivalent is obtained by 

taking the difference of the volume obtained using the modified Roffset-based Gaussian 

model and the original unmodified Gaussian model. Using the same quantities used 

above, the goodness of agreement was quantified for each Roffset. For each Roffset, the 

values of these quantities are listed in Table A. 2. 

Table A. 2: Slope and intercept of the linear regression, correlation coefficient and 
%RMSRD quantifying the quality of the agreement provided by the volume of the 
interstitial regions in the structure computed by by taking the difference of the volume 
obtained using the modified Roffset-based Gaussian model and the original unmodified 
Gaussian model and the same computed using the hard-sphere model with 
ProteinVolume[176]. 

Roffset (Å) Slope Intercept (Å3) Correlation (R2) %RMSRD 
0.1 0.01 8.34 0.962 98.6 
0.2 0.04 31.57 0.965 94.7 
0.3 0.09 67.88 0.969 88.3 
0.4 0.17 116.17 0.973 79.3 
0.5 0.26 175.46 0.977 67.8 
0.6 0.37 242.39 0.981 54.1 
0.7 0.51 315.27 0.984 38.6 
0.8 0.65 393.44 0.986 22.1 
0.9 0.81 474.71 0.987 10.5 
1.0 0.97 558.67 0.987 21.5 
1.1 1.14 645.53 0.987 39.6 
1.2 1.29 734.30 0.986 58.1 
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A.11 Root Mean Square Relative Difference (RMSRD) 

The expression for the relative error between two sets of data, X and Y, 

relative to one of them (say X) with the same strength, N, is given by the following 

expression: 

𝑅𝑀𝑆𝑅𝐷 = 100 ∗
A∑ r𝑋Z − 𝑌Z𝑋Z

s
{

o
Z¥�

𝑁  

 

A.12 Interpreting boxplots 

Boxplots are a useful way of representing a distribution. By depicting the 

different quantiles for the underlying data, they provide a better sense of the 

distribution. Presenting the mean and the variance of a data assumes that the data 

is normally distributed, which, however, is not universal. Boxplots do not assume 

the category of the distribution of the data and can provide more information than 

just the mean and the variance. The figure below provides a guide to interpreting 

boxplots.  
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