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Role of MC1R in Cutaneous Malignant Melanoma 
 

Abstract 

Cutaneous malignant melanoma (CMM) is an epidemic cancer in the United States.  

Survival rates for invasive CMM have not decreased in past decades despite numerous clinical 

trials and various combinations of chemotherapy agents effectively used for other cancers.  

Recent exploration of a predisposing CMM gene, melanocortin 1 receptor (MC1R), associated 

with red hair phenotype in white individuals, has been investigated for its role in the mitogen-

activated protein kinase (MAPK) pathway.  This limited review will discuss the incidence, 

history, and risk factors for CMM.  Familial CMM will be identified, along with a brief review 

of melanocyte development and melanogenesis.  MC1R structure and function will be discussed, 

including MC1R’s role in the MAPK pathway.  The alternative network biology approach for 

CMM will be introduced, along with histology and cytogenetic techniques used to identify CMM 

mutations.  Finally individualized therapy for CMM will be touched upon along with 

recommendations for future research. 
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Incidence 

Skin is the largest organ in humans, so it is not surprising that skin cancer is the most commonly 

occurring cancer in the United States (U.S.). Two common types of skin cancer, basal cell and squamous 

cell, are highly curable.  Melanoma, the third most common and most lethal skin cancer, is considered an 

epidemic cancer, curable only in its initial stages (Gerstenblith, Goldstein, Tucker & Fraser, 2007; Blokx, 

van Dijk & Ruiter, 2010). Cutaneous malignant melanoma (CMM) is the fifth most common cancer 

among men and the sixth most common among women in the United States. Compared to all other 

cancers, the incidence of CMM among white individuals in the U.S. increased dramatically during the 

years 1975-2001. Incidence increased from 8.7 cases per 100,000 persons, to 22.6 cases per 100,000 

persons, an increase of more than 150% (Gerstenblith, et al., 2007).  Since 1930, the incidence has 

increased more than 2000 % (American Cancer Society [ACS], 2011). The National Cancer Institute 

(NCI) estimates for 2008 were 62,480 new cases and 8,420 deaths from CMM (National Cancer Institute 

[NCI], 2010).   The American Cancer Society (ACS) predicted that over 76,000 Americans would 

develop CMM in 2011 alone. Incidence of CMM progressively increases with age and is one of the more 

commonly found types of cancer in the 20-35 year-old age group (Houghton & Polsky, 2002).  Lifetime 

incidence of developing melanoma has increased to 1 out of every 57 Americans (ACS, 2011).   

History 

Writings of Hippocrates in the 5th century B.C, refer to “black cancer” and “fatal black tumors 

with metastasis”.  In 1806, the French inventor of the stethoscope, Rêne Laennec, first described 

melanoma as a disease. He termed the disease, “melanosis”, from the Greek word for “black” (Ibrahim & 

Haluska, 2009; Chin, 2003).  Currently, melanoma can be classified into four types of melanoma:  CMM 

(superficial spreading melanoma), nodular melanoma, lentigo maligna melanoma and acral lentiginous 

melanoma.  About 90% of CMM and nodular melanomas arise on the skin, such as sun-exposed limbs, 

trunk and facial areas. Lentigo maligna melanoma takes years to develop from a pre-existing lentigo and 

is subsequently found in older persons.   Darker-skinned persons typically present with acral lentigo 
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melanoma in non-sun exposed sites; mucous membranes, nail beds, palms and soles of the feet 

(Melanoma Center, 2010).  Only 3-5% of melanoma arises in the ocular uveal tract and rarely in non-

cutaneous epithelial surfaces; the sinus and oropharnyx mucous membranes, esophagus, rectum and 

vagina (Houghton & Polsky, 2002). For this article’s purposes, CMM, the most common type of 

melanoma that represents over 70% of all malignant melanoma cases, will be considered.  

Pathogenesis 

CMM pathogenesis results from interactions of the environment with host/genetic factors.  Sun 

exposure as an environmental risk contributing to CMM development is widely accepted by the public; 

though debate still exists concerning which length of exposure, intermittent intense ultraviolet (UV) or 

chronic UV exposure is related to this increased risk (Chin, 2003).  An additional factor related to sun 

exposure is to consider what type of UV radiation contributes to CMM, the longer wavelength UVA 

radiation (320- 400 nm) or the shorter UVB radiation (280-320 nm).  UVB is considered the most 

carcinogenic waveband, inducing erythema or sunburn.   UVB absorption can result in DNA damage that 

can become mutations if not repaired.  DNA damage results in two types of lesions, photo products 

between adjacent pyrimidines, or pyridimine dimers formed between adjacent thymines (T) or cytosines 

(C).  Pyridmidine dimers are more carcinogeneic than photo products, three times as frequent and 

repaired less.  These DNA lesions can lead to C →T or CC→TT transitions. UVB wavelengths also cause 

C→A and G (guanine) →T transversions and breaks in DNA. As a result, UVB wavelengths are 1000 

times more effective at causing sunburn that UVA radiation. UVA radiation found in tanning salons, with 

its longer wavelengths penetrate deeper into the skin and is also able to mutate DNA. Damage to DNA 

through UVA radiation can be induced by absorbing non-DNA oxygen radicals, leading to breaks and 

mutations (Jhappen, Noonan, & Merlino, 2003).  General consensus among researchers is that intense 

intermittent sun exposure at any age is a more important environmental risk factor for CMM development 

than an individual’s sun exposure over their lifetime.   Recent data from the U.S. Nurses’ Health Study 

revealed that more than 10 lifetime-blistering sunburns increased the relative risk of CMM by 3-9 fold 
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(Miller & Tsao, 2010). CMM incidence is also influenced geographically by an individual’s proximity to 

the equator.  The incidence of CMM is two to three times greater in the southern U.S. as compared to 

northern U.S. regions.  Migrants with darker skin from higher CMM incidence areas in the southern U.S. 

are found to retain their high-risk status when they move to a lower CMM incidence region in the 

northern U.S. (Houghton & Polsky, 2002). 

 Risk Factors 

Skin cancer is primarily a disease among the white population. Major host factors associated with 

melanoma include increased numbers of nondyplastic and dysplastic nevi, fair hair color, light eye color, 

many freckles and inability to tan.  Atypical nevi are visible markers for increased risk of developing 

CMM.  White individuals have an average of 15-35 cutaneous benign nevi while individuals with more 

than 100 atypical nevi have an increased chance of developing CMM (Hocker, Singh & Tsao, 2008).  

Having a previous melanoma or nonmelanoma skin cancer also increases the risk for melanoma 

development (Rhodes, 2006; Gerstenblith, et al., 2007).  About 5 to 12% of CMM develops in individuals 

who have at least one affected first-degree relative (parent, sibling, or child), strongly suggesting that an 

individual’s family history of malignant cutaneous melanoma may include genetic risk factors.  In 

familial CMM (FCMM), compared with nonfamilial CMM, age at diagnosis is typically earlier, lesions 

are generally thinner (less than 1 mm in depth), and there is a higher frequency of multiple primary 

melanomas (Figure 1)   The lesions of FCMM individuals are histologically similar and the clinical 

course is not significantly different from nonfamiliar CMM (Gerstenblith, et al.).   Thus, FCMM appears 

to be a complex interaction of environmental, host and genetic factors. (Figure 2)  

Melanogenesis 

CMM is derived from melanocytic nevi, commonly referred to as moles, which are benign 

clusters of pigment-synthesizing skin cells, melanocytes.  Melanocytes make up one to two percent of the 

epidermal cell population, whereas keratinocytes, make up over 95% of the total epidermal cell 
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population (Jhappan et al., 2003).   Melanocytes are derived from neural crest progenitor cells that 

migrate to the epidermis during early human development (Ibrahim & Haluska, 2009).  Each melanocyte 

transfers melanin-containing organelles, termed melanosomes, through its dendrite tips to approximately 

36 basal and suprabasal keratinocytes, thereby forming the epidermal melanin unit.  The function of 

melanocytes is to synthesize, store and transfer melanin pigments to surrounding epithelial cells.  Melanin 

can absorb UV photons and free radicals induced by UV wavelengths before they interact with other 

cellular components. Melanosomes scattered throughout the epidermis provide a highly protective screen 

designed to absorb and scatter damaging UV radiation (Jhappen et al.). 

The melanin in melanosomes is produced when a positive skin cell regulator, melanocortin 1 

receptor (MC1R), a guanine-protein-coupled receptor (GCPR) with seven transmembrane domains, is 

activated by its ligand peptide, α-melanocyte stimulating hormone (α-MSH). The G (guanine- nucleotide 

binding) family of proteins in the skin cell’s cytoplasm bind to MC1R, transmitting its signals to adenyly 

cyclase.  This enzyme then catalyzes the conversion of cytoplasmic ATP (adenosine triphosphate) to 

cAMP (cyclic adenosine monophosphate).  The increased levels of cAMP activate protein-kinase A 

(PKA), which in turn translocates into the nucleus of the cell to phosphorylate CREB (cAMP response-

element binding protein ) (Herraiz, Jiménez-Cervantes, Zanna & Garcia-Borrón, 2009). The 

phosphorylated CREB then upregulates expression of microphthalmia-associated transcription factor 

(MITF), a helix-loop-helix transcription factor.  MITF binds to the promoters of E box consensus 

sequences, dopachrome tautomerase, tyrosinase-related protein 1 (TYRP 1) and the rate-limiting enzyme, 

tyrosinase, which synthesize melanin production in the melanosomes (Herraiz et al., Hocker et al.,2008; 

Jhappan et al., 2003, ) (Figure 3).  Melanin has two distinctive types, red/yellow pheomelanin, present in 

red hair and freckled individuals, and black/brown eumelanin, present in individuals with dark skin and 

hair (Jhappan et al.; Palmer et al., 2000).  Pheomelanin has a decreased UV-light protective capacity and 

is believed to produce metabolites that are cytotoxic and mutagenic.  MC1R mutations are known to shift 
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the balance of pheomelanin and eumelanin depending on their regulatory functions and associations with 

other melanoma-predisposed genes (Chin, 2003). 

MC1R Gene 

The MC1R gene may be identified by numerous names.  MC1R’s full names are melanocyte-

stimulating hormone receptor, melanocortin receptor, or melanocortin receptor 1.  Alternative, shorter 

abbreviations besides MC1R include MSH-R, and MC1-R. MC1R is an intronless, low-penetrance gene, 

containing only one highly polymorphic exon. MC1R is one of a family of five different melanocortin 

receptors, located on the positive strand of chromosome 16p24.3, with a genomic size of 3099 with the 

genomic sequence, chromosome 16:88,511,788-88,514,886 (USCS Genome Browser, 2010; Ibrahim 

&Haluska, 2009) (Figure 3).  

This 317 amino acid encoding-protein helps regulate melanocytic activities; nonfunctional MC1R 

has been linked with increased sensitivity to UV’s cytotoxic effects while loss-of-function mutations 

prevent sufficient production of eumelanin (Jhappan et al., 2003).  To date, no MC1R gain-of-function 

mutations for humans have been recorded. Over 75 nonsynonymous variations of MC1R exist that 

determine the variations in pigment and resultant human skin phenotypes.  Seven of these variants with 

significantly diverse allele frequencies in Caucasians impair the function of MC1R by reducing the 

stimulation of cAMP production and the resultant proteins; it appears that dark pigmented individuals 

possess fewer MC1R variants than light pigmented individuals.  Three of these MC1R variants, 

Arg151Cys, Arg160Trp, and Asp294His, have been identified as red-hair color variants due to their 

diminished in vitro receptor function (Ibrahim & Haluska, 2009). Carrying a single red-hair color variant 

is known to reduce the ability of the epidermis to respond to damage caused by UV light (Chin, 2003).  

Interaction of MC1R with Melanoma-Predisposing Genes 

Melanocyte proliferation, differentiation and migration are key events in normal human 

development.  Regulation of these events can be irreversibly altered at the genetic level by a mutated 
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developing melanoma cell.  Other melanoma-predisposing genes in addition to MC1R, such as CDKN2A 

(cyclin-dependent kinase inhibitor 2A) on chromosome 9p21, encodes for two predisposing melanotic 

tumor-suppressing genes, p16 and p14. These tumor-suppressing genes along with CDK4 (cyclin-

dependent kinase 4) on chromosome 12q14, have been identified based on their varying degrees of 

penetrance in germline melanoma (Ibrahim & Haluska, 2009).   In fact, two familial pedigree studies in 

separate countries showed that MC1R variants are associated with increasing penetrance of CDKN2A 

mutations from 50 to 84%, accompanied with a decrease in mean age onset of FCCM from 58 to 37 years 

of age (Box, 2001). Another study revealed an increase from 18 to 35% in CDKN2A penetrance with one 

MC1Rvariant and 55% increase in CDKN2A penetrance with a different MC1R variant (van der Velen, 

2001).  Clinical genetic testing is available for a CDKN2A gene, specifically the p16 gene.  The test is 

used to identify FCCM predisposition for preventive measures (Chin, 2003).  

MAPK Pathway 

CMM genes are unique and critically positioned within different and sometimes interacting 

signaling networks of the cell cycle.  Rather to refer the disruption of regulatory function by mutations in 

individual melanoma-encoded genes, it may be better to consider MC1R’s relationship to other genes 

within activated/suppressed pathways or networks (Hocker et al., 2008). The constitutively activated 

MAPK (mitogen-activated protein kinase) pathway in melanoma is involved in cell growth regulation.   

In melanocytes, the MAPK pathway is weakly stimulated by α-MSH signaling with MC1R. This 

signaling is insufficient to activate melanoctye proliferation.  However, more than 90% of melanoma 

tumors are known to have continuous hyperactive CMM cells in the MAPK pathway.  Current thought is 

that a hyperactive MAPK pathway is due to activating oncogenic mutations.   A vast majority of benign 

and malignant melanomas carrying these hyperactive mutations are found in one of two key MAPK 

oncogenes, BRAF (v-raf murine sarcoma viral oncogene homolog B1) or NRAS (neuroblastoma RAS 

viral oncogene homolog) (Hocker et al.; Smalley, 2010).   
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Mutations in CMM 

MAPK-activating mutations were first reported in NRAS; they occur in 15-20% of all CMM.  

The common mutation in NRAS is a point mutation of leucine changed to a glutamine.  However, most 

mutations reported for CMM are in BRAF, the serine-threonine kinase located downstream of NRAS.  

Recent genome-based high-throughput sequencing efforts have identified that at least 60% of all CMM 

hold at least 50 distinct mutations in BRAF (Smalley, 2010).  Development of CMM due to the 

unrepaired DNA damage from intermittent sun exposure has the highest rates of BRAF mutation.  MC1R 

polymorphisms may increase this tendency toward BRAF mutation development.  Although these BRAF 

mutations don’t bear the typical C>T (cytosine to thymidine) signature of other known UV radiation-

induced mutations, research findings suggest that MC1R polymorphisms with intermittent sun exposure 

result in BRAF mutations (Sekulic et al., 2008). 

  BRAF’s somatic missense mutations have been identified in the kinase domain. A single 

substitution, V600E BRAF, in the kinase domain accounts for 80% of mutations with 10-fold greater 

kinase activity than wild-type BRAF. A T1796A transversion at position 600 substitutes a glutamate for a 

valine.  This single base pair change makes kinase constitutively active, affecting downstream pathway 

events (Panka, Atkins, & Mier, 2006).  However, a majority of benign nevi were also found to possess the 

same V600E BRAF mutation, eliminating this mutation as a solo initiating event in CMM. A zebrafish 

model showed that BRAF activation led only to benign nevi development; progression to CMM in the 

zebrafish required concurrent p53 inactivation.  Thus, full potential of an oncogenic BRAF may be 

reached if it is combined with other genetic components (Hocker et al., 2008; Fecher, Amaravadi & 

Flaherty, 2008). 

Hypotheses, other than NRAS or BRAF mutations, may be considered to explain a constitutive 

MAPK signaling theory in invasive melanoma.  These include: an increased coupling of RAS (rat 

sarcoma viral oncongene homolog) to a c-KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene 
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homolog)  upregulated expression, an overexpression of wild-type RAS protein, fibroblast growth factor 

constitutive expression, upregulated growth factor receptors signaling errors such as found in c-MET(met 

proto-oncogene receptor) or reduced expression of the negative regulators of ERK (extracellular signal-

regulated kinase) (Fecher et al., 2008). CMM lacking activating mutations in NRAS or BRAF also may 

have genetic alterations in other downstream components of the MAPK pathway. Researchers and 

investigators have attempted to establish a correlation between BRAF’s mutational status and CMM 

progression but have not consistently shown a significant association.  Future research remains to be 

conducted regarding BRAF’s role in CMM.  BRAF appears to be the apparent key to melanoma 

tumorigenesis and is a crucial therapeutic target for CMM treatments (Hocker et al., 2008).  

CMM in Network Biology 

The complexity of signaling pathways in CMM could benefit from a network biology approach of 

explanation.  Interactions between CMM signaling molecules are viewed as links between interconnected 

nodes; the total of all these nodes make up a CMM cell signaling network.  The robustness associated 

with a CMM network approach can survive removal of one node from the network without impairing its 

functionality.  Attacking a CMM network with a treatment therapy targeting inhibition of the MAPK 

pathway would not result in a network failure; there exists additional network connections that would 

allow the mutated melanoma cell to circumvent the inhibited MAPK pathway.  However, if the CMM 

melanoma network was attacked from its most centrally connected points, called hubs, the CMM 

melanoma network would fail due to cellular apoptosis or tumor regression.  The present challenge for 

CMM therapy is to identify the key signaling hubs in the network to ensure that a mutated cell survival 

network would fail.  Treating CMM using the network approach would probably require combination 

therapies to inhibit multiple signaling pathways simultaneously.  Genetic screening would be required to 

identify pair wise combinations of signal transduction inhibitors for use in treating invasive CMM. Using 

a synthetic lethal approach would also allow identification of the pairs of signaling hubs that CMM 

therapy needs to target (Smalley, 2010). Unfortunately, the network biology approach for CMM is in its 
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initial phases; a consensus network for CMM is not available to date.  Currently, treatment for CMM is 

based on the histology of CMM’s solid tumors. 

Histology of CMM 

Histologically, there are five classifications to describe the progression from benign nevi to 

metastatic CMM.  The first classification includes acquired and congenital nevi without any dysplastic 

changes.  The dysplastic nevi may then progress to structural and architectural atypia. These first two 

stages are characterized by disruption of the epidermal melanin unit, resulting in increasing numbers of 

melanocytes in relation to the number of keratinocytes.  Radial-growth phase melanoma, the third 

classification, references to dysplastic nevi in the epidermis, still dependent on exogenous growth factors.  

Surgical excision of melanoma at this phase is usually curative.  At the fourth classification, vertical-

growth phase melanoma has escaped control of the keratinocytes, invades the epidermal layer, and 

penetrates into the dermis down through to the basement membrane of this skin layer, resulting in a two 

to four millimeter thickness of melanoma.  At this stage, the melanoma, usually a solitary tumor, acquires 

the potential to metastasize to other organs, preferably the lungs, liver and brain.  Final histological 

classifications results in a poor clinical outcomes despite current treatments (Chin, 2003) (Figure 4). 

Cytogenetics 

Besides histology, there is an increasing role for cytogenetics in the treatment of CMM.   

Currently cytogenetic techniques have increased researchers’ understanding of CMM tumor pathogenesis 

and have been used on a limited clinical basis.  Allelic imbalance (AI) analysis, to detect loss of 

heterozygosity, uses a polymerase chain reaction (PCR) based technique to detect copy number alteration 

of microsatellites. Comparative genomic hybridization (CGH) is used to compare the CMM tumor from 

normal reference DNA.  CGH has been used extensively in research, but has little clinical application. 

Since the 1980’s, fluorescence in situ hybridization (FISH) has been used to study CMM tumors, 

specifically to visualize copy number changes and translocations.  However, FISH continues to have 
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difficulty obtaining enough nuclei from small CMM tumors and is unable to link its information with 

histological information (Blokx et al., 2010).   

Using MC1R and other specific CMM predisposing genes, the multiplex ligation-dependent 

probe amplification method (MLPA) and high-resolution melting analysis (HRMA) are two methods that 

have been used for both research and diagnostic purposes.  MLPA is based on annealing of 45 probes 

with a target-specific sequence. PCR primers are used along with electrophoresis to separate and quantify 

PCR product to indicate DNA copy number.  MLPA is a good alternative for AI analysis and FISH 

because no wild-type DNA is needed and multiple probes can be tested in a single experiment.  HRMA 

uses the DNA’s dissociate behavior when DNA is heated to detect single base pair mutations.  The 

HRMA technique combines copy number detection with presence of hot-spot mutations.  Both of these 

new techniques have good sensitivity, are cost-effective and timely for use in the clinical setting. They 

can be used to determine which treatment modality should be employed to deregulate a signaling pathway 

such as MAPK (Bloks et al., 2010). 

Treatment 

Despite decades of chemotherapy clinical trials and interventions, invasive malignant melanoma 

continues to have a poor outcome.  No overall survival rate has been shown for nonspecific 

chemotherapy, immunotherapy with interferon, and radiation or retinoid therapies. Cancer vaccines have 

been proposed, but due to the heterogeneity of CMM, they have not received much attention.  Melanoma 

stem cells, also known as tumor-initiating cells, were thought to have attributes of “normal” stem cells.   

However, current therapies with chemotherapy showed that only the daughter cells died, with the 

melanoma stem cell surviving, resulting in tumor relapse (Sekulic et al., 2008).   Until 2011, the only 

Food and Drug Administration (FDA) approved therapies for advanced CMM were high dose interleukin 

2 (IL-2) and dacarbazine (Scheier, Amaria, Lewis & Gonzalez, 2011). Using current genomic technology 

may hold the key for improved treatment outcomes for CMM patients.  Molecular markers from 

melanoma tumors that undergo improved cytogenetic techniques that can lead to individualized therapy. 
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Inhibiting the MAPK signaling pathway at all of its levels is being investigated in a number of clinical 

trials.   

Inhibiting BRAF V600E mutation kinase activity in the MAPK pathway, by blocking cell 

proliferation and signals in the pathway, is the target for the newest therapy for advanced CMM, approved 

by the FDA in August, 2011. Vemurafenib (brand name Zelboraf) has the indication for treating 

metastatic or unresectable melanoma possessing the BRAF V600E mutation, when the mutation is 

detected by a FDA-approved test, the cobas 4800 BRAF V600 Mutation Test.  When compared in patient 

clinical trials with dacarbazine, vemurafenib showed statistically significant improvement in patient 

survival rates over dacarbazine or placebo.  However, BRAF inhibitors introduced into patients with a 

mutated RAS protein can lead to oncogenesis, by activating CRAF and signaling for a hyperactive 

MAPK pathway.  In this way vemurafenib and other BRAF inhibitors have the potential to induce 

tumorigenesis in other molecular pathways (Scheier, Amaria, Lewis & Gonzalez, 2011) (Figure 6). 

Summary 

CMM is not a singular, homogenous disease.  Development of CMM involves a combination of 

risk factors and signaling pathways to initiate melanogenesis.  With the advent of better cytogenic 

techniques, a well-researched network pathway and identification of key oncogenic alleles, researchers 

can apply significant findings from the bench to the clinical arena, ultimately discovering effective 

individualized therapies to stop progression and metastasis of invasive CMM.  Until then, individuals 

need to be aware of their individual risk factors and take appropriate preventive measures to control risk 

factors.  These preventative measures include limiting sun exposure, the routine use of sun protective 

measures and yearly visit to their dermatologist for a full body skin exam.   
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Figure 1 

 

Thin invasive melanoma.  Retrieved from 
http://www.dermpedia.org/image/thin-melanoma 
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Figure 2 
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Figure 3 

MSH-MC1R Regulation of Pigmentary Genes. Taken from Chin, L.  The Genetics of 
Malignant Melanoma:  Lessons From Mouse and Man, p. 563.  

 

 

 

 

 

 

 

 

 

 

 



18 
 

Figure 4 

 

MC1R gene location - chromosome 16p24.3 

Retrieved from http://ghr.nlm.nih.gov/dynamicImages/chromomap/MC1R.jpeg 
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Figure 5 

Histology Classification of CMM 

Retrieved from http://www.nature.com/nrc/journal/v3/n 8/images/nrc1145-i1.jpg 
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Figure 6 

Targeted therapy for BRAF V600 mutation  in advanced CMM by vermafenib.  
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