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POSETS FROM ADMISSIBLE COXETER SEQUENCES

MATTHEW MACAULEY AND HENNING S. MORTVEIT

Abstract. We study the equivalence relation on the set of acyclic orientations of an undi-
rected graph Γ generated by source-to-sink conversions. These conversions arise in the con-
texts of admissible sequences in Coxeter theory, quiver representations, and asynchronous
graph dynamical systems. To each equivalence class we associate a poset, characterize com-
binatorial properties of these posets, and in turn, the admissible sequences. This allows us
to construct an explicit bijection from the equivalence classes over Γ to those over Γ′ and
Γ′′, the graphs obtained from Γ by edge deletion and edge contraction of a fixed cycle-edge,
respectively. This bijection yields quick and elegant proofs of two non-trivial results: (i) A
complete combinatorial invariant of the equivalence classes, and (ii) a solution to the conju-
gacy problem of Coxeter elements for simply-laced Coxeter groups. The latter was recently
proven by H. Eriksson and K. Eriksson using a much different approach.

1. Overview.

Let OΓ be an acyclic orientation of the undirected graph Γ. A cyclic 1-shift (left) of a linear
extension π of OΓ corresponds to converting a source (the element π1) of OΓ into a sink, and
this gives rise to an equivalence relation on Acyc(Γ) denoted by ∼κ. We let κ(Γ) denote the
number of equivalence classes in Acyc(Γ) under ∼κ, and refer to the equivalence classes as
κ-classes.

This paper is organized as follows. After terminology and background in Section 2, we
show in Section 3 how to associate a poset to each κ-class, and we characterize structural
properties of these posets. This helps us better understand admissible sequences as a whole,
culminating in a bijection

(1) Θ: Acyc(Γ)/∼κ −→
(
Acyc(Γ′

e)/∼κ

) ⋃ (
Acyc(Γ′′

e)/∼κ

)
,

where Γ′
e and Γ′′

e are the graphs formed by deleting and contracting a cycle-edge e of Γ,
respectively. From this bijection, the recursion relation for κ(Γ) in [10] becomes an immediate
corollary, enumerating κ(Γ) through an evaluation of the Tutte polynomial. In Section 4, we
use our bijection to construct a complete invariant of Acyc(Γ)/∼κ, the set of κ-classes of Γ.
In Section 5, we review a connection to Coxeter theory, and show how the prior results easily
solve the conjugacy problem for Coxeter elements in all simply-laced Coxeter groups, and
how κ(Γ) enumerates the conjugacy classes of Coxeter elements. Finally, in the summary, we
briefly discuss how the equivalence relation ∼κ arises in other areas of mathematics such as
sequential dynamical systems, the chip-firing game, and the representation theory of quivers.
Throughout the paper, we maintain a running example (that we visit five times) using a
six-vertex graph Γ that should enhance the paper’s readability and motivate the main ideas.

2010 Mathematics Subject Classification. 20F55;06A06;05C20.
Key words and phrases. Acyclic orientation, admissible sequence, conjugacy class, Coxeter element, Coxeter

group, poset, quiver representation, Tutte polynomial.

1

http://arxiv.org/abs/0910.4376v2


2 MATTHEW MACAULEY AND HENNING S. MORTVEIT

2. Terminology and Background.

Let Γ be an undirected, simple and loop-free graph with vertex set v[Γ] = {1, 2, . . . , n}
and edge set e[Γ]. Let SΓ denote the set of total orders (i.e., permutations) of v[Γ]. Define
a relation ∼ on SΓ where π ∼ π′ if π = π1π2 · · · πn and π′ = π′

1π
′
2 · · · π

′
n differ by a single

adjacent transposition πiπi+1 7→ πi+1πi where {πi, πi+1} 6∈ e[Γ]. The reflexive transitive
closure of ∼ is an equivalence relation on SΓ denoted by ∼α. We denote the equivalence class
containing π by [π]Γ, and set

SΓ/∼α =
{
[π]Γ | π ∈ SΓ

}
.

This corresponds to partially commutative monoids as defined in [4], but restricted to fixed
length permutations over v[Γ] and with commutation relations encoded by non-adjacency in
the graph Γ. Those familiar with Coxeter theory will recognize the similarity of these equiv-
alence classes and the commutation classes [20] of reduced expressions of Coxeter elements.

Orientations of Γ are represented as maps OΓ : e[Γ] −→ v[Γ] × v[Γ], which may also be
viewed as directed graphs. The set of acyclic orientations of Γ is denoted by Acyc(Γ), and
we set α(Γ) = |Acyc(Γ)|. Each acyclic orientation defines a partial ordering on v[Γ] where
the covering relations are i ≤OΓ

j if {i, j} ∈ e[Γ] and OΓ({i, j}) = (i, j). The set of linear
extensions of OΓ contains precisely the permutations π ∈ SΓ such that if i ≤OΓ

j, then i
precedes j in π. Through the ordering of v[Γ], every permutation π ∈ SΓ induces a canonical
linear order on v[Γ]. Moreover, each permutation π ∈ SΓ induces an acyclic orientation
Oπ

Γ ∈ Acyc(Γ) defined by Oπ
Γ({i, j}) = (i, j) if i precedes j in π and Oπ

Γ({i, j}) = (j, i)
otherwise. The canonical bijection

(2) fΓ : SΓ/∼α−→ Acyc(Γ) , fΓ([π]Γ) = Oπ
Γ ,

identifies equivalence classes and acyclic orientations, and thus the number of equivalence
classes under ∼α is α(Γ).

For OΓ ∈ Acyc(Γ) and e = {v,w} ∈ e[Γ], let O
ρ(e)
Γ be the orientation of Γ obtained from

OΓ by reversing the orientation of the edge e. Let Γ′
e and Γ′′

e denote the graphs obtained
from Γ by deletion and contraction (see, e.g., [13, p. 415]) of e, respectively, and let OΓ′ and
OΓ′′ denote the orientations of OΓ inherited under these operations. (Since our graphs are
assumed to be loop-free, when we contract an edge {v,w}, we remove the resulting loop.)
The bijection

(3) βe : Acyc(Γ) −→ Acyc(Γ′
e) ∪Acyc(Γ′′

e)

defined by

OΓ
βe
7−→





OΓ′ , O
ρ(e)
Γ 6∈ Acyc(Γ) ,

OΓ′ , O
ρ(e)
Γ ∈ Acyc(Γ) and OΓ(e) = (v,w) ,

OΓ′′ , O
ρ(e)
Γ ∈ Acyc(Γ) and OΓ(e) = (w, v) ,

(4)

is well-known, and shows that one may compute α(Γ) through the recursion relation

α(Γ) = α(Γ′
e) + α(Γ′′

e) ,

valid for any e ∈ e[Γ]. It basically removes the edge e = {v,w} if it cannot be contracted, and
otherwise, it either contracts or removes it depending on its orientation. We illustrate this
with the following example, which we will revisit four more times throughout this article.
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v w

v′ w′

z

(a) O
a
Γ

v w

(b) O
b
Γ

v w

(c) O
c
Γ

Figure 1. An example of the map βe applied to three acyclic orientations of
a graph Γ. If contracting the edge e = {v,w} would introduce a directed cycle
(as in Oa

Γ), then we must delete it. Otherwise, we can either delete or contract

it, so we pick the convention that we delete it if it is oriented (v,w) (as in Ob
Γ),

and contract it if is oriented (w, v) (as in Oc
Γ).

Example 2.1. For an explicit example of βe, see Figure 1, which shows three acyclic orien-
tations of the same graph Γ, and a fixed edge e = {v,w}. (The vertices v′, w′, and z, which
will be referred to later, are only labeled once for clarity.) Call these orientations Oa

Γ, O
b
Γ, and

Oc
Γ, respectively. The map βe removes edge e from Oa

Γ because contracting it would result in a

directed cycle. Neither Ob
Γ nor Oc

Γ have a directed path from v to w other than the edge (v,w),
so in both cases, contracting e would give an acyclic orientation of Γ′′

e . By the definition of
βe in (4), βe removes e in Ob

Γ, and contracts it in Oc
Γ.

Via the bijection in (2), it is clear that mapping π = π1π2 · · · πn ∈ [π]Γ to π2 · · · πnπ1
corresponds precisely to converting the source vertex π1 in Oπ

Γ into a sink. We call such a
conversion a source-to-sink operation, or a click. Two orientations OΓ, O

′
Γ ∈ Acyc(Γ) where

OΓ can be transformed into O′
Γ by a sequence of clicks are said to be click-related. We write

this as c(OΓ) = O′
Γ where c = c1c2 · · · ck with ci ∈ v[Γ]. To clarify notation, we mean

c(OΓ) = ck(ck−1(· · · c2(c1(OΓ)))) .

Such as sequence c is called an admissible sequence, or a click-sequence. The former term
comes from the representation theory of quivers [1, 8], but we will usually stick to the latter due
to brevity, the overuse of the term “admissible sequence” throughout mathematics, and the
convenience of “click” doubling as a verb. It is straightforward to verify that this click-relation
is an equivalence relation on Acyc(Γ), and we also refer to click-related acyclic orientations as
κ-equivalent. Clearly, and as pointed out by V. Reiner [15, p. 309], one may also approach this
in the setting of total orders on v[Γ] by identifying elements that differ by (i) flips of adjacent
elements not connected in Γ and (ii) cyclic shifts. However, for our purposes, approaching
this at the level of acyclic orientations seems more natural in light of the bijection (2).

3. Constructing the Bijection Θ.

The bijection βe : Acyc(Γ) −→ Acyc(Γ′
e)∪Acyc(Γ′′

e) in (3) does not extend to a well-defined
map on κ-classes, i.e., Acyc(Γ)/∼κ−→ (Acyc(Γ′

e)/∼κ) ∪ (Acyc(Γ′′
e)/∼κ). Thus, we need to

take a different approach to construct our bijection. An edge e of an undirected graph Γ is
a bridge if removing e increases the number of connected components of Γ. An edge that is
not a bridge is a cycle-edge, or equivalently, an edge e is a cycle-edge if it is contained in a
cycle traversing e precisely once.
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Throughout, we will let e = {v,w} denote a fixed cycle-edge of the connected graph Γ,
and, for ease of notation, we set Γ′ = Γ′

e and Γ′′ = Γ′′
e . Recall that for OΓ ∈ Acyc(Γ) we let

OΓ′ and OΓ′′ denote the inherited orientations of Γ′ and Γ′′. Notice that OΓ′ is always acyclic,
while OΓ′′ is acyclic if and only if there is no directed path with endpoints v and w in OΓ′ .
Finally, we let [OΓ] denote the κ-class containing OΓ.

The interval [a, b] of a poset P (where a ≤ b) is the subposet consisting of all c ∈ P such
that a ≤ c ≤ b. Viewing a finite poset P as a directed graph DP , the interval [a, b] contains
precisely the vertices that lie on a directed path from a to b, and thus is a vertex-induced
subgraph of DP . By assumption, e[Γ] contains {v,w}, so for all OΓ ∈ Acyc(Γ) either v ≤OΓ

w
or w ≤OΓ

v. In this section, we will study the interval [v,w] in the poset OΓ (when v ≤OΓ
w)

and its behavior under clicks.

Definition 3.1. Let Acyc≤(Γ) be the set of acyclic orientations of vertex-induced subgraphs
of Γ. Define the map

I : Acyc(Γ) −→ Acyc≤(Γ)

by I(OΓ) = [v,w] if v ≤OΓ
w, and by I(OΓ) = ∅ (the null graph) otherwise. We will refer to

I(OΓ) as the vw-interval of OΓ.

Elements of Acyc(Γ) can be thought of as posets over v[Γ], and elements of Acyc≤(Γ) can
be thought of as certain subposets of these, though they need not be induced (because two
vertices on a directed path in Γ need not be on a directed path in an induced subgraph of
Γ). Through a slight abuse of notation, we will at times refer to I(OΓ) as a poset, a directed
graph, or a subset of v[OΓ]. In this last case, it is understood that the relations are inherited
from OΓ.

Let P be an undirected path in Γ of length-k, i.e., P = v0, v1, . . . , vk−1, vk where {vi−1, vi} ∈
e[Γ] for i = 1, . . . , k. Define the function

(5) νP : Acyc(Γ) −→ Z ,

where νP (OΓ) is the number of edges in Γ of the form {vi−1, vi} oriented as (vi−1, vi) in OΓ,
minus the number of edges oriented as (vi, vi−1). If P is a cycle (i.e., v0 = vk), νP is preserved
under clicks, and thus in this case, it extends to a map ν∗P : Acyc(Γ)/∼κ−→ Z. In [18],
J.-Y. Shi defines this function for Coxeter graphs containing a single cycle, referring to it as
Coleman’s ν-function (see [5]). The definition given here is more general, and will allow us to
extend Shi’s characterization of conjugacy classes to include all simply-laced Coxeter groups.

Example 3.2. Continuing with Example 2.1, consider the three orientations in Figure 1,
whose vw-intervals are the following:

I(Oa
Γ) = {v,w, v′, w′} , I(Ob

Γ) = {v,w} , I(Oc
Γ) = ∅ .

Next, consider the undirected (but oriented) path P = v, v′, w′, w, v (a cycle) and the corre-
sponding map νP , as defined in (5). It is easy to check that

νP (O
a
Γ) = 2 , νP (O

b
Γ) = 0 , νP (O

c
Γ) = 2 .

We conclude that Ob
Γ cannot be κ-equivalent to either Oa

Γ or Oc
Γ. Finally, if we consider the

undirected path Q = v, z, w, v, we have

νQ(O
a
Γ) = −1 , νQ(O

b
Γ) = −1 , νQ(O

c
Γ) = 1 .

Therefore, Oa
Γ ≁κ Oc

Γ, and hence all three of these orientations lie in distinct κ-classes.
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As we will see in Section 4, when taken over all cycles of Γ, the ν-function is a actually a
complete invariant, i.e., O ∼κ O′ if and only iff νC(O) = νC(O

′) for all cycles C in Γ. First,
we need to establish a series of structural results about the vw-interval. Since {v,w} ∈ e[Γ],
every κ-class contains at least one orientation OΓ with v ≤OΓ

w, and thus there is at least
one element OΓ in each κ-class with I(OΓ) 6= ∅. As the next result shows, this (non-empty)
choice of vw-interval is independent of the choice of representative from [OΓ], meaning that
there is a well-defined notion of the vw-interval of a κ-equivalence class. We formalize this
by extending the map I : Acyc(Γ) → Acyc≤(Γ) to a map I∗ : Acyc(Γ)/∼κ→ Acyc≤(Γ).

Proposition 3.3. The map I can be extended to a map

I∗ : Acyc(Γ)/∼κ−→ Acyc≤(Γ) by I∗([OΓ]) = I(O1
Γ) ,

where O1
Γ is any element of [OΓ] for which I(O1

Γ) 6= ∅.

Proof. It suffices to prove that I∗ is well-defined. Consider O1
Γ ∼κ O2

Γ with v ≤Oi
Γ
w for

i = 1, 2. Clearly, I(O1
Γ) and I(O2

Γ) contain v and w, so suppose that a ∈ I(O1
Γ) \ {v,w}.

Then a lies on a directed path P ′ from v to w in O1
Γ, of length k ≥ 2 (i.e., P ′ traverses

at least 2 edges). Let P be the cycle formed by adding vertex v to the end of P ′. Clearly
νP (O

1
Γ) = k − 1 since O1

Γ(e) = (v,w).
By assumption, O2

Γ ∈ [O1
Γ] with v ≤O2

Γ
w. Since νP is constant on [O1

Γ] it follows from

νP (O
1
Γ) = k − 1 = νP (O

2
Γ) that every edge of P ′ is oriented identically in O1

Γ and O2
Γ, and

hence that every directed path P ′ in O1
Γ is contained in O2

Γ as well. Therefore, a ∈ I(O2
Γ),

and the reverse inclusion follows by an identical argument. �

In light of Proposition 3.3, we define the vw-interval of a κ-class [OΓ] to be I∗([OΓ]). The
vw-interval will be central in understanding properties of click-sequences. First, we make a
simple observation without proof; it also appears in [19] in the context of admissible sequences
in Coxeter theory.

Proposition 3.4. Let OΓ ∈ Acyc(Γ), let c = c1c2 · · · cm be an associated click-sequence, and
consider any directed edge (v1, v2) in OΓ. Then the occurrences of v1 and v2 in c alternate,
with v1 appearing first.

Because {v,w} ∈ e[Γ], we can say more about the vertices in I(OΓ) that appear between
successive instances of in v and w in a click-sequence.

Proposition 3.5. Let OΓ ∈ Acyc(Γ), and let c = c1c2 · · · cm be an associated click-sequence
that contains every vertex of I(OΓ) at least once and with c1 = v. Then every vertex of I(OΓ)
appears in c before any vertex in I(OΓ) appears twice.

Proof. The proof is by contradiction. Assume the statement is false, and let a ∈ I(OΓ) be the
first vertex whose second instance in c occurs before the first instance of some other vertex
z ∈ I(OΓ). If a 6= v, then a is not a source in OΓ, and there exists a directed edge (a′, a). By
Proposition 3.4, a′ must appear in c before the first instance of a, but also between the two
first instances of a. This is impossible, because a was chosen to be the first vertex appearing
twice in c. That only leaves a = v, and v must appear twice before the first instance of w.
However, this contradicts the statement of Proposition 3.4 because {v,w} ∈ e[Γ]. �

The next result shows that for any click-sequence c that contains every element in I(OΓ)
precisely once, we may assume without loss of generality that the vertices in I(OΓ) appear
consecutively.
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Proposition 3.6. Let OΓ ∈ Acyc(Γ) be an acyclic orientation with v ≤OΓ
w. If c =

c1c2 · · · cm is an associated click-sequence containing precisely one instance of w, and no
subsequent instances of vertices from I(OΓ), then there exists a click-sequence c′ = c′1c

′
2 · · · c

′
m

such that (i) there exists an interval [p, q] of N with c′j ∈ I(OΓ) iff p ≤ j ≤ q, and (ii)

c(OΓ) = c′(OΓ).

Proof. We prove the proposition by constructing a desired click-sequence c′′ from c through
a series of transpositions where each intermediate click-sequence c′ satisfies c(OΓ) = c′(OΓ).
Such transpositions are said to have property T .

Let I = I(OΓ), and let A be the set of vertices in Ic = v[Γ] \ I that lie on a directed
path in OΓ to a vertex in I (vertices above I), and let B be the set of vertices that lie on
a directed path in OΓ from a vertex in I (vertices below I). Let C be the complement of
I∪A∪B. Two vertices ci, cj ∈ A∪B with i < j for which there is no element ck ∈ A∪B with
i < k < j are said to be tight. We will investigate when transpositions of tight vertices in a
click-sequence c of OΓ has property T , and we will see that this is always the case if ci ∈ B
and cj ∈ A. Consider the intermediate acyclic orientation after applying successive clicks
c1c2 · · · ci−1 to OΓ. Obviously, ci is a source. At this point, if cj were not a source, then there
would be an adjacent vertex a ∈ A with the edge {a, cj} oriented (a, cj). For cj to be clicked
as usual (i.e., as a source), a must be clicked first, but this would break the assumption that
ci and cj are tight. Therefore, ci and cj are both sources at this intermediate step, and so
the vertices ci, ci+1, . . . , cj are an independent set of sources, and may be permuted in any
manner without changing the image of the click sequence. Therefore, the transposition of ci
and cj in c has property T , as claimed. By iteratively transposing tight pairs in c, we can
construct a click-sequence with the property that every vertex in A comes before every vertex
in B. In light of this, we may assume without loss of generality that c has this property.

The next step is to show that we can move all vertices in A before v, and all vertices in B
after w via transpositions having property T . Let a be the first vertex in A appearing after
v in the click sequence c. We claim that the transposition moving a to the position directly
preceding v has property T . This is immediate from the observation that when v is to be
clicked, a is a source as well, by the definition of A, thus it may be clicked before v, without
preventing subsequent clicks of vertices up until the original position of a. Therefore, we may
one-by-one move the vertices in A that are between v and w, in front of v. An analogous
argument shows that we may move the vertices in B that appear before w to a position
directly following w. In the resulting click-sequence c′, the only vertices between v and w are
either in I or C. The subgraph of the directed graph OΓ induced by C is a disjoint union of
weakly connected components, and none of the vertices are adjacent to I. By definition of
A and B, there cannot exist a directed edge (c, a) or (b, c), where a ∈ A, b ∈ B, and c ∈ C.
Thus for each weakly connected component of C, the vertices in the component can be moved
within c′, preserving their relative order, to a position either (i) directly after the vertices
in A and before v, or (ii) directly after w and before the vertices of B. Call this resulting
click-sequence c′′. As we just argued, all the transpositions occurring in the rearrangement
c 7→ c′′ has property T , and c′′ contains all of the vertices in I in consecutive order, and this
proves the result. �

We remark that the last two results together imply that for the interval [p, q] in the state-
ment of Proposition 3.6, cp = v, cq = w, and the sequence cpcp+1 · · · cq contains every vertex
in I(OΓ) precisely once. A simple induction argument implies the following.
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Corollary 3.7. Suppose that OΓ ∈ Acyc(Γ) with v ≤OΓ
w, and let c = c1c2 · · · cm be a

click-sequence where w appears exactly k times, and no vertex from I(OΓ) appears in c after
the last instance of w. Then there exists a click-sequence c′ = c′1c

′
2 · · · c

′
m such that (i) there

are k disjoint intervals [pi, qi] of N such that cj ∈ I(OΓ) iff pi ≤ j ≤ qi for some i, and (ii)
c(OΓ) = c′(OΓ).

Proof. The argument is by induction on k. When k = 1, the statement is simply Propo-
sition 3.6. Suppose the statement holds for all k ≤ N , for some N ∈ N, and let c be a
click-sequence containing N + 1 instances of w. Let cℓ be the second instance of v in c,
and consider the two click-sequences ci := c1c2 · · · cℓ−1 and cf := cℓcℓ+1 · · · cm. By Proposi-
tion 3.6, there exists an interval [p1, q1] with p1 < q1 < ℓ, and by the induction hypothesis,
there exists k intervals [p2, q2], . . . , [pk+1, qk+1] with ℓ ≤ p2 < q2 < · · · < pk+1 < qk+1 such
that if cj ∈ I(OΓ), then pi ≤ j ≤ qi for some i = 1, . . . , k + 1. �

Let ηe : Acyc(Γ) −→ Acyc(Γ′) be the canonical map that sends OΓ to OΓ′ . This extends
naturally to a map η∗e : Acyc(Γ)/∼κ−→ Acyc(Γ′)/∼κ between κ-classes. Define

I∗
e : Acyc(Γ

′)/∼κ−→ Acyc≤(Γ)

by I∗
e ([OΓ′ ]) = I(O1

Γ) for any O1
Γ ∈ [OΓ] such that η∗e([OΓ]) = [OΓ′ ] with |I(O1

Γ)| ≥ 3, and
I∗
e ([OΓ′ ]) = (v,w) (that is, the subgraph induced by {v,w}) if no such acyclic orientation O1

Γ
exists. The following result relates the vw-intervals of Acyc(Γ)/∼κ and Acyc(Γ′)/∼κ through
a commutative diagram involving I∗ and I∗

e . An explicit example immediately follows the
proof.

Proposition 3.8. The map I∗
e is well-defined, and the diagram

Acyc(Γ)/∼κ
I∗

//

η∗e

��

Acyc≤(Γ)

Acyc(Γ′)/∼κ

I∗

e

99
s

s

s

s

s

s

s

s

s

s

s

commutes.

Proof. Let [OΓ′ ] ∈ Acyc(Γ′)/∼κ. If there is at most one orientation OΓ ∈ Acyc(Γ) such that
|I(OΓ)| ≥ 3 and ηe(OΓ) ∈ [OΓ′ ], or if all orientations of the form O1

Γ in the definition of I∗
e

are κ-equivalent, then both statements of the proposition are clear. Assume therefore that
there are acyclic orientations Oπ

Γ, O
σ
Γ ∈ Acyc(Γ) with Oπ

Γ ≁κ Oσ
Γ, but η

∗
e([O

π
Γ]) = η∗e([O

σ
Γ]) and

|I(Oπ
Γ)|, |I(O

σ
Γ)| ≥ 3. It suffices to prove that in this case,

(6) I(Oπ
Γ) = I(Oσ

Γ) .

This is equivalent to showing that the set of vw-paths (directed paths from v to w) in Oπ
Γ′

is the same as the set of vw-paths in Oσ
Γ′ . From this it will also follow that the diagram

commutes. By assumption, both of these orientations contain at least one vw-path. We
will consider separately the cases when these orientations share or do not share a common
vw-path.

Case 1: Oπ
Γ′ and Oσ

Γ′ share no common vw-path. Let P1 be a length-k1 vw-path in Oπ
Γ′ ,

and let P2 be a length-k2 vw-path in Oσ
Γ′ . Suppose that in Oπ

Γ′ there are k+2 edges along P2
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v w

v w
I∗

η∗e I∗
e

v w

v w
I∗

η∗e I∗
e

Figure 2. An explicit example of the commutative diagram relating the maps
η∗e , I

∗, and I∗
e from Proposition 3.8. The domain of these maps are actually

the sets of κ-equivalence classes, e.g., [Oa
Γ] (left) and [Ob

Γ] (right), but they are

shown acting on actual orientations (Oa
Γ and Ob

Γ) for clarity.

oriented from v to w, and k−2 edges oriented from w to v. Likewise, suppose that in Oσ
Γ′ there

are k+1 edges along P1 oriented from v to w, and k−1 edges oriented from w to v. If C = P1P
−1
2

(the cycle formed by traversing P1 followed by P2 in reverse), then

νC(O
π
Γ′) = k+1 + k−1 + k−2 − k+2 , νC(O

σ
Γ′) = k+1 − k−1 − k−2 − k+2 .

Equating these values yields k−1 + k−2 = 0, and since these are non-negative integers, k−1 =
k−2 = 0. We conclude that P1 is a vw-path in Oσ

Γ′ and P2 is a vw-path in Oπ
Γ′ , contradicting

the assumption that Oπ
Γ′ and Oσ

Γ′ share no common vw-paths.
Case 2: Oπ

Γ′ and Oσ
Γ′ share a common vw-path P1, say of length k1. If these are the only

vw-paths, we are done. Otherwise, assume without loss of generality that P2 is another vw-
path in Oπ

Γ′ , say of length k2. Then if C = P1P
−1
2 , we have νC(O

π
Γ′) = k1 − k2, and hence

νC(O
σ
Γ′) = k1 − k2. Therefore, P2 is a vw-path in Oσ

Γ′ as well. Because P2 was arbitrary, we
conclude that Oπ

Γ′ and Oσ
Γ′ share the same set of vw-paths. Since Case 1 is impossible, we

have established (6), and the proof is complete. �

Example 3.9. Consider the orientations Oa
Γ, O

b
Γ ∈ Acyc(Γ) from our running example (see

Figure 1). Since the vw-intervals of Oa
Γ and Ob

Γ are non-empty (see Example 3.2),

I∗([Oa
Γ]) = I(Oa

Γ) = {v,w, v′, w′} , I∗([Ob
Γ]) = I(Ob

Γ) = {v,w} .

The natural map η∗e simply removes the edge {v,w}, i.e.,

η∗e([O
a
Γ]) = [Oa

Γ′ ] , η∗e([O
b
Γ]) = [Ob

Γ′ ] .

Finally, Proposition 3.8 guarantees a well-defined map I∗
e satisfying I∗

e ◦ η∗e = I∗, and thus

I∗
e ([O

a
Γ′ ]) = I∗([Oa

Γ]) = {v,w, v′, w′} , I∗
e ([O

b
Γ′ ]) = I∗([Ob

Γ]) = {v,w} .

This is shown in Figure 2, though note that the domains are the actual κ-classes containing
the given orientations, not the orientations themselves.

Let OΓ ∈ Acyc(Γ) and assume I = I(OΓ) is non-empty. We write ΓI for the graph formed
from Γ by contracting all vertices in I to a single vertex, which we denote by VI . Note that if
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v w

Θ

v w

(a) O
a
Γ

Θ
7−→ O

a
Γ′

v w

Θ

vw

(b) O
b
Γ

Θ
7−→ O

b
Γ′′

Figure 3. An example of the map Θ applied to the orientations Oa
Γ and Ob

Γ
from Example 2.1 and Figure 1. If contracting the edge e = {v,w} would
introduce a directed cycle (as in Oa

Γ), then we must delete it. Otherwise (as

in Ob
Γ), contract it. Note that this happens precisely when (v,w) is the only

directed path from v to w.

I only contains v and w then ΓI = Γ′′
e . Moreover, OΓ gives rise to an orientation OΓI

of ΓI ,
and this orientation is clearly acyclic.

Proposition 3.10. Let O1
Γ, O

2
Γ ∈ Acyc(Γ) and assume I(O1

Γ) = I(O2
Γ). If O1

Γ ≁κ O2
Γ then

[O1
ΓI
] ≁κ [O2

ΓI
].

Proof. We prove the contrapositive statement. Set I = I(O1
Γ), suppose |I| = k, and let

v1v2 · · · vk be a linear extension of I. For any click-sequence cI between two acyclic ori-
entations O1

ΓI
and O2

ΓI
in Acyc(ΓI), let c be the click-sequence formed by replacing every

occurrence of VI in cI by the sequence v1 · · · vk. Then c(O1
Γ) = O2

Γ and O1
Γ ∼κ O2

Γ as
claimed. �

We can now utilize the results on poset structure just developed to establish a bijection

Θ: Acyc(Γ)/∼κ−→
(
Acyc(Γ′

e)/∼κ ∪ Acyc(Γ′′
e)/∼κ

)
,

valid for any cycle-edge e. For [OΓ] ∈ Acyc(Γ)/∼κ, let O
π
Γ denote an orientation in [OΓ] such

that π = vπ2 · · · πn and w = πi for i minimal. We define Θ by

(7) [OΓ]
Θ
7−→

{
[Oπ

Γ′′ ], ∃Oπ
Γ ∈ [OΓ] with π = vwπ3 · · · πn

[Oπ
Γ′ ], otherwise.

Note that [OΓ] is mapped into Acyc(Γ′′)/∼κ if and only if the only vertices in I∗
e ([OΓ]) are

v and w. Since κ-equivalence over Γ implies κ-equivalence over Γ′, Θ does not depend on the
choice of π, and thus is well-defined. We continue our running example below to illustrate
this.

Example 3.11. The orientations Oa
Γ and Ob

Γ from our running example are shown in Fig-
ure 3. Since I∗

e ([O
a
Γ]) = {v, v′, w′, w}, the map Θ removes the edge e = {v,w}. However,

since I∗
e ([O

b
Γ]) = {v,w}, the map Θ contracts e.

The results we have derived for the vw-interval now allow us to establish the following:

Theorem 3.12. The map Θ is a bijection.

Proof. We first prove that Θ is surjective. Let I = {v,w} and consider an element [OΓ′′ ] ∈
Acyc(Γ′′)/ ∼κ with Oπ

Γ′′ ∈ [OΓ′′ ] where π = VIπ2 · · · πn−1. Let π+ = vwπ2 · · · πn−1 ∈ SΓ.

Clearly [Oπ+

Γ ] ∈ Acyc(Γ)/ ∼κ is mapped to [OΓ′′ ] by Θ.
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Next, consider an element [OΓ′ ] ∈ Acyc(Γ′)/ ∼κ. If there is no element Oπ
Γ′ of [OΓ′ ] such

that π = vwπ3 · · · πn, then no elements of [OΓ] are of this form either, and by definition
[OΓ′ ] has a preimage under Θ. We are left with the case where [OΓ′ ] contains an element

Oπ
Γ′ such that π = vwπ3 · · · πn, and we must show that there exists Oπ′

Γ′ ∈ [OΓ′ ] such that

[Oπ′

Γ ] contains no element of the form Oσ
Γ with σ = vwσ3 · · · σn. Note that if σ = vwσ3 · · · σn,

then the vertices in I(Oσ
Γ) are precisely v and w. If the orientation OΓ′ had a directed path

from v to w, then the corresponding orientation OΓ ∈ Acyc(Γ) formed by adding the edge
e with orientation (v,w) has vw-interval of size at least 3, so by Proposition 3.3, the acyclic
orientation OΓ cannot be κ-equivalent to any orientation Oσ

Γ such that σ = vwσ3 · · · σn.
Thus it remains to consider the case when [OΓ′ ] contains no acyclic orientation with a

directed path from v to w. Pick any simple undirected path P ′ from v to w in Γ′, which
is possible since e is a cycle-edge. Choose an orientation in [OΓ′ ] for which νP ′ is maximal.
Without loss of generality we may assume that OΓ′ is this orientation. Let OΓ ∈ Acyc(Γ) be
the orientation that agrees with OΓ′ , and with e oriented as (w, v). Since we have assumed
that there is no directed path from v to w this orientation is acyclic. We claim that for any
σ = vwσ3 · · · σn one has Oσ

Γ 6∈ [OΓ]. To see this, assume the statement is false. Let P be the
undirected cycle in Γ formed by adding the edge e to the path P ′. Because e is oriented as
(v,w) in Oσ

Γ and as (w, v) in OΓ, we have νP (O
σ
Γ) = νP ′(Oσ

Γ′)− 1 and νP (OΓ) = νP ′(OΓ′)+ 1.
If OΓ and Oσ

Γ were κ-equivalent, then

νP ′(Oσ
Γ′)− 1 = νP (O

σ
Γ) = νP (OΓ) = νP ′(OΓ) + 1 ,

and thus νP ′(Oσ
Γ′) = νP ′(OΓ) + 2. Any click sequence mapping OΓ to Oσ

Γ is a click-sequence
from OΓ′ to Oσ

Γ′ . Therefore, Oσ
Γ′ ∈ [OΓ′ ], which contradicts the maximality of νP ′(OΓ′). We

therefore conclude that Oσ
Γ 6∈ [OΓ], that Θ([OΓ]) = [OΓ′ ], and hence that Θ is surjective.

We next prove that Θ is an injection. By Proposition 3.10 (with I = {v,w}), Θ is injective
when restricted to the preimage of [OΓ′′ ] under Θ. Thus it suffices to show that every element
in Acyc(Γ′)/ ∼κ has a unique preimage under Θ. By Proposition 3.8, every preimage of [OΓ′ ]
must have the same vw-interval I, containing k > 2 vertices. Suppose there were preimages
[Oπ

Γ] 6= [Oσ
Γ] of [OΓ′ ]. By Proposition 3.10, it follows that Oπ

ΓI
≁κ Oσ

ΓI
. We will now show

that this leads to a contradiction.
Assume that c = c1 · · · cm is a click-sequence from Oπ

Γ′ to Oσ
Γ′ . If one of π or σ is not

κ-equivalent to a permutation with vertices v and w in succession, then their corresponding
κ-classes would be unchanged by the removal of edge e. In light of this, we may assume
that π = vπ2 . . . πn−1w and σ = vσ2 . . . σn−1w, and thus that c1 = v and cm = w. By
Proposition 3.6, we may assume that the vertices in I appear in c in some number of disjoint
consecutive “blocks,” i.e., subsequences of the form ci · · · ci+k−1. Replacing each of these
blocks with VI yields a click-sequence from Oπ

ΓI
to Oσ

ΓI
, contradicting the fact that Oπ

ΓI
≁κ

Oσ
ΓI
. Therefore, no such click sequence c exists, and Θ must be an injection, and the proof is

complete. �

The main result in [10] is a recurrence relation for κ(Γ) under edge deletion and edge
contraction. This is an easy consequence of Theorem 3.12.

Corollary 3.13 ([10]). Let Γ be a finite undirected graph with e ∈ e[Γ], and let Γ′
e be the

graph obtained from Γ by deleting e, and let Γ′′
e be the graph obtained from Γ by contracting
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e. Then

(8) κ(Γ) =

{
κ(Γ1)κ(Γ2), e is a bridge linking Γ1 and Γ2 ,

κ(Γ′
e) + κ(Γ′′

e), e is a cycle-edge .

The first part involving a bridge is straightforward, while the second part is a direct con-
sequence of Theorem 3.12.

4. A Complete Invariant of Acyc(Γ)/∼κ.

Theorem 3.12 is more than just an alternative proof of the enumeration of κ(Γ). We can
utilize the explicit bijection to derive an additional interesting and useful corollary: When
taken over all cycles C in a graph Γ, νC is a complete invariant of Acyc(Γ)/∼κ. This result
is originally due to Pretzel [16], though the techniques are much different than the ones here.

Theorem 4.1. If νC(O
1
Γ) = νC(O

2
Γ) for every cycle C, then O1

Γ ∼κ O2
Γ.

Proof. Assume the statement is false and let Γ be a graph for which it fails, minimal with
respect to |e[Γ]|. Fix a cycle-edge e = {v,w}, and for any [OΓ] ∈ Acyc(Γ)/∼κ, call an
orientation Oπ

Γ ∈ [OΓ] distinguished with respect to e if π = π1π2 · · · πn such that (i) π1 = v,
and (ii) πk = w where k is minimal given that π1 = v. By assumption, there exists O1

Γ ≁κ O2
Γ

with νC(O
1
Γ) = νC(O

2
Γ) for every cycle C in Γ. Without loss of generality, we may assume

that O1
Γ and O2

Γ are distinguished orientations with respect to e = {v,w}. Define a vw-path
to be a directed path from v to w that does not traverse e. There are three cases to consider:

Case 1: Both O1
Γ and O2

Γ contain a vw-path. By definition of Θ, both Θ(O1
Γ) and Θ(O2

Γ) are
contained in Acyc(Γ′

e)/∼κ. Moreover, because Θ is a bijection, they are distinct elements in
Acyc(Γ′

e)/∼κ. Every cycle in Γ′
e is also a cycle in Γ, and therefore, νC′(Θ(O1

Γ)) = νC′(Θ(O2
Γ))

for every cycle C ′ in Γ′
e, contradicting the minimality of |e[Γ]|.

Case 2: Neither O1
Γ nor O2

Γ contain a vw-path. Since O1
Γ and O2

Γ are distinguished with
respect to e, Θ([Oi

Γ]) = [Oi
Γ′′ ] ∈ Acyc(Γ′′)/∼κ for i = 1, 2. Again, these two orientations are

distinct because Θ is a bijection. Any cycle C ′′ in Γ′′
e beginning and ending at the vertex

V (the image of v and w under contraction) can be canonically extended to a cycle C of Γ.
Therefore, νC′′(Θ(O1

Γ′′)) = νC′′(Θ(O2
Γ′′)), again contradicting the minimality of |e[Γ]|.

Case 3: Precisely one of O1
Γ and O2

Γ contain a vw-path. Without loss of generality, suppose
that P is a length-k vw-path in O1

Γ, and let C be the cycle formed by adding vertex v to the
end of P . Clearly, νC(O

1
Γ) = k−1, and by assumption, νC(O

2
Γ) = k−1 as well. However, this

means that every edge in P is oriented from v to w in O2
Γ, contradicting the assumption that

O2
Γ did not contain a vw-path. Therefore, Case 3 is impossible, and the proof is complete. �

Example 4.2. It is immediate from the recurrence (8) in Corollary 3.13 that κ(Γ) = 1 if
and only if Γ is a forest. Let Circlen be a chordless n-cycle, and Linen the line graph on n
vertices. Deleting or contracting any edge of Circle3 leaves a tree, and so κ(Circle3) = 2. For
n > 3, deleting an edge from Circlen leaves Linen, and contracting an edge leaves Circlen−1.
By Corollary 3.13, if n > 3, then

(9) κ(Circlen) = κ(Linen) + κ(Circlen−1) = 1 + κ(Circlen−1) .

From the base case of κ(Circle3) = 2, we immediately deduce that κ(Circlen) = n− 1.

Example 4.3. Let Γ be the undirected version of the orientations from our running example,
with edge e = {v,w} as before. Deleting e leaves Γ′

e, a 5-cycle. Contracting e leaves Γ′′
e , a
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v w

2

−1

v w

0

−1

v w

2

1

v w

0

1

v w

−2

1

v w

−2

−1

Figure 4. A transversal for Acyc(Γ)/∼κ, with the values of the complete
invariant (νP , νQ).

3-cycle with an extra edge hanging off (see Figure 3 in Example 3.11). By the recurrence (8)
in Corollary 3.13 along with (9),

κ(Γ) = κ(Γ′
e) + κ(Γ′′

e) = 4 + 2 = 6 .

Representatives from the six distinct κ-classes of Γ are shown in Figure 4. This particu-
lar transversal was chosen so that v is a source, and so the vw-intervals can be identified
immediately, and they are (from left-to-right)

{v, v′, w′, w} , {v,w} , {v, v′, w′, z, w} , {v, z, w} , {v, z, w} , {v,w} .

Note that the first two orientations in Figure 4 are Oa
Γ and Ob

Γ, and the third is κ-equivalent
to Oc

Γ. Letting P = v, v′, w′, w, v and Q = v, z, w, v be the paths as defined in Example 3.2,
the pair (νP , νQ) is a complete invariant of Acyc(Γ)/∼κ. For each of the six orientations, the
values of νP (OΓ) (top) and νQ(OΓ) (bottom) are shown in Figure 4.

5. Conjugacy of Coxeter Elements.

Our analysis of Acyc(Γ)/∼κ also gives a straightforward solution to the conjugacy problem
for Coxeter elements in simply-laced Coxeter groups. Before stating the theorem and proof,
we will briefly review the connection between κ-equivalence and Coxeter theory, as described
in [10]. A Coxeter group is a generalized reflection group, generated by n distinguished
involutions s1, . . . , sn by the presentation

W = 〈s1, . . . , sn | (sisj)
mij 〉 ,

where mij = 1 iff i = j, and mij ≥ 2 otherwise. If sisj has infinite order, then we say that
mij = ∞. The pair (W,S) of the group W with the generating set S is called a Coxeter
system, which is uniquely encoded by its Coxeter graph Γ, with vertex set S and edge set
{si, sj} for which mij ≥ 3, where each edge has weight mij . A Coxeter group is simply-laced
if each mij ≤ 3, thus every undirected graph is the Coxeter graph of a simply-laced Coxeter
group.

A Coxeter element is the product of the generators in some order, and there is a natural
bijection between the set C(W,S) of Coxeter elements

∏
i sπ(i) of a Coxeter group (see, e.g. [2])

with generators si for 1 ≤ i ≤ n and Coxeter graph Γ (ignoring bond strengths), and the set
of α-equivalence classes [π]Γ. This is clear since the commuting generators are precisely those
that are not connected in Γ. Thus, there is a natural bijection

(10) C(W,S) −→ Acyc(Γ) .

Moreover, conjugating a Coxeter element c =
∏

sπ(i) by sπ(1) corresponds to a cyclic shift,
i.e.,

sπ(1)(sπ(1)sπ(2) · · · sπ(n))sπ(1) = sπ(2) · · · sπ(n)sπ(1) ,
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since each generator si is an involution. Therefore, κ-equivalence naturally carries over to
an equivalence relation on C(W,S). The ν-function carries over as well – define νP (c) to be
νP (OΓ), where OΓ is the acyclic orientation of Γ corresponding to c. It is now elementary to
see that c, c′ ∈ C(W,S) are conjugate if c ∼κ c′. However, the converse of this statement was
not proven until 2009.

Theorem 5.1 ([6]). Let (W,S) be a Coxeter system. Then two Coxeter elements c, c′ ∈
C(W,S) are conjugate if and only if c ∼κ c′.

It follows immediately that the number of distinct conjugacy classes containing Coxeter
elements is exactly κ(Γ). Until the Erikssons’ proof, the result was known only for the special
case of C(W,S) when Γ was simply-laced and unicyclic, established by Shi in 2001 [18]. It
is elementary to weaken the simply-laced condition to the bond strengths being multiples
of three or infinite, which Shi mentions in [18]. The bijection in Theorem 3.12 applied to
Shi’s result for unicyclic Coxeter graphs yields a simple and elegant proof of the result for all
simply-laced systems, which we present below.

Proof. Suppose for sake of contradiction that the Coxeter elements c = c1c2 · · · cn and c′ =
c′1c

′
2 · · · c

′
n are conjugate with c ≁κ c′, and that wcw−1 = c′ for some w = w1 . . . wk ∈ W with

each wi ∈ S. By Theorem 4.1, there is some simple chordless cycle P = v0, v1, . . . , vm−1, vm
(i.e., v0 = vm) in Γ such that νP (c) 6= νP (c

′). Let SP = {si | i ∈ P}, and let Cm be the
(circular) Coxeter graph induced by the vertices in P . The Coxeter group generated by SP

is the affine Weyl group Ãm−1, and there is a natural homomorphism W
ϕ

−→ Ãm−1 defined
on the generators by

si
ϕ

7−→

{
si i ∈ P
1 i 6∈ P .

Since c and c′ are conjugate in W , ϕ(c) and ϕ(c′) are conjugate in Ãm−1. By choice of P ,
νP (c) 6= νP (c

′), and thus ϕ(c) ≁κ ϕ(c′). However, since the statement holds for unicyclic
graphs, we must have ϕ(c) ∼κ ϕ(c′), which is the desired contradiction. �

Theorems 4.1 and 5.1 give us an easy way to verify whether two Coxeter elements c and
c′ in any Coxeter group W are conjugate. Pick a cycle basis of the Coxeter graph Γ, and for
each cycle C, compute νC(c) and νC(c

′). By Theorem 4.1, c ∼κ c′ iff νC(c) = νC(c
′) for each

C. By Theorem 5.1, this is equivalent to c and c′ being conjugate in W . Therefore, conjugacy
of Coxeter elements can be verified in O(n2) steps, where n = |v[Γ]|. One application of this
is seeing how the conjugacy classes split as an edge {si, sj} is added to Γ (or equivalently, as
the relation (sisj)

mij is added to the group presentation).

6. Discrete Dynamical Systems, Node-firing Games, and Quiver
Representations.

We conclude with a brief discussion of how the equivalence relation studied in this paper
arises in various areas of mathematics. The original motivation came from both authors’
interest in sequential dynamical systems (SDSs). The equivalence relation ∼α arises naturally
in the study of functional equivalence of these systems. This can be seen as follows. Given a
graph Γ with vertex set {1, 2, . . . , n} as above, a state xv ∈ K is assigned to each vertex v of
Γ for some finite set K. The system state is the tuple consisting of all the vertex states, and is
denoted by x = (x1, . . . , xn) ∈ Kn. The sequence of states associated to the 1-neighborhood
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B1(v; Γ) of v in Γ (in some fixed order) is denoted by x[v]. A sequence of vertex functions

(fi)i with fi : K
d(i)+1 −→ K induces Γ-local functions Fi : K

n −→ Kn of the form

Fi(x1, . . . , xn) = (x1, . . . , xi−1, fi(x[i]), xi+1, . . . , xn) .

The sequential dynamical system map with update order π = (πi)i ∈ SΓ is the function
composition

(11) Fπ = Fπn ◦ Fπn−1
◦ · · · ◦ Fπ2

◦ Fπ1
.

By construction, if π ∼α π′ holds, then Fπ and Fπ′ are identical as functions, independent of
the choice of state space K or vertex functions. Thus, α(Γ) is a general upper bound for the
number of functionally non-equivalent SDS maps that can be generated over the graph Γ for
a fixed sequence of Γ-local functions. Moreover, for any graph Γ, there exist Γ-local functions
for which this bound is sharp [14]. A weaker form of equivalence is cycle equivalence, which
means that the dynamical system maps are conjugate (using the discrete topology) when
restricted to their sets of periodic points. In the language of graph theory, this means their
periodic orbits are isomorphic as directed graphs. For an update order π = π1 · · · πn, define
shift(π) = π2 · · · πnπ1. The following result shows how κ-equivalent update orders yield
dynamical system maps that are cycle equivalent.

Theorem 6.1. For any finite set K of vertex states, and for any π ∈ SΓ, the SDS maps Fπ

and Fshift(π) are cycle equivalent.

We refer to [11] for the proof of this result, as well as additional background on equivalences
of sequential dynamical systems, and applications of κ-equivalence to the structural properties
of their phase spaces. It is interesting to note that for the class of update sequence independent
(see [9]) sequential dynamical systems with binary states, there is an additional equivalence
on acyclic orientations that governs cycle equivalence: reversal of all edge orientations.

The chip-firing game was introduced by Björner, Lovász, and Shor [3]. It is played over
an undirected graph Γ, and each vertex is given some number of (but possibly zero) chips. If
vertex i has degree di, and at least di chips, then a legal move (or a “click”) of vertex i is a
transfer of one chip to each neighboring vertex. This may be viewed as a generalization of
a source-to-sink move for acyclic orientations where the out-degree of a vertex plays the role
of the chip count. The chip-firing game is closely related to the numbers game [2]. In the
numbers game over a graph Γ, the legal sequences of moves are in 1–1 correspondence with
the reduced words of the Coxeter group with Coxeter graph Γ. For an excellent summary
and comparison of these games, see [7].

A quiver is a finite directed graph (loops and multiple edges are allowed), and appears
primarily in the study of representation theory. A quiver Q with a field K gives rise to
a path algebra KQ, and there is a natural correspondence between KQ-modules and K-
representations of Q. In fact, there is an equivalence between the categories of quiver repre-
sentations, and modules over path algebras. A path algebra is finite-dimensional if and only if
the quiver is acyclic, and the modules over finite-dimensional path algebras form a reflective
subcategory. A reflection functor maps representations of a quiver Q to representations of a
quiver Q′, where Q′ differs from Q by a source-to-sink operation [12]. We note that while the
composition of n source-to-sink operations (one for each vertex) maps a quiver back to itself,
the corresponding composition of reflection functors is not the identity, but rather a Coxeter
functor. In fact, the same result in [19] about powers of Coxeter elements being reduced was
proven previously using techniques from the representation theory of quivers [8].
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We hope this paper will motivate further explorations of the connections between these
topics. We are particularly curious about any implications to the representation theory of
quivers. This is a field which the both authors of this paper are quite unfamiliar with, yet it
motivated Kleiner and Pelley to study admissible sequences and apply these tools from quiver
representations to Coxeter groups. Without this work, the aforementioned papers of Speyer
and the Erikssons would likely not have materialized.
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