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High order algebraic splitting for magnetohydrodynamics simulation

Mine Akbas ∗ Muhammad Mohebujjaman † Leo G. Rebholz ‡ Mengying Xiao §

March 1, 2017

Abstract

This paper proposes, analyzes and tests high order algebraic splitting methods for magneto-
hydrodynamic (MHD) flows. The main idea is to apply, at each time step, Yosida-type algebraic
splitting to a block saddle point problem that arises from a particular incremental formulation
of MHD. By doing so, we dramatically reduce the complexity of the nonsymmetric block Schur
complement by decoupling it into two Stokes-type Schur complements, each of which is sym-
metric positive definite and also is the same at each time step. We prove the splitting is O(∆t3)
accurate, and if used together with (block-)pressure correction, is fourth order. A full analysis of
the solver is given, both as a linear algebraic approximation, but also in a finite element context
that uses the natural spatial norms. Numerical tests are given to illustrate the theory and show
the effectiveness of the method.

1 Introduction

The flow of electrically conducting fluids in the presence of a magnetic field is called magne-
tohydrodynamics (MHD) flow. Such flows arise, for example, in astrophysics and geophysics
[15, 21, 10, 9, 3, 4], liquid metal cooling of nuclear reactors [2, 13, 26], and process metallurgy
[8]. However, simulation of these flows is known to be quite difficult, and one major reason
for this is the difficulties that arise because of the large, nonsymmetric, ill-conditioned block
saddle point linear systems that arise at each time step. It is the purpose of this paper to
propose, analyze and test an accurate and efficient linear solver for these systems, by extending
some recent work of the authors on saddle point linear systems for Navier-Stokes (NS) [24] to
the block saddle point systems that arise in MHD. The key ideas are combining the Yosida
algebraic splitting with a particular incremental formulation of the MHD system at each time
step, which leads to a Schur complement (the main difficulty of the linear solve) that decouples
into two Stokes-type Schur complements, each of which are symmetric positive definite, and are
also the same at each time step. We will fully analyze the splitting error and show it is third
order (fourth order if block pressure-correction is applied), and to our knowledge, this is the
first higher order algebraic splitting method studied for the block saddle point systems in MHD.
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The governing equations of MHD consist of a non-linear system of partial differential equa-
tions that nonlinearly couple the NS equations for fluid flow to Maxwell’s equations for electro-
magnetics, which in the case of smooth boundaries can be written as

ut − ν∆u+ (u · ∇)u− s(B · ∇)B +∇P = f, (1.1)

∇ · u = 0, (1.2)
Bt − νm∆B + (u · ∇)B − (B · ∇)u−∇λ = ∇× g, (1.3)

∇ ·B = 0, (1.4)

where u is the velocity, P := p+ s
2 |B|2 is the modified pressure and p the pressure, f is the body

force, ∇ × g is a force acting on the magnetic field B, ν is the kinematic viscosity (inversely
proportional to the Reynolds number), νm is the magnetic diffusivity (inversely proportional to
the magnetic Reynolds number), s is the coupling number, and λ := νm∇·B is a dummy variable
acting as a Lagrange multiplier corresponding to the solenoidal constraint of the magnetic field.
If the initial magnetic field B0 satisfies ∇ ·B0 = 0 in the continuous case, then (1.4) is enforced
by (1.3), and λ = 0. However, in the discrete case, non-zero λ will allow for the divergence-free
condition on B to be enforced explicitly [7].

Applying a temporal discretization to the MHD system above, we obtain the problem at
each time step: find a velocity u, a magnetic field B and Lagrange multipliers P, λ satisfying

α

∆t
u− ν∆u+ U · ∇u− B · ∇B +∇P = f̃ , (1.5)

∇ · u = 0, (1.6)
α

∆t
B − νm∆B + U · ∇B − B · ∇u−∇λ = g̃, (1.7)

∇ ·B = 0, (1.8)

where ∆t is a time-step size, U and B are given solenoidal velocity and magnetic fields (e.g.
extrapolated from previous time steps), and f̃ and g̃ are the forcing terms combined with left
hand side terms that are known from previous time steps. For a BDF2 time-stepping scheme,
for example, α = 3

2 , U = 2un − un−1, B = 2Bn − Bn−1, f̃ = f + 2
∆tu

n − 1
∆tu

n−1, and
g̃ = ∇× g + 2

∆tB
n − 1

∆tB
n−1.

Applying a finite element discretization to (1.5)-(1.8), where we search for ū, B̄ ∈ Xh and
P̄ , λ̄ ∈ Qh, with (Xh, Qh) satisfying the LBB stability property [6] (details of the finite element
discretization are given in section 3), a block linear system arises of the form




A1 N2 C1 0
N2 A2 0 C1

CT1 0 0 0
0 CT1 0 0







ū
B̄
P̄
λ̄


 =




F1

F2

0
0


 , (1.9)

where A1 := α
∆tM + νS +N1, A2 := α

∆tM + νmS +N1, with M denoting the Xh mass matrix,
S the Xh stiffness matrix, C1 the rectangular matrix representing the gradient operator acting
on Qh and tested with Xh, N1 the nonlinear contributions from U · ∇u in the momentum
equation and U · ∇B in the Maxwell equation (these contributions are the same since u and B
are unknowns in the same function spaces), and N2 the nonlinear contributions from −B · ∇B
in the momentum equation and −B · ∇u in the Maxwell equation. Denoting

A =
(
A1 N2

N2 A2

)
, C =

(
C1 0
0 C1

)
, X̂ =

(
ū
B̄

)
, Ŷ =

(
P̄
λ̄

)
, F̄ =

(
F1

F2

)
,

the equation (1.9) can now be written as a block saddle point linear system:
(
A C
CT 0

)(
X̂

Ŷ

)
=
(
F̄
0

)
. (1.10)
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A common approach to solving saddle point systems that arise in Navier-Stokes saddle point
systems is to apply algebraic splitting methods, which reduces the difficulty of the solves, but
introduces error due to the approximations that are made. Yosida-type splitting methods work
by making an approximation of the Schur complement. Setting

Ã =
(

α
∆tM + νS 0

0 α
∆tM + νmS

)
,

or possibly without viscous contributions, the following approximation of the block LU decom-
position is made:

(
A C
CT 0

)
≈
(
A 0
CT −CT Ã−1C

)(
I A−1C
0 Q

)
=
(
A C

CT CTA−1C − CT Ã−1CQ

)
, (1.11)

where Q = I yields the classical Yosida method, and Q = (CT Ã−1AÃ−1C)−1
(
CT Ã−1C

)
yields

the pressure corrected Yosida method developed by Veneziani et. al [25, 12]. We note that this
clever choice of Q increases the accuracy of the Yosida splitting from O(∆t2) to O(∆t3), and
requires two more solves with SPD matrix Ã, and one more SPD Schur complement solve.
Additionally, this approach has the advantage of easily allowing for adaptive time stepping.
One potential disadvantage was shown in [24] with both analysis and numerical tests, which is
that the pressure correction step can have error that scales negatively with respect to the spatial
mesh width, and thus seems best suited for problems where the temporal scales are smaller than
the spatial scales (e.g. for blood flow problems Veneziani et. al has shown it works very well).

Taking Q = I for simplicity, the Yosida approximation requires solving
(
A 0
CT −CT Ã−1C

)(
I A−1C
0 I

)(
X̂

Ŷ

)
=
(
F̄
0

)
,

which is equivalent to the following three steps:

1. Solve Aẑ = F̄ for ẑ.

2. Solve CT Ã−1CŶ = CT ẑ for Ŷ .

3. Solve AX̂ = Aẑ − CŶ for X̂.

The only difference between the linear systems arising from the Yosida method and unaltered
linear system is that the Yosida method uses the matrix Ã instead of A in step 2, but this small
change leads to a dramatic reduction of complexity. Since Ã is block diagonal, the Schur
complement CT Ã−1C reduces to

CT Ã−1C =

(
CT1
(
α
∆tM + νS

)−1
C1 0

0 CT1
(
α
∆tM + νmS

)−1
C1

)
,

and thus is decoupled into two smaller SPD time-dependent-Stokes-type Schur complements.
It is well known how to solve such systems (see [24] and references therein). Hence the Yosida
splitting creates linear systems that are much easier to solve.

Of course, with approximations comes error, and from (1.11) with Q = I we observe the
error created is in the 2,2 block of the recombined matrix, as the term CT (A−1−Ã−1)C appears
instead of 0. An expansion of A−1 − Ã−1 from [25] reveals that

A−1 − Ã−1 = Ã−1NÃ−1 + (Ã−1N)2Ã−1 + ...,

which implies a splitting error of O(∆t2), since N := A − Ã = O(1) and Ã = O(∆t−1). We
note that if pressure correction is used, the first term of the expansion is cancelled, producing
O(∆t3) error.
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Our goal in this paper is to apply our ideas of [24] for NSE saddle point linear systems to the
block MHD systems. In particular, before applying the Yosida approximation, we will rewrite
the system (1.5)-(1.8) in terms of increments of the pressure variables δP = P −Pn, δλ = λ−λn,
where we seek (u, δP , B, δλ) satisfying

α

∆t
u− ν∆u+ U · ∇u− B · ∇B +∇δP = ˜̃

f, (1.12)

∇ · u = 0, (1.13)
α

∆t
B − νm∆B + U · ∇B − B · ∇u−∇δλ = ˜̃g, (1.14)

∇ ·B = 0, (1.15)

with appropriately defined right hand sides. Since the problem is linearized at each time step,
this change of variables produces the exact same matrix, but with an altered right hand side. The
general idea is that the Yosida appproximation creates O(∆t2) error in the primitive variables,
so if approximation is made to O(∆t) increments instead of the O(1) original variables, then
the total error will be reduced to O(∆t3) (and if pressure correction is used, then accuracy
will be O(∆t4)). Analysis and testing of this idea showed that it works quite well, and these
higher order rates were found to hold. Interestingly, our finite element analysis in the NS-case
revealed that the same asymptotic rates could be found if only the pressure increment was used
[24], and velocity was solved for as usual; this leads back to a method proposed for the NSE in
[14]. Since using only pressure increments is a simpler approach, we will apply this approach
herein. Another nice feature of using only the pressure increments is that grad-div stabilization
can be immediately applied, which is well known to provide for reduction in divergence errors,
improvements in overall accuracy, improvements in accuracy in Yosida methods, and aids in
effectively preconditioning Schur complement solvers [23, 20, 18, 16, 5].

The purpose of this paper will be to analyze and test the Yosida method for the system
(1.12)-(1.15), and we call this method the ‘Yosida-updates’ (YU) method for MHD. The linear
algebraic splitting analysis is identical to the NSE case, and is discussed above. However, such
analysis is not attractive mathematically, since the linear algebra vector norms are not in the
natural spaces of the variables, and any negative scaling of the error with respect to the spatial
mesh width would be neglected. Hence, we apply a finite element-type error analysis to quantify
the difference between solutions found by solving the linear system using an exact linear solver
and the YU splitting approximation by casting the algebraic systems back into finite element
problems. Our analysis considers the basic YU case, with no grad-div stabilization and without
pressure correction. However, the ideas of [23, 24] can be applied to the block systems herein
to extend our results further. In our computational tests, however, both grad-div stabilization
and pressure correction are used. The paper is organized as follows. Section 2 gives notation
and preliminary results used throughout the paper. Section 3 performs the analysis for YU
applied to MHD while Section 4 the analysis for YUPC applied to MHD, and in Section 5 we
give numerical experiments to illustrate the theory and show the effectiveness of the method on
a benchmark test problem.

Remark 1.1 There are several assumptions we make in this work in order to simplify the
presentation and analysis, but which do not affect the major results. In particular, we consider
a single time step of a numerical scheme, take α = 1, and assume the convective velocity
and magnetic fields U and B are exactly divergence-free and uniformly bounded. Each of these
assumptions can be lifted, without affecting the major results of the paper.

Specifically, α can be taken to be any other O(1) positive number, e.g. α = 1.5 for BDF2,
without any effect on the scalings of ∆t or h. If we considered multiple time steps, then it
is expected that the order of accuracy with respect to ∆t would reduce by one order, which is
expected for time stepping methods in general; this idea is well-known for algebraic splitting
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methods [25, 12], and practitioners are aware that one needs to use, e.g., a third order (on one
time step) splitting method with a second order time stepping method. Lastly, with respect to U
and B, the exactly divergence-free condition can be lifted by using skew-symmetric forms of the
nonlinearities without significant difficulty or change to the results, but does produce additional
terms in the analysis. Lastly, reducing the assumption of L∞(Ω) on these terms to H1(Ω) would
seemingly increase the theoretical negative scalings of the error with h by a power (if one uses the
inverse inequality inside of the analysis framework we use herein); however, in our numerical
tests these terms were in Xh ⊂ H1(Ω), and we observed no negative scaling with h.

2 Mathematical preliminaries

In this study, we consider a domain Ω ⊂ Rd, (d = 2, 3), that is either a convex polygon or has a
smooth boundary. Denote the L2-inner product and induced norm by (·, ·) and ‖·‖, respectively.
All other norms will be clearly labeled.

The natural function spaces for analysis of the MHD system above are

X : = H1
0 (Ω) = {v ∈ H1(Ω), v = 0 on ∂Ω},

Q : = L2
0(Ω) = {q ∈ L2(Ω),

∫

Ω

q dx = 0 }.

Use of these boundary conditions are mainly for analysis purposes in the finite element con-
text. Extension to periodic boundary conditions or inhomogeneous Dirichlet conditions can be
performed. Other types of boundary conditions could require additional analysis in the finite
element context, although the linear algebra analysis above will hold for any commonly used
boundary conditions.

Recall that the Poincaré-Friedrich’s inequality holds in X: there exists a constant CPF > 0,
dependent only on the size of the domain Ω, such that for every φ ∈ X, ‖φ‖ ≤ CPF ‖∇φ‖.

We assume finite element spaces (Xh, Qh) ⊂ (X,Q) satisfy the LBB-condition,

inf
qh∈Qh

sup
vh∈Xh

(∇ · vh, qh)
‖∇vh‖

≥ β > 0,

with β independent of h. The discretely divergence-free subspace of Xh is denoted by

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh}.

We also assume the mesh is sufficiently regular for the inverse inequality to hold in Xh: there
exists a constant CI , independent of the mesh width h, such that

‖∇φh‖ ≤ CIh−1‖φh‖, ∀φh ∈ Xh.

3 Analysis of the Yosida updates method

The linear algebra analysis of the splitting methods is in terms of the vector norms of the
coefficients of the variables, and not in terms of the natural norms of the finite element spaces.
Thus, important constants and potential negative scalings with respect to the mesh width could
be left out of the linear algebra results. We begin by presenting the numerical method related
to the usual finite element discretization of the MHD equations.
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The exact (unapproximated) single step discrete MHD scheme is defined by: find (ûh, P̂h, B̂h, λ̂h) ∈
(Xh, Qh, Xh, Qh) satisfying, ∀(vh, qh, ψh, rh) ∈ (Xh, Qh, Xh, Qh),

α

∆t
(ûh, vh) + ν(∇ûh,∇vh) + (U · ∇ûh, vh)− (B · ∇B̂h, vh)− (P̂h,∇ · vh) = (f̃ , vh), (3.1)

(∇ · ûh, qh) = 0, (3.2)
α

∆t

(
B̂h, ψh

)
+ νm(∇B̂h,∇ψh) + (U · ∇B̂h, ψh)− (B · ∇ûh, ψh) + (λ̂h,∇ · ψh) = (g̃, ψh), (3.3)

(∇ · B̂h, rh) = 0. (3.4)

Given (Pn, λn) ∈ (Qh, Qh), which are the solutions from the previous step, denote δ̂P := P̂h−Pn,
δ̂λ := λ̂h−λn. Then the scheme (3.1)-(3.4) is equivalently written in terms of velocity, magnetic
field, and updates of the Lagrange multipliers: find (ûh, δ̂P , B̂h, δ̂λ) ∈ (Xh, Qh, Xh, Qh) such
that ∀(vh, qh, ψh, rh) ∈ (Xh, Qh, Xh, Qh),

α

∆t
(ûh, vh) + ν(∇ûh,∇vh) + (U · ∇ûh, vh)− (B · ∇B̂h, vh)− (δ̂P ,∇ · vh) = ( ˜̃

f, vh), (3.5)

(∇ · ûh, qh) = 0, (3.6)
α

∆t

(
B̂h, ψh

)
+ νm(∇B̂h,∇ψh) + (U · ∇B̂h, ψh)− (B · ∇ûh, ψh) + (δ̂λ,∇ · ψh) = (˜̃g, ψh), (3.7)

(∇ · B̂h, rh) = 0, (3.8)

where ˜̃
f := f̃ −∇Pn, ˜̃g := g̃ +∇λn. To recover P̂h and λ̂h, add the increments to the previous

time step solutions: P̂h = δ̂P + Pn, λ̂h = δ̂λ + λn. The system (3.5)-(3.8) produces the block
saddle point linear system:

(
A C
CT 0

)(
X̂

δ̂Y

)
=
(
F̄
0

)
, (3.9)

where X̂ =
(
û

B̂

)
, δ̂Y =

(
δ̂P
δ̂λ

)
, F̄ =

(
F1

F2

)
. Applying the Yosida splitting to the updates

formulation algebraic system (3.5)-(3.8): first write the matrix A as

A =
(
Ã1 0
0 Ã2

)
+
(
N1 N2

N2 N1

)
=: Ã+ Ñ , (3.10)

where Ã is SPD. Now use the approximation CT Ã−1C for the Schur complement matrix
CTA−1C, which leads to the approximation:

(
A C
CT 0

)
≈
(
A 0
CT −CT Ã−1C

)(
I A−1C
0 I

)
. (3.11)

With this approximation, we solve the linear system
(
A 0
CT −CT Ã−1C

)(
I A−1C
0 I

)(
X
δY

)
=
(
F̄
0

)
, (3.12)

with X =
(
u
B

)
, δY =

(
δP
δλ

)
. Solving the linear system (3.12) is equivalent to the three steps:

1. Solve
(
A1 N2

N2 A2

)(
z1

z2

)
=
(
F1

F2

)
for
(
z1

z2

)
,
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2a. Solve (CT1 Ã
−1
1 C1)δP = CT1 z1 for δP ,

2b. Solve (CT1 Ã
−1
2 C1)δλ = CT1 z2 for δλ,

3. Solve
(
A1 N2

N2 A2

)(
u
B

)
=
(
A1 N2

N2 A2

)(
z1

z2

)
−
(
CT1 0
0 CT1

)(
δP
δλ

)
for
(
u
B

)
.

Finally, set Ph = δP + Pn and λh = δλ + λn.
For analysis purposes, we define a finite element formulation that is equivalent to the 3-step

YU linear algebraic system above. We note that YU implementation should not be computed
in this way, but as the simple linear algebraic implementation presented in the introduction.

Algorithm 3.1 (YU finite element formulation) Given (Pn, λn) ∈ (Qh, Qh), find (uh, Ph, Bh, λh) ∈
(Xh, Qh, Xh, Qh) via the following steps:

1. Find (zh, ωh) ∈ (Xh, Xh) satisfying, ∀(vh, ψh) ∈ (Xh, Xh),

α

∆t
(zh, vh) + ν(∇zh,∇vh) + (U · ∇zh, vh)− (B · ∇ωh, vh) = ( ˜̃

f, vh), (3.13)
α

∆t
(ωh, ψh) + νm(∇ωh,∇ψh) + (U · ∇ωh, ψh)− (B · ∇zh, ψh) = (˜̃g, ψh). (3.14)

2. Find (χh, δP , µh, δλ) ∈ (Xh, Qh, Xh, Qh) satisfying, ∀(vh, qh, ψh, rh) ∈ (Xh, Qh, Xh, Qh),

α

∆t
(χh, vh) + ν(∇χh,∇vh)− (δP ,∇ · vh) = 0, (3.15)

(∇ · χh, qh) = −(∇ · zh, qh), (3.16)
α

∆t
(µh, ψh) + νm(∇µh,∇ψh) + (δλ,∇ · ψh) = 0, (3.17)

(∇ · µh, rh) = −(∇ · ωh, rh). (3.18)

3. Find (uh, Bh) ∈ (Xh, Xh) satisfying, ∀(vh, ψh) ∈ (Xh, Xh),

α

∆t
(uh, vh) + ν(∇uh,∇vh) + (U · ∇uh, vh)− (B · ∇Bh, vh)

=
α

∆t
(zh, vh) + ν(∇zh,∇vh) + (U · ∇zh, vh)− (B · ∇ωh, vh) + (δP ,∇ · vh), (3.19)

α

∆t
(Bh, ψh) + νm(∇Bh,∇ψh) + (U · ∇Bh, ψh)− (B · ∇uh, ψh)

=
α

∆t
(ωh, ψh) + νm(∇ωh,∇ψh) + (U · ∇ωh, ψh)− (B · ∇zh, ψh)− (δλ,∇ · ψh).

(3.20)

4. Recover Ph, λh by setting Ph = δP + Pn and λh = δλ + λn.

Remark 3.1 Combining Step 1 and Step 3 of Algorithm 3.1 produces

α

∆t
(uh, vh) + ν(∇uh,∇vh) + (U · ∇uh, vh)− (B · ∇Bh, vh)− (δP ,∇ · vh, ) = ( ˜̃

f, vh), (3.21)
α

∆t
(Bh, ψh) + νm(∇Bh,∇ψh) + (U · ∇Bh, ψh)− (B · ∇uh, ψh) + (δλ,∇ · ψh) = (˜̃g, ψh). (3.22)

Replacing ˜̃
f , ˜̃g, δP and δλ by their definitions and recombining gives, for any vh or ψh ∈ Xh,

α

∆t
(uh, vh) + ν(∇uh,∇vh) + (U · ∇uh, vh)− (B · ∇Bh, vh)− (Ph,∇ · vh) = (f̃ , vh), (3.23)

α

∆t
(Bh, ψh) + νm(∇Bh,∇ψh) + (U · ∇Bh, ψh)− (B · ∇uh, ψh) + (λh,∇ · ψh) = (g̃, ψh), (3.24)

which shows that the YU method preserves the momentum and magnetic field evolution equa-
tions.
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We now prove that the solutions of the Yosida updates method converge to the solutions of
the unaltered discrete scheme (3.5)-(3.8) as ∆t → 0. For simplicity of the analysis, we assume
that α = 1 and the convective velocity U from (1.5) and the magnetic field B from (1.7) satisfy
∇·U = 0 with ‖U‖L∞(Ω) ≤ CU <∞ and ∇·B = 0 with ‖B‖L∞(Ω) ≤ CB <∞. Extension to the
case of only weakly divergence-free U and B can be done by skew-symmetrizing the nonlinear
terms, and if these variables have only H1(Ω) regularity then different Hölder and Sobolev
bounds could be used. Neither of these changes would affect convergence rates in ∆t, but could
affect the scaling with the mesh width h.

Theorem 3.1 Let ûh, P̂h, B̂h and λ̂h be the solution of (3.1)-(3.4) (the unapproximated linear
system solution), and uh, Ph, Bh, λh the solutions to Algorithm 3.1 (the YU solution). Fur-
ther, assume that the pressure solutions of the unapproximated solution satisfy ‖P̂h − Pn‖ ≤
CP∆t, ‖λ̂h − λn‖ ≤ Cλ∆t. Then the error in YU satisfies

‖ûh − uh‖+ ‖B̂h −Bh‖ ≤
2C3

I∆t3

βh3

(
CU + CB

)(
CP + Cλ

)(
2CPF +

C∗CI∆t
h

)
= O(∆t3),

where C∗ := min{ν, νm}.

Remark 3.2 The negative scaling with respect to h arises due to use of the inverse inequality,
as to find the O(∆t3), it was necessary to bound H1 terms from the right hand side, in L2 terms
on the left hand side. The negative dependence on h could be reduced or even eliminated in the
analysis, but this would in turn lower the order of convergence with respect to ∆t. However,
it was observed for the YU applied to the NSE that the negative scaling of h on several test
problems was much milder, O(h−1/2), instead of O(h−3). In our convergence rate tests, we
observed no negative scaling with h, although we did observe some slight deterioration of the
third order convergence with respect to ∆t.

Proof: The proof is rather long, and we split it up into three major steps. Denote eu :=
ûh − uh, eB := B̂h −Bh, and note that

P̂h − Ph = (P̂h − Pn)− (Ph − Pn) =: δ̂P − δP ,
λ̂h − λh = (λ̂h − λn)− (λh − λn) =: δ̂λ − δλ.

Step 1: Claim:

‖eu‖+ ‖eB‖ ≤
√

2CI∆t
h

(
‖δ̂P − δP ‖+ ‖δ̂λ − δλ‖

)
. (3.25)

Begin by subtracting (3.21) from (3.5) and (3.22) from (3.7), which gives

1
∆t

(eu, vh) + ν(∇eu,∇vh) + (U · ∇eu, vh)− (B · ∇eB , vh)− (δ̂P − δP ,∇ · vh) = 0,

1
∆t

(eB , ψh) + νm(∇eB ,∇ψh) + (U · ∇eB , ψh)− (B · ∇eu, ψh) + (δ̂λ − δλ,∇ · ψh) = 0.

Setting vh = eu and ψh = eB yields (U · ∇eu, eu) = 0, (U · ∇eB , eB) = 0 since ∇ · U = 0 [17].
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Then using Cauchy-Schwarz and Young’s inequalities along with the inverse inequality provides

1
∆t
‖eu‖2 + ν‖∇eu‖2 ≤ (B · ∇eB , eu) + ‖δ̂P − δP ‖‖∇ · eu‖

≤ (B · ∇eB , eu) + ‖δ̂P − δP ‖‖∇eu‖

≤ (B · ∇eB , eu) +
CI
h
‖δ̂P − δP ‖‖eu‖

≤ (B · ∇eB , eu) +
1

2∆t
‖eu‖2 +

C2
I∆t
2h2

‖δ̂P − δP ‖2, (3.26)

1
∆t
‖eB‖2 + νm‖∇eB‖2 ≤ (B · ∇eu, eB) + ‖δ̂λ − δλ‖‖∇ · eB‖

≤ (B · ∇eu, eB) +
CI
h
‖δ̂λ − δλ‖‖eB‖

≤ (B · ∇eu, eB) +
1

2∆t
‖eB‖2 +

C2
I∆t
2h2

‖δ̂λ − δλ‖2. (3.27)

Next, sum (3.26) and (3.27). Notice that (B ·∇eB , eu) = −(B ·∇eu, eB), and after dropping the
viscous terms on the left hand side, we find that

‖eu‖2 + ‖eB‖2 ≤
C2
I∆t2

h2

(
‖δ̂P − δP ‖2 + ‖δ̂λ − δλ‖2

)
,

and taking square root of both sides gives the claimed bound.

Step 2: Claim:

‖δ̂P − δP ‖+ ‖δ̂λ − δλ‖

≤ β−1

(
CU + CB

)(
2CPF +

C∗CI∆t
h

)(
‖∇(ûh − zh)‖+ ‖∇(B̂h − ωh)‖

)

≤ CI
βh

(
CU + CB

)(
2CPF +

C∗CI∆t
h

)(
‖ûh − zh‖+ ‖B̂h − ωh‖

)
. (3.28)

For this step of the proof, begin by adding Step 1 and Step 2 from the Yosida updates
algorithm to obtain

1
∆t

(χh + zh, vh) + ν(∇(χh + zh),∇vh) + (U · ∇zh, vh)− (B · ∇ωh, vh)− (δP ,∇ · vh) = ( ˜̃
f, vh),

(∇ · (χh + zh), qh) = 0,
1

∆t
(µh + ωh, ψh) + νm(∇(µh + ωh),∇ψh) + (U · ∇ωh, ψh)− (B · ∇zh, ψh) + (δλ,∇ · ψh) = (˜̃g, ψh),

(∇ · (µh + ωh), rh) = 0.

Subtracting this system from the unapproximated MHD system (3.5)-(3.8) yields

1
∆t

(ûh − (χh + zh), vh) + ν(∇(ûh − (χh + zh)),∇vh) + (U · ∇(ûh − zh), vh)

−(B · ∇(B̂h − ωh), vh)− (δ̂P − δP ,∇ · vh) = 0, (3.29)
(∇ · (ûh − (χh + zh)), qh) = 0, (3.30)

1
∆t

(B̂h − (µh + ωh), ψh) + νm(∇(B̂h − (µh + ωh)),∇ψh) + (U · ∇(B̂h − ωh), ψh)

−(B · ∇(ûh − zh), ψh) + (δ̂λ − δλ,∇ · ψh) = 0, (3.31)

(∇ · (B̂h − (µh + ωh)), rh) = 0. (3.32)
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Now isolate the pressure error in (3.29), and divide both sides by ‖∇vh‖. Then using the
Cauchy-Schwarz and Hölder’s inequalities produces

(
δ̂P − δP ,∇ · vh

)

‖∇vh‖
≤ 1

∆t
‖ûh − (χh + zh)‖‖vh‖

‖∇vh‖
+
ν‖∇(ûh − (χh + zh))‖‖∇vh‖

‖∇vh‖

+
‖U‖L∞‖∇(ûh − zh)‖‖vh‖

‖∇vh‖
+
‖B‖L∞‖∇(B̂h − ωh)‖‖vh‖

‖∇vh‖
. (3.33)

Similarly, we can get the following from (3.31):
(
δ̂λ − δλ,∇ · ψh

)

‖∇ψh‖
≤ 1

∆t
‖B̂h − (µh + ωh)‖‖ψh‖

‖∇ψh‖
+
νm‖∇(B̂h − (µh + ωh))‖‖∇ψh‖

‖∇ψh‖

+
‖U‖L∞‖∇(B̂h − ωh)‖‖ψh‖

‖∇ψh‖
+
‖B‖L∞‖∇(ûh − zh)‖‖ψh‖

‖∇ψh‖
. (3.34)

Using the LBB condition together with the Poincaré-Friedrich’s inequality and reducing gives
the estimates

β‖δ̂P − δP ‖ ≤
CPF
∆t
‖ûh − (χh + zh)‖+ ν‖∇(ûh − (χh + zh))‖

+ CPFCU‖∇(ûh − zh)‖+ CPFCB‖∇(B̂h − ωh)‖, (3.35)

and

β‖δ̂λ − δλ‖ ≤
CPF
∆t
‖B̂h − (µh + ωh)‖+ νm‖∇(B̂h − (µh + ωh))‖

+ CPFCU‖∇(B̂h − ωh)‖+ CPFCB‖∇(ûh − zh)‖. (3.36)

After applying the inverse inequality to the second right hand side terms of (3.35)-(3.36), sum
them to get

‖δ̂P − δP ‖+ ‖δ̂λ − δλ‖

≤ β−1

[(
CPF
∆t

+
C∗CI
h

)(
‖ûh − (χh + zh)‖+ ‖B̂h − (µh + ωh)‖

)

+ CPF (CU + CB)
(
‖∇(ûh − zh)‖+ ‖∇(B̂h − ωh)‖

)]
, (3.37)

where C∗ = min{ν, νm}.

Next, set vh = ûh − (χh + zh) in (3.29), qh = δ̂P − δP in (3.30), ψh = B̂h − (µh + ωh) in
(3.31), and rh = δ̂λ − δλ in (3.32). Apply Hölder’s inequality to produce

1
∆t
‖ûh − (χh + zh)‖2 + ν‖∇(ûh − (χh + zh))‖2

≤ ‖U‖L∞‖∇(ûh − zh)‖‖ûh − (χh + zh)‖+ ‖B‖L∞‖∇(B̂h − ωh)‖‖ûh − (χh + zh)‖
=
(
CU‖∇(ûh − zh)‖+ CB‖∇(B̂h − ωh)‖

)
‖ûh − (χh + zh)‖,

and

1
∆t
‖B̂h − (µh + ωh)‖2 + νm‖∇(B̂h − (µh + ωh))‖2

≤ ‖U‖L∞‖∇(B̂h − ωh)‖‖B̂h − (µh + ωh)‖+ ‖B‖L∞‖∇(ûh − zh)‖‖B̂h − (µh + ωh)‖
=
(
CU‖∇(B̂h − ωh)‖+ CB‖∇(ûh − zh)‖

)
‖B̂h − (µh + ωh)‖.
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Reducing the terms produces

‖ûh − (χh + zh)‖ ≤ ∆t
(
CU‖∇(ûh − zh)‖+ CB‖∇(B̂h − ωh)‖

)
, (3.38)

and

‖B̂h − (µh + ωh)‖ ≤ ∆t
(
CU‖∇(B̂h − ωh)‖+ CB‖∇(ûh − zh)‖

)
. (3.39)

Now sum (3.38) and (3.39) to get the estimate

‖ûh − (χh + zh)‖+ ‖B̂h − (µh + ωh)‖

≤ ∆t(CU + CB)
(
‖∇(ûh − zh)‖+ ‖∇(B̂h − ωh)‖

)
. (3.40)

Finally, using (3.40) in (3.37) together with the inverse inequality yields

‖δ̂P − δP ‖+ ‖δ̂λ − δλ‖ ≤ β−1

[(
CPF +

C∗CI∆t
h

)
(CU + CB)

(
‖∇(ûh − zh)‖+ ‖∇(B̂h − ωh)‖

)

+CPF (CU + CB)
(
‖∇(ûh − zh)‖+ ‖∇(B̂h − ωh)‖

)]

= β−1

(
CU + CB

)(
2CPF +

C∗CI∆t
h

)(
‖∇(ûh − zh)‖+ ‖∇(B̂h − ωh)‖

)

≤ CI
βh

(
CU + CB

)(
2CPF +

C∗CI∆t
h

)(
‖ûh − zh‖+ ‖B̂h − ωh‖

)
, (3.41)

which proves the stated second claim.

Step 3: Completion of the proof
It remains to bound the terms ‖ûh − zh‖ and ‖B̂h − ωh‖ to get our stated result in the

theorem. Subtract (3.13) from (3.5), and (3.14) from (3.7) to obtain

1
∆t

(ûh − zh, vh) + ν(∇(ûh − zh),∇vh) + (U · ∇(ûh − zh), vh) = (B · ∇(B̂h − ωh), vh)

+ (δ̂P ,∇ · vh), (3.42)
1

∆t
(B̂h − ωh, ψh) + νm(∇(B̂h − ωh),∇ψh) + (U · ∇(B̂h − ωh), ψh) = (B · ∇(ûh − zh), ψh)

− (δ̂λ,∇ · ψh). (3.43)

Setting vh = ûh−zh in (3.42) and ψh = B̂h−ωh (3.43) vanishes the nonlinear terms (U ·∇(ûh−
zh), ûh − zh) and (U · ∇(B̂h − ωh), B̂h − ωh) since ∇ · U = 0. The equations (3.42) and (3.43)
are then reduced to

1
∆t
‖ûh − zh‖2 + ν‖∇(ûh − zh)‖2 = (B · ∇(ûh − ωh), ûh − zh) + (δ̂P ,∇ · (ûh − zh)), (3.44)

1
∆t
‖B̂h − ωh‖2 + νm‖∇(B̂h − ωh)‖2 = (B · ∇(ûh − zh), B̂h − ωh)− (δ̂λ,∇ · (B̂h − ωh)). (3.45)

Now apply the Cauchy-Schwarz, Young’s and the inverse inequalities on the second right hand
side terms of (3.44) and (3.45) to get

1
∆t
‖ûh − zh‖2 + ν‖∇(ûh − zh)‖2 ≤ (B · ∇(ûh − ωh), ûh − zh) +

1
2∆t
‖ûh − zh‖2 +

C2
I∆t
2h2

‖δ̂P ‖2,
1

∆t
‖B̂h − ωh‖2 + νm‖∇(B̂h − ωh)‖2 ≤ (B · ∇(ûh − zh), B̂h − ωh) +

1
2∆t
‖B̂h − ωh‖2 +

C2
I∆t
2h2

‖δ̂λ‖2.
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Rearranging terms now yields

‖ûh − zh‖2 + 2ν∆t‖∇(ûh − zh)‖2 ≤ 2∆t(B · ∇(B̂h − ωh), ûh − zh) +
C2
I∆t2

h2
‖δ̂P ‖2, (3.46)

‖B̂h − ωh‖2 + 2νm∆t‖∇(B̂h − ωh)‖2 ≤ 2∆t(B · ∇(ûh − zh), B̂h − ωh) +
C2
I∆t2

h2
‖δ̂λ‖2. (3.47)

Notice that (B · ∇(B̂h − ωh), ûh − zh) = −(B · ∇(ûh − zh), B̂h − ωh) since ∇ · B = 0, so by
summing (3.46), (3.47), and using the assumptions ‖δ̂P ‖ ≤ CP∆t, ‖δ̂λ‖ ≤ Cλ∆t, we find that

‖ûh − zh‖2 + ‖B̂h − ωh‖2 ≤
C2
I∆t2

h2

(
‖δ̂P ‖2 + ‖δ̂λ‖2

)
≤ C2

I∆t4

h2

(
C2
P + C2

λ

)
,

which after taking square root of both sides produces

‖ûh − zh‖+ ‖B̂h − ωh‖ ≤
√

2CI∆t2

h

(
CP + Cλ

)
. (3.48)

To finish the proof, use (3.48) in (3.41), which gives the bound

‖δ̂P − δP ‖ + ‖δ̂λ − δλ‖ ≤
√

2C2
I∆t2

βh2

(
CU + CB

)(
CP + Cλ

)(
2CPF +

C∗CI∆t
h

)
, (3.49)

and finally use (3.49) in (3.25). 2

Lemma 3.1 (Stability of YU) Assume f̃ = f + 1
∆tu

n and g̃ = g + 1
∆tB

n (i.e. the backward
Euler case). Then if ∆t ≤ Ch4/3 (assuming h ≤ 1), the Yosida updates method is stable, and
solutions satisfy

1
∆t
(
‖uh‖2 − ‖un‖2 + ‖uh − un‖2

)
+

1
∆t
(
‖Bh‖2 − ‖Bn‖2 + ‖Bh −Bn‖2

)

+ ν‖∇uh‖2 + νm‖∇Bh‖2 ≤ C(data).

Proof: Setting vh = uh in (3.23), ψh = Bh in (3.24) and using the definition of f̃ and g̃ gives
the following:

1
2∆t

(
‖uh‖2 − ‖un‖2 + ‖uh − un‖2

)
+ ν‖∇uh‖2 = (B · ∇Bh, uh) + (Ph,∇ · uh) + (f, uh),

(3.50)
1

2∆t
(
‖Bh‖2 − ‖Bn‖2 + ‖Bh −Bn‖2

)
+ νm‖∇Bh‖2 = (B · ∇uh, Bh)− (λh,∇ ·Bh) + (∇× g,Bh).

(3.51)

Notice that (Ph,∇ · ûh) = 0 and (λh,∇ · B̂h) = 0 since ûh, B̂h ∈ Vh. Now add these terms to
the right hand side of (3.50) and (3.51), respectively. Then apply the Cauchy-Schwarz, Young’s
inequalities on the forcing terms and Cauchy-Schwarz, Young’s inequality together with the
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inverse inequality to the second right hand side terms, which produces

1
2∆t

(‖uh‖2 − ‖un‖2 + ‖uh − un‖2) + ν‖∇uh‖2

= (B · ∇Bh, uh)− (Ph,∇ · (ûh − uh)) + (f, uh)
≤ (B · ∇Bh, uh) + ‖Ph‖‖∇ · (ûh − uh)‖+ ‖f‖−1‖∇uh‖

≤ (B · ∇Bh, uh) +
CI
h
‖Ph‖‖ûh − uh‖+

ν−1

2
‖f‖2−1 +

ν

2
‖∇uh‖2

≤ (B · ∇Bh, uh) +
C∆t3

h4
‖Ph‖+

ν−1

2
‖f‖2−1 +

ν

2
‖∇uh‖2, (3.52)

and similarly

1
2∆t

(‖Bh‖2 − ‖Bn‖2 + ‖Bh −Bn‖2) + νm‖∇Bh‖2

≤ (B · ∇uh, Bh) +
C∆t3

h4
‖λh‖+

ν−1
m

2
‖∇ × g‖2−1 +

νm
2
‖∇Bh‖2, (3.53)

where C is a constant independent of h and ∆t. Sum (3.52) and (3.53) and notice that (B ·
∇uh, Bh) = −(B · ∇Bh, uh), Then multiplying by 2 produces

1
∆t

(‖uh‖2 − ‖un‖2 + ‖uh − un‖2) +
1

∆t
(
‖Bh‖2 − ‖Bn‖2 + ‖Bh −Bn‖2

)

+ ν‖∇uh‖2 + νm‖∇Bh‖2 ≤
C∆t3

h4
(‖Ph‖+ ‖λh‖) + ν−1‖f‖2−1 + ν−1

m ‖∇ × g‖2−1.

We now bound the term (‖Ph‖+‖λh‖). Adding ±P̂n, ±λ̂n, and applying the triangle inequality
along with (3.41) provides

‖Ph‖+ ‖λh‖ = ‖P̂h + Ph − P̂h‖+ ‖λ̂h + λh − λ̂h‖

≤ ‖P̂h‖+ ‖λ̂h‖+ ‖δ̂P − δP ‖+ ‖δ̂λ − δλ‖ ≤ C
(

1 +
∆t2

h2

)
, (3.54)

where C is a constant independent of ∆t and h. Then using the assumption on ∆t in (3.54)
gives the desired stability bound. 2

4 The Yosida updates pressure correction (YUPC) method

The addition of pressure correction to Yosida algorithms has been shown by Veneziani et. al [12,
25] to increase the order of accuracy of the solver. We now consider pressure correction applied
to the YU method, which we call the Yosida-updates pressure correction (YUPC) method, and
show it is O(∆t4) accurate.

YUPC is defined by applying the pressure-corrected Yosida method to (3.5)-(3.8): Find
approximations uh, δP , Bh, δλ satisfying

(
A 0
CT −CT Ã−1C

)(
I A−1C
0 Q

)(
X
δY

)
=
(
F̄
0

)
, (4.1)

where X =
(
u
B

)
, δY =

(
δP
δλ

)
, with Q := (CT Ã−1AÃ−1C)−1(CT Ã−1C). Finding approxima-

tions for u, δP , B, δλ is equivalent to 6-steps:
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1. Solve
(
A1 N2

N2 A2

)(
z1

z2

)
=
(
F1

F2

)
for
(
z1

z2

)
,

2. Solve
(
CT1 Ã

−1
1 C1 0
0 CT1 Ã

−1
2 C1

)(
q1

q2

)
=
(
CT1 0
0 CT1

)(
z1

z2

)
for
(
q1

q2

)
,

3. Solve
(
Ã1 0
0 Ã2

)(
φ1

φ2

)
=
(
C1 0
0 C2

)(
q1

q2

)
for
(
φ1

φ2

)
.

4. Solve
(
Ã1 0
0 Ã2

)(
ψ1

ψ2

)
=
(
A1 N2

N2 A2

)(
φ1

φ2

)
for
(
ψ1

ψ2

)
.

5. Solve
(
CT1 Ã

−1
1 C1 0
0 CT1 Ã

−1
2 C1

)(
δP
δλ

)
=
(
CT1 0
0 CT1

)(
z1

z2

)
for
(
δP
δλ

)
,

6. Solve
(
A1 N2

N2 A2

)(
u
B

)
=
(
A1 N2

N2 A2

)(
z1

z2

)
−
(
C1 0
0 C1

)(
δP
δλ

)
for
(
u
B

)
.

Then set Ph = δP + Pn and λh = δλ + λn.

Remark 4.1 The additional work resulting form the YUPC method is to solve a second pressure-
update solution with Q. This produces three additional steps: one step is solved with the SPD
Yosida Schur complement and the other two steps with Ã. Thus it is not a major expense to
apply pressure correction.

In order to analyze the method, we now cast it into a finite element framework. We note
that this is for analysis purposes only, and implementation of YUPC should only be considered
from a linear algebraic viewpoint.

Algorithm 4.1 (YUPC) .
Given (Pn, λn) ∈ (Qh, Qh), find (uh, Ph, Bh, λh) ∈ (Xh, Qh, Xh, Qh) via the following steps:

1. Find (zh, ωh) ∈ (Xh, Xh) satisfying, ∀(vh, ψh) ∈ (Xh, Xh),

α

∆t
(zh, vh) + ν(∇zh,∇vh) + (U · ∇zh, vh)− (B · ∇ωh, vh) = ( ˜̃

f, vh), (4.2)
α

∆t
(ωh, ψh) + νm(∇ωh,∇ψh) + (U · ∇ωh, ψh)− (B · ∇zh, ψh) = (˜̃g, ψh). (4.3)

2. Find (χh, ph, µh, πh) ∈ (Xh, Qh, Xh, Qh) satisfying, ∀(vh, qh, ψh, rh) ∈ (Xh, Qh, Xh, Qh),

α

∆t
(χh, vh) + ν(∇χh,∇vh)− (ph,∇ · vh) = 0, (4.4)

(∇ · χh, qh) = −(∇ · zh, qh), (4.5)
α

∆t
(µh, ψh) + νm(∇µh,∇ψh) + (πh,∇ · ψh) = 0, (4.6)

(∇ · µh, rh) = −(∇ · ωh, rh). (4.7)

3. Find (ϕh, θh) ∈ (Xh, Xh) satisfying, ∀(vh, ψh) ∈ (Xh, Xh),

α

∆t
(ϕh, vh) + ν(∇ϕh,∇vh) = −(ph,∇ · vh), (4.8)

α

∆t
(θh, ψh) + νm(∇θh,∇ψh) = −(πh,∇ · ψh). (4.9)
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4. Find (γh, σh) ∈ (Xh, Xh) satisfying, ∀(vh, ψh) ∈ (Xh, Xh),

α

∆t
(γh, vh) + ν(∇γh,∇vh)

=
α

∆t
(ϕh, vh) + ν(∇ϕh,∇vh) + (U · ∇ϕh, vh)− (B · ∇θh, vh), (4.10)

α

∆t
(σh, ψh) + νm(∇σh,∇ψh)

=
α

∆t
(θh, ψh) + νm(∇θh,∇ψh) + (U · ∇θh, ψh)− (B · ∇ϕh, ψh). (4.11)

5. Find (φh, δP , κh, δλ) ∈ (Xh, Qh, Xh, Qh) satisfying, ∀(vh, qh, ψh, rh) ∈ (Xh, Qh, Xh, Qh),
α

∆t
(φh, vh) + ν(∇φh,∇vh)− (δP ,∇ · vh) = 0, (4.12)

(∇ · φh, qh) = −(∇ · γh, qh), (4.13)
α

∆t
(κh, ψh) + νm(∇κh,∇ψh) + (δλ,∇ · ψh) = 0, (4.14)

(∇ · κh, rh) = −(∇ · σh, rh). (4.15)

6. Find (uh, Bh) ∈ (Xh, Xh) satisfying, ∀(vh, ψh) ∈ (Xh, Xh),
α

∆t
(uh, vh) + ν(∇uh,∇vh) + (U · ∇uh, vh)− (B · ∇Bh, vh)

=
α

∆t
(zh, vh) + ν(∇zh,∇vh) + (U · ∇zh, vh)− (B · ∇ωh, vh) + (δP ,∇ · vh), (4.16)

α

∆t
(Bh, ψh) + νm(∇Bh,∇ψh) + (U · ∇Bh, ψh)− (B · ∇uh, ψh)

=
α

∆t
(ωh, ψh) + νm(∇ωh,∇ψh) + (U · ∇ωh, ψh)− (B · ∇zh, ψh)− (δλ,∇ · ψh).

(4.17)

7. Recover Ph, λh by setting Ph = δP + Pn and λh = δλ + λn.

We now present a theorem for the error in YUPC scheme.

Theorem 4.1 Let ûh, P̂h, B̂h and λ̂h be the unapproximated solutions to (3.1)-(3.4), with ‖P̂h−
Pn‖ ≤ CP∆t, ‖λ̂h−λn‖ ≤ Cλ∆t. Besides, let uh, Ph, Bh, λh be the solutions to Algorithm 4.1,
i.e., the Yosida-updates pressure corrected solutions. The error satisfies the following bound:

‖ûh − uh‖+ ‖B̂h −Bh‖ ≤
2C4

I∆t4

βh4

(
CU + CB

)2(
CP + Cλ

)(
2CPF +

C∗CI∆t
h

)
,

where C∗ := min{ν, νm}.
Remark 4.2 The proof of this theorem is long and technical. However, it follows very closely
the structure of the NSE proof, and the way to handling the Maxwell equation is just as done
above for the YU analysis. Thus, we omit the proof.

Just as in the YU case, the stability can be proven using the convergence estimate.

Corollary 4.1 (Stability of the YUPC scheme) . Suppose f̃ = f + 1
∆tu

n, g̃ = g + 1
∆tB

n,
and ∆t ≤ Ch5/4 (and assuming h ≤ 1). Then the YUPC method is stable, and solutions satisfies

1
∆t
(
‖uh‖2 − ‖un‖2 + ‖uh − un‖2

)
+

1
∆t
(
‖Bh‖2 − ‖Bn‖2 + ‖Bh −Bn‖2

)

+ ν‖∇uh‖2 + νm‖∇Bh‖2 ≤ C(data).
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5 Numerical experiments

We now present two numerical tests, the first to test the predicted convergence rates of the
theory above, and the second to test the feasibility of the method on a larger scale problem. For
both tests, we use the viscous Orszag-Tang problem, which is a benchmark MHD test problem
studied in [19, 11]. The domain is the periodic box (0, 2π)2, and the setup is as follows. We
take as the initial conditions

u0 = 〈− sin(y + 2), sin(x+ 1.4)〉T , B0 = 〈−1
3

sin(y + 2),
2
3

sin(2x+ 3)〉T ,

add no external forcing, f = ∇× g = 0, and allow the flow to evolve. We choose ν = νm = 0.01,
and in the second test we also choose ν = νm = 0.001.

In all of our computations below, we use (P2, P
disc
1 ) elements for (uh, ph) and (Bh, λh). This

element choice is known to be inf-sup stable when the mesh is created as a barycenter refinement
of a quasi-uniform mesh [1, 22], and all meshes in our computations use such a structure.

5.1 Numerical experiment 1: Convergence rates

To compute the predicted convergence rates, we compute the unapproximated method for four
time steps, the YU method for four time steps, and also for comparison the classical Yosida
method (Y), and then compare solutions in the L2(Ω) norm. For the first time step of all
methods, we use Crank-Nicolson time stepping with an exact linear solver. The subsequent
steps use BDF2, and the various solvers. To test the negative scaling with respect to h, we also
compute on three different meshes: barycenter refinements of uniform meshes with h = L

8 ,
L
16 ,

L
32 ,

with L = 2π.
The table below shows the errors in the Y and YU approximations, and the corresponding

convergence rates with respect to ∆t. Convergence of the usual Y method is clearly observed
to be second order. For YU, we observe essentially third order, but with a slight deterioration
in the rate as ∆t gets smaller. However, this deterioration does not occur until errors approach
10−8, which is at the level where linear solver error can be a factor (10−10 is the tolerance for
the CG Schur complement solver). We note that YU is clearly much more accurate than Y, and
we stress that these two methods require the same amount of work to solve and have exactly
the same system matrices.

Regarding the negative scaling with respect to h from the analysis, we do not see a dete-
rioration in the errors as h decreases. However, we do observe a reduced scaling with respect
to ∆t, which could be related to this issue since the analysis does allow for a tradeoff between
better scaling with respect to h and a reduced scaling with respect to ∆t. However, the reduced
order of convergence is only observed for B in the YU case, and when errors are on the order of
10−8 and smaller.

5.2 Numerical experiment 2: viscous Orszag-Tang problem

For this same test problem, we now run the problem for longer times on finer meshes, as a
feasibility test. Here, we consider two cases of viscosity: ν = νm = 0.01 and ν = νm = 0.001,
and compute to an end time of T = 2.7, using time step size ∆t = 0.01 and third order
linearized BDF3 time stepping. For the spatial discretization, we used a barycenter refinement
of a 128x128 uniform mesh for ν = νm = 0.01, and 196x196 for ν = νm = 0.001. This provided
1,378,308 total degrees of freedom for ν = νm = 0.01, and 3,230,084 for ν = νm = 0.001. Grad-
div stabilization was added to both the momentum and Maxwell equations, with stabilization
parameter 100. For the linear solves, we used the YU method studied above, and with pressure
correction - since the time stepping method is third order, the accuracy order of the linear solver
at each time step should be O(∆t4) to match.
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h = L
8

∆t ‖uY U − uh‖ Rate ‖BY U −Bh‖ Rate ‖uY − uh‖ Rate ‖BY −Bh‖ Rate
0.2
4

2.128e-4 1.232e-4 3.348e-3 1.530e-3
0.2
8

3.137e-5 2.76 1.860e-5 2.73 9.098e-4 1.88 4.218e-4 1.86
0.2
16

4.473e-6 2.81 3.103e-6 2.58 2.381e-4 1.93 1.144e-4 1.88
0.2
32

6.368e-7 2.81 5.542e-7 2.48 6.108e-5 1.96 3.059e-5 1.90
0.2
64

8.918e-8 2.84 9.229e-8 2.57 1.550e-5 1.98 8.102e-6 1.92
0.2
128

1.218e-8 2.87 1.400e-8 2.72 3.910e-6 1.99 2.119e-6 1.93
0.2
256

1.622e-9 2.91 1.972e-9 2.83 9.826e-7 1.99 5.464e-7 1.96

h = L
16

∆t ‖uY U − uh‖ Rate ‖BY U −Bh‖ Rate ‖uY − uh‖ Rate ‖BY −Bh‖ Rate
0.2
4

2.075e-4 2.075e-4 3.336e-3 1.501e-3
0.2
8

3.100e-5 2.74 1.698e-5 3.61 9.088e-4 1.88 4.138e-4 1.86
0.2
16

4.114e-6 2.91 1.975e-6 3.10 2.377e-4 1.93 1.106e-4 1.90
0.2
32

5.597e-7 2.88 3.215e-7 2.62 6.087e-5 1.96 2.880e-5 1.94
0.2
64

7.817e-8 2.84 6.055e-8 2.41 1.541e-5 1.98 7.368e-6 1.97
0.2
128

1.110e-8 2.82 1.077e-8 2.49 3.877e-6 1.99 1.869e-6 1.98
0.2
256

1.562e-9 2.83 1.732e-9 2.64 9.726e-7 1.99 4.721e-7 1.98

h = L
32

∆t ‖uY U − uh‖ Rate ‖BY U −Bh‖ Rate ‖uY − uh‖ Rate ‖BY −Bh‖ Rate
0.2
4

1.857e-5 7.683e-5 3.328e-3 1.484e-3
0.2
8

2.878e-5 -0.63 1.301e-5 2.56 9.080e-4 1.87 4.122e-4 1.85
0.2
16

3.942e-6 2.87 1.516e-6 3.10 2.377e-4 1.93 1.104e-4 1.90
0.2
32

5.213e-7 2.92 1.815e-7 3.06 6.086e-5 1.97 2.873e-5 1.94
0.2
64

6.822e-8 2.93 2.762e-8 2.72 1.540e-5 1.98 7.337e-6 1.97
0.2
128

9.027e-9 2.92 5.105e-9 2.44 3.875e-6 1.99 1.854e-6 1.98
0.2
256

1.234e-9 2.87 9.695e-10 2.40 9.718e-7 2.00 4.662e-7 1.99

The block Schur complements were decomposed into Stokes-type Schur complements (a key
feature of the proposed method), each of which was solved using PCG as the outer solver (pre-
conditioned with the pressure mass matrix), and the inner solves were performed using PCG
(with ILU preconditioning, using drop tolerance 10−6). For the solves with the nonsymmetric
block matrix A, ILU-0 preconditioned BICGSTAB was used and was very effective - the precon-
ditioner was updated whenever 20 BICGSTAB iterations were needed to converge the solver,
and this happened about every 10 time steps.

Results for the ν = νm = 0.01 test are shown in figure 1, and for ν = νm = 0.001 in figure 2,
as contours of the magnitude of the magnetic field and velocity field, and the (scalar) curl of the
magnetic field. Results for ν = νm = 0.001 are consistent with the ideal MHD (i.e. ν = νm = 0)
results from [19, 11]. We note we also ran these test problems using an exact (unapproximated)
linear solver and the resulting plots were visually indistinguishable.

6 Conclusions and future directions

In this paper, we have proposed, analyzed and tested the YU method (and with pressure cor-
rection) for MHD. The method provides for very efficient solves of the block saddle point linear
systems that arise in MHD, as they decompose the nonsymmetric block Schur complement into
2 Stokes-type Schur complements that are the same at each time step. The method is proven
to be third order (fourth order with pressure correction) with respect to ∆t, and the analysis
is done using the natural norms of the problem. Numerical tests were given that show the
effectiveness of the method.
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Figure 1: Shown above are the T=2.7 solution for |B| (left), |u| (center), and ∇ × B (right) for
ν = νm = 0.01

Figure 2: Shown above are the T=2.7 solution for |B| (left), |u| (center), and ∇ × B (right) for
ν = νm = 0.001

There are at least two potential future directions for research that comes from this study.
The first is testing the YU and YUPC methods efficiency and accuracy against various solvers
of MHD systems that do not approximate, but solve with preconditioned iterative solvers.
Second, the analysis predicts a potential negative scaling of h−3 in the convergence, however
the numerical test showed no negative scaling in h. Even for the YU method applied to the
incremental NSE, the same h−3 is predicted by the analysis, but only a h−1/2 is observed in
numerical tests [24]. Further study should be done here to see if a sharper analysis with respect
to h can be discovered.
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