
Clemson University
TigerPrints

All CEDAR Publications Clemson Engineering Design Applications and
Research (CEDAR)

1-2014

Assembly Time Estimation: Assembly Mate Based
Structural Complexity Metric Predictive Modeling
Joseph E. Owensby
Clemson University

Joshua D. Summers
Clemson University, jsummer@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/cedar_pubs

Part of the Engineering Commons

This Article is brought to you for free and open access by the Clemson Engineering Design Applications and Research (CEDAR) at TigerPrints. It has
been accepted for inclusion in All CEDAR Publications by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

Recommended Citation
Please use publisher's recommended citation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268688498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fcedar_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/cedar_pubs?utm_source=tigerprints.clemson.edu%2Fcedar_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/cedar?utm_source=tigerprints.clemson.edu%2Fcedar_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/cedar?utm_source=tigerprints.clemson.edu%2Fcedar_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/cedar_pubs?utm_source=tigerprints.clemson.edu%2Fcedar_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=tigerprints.clemson.edu%2Fcedar_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Assembly Time Estimation: Assembly Mate Based Structural

Complexity Metric Predictive Modelling

Joseph E. Owensby, Joshua D. Summers

Mechanical Engineering, Clemson University, Clemson, SC, USA

Contact Author: Joshua D. Summers, Professor

 250 Fluor Daniel Building

 Mechanical Engineering

 Clemson University

 Clemson, SC 29634-0921

 jsummer@clemson.edu

This paper presents an automated tool for estimating assembly times of

products based on a three step process: connectivity graph generation from

assembly mate information, structural complexity metric analysis of the graph,

and application of the complexity metric vector to predictive artificial neural

network models. The tool has been evaluated against different training set

cases, suggesting that partially defined assembly models and training product

variety are critical characteristics. Moreover, the tool is shown to be robust

and insensitive to different modelling engineers. The tool has been

implemented in a commercial CAD system and shown to yield results of within

+/- 25% of predicted values. Additional extensions and experiments are

recommended to improve the tool.

Keywords: Design for Assembly, DFA, Assembly Time, Complexity, Artificial

Neural Networks

1 Motivation: An Automated Tool for Assembly Time Estimation

The authors present a new computational design tool for estimating assembly times.

This tool consists of three major components: a graph generator from computer aided

design (CAD) assembly models, a structural complexity metrics generator, and an

artificial neural network (ANN) modeller to predict assembly times. The tool uses the

assembly mates defined within a CAD model, as defined by the designer, to create a

connectivity graph. This graph is then evaluated against a suite of structural

complexity metrics that are fed into an ANN based predictive model. This tool has

been integrated into a commercial CAD software package and evaluated with respect

to training size, assembly model authorship, and level-of-mate definition.

mailto:jsummer@clemson.edu

This paper presents the motivation for developing an assembly time estimation

tool based on design for assembly methods and a review of previous efforts. This is

followed by a discussion on the algorithm for automated assembly time estimation

based on graphs resulting from assembly mate models. The tool is validated through

external testing and a sensitivity analysis on the impact that different approaches to

creating the mating models has on the estimation effectiveness. Finally, the

limitations of this approach is discussed and future extensions identified.

1.1 Design for Assembly (DFA)

Design for Assembly (DFA) methods have been evolving since the 1960’s,

progressing from basic rules and guidelines to the creation of automated analysis

tools, as detailed in Table 1 [1–4]. DFA works by estimating time for the assembly

and providing recommendations for changing the components to improve this time.

The first function (estimating time) is of interest here.

Table 1: Existing DFA Methods

DFA Method Description Developer Date Ref.

Methods-Time

Measurement

(MTM)

Assign operations with

pre-defined assembly

times to parts

Academic

(Maynard)
1948 [5,6]

Manufacturing

Producibility

Handbook

Reference manual of

manufacturing and

assembly guidelines

Corporation

(GE)
1960 [2]

Boothroyd and

Dewhurst DFA

DFA based on minimum

part criteria and handling

and insertion difficulties

Academic &

Consulting

(Boothroyd and

Dewhurst)

1977 [2,7]

Assembly

Evaluation Method

(AEM)

DFA based on one

motion for one part

Corporation

(Hitachi)
1980

[2,8–

10]

Design for

Assembly and Cost

Effectiveness (DAC)

Uses 30 key words to

evaluate design

Corporation

(Sony)
1988 [2,11]

Assembly Oriented

Product Design

Accesses a parts

functional value

Academic

(Warnecke and

Bassler)

1988 [2]

Lucas DFA Method
Set of questions to

determine assembly time

Academic &

Consulting

(Miles and

Swift)

~1986 [2,12]

MOSIM

Focus of implementing

DFA through CAD

software

Corporation

(Angermuller &

Moritzen of

Siemens)

1990 [2]

DFA Sandpit

Proactive DFA software

based on original Lucas

method

Academic (Swift

and Jared)
2000

[13,1

4]

In the 1980’s, the original guidelines published in the manuals of the 1960’s

were integrated into systematic qualitative/quantitative DFA analysis tools to help

designers predict the product assembly times based on extensive time studies. Upon

creation of these table based methods, researchers began to implement DFA using

computer software to improve speed and ease of the analysis. These industrial tested

DFA methods have proven advantageous in reducing a product’s total part count,

manufacturing cost, production lead time, inventory, assembly time, and assembly

cost [15,16]. There are recognized limitations to these methods, however, namely the

subjectivity of inputs [13,17], significant user inputs [18], and the reactive nature of

the tool [19,20]. It is these limitations the authors address through the assembly mate

based time estimation system. Specifically, i) system inputs are entirely objective as

the assembly mates defined by the designers; ii) additional user inputs are not needed,

and iii) the tool can be used in real time once assembly models are available in the

CAD system.

1.2 Previous Efforts in Automated Time Estimation

The Connectivity Complexity DFA is one method used to solve the subjective issues

of existing DFA methods preventing automation [21]. Developed using linear

regression to identify a relationship between a product’s assembly time and the

complexity of the inter part connections; this method predicts assembly times from

products inter connectedness complexity. The advantage of over existing methods is

that the physical connections between parts in an assembly can be identified

objectively. The initial results predicted assembly times within +/- 15% of the

training times used, proving that a product’s connection complexity can be used to

determine product assembly times [21].

To assess the potential utility, the Connectivity Complexity DFA method was

compared to the Boothroyd Dewhurst DFMA software based on i) approximate time

for analysis, ii) predicted assembly time, iii) amount of required input and subjective

information, and iv) the number of redesign features [18]. It was determined that the

Boothroyd Dewhurst DFMA software required users to answer forty nine questions

per part, sixteen of which were subjective. The Connectivity Complexity method,

however, only required that users answer five questions per part, none of which are

subjective. The predicted assembly times of the Connectivity Complexity method

ranged from 13.11% to 49.71%, lower than the predicted times of the DFMA software

considered as the baseline. Both methods required a similar implementation time.

Though the evaluation suggests that the Boothroyd DFMA software is effective,

extensive subjective user inputs which are difficult to program are required. Based on

this evaluation, though the Connectivity Complexity method can be automated as it

only requires objective information, its accuracy can be improved [18]. This

estimation method using manual graph generation and regression fit is V1 in the

evolution of using structural complexity metrics to predict assembly times of Figure

1.

Figure 1: Connectivity Complexity DFA development flow chart

The original work (V1) used linear regression training and acted as a proof-of-

concept to show the use of physical connections between parts to determine product

assembly times [21]. The continuation of the work (V2) implemented the ANN

training to improve the accuracy of the predicted assembly times [22]. The work

presented here relates to the third attempt to develop an objective and automated

assembly time estimation tool. During the early development of the structural

complexity method, part connections within a product were identified early in the

design process [18]. The inter-part connections required here can be extracted from

sketches and 3D CAD models which are generated as early as the conceptual design

phase, making it applicable throughout the design process [23,24]. Extracting the

connections from assembly models also enables creation of a program to automate

this method. The rest of this paper presents the development of an automated

structural complexity metric based assembly time prediction method.

2 Automation of Structural Complexity Assembly Time Prediction Tool

This automated time estimation tool has three basic steps: graph generation,

complexity analysis of graph, and application of ANN predictive model. Figure 2

shows a flow diagram of the SolidWorks (SW) mate extraction add-in, its required

inputs, the information processing steps, and the assembly time output.

Manual Connectivity

Complexity
Regression Fit

Complexity

ANN

Complexity

ANN

Manual Connectivity

Complexity

Semi-Automated

Mating Complexity

V1

V2

V3

Figure 2: SW mate extraction add-in and information processing

The mate extraction add-in (top box of Figure 2) generates a connectivity

graph that represents the product inter-part connections. This connectivity graph is

processed external from the mate extraction add-in. The external processing is

performed using MatLab where custom algorithms are used to generate a complexity

vector of the mate graph; this vector along with previously trained ANNs is used to

predict an assembly time. Before the information processing can be accomplished,

the ANNs must be created and trained as explained below. Each of these steps is

discussed in the following sections.

2.1 Step 1: Graph Generation

Two approaches for automated graph generation have been explored. The first, an

implicit based approach [25] that extracts potential mating pairs of parts based on

duplicate geometry [26,27], has limited efficiency and computational time. The

Assembly

Model

Mate Graph

Assembly Time

Custom Mate

Extraction Tool
SolidWorks

Manager

Complexity

Vector

Matlab: Complexity

Calculations

Matlab: Artificial

Neural Network

Mate Extraction Add-In

Information

Processing

Required

Input

Output

second approach, employing explicit information contained within CAD assembly

models, is the focus of this paper and is fully reported elsewhere [28]. The explicit

information chosen is the assembly mates defined within the models by the designer.

In this manner, not only is an objective tool developed based on explicitly available

information, this information is also closer to capturing the design rationale.

Examples of mate relations within SolidWorks, the commercial package within which

the tool is built, include concentric, coincident, angle, and locked mates. A challenge

to this approach is that a single collection of parts can be mated in different ways,

resulting in different connectivity graphs and the resulting structural complexity

metric values. Consider the simple assembly model of Figure 3. These three parts

(A, B, C) can be mated with different approaches to yield the same assembly (Table

2).

Figure 3: Part A, Part B, and Part C, mated or constrained in a variety of ways

Table 2: Mate configurations for Parts A, B, and C

Parts Configuration 1 Configuration 2

C and B C shaft concentric with B hole
C face right aligned with B face

right

C and B
C face top coincident with B face

bottom

C face top coincident with B face

bottom

C and B
C face right parallel with B face

right

C face front aligned with B face

front

B and A B hole concentric with A hole
B face right aligned with A face

right

B and A
B face top coincident with A face

bottom

B face top coincident with A face

bottom

B and A
B face right parallel with A face

right

B face front aligned with A face

front

The tool used for extracting mate information from assembly models was

developed using SolidWorks 2010 API Software Development Kit (SDK)
1
.

SolidWorks (SW) is a commercial three dimensional modelling software package

which provides an intuitive Graphical User Interface (GUI). The software offers two

options to develop the SolidWorks API application, macros and add-in programming.

Though macros tend to speed the development of automations, they are limited in

scope as they replicate user actions within the GUI. If an automation component

requires information that cannot be extracted from the GUI interface actions, then a

separate add-in is required. This is the case for extracting mate information from

SolidWorks assembly models. The algorithm implemented in the add-in

programming environment, through C++ coding, is shown in Figure 4.

1
 http://www.solidworks.com/ (accessed September 17, 2012)

http://www.solidworks.com/

Get active assembly document

Get features list from feature manager tree

If feature = mate list

Get Mate list from feature list

For each mate in Mate list

Get parts connected by mate

Add parts to graph

End

End if

Figure 4: Pseudo-code for Extracting Mate Information

To obtain the mate information from an assembly file, the program traverses

through the feature types in the feature manager tree. A screen shot of the SW feature

manager design tree for a Black & Decker Drill can be seen in Figure 5. This figure

labels three main sections of the feature manager design tree: reference features, parts

and sub-assemblies, and mates. Within the main assembly, everything in the feature

manager design tree is recognized as an assembly feature. Information within the

sections of the feature manager design tree may include annotations, co-ordinate

planes, part names, part features, and part constraints.

Figure 5: SolidWorks feature manager design tree

Feature Manager Design Tree

Reference

Features

Parts and Sub

Assemblies as

Features

Mates as

Features

The program traverses through the feature manager tree until it reaches a

container with mate information. Each mate consists of the name of the mate and the

names of parts constrained by that mate. For each mate, the names of both parents

(parts) are retrieved, indicating the connection between the parts. The names of the

connected parts are then stored in a bi-partite table and saved as a *.csv file. This

process is iterated until all connections between the parts are extracted from the

feature manager tree.

2.2 Step 2: Complexity Metrics for Connectivity Graphs

Once the bi-partite table containing the mate connections found in the

assembly file is generated, the complexity of the table based graph can be calculated

using a custom MatLab program [29]. The program currently evaluates 29 distinct

complexity metrics. Rather than evaluating a single complexity metric [30–32], the

authors use a set of metrics to realize pattern discovery through the ANN models of

the final step. The metrics evaluated are classified as size, interconnectivity,

centrality, and decomposition [33].

Size is a common measurement used in complexity measurement. The size of

an object is based on the count of some classification of the object within the system;

as the value increases so too does the complexity [31]. While counts are the most

intuitive form of complexity measurement, their contribution to complexity is non-

linear [34]. When the count is low, the addition of one more is significant, while the

opposite is true of high-count systems.

The interconnectedness of a graph can be evaluated through path length and

flow capacities. Path length measurements are based on the number of relationships

that must be passed through to travel from one element to another [35,36]. For

example, a path length of two from node A to node C is necessary to travel through

the system ABC. Flow capacity measurements, in turn, are based on the number

of unique paths between each pair of nodes. Here, the capacity is determined by the

availability of edges, with each edge assumed to have a capacity of one and nodes

assumed to have infinite capacity [37]. While shortest-path-length metrics address the

existence of connection within the system, flow-capacity metrics elucidate the volume

of information that is passed within the system.

Centrality, addressing relative importance of nodes within a system, assumes

many forms in network analysis [38–41]. Two forms of centrality are employed here:

betweenness centrality, a measurement on the number of shortest paths on which a

node occurs [38]; and the clustering coefficient, a measure of the degree to which

nodes are grouped within the system [42]. Regarding individual nodes, the clustering

coefficient is a measure of the degree to which a given node and its neighbours will

form a clique, or complete graph. This is defined as the percentage of nodes to which

the given node is connected and which are connected to each other.

The final measurement is decomposability, used to inventory the requisite

steps for structural disassembly of a system. As a measure of complexity, the

decomposability score increases with ever larger and more complex systems; thus,

what is measured is the difficulty of a disassembling a system set-by-set. The Ameri-

Summers decomposability algorithm [43] is one measure of decomposability. Each

step consists of removing those relationships that link to the elements with the fewest

connections. Each additional step, relationship set, or relationships per separated

element required to decompose the system is considered to increase the complexity.

In an additional measure of decomposition, core numbers are the largest integer such

that the given element exists in a graph where all degrees are at least that integer [44].

These degrees are subsequently separated into measurements relating to the in-degree

and out-degree of each node in digraphs.

Table 3 classifies the metrics that are used in the graph analysis. This

resulting complexity vector will be used along with Artificial Neural Networks

(ANNs) to predict a products assembly time. For brevity, five of the metrics and their

mathematical definitions are illustrated in Table 4. The comprehensive list and all

associated algorithms are found in [29,33].

Table 3: Twenty-Nine Complexity Metrics Used in Graph Analysis

Class Type Metric

Size

Dimensional
Elements (DSE)

Relationships (DSR)

Connective
Connective Size (CS)

Degree of Freedom (DOF)

Interconnection

Shortest Path Length

Total Shortest Path Length (TPL)

Maximum Shortest Path Length (MPL)

Average Shortest Path Length (APL)

Shortest Path Length Density (PLD)

Flow Capacity

Flow Capacity Sum (∑)

Maximum Flow Capacity ()

Mean Flow Capacity (̅̅̅̅)

Flow Capacity Density ()

Centrality

Betweenness

Betweenness Sum (∑)

Maximum Betweenness ()

Mean Betweenness (̅̅ ̅)
Betweenness Density ()

Clustering Coefficient

Clustering Coefficient Sum (∑)

Maximum Clustering Coefficient ()

Mean Clustering Coefficient (̅̅ ̅̅̅)
Clustering Coefficient Density ()

Decomposition

General Ameri-Summers (ASA)

Core (In)

In Core Number Sum (∑)
Maximum In Core Number ()

Mean In Core Number (̅̅ ̅̅ ̅)
In Core Number Density ()

Core (Out)

Out Core Number Sum (∑)

Maximum Out Core Number ()

Mean Out Core Number (̅̅ ̅̅ ̅)
Out Core Number Density ()

Table 4: Example Complexity Metrics Explored in the Interpretability Analysis

Study [29,33]

Name Description Mathematical Definition

Connected Size

(CS)
Number of arcs within the bipartite graph ∑ { }

All-Pairs Shortest

Path (TPL)

The sum of the lengths of the shortest path

between each pair of entities. SP defines the

shortest path between element pair
 ∑∑({ })

Average Shortest

Path Length

(APL)

The average of all the shortest paths between

each pair of entities.

Maximum

Shortest Path

Length (MPL)

The maximum path length from all shortest

paths between each pair of entities.
 ({ })

Path Length

Density (PLD)

The Average Shortest Path Length divided by

the number of relations

2.3 Step 3: ANN Prediction Tool

The final step of the time estimation tool uses trained Artificial Neural Networks

(ANN) based on the input pair of the complexity metric vector and the known

assembly time. The trained ANN, currently implemented within the MatLab ANN

toolbox, predicts new assembly times when given a complexity vector. Training an

ANN requires a set of inputs and respective target values to effectively identify

relationships between them. Once an effective set of inputs and targets has been

compiled it can be reused in future implementations, thusly eliminating the training

process from the final tool implementation. The next section describes the selection

method for creating a database of assembly models and times that can be used for

training.

2.3.1 Collecting Product 3D Assembly Models

To populate an effective ANN training set, a collection of 3D assembly models is

required. For each model, an assembly time is needed and is generated based on the

Boothroyd and Dewhurst (B&D) method [45], since the actual assembly times are not

available. The models on which the method is applied are derived from direct reverse

engineering of products, an on-line CAD repository
2
, SolidWorks 3D Content, and

from OEM assembly models available from past projects [46]. The example database

of assemblies is found in Table 5. The reverse engineered models were created

independently by different students within the CEDAR (Clemson Engineering Design

Applications and Research) group as part of several other on-going projects separate

from this effort.

2
 http://gicl.cs.drexel.edu/wiki/Main_Page (accessed September 17, 2012)

http://gicl.cs.drexel.edu/wiki/Main_Page

Table 5: Collection of product assembly models

Product Assembly Model Generation

1 G2 Pen Reverse Engineered

2 Pencil Compass Reverse Engineered

3 Solar Yard Light Reverse Engineered

4 Pony Vise Reverse Engineered

5 Black and Decker Drill Reverse Engineered

6 Paper Pro Stapler GICL Website
2

7 6" MagLight SW 3D Content
1

8 Indoor Electric Grill SW 3D Content
1

9 Shift Frame LH OEM

10 Wide Flag OEM

An example of an exploded view for one of the OEM components is found in

Figure 6.

Figure 6: Exploded view of OEM Wide Flag Assembly

Each of these assembly models are defined within SolidWorks with the mates

that are available within the CAD system. Complexity vectors are generated

automatically for each of these products, and assembly times are developed for each

product. Should a company wish to deploy this system in their design group,

company specific assembly models can be collected and used for training purposes

with known product assembly times. These historical models, ideally collected from

different projects, have been authored by different designers with different levels of

component count and mating resolution. Specific strategies for selecting and

developing ANN training models are reserved for future work.

Though the physical products for items 1-6 in Table 5 were obtained, items 7-

10 could not be located or lacked a specific consumer product to match the

SolidWorks model including product generational changes that did not match exactly.

Without the physical product, applying the Boothroyd DFA method is difficult since

the objective and subjective analysis questions typically require a true understanding

of how the product is assembled. To solve this problem a combination of DFA

analyses were conducted, evaluated, and used. First a “virtual” Boothroyd DFA

analysis was conducted on the SolidWorks Assembly model. The challenge with this

“virtual” method is that without disassembling and holding the actual parts, an

understanding of the product structure, function, assembly sequence, handling

difficulties, and insertion difficulties cannot be obtained which is essential when

applying the Boothroyd DFA. The challenges of determining the handling and

insertion difficulties come because such information requires the designer to answer

subjective questions about the product [17]. For example, if a part is either difficult to

grasp or has resistance to insertion, it is challenging to assess this difficulty without

physically picking up the part and inserting it.

Once the “virtual” Boothroyd DFA was completed, if a physical product was

present that matched the SolidWorks model, it was disassembled and the DFA

analysis was conducted as well. The “virtual” Boothroyd DFA method was always

conducted first to reduce the chance that a handling or insertion difficulty experienced

during the physical analysis would influence the designer during the “virtual”

analysis. Between the Boothroyd DFA analyses on the physical products and the

virtual products a total of sixteen assembly times to match the respective CAD

assembly models were determined.

2.3.2 Training of Mate Complexity DFA Method

The research on the connectivity complexity method previously conducted used

ANNs to increase the accuracy of the original connectivity complexity DFA method

[21] Artificial neural networks were selected to identify the relationship between the

products connectivity complexity vector and respective assembly times because they

are often used to complete nonlinear statistical analyses [47]. The complexity vectors

and assembly times of the Pencil Compass, the 6 Inch MagLight, and the Black and

Decker Drill from Table 5 were held back for use as test inputs once the ANN training

was completed. These three products were chosen for testing because their part

counts and assembly times form a good representation of the training set.

To train the ANNs for this research, 189 architectures were generated,

consisting of one to three layers with up to fifteen neurons per layer depending on the

configuration. Each architecture was given the training set 100 times so that

probability densities could be used to better approximate the relationship. The

probability density plots can be generated for each product based one ANN structure

replicated 100 times (Figure 7). In Figure 7, the function is shown with the target

time illustrated as the vertical line near the function peak. The ANN training inputs

consisted of eleven complexity vectors for eleven of the sixteen assembly times. If a

product had both a virtual and physical Boothroyd DFA predicted assembly time then

the same complexity vector for that product would be trained towards the two

different assembly times. Once the training inputs and targets were compiled, the

different ANN architectures were trained with the best selected and evaluated for later

use as described above.

Figure 7: Example Probability Density Plot

Three separate Artificial Neural Networks training sets using different inputs

and targets were evaluated to determine if the number of mates affected the predicted

results. The first training set (Case 1) was generated using complexity vectors based

on all of the SW models being fully defined, indicating that assembly parts are fully

constrained by mates and cannot move. The second training set (Case 2) was

generated using complexity vectors based on the partially defined SW models,

achieved by having the designer mate the assembly model to the point where parts are

constrained due to design intentions. The third training set (Case 3) was generated

using both the complexity vectors generated for the fully defined and partially defined

SW assembly models, indicating that Case 3 had twice as many training inputs and

targets than either Case 1 or Case 2.

The average probability for all 189 architectures for predicting the assembly

time was then found and compared to determine that which would be most effective at

predicting an assembly time within the specified target range. The five architectures

with the highest average probabilities were selected for evaluation. Table 6 shows

these architectures selected for the three training schemes.

Table 6: Selection of top 5 ANN architectures for each testing case

Case 1 (F. Def.) Case 2 (P. Def.) Case 3 (F&P Def.)

Arch. Avg. Prob. Arch. Avg. Prob. Arch. Avg. Prob.

95 0.601 56 0.999 109 0.992

173 0.541 64 0.963 45 0.736

79 0.537 174 0.789 154 0.699

90 0.500 147 0.753 30 0.639

99 0.500 52 0.737 133 0.625

Case 2, trained with the partially defined products, yielded the overall best top

five architectures based on the probability density curves. ANN training Case 3

which used fully and partially defined products was next, while training Case 1 which

used only fully defined products was least effective. The mates added to parts in an

assembly define the constraints of that part within that assembly. If a designer must

add more mates than required, the original constraint definition may either be lost or

negatively affected. As this may reduce the predictive capacity of fully defined

assembly models, a detailed investigation into this issue is reserved for future work.

For comparison, the times for each of the top five architectures for each training case,

were compared across the three test products.

To determine the effectiveness of each ANN training scheme, their predicted

assembly times are compared using the top five architectures for each ANN training

scheme (Table 7). Shaded cells illustrate the level of accuracy for various tests (green

- returned values are within +/- 25% tolerance; yellow - values are within +/- 50%

tolerance). Again, these tolerance ranges are sought as they are comparable to the +/-

50% that is recognized as a limitation of the benchmark B&D method [48].

Table 7: Comparison of predicted assembly times for each training case

Product

Test Case

Level of

Definition

(Test)

Target

Time

(s)

Case 1 (Fully

Defined

Training)

(s)

(+/- %

Error)

Case 2

(Partially

Defined

Training) (s)

(+/- %

Error)

Case 3 (Fully

and Partially

Defined

Training)

(s)

(+/- %

Error)

Pencil

Compass

Fully

68.3

121.4

(+77.5)
NA

94.5

(+38.2)

Partially NA
96.6

(+41.2)

82.5

(+20.6)

MagLight

Fully

75.4

118.3

(+56.9)
NA

70.2

(-6.9)

Partially NA
65.1

(-13.7)

75.7

(+0.5)

Black &

Decker

Drill

Fully

189.6

226.3

(+19.3)
NA

319.3

(+68.4)

Partially NA
186.1

(-1.9)

202.3

(+6.7)

For training Case 1, both test cases and the training set were fully defined

models. For training Case 2, again, both test cases and training set were all partially

defined models. As Training Case 3 used a combination of fully defined and partially

defined models for training, both fully defined and partially defined models were used

for testing.

Test results indicate that using training Case 3 which had fully and partially

defined models resulted in predicted assembly times closest to the target times. The

percent error of the predicted assembly times for four of the six inputs decreased by

using the training Case 3 as opposed to the first two cases. However, the size of the

training set was doubled with Case 3. Therefore, it is not clear whether a combined

training set or simply a larger training set is preferred. Training cases using partially

defined models are more effective than those using fully defined models. Based on

these results, future training cases could use only partially defined models.

To investigate the effect of training input variability, three different training

cases were assembled (Case 4, 5, 6) by increasing the number of analysed products.

Based on the limited success of downloading product assembly models from online

databases, the number of models was increased by reverse-engineering five additional

consumer products, the list of which is in Table 8. Only certain combinations of the

first ten assembly models shown were used to train Case 1, 2, and 3. The last five

products were added to the training set to replace the repeated training inputs

(physical and virtual times) used in the first three test cases. The last three columns of

Table 8 show Case 4, 5, and 6 where the products used to train each case are labelled

“Training” and the products used as test inputs are labelled “Test”. All of these are

for partially defined modelled, similar to what would be expected to be modelled by

an engineer.

Table 8: Increased product collection and training case products for

training/testing

Product
Assembly Model

Generation
Case 4 Case 5 Case 6

1 G2 Pen Reverse Engineered Training Training Training

2 Pencil Compass Reverse Engineered Training Training Test

3 Solar Yard Light Reverse Engineered Training Test Training

4 Pony Vise Reverse Engineered Training Training Training

5
Black and Decker

Drill
Reverse Engineered Training Test Test

6 Paper Pro Stapler GICL Test Training Training

7 6" MagLight SW 3D Test Training Test

8 Indoor Electric Grill SW 3D Training Training Training

9 Shift Frame LH OEM Training Training Training

10 Wide Flag OEM Training Training Training

11 One Touch Chopper Reverse Engineered Training Test Training

12 Computer Mouse Reverse Engineered Training Training Training

13
Boothroyd Piston

Assembly
Reverse Engineered Training Training Training

14 3 Hole Punch Reverse Engineered Training Training Training

15
Durabrand Hand

Mixer
Reverse Engineered Test Training Training

Since all of previous products were the subject of virtual Boothroyd Dewhurst

DFA analyses, the new ANN trainings, Case 4, 5, and 6, only use virtual Boothroyd

predicted assembly times as their targets which are trained with unique complexity

vector inputs for each product. The results of these ANN training cases are in Table

9. Each test yielding estimations within the +/- 25% tolerance range are shaded.

Table 9: Comparison of predicted assembly times for the last three ANN training

sets

Product Test

Case

Level of

Definition

(Test)

Target

Time (s)

Case 4

(s)

(+/-%

Error)

Case 5

(s)

(+/-%

Error)

Case 6

(s)

(+/-%

Error)

Pencil

Compass
Partially 68.3 NA NA

60.2

(-12.0)

MagLight Partially 75.4
69.8

(-7.5)
NA

65.4

(-13.3)

Black &

Decker Drill
Partially 189.6 NA

199.4

(+5.1)

233.8

(+23.3)

Paper Pro

Stapler
Partially 123.5

118.3

(-4.2)
NA NA

Durabrand

Blender
Partially 263.2

271.8

(+3.3)
NA NA

Solar Yard

Light
Partially 128.8 NA

113.1

(-12.2)
NA

One Touch

Chopper
Partially 316.6 NA

318.7

(+0.7)
NA

As shown in Table 9 the results for training Case 4, Case 5, and Case 6 have

less than 14% error of the target time except in one time generated by Case 6, which

exhibited an error of 24%. In that none of the first three training Cases investigated

has percent errors this low for all test products, providing a more diverse training set

that does not reuse test inputs will increase the overall accuracy of the set. Case 4

generally has the lowest overall percent error out of all training cases. The percent

errors for Case 4 range from -7.5% to +3.3% and is closely followed by Case 5 with

has percent errors ranging from -12.2% to +5.1%. This additional testing suggests

that variety of training has a positive impact on accuracy. Additional training

experiments can be found in [28].

2.3.3 Using the ANN Models

Once the ANN models are trained, new assemblies can be analysed and their

respective times estimated. This analysis/estimation is done by supplying to the ANN

program within MatLab the complexity vectors calculated for the assembly models in

a “use” mode rather than “training” mode. The MatLab interface provides an

assembly time display.

To predict an assembly time using the developed assembly time prediction

tool, nine steps must be completed (user actions-green and program executions-red):

 User: Opens SolidWorks assembly model

 User: Click on SWMate2 Add-in

 Program: Extracts mates and builds the bi-partite table

 Program: Opens Matlab and calls custom complexity algorithm

passing the generated file name as the input

 Program: Complexity algorithm reads mates from the bi-partite table

and calculates a respective complexity vector

 Program: Calls custom Matlab ANN function (accepts generated

complexity vector as input)

 Program: Loads previously determined ANN training case that uses

top five selected architectures

 Program: Mate connection complexity vector is given to custom ANN

assembly time prediction function as test input and the function outputs

replicated results

 Program: Results are interpreted and a predicted assembly time is

displayed

3 Validating the Tool

Two different validations are used to test the tool. First, an external assembly model

never before used in any previous training or testing is used to ensure the objectivity

of the test. The second validation test entails exploring how assembly models of

different users influence predicted times.

3.1 External Testing

To test the developed assembly time prediction tool, a product not previously used for

training or the interpretation of results is identified and used for testing. A Durabrand

Electric Knife was selected because of similarity in size, part count, and product

family to the products and assembly models used for training. Though the

SolidWorks assembly model generated for the Electric Knife forms a rough

representation of the actual product, it is not exact. Moreover, the assembly model

was constrained by a practicing engineer partially, in a manner consistent to typical

industry practice. Once the Electric Knife assembly model was generated, a virtual

B&D analysis was conducted (taking approximately 2,000 seconds to complete

compared with roughly 60 seconds for the automated tool analysis time) and which

predicted an assembly time of 212.34 seconds. The new assembly time prediction

tool is evaluated by opening the assembly model for the Electric Knife and clicking

on the assembly time prediction SolidWorks Add-in.

The Electric Knife assembly model was tested using the top five selected

architectures for each case. This testing was repeated for all six training cases, the

predicted assembly times of which are tabulated in Table 10. The cells in the table

are shaded to illustrate the level of accuracy for the different tests; green shading

indicates that the values returned are within the +/- 25% tolerance range and the

yellow shading indicates that the values are within the +/- 50% tolerance range.

Table 10: Predicted assembly times for an electric knife using a fully automated

assembly time predication tool

Training Set

Name

Electric

Knife Target

Time

(s)

Predicted Time from

Loaded Training Set

(s)

% Error

(+/-)

Analysis Time

(s)

Case 1

212.34

457.83 +54 68

Case 2 665.87 +68 67

Case 3 315.23 +33 67

Case 4 251.7 +16 67

Case 5 204.59 -4 68

Case 6 225.34 +6 68

The percent error in the predicted time for the training sets ranges from -4% to

+68% errors (Error! Reference source not found.). If the cases are discretized into

general categories, the same conclusions inferred in the previous training case

investigation are again made. Though Training Case 1 and Case 2 had a training size

of eleven inputs and targets, training inputs were reused, resulting with the highest

percent errors ranging from 47% to 68% error. Training Case 3 had twice the training

size, twenty-two, but reused training inputs, in turn resulting in a percent error of

33%. Training Case 4, Case 5, and Case 6 had training sizes of twelve inputs and

targets, all of which are unique. This resulted in the lowest percent error ranging from

-4% to +16% errors, well within the +/- 50% errors that are possible with the B&D

method [45].

Running the analysis on this test product while loading trained neural

networks took less than 111 seconds once MatLab was opened. The total time to run

the analysis, including opening and initializing MatLab which takes approximately

another 120 seconds, yielded a total approximate analysis time of 330 seconds. This

is a significant improvement when compared to the nearly 2,000 seconds for analysis

time for the B&D tool. Fully integrating a trained ANN in C++ within the add-in,

therefore, can improve the execution time.

3.2 Mate Sensitivity Testing

If this tool is to be effective, it should be generally insensitive to modelling

preferences of different designers. To test such preferences, a set of products are

provided to different designers to create assembly models. The assembly models and

their associated connectivity graphs and complexity vectors are used to estimate the

assembly times for comparison against B&D predicted assembly times. Three

separate products were chosen for this study: the Solar Yard Light, the Black &

Decker Drill, and the One Touch Chopper. These three products and their respective

part count, B&D predicted assembly times, and their product structures are listed in

Table 11.

Table 11: Selected products for mate sensitivity study

Product
Part

Count

B&D Predicted

Assembly Time (s)
Product Structure

Solar Yard Light 15 128.79 Linear

Black & Decker Drill 26 186.65 Clam Shell

One Touch Chopper 43 316.67
Combo: Clam Shell

& Stackable

Table 11 represent the totality of products (i.e. assembly time, part count, and

general product structure) used in the different training sets. All products differ for all

three products listed. Linear product structures are composed of products where the

majority of components are inserted along the same axis. Clam shell product

structures sandwich the majority of parts between two halves. Stackable product

structures have some type of base or foundation where other parts are stacked atop

one another to create the assembly. Products also have structures that are based on

any combination of these.

The assembly models for each product were prepared by creating an assembly

file with all individual components for that product without any mates and by creating

a separate reference assembly file that illustrates how the product is assembled,

through which students view the assembly process. To prevent the designers from

being influenced by the reference assembly, parts were fixed and all mates were

deleted. An exploded view of the reference assembly model, the Black & Decker drill

in Figure 8 was created to help determine the assembly sequence.

Figure 8: Exploded view of Solar Yard Light Reference Assembly

The exploded view of the reference assemblies is collapsible so that the exact

location of parts within the assembly is visible. The product assembly file provided to

the students included all of the product parts in the general location with respect to the

parts to which they will be mated. The students must position the parts in the correct

location and then add mates to the assembly as they see fit. Figure 9 shows the Solar

Yard Light assembly model provided so students may add mates as needed. Note that

the parts are out of position, requiring including mating constraints to create the

proper model.

Figure 9: Solar Yard Light assembly model provided to students with no mates

The assembly models and reference assembly models for all three products

were distributed to mechanical engineering seniors and graduates enrolled in a Design

for Manufacturing course. The students added mates to the unmated collection of

parts as appropriate, and the final mated assemblies were used to analyse assembly

estimation time with the developed tool.

Demographic information (level, experience with SW, frequency of use of

SW) is collected from each student (Table 12), and they were asked to self-report on

the time necessary for generating the assembly models from the part collections. The

demographics suggest that the students are drawn from a generally novice population

and that the students did put forth some effort in creating the assemblies. If an either

an expert modeller was found or a student spent less than 15 minutes on one of the

activities, then that sample would have been withdrawn.

Table 12: Form results from mate sensitivity study of the assembly time prediction

tool
S

tu
d

en
t

U
n

d
er

G
ra

d
.
/

G
ra

d
u

a
te

SW

Assembly

Experience

SW

Assembly

Usage

Frequency

Mate Time

Light

(min)

Mate Time

Drill (min)

Mate Time

Chopper

(min)

S1 UG Low Low 30 < t < 45 45 < t < 60 NA

S2 UG Low Low 60 < t < 90 NA NA

S3 UG Low Med. 15 < t < 30 NA NA

S4 Grad Low Med. 15 < t < 30 45 < t < 60 NA

S5 Grad Med. Med. 30 < t < 45 t < 15 60 < t < 90

S6 Grad Med. High NA 30 < t < 45 30 < t < 45

S7 UG Med. Med. 15 < t < 30 45 < t < 60 30 < t < 45

S8 Grad Low Med. 45 < t < 60 t > 90 45 < t < 60

S9 Grad Med. Med. 30 < t < 45 45 < t < 60 45 < t < 60

S10 Grad Low High 45 < t < 60 t < 15 NA

S11 UG Med. Low 15 < t < 30 NA NA

Once all of the mated assemblies were compiled, the automated assembly time

prediction tool was used to predict a respective assembly time using the average of the

top five architectures for the best performing training set (Case 4). The number of

mates the students added, the target time, the predicted assembly times for each

student’s assembly, the percentage error in the predicted time, and the MatLab

analysis times for the Solar Yard Light are shown in Table 13. Table cells are shaded

to illustrate the level of accuracy for various tests (green - returned values are within

the +/- 25% tolerance range, yellow– returned values are within the +/- 50% tolerance

range).

Table 13: Mate sensitivity analysis for Solar Yard Light

Student

Solar Yard

Light

Target

Time

of

Mates

Predicted

Time from

Loaded

Training Set

% Error

(+/-)

Analysis

Time (s)

Student 1

128.79

33 129.56 +1 67

Student 2 32 110.99 -16 71

Student 3 25 88.71 -45 68

Student 4 36 121.08 -6 69

Student 5 38 115.95 -11 70

Student 7 36 145.95 +12 64

Student 8 35 131.32 +2 65

Student 9 41 107.08 -20 63

Student 10 36 125.39 -3 64

Student 11 36 111.3 -16 64

Of the ten assembly configurations analysed (one student did not complete the

analysis), the percentage error in the predicted assembly time ranged from -45% to

+12% error with the average of the absolute values being 13% error. The number of

mates each student added does not appear to directly relate to the predicted assembly

time and the percentage error. Though student one used thirty three mates and student

two used thirty two mates, the predicted assembly times had +1% and -16% errors

respectively. Likewise, though students four, seven, ten, and eleven all used thirty six

mates, the percentage errors were -6%, +12%, -3%, and -16% respectively. Student

three used the least number of mates, twenty five, and had the largest percentage

error, -45%. Since the number of mates does not appear to directly relate to the

predicted assembly time, the significantly higher percentage error for Student 3 could

possibly be caused by different assembly definition, emphasis on one type of mate

usage, or usage of reference geometry to mate parts. To fully understand the cause of

this localized increase these errors error, a detailed study investigating the types of

mates used and the respective complexity vectors created must conducted, and which

will be pursued in future research.

All student mated assemblies were within +/- 50% of the target time and nine

of the ten were within +/- 25% of the target. Excluding the predicted time from the

model from Student 3’s, the percentage error range changes from -20% to a +12%

error. The analysis time to predict these assembly times was less than seventy-two

seconds for each model per model, which does not include the time for MatLab to

open and initialize (approximately 120 seconds). The original target assembly time

for the Solar Yard Light was predicted using a Virtual B&D analysis, taking 3,300

seconds (55 minutes) to complete the analysis manually.

Table 14 shows the results for the Black & Decker drill assembly and Table 15

the results for the One Touch Chopper. In both, the error is less than 25%, well

within the +/- 50% variance estimated with B&D [45].

Table 14: Mate sensitivity analysis for Black & Decker Drill

Student

Black &

Decker

Drill Target

Time (s)

of

Mates

Predicted

Time from

Loaded

Training Set

% Error

(+/-)

Analysis

Time (s)

Student 1

189.65

52 205.73 +8 68

Student 4 46 188.4 -1 67

Student 5 59 220.69 +14 68

Student 6 53 240.25 +21 64

Student 7 59 232.04 +18 65

Student 8 62 190.21 +0.3 64

Student 9 50 224.9 +16 63

Student 10 48 213.6 +11 65

Table 15: Mate sensitivity analysis for One Touch Chopper

Student

One Touch

Chopper

Target Time

(s)

of

Mates

Predicted

Time from

Loaded

Training Set

% Error

(+/-)

Analysis

Time (s)

Student 2

316.62

89 336.91 +6 65

Student 6 90 357.1 +11 67

Student 7 91 322.17 +2 68

Student 8 104 325.07 +3 65

Student 9 86 352.57 +10 64

Table 16 lists a summary of the products each student mated and the errors of

predicted assembly times.

Table 16: Summary of % errors for each student for each product

Student
Solar Yard Light

% Error (+/-)

Black & Decker Drill

% Error (+/-)

One Touch Chopper

% Error (+/-)

Student 1 +1 +8 NA

Student 2 -16 NA +6

Student 3 -45 NA NA

Student 4 -6 -1 NA

Student 5 -11 +14 NA

Student 6 NA +21 +11

Student 7 +12 +18 +2

Student 8 +2 +0.3 +3

Student 9 -20 +16 +10

Student 10 -3 +11 NA

Student 11 -16 NA NA

All of the percentage errors shown in Error! Reference source not found.

are within +/- 45% error of the target assembly times for the given product, placing

them within the +/-50% tolerance range. If the predicted assembly time is removed

for Student 3’s Solar Yard Light, the range of errors drops to +/- 21%. It should also

be noted that the highest errors for the Black & Decker Drill and the One Touch

Chopper were from both from Student 6 who had a medium level of SW assembly

experience and a high SW assembly usage frequency. No significant variance of

percentage errors of across the three products Error! Reference source not found.

suggests that the automated tool performs well for the variety of test products used in

this study (Error! Reference source not found.). Though admittedly not statistically

significant, this preliminary study does illustrate the potential insensitivity of the tool

to the designer-choice-for-mating-approaches.

4 Concluding Remarks and Recommended Future Studies

A method and implemented tool, demonstrably effective for estimating assembly

times, is based entirely on objective information explicitly found within the assembly

models of a commercial CAD system. Experimentation was used to develop

recommendations for developing the training sets. Moreover, the tool is validated

against a withheld training case of an electric knife. Finally, the tool is demonstrated

to be robust against user variability through a study with models generated by several

student engineers.

Even though the automated assembly time prediction tool addresses the goals

of eliminating subjective information dependency, reducing user input requirements,

and allowing earlier use of the tool in the design process prior to physical reverse

engineering, it still has limitations that must be addressed in future research. The

limitations here encompass three discrete categories related to the ANN training cases

used, the mating scheme sensitivity, and the robustness of the mate extraction add-in.

Each of these limitations is addressed in the following sub sections.

4.1 Limitation with Regards to ANN Training Cases

The case used to train the ANNs affects the results of the predicted assembly times.

For example, the predicted times for the Electric Knife test case ranged from -4% to

+68% depending on the training case used (Error! Reference source not found.). It

was recommended that future training cases should use a set of at least eleven unique

training inputs and targets composed of partially defined assembly models to improve

the accuracy of the predicted assembly times. These investigations into ANN training

case types used for such recommendations are only preliminary, however. For more

effective or specific recommendations, larger sample sizes must be used, which is the

subject of future research. Such studies should also investigate if the test inputs are

either internal or external to the training sets used. Internal test inputs would be

products that have part counts, component counts, and complexities within the range

of the training case and external inputs would have values outside of the range of the

training case.

During tool development, several different training cases were evaluated to

determine their effect on the predicted assembly times and to select five ANN

architectures to use with the automated tool. Though the selection process for

choosing the five ANN architectures is repeatable, it may not select the overall best

architectures. A formalized architecture selection process that chooses the five most

effective architecture structures should be the subject of future research.

4.2 Limitation with Regards to Mating Sensitivity

The results of the designer modelling preference study showed that for a given

product the % errors are within +/- 25% error for all cases except for one outlier with

a -45% error. The mate sensitivity study only evaluated the variability between

different test subjects’ assembly times, and the specific effect of the different mating

styles on the predicted assembly times was not explored. Further investigation into

this mating variability and its effect on the predicted assembly time using this tool

will be undertaken in future research.

4.3 Limitation with Regards to Program Robustness

The automated assembly time prediction tool is a SolidWorks custom add-in that

extracts the defined mates from an assembly model and uses the complexity of the

mate connection graphs to predict an assembly time based using trained ANNs. The

automated tool has successfully predicted assembly times in less than five minutes.

Though effective, the limitations of this tool must be resolved in future research, as

summarized thusly:

(1) Does not extract mates from subassemblies;

(2) Does not handle part patterns within assemblies;

(3) Extracts suppressed mates;

(4) Requires MatLab to perform computations.

The first three limitations can be addressed in future versions of this tool with

a more robust development of the SW API program. The fourth limitation can also be

addressed through the development of a standalone complexity analysis module and

ANN module for integration into the tool. This would more seamlessly integrate the

program, requiring fewer external calls and allowing for easier portability of the code.

Moreover, it should improve the time spend in running the program as a significant

portion is dedicated to opening the MatLab program to access the various toolboxes.

4.4 Extendibility of Current Tool

The current method employs an exclusive use of complexity metrics on connectivity

graphs to create the trained ANNs, initially undertaken to reduce the amount of

subjectivity and designer interaction required. As shown [17], however, much of the

subjectivity of the B&D method is related to the insertion activity. The handling

activity is more objective. Therefore, in the next version of the tool, this additional

information about the parts might be integrated into the predictive models.

5 References

[1] O’Grady P., 1991, “A Review of Approaches to Design for Assembly,”

Concurrent Engineering, Research, and Applications, 1(3), p. 5.

[2] Boothroyd G., and Alting L., 1992, “Design for Assembly and Disassembly,”

CIRP Annals-Manufacturing Technology, 41(August), pp. 625–636.

[3] Wang L., Keshavarzmanesh S., Feng H.-Y., and Buchal R. O., 2008,

“Assembly process planning and its future in collaborative manufacturing: a

review,” The International Journal of Advanced Manufacturing Technology,

41(1-2), pp. 132–144.

[4] Chiu M.-C., and Kremer G. E. O., 2011, “Investigation of the applicability of

Design for X tools during design concept evolution: a literature review,”

Internatinoal Journal of Product Development, 13(2), pp. 132–167.

[5] Maynard H., Stegemerten G. J., and Schwab J., 1948, Methods-Time

Measurement, McGraw-Hill, New York, NY.

[6] Laring J., 2002, “MTM-based ergonomic workload analysis,” International

Journal of Industrial Ergonomics, 30(3), pp. 135–148.

[7] Boothroyd G., and Walker J., 1996, “Design for Assembly,” Handbook of

Manufacturing Engineering, J. Walker, ed., Marcel Dekker, New York, NY,

pp. 1–50.

[8] Ohashi T., 2002, “Extended Assemblability Evaluation Method (AEM),” JSME

International Journal: Series C - Mechanical Systems, Machine Elements, and

Manufacturing, 45(2), p. 567.

[9] Mohd Naim Z., 2009, “Design for assembly and application using Hitachi

assemblability evaluation method,” Universiti Malaysia Pahang.

[10] Miyakawa S., and Ohashi T., 1986, “The Hitachi Assemblability Evaluation

Method (AEM),” Conference on Product Design for Assembly, New Port, RI,

pp. 15–17.

[11] Kroll E., Lenz E., and Wolberg J. R., 1988, “A Knowledge-Based Solution to

the Design for Assembly Problem,” Manufacturing Review, 1(2), pp. 104–108.

[12] Swift K. G., 1989, “Expert system aids design for assembly,” Assembly

Automation, 9(3), pp. 132–136.

[13] Tate S., Jared G., Brown N., and Swift K. G., 2000, “An Introduction to the

Designers’ Sandpit,” International Design Engineering Technical Conferences

and Computers and Information in Engineering Conference, ASME, Baltimore,

MD, pp. 84–87.

[14] Dalgleish G. F., Jared G. E., and Swift K. G., 2000, “Design for Assembly

Influencing the Design Process,” Journal of Engineering Design, 11, pp. 17–29.

[15] Boothroyd G., 1994, “Product Design for Manufacture and Assembly,”

Computer-Aided Design, 26(7), pp. 505–520.

[16] Esterman M., and Kamath K., 2010, “Design for Assembly Line Performance:

The Link Between DFA Metrics and Assembly Line Performance Metrics,”

Volume 6: 15th Design for Manufacturing and the Lifecycle Conference; 7th

Symposium on International Design and Design Education, ASME, pp. 73–84.

[17] Namouz E., Summers J. D., and Mocko G. M., 2012, “Reasoning: Source of

Variability in the Boothroyd and Dewhurst Assembly Time Estimation

Method,” International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference, Chicago, IL, pp.

DETC2012–71075.

[18] Owensby J. E., Shanthakumar A., Namouz E., Rayate V., and Summers J. D.,

2011, “Evaluation and Comparison of Two Design for Assembly Methods:

Subjectivity of Information,” ASME International Design Engineering

Technical Conferences and Computers and Information in Engineering

Conference, pp. DETC2011–47530.

[19] Barnes C. J., Dalgleish G. F., Jared G. E. M., Mei H., and Swift K. G.,

“Assembly oriented design,” Proceedings of the 1999 IEEE International

Symposium on Assembly and Task Planning (ISATP’99) (Cat. No.99TH8470),

IEEE, pp. 45–50.

[20] Kim G. J., Bekey G. A., and Goldberg K. Y., “A shape metric for design-for-

assembly,” Proceedings 1992 IEEE International Conference on Robotics and

Automation, IEEE Comput. Soc. Press, pp. 968–973.

[21] Mathieson J., Wallace B., and Summers J. D., “Estimating Assembly Time

with Connective Complexity Metric Based Surrogate Models,” International

Journal of Computer Integrated Manufacturing, on-line(in press).

[22] Miller M., Mathieson J., Summers J. D., and Mocko G. M., 2012,

“Representation: Structural Complexity of Assemblies to Create Neural

Network Based Assembly Time Estimation Models,” International Design

Engineering Technical Conferences and Computers and Information in

Engineering Conference, Chicago, IL, pp. DETC2012–71337.

[23] Ault H. K., “3-D Geometric Modeling for the 21st Century,” Engineering

Design Graphics Journal, 63(2).

[24] Veisz D., Namouz E., Joshi S., and Summers J. D., “The Impact of the

Disappearance of Sketching: A Case Study,” Artificial Intelligence in

Engineering Design Analysis and Manufacturing.

[25] Shanthakumar A., 2012, “Development of a Feature Recognition Algorithm for

Automated Identification of Duplicate Geometries in CAD Models,” Clemson

University.

[26] Namouz E. Z., Mears L., and Summers J., 2011, “Lazy Parts Indication

Method: Application to Automotive Components,” SAE 2011 World Congress

& Exhibition, pp. 2001–2011.

[27] Griese D., Namouz E., Shankar P., Summers J. D., and Mocko G. M., 2011,

“Application of a Lightweight Engineering Tool: Lazy Parts Analysis and

Redesign of a Remote Controlled Car,” ASME International Design

Engineering Technical Conferences and Computers and Information in

Engineering Conference, pp. DETC2011–47544.

[28] Owensby J. E., 2012, “Automated Assembly Time Prediction Tool Using

Predefined Mates from CAD Assemblies,” Clemson University.

[29] Mathieson J. L., 2011, “Connective Complexity Methods for Analysis and

Prediction in Engineering Design,” Clemson University.

[30] Bashir H. A., and Thomson V., 2001, “An Analogy-Based Model for

Estimating Design Effort,” Design Studies, 22, pp. 157–167.

[31] Shah J. J., and Runger G., 2011, “Misuse of Information-Theoretic Dispersion

Measures as Design Complexity Metrics,” ASME International Design

Engineering Technical Conferences and Computers and Information in

Engineering Conference, ASME, Washington, DC, p. DETC2011/DTM–

48295.

[32] Singh G., Balaji S., Shah J. J., Corman D., Howard R., Mattikalli R., and Stuart

D., 2012, “Evaluation of Network Measures as Complexity Metrics,” ASME

International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference, ASME, Chicago, IL, pp. DETC2012–

70483.

[33] Mathieson J. L., and Summers J. D., 2010, “Complexity Metrics for Directional

Node-Link System Representations: Theory and Applications,” Proceedings of

the ASME IDETC/CIE 2010.

[34] Barclay I., and Dann Z., 2000, “New-Product-Development Performance

Evaluation: A Product-Complexity-Based Methodology,” IEE Proceedings in

Scientific Measurement Technology, 147(3), pp. 41–55.

[35] Mathieson J., and Summers J., 2009, “Relational DSMs in Connectivity

Complexity Measurement,” Proceedings of 11th International DSM

Conference, pp. 15–26.

[36] Pramanick I., and Ali H., 1994, “Analysis and Experiments for a Parallel

Solution to the All Pairs Shortest Path Problem,” IEEE International

Symposium on Circuits and Systems, IEEE, New York, NY.

[37] Goldberg A. V., and Tarjan R. E., 1986, “A New Approach to the Maximum

Flow Problem,” Annual ACM Symposium on Theory of Computing, ACM,

New York, NY, pp. 136–146.

[38] Freeman L., 1977, “A Set of Measures of Centrality Based on Betweenness,”

Social Networks, 40, pp. 35–41.

[39] Freeman L., 1979, “Centrality in Social Networks: Conectual Clarification,”

Social Networks, 1, pp. 215–239.

[40] Koschutzki D., Lehmann K. A., Peeters L., Richer S., Tenfelde-Podehl D., and

Zlotowski, 2005, “Centrality Indices,” Network Analysis: Methodological

Foundations, U. Brandes, and T. Erlebach, eds., Springer Verlag, New York,

NY.

[41] Sabidussi G., 1966, “The Centrality Index of a Graph,” Psychometrika, 31, pp.

581–603.

[42] Watts D. J., and Strogatz S., 1998, “Collective Dynamics of ‘Small-World’

Networks,” Nature, 393(6), pp. 440–442.

[43] Summers J. D., and Ameri F., 2008, “An algorithm for assessing design

complexity through a connectivity view,” Proceedings of the TMCE 2008.

[44] Bader G. D., and Hogue C. W. V., 2003, “An Automated Method for Finding

Molecular Complexes in Large Interaction Network,” BMC Bioinformatics, 4.

[45] Boothroyd G., Dewhurst P., and Knight W., 2002, Product Design for

Manufacture and Assembly, M. Dekker, New York, NY.

[46] Chavali S. R. K., Sen C., Mocko G. M., and Summers J. D., 2008, “Using rule-

based design in engineer-to-order industry: An SME case study,” Computer-

Aided Design and Applications, 5, pp. 178–193.

[47] Tu J. V., 1996, “Advantages and Disadvantages of Using Artificial Neural

Networks versus Logistic Regression for Predicting Medical Outcomes,”

Journal of Clinical Epidemiol, 49(11), pp. 1225–1231.

[48] Boothroyd G., Dewhurst P., and Knight W. A., 2011, Product Design for

Manufacture and Assembly, CRC Press, Boca Raton.

	Clemson University
	TigerPrints
	1-2014

	Assembly Time Estimation: Assembly Mate Based Structural Complexity Metric Predictive Modeling
	Joseph E. Owensby
	Joshua D. Summers
	Recommended Citation

	TF_Template_Word_XP_2007

