
Clemson University
TigerPrints

All CEDAR Publications Clemson Engineering Design Applications and
Research (CEDAR)

1-2014

Assembly Time Estimation: Assembly Mate Based
Structural Complexity Metric Predictive Modeling
Joseph E. Owensby
Clemson University

Joshua D. Summers
Clemson University, jsummer@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/cedar_pubs

Part of the Engineering Commons

This Article is brought to you for free and open access by the Clemson Engineering Design Applications and Research (CEDAR) at TigerPrints. It has
been accepted for inclusion in All CEDAR Publications by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

Recommended Citation
Please use publisher's recommended citation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268688498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fcedar_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/cedar_pubs?utm_source=tigerprints.clemson.edu%2Fcedar_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/cedar?utm_source=tigerprints.clemson.edu%2Fcedar_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/cedar?utm_source=tigerprints.clemson.edu%2Fcedar_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/cedar_pubs?utm_source=tigerprints.clemson.edu%2Fcedar_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=tigerprints.clemson.edu%2Fcedar_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Assembly Time Estimation:  Assembly Mate Based Structural 

Complexity Metric Predictive Modelling 
 

Joseph E. Owensby, Joshua D. Summers 
 

Mechanical Engineering, Clemson University, Clemson, SC, USA 

 

Contact Author:  Joshua D. Summers, Professor 

 250 Fluor Daniel Building 

 Mechanical Engineering 

 Clemson University 

 Clemson, SC  29634-0921 

 jsummer@clemson.edu  

 

 
This paper presents an automated tool for estimating assembly times of 

products based on a three step process:  connectivity graph generation from 

assembly mate information, structural complexity metric analysis of the graph, 

and application of the complexity metric vector to predictive artificial neural 

network models.  The tool has been evaluated against different training set 

cases, suggesting that partially defined assembly models and training product 

variety are critical characteristics.  Moreover, the tool is shown to be robust 

and insensitive to different modelling engineers.  The tool has been 

implemented in a commercial CAD system and shown to yield results of within 

+/- 25% of predicted values.  Additional extensions and experiments are 

recommended to improve the tool. 

 
Keywords: Design for Assembly, DFA, Assembly Time, Complexity, Artificial 

Neural Networks 

 

1 Motivation:  An Automated Tool for Assembly Time Estimation 

The authors present a new computational design tool for estimating assembly times.  

This tool consists of three major components:  a graph generator from computer aided 

design (CAD) assembly models, a structural complexity metrics generator, and an 

artificial neural network (ANN) modeller to predict assembly times.  The tool uses the 

assembly mates defined within a CAD model, as defined by the designer, to create a 

connectivity graph.  This graph is then evaluated against a suite of structural 

complexity metrics that are fed into an ANN based predictive model.  This tool has 

been integrated into a commercial CAD software package and evaluated with respect 

to training size, assembly model authorship, and level-of-mate definition.   

mailto:jsummer@clemson.edu


This paper presents the motivation for developing an assembly time estimation 

tool based on design for assembly methods and a review of previous efforts.  This is 

followed by a discussion on the algorithm for automated assembly time estimation 

based on graphs resulting from assembly mate models.  The tool is validated through 

external testing and a sensitivity analysis on the impact that different approaches to 

creating the mating models has on the estimation effectiveness.  Finally, the 

limitations of this approach is discussed and future extensions identified. 

1.1 Design for Assembly (DFA) 

Design for Assembly (DFA) methods have been evolving since the 1960’s, 

progressing from basic rules and guidelines to the creation of automated analysis 

tools, as detailed in Table 1 [1–4].  DFA works by estimating time for the assembly 

and providing recommendations for changing the components to improve this time.  

The first function (estimating time) is of interest here. 

Table 1: Existing DFA Methods 

DFA Method Description Developer Date Ref. 

Methods-Time 

Measurement 

(MTM) 

Assign operations with 

pre-defined assembly 

times to parts 

Academic 

(Maynard) 
1948 [5,6] 

Manufacturing 

Producibility 

Handbook  

Reference manual of 

manufacturing and 

assembly guidelines 

Corporation 

(GE) 
1960 [2] 

Boothroyd and 

Dewhurst DFA 

DFA based on minimum 

part criteria and handling 

and insertion difficulties 

Academic & 

Consulting 

(Boothroyd and 

Dewhurst) 

1977 [2,7] 

Assembly 

Evaluation Method 

(AEM) 

DFA based on one 

motion for one part 

Corporation 

(Hitachi) 
1980 

[2,8–

10] 

Design for 

Assembly and Cost 

Effectiveness (DAC) 

Uses 30 key words to 

evaluate design 

Corporation 

(Sony) 
1988 [2,11] 

Assembly Oriented 

Product Design 

Accesses a parts 

functional value 

Academic 

(Warnecke and 

Bassler) 

1988 [2] 



Lucas DFA Method 
Set of questions to 

determine assembly time 

Academic & 

Consulting 

(Miles and 

Swift) 

~1986 [2,12] 

MOSIM 

Focus of implementing 

DFA through CAD 

software 

Corporation 

(Angermuller & 

Moritzen of 

Siemens) 

1990 [2] 

DFA Sandpit 

Proactive DFA software 

based on original Lucas 

method 

Academic (Swift 

and Jared) 
2000 

[13,1

4] 
 

In the 1980’s, the original guidelines published in the manuals of the 1960’s 

were integrated into systematic qualitative/quantitative DFA analysis tools to help 

designers predict the product assembly times based on extensive time studies.  Upon 

creation of these table based methods, researchers began to implement DFA using 

computer software to improve speed and ease of the analysis.  These industrial tested 

DFA methods have proven advantageous in reducing a product’s total part count, 

manufacturing cost, production lead time, inventory, assembly time, and assembly 

cost [15,16].  There are recognized limitations to these methods, however, namely the 

subjectivity of inputs [13,17], significant user inputs [18], and the reactive nature of 

the tool [19,20].  It is these limitations the authors address through the assembly mate 

based time estimation system.  Specifically, i) system inputs are entirely objective as 

the assembly mates defined by the designers; ii) additional user inputs are not needed, 

and iii) the tool can be used in real time once assembly models are available in the 

CAD system. 

1.2 Previous Efforts in Automated Time Estimation 

The Connectivity Complexity DFA is one method used to solve the subjective issues 

of existing DFA methods preventing automation [21].  Developed using linear 

regression to identify a relationship between a product’s assembly time and the 

complexity of the inter part connections; this method predicts assembly times from 

products inter connectedness complexity.  The advantage of over existing methods is 



that the physical connections between parts in an assembly can be identified 

objectively.  The initial results predicted assembly times within +/- 15% of the 

training times used, proving that a product’s connection complexity can be used to 

determine product assembly times [21]. 

To assess the potential utility, the Connectivity Complexity DFA method was 

compared to the Boothroyd Dewhurst DFMA software based on i) approximate time 

for analysis, ii) predicted assembly time, iii) amount of required input and subjective 

information, and iv) the number of redesign features [18].  It was determined that the 

Boothroyd Dewhurst DFMA software required users to answer forty nine questions 

per part, sixteen of which were subjective.  The Connectivity Complexity method, 

however, only required that users answer five questions per part, none of which are 

subjective.  The predicted assembly times of the Connectivity Complexity method 

ranged from 13.11% to 49.71%, lower than the predicted times of the DFMA software 

considered as the baseline.  Both methods required a similar implementation time. 

Though the evaluation suggests that the Boothroyd DFMA software is effective, 

extensive subjective user inputs which are difficult to program are required.  Based on 

this evaluation, though the Connectivity Complexity method can be automated as it 

only requires objective information, its accuracy can be improved [18].  This 

estimation method using manual graph generation and regression fit is V1 in the 

evolution of using structural complexity metrics to predict assembly times of Figure 

1. 



 

Figure 1: Connectivity Complexity DFA development flow chart 

The original work (V1) used linear regression training and acted as a proof-of- 

concept to show the use of physical connections between parts to determine product 

assembly times [21].  The continuation of the work (V2) implemented the ANN 

training to improve the accuracy of the predicted assembly times [22].  The work 

presented here relates to the third attempt to develop an objective and automated 

assembly time estimation tool.  During the early development of the structural 

complexity method, part connections within a product were identified early in the 

design process [18].  The inter-part connections required here can be extracted from 

sketches and 3D CAD models which are generated as early as the conceptual design 

phase, making it applicable throughout the design process [23,24].  Extracting the 

connections from assembly models also enables creation of a program to automate 

this method.  The rest of this paper presents the development of an automated 

structural complexity metric based assembly time prediction method. 

2 Automation of Structural Complexity Assembly Time Prediction Tool 

This automated time estimation tool has three basic steps:  graph generation, 

complexity analysis of graph, and application of ANN predictive model.  Figure 2 

shows a flow diagram of the SolidWorks (SW) mate extraction add-in, its required 

inputs, the information processing steps, and the assembly time output. 
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Figure 2:  SW mate extraction add-in and information processing 

The mate extraction add-in (top box of Figure 2) generates a connectivity 

graph that represents the product inter-part connections.  This connectivity graph is 

processed external from the mate extraction add-in.  The external processing is 

performed using MatLab where custom algorithms are used to generate a complexity 

vector of the mate graph; this vector along with previously trained ANNs is used to 

predict an assembly time.  Before the information processing can be accomplished, 

the ANNs must be created and trained as explained below.  Each of these steps is 

discussed in the following sections.   

2.1 Step 1:  Graph Generation 

Two approaches for automated graph generation have been explored.  The first, an 

implicit based approach [25] that extracts potential mating pairs of parts based on 

duplicate geometry [26,27], has limited efficiency and computational time.  The 
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second approach, employing explicit information contained within CAD assembly 

models, is the focus of this paper and is fully reported elsewhere [28].  The explicit 

information chosen is the assembly mates defined within the models by the designer.  

In this manner, not only is an objective tool developed based on explicitly available 

information, this information is also closer to capturing the design rationale.  

Examples of mate relations within SolidWorks, the commercial package within which 

the tool is built, include concentric, coincident, angle, and locked mates.  A challenge 

to this approach is that a single collection of parts can be mated in different ways, 

resulting in different connectivity graphs and the resulting structural complexity 

metric values.  Consider the simple assembly model of Figure 3.  These three parts 

(A, B, C) can be mated with different approaches to yield the same assembly (Table 

2). 

 

Figure 3: Part A, Part B, and Part C, mated or constrained in a variety of ways 

 



Table 2:  Mate configurations for Parts A, B, and C 

Parts Configuration 1 Configuration 2 

C and B C shaft concentric with B hole 
C face right aligned with B face 

right 

C and B 
C face top coincident with B face 

bottom 

C face top coincident with B face 

bottom 

C and B 
C face right parallel with B face 

right 

C face front aligned with B face 

front 

B and A B hole concentric with A hole 
B face right aligned with A face 

right 

B and A 
B face top coincident with A face 

bottom 

B face top coincident with A face 

bottom 

B and A 
B face right parallel with A face 

right 

B face front aligned with A face 

front 
 

The tool used for extracting mate information from assembly models was 

developed using SolidWorks 2010 API Software Development Kit (SDK)
1
.  

SolidWorks (SW) is a commercial three dimensional modelling software package 

which provides an intuitive Graphical User Interface (GUI).  The software offers two 

options to develop the SolidWorks API application, macros and add-in programming.  

Though macros tend to speed the development of automations, they are limited in 

scope as they replicate user actions within the GUI.  If an automation component 

requires information that cannot be extracted from the GUI interface actions, then a 

separate add-in is required.  This is the case for extracting mate information from 

SolidWorks assembly models.  The algorithm implemented in the add-in 

programming environment, through C++ coding, is shown in Figure 4.   

                                                 
1
 http://www.solidworks.com/ (accessed September 17, 2012) 

http://www.solidworks.com/


Get active assembly document  

Get features list from feature manager tree 

If feature = mate list 

Get Mate list from feature list 

For each mate in Mate list 

Get parts connected by mate 

Add parts to graph 

End 

End if 

Figure 4: Pseudo-code for Extracting Mate Information  

 

To obtain the mate information from an assembly file, the program traverses 

through the feature types in the feature manager tree.  A screen shot of the SW feature 

manager design tree for a Black & Decker Drill can be seen in Figure 5.  This figure 

labels three main sections of the feature manager design tree:  reference features, parts 

and sub-assemblies, and mates.  Within the main assembly, everything in the feature 

manager design tree is recognized as an assembly feature.  Information within the 

sections of the feature manager design tree may include annotations, co-ordinate 

planes, part names, part features, and part constraints. 

 

Figure 5:  SolidWorks feature manager design tree 
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The program traverses through the feature manager tree until it reaches a 

container with mate information.  Each mate consists of the name of the mate and the 

names of parts constrained by that mate.  For each mate, the names of both parents 

(parts) are retrieved, indicating the connection between the parts.  The names of the 

connected parts are then stored in a bi-partite table and saved as a *.csv file.  This 

process is iterated until all connections between the parts are extracted from the 

feature manager tree. 

2.2 Step 2:  Complexity Metrics for Connectivity Graphs 

Once the bi-partite table containing the mate connections found in the 

assembly file is generated, the complexity of the table based graph can be calculated 

using a custom MatLab program [29].  The program currently evaluates 29 distinct 

complexity metrics.  Rather than evaluating a single complexity metric [30–32], the 

authors use a set of metrics to realize pattern discovery through the ANN models of 

the final step.  The metrics evaluated are classified as size, interconnectivity, 

centrality, and decomposition [33].   

Size is a common measurement used in complexity measurement.  The size of 

an object is based on the count of some classification of the object within the system; 

as the value increases so too does the complexity [31].  While counts are the most 

intuitive form of complexity measurement, their contribution to complexity is non-

linear [34].  When the count is low, the addition of one more is significant, while the 

opposite is true of high-count systems.   

The interconnectedness of a graph can be evaluated through path length and 

flow capacities.  Path length measurements are based on the number of relationships 

that must be passed through to travel from one element to another [35,36].  For 

example, a path length of two from node A to node C is necessary to travel through 



the system ABC.  Flow capacity measurements, in turn, are based on the number 

of unique paths between each pair of nodes.  Here, the capacity is determined by the 

availability of edges, with each edge assumed to have a capacity of one and nodes 

assumed to have infinite capacity [37].  While shortest-path-length metrics address the 

existence of connection within the system, flow-capacity metrics elucidate the volume 

of information that is passed within the system. 

Centrality, addressing relative importance of nodes within a system, assumes 

many forms in network analysis [38–41].  Two forms of centrality are employed here:  

betweenness centrality, a measurement on the number of shortest paths on which a 

node occurs [38]; and the clustering coefficient, a measure of the degree to which 

nodes are grouped within the system [42].  Regarding individual nodes, the clustering 

coefficient is a measure of the degree to which a given node and its neighbours will 

form a clique, or complete graph.  This is defined as the percentage of nodes to which 

the given node is connected and which are connected to each other. 

The final measurement is decomposability, used to inventory the requisite 

steps for structural disassembly of a system.  As a measure of complexity, the 

decomposability score increases with ever larger and more complex systems; thus, 

what is measured is the difficulty of a disassembling a system set-by-set.  The Ameri-

Summers decomposability algorithm [43] is one measure of decomposability.  Each 

step consists of removing those relationships that link to the elements with the fewest 

connections.  Each additional step, relationship set, or relationships per separated 

element required to decompose the system is considered to increase the complexity.  

In an additional measure of decomposition, core numbers are the largest integer such 

that the given element exists in a graph where all degrees are at least that integer [44].  



These degrees are subsequently separated into measurements relating to the in-degree 

and out-degree of each node in digraphs.  

Table 3 classifies the metrics that are used in the graph analysis.  This 

resulting complexity vector will be used along with Artificial Neural Networks 

(ANNs) to predict a products assembly time.  For brevity, five of the metrics and their 

mathematical definitions are illustrated in Table 4.  The comprehensive list and all 

associated algorithms are found in [29,33]. 



Table 3:  Twenty-Nine Complexity Metrics Used in Graph Analysis 

Class Type Metric 

Size 

Dimensional 
Elements (DSE) 

Relationships (DSR) 

Connective 
Connective Size (CS) 

Degree of Freedom (DOF) 

Interconnection 

Shortest Path Length  

Total Shortest Path Length (TPL) 

Maximum Shortest Path Length (MPL) 

Average Shortest Path Length (APL) 

Shortest Path Length Density (PLD) 

Flow Capacity 

Flow Capacity Sum  (∑  ) 

Maximum Flow Capacity (     ) 

Mean Flow Capacity (  ̅̅̅̅ ) 

Flow Capacity Density (   ) 

Centrality 

Betweenness 

Betweenness Sum (∑  ) 

Maximum Betweenness (     ) 

Mean Betweenness (  ̅̅ ̅) 
Betweenness Density (   ) 

Clustering Coefficient 

Clustering Coefficient Sum  (∑   ) 

Maximum Clustering Coefficient (      ) 

Mean Clustering Coefficient (   ̅̅ ̅̅̅) 
Clustering Coefficient Density (    ) 

Decomposition 

General Ameri-Summers (ASA) 

Core (In) 

In Core Number Sum (∑   ) 
Maximum In Core Number (      ) 

Mean In Core Number (   ̅̅ ̅̅ ̅) 
In Core Number Density (    ) 

Core (Out) 

Out Core Number Sum  (∑   ) 

Maximum Out Core Number (      ) 

Mean Out Core Number (   ̅̅ ̅̅ ̅) 
Out Core Number Density (    ) 

Table 4: Example Complexity Metrics Explored in the Interpretability Analysis 

Study [29,33]  

Name Description Mathematical Definition 

Connected Size 

(CS) 
Number of arcs within the bipartite graph    ∑    {  }

  

   
 

All-Pairs Shortest 

Path (TPL) 

The sum of the lengths of the shortest path 

between each pair of entities. SP defines the 

shortest path between element pair 
    ∑∑(  {     })

  

   

  

   

 

Average Shortest 

Path Length 

(APL) 

The average of all the shortest paths between 

each pair of entities. 
    

   

  
    

 

Maximum 

Shortest Path 

Length (MPL) 

The maximum path length from all shortest 

paths between each pair of entities. 
       (  {     }) 

Path Length 

Density (PLD) 

The Average Shortest Path Length divided by 

the number of relations 
    

   

  
 



2.3 Step 3:  ANN Prediction Tool 

The final step of the time estimation tool uses trained Artificial Neural Networks 

(ANN) based on the input pair of the complexity metric vector and the known 

assembly time.  The trained ANN, currently implemented within the MatLab ANN 

toolbox, predicts new assembly times when given a complexity vector.  Training an 

ANN requires a set of inputs and respective target values to effectively identify 

relationships between them.  Once an effective set of inputs and targets has been 

compiled it can be reused in future implementations, thusly eliminating the training 

process from the final tool implementation.  The next section describes the selection 

method for creating a database of assembly models and times that can be used for 

training. 

2.3.1 Collecting Product 3D Assembly Models 

To populate an effective ANN training set, a collection of 3D assembly models is 

required.  For each model, an assembly time is needed and is generated based on the 

Boothroyd and Dewhurst (B&D) method [45], since the actual assembly times are not 

available.  The models on which the method is applied are derived from direct reverse 

engineering of products, an on-line CAD repository
2
, SolidWorks 3D Content, and 

from OEM assembly models available from past projects [46].  The example database 

of assemblies is found in Table 5.  The reverse engineered models were created 

independently by different students within the CEDAR (Clemson Engineering Design 

Applications and Research) group as part of several other on-going projects separate 

from this effort. 

                                                 
2
 http://gicl.cs.drexel.edu/wiki/Main_Page (accessed September 17, 2012) 

http://gicl.cs.drexel.edu/wiki/Main_Page


Table 5:  Collection of product assembly models 

# Product Assembly Model Generation 

1 G2 Pen Reverse Engineered 

2 Pencil Compass Reverse Engineered 

3 Solar Yard Light Reverse Engineered 

4 Pony Vise Reverse Engineered 

5 Black and Decker Drill Reverse Engineered 

6 Paper Pro Stapler GICL Website
2
 

7 6" MagLight SW 3D Content
1
 

8 Indoor Electric Grill SW 3D Content
1
 

9 Shift Frame LH  OEM 

10 Wide Flag  OEM 
 

An example of an exploded view for one of the OEM components is found in 

Figure 6. 

 

Figure 6: Exploded view of OEM Wide Flag Assembly 

Each of these assembly models are defined within SolidWorks with the mates 

that are available within the CAD system.  Complexity vectors are generated 

automatically for each of these products, and assembly times are developed for each 

product.  Should a company wish to deploy this system in their design group, 

company specific assembly models can be collected and used for training purposes 



with known product assembly times.  These historical models, ideally collected from 

different projects, have been authored by different designers with different levels of 

component count and mating resolution.  Specific strategies for selecting and 

developing ANN training models are reserved for future work. 

Though the physical products for items 1-6 in Table 5 were obtained, items 7-

10 could not be located or lacked a specific consumer product to match the 

SolidWorks model including product generational changes that did not match exactly.  

Without the physical product, applying the Boothroyd DFA method is difficult since 

the objective and subjective analysis questions typically require a true understanding 

of how the product is assembled.  To solve this problem a combination of DFA 

analyses were conducted, evaluated, and used.  First a “virtual” Boothroyd DFA 

analysis was conducted on the SolidWorks Assembly model.  The challenge with this 

“virtual” method is that without disassembling and holding the actual parts, an 

understanding of the product structure, function, assembly sequence, handling 

difficulties, and insertion difficulties cannot be obtained which is essential when 

applying the Boothroyd DFA.  The challenges of determining the handling and 

insertion difficulties come because such information requires the designer to answer 

subjective questions about the product [17].  For example, if a part is either difficult to 

grasp or has resistance to insertion, it is challenging to assess this difficulty without 

physically picking up the part and inserting it.   

Once the “virtual” Boothroyd DFA was completed, if a physical product was 

present that matched the SolidWorks model, it was disassembled and the DFA 

analysis was conducted as well.  The “virtual” Boothroyd DFA method was always 

conducted first to reduce the chance that a handling or insertion difficulty experienced 

during the physical analysis would influence the designer during the “virtual” 



analysis.  Between the Boothroyd DFA analyses on the physical products and the 

virtual products a total of sixteen assembly times to match the respective CAD 

assembly models were determined. 

2.3.2 Training of Mate Complexity DFA Method 

The research on the connectivity complexity method previously conducted used 

ANNs to increase the accuracy of the original connectivity complexity DFA method 

[21] Artificial neural networks were selected to identify the relationship between the 

products connectivity complexity vector and respective assembly times because they 

are often used to complete nonlinear statistical analyses [47].  The complexity vectors 

and assembly times of the Pencil Compass, the 6 Inch MagLight, and the Black and 

Decker Drill from Table 5 were held back for use as test inputs once the ANN training 

was completed.  These three products were chosen for testing because their part 

counts and assembly times form a good representation of the training set.   

To train the ANNs for this research, 189 architectures were generated, 

consisting of one to three layers with up to fifteen neurons per layer depending on the 

configuration.  Each architecture was given the training set 100 times so that 

probability densities could be used to better approximate the relationship.  The 

probability density plots can be generated for each product based one ANN structure 

replicated 100 times (Figure 7).  In Figure 7, the function is shown with the target 

time illustrated as the vertical line near the function peak.  The ANN training inputs 

consisted of eleven complexity vectors for eleven of the sixteen assembly times.  If a 

product had both a virtual and physical Boothroyd DFA predicted assembly time then 

the same complexity vector for that product would be trained towards the two 

different assembly times.  Once the training inputs and targets were compiled, the 



different ANN architectures were trained with the best selected and evaluated for later 

use as described above. 

 

Figure 7: Example Probability Density Plot  

Three separate Artificial Neural Networks training sets using different inputs 

and targets were evaluated to determine if the number of mates affected the predicted 

results.  The first training set (Case 1) was generated using complexity vectors based 

on all of the SW models being fully defined, indicating that assembly parts are fully 

constrained by mates and cannot move.  The second training set (Case 2) was 

generated using complexity vectors based on the partially defined SW models, 

achieved by having the designer mate the assembly model to the point where parts are 

constrained due to design intentions.  The third training set (Case 3) was generated 

using both the complexity vectors generated for the fully defined and partially defined 

SW assembly models, indicating that Case 3 had twice as many training inputs and 

targets than either Case 1 or Case 2.   

The average probability for all 189 architectures for predicting the assembly 

time was then found and compared to determine that which would be most effective at 

predicting an assembly time within the specified target range.  The five architectures 

with the highest average probabilities were selected for evaluation.  Table 6 shows 

these architectures selected for the three training schemes. 



Table 6: Selection of top 5 ANN architectures for each testing case 

Case 1 (F. Def.) Case 2 (P. Def.) Case 3 (F&P Def.) 

Arch. Avg. Prob. Arch. Avg. Prob. Arch. Avg. Prob. 

95 0.601 56 0.999 109 0.992 

173 0.541 64 0.963 45 0.736 

79 0.537 174 0.789 154 0.699 

90 0.500 147 0.753 30 0.639 

99 0.500 52 0.737 133 0.625 
 

Case 2, trained with the partially defined products, yielded the overall best top 

five architectures based on the probability density curves.  ANN training Case 3 

which used fully and partially defined products was next, while training Case 1 which 

used only fully defined products was least effective.  The mates added to parts in an 

assembly define the constraints of that part within that assembly.  If a designer must 

add more mates than required, the original constraint definition may either be lost or 

negatively affected.  As this may reduce the predictive capacity of fully defined 

assembly models, a detailed investigation into this issue is reserved for future work.  

For comparison, the times for each of the top five architectures for each training case, 

were compared across the three test products. 

To determine the effectiveness of each ANN training scheme, their predicted 

assembly times are compared using the top five architectures for each ANN training 

scheme (Table 7).  Shaded cells illustrate the level of accuracy for various tests (green 

- returned values are within +/- 25% tolerance; yellow - values are within +/- 50% 

tolerance).  Again, these tolerance ranges are sought as they are comparable to the +/- 

50% that is recognized as a limitation of the benchmark B&D method [48]. 

Table 7:  Comparison of predicted assembly times for each training case 

Product 

Test Case 

Level of 

Definition 

(Test) 

Target 

Time 

(s) 

Case 1 (Fully 

Defined 

Training) 

(s) 

(+/- % 

Error) 

Case 2 

(Partially 

Defined 

Training) (s) 

(+/- % 

Error) 

Case 3 (Fully 

and Partially 

Defined 

Training) 

(s) 

(+/- % 

Error) 



Pencil 

Compass 

Fully 

68.3 

121.4 

(+77.5) 
NA 

94.5 

(+38.2) 

Partially NA 
96.6  

(+41.2) 

82.5 

(+20.6) 

MagLight 

Fully 

75.4 

118.3 

(+56.9) 
NA 

70.2 

(-6.9) 

Partially NA 
65.1 

(-13.7) 

75.7 

(+0.5) 

Black & 

Decker 

Drill 

Fully 

189.6 

226.3  

(+19.3) 
NA 

319.3 

(+68.4) 

Partially NA 
186.1  

(-1.9) 

202.3 

(+6.7) 
 

For training Case 1, both test cases and the training set were fully defined 

models.  For training Case 2, again, both test cases and training set were all partially 

defined models.  As Training Case 3 used a combination of fully defined and partially 

defined models for training, both fully defined and partially defined models were used 

for testing. 

Test results indicate that using training Case 3 which had fully and partially 

defined models resulted in predicted assembly times closest to the target times.  The 

percent error of the predicted assembly times for four of the six inputs decreased by 

using the training Case 3 as opposed to the first two cases.  However, the size of the 

training set was doubled with Case 3.  Therefore, it is not clear whether a combined 

training set or simply a larger training set is preferred.  Training cases using partially 

defined models are more effective than those using fully defined models.  Based on 

these results, future training cases could use only partially defined models.   

To investigate the effect of training input variability, three different training 

cases were assembled (Case 4, 5, 6) by increasing the number of analysed products.  

Based on the limited success of downloading product assembly models from online 

databases, the number of models was increased by reverse-engineering five additional 

consumer products, the list of which is in Table 8.  Only certain combinations of the 

first ten assembly models shown were used to train Case 1, 2, and 3.  The last five 



products were added to the training set to replace the repeated training inputs 

(physical and virtual times) used in the first three test cases.  The last three columns of 

Table 8 show Case 4, 5, and 6 where the products used to train each case are labelled 

“Training” and the products used as test inputs are labelled “Test”.  All of these are 

for partially defined modelled, similar to what would be expected to be modelled by 

an engineer. 

Table 8:  Increased product collection and training case products for 

training/testing 

# Product 
Assembly Model 

Generation 
Case 4 Case 5 Case 6 

1 G2 Pen Reverse Engineered Training Training Training 

2 Pencil Compass Reverse Engineered Training Training Test 

3 Solar Yard Light Reverse Engineered Training Test Training 

4 Pony Vise Reverse Engineered Training Training Training 

5 
Black and Decker 

Drill 
Reverse Engineered Training Test Test 

6 Paper Pro Stapler GICL Test Training Training 

7 6" MagLight SW 3D Test Training Test 

8 Indoor Electric Grill SW 3D Training Training Training 

9 Shift Frame LH OEM Training Training Training 

10 Wide Flag OEM Training Training Training 

11 One Touch Chopper Reverse Engineered Training Test Training 

12 Computer Mouse Reverse Engineered Training Training Training 

13 
Boothroyd Piston 

Assembly 
Reverse Engineered Training Training Training 

14 3 Hole Punch Reverse Engineered Training Training Training 

15 
Durabrand Hand 

Mixer 
Reverse Engineered Test Training Training 

 

Since all of previous products were the subject of virtual Boothroyd Dewhurst 

DFA analyses, the new ANN trainings, Case 4, 5, and 6, only use virtual Boothroyd 

predicted assembly times as their targets which are trained with unique complexity 

vector inputs for each product.  The results of these ANN training cases are in Table 

9.  Each test yielding estimations within the +/- 25% tolerance range are shaded. 



Table 9: Comparison of predicted assembly times for the last three ANN training 

sets 

Product Test 

Case 

Level of 

Definition 

(Test) 

Target 

Time (s) 

Case 4 

(s) 

(+/-% 

Error) 

Case 5 

(s) 

(+/-% 

Error) 

Case 6 

(s) 

(+/-% 

Error) 

Pencil 

Compass 
Partially 68.3 NA NA 

60.2 

(-12.0) 

MagLight Partially 75.4 
69.8 

(-7.5) 
NA 

65.4 

(-13.3) 

Black & 

Decker Drill 
Partially 189.6 NA 

199.4 

(+5.1) 

233.8 

(+23.3) 

Paper Pro 

Stapler 
Partially 123.5 

118.3 

(-4.2) 
NA NA 

Durabrand 

Blender 
Partially 263.2 

271.8 

(+3.3) 
NA NA 

Solar Yard 

Light 
Partially 128.8 NA 

113.1 

(-12.2) 
NA 

One Touch 

Chopper 
Partially 316.6 NA 

318.7 

(+0.7) 
NA 

 

As shown in Table 9 the results for training Case 4, Case 5, and Case 6 have 

less than 14% error of the target time except in one time generated by Case 6, which 

exhibited an error of 24%.  In that none of the first three training Cases investigated 

has percent errors this low for all test products, providing a more diverse training set 

that does not reuse test inputs will increase the overall accuracy of the set.  Case 4 

generally has the lowest overall percent error out of all training cases.  The percent 

errors for Case 4 range from -7.5% to +3.3% and is closely followed by Case 5 with 

has percent errors ranging from -12.2% to +5.1%.  This additional testing suggests 

that variety of training has a positive impact on accuracy.  Additional training 

experiments can be found in [28]. 

2.3.3 Using the ANN Models 

Once the ANN models are trained, new assemblies can be analysed and their 

respective times estimated.  This analysis/estimation is done by supplying to the ANN 

program within MatLab the complexity vectors calculated for the assembly models in 



a “use” mode rather than “training” mode.  The MatLab interface provides an 

assembly time display.   

To predict an assembly time using the developed assembly time prediction 

tool, nine steps must be completed (user actions-green and program executions-red): 

 User:  Opens SolidWorks assembly model 

 User:  Click on SWMate2 Add-in 

 Program:  Extracts mates and builds the bi-partite table 

 Program:  Opens Matlab and calls custom complexity algorithm 

passing the generated file name as the input 

 Program:  Complexity algorithm reads mates from the bi-partite table 

and calculates a respective complexity vector 

 Program:  Calls custom Matlab ANN function (accepts generated 

complexity vector as input) 

 Program:  Loads previously determined ANN training case that uses 

top five selected architectures 

 Program:  Mate connection complexity vector is given to custom ANN 

assembly time prediction function as test input and the function outputs 

replicated results 

 Program:  Results are interpreted and a predicted assembly time is 

displayed 

3 Validating the Tool 

Two different validations are used to test the tool.  First, an external assembly model 

never before used in any previous training or testing is used to ensure the objectivity 

of the test.  The second validation test entails exploring how assembly models of 

different users influence predicted times. 



3.1 External Testing 

To test the developed assembly time prediction tool, a product not previously used for 

training or the interpretation of results is identified and used for testing.  A Durabrand 

Electric Knife was selected because of similarity in size, part count, and product 

family to the products and assembly models used for training.  Though the 

SolidWorks assembly model generated for the Electric Knife forms a rough 

representation of the actual product, it is not exact.  Moreover, the assembly model 

was constrained by a practicing engineer partially, in a manner consistent to typical 

industry practice.  Once the Electric Knife assembly model was generated, a virtual 

B&D analysis was conducted (taking approximately 2,000 seconds to complete 

compared with roughly 60 seconds for the automated tool analysis time) and which 

predicted an assembly time of 212.34 seconds.  The new assembly time prediction 

tool is evaluated by opening the assembly model for the Electric Knife and clicking 

on the assembly time prediction SolidWorks Add-in. 

The Electric Knife assembly model was tested using the top five selected 

architectures for each case.  This testing was repeated for all six training cases, the 

predicted assembly times of which are tabulated in Table 10.  The cells in the table 

are shaded to illustrate the level of accuracy for the different tests; green shading 

indicates that the values returned are within the +/- 25% tolerance range and the 

yellow shading indicates that the values are within the +/- 50% tolerance range. 

Table 10:  Predicted assembly times for an electric knife using a fully automated 

assembly time predication tool 



Training Set 

Name 

Electric 

Knife Target 

Time  

(s) 

Predicted Time from 

Loaded Training Set  

(s) 

% Error 

(+/-) 

Analysis Time  

(s) 

Case 1 

212.34 

457.83 +54 68 

Case 2 665.87 +68 67 

Case 3 315.23 +33 67 

Case 4 251.7 +16 67 

Case 5 204.59 -4 68 

Case 6 225.34 +6 68 
 

The percent error in the predicted time for the training sets ranges from -4% to 

+68% errors (Error! Reference source not found.).  If the cases are discretized into 

general categories, the same conclusions inferred in the previous training case 

investigation are again made.  Though Training Case 1 and Case 2 had a training size 

of eleven inputs and targets, training inputs were reused, resulting with the highest 

percent errors ranging from 47% to 68% error.  Training Case 3 had twice the training 

size, twenty-two, but reused training inputs, in turn resulting in a percent error of 

33%.  Training Case 4, Case 5, and Case 6 had training sizes of twelve inputs and 

targets, all of which are unique.  This resulted in the lowest percent error ranging from 

-4% to +16% errors, well within the +/- 50% errors that are possible with the B&D 

method [45]. 

Running the analysis on this test product while loading trained neural 

networks took less than 111 seconds once MatLab was opened.  The total time to run 

the analysis, including opening and initializing MatLab which takes approximately 

another 120 seconds, yielded a total approximate analysis time of 330 seconds.  This 

is a significant improvement when compared to the nearly 2,000 seconds for analysis 

time for the B&D tool.  Fully integrating a trained ANN in C++ within the add-in, 

therefore, can improve the execution time. 



3.2 Mate Sensitivity Testing 

If this tool is to be effective, it should be generally insensitive to modelling 

preferences of different designers.  To test such preferences, a set of products are 

provided to different designers to create assembly models.  The assembly models and 

their associated connectivity graphs and complexity vectors are used to estimate the 

assembly times for comparison against B&D predicted assembly times.  Three 

separate products were chosen for this study:  the Solar Yard Light, the Black & 

Decker Drill, and the One Touch Chopper.  These three products and their respective 

part count, B&D predicted assembly times, and their product structures are listed in 

Table 11. 

Table 11:  Selected products for mate sensitivity study 

Product 
Part 

Count 

B&D Predicted 

Assembly Time (s) 
Product Structure 

Solar Yard Light 15 128.79 Linear 

Black & Decker Drill 26 186.65 Clam Shell 

One Touch Chopper 43 316.67 
Combo:  Clam Shell 

& Stackable 
 

Table 11 represent the totality of products (i.e. assembly time, part count, and 

general product structure) used in the different training sets.  All products differ for all 

three products listed.  Linear product structures are composed of products where the 

majority of components are inserted along the same axis.  Clam shell product 

structures sandwich the majority of parts between two halves.  Stackable product 

structures have some type of base or foundation where other parts are stacked atop 

one another to create the assembly.  Products also have structures that are based on 

any combination of these. 

The assembly models for each product were prepared by creating an assembly 

file with all individual components for that product without any mates and by creating 

a separate reference assembly file that illustrates how the product is assembled, 



through which students view the assembly process.  To prevent the designers from 

being influenced by the reference assembly, parts were fixed and all mates were 

deleted.  An exploded view of the reference assembly model, the Black & Decker drill 

in Figure 8 was created to help determine the assembly sequence. 

 

Figure 8:  Exploded view of Solar Yard Light Reference Assembly 

The exploded view of the reference assemblies is collapsible so that the exact 

location of parts within the assembly is visible.  The product assembly file provided to 

the students included all of the product parts in the general location with respect to the 

parts to which they will be mated.  The students must position the parts in the correct 

location and then add mates to the assembly as they see fit.  Figure 9 shows the Solar 

Yard Light assembly model provided so students may add mates as needed.  Note that 

the parts are out of position, requiring including mating constraints to create the 

proper model. 



 

Figure 9:  Solar Yard Light assembly model provided to students with no mates 

The assembly models and reference assembly models for all three products 

were distributed to mechanical engineering seniors and graduates enrolled in a Design 

for Manufacturing course.  The students added mates to the unmated collection of 

parts as appropriate, and the final mated assemblies were used to analyse assembly 

estimation time with the developed tool. 

Demographic information (level, experience with SW, frequency of use of 

SW) is collected from each student (Table 12), and they were asked to self-report on 

the time necessary for generating the assembly models from the part collections.  The 

demographics suggest that the students are drawn from a generally novice population 

and that the students did put forth some effort in creating the assemblies.  If an either 

an expert modeller was found or a student spent less than 15 minutes on one of the 

activities, then that sample would have been withdrawn.  



Table 12:  Form results from mate sensitivity study of the assembly time prediction 

tool 
S

tu
d

en
t 

U
n

d
er

 

G
ra

d
. 
/ 

G
ra

d
u

a
te

  

SW 

Assembly 

Experience 

SW 

Assembly 

Usage 

Frequency 

Mate Time 

Light 

(min) 

Mate Time 

Drill (min) 

Mate Time 

Chopper 

(min) 

S1 UG Low Low 30 < t < 45 45 < t < 60 NA 

S2 UG Low Low 60 < t < 90 NA NA 

S3 UG Low Med. 15 < t < 30 NA NA 

S4 Grad Low Med. 15 < t < 30 45 < t < 60 NA 

S5 Grad Med. Med. 30 < t < 45 t < 15 60 < t < 90 

S6 Grad Med. High NA 30 < t < 45 30 < t < 45 

S7 UG Med. Med. 15 < t < 30 45 < t < 60 30 < t < 45 

S8 Grad Low Med. 45 < t < 60 t > 90 45 < t < 60 

S9 Grad Med. Med. 30 < t < 45 45 < t < 60 45 < t < 60 

S10 Grad Low High 45 < t < 60 t < 15 NA 

S11 UG Med. Low 15 < t < 30 NA NA 
 

Once all of the mated assemblies were compiled, the automated assembly time 

prediction tool was used to predict a respective assembly time using the average of the 

top five architectures for the best performing training set (Case 4).  The number of 

mates the students added, the target time, the predicted assembly times for each 

student’s assembly, the percentage error in the predicted time, and the MatLab 

analysis times for the Solar Yard Light are shown in Table 13.  Table cells are shaded 

to illustrate the level of accuracy for various tests (green - returned values are within 

the +/- 25% tolerance range, yellow– returned values are within the +/- 50% tolerance 

range). 



Table 13:  Mate sensitivity analysis for Solar Yard Light 

Student 

Solar Yard 

Light 

Target 

Time 

# of 

Mates 

Predicted 

Time from 

Loaded 

Training Set 

% Error  

(+/-) 

Analysis 

Time (s) 

Student 1 

128.79 

33 129.56 +1 67 

Student 2 32 110.99 -16 71 

Student 3 25 88.71 -45 68 

Student 4 36 121.08 -6 69 

Student 5 38 115.95 -11 70 

Student 7 36 145.95 +12 64 

Student 8 35 131.32 +2 65 

Student 9 41 107.08 -20 63 

Student 10 36 125.39 -3 64 

Student 11 36 111.3 -16 64 
 

Of the ten assembly configurations analysed (one student did not complete the 

analysis), the percentage error in the predicted assembly time ranged from -45% to 

+12% error with the average of the absolute values being 13% error.  The number of 

mates each student added does not appear to directly relate to the predicted assembly 

time and the percentage error.  Though student one used thirty three mates and student 

two used thirty two mates, the predicted assembly times had +1% and -16% errors 

respectively.  Likewise, though students four, seven, ten, and eleven all used thirty six 

mates, the percentage errors were -6%, +12%, -3%, and -16% respectively.  Student 

three used the least number of mates, twenty five, and had the largest percentage 

error, -45%.  Since the number of mates does not appear to directly relate to the 

predicted assembly time, the significantly higher percentage error for Student 3 could 

possibly be caused by different assembly definition, emphasis on one type of mate 

usage, or usage of reference geometry to mate parts.  To fully understand the cause of 

this localized increase these errors error, a detailed study investigating the types of 

mates used and the respective complexity vectors created must conducted, and which 

will be pursued in future research.  



All student mated assemblies were within +/- 50% of the target time and nine 

of the ten were within +/- 25% of the target.  Excluding the predicted time from the 

model from Student 3’s, the percentage error range changes from -20% to a +12% 

error.  The analysis time to predict these assembly times was less than seventy-two 

seconds for each model per model, which does not include the time for MatLab to 

open and initialize (approximately 120 seconds).  The original target assembly time 

for the Solar Yard Light was predicted using a Virtual B&D analysis, taking 3,300 

seconds (55 minutes) to complete the analysis manually. 

Table 14 shows the results for the Black & Decker drill assembly and Table 15 

the results for the One Touch Chopper.  In both, the error is less than 25%, well 

within the +/- 50% variance estimated  with B&D [45]. 

Table 14:  Mate sensitivity analysis for Black & Decker Drill 

Student 

Black & 

Decker 

Drill Target 

Time (s) 

# of 

Mates 

Predicted 

Time from 

Loaded 

Training Set 

% Error  

(+/-) 

Analysis 

Time (s) 

Student 1 

189.65 

52 205.73 +8 68 

Student 4 46 188.4 -1 67 

Student 5 59 220.69 +14 68 

Student 6 53 240.25 +21 64 

Student 7 59 232.04 +18 65 

Student 8 62 190.21 +0.3 64 

Student 9 50 224.9 +16 63 

Student 10 48 213.6 +11 65 
 

Table 15:  Mate sensitivity analysis for One Touch Chopper 

Student 

One Touch 

Chopper 

Target Time 

(s) 

# of 

Mates 

Predicted 

Time from 

Loaded 

Training Set 

% Error  

(+/-) 

Analysis 

Time (s) 

Student 2 

316.62 

89 336.91 +6 65 

Student 6 90 357.1 +11 67 

Student 7 91 322.17 +2 68 

Student 8 104 325.07 +3 65 

Student 9 86 352.57 +10 64 
 

Table 16 lists a summary of the products each student mated and the errors of 

predicted assembly times. 



Table 16:  Summary of % errors for each student for each product 

Student 
Solar Yard Light  

% Error (+/-) 

Black & Decker Drill  

% Error (+/-) 

One Touch Chopper  

% Error (+/-) 

Student 1 +1 +8 NA 

Student 2 -16 NA +6 

Student 3 -45 NA NA 

Student 4 -6 -1 NA 

Student 5 -11 +14 NA 

Student 6 NA +21 +11 

Student 7 +12 +18 +2 

Student 8 +2 +0.3 +3 

Student 9 -20 +16 +10 

Student 10 -3 +11 NA 

Student 11 -16 NA NA 
 

All of the percentage errors shown in Error! Reference source not found. 

are within +/- 45% error of the target assembly times for the given product, placing 

them within the +/-50% tolerance range.  If the predicted assembly time is removed 

for Student 3’s Solar Yard Light, the range of errors drops to +/- 21%.  It should also 

be noted that the highest errors for the Black & Decker Drill and the One Touch 

Chopper were from both from Student 6 who had a medium level of SW assembly 

experience and a high SW assembly usage frequency.  No significant variance of 

percentage errors of across the three products Error! Reference source not found. 

suggests that the automated tool performs well for the variety of test products used in 

this study (Error! Reference source not found.).  Though admittedly not statistically 

significant, this preliminary study does illustrate the potential insensitivity of the tool 

to the designer-choice-for-mating-approaches. 

4 Concluding Remarks and Recommended Future Studies 

A method and implemented tool, demonstrably effective for estimating assembly 

times, is based entirely on objective information explicitly found within the assembly 

models of a commercial CAD system. Experimentation was used to develop 

recommendations for developing the training sets.  Moreover, the tool is validated 

against a withheld training case of an electric knife.  Finally, the tool is demonstrated 



to be robust against user variability through a study with models generated by several 

student engineers.   

Even though the automated assembly time prediction tool addresses the goals 

of eliminating subjective information dependency, reducing user input requirements, 

and allowing earlier use of the tool in the design process prior to physical reverse 

engineering, it still has limitations that must be addressed in future research.  The 

limitations here encompass three discrete categories related to the ANN training cases 

used, the mating scheme sensitivity, and the robustness of the mate extraction add-in.  

Each of these limitations is addressed in the following sub sections. 

4.1 Limitation with Regards to ANN Training Cases 

The case used to train the ANNs affects the results of the predicted assembly times.  

For example, the predicted times for the Electric Knife test case ranged from -4% to 

+68% depending on the training case used (Error! Reference source not found.).  It 

was recommended that future training cases should use a set of at least eleven unique 

training inputs and targets composed of partially defined assembly models to improve 

the accuracy of the predicted assembly times.  These investigations into ANN training 

case types used for such recommendations are only preliminary, however. For more 

effective or specific recommendations, larger sample sizes must be used, which is the 

subject of future research. Such studies should also investigate if the test inputs are 

either internal or external to the training sets used.  Internal test inputs would be 

products that have part counts, component counts, and complexities within the range 

of the training case and external inputs would have values outside of the range of the 

training case. 

During tool development, several different training cases were evaluated to 

determine their effect on the predicted assembly times and to select five ANN 



architectures to use with the automated tool.  Though the selection process for 

choosing the five ANN architectures is repeatable, it may not select the overall best 

architectures.  A formalized architecture selection process that chooses the five most 

effective architecture structures should be the subject of future research. 

4.2 Limitation with Regards to Mating Sensitivity 

The results of the designer modelling preference study showed that for a given 

product the % errors are within +/- 25% error for all cases except for one outlier with 

a -45% error.  The mate sensitivity study only evaluated the variability between 

different test subjects’ assembly times, and the specific effect of the different mating 

styles on the predicted assembly times was not explored.  Further investigation into 

this mating variability and its effect on the predicted assembly time using this tool 

will be undertaken in future research. 

4.3 Limitation with Regards to Program Robustness 

The automated assembly time prediction tool is a SolidWorks custom add-in that 

extracts the defined mates from an assembly model and uses the complexity of the 

mate connection graphs to predict an assembly time based using trained ANNs.  The 

automated tool has successfully predicted assembly times in less than five minutes.  

Though effective, the limitations of this tool must be resolved in future research, as 

summarized thusly: 

(1) Does not extract mates from subassemblies; 

(2) Does not handle part patterns within assemblies; 

(3) Extracts suppressed mates; 

(4) Requires MatLab to perform computations. 

The first three limitations can be addressed in future versions of this tool with 

a more robust development of the SW API program.  The fourth limitation can also be 



addressed through the development of a standalone complexity analysis module and 

ANN module for integration into the tool.  This would more seamlessly integrate the 

program, requiring fewer external calls and allowing for easier portability of the code.  

Moreover, it should improve the time spend in running the program as a significant 

portion is dedicated to opening the MatLab program to access the various toolboxes.  

4.4 Extendibility of Current Tool 

The current method employs an exclusive use of complexity metrics on connectivity 

graphs to create the trained ANNs, initially undertaken to reduce the amount of 

subjectivity and designer interaction required.  As shown [17], however, much of the 

subjectivity of the B&D method is related to the insertion activity.  The handling 

activity is more objective.   Therefore, in the next version of the tool, this additional 

information about the parts might be integrated into the predictive models. 
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