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ABSTRACT 
This paper compares two different methods of graph generation for input into the complexity 

connectivity method to estimate the assembly time of a product.  The complexity connectivity 

method builds predictive models for assembly time based on twenty-nine complexity metrics 

applied to the product graphs.  Previously the part connection graph was manually created, but 

recently the Assembly Mate Method and the Interference Detection Method have introduced new 

automated tools for creating the part connectivity graphs.  These graph generation methods are 

compared on their ability to predict the assembly time of multiple products.  For this research, 

eleven consumers products are used to train an artificial neural network and three products are 

reserved for testing.  The results indicate that both the Assembly Mate Method and the 

Interference Detection Method can create connectivity graphs that predict the assembly time of a 

product to within 45% of the target time.  The Interference Detection Method showed less 

variability than the Assembly Mate Method in the time estimations.  The Assembly Mate Method 

is limited to only SolidWorks assembly files, while the Interference Detection Method is more 

flexible and can operate on different file formats including IGES, STEP, and Parasolid.  Overall, 

both of the graph generation methods provide a suitable automated tool to form the connectivity 

graph, but the Interference Detection Method provides less variance in predicting the assembly 

time and is more flexible in terms of file types that can be used. 

 Keywords: Design for Assembly, Information Subjectivity, DFA, Assembly Time, DFM, DFMA 

1. ASSEMBLY TIME ESTIMATION METHODS 
Design for assembly (DFA) focuses on improving product design with an emphasis on 

improving the assemblability as measured by time, ease, or cost [1–10].  To compare the 
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expected benefit of implementing DFA guidelines, several methods have been developed to 

estimate the assembly time of a product [3,11,12].  In general these methods are used to compare 

designs on a relative scale; comparing a design product before and after DFA guidelines have 

been applied. 

1.1. Boothroyd and Dewhurst Method 
The Boothroyd and Dewhurst (B&D) assembly time estimation method is empirically 

developed based on extensive data collected from assembly plants [3].  The Boothroyd and 

Dewhurst assembly time estimation method requires the user to manually input handling and 

insertion information into a table.  Each part would receive a handling code and insertion code 

based on categories used to describe the part [3].  For instance, the handling code would depend 

on part information such as length, thickness, part symmetry, and handling difficulties.  After a 

handling code and insertion code is determined for each part in the assembly, a handling time 

and insertion time can then be found in the B&D assembly time charts.  The sum of the handling 

time and the insertion time for each part is the estimated assembly time for the part.  The sum of 

all estimated assembly times for each part results in the overall assembly time of the product. 

Recently Boothroyd and Dewhurst Inc. has released a software to help automate the 

assembly time estimation
1
.  The software supports the user by providing a graphical user 

interface (GUI) to input the part information, and will  retrieve the associated handling and 

insertion times.  One limitation of the B&D method is the time required to analyze a product 

even with the extensive training (which is a service that can be purchased).  The time required to 

analyze product using the B&D method motivated the need for an automated assembly time 

estimation method [13].  Regardless of the limitations, this method appears to be the most 

prevalent in the literature and in industrial application.   

1.2. Complexity Connectivity Method 
The complexity connectivity method (CCM) uses a complexity vector composed of twenty-

nine graph based complexity metrics to estimate the assembly time of a product [14,15].  The 

complexity metrics are calculated based on the bi-partite representation of a product (See Figure 

                                                           
1 http://www.dfma.com/ accessed 12/17/2012 

http://www.dfma.com/
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1).  For brevity, the discussion, details, and calculations of the complexity metrics are not 

included in this paper but can be found in previous literature [14,15]. 

 

Figure 1: Bi-partite Graph [15] 

Initially the CCM used a linear regression model to create a relationship between the 

complexity metrics and the assembly time of a product [16].  To improve the predictive ability of 

the connectivity complexity method, the relationship model evolved from a linear regression to 

an artificial neural network (ANN) [17].  The ANN complexity connectivity method (ANN-

CCM) is trained using the complexity vector of a product (with known assembly time) as the 

input into the ANN and the known assembly time is the training target.  The ANN is used as a 

data mining tool to find the relationship between the complexity vector and the known assembly 

times. The use of the ANN was shown to improve the predictive ability of the method, however 

the manual bi-partite graph generation was still time consuming and inherently subjective due to 

manual creation [13,17].  To further improve the CCM, an automated graph generation method is 

needed. 

2. COMPLEXITY GRAPH GENERATION 
The original CCM manually created the bi-partite graph, but due to the extensive effort 

required to create the bi-partite graphs, recent research has motivated the need for automated 
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graph generation. The next improvement to the complexity connectivity method was the 

Assembly Mate Method, an automated graph generation tool [14].  

This paper will focus on the comparison of two graph generation methods used for creating 

the bi-partite graph needed to calculate the complexity metrics for estimating the assembly time 

of a product.  The two methods that are evaluated are the Interference Detection Method (IDM) 

and the Assembly Mate Method (AMM). Both methods are programmed in C++ using Visual 

Studio 2010, SolidWorks 2011, and the SolidWorks 2011 Application Programming Interface 

(API).  

2.1. Assembly Mate Method 
The Assembly Mate Method (AMM) uses SolidWorks (SW) assembly mate information to 

create the connectivity graphs needed for the complexity connectivity method. The mates in SW 

are the relationship that a user specifies to assemble a part onto another part or assembly such as 

a coincident mate or concentric mate (see Figure 2 for additional standard SW mate types).  
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Figure 2: Standard SolidWorks Mates 

The mate creates a relationship between two components and SolidWorks retains this 

relationship information as a parent-child relationship.  For example, consider a block with a 

circular hole and a pin (see Figure 3). 

 

Figure 3: Block and Pin Assembly 

The automated graph generation tool uses the “Parent/Child Relationship” information to 

find the connections between parts in the assembly (see Figure 4) [14].  For example, the 
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concentric relationship exists between the “Block-1” and the “Pin-1” and are identified in the 

child parent relationship window (see Figure 4). 

 

Figure 4: Parent-Child Relationship 

The assembly mate method iterates through every mate in the assembly to create a list of 

parent child relationships.  This list is output as a text file to be used as the input to find the 

complexity vector for the assembly. 

2.2. Interference Detection Method 
The AMM provided an automated method for creating the complexity graphs based on the 

mates used to create an assembly. Another method for generating the complexity graphs has been 

developed that uses part interference to create the complexity graphs.   

The Interference Detection Method (IDM) utilizes the interference detection tool in SW to 

determine the connectivity between parts (see Figure 5).  The interference detection tool detects 

overlapping part geometry between any two parts in an assembly.  Furthermore, the interference 

detection tool has additional options that are selected to “treat coincidence as interference” and to 

“treat subassemblies as components”.  The “treat coincidence as interference” allows for 

situations when an interfering part has the same nominal size as a part into which it fits or when 

a face of a part is coincident with another.  For example, in block and pin assembly the nominal 

size of the pin is the same as the size of the hole in the block.  The interference detection tool 

detects this as interference when the option is enabled (see Figure 5). 
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Figure 5: Interference Detection Tool 

When a sub-assembly is placed into an assembly in SW, the entire subassembly is treated as 

one body or part. The treat subassemblies as components option, in the interference detection 

tool, allow the tool to look at each part in the subassembly separately.  The interference detection 

tool was run on the same block and pin assembly from earlier. The results indicate that a 

connection was detected between the block and the pin (see Figure 5). Each portion of the part 

that is found to interfere is colored/shaded in the model (see Figure 6). 
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Figure 6: Block and Pin Detection Tool Result 

The interference detection algorithm is implemented in C++ using the SW API to find all 

interfering parts of the assembly and export a text file containing the part connection 

information.  The interference detection tool may be run directly from the SW menu, by 

accessing the evaluate tab in an assembly file. The manual use of the interference detection tool 

results in a list of interferences in the SW GUI (see Figure 5). 

The CCM has been improved towards developing a fully automated assembly time 

estimation tool.  A summary of the different iterations that have been undertaken as well as 

information regarding the source of training product times and models can be found in Table 1.  

Table 1: Summary of CCM Progression 

 CCM ANN-CCM AMM IDM 

Graph 

Generation 
Manual Manual Automated (CAD) 

Automated 

(CAD) 

Estimation 

Tool 
Linear Regression ANN ANN ANN 

Training 

Products 

Consumer Products 

and prototypes from 

industry sponsored 

projects 

Automotive 

sub-systems 

Consumer products 

with models available 

Consumer 

products from 

previous 

literature 

Training 

Assembly 

Times 

Boothroyd and 

Dewhurst 

Industry 

specified 

Boothroyd and 

Dewhurst 

Boothroyd and 

Dewhurst 

Supported 

File Types 
N/A N/A 

SW Assembly ONLY 

(*.asm;*.sldasm) 

IGES (*.iges) 

Parasolid (*.x_t;) 

STEP (*.step) 
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2.3. Demonstration of Graph Generation Methods 
To compare the two methods, a demonstration of the analysis on an ink pen is provided (see 

Figure 7) 

 

Figure 7: Ink Pen 

The pen was chosen for demonstration due to a limited complexity and number of part. This 

example does not demonstrate the full ability of the methods to create graphs for more complex 

products as used in the comparison in Section 3 of this paper.  The parts of the pen include a grip 

body (1), rubber grip (2), spring (3), ink body (4) indexer (5), press button (6), and body (7) (see 

Figure 8). 

 

Figure 8: Exploded View of Ink Pen 

2.3.1. Assembly Mate Graph Generation Method 
The AMM was used to find the part connections for the ink pen. The AMM outputs a text file 

with a part in the left column and the part it is connected to in the right column (see Table 2). For 

example, the first row indicates that the “Grip Body” is connected to the “Rubber Grip” and the 

second row indicates that the “Grip Body” is also connected to the “Ink Body” 

For visual representation the information resulting from the AMM is represented as a bi-

partite graph (see Figure 9). The “Front Plane” is included in the list of physical part 

connections. The AMM retrieves all of the assembly mates used to create the model; therefore, if 

a part is assembled to a reference plane or a reference axis, the reference features are also 

included as part of the connection graph. 

1 
2 

3 

4 

5 

6 

7 
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Table 2: Partially Defined AMM 

Grip Body Rubber Grip 

Grip Body Ink Body 

Spring Rubber Grip 

Ink Body Indexer 

Press Button Indexer 

Grip Body Body 

Grip Body Rubber Grip 

Spring Grip Body 

Ink Body Grip Body 

Press Button Body 

Press Button Indexer 

Rubber Grip Body 

 

 

Figure 9: AMM Bi-Partite Graph of the Ink Pen 

2.3.2. Interference Detection Graph Method 
The IDM was then used to generate the connectivity graphs for the ink pen. Once again, the 

output from the IDM is a text file indicating the connectivity between parts (see Table 3). 

Grip Body 

Spring 

Ink Body 

Rubber Grip 

Body 

Indexer 

Press Button 
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Table 3: Part Connections for IDM 

Grip Body Rubber Grip 

Grip Body Ink Body 

Grip Body Spring 

Rubber Grip Body 

Press Button Indexer 

Press Button Indexer 

Press Button Indexer 

Press Button Indexer 

Press Button Body 

Spring Ink Body 

For comparison purposes with the AMM, the bi-partite graph was also created for the IDM 

(see Figure 10). 

 

Figure 10: IDM Bi-Partite Graph of the Ink Pen 

2.3.3. Ink Pen Assembly Time Estimation Comparison 
The part connection graphs are used as the input to calculate the complexity vector.  The 

complexity vector was calculated for the IDM and the AMM (see Table 4). For brevity, the 

specific calculations for each of the complexity metrics has been omitted [16,18].   

Grip Body 

Spring 

Ink Body 

Rubber Grip 

Body 

Indexer 

 

 

 

 

 

Press Button 
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Table 4: Complexity Metrics for Ink Pen 

    
Product Name G2 Pen 

     IDM AMM 

C
o
m

p
le

x
it

y
 M

e
tr

ic
s 

S
iz

e Dim 
elements 7.00 7.00 

relations 10.00 12.00 

Conn 
DOF 10.00 12.00 

connections. 20.00 24.00 

In
te

rc
o
n

n
ec

ti
o
n

 

Shortest Path 

sum 102.00 72.00 

max 5.00 3.00 

mean 2.43 1.71 

density 0.24 0.14 

Flow Rate 

sum 54.00 124.00 

max 4.00 6.00 

mean 1.10 2.53 

density 0.11 0.21 

C
en

tr
a
li

ty
 

Betweenness 

sum 60.00 30.00 

max 18.00 11.00 

mean 8.57 4.29 

density 0.86 0.36 

Clustering Coefficient 

sum 2.33 2.33 

max 1.00 1.00 

mean 0.33 0.33 

density 0.03 0.03 

Ameri Summers 20.00 28.00 

D
ec

o
m

p
o
si

ti
o
n

 

C
o
re

 N
u

m
b

e
rs

 

In 

sum 10.00 14.00 

max 2.00 2.00 

mean 1.43 2.00 

density 0.14 0.17 

Out 

sum 10.00 14.00 

max 2.00 2.00 

mean 1.43 2.00 

density 0.14 0.17 

Each of the complexity metrics, developed by the respective graph generation methods, was 

used as input training vectors to the ANN. At this point the complexity metrics could be used to 

estimate an assembly time using a previously trained ANN. However, since the pen was used in 

the training of the ANN for this paper, it was omitted from testing of the predictive ability of the 

neural network. The comparison of performance of the two graph generation methods is reserved 

for products which were not included in the ANN training. 
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3. PERFORMANCE COMPARISON OF METHODS 
To compare the performance of the methods a total of fourteen household products (for 

which CAD models could be obtained or created) were chosen for analysis. From the fourteen 

products to be used in the analysis, eleven products were used to train the ANN and three 

products were withheld for testing.  A summary of the products used for testing and training 

along with an image of each is presented in Table 5. 

Table 5: CAD Models Used for Training and Testing 

P
ro

d
u

ct
 N

a
m

e
 

T
ra

in
in

g
/T

es
ti

n
g
 

CAD Model Image 
Source 

[14] 

S
ta

p
le

r 

T
es

ti
n

g
 

 
GICL Website 

F
la

sh
li

g
h

t 

T
es

ti
n

g
 

 

SW 3D Content 

B
le

n
d

er
 

T
es

ti
n

g
 

 

Reverse 

Engineered 

In
k

 P
en

 

T
ra

in
in

g
 

See Figure 7 Reverse 

Engineered 

P
en

ci
l 

C
o
m

p
a
ss

 

T
ra

in
in

g
 

 

Reverse 

Engineered 
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3
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H
o
le

 

P
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T
ra

in
in

g
 

 

Reverse 

Engineered 

3.1. Assembly Time Estimation Comparison 
The connectivity graph for the eleven training products was obtained using both the AMM 

and the IDM methods and used to find the complexity metrics for each part.  The complexity 

metrics for each respective method was obtained and was used as the input for training of the 

ANN. The target time for each of the products was calculated using the manual Boothroyd and 

Dewhurst assembly time estimation charts [3].  

The connectivity graphs and complexity vectors for the test products were then generated 

using each of the graph generation methods. The previously trained ANNs were then used as a 

prediction tool to estimate the assembly time of the test products. Each ANN is composed of 189 

architectures resulting from fifteen neurons and one hidden layer [14].  Due to the stochastic 

nature of the ANN, each architecture results in 100 prediction estimates, resulting in 18,900 

predicted assembly time data points for each product. The average time of all of the results of an 

ANN is the average predicted assembly time for the product (see Table 6). The number of 

architectures as well as repetitions for each architecture may be reduced to decrease 

computational effort, however the focus of this research is not ANN design but strictly the 

application of the predictive ability of the ANN as a tool, therefore ANN design is reserved for 

future work [19–21].  

Table 6: Predicted Assembly Times of Test Products 

 Target Time 

AMM  

Average  

Predicted Time 

IDM  

Average  

Predicted Time 

Stapler 123.51 115.84 89.98 

Flashlight 75.40 107.65 65.96 

Blender 263.21 290.40 352.09 

To compare the predictive ability of each of the graph generation methods, the mean 

percentage error (MPE) was calculated for each neural network.  The MPE is calculated as the 

following: 
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 MPE =
1

𝑛
∑

𝑃𝑖−𝑇

𝑇
, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, 3, … , 𝑛𝑛

1  (1) 

Where:  

n: Number of Observations 

T: Target Time 

P: Predicted Time 

 

Figure 11: Mean Percent Error of Test Products 

To compare the mean percent error values a 2 sample t-test was conducted. Based on the 

central limit theorem, the sample size is large enough to assume a normal distribution and 

therefore a two sample t-test with unknown variances is appropriate [22,23].  

The hypothesis test was used to test if the mean average error of the IDM was statistically 

different than that of the AMM. The confidence interval used for this test was 95%. 

H0 ∶ μ0 = μ1 

H1 ∶ μ0 ≠ μ1 

The results indicate a p-value less than 0.05 providing evidence to reject the null hypothesis.  

The mean value of the AMM is -0.019 and the mean value of the IDM is 0.156.  The t-test 

suggests that the mean percent error values of assembly time are not equal. While there is 

statistically significant evidence that the means are not equal practically the difference in the 

means are not very different.  Graphically the mean percentage error of the IDM and the AMM 
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are similar (see Figure 12). The graphical depiction however does suggest that while the means 

are similar, the variance observed with the AMM method is greater than that observed with the 

IDM. The graphical evidence supports that both methods are relatively accurate in estimating 

assembly time, but the IDM method produces less variance. 

 

Figure 12: Mean Percent Error Comparison of AMM and IDM 

3.2. Analysis Time 
The time required to train, load, and run an ANN for the assembly time estimation using both 

methods is approximately equal since both methods input the same amount and type of 

information. The required input for the ANN is simply the complexity vector. However, the time 

required to generate the connectivity graph based on a CAD model is significantly less for the 
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AMM compared to the IDM (see Table 7).  The significant increase in analysis time for the IDM 

can be attributed to the algorithm complexity. The IDM must compare each part in the assembly 

to every other part to find interference, resulting in a computational complexity of O(N
2
). The 

AMM simply retrieves the created mates list to generate the part connectivity graph, resulting in 

a computational complexity of O(N). 

Table 7: Graph Generation Time Comparison 

 AMM IDM 

 

Graph 

Generati

on Time 

[s] 

# of 

Elements 

# of 

Relations 

Graph 

Generation 

Time [s] 

# of 

Elements 

# of 

Relations 

Flashlight 5 18 36 30 16 55 

Stapler 1 14 27 43 14 20 

Blender 1 48 105 97 43 129 

The time to generate the graph for the fourteen consumer products (see Table 5) was recorded 

to compare the theoretical complexities of the algorithms to the actual implementation.  The 

graph generation time for the AMM and the IDM are plotted with respect to the number of 

elements and the number of relations (see Figure 13 and Figure 14).  Note that the number of 

elements and relations identified by each method are not identical and is not equal to the number 

of parts, therefore each graph generation time is plotted with respect to the number of elements 

and relations identified by the respective method. 
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Figure 13: Graph Generation Times for IDM 

Theoretically the IDM algorithm is polynomial, however the applied results of the graph 

generation times initially indicate that the polynomial fit based on number of elements or 

relations alone is not sufficient. A number of factors could be considered to be the cause of the 

discrepancy between the theoretical and applied graph generation times.  First of all, the sample 

size is not sufficiently large enough to draw complete conclusions.  A set of products with a 

larger range in number of parts and relations would need to be tested to further support the actual 

relationship between graph generation time and number of elements or relations. Another 

possible contribution to the discrepancy is the complexity of the part topology. To find the 

interference of a part with multiple edges and faces requires greater computation than a part with 

a simple geometry.  This however will also need to be tested further.  To do this, a study would 

need to be conducted in which an assembly composed of parts with simple geometries is 

compared to a similar assembly in which the geometry of the parts is changed, but the interfering 

components should remain the same.  This is not the focus of this research and is reserved for 

future work. 
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Figure 14: Graph Generation Times for AMM 

The AMM reveals a relatively linear trend with the increase in elements or relations having a 

minimal effect on the graph generation time (see Figure 14).  The AMM is traversing a list that 

has been created by the SW program during the assembly modeling, and then writing this 

information to a text file. For this reason the applied results generally follow the trend expected 

from the theoretical evaluation. While the results generally follow the expected trends, the 

sample size and variation in number of elements and relations is still limited and requires 

additional testing to support these claims. Future work includes investigation into the 

complexities of the IDM and AMM algorithms to try to decrease the computation effort required, 

but is not the focus of this research and is reserved for future work. 

3.3. Supported CAD File Types 
One major advantage of the IDM over the AMM is the ability to handle additional file types 

other than SW assembly file.  The AMM is dependent on having a SW assembly file from which 

to retrieve assembly mates from. The IDM is able to create the connectivity graph of many 

different native file formats and has been tested on the following: SW assembly file (*.sldasm), 

IGES (*.iges), parasolid(*.x_t), and STEP (*.step;*.stp) (summarized in Table 8). The STL file 

type is the only tested file type that is not currently supported by the IDM.  The STL file is 

limited because SW imports the entire assembly as one body, and with only one body there is no 
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interference.  This may be improved in the future to support STL files if an assembly can be 

imported as separate bodies. 

Table 8: IDM Supported File Types 

File Type File Type Extension Supported 

SolidWorks Assembly *.asm;*.sldasm  

IGES *.iges; *.igs  

Parasolid *.x_t;*.x_b;*.xmt_txt;*.xmt_bin  

STEP *.step;*.stp  

STL *.stl,  

While the IDM can support multiple file types, SW is still required as the add-in utilizing the 

interference detection tools built using the SW API. However, the benefit is files can be saved 

into a standard CAD file format from other CAD systems and imported into SW to run the IDM. 

3.4. Modeling Dependency 
When creating a solid model, there are numerous ways a designer could model the product. 

The actual technique used to model the part geometry may vary by designer, but this is out of 

scope of this research.  On the other hand, given a set of parts, different designers will mate them 

in different ways to form the assembly. For instance, based on the ink pen example from earlier, 

an alternate designer may mate multiple parts to a reference plane. Furthermore, a designer may 

choose to limit the motion of all of the parts in the assembly to create a fully defined assembly in 

which all parts have zero degrees of freedom. This situation would result in an entirely different 

connectivity graph based on the AMM.  Since the AMM utilizes the mates from the assembly 

model to create the connection graph, all reference items which are used to mate the assembly 

are also included as entities (see Table 9).  
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Table 9: Part Connections for AMM 

Grip Body Rubber Grip 

Grip Body Ink Body 

Spring Rubber Grip 

Ink Body Indexer 

Press Button Indexer 

Grip Body Body 

Grip Body Rubber Grip 

Spring Grip Body 

Ink Body Grip Body 

Press Button Body 

Press Button Indexer 

Rubber Grip Body 

Rubber Grip Front Plane 

Spring Front Plane 

Ink Body Front Plane 

Press Button Front Plane 

Indexer Front Plane 

Body Front Plane 

These added relations increase the complexity of the connectivity graph, and therefore also 

generate a different complexity vector and bi-partite graph resulting in a different assembly time 

estimate (see Figure 15). 
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Figure 15: AMM Bi-Partite Graph of Fully Defined Ink Pen 

Since the IDM is based on location of the parts in the modeling space, the connectivity graph 

is not dependent on the modeling style of the designer, but strictly on the location of the parts in 

the assembly space. 

4. CONCLUSIONS AND FUTURE WORK 
The Interference Detection Method (IDM) and the Assembly Mate Method (AMM) both 

provide automated tools to generate the connectivity graph of an assembly. This graph is used as 

the input into the connectivity complexity method and provides an automated method of 

estimating the assembly time of a product based on a CAD model.  

Both methods are able to generate connectivity graphs which are used with the connectivity 

complexity method to predict a relatively accurate assembly time. However, each method has its 

own advantages and disadvantages. Although both methods were able to predict the assembly 

times of the products, the IDM method had less variance in the time estimates. The IDM can 

handle a multitude of standard CAD formats, while the AMM is restricted to only SolidWorks 

assembly files. The time required to form the connection graphs is much shorter for the AMM 

compared to the IDM due to the program complexity. A summary of the performance 

characteristics for each method is shown in Table 10. 

One major limitation to the current research in this area is number of products for training 

and testing. The current research is limited by the number of products due to the large amount of 

Grip Body 

Spring 

Ink Body 

Rubber Grip 

Body 

Indexer 

Press Button 

Front Plane 
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time needed to manually create product models and determine assembly times using the 

Boothroyd and Dewhurst assembly time charts. A larger set of product models and assembly 

times are needed to further validate the method. 

Table 10: Performance Comparison of IDM and AMM 

Performance 

Metric 
IDM AMM Section Comments 

Accuracy   3.2.  

Both methods were relatively accurate, 

but statistically AMM had the 

advantage. 

Modeler 

Dependency 
  3.4.  

The IDM is based on part location in 

the assembly space as opposed to the 

AMM which is based on assembly 

mates chosen by the designer.  The 

assembly mates used may change based 

on the designer creating the model. 

File Format 

Dependency 
  3.3.  

AMM requires SW Assembly Files, but 

IDM can use a number of standard 

CAD file types 

Graph Generation 

Time 
  3.2.  

The complexity of the AMM algorithm 

is simpler than the IDM resulting in a 

much faster graph generation time 

Additionally, the construct validity of the method needs to be tested to determine if the 

results found from test products with manually estimated assembly times can be used to predict 

actual assembly times measured from current manufacturing process. Current collaboration with 

a local original equipment manufacturer is underway to validate this work with industry products 

and actual assembly times. 

Future research directions include significance testing of the complexity vector to determine 

if the 29 complexity metrics currently being used are all needed for accurate assembly time 
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estimation, or if even more metrics may provide better estimates. The current research provides 

additional milestones in an ultimate goal of a fully automated assembly time estimation method.  
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