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SUMMARY 17 

Among species within Cucurbitaceae, there are substantial differences in susceptibility to 18 

Didymella bryoniae, the causal agent of gummy stem blight on cucurbits. The underlying 19 

reasons, though, are still unresolved. Susceptibility was characterized with muskmelon (Cucumis 20 

melo), watermelon (Citrullus lanatus), cucumber (Cucumis sativus), pumpkin (Cucurbita pepo), 21 

and zucchini (C. pepo). Lesion diameters on leaf disks inoculated with agar plugs were measured 22 

7 days after inoculation, and the necrotized areas of leaf disks inoculated with conidial 23 
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suspensions were measured 48 hours after inoculation (hai). For each species, the number of 24 

trichomes was counted on 16 leaf pieces using a stereomicroscope. Lengths of ≥21 trichomes per 25 

species were measured. Polyphenol autofluorescence was recorded at 48 hai and quantified. 26 

Watermelon had the lowest trichome density and the shortest trichomes. Zucchini showed the 27 

highest trichome density, and pumpkin had the longest trichomes. Trichome density was 28 

negatively correlated with mean necrotized leaf area, and trichome length was highly negatively 29 

correlated with lesion diameter. Mean fluorescing area was correlated with lesion diameters and 30 

mean necrotized leaf area. This is the first study in which trichome morphology and polyphenol 31 

autofluorescence in inoculated cucurbit leaves were correlated with susceptibility to D. bryoniae. 32 

 33 
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 36 

The ascomycete Didymella bryoniae (Auersw.) Rehm (synonym Stagonospropsis 37 

cucurbitacearum (Fr.) Aveskamp, Gruyter & Verkley) is the causal agent of gummy stem blight 38 

and black rot on cucurbits. The fungus is distributed worldwide and attacks a broad range of host 39 

plants (Keinath, 2011). It is one of the most important pathogens limiting cucurbit production in 40 

Brazil (Dos Santos et al., 2009), the United States (Keinath, 2011), Europe (Van Steekelenburg, 41 

1983; Blancard et al., 1994; Grube et al., 2011) and elsewhere (Farr and Rossman, 2014).  42 

Within cucurbits there is great variability in susceptibility to Didymella bryoniae. Citrullus 43 

lanatus and Cucumis melo are generally considered the most susceptible hosts, whereas 44 

Cucurbita spp. are among the less susceptible ones (Chiu and Walker, 1949; Dos Santos et al., 45 

2009; Keinath, 2014a; Keinath, 2014b).  46 
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There is an abundance of trichome morphologies within the Cucurbitaceae (Inamdar and 47 

Gangadhara, 1975). Trichomes have a number of important functions in plants. They reduce heat 48 

load, increase tolerance to freezing, promote seed dispersal and water absorption, protect from 49 

UV-B, and repel insects (Adebooye et al., 2012). Trichome densities and lengths have been 50 

highly correlated with rust resistance of beans (Mmbaga and Steadman, 1990; Zaiter et al., 1990; 51 

Menendez Sevillano et al., 1997). In hops, trichomes are 13 times larger than normal epidermal 52 

cells and show an increased susceptibility to powdery mildew, because they have a lower level of 53 

defense reactions and physiological activity than other cells (Oberhollenzer et al., 2013). A high 54 

polyphenol content in plant tissue has been shown to confer resistance to ascomycete pathogens 55 

(Treutter and Feucht, 1990; Gradziel et al., 1998; Mayer, 2006; Giordani et al., 2013). Beckman 56 

et al. (1972) observed stored phenolics in bulbous trichomes and later pointed out that phenolic-57 

storing cells play key roles in the defense strategy of plants (Beckman, 2000). However, 58 

trichome morphology and polyphenol content has never been linked to the susceptibility of 59 

cucurbits to gummy stem blight. 60 

The objectives of this study were to i) assess the relative susceptibility of five different 61 

cucurbits to Didymella bryoniae; ii) measure the trichome density and length as well as the 62 

polyphenol autofluorescence in inoculated leaf pieces and iii) correlate these parameters with 63 

susceptibility to assess the importance of these factors in the interaction of Didymella bryoniae 64 

with its major cucurbit hosts. 65 

Inoculum of D. bryoniae isolates N2 and N3, obtained from two cucumber plants in Lower 66 

Bavaria, Germany, was grown on quarter potato dextrose agar (QPDA; 9.75 g/l PDA, 11.25 g/l 67 

agar, 100 mg/l aureomycin). Five cucurbit species were grown in the greenhouse for three weeks 68 

(Table 1). Four leaf disks with a diameter of 7 cm were cut from mature, fully expanded leaves. 69 
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For watermelon, twice as many leaf disks were used, since the pinnatifid leaves of this cucurbit 70 

only allowed one measurement of lesion diameter per leaf. Disks were rinsed under running tap 71 

water for 10 s, washed three times with sterile distilled water and blotted with autoclaved filter 72 

paper. Two leaf disks were placed with the upper surface up and two with the lower surface up 73 

onto water agar (1.2%) in 10 cm-diameter petri dishes. One 5-mm-diameter agar piece cut from 74 

QPDA cultures of isolate N2 was put in the center of each leaf disk, i.e. four leaves per cucurbit 75 

were inoculated. The petri dishes with the inoculated leaf disks were then placed in a growth 76 

chamber at 20°C and 60% RH for one week. For the initial 24 hours the plates were held in 77 

complete darkness. After that period, a light cycle of 12 hours light / 12 hours darkness was 78 

applied. After one week of incubation, two perpendicular lesion diameters on leaf disks were 79 

measured. The experiment was repeated once. 80 

Six leaf disks 15 mm in diameter were cut from leaves of each cucurbit. Leaf disks were 81 

rinsed as described above. The leaf disks were inoculated with a suspension of 106 conidia/ml of 82 

a mix of isolates N2 and N3 in a solution of sucrose (0.1%) and casein (0.05%) using a 83 

chromatography sprayer. At 24 and 48 hours after inoculation (hai), non-inoculated and 84 

inoculated leaf disks were mounted in water onto microscope slides and analyzed under a 85 

fluorescence microscope (Zeiss, Mikroskop Universal, filter setting: G 436, FT 510, LP 520). 86 

The percentage of black color in the pictures was measured with ImageJ (Li et al., 2009) to 87 

estimate the degree of necrosis in the leaf disks. 88 

The number of trichomes on the upper leaf surface of each cucurbit was determined. Three to 89 

four pieces 4 mm2 from at least five leaves of different ages and positions on plants were cut 90 

from plants grown in the greenhouse for 3-4 weeks, so that for each cucurbit 16 leaf pieces were 91 

examined. All visible trichomes on the upper surface of the leaf pieces were counted using a 92 



 
 

 
5 

 

stereomicroscope with magnification of 40×. The lengths of trichomes were measured using 93 

AxioVision microscope software (Release 4.8.2 (06-2010)). For each cucurbit ≥21 trichomes 94 

originating from different positions on at least five different leaves were measured. 95 

Leaf disks 15 mm in diameter were prepared and inoculated with a conidial suspension 96 

applied with a chromatography sprayer as described above. For each point of time (non-97 

inoculated, 24 hai and 48 hai) at least five different leaf disks from different plants of each 98 

cucurbit were examined under a fluorescence microscope and photographed. The presence of 99 

phenolic compounds in the upper leaf epidermis and trichomes is indicated by light green 100 

fluorescence (filter setting: G 436, FT 510, LP 520) (Kolb et al., 2001). The chlorophyll in the 101 

leaf disks is visible through its emission of red fluorescing light (Misra et al., 2012). The 102 

percentage of yellow-green area in each picture was analyzed with Adobe Photoshop CS6 103 

Extended (Version 13.0.1 x 64) (Luna et al., 2011).  104 

The trichome measurements, lesion diameters and values of the necrotized leaf area and 105 

polyphenol autofluorescence were analyzed with SAS version 9.4 with PROC GLM. 106 

Subsequently a Tukey test was used to separate means. Pearson correlation coefficients between 107 

trichome measurements and polyphenol autofluorescence with disease assessments were 108 

calculated with SAS PROC CORR. 109 

In the leaf disk assay there was no significant effect of leaf side (P = 0.27) or repetition (P = 110 

0.21) on lesion size, and no cultivar-leaf side interaction (P = 0.50).  After 7 days, lesion 111 

diameters on pumpkin leaf disks were the smallest of all tested plants. On average they were 40.6 112 

mm in size. Cucumber and zucchini showed significantly larger lesion diameters than pumpkin 113 

(Table 1). However, they were significantly smaller than the lesion diameter on watermelon, 114 

which was the largest with a mean lesion size of 68.9 mm. This was not statistically different 115 
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from muskmelon, cucumber and zucchini but significantly larger than the diameter measured on 116 

pumpkin leaf disks. The overall average of lesion diameters on lower leaf surfaces of all tested 117 

cucurbits was only 0.77 mm larger than on upper leaf surfaces. 118 

Prior to inoculation, the average percentage of leaf necrosis as measured by autofluorescence 119 

showed no significant differences among the five studied plants. The values ranged from 0.00% 120 

in muskmelon and watermelon to 0.98% in pumpkin. At 48 hai there was an increase in leaf 121 

necrosis in all examined plants (Table 1). Muskmelon and watermelon with extremely severe 122 

necrosis of 99.9% and 99.7%, respectively, were clearly the most affected plants. In the second 123 

group was cucumber, which showed a mean leaf necrosis of 35.5%. This was significantly lower 124 

than muskmelon and watermelon but higher than pumpkin and zucchini. The averages for 125 

pumpkin, 4.04%, and for zucchini, only 3.74%, were significantly lower than the necrosis 126 

measured on the other three cucurbits. 127 

There were several significant differences in the number of trichomes per unit area among the 128 

five cucurbits used for this study. With a mean number of merely 1.11 trichomes / mm2 129 

watermelon had by far the lowest number of trichomes (Table 1). Consequently, watermelon had 130 

significantly (α = 0.05) fewer trichomes per square millimeter than the other four cucurbits. 131 

Muskmelon showed the second lowest density of trichomes, only 3.89 / mm2, which was 132 

significantly lower than the observed average of zucchini, which had the highest density of 133 

trichomes with a value of 8.28 / mm2 on average (Table 2). On both cucumber and pumpkin a 134 

significantly higher number of trichomes compared to watermelon was observed, but they did 135 

not differ from muskmelon and zucchini.  136 

With average lengths of 278.48 µm and 317.35 µm, respectively, watermelon and muskmelon 137 

had the shortest trichomes among the five examined cucurbits (Table 1). These two hosts had 138 
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significantly shorter trichomes than cucumber and pumpkin, but they were not statistically 139 

different from zucchini. The mean trichome length of pumpkin was the longest with a length of 140 

732.73 µm. 141 

In non-inoculated leaves of the five cucurbits used for this study, fluorescence of polyphenols 142 

was detected exclusively in the trichomes. At 24 and 48 hai bright yellow-green fluorescence of 143 

polyphenols also was observed in epidermis cells of inoculated leaf disks. From 0 to 48 hai the 144 

mean measured areas of fluorescing upper leaf surfaces of inoculated disks decreased in three 145 

cucurbits and increased in muskmelon and watermelon, which showed a clear increase from 146 

0.28% to 2.52% and from 0.24% to 3.79%, respectively. Autofluorescence (% area) in 147 

watermelon was significantly greater than autofluorescence in cucumber, zucchini and pumpkin 148 

(Table 1). 149 

The trichome characteristics showed two strong correlations. Trichome density was negatively 150 

correlated with the mean necrotized leaf area (r = -0.89; P = 0.0433), and trichome length was 151 

highly negatively correlated with the lesion diameter (r = -0.98; P = 0.0044) (Fig. 1, Fig. 2).  152 

There also was a positive correlation between the mean fluorescing area measured at 48 hai and 153 

the lesion diameter measured on leaf disks (r = 0.88; P = 0.0517), as well as with the mean 154 

necrotized leaf area (r = 0.94; P = 0.0162) (Table 1, Fig. 3).  155 

The order of susceptibility among the cucurbits determined in this study is consistent with 156 

previous studies. The two Cucurbita species showed the lowest susceptibility. Citrullus lanatus 157 

and Cucumis melo, on the other hand, were the most susceptible, and Cucumis sativus fell in-158 

between those two groups. Dos Santos et al. (2009) also found that Citrullus lanatus and 159 

Cucumis spp. were most susceptible to D. bryoniae, and Cucurbita spp. were the most resistant 160 

species in their study. Keinath (2014a, 2014b) showed that muskmelon, watermelon and 161 
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honeydew melon are the most suitable hosts for the fungus’ reproduction and generally more 162 

susceptible than Cucurbita spp. Grossenbacher (1909) and Chiu and Walker (1949) reported that 163 

Cucurbita spp. were among the least susceptible cucurbits and even suggested that they are 164 

immune to stem cankers under natural conditions. 165 

The role of trichomes in plant-pathogen interactions is a rather ambivalent one. High 166 

correlations between trichome densities and lengths with resistance of beans to rust have been 167 

reported several times (Mmbaga and Steadman, 1990; Zaiter et al., 1990; Menendez Sevillano et 168 

al., 1997). Simple non-glandular trichomes may protect plants, e.g. act as a physical barrier 169 

hindering the contact between pathogenic microorganisms, including fungal spores and the leaf 170 

surface (Laźniewska et al., 2012). This may explain the negative correlation between trichome 171 

density and length with susceptibility to D. bryoniae. Trichomes contribute to the spatial 172 

organization of the leaf surface. Therefore they have an impact on the infection process, as a 173 

physical barrier against pathogenic microorganisms in general, and on plant-pathogen 174 

compatibility by altering the leaf topology (Zelinger et al., 2006; Laźniewska et al., 2012). In 175 

addition, specialized glandular trichomes that secrete antimicrobial secondary metabolites protect 176 

plants from pathogens (Laźniewska et al., 2012). Nonomura et al. (2009) discovered that 177 

trichome exudates of Lycopersicon pennellii cover the entire leaf surface and act as a chemical 178 

barrier that inhibits the germination of Oidium neolycopersici. In contrast to this, leaf topology, 179 

which is influenced by trichomes, can affect host specificity. The spores of Stagonospora 180 

nodorum for instance fit the leaf surface of wheat better than that of barley as a result of the 181 

distribution of leaf hairs (Zelinger et al., 2006; Laźniewska et al., 2012). Some fungal pathogens 182 

use trichomes as preferred sites of penetration e.g. Colletotrichum acutatum on strawberry, 183 

Fusarium graminearum on Arabidopsis spp. (Skadsen and Hohn, 2004; Salazar et al., 2007; 184 
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Laźniewska et al., 2012) and Podosphaera macularis ssp. humuli on hops (Oberhollenzer et al., 185 

2013). 186 

The analysis of leaf pieces in a fluorescence microscope showed that the trichomes are filled 187 

with polyphenols, visible through the light green fluorescence they emit, which is in contrast to 188 

epidermis cells. This finding is consistent with earlier reports of stored phenolics in bulbous 189 

trichomes (Beckman et al., 1972). The high positive correlation of the measured light green 190 

fluorescing leaf area with the lesion size implies that the more susceptible a cucurbit is to D. 191 

bryoniae, the more phenolic compounds it produces in reaction to an infection. This is 192 

unexpected, as the fungitoxic effect of phenolic compounds is well documented in cucumber 193 

(Daayf et al., 1997a; Daayf et al., 1997b; Fawe et al., 1998; Daayf et al., 2000). Moreover, there 194 

are several reports of the general finding that plants that are more resistant to fungal pathogens 195 

display a substantially higher concentration of phenolic compounds in their tissues (Gradziel et 196 

al., 1998; Mayer, 2006; Giordani et al., 2013). In the five cucurbits examined in this study, the 197 

defense strategy of the more susceptible species might rely too strongly on the production of 198 

polyphenols, or the less susceptible species might produce other, more effective chemical 199 

compounds that enable them to defend themselves against D. bryoniae.  200 

There is an abundant range of trichome morphology among cucurbits. The cucurbits used in 201 

this study comprise only a fraction of the trichome morphologies that occur in this plant family 202 

(Inamdar and Ganggadhara, 1975). Including species or varieties with other trichome 203 

morphologies in a future study might further the understanding of the role of trichomes in the 204 

susceptibility or resistance of cucurbits to D. bryoniae. Differences in trichome morphology and 205 

polyphenol fluorescence can likely be attributed to differences between cultivars within one 206 

particular species rather than differences between species.  207 
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Table 1. Mean values of susceptibility parameters, trichome characteristics and fluorescing leaf 

area. 

 

Species Ø1 NECLA2 Trich. No.3 Trich. length4 % fluorescence5 

Cucumber (cv. Platina) 54.58b 35.45c 5.59bc 689.85bc 1.09a 

Muskmelon (cv. Charentais) 62.63bc 99.94b 3.89b 317.35a 2.52ab 

Pumpkin (cv. Aspen) 40.63a   4.04a 6.20cd 732.73c 0.54a 

Watermelon (cv. Red Star) 68.94c 99.72b 1.11a 378.48a 3.79b 

Zucchini (cv. Diamant) 56.07b   3.74a 8.28d 468.32ab 0.56a 

1  Lesion diameter in mm measured 7 days after inoculation 

2 Necrotized leaf area in percent 48 hours after inoculation (hai) 

3 Trichome number per mm2 

4 Trichome length in µm 

5 Percentage of leaf area with polyphenol fluorescence 48 hai 

a-d Letters indicate significant differences for ANOVA with Tukey test (α = 0.05) 
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Table 2. Correlations of trichome density and length and polyphenol autofluorescence with 

disease parameters. 

 

 Trichome density Trichome length PAa at 48 hai 

PCCb P value PCCb P value PCCb P value 

Lesion diameter - 0.6864 0.2006 - 0.9761 0.0044 0.8756 0.0517 

Necrotized leaf area - 0.8896 0.0433 - 0.7953 0.1077 0.9429 0.0162 

a Polyphenol autofluorescence 

b Pearson Correlation Coefficient 
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Fig. 1 Correlation of necrotized leaf area (%) and lesion diameter (mm) with trichome density. 
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Fig. 2 Correlation of necrotized leaf area (%) and lesion diameter (mm) with trichome length. 
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Fig. 3 Correlation of necrotized leaf area (%) and lesion diameter (mm) leaf area showing 

autofluorescence of polyphenols. 
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