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Abstract 

Coordination of uranyl (U(VI)) with carboxylate groups on functionalized graphene 

oxide (GO) surfaces has been shown to alter the reduction potential of the sorbed uranium ion. A 

quantitative measure of the reduction potential and qualitative estimation of sorption/desorption 

processes was determined using cyclic voltammetry and a proposed coordination environment 

has been determined using surface sensitive attenuated total reflection mode of infrared 

spectroscopy (ATR-FTIR). GO is a nanostructured material possessing large amount of oxygen 

containing functional groups on both basal planes and the edges, which can form strong surface 

complexes with radionuclides. The presence of these functional groups on the surface of GO 

allows efficient immobilization of uranium due to sorption of uranyl (UO2
2+) to carboxylate, 

hydroxide, or sulfonate functional groups and the potential for enhanced reduction of U(VI) to 

more strongly sorbing and insoluble U(IV) . Binding of U(VI) to carboxylate groups on the GO 

surface is proposed as the primary sorption mechanism based on the FTIR study in this work. 

Furthermore, the coordination of uranium with the surface increases the reduction potential of 



the U(VI)/U(IV) redox couple relative to that of aqueous U(VI)/U(IV) species. This is consistent 

with the alteration of the electronic structure of the sorbed ion, which could be measured in our 

case due to the GO coated working electrode. Thus, GO coated glassy carbon electrodes and 

other semi-conducting electrodes with high ion sorption capacities may provide a means of 

examining the oxidation/reduction potentials of sorbed ions.     

 

KEYWORDS: Graphene oxide; electrochemistry; uranium; adsorption;  

 
Introduction 
 

Nuclear energy remains an important growing segment in the global energy production. 

Under conditions of a safe usage nuclear power can be considered as an environmentally clean 

sustainable energy source allowing significant reduction of carbon emission into atmosphere in 

comparison to traditionally used fossil fuels.1 At the same time, nuclear power poses potential 

threats to the environment and society due to the inadvertent exposure to radioactive materials. 

In addition to naturally occurring uranium ores, considerable amounts of uranium can be 

eventually released into the environment due to nuclear fuel cycle activities, imposing long-term 

threats to human beings and bio-organisms.2 Therefore, an efficient enrichment of uranium, as 

well as its recovery from waste aqueous solutions is of extreme importance for full utilization of 

resources and environmental protection. 

Solid state extraction of uranium using carbon based materials has been one of the most 

successful extraction based techniques thus far.3  Different carbon materials, which have been 

previously tested for the removal and recovery of uranium from aqueous solutions include the 

activated carbons and carbon nanotubes (CNTs).3  Oxidized multi-walled CNTs proved to be 

effective in the pre-concentration and solidification of U(VI) from large volumes of aqueous 



solutions.4  Interestingly, the extraction efficiency for U was highly correlated with oxygen-

containing (hydroxyl, carbonyl, or carboxyl) functional groups on the CNT surface. Thusly, the 

efficient extraction of the metal is primarily due to the surface complexation with aqueous UO2
2+ 

dioxycations. 

Graphene oxide (GO) is constituted of oxidized graphene sheets and can be prepared in 

bulk quantities from graphite through two main approaches known as Brodie and Hummers 

methods.5 In the former technique, treatment of graphite with a mixture of potassium chlorate 

and fuming nitric acid leads to the exfoliation of GO sheets. In the Hummers method, 

simultaneous delamination and oxidation of graphite into GO occurs when graphite is mixed 

with sulfuric acid, sodium nitrate and potassium permanganate. Depending on the ratio of 

oxidizing agents and graphite, the degree of oxidation (i.e., the concentration and type of oxygen 

containing surface groups) may vary significantly, leading to a broad variation of physical and 

chemical properties of GO. Recently, additional techniques have been reported for GO with 

better controlled size and chemical functionality, including those that allow “unzipping” of 

carbon nanotubes 6 or use the so-called “bottom up” construction of GO sheets from a glucose 

precursor.7 As demonstrated in previous studies oxidation of graphene to GO leads to the 

functionalization of its basal planes with epoxide and hydroxyl groups. In addition, carbonyl and 

carboxyl groups are produced during GO synthesis which are predominantly located at the edges 

and defect locations in the graphene sheets. The resulting GO is hydrophilic and can be dispersed 

in water to form stable colloidal suspensions.  

Due to presence of oxygen containing functional groups on the surface, GO possesses the 

highest adsorption capacity in the removal of divalent metallic ions (like Pb(II), Cd(II), and 

Co(II)) from water solutions in comparison to any known nanomaterial.8,9,10 Thus, the maximum 



reported sorption capacity of a single-layered GO for Cu(II) reaches 46.6 mg/g, which is almost 

ten times higher than that of any commercially available activated carbon (around 5 mg/g).11  

High affinity of uranyl ions to GO surface has also been demonstrated in several recent 

publications.12-16 Maximum sorption capacities of 78 and 298 mg/g were reported for tri- and 

hexavalent ions Eu(III) and U(VI), respectively.17 

In this work, we investigate the redox reactions and surface interaction of 238U with GO 

sheets, and correlate the observed variations in sorption with the chemical and physical structure 

of the GO. Specifically, we demonstrate how uranyl sorption affinity and the formation of 

complexes with surface functional groups alter the redox potential of the surface complex 

relative to the free ions in bulk solution. Furthermore, we confirmed this formation of complexes 

from the change in the uranium valence state and reduction potential on the oxidized graphene 

surfaces (through interaction with carboxylate functional groups) by comparing to the well 

understood reduction of aqueous uranyl carboxylate complexes. Interestingly, we find evidence 

for this complexation despite the fact that aqueous complexes are not favored in uranyl solutions 

with a low pH.  Lastly, we find that completely delaminated a single-layer or few-layer GO 

allows for better sorption relative to a multilayer GO material, which exhibits limited sorption 

due to difficulties in intercalating uranyl complexes between layers held by van der Waal’s 

forces. 

Experimental 

The GO2 sample was synthesized in two steps using exfoliation of graphene from graphite 

followed by a modified Hummer’s method for graphene oxidation to GO.5,18  First, bulk graphite 

(~1 g) was dispersed in 100 mL of N-methyl-2-pyrrolidinone (NMP) and sonicated using 1/8” tip 

sonicator (Branson 250) at 100 W for 2 h. The resulting dispersion was filtered through a 0.45 μm 



nylon filter and re-suspended in 100 mL of fresh NMP. Subsequently, the solution was bath 

sonicated for 6 h and centrifuged at 5000 rpm for 45 min. The supernatant was vacuum filtered 

using a 0.45 μm nylon filter. Finally, the filtered powder was washed five times using deionized 

water to remove residual NMP. This method was repeated on multiple batches of bulk graphite to 

obtain ~2 g of exfoliated graphene. At the second step, chemically exfoliated graphene (2 g) was 

dispersed in concentrated H2SO4 (46 mL). KMnO4 (6 g) was added gradually with stirring in an 

ice bath. The mixture was then stirred at 35°C for 2 h, and deionized water (100 mL) was added. 

In 1 h, the reaction was terminated by the addition of a large amount of deionized water (300 mL) 

and 30% H2O2 solution (5 mL), causing violent effervescence and an increase in temperature to 

100°C, after which the color of the suspension changed to bright yellow. The suspension was 

washed with 1:10 HCl solution (500 mL) three times in order to remove metal ions by filter paper 

and funnel. The paste collected from the filter paper was dried at 60°C, until it became 

agglomerated. The agglomeration was washed five times with deionized water and air-dried to 

obtain graphene oxide samples (GO2).  

Cyclic voltammetry (CV) studies were performed with WaveDriver 20 Bipotentiostat/ 

Galvanostat using BASi VC-2 voltammetry cell (20 ml) with Ag/AgCl reference and Pt counter 

electrodes. Argon gas was purged through the cell headspace during CV experiments. Working 

GO electrodes were prepared by casting thin films of GO particles from water dispersions on the 

surface of a pre-cleaned glassy carbon electrode (BASi MF-2012). Typical voltage variation was 

in the range of -0.6 to +1.2V with the sweep rate of 300, 100, 50, 10 and 5 mV/s and recording of 

5 scans for each scan rate. In experiments with pre-adsorbed 238U, 1:1 by volume mixtures of 5 

mM  solution of uranium nitrate (with 0.1 M of sodium perchlorate) and 4 mg/ml dispersion of 

GO in water were prepared and mixed end-over-end for 24 h at room temperature. The GO phase 



with adsorbed uranyl ions was then concentrated on the bottom of a testing tube via centrifugation 

with 10k rpm rotation speed for 15 min. The top fraction (clear water solution without GO 

particles) was extracted with a pipette and used for mass-spectroscopy monitoring of 238U aqueous 

concentration using inductively coupled plasma mass spectrometry (ICP-MS, Thermo X Series 

II). The bottom fraction (black slurry of GO particles) was deposited on top of GC electrode which 

was inverted and held in a vertical positon so the end of the electrode could be coated. After 

evaporation of water (typically within 1-2 hours) the electrode was ready for CV experiments. A 

second set of experiments was performed where uranium-free GC, GO1, and GO2 electrodes were 

placed into 1mM U(VI) solutions to allow for adsorption of uranium during the CV experiments. 

Similar to experiments with pre-adsorbed uranium on the eletrodes, these experiments were 

performed with 0.01 M NaCl as a background electrolyte. Prior to placing the electrode into the 

U(VI) bearing solution, the electrode was conditioned in 0.01 M NaCl for 1 hour across the range 

-0.6 V to +1.2 V and a scan rate of 100 mV/s. A peak near 0.8V was observed during this 

conditioning step which decreased over time and did not re-appear and was attributed to oxidation 

of carbon monoxide on the GO surface.   

Attenuated total reflection mode Fourier transform Infra-Red spectroscopy (ATR-FTIR) 

was applied to study variation of the chemical composition and sorption of the uranium on the 

working electrode surface. The GO electrode was placed directly onto a Smart iTR single bounce 

diamond ATR crystal and analyzed using a Thermo Scientific 6700 FTIR equipped with a mercury 

cadmium telluride narrow band detector.  

The GO samples were characterized using X-ray diffraction, surface area analysis, and 

elemental analysis. The XRD pattern was measured using a Miniflex X-ray diffractometer 

(Rigaku, Japan). For BET specific surface area measurement and CHNS elemental analysis, 6 mL 



of GO stock solution was transferred to a beaker and evaporated with moderate heat (<80 ºC); the 

dried GO samples were then vacuumed at < 100 ºC in a vacuum oven overnight to remove moisture 

and impurities in the samples. The BET surface area measurement was performed with a N2(g) 

physisorption analyzer (Micromeritics ASAP 2020). The CHNS elemental analysis was conducted 

with FlashEA 1112 elemental analyzer. BBOT (C26H26N2O2S) was used as a standard for CHNS 

quantification. 

 

Results and Discussion 

GO obtained from two independent sources were used in this study: a commercially procured 

Sigma-Aldrich GO (sample ID: GO1) and the one prepared in the lab (sample ID: GO2). To 

synthesize GO2, graphite was first exfoliated to yield graphene, which was then oxidized to GO 

by a modified Hummer’s method.18,19 Our x-ray diffraction (XRD) and x-ray photoelectron 

spectroscopy (XPS) studies revealed distinct variations in the structure and surface 

functionalization of the two GO samples. Particularly, GO1 sample exhibited an X-ray diffraction 

peak corresponding to an interlayer spacing of 1.5 nm, which is much higher than in graphite. This 

is probably due to the preparation technique, which created defects in the graphene precursor to 

promote intercalation of various species between the graphene sheets. On the other hand, no 

diffraction peaks were observed for GO2, which is consistent with its few-monolayer nature. BET 

surface area, specific capacitance (based on CV background current), and distribution of different 

oxygen containing functional groups (XPS analysis data) in GO samples under study are 

summarized in Table 1. Lastly, both GO samples contained sulfonic groups which is attributed to 

the sulfuric acid treatment in the Hummer’s preparation method.18 However, the measured from 



XPS analysis content of sulfur is significantly higher in GO2 in comparison to GO1 (13% by mass 

versus 4%, Supporting Information file).  

Table 1. Summary of physical and chemical peculiarities of two GO samples under study. 

 
Physical parameters 

 GO1 (Aldrich) GO2 (this study) 
BET surface area 307 m2/g 50 m2/g 
Area capacitance 5.25 µF/cm2 148.5 µF/cm2 

XRD data Multilayered particles 
with 1.5 nm periodicity 

between layers 

single to few layer sheets, 
amorphous 

 
Relative Abundance of Oxygen Containing Functional Groups Determined using 

XPS 
 GO1 (Aldrich) GO2 (this study) 

Epoxide  16 % 7 % 
Phenolic  7 % 17 % 
Carboxylic  8 % 12 % 

 

Representative CV curves recorded using glassy carbon (GC) and the two types of GO electrodes 

during voltammetry experiments with 238U (initially as U(VI) in the aqueous phase) are shown in 

Figure 1.  Oxidation and reduction peaks are marked with arrows. The difference in the shape of 

the curves corresponds both to the difference in the specific surface area and the nature of 

functional groups on the surface of GO electrodes. There are two main differences between two 

GO electrodes. First, the area enclosed by the cyclic voltammogram for GO2, which indicates 

the double layer capacitance, is significantly higher than GO1 (see Fig. S1 in the supporting 

information). The double layer capacitance of GO2 in 0.1M NaCl (Fig. S1) was found to be ~48 

µF/cm2, i.e., significantly higher than GO1 and GC, which showed almost no double layer 

capacitance. This observation suggests that GO2 has more freely accessible surface area for ion 

adsorption relative to GO1 and GC. Furthermore, the observation of higher capacitance of GO2  



is somewhat counter intuitive based on the higher surface area of GO1 measured using N2(g) 

adsorption. However, we propose that N2(g) adsorption may not fully represent these 

multilayered materials and that the capacitance measurements are more representative of the 

surface reactivity and functional groups.   

The second difference between the voltammograms of GO1 and GO2 is that a more complex 

shape with two oxidation peaks (and in some cases with two reduction peaks) was observed for 

the GO1 working electrode in comparison to the GO2 electrode (Fig. 1). We interpret this as 

having two different chemical species of uranium near or at the surface of the electrode. One is 

based on ionic U(VI) reduction to U(V) on exposed surfaces of the underlying GC electrode. 

This is based on the similarity in the reduction potentials of 0.09V on the bare GC electrode and 

0.08V on the GO1 electrode under both methods of loading (i.e. sorption of uranium from 

solution and pre-adsorption of uranium to GO prior to casting GO on the electrode). These 

values are shown in Table 2. In the CV plots, the characteristic oxidation (around 0.05V) and 

reduction (around -0.25V) peaks are accompanied by smaller peaks at +0.21V and +0.13V 

respectively. The oxidation peak significantly shifts to lower voltage over the duration of the 

scan while the reduction peaks remain constant but vary in intensity. Based on these CV data, the 

second chemical species yields a reduction potential of 0.39V when the GO2 electrode was 

immersed in a U(VI) containing solution and 0.41V when U(VI) was pre-adsorbed onto GO2 

prior to casting GO2 onto the electrode. We propose this species also corresponds to U(VI)  
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Figure 1. CV curves recorded at 10 mV/s rate 
for 238U 1mM aqueous solutions with GC (a), 
GO1 (b) and GO2 (c) working electrodes. 
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Table 2. Dependence of the reduction-oxidation peaks on the type of the working electrode used 

in CV experiments (cf. Figure 1 and 2).  * Standard reduction potential (relative to hydrogen) 
 

Initially U(VI) from Solution 
Initially U(VI) adsorbed on GO prior 

to casting electrode 

Electrode ox(V)/  

red (V) 

E0
H(V)* ox(V)/  

red (V) 

E0
H(V) ox(V)/  

red (V) 

E0
H(V) ox(V)/  

red (V) 

E0
H(V) 

GO1 0.21/0.13 0.39 -0.05/ 
-0.34 0.08 0.22/0.17 0.41 -0.05/-0.20 0.10 

GO2 0.24/0.14 0.41   0.36/0.14 0.47   

GC -0.01/-0.25 0.09*       

 

reduction to U(V) but the difference in the reduction potential is due to the uranyl dioxycations 

coordinating with functional groups on the GO surface which alters the electronic configuration 

and thus the reduction potentials. A similar result was found for GO2 with a reduction potentials 

of 0.41V and 0.47V for the two uranium loading methods (Table 2 and Figure 2). As discussed 

below, ATR-FTIR analysis confirms the presence of U(V) on the GO electrodes following the 

CV experiments. Reduction of U(VI) to U(V) will occur relatively fast compared with reduction 

of U(VI) to U(IV) because reduction to the tetravalent state requires breaking of the axial oxygen 

bonds of the uranyl ion. Therefore, the formation of U(IV) is limited based on the scan rate and 

conditioning period of the electrode. Thus, due to the relatively fast scan rates relative to the 

reduction of U(VI) to U(IV), we have primarily examined the U(VI)/U(V) redox couple in this 

work.  

The shape of the voltammetry curves also varies in time indicating transitional processes 

on the surface of GO1 and GO2 in comparison to the GC electrode, where the redox reactions 



happen instantly but uranium does not appear to remain sorbed. The duration of the transitional 

period depends on the type of GO and is much slower in GO1 (commercial sample). Sequential 

scans with increasing peak intensity during the first two hours of scanning are shown in Figure 

2a. The increase in peak intensity is attributed to the accumulation of uranium on the GO surface. 

In addition to the increase in peak intensity, a small but well pronounced shift in the redox 

potential values are observed. Moreover, the original (fresh) GO1 electrode exhibits an 

additional redox couple at +1.1V/+0.8V, which disappear after about one hour of a 

“conditioning” process. Based on previous CV studies of graphitic materials this redox couple 

can be assigned to carbon monoxide/carbon dioxide oxidation/reduction processes.20 This redox 

couple was also observed during conditioning of the GO1 electrode in uranium free NaCl 

electrolyte, and is thus unrelated to the uranium-electrode interaction, and will not be discussed 

further.  

For scans using the GO2 electrode, the transitional process is very short (less than 10 

min), which makes it difficult to study by voltammetry (i.e., characteristic redox peaks appear 

almost instantly within several seconds after the commencement of the CV experiments). We 

hypothesized this increase in intensity is due to the sorption of uranium ions on the surface of the 

GO1 electrode, which we subsequently confirmed by running additional CV scans using the 

same electrode in uranium free (0.1 M sodium chloride electrolyte) after it was used in CV scans 

in a 1 mM uranium solution (Figure 2b). With no uranium present in the aqueous phase, 

desorption of uranium from the GO1 electrode occurs, which is manifested as a decrease in the 

peak intensity. The desorption is also accompanied by some conditioning (0.8V reduction peak) 

as well a slight shift in the uranium oxidation and reduction peak positions for the first 20 



minutes of the CV scanning. The results are summarized in Table 2 and show both sorption and 

desorption of uranium on both types of GO surfaces.  
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Figure 2. (a) Time evolution of the CV plots during the sorption process of 238U (1 mM solution) 

with the GO1 working electrode. (b) Same as (a) but now with the GO1 working electrode with 

pre-adsorbed uranium in uranium free NaCl electrolyte, which corresponds to the desorption 

process. Scanning rate 100 mV/s. Arrows show the trends in variation of the peak intensities and 

positions. 

Both adsorption/desorption reactions as well as oxidation/reduction reactions of uranium 

on the GO electrodes were reversible. No discernable signal was recorded with either electrodes 

in a uranium free NaCl implying that the observed peaks (with 1 mM uranium solution or with 

pre-adsorbed U(VI) on the electrode) are indeed due to uranium-GO interactions. Slight 

differences between the redox potentials measured during uranium sorption and desorption are 

evident, which can be observed more clearly when voltammograms are normalized to the 

maximal current corresponding to the oxidation peak (Figure 3). First, the oxidation peak 

position for desorption experiments (i.e., when the uranium is first pre-adsorbed on the electrode 
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and then washed out during CV scanning in NaCl electrolyte) is shifted to a smaller value in 

comparison to the peak observed when sorption of uranium from the electrolyte solution is 

occurring. Second, the difference between desorption-adsorption peaks, which is a potential 

demonstration of “desorption hysteresis”, is higher for the GO2 electrode. Finally, the peak 

width also appears to be dependent on the type of GO electrode with GO2 sample showing 

broader peak in comparison to GO1. These changes in the redox potentials and peak 

characteristics are attributed to uranium interactions with the various functional groups on the 

GO surface. Since the GC 
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Figure 3. Normalized CV voltagramms (oxidation ramps only) showing variation of the uranium 

oxidation peak position depending on the adsorption-desorption history and the type of the 

working electrode. The shift in peak position on nanostructured GO electrodes relative to the GC 

electrode is proposed to be due to sorption-desorption hysteresis wherein the surface bound 

species of uranium is changing depending on either sorption or desorption dominating the flux of 

uranium to or from the electrode.  

 



electrode is not functionalized, the previously reported redox potential of aqueous UO2
+2/UO2

+ 

reactions could be readily measured. However, the coordination of uranium with the functional 

groups (carboxylate, hydroxide, and potentially sulfonate functional groups), which are present 

on the GO1 and GO2 surfaces, leads to a change in the U(VI)/U(V) redox potential. Similar 

changes in aqueous species for carbonate, hydroxide, and sulfate complexes of uranium have 

been previously observed.  

Uranium sorption to the GO was also monitored by ATR-FTIR spectroscopy. Different 

degrees of functionalization of the GO was observed between the GO1 and GO2 materials. XPS 

analysis yielded the oxygen-containing functional group distributions presented in Table 1 and 

the Supporting Information File. ATR-FTIR spectroscopy (Figure 4) substantiated the presence 

of epoxide groups (~880 cm-1 ring deformation; 1305 – 1275 cm-1 ring-stretch), phenolic alcohol 

groups (~1175 cm-1 C-OH stretch), and protonated carboxylic groups (1733 – 1710 cm-1 C=O 

stretch). It should be noted however, that many functional groups absorb in this region and the 

XPS data is necessary to confirm in the presence of such groups. Both GO1 and GO2 exhibited a 

strong peak near 1050 cm-1, which is likely a sulfoxide group resulting from the sulfuric acid 

used in the Hummer’s method. The GO1 material also presents evidence of sulfonate groups, an 

asymmetric S=O stretch at 1395 cm-1 and a symmetric stretch at 1220 cm-1. Both materials also 

showed the presence of some residual water, resulting in the O-H scissoring mode near 1630 cm-

1. Uranyl molecules exhibit a characteristic asymmetric stretching vibration whose energy is 

dependent on the oxidation state of the uranium.  U(VI)O2
2+ will exhibit an intense stretch 

between 960-920 cm-1 and reduction of U(VI)O2
2+ to U(V)O2

+ will result in a downshift of this 

vibration to approximately 820 cm-1.22,23  Any further reduction of uranium will result in the loss 

of the axial oxygen atoms and therefore the loss of the characteristic uranyl stretch. 



 (A) 

 
 (B)  

 
(C) 

 
 

Figure 4. (a) ATR-FTIR spectra of raw GO1 and GO2 films; comparison of ATR-FTIR spectra 

for GO1 (b) and GO2 (c) samples after deliberate adsorption of uranium from 1mM 238U solution 

and after its washing with a sodium perchlorate (0.1 M) aqueous solution. 

 



Figure 4b and 4c do show the appearance of these U(VI) and U(V) uranyl stretching peaks, 

though very weak, in comparison to the two dominant peaks at around 1070 and 1630 cm-1 

which can be ascribed to a hydroxide form of the uranyl, so-called scheopite type structure 

(UO2)8O2(OH)12•12(H2O)).24 We hypothesize that the precipitate formed as a result of the 

presence of aqueous uranyl ions during drying the sample for the ATR-FTIR measuremenst and 

that the precipitate was not present during the CV scans. This is based on previous observations 

that the solid can be easily removed from solid surfaces with washing.24 Uranyl stretches were 

observed also on the both GO electrode surfaces after exposure to CV scanning with the 1mM 

238U electrolyte. In addition to uranyl stretches at 820 cm-1 and 943 cm-1, strong overlapping 

peaks were observed on the GO surfaces after CV scanning at 1011 cm-1 and 1092 cm-1. These 

peaks are similar to those previously identified as the uranyl hydroxide γU-O-H bending mode. The 

peak at 1092 cm-1 was observed on both GO surfaces, while the 1011 cm-1 was apparent only on 

the GO2 surface.  Both GO surfaces were washed with 0.1 M sodium chloride or 0.1 M sodium 

perchlorate to investigate the stability of the observed uranium surface species. The shoulder at 

1011 cm-1 was removed by the washing step.  Emerson and Powell24 attributed this behavior to a 

uranyl precipitate. The U(VI)O2
2+

 peak at 920 cm-1 was also removed by this washing step, 

suggesting the precipitate is a uranyl hydroxide, with a γU-O-H bending mode. The more refractory 

γU-O-H bending mode observed at 1092 cm-1 was not removed from the GO2 surface by the 

washing step, suggesting it is the result of a uranyl adsorbed to the GO surface. The intensity of 

the 1092 cm-1 peak on the GO2 surface was similar before and after washing. Contrarily, on the 

GO1 surface the γU-O-H bending mode at 1092 cm-1 was drastically reduced after washing. The 

GO2 surface therefore appears form stronger surface complexes with uranyls than the GO1 

surface. We propose this to be the manifestation of the higher availability of functional groups on 



the high-defect monolayer morphology of the GO2 material, as compared to the multilayer 

morphology of the GO1 material.  

Interestingly, adsorption of uranyl leads to an enhancement of the carboxylic group vibration 

(1630 cm-1), which is practically indistinguishable from background on a uranium free GO1 or 

GO2 electrodes due to the adsorbed water. Thus, it can be concluded that the uranyl is most 

likely interacting with the carboxylate functional groups, and consistent with the generally high 

stability of uranyl carbonate complexes in aqueous systems.25 At the same time, the epoxide or 

phenolic groups can act as an additional anchor sites during the adsorption process. Coordination 

of uranium with carboxylate groups is also in agreement with DFT calculations, which show that 

–COOH groups form much stronger surface complexes with U(VI) than other oxygen containing 

functional groups on the GO surface.26  Based on the current data as well as previous 

experimental and theoretical considerations, it appears that uranium adsorbs to GO via inner 

sphere rather than outer sphere complexation with a direct bond with carboxylate functional 

groups.  The former is responsible for the high sorption of U(VI) due to its interaction with the 

surface carboxylic groups, while the latter promotes complexation with edges on the GO sheet.26 

The shifts in redox potential of uranium on the two GO electrodes used in this work can 

be explained by the differences in the surface functional groups of the GO electrodes relative to 

the GC electrode. Furthermore, differences in the behavior of GO1 and GO2 could be due to 

differences in their morphology. In comparison to the GC electrode, the GO electrode surfaces 

raise the reduction potentials which make both the oxidation and reduction reactions more 

energetically favorable. This phenomenon can be observed in Figures 1 and 3 as a higher shift of 

the corresponding redox peaks (standard reduction potential values, E0
H). This could be due to 

physical differences such as intercalation versus surface adsorption or due to uranium interacting 



with multiple functional groups on the GO electrode surface (e.g., hydroxide, carboxylic, or 

sulfonic). Importantly, the reduction potentials on GO1 and GO2 are significantly different from 

that measured with the GC working electrode, indicating crucial role of the surface 

functionalization in controlling surface speciation (and thus redox potential of the surface 

complexes). It is known that the differences in surface functionalization and defects in graphene 

may perturb the electronic energy levels and the density of states thus leading to different 

reduction potential while interacting with uranium species.27,28 

  Though this work has proposed to study the U(VI)/U(V) couple, the observed single 

reduction peak may also correspond to a concept of disproportionation of U(V) to U(IV) and 

U(VI) during the reduction process discussed in literature.29-32 The intermediate, U(V) state of 

uranium is traditionally considered to be unstable and can disproportionate to U(VI) and 

U(IV).29-32 However, our experiments are giving an evidence of possible stabilization of this 

valence state at the GO surface based on the ATR-FTIR measurements. It is quite possible that 

formation of hydrogen bonds between adsorbed uranyl hydroxide species or some other 

cooperative effects predicted by theoretical modeling of interactions at GO-water interface are 

involved.33 Based on the slow kinetics of U(VI)/U(IV) reaction rates relative to U(VI)/U(V) rates 

as discussed above, the single reduction peak is proposed to be due to the U(VI)/U(V) coupled. 

Furthermore, it is noteworthy that disproportionation of U(V) requires that two U(V) atoms 

interact. However, upon sorption to the GO surface the U(V) dioxycations may be isolated and 

unable to interact. The counter-argument to this hypothesis is that concentration of U(V) 

dioxycations is increased near the surface during the desorption step observed in Figure 2b which 

could facilitate disproportionation. However, the resulting U(IV) would adsorb to the GO surface 

and peaks corresponding to U(IV) oxidation would be observed. Overall, there is still a lack of 



comprehensive understanding of uranyl sorption mechanisms and this work can be considered as 

additional support of the importance of electrostatic interactions in this process. 

CV voltammograms show irreversible changes, which cannot occur in the solution only 

and should involve strong interaction of charged uranium species with the surface. Enhancement 

of carboxylic group vibrations (Figure 4) stipulates that these particular functional groups might 

be coordinated with the uranium. Furthermore, the ion-accessible surface area of GO2 material is 

at least 25-30 times higher than in GO1 as evident from areal capacitance measurements (see 

Supporting Information file) and, therefore, all functional groups should be readily available. On 

contrary, the multilayer nature of the GO1 material requires surface diffusion and intercalation 

process must compete with strong coordination of the uranyl species to the abundant surface. 

Therefore, we propose the difference in the CV and FTIR data indicates a two-step adsorption 

process whereby sorbing uranyl molecules are first coordinated with easily accessible carboxylic 

groups and then either interact with phenolic or sulfonic groups on the surface or precipitate to a 

scheopite type structure as indicated by the FTIR measurements and similar to the processes 

reported for other solid surfaces.34,35 such particles can be detected by transmission electron 

microscopy or X-ray absorption fine structure (XAFS) experiments.36 Our preliminary electron 

microscopy combined  microanalysis study did not reveal presence of the uranyl solid state on 

the sample surface. The rates of this two-step process vary between GO1 and GO2 due to the 

requirement of the ions to migrate into the bulk structure of GO1, which is consistent with the  

much faster reaction rates observe on GO2. A more detailed characterization will be required in 

the future in order to shed light on the exact mechanisms and specific structural organization of 

adsorbed uranyl. However, such examination goes beyond the scope of the present paper. 

 



 

 

Conclusions 

The redox reactions of uranium ions on the surface of GO electrodes have been studied 

by a combination of voltammetry and IR spectroscopy. The applied techniques revealed and 

highlighted the difference in GO’s surface functionality depending on the preparation route. 

Particularly, the GO voltammetry data indicates a shift in the U(VI)/U(V) reduction potential 

when coordinated to the GO surface relative to the aqueous U(VI)/U(V) ions. Sorption and 

intermolecular interactions on the surface of GO electrodes is also supported by the observed 

different values of the CV oxidation and reduction peaks recorded during and after 238U 

electrolyte exposure. We report on a slow adsorption/desorption process of U ions into GO 

particles during CV experiments when a multilayer Aldrich GO1 sample has been used as a 

working electrode. A few layer sample, GO2, prepared in our lab is characterized with a 

defective highly ion-accessible surface structure. As a result, uranium exhibited more rapid 

sorption and desorption behavior and a small shift in the U(VI)/U(V) reduction potential on GO2 

relative to GO1. ATR-FTIR confirms presence of residual U(VI) and U(V) on both GO 

electrodes after CV experiments indicating that some fraction of strongly bound uranium is 

resistant to desorption and remains at the electrode surface at the end of each experiment despite 

a significant reduction in the amount of adsorbed uranium. Stabilization of U(V) even after the 

CV experiments concluded indicates sorption to GO may prevent disproportionation of U(V) 

which readily occurs in solution. However, more detailed studies are required to verify this 

phenomena which are beyond the scope of this work.  



Our findings demonstrate versatility of the applied approach to monitor the redox 

speciation of uranium at a novel solid:water interface and examine how surface complexation 

can control the stability of various redox states. Though mainly qualitative at this point, the 

approach has a great potential for application to different ions as well as for the advancement to a 

quantitative technique in the future. 
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