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Abstract

Habitat loss, wind energy development, and the disease white-nose syndrome are major

threats contributing to declines in bat populations in North America. In the southeastern US

in particular, the recent arrival of white-nose syndrome and changes in landscape composi-

tion and configuration have driven shifts in bat species populations and distributions. Effec-

tive management strategies which address these large-scale, community-level threats

require landscape-scale analyses. Our objective was to model the relationship between

ecoregional and landscape factors and occupancy by all bat species in South Carolina,

USA, during summer. We conducted acoustic surveys from mid-May through July 2015 and

2016 and evaluated temporally dynamic occupancy models for eight bat species or species

groups at the 100 km2 level. We found significant effects of landscape factors such as ecore-

gion and forest edge density for three species, but habitat condition effects were not statisti-

cally significant for five other species. Thus, for some species, site-use analyses may be

more appropriate than larger scale occupancy analyses. However, our occupancy predic-

tions generally matched statewide historical distributions for all species, suggesting our

approach could be useful for monitoring landscape-level trends in bat species. Thus, while

our scale of study was likely too coarse for assessing fine-scale habitat associations for all

bat species, our findings can improve future monitoring efforts, inform conservation priori-

ties, and guide subsequent landscape-scale studies for bat species and community-level

responses to global change.

Introduction

Bats, a diverse and widespread order of mammals that provide important ecosystem services,

have been experiencing significant regional declines due to the introduction and spread of dis-

ease, wind energy development, and habitat loss [1–6]. Understanding how these threats drive

trends in bat populations at a landscape scale allows the development of effective management

strategies [7–9]. In particular, human land use change (e.g., urbanization, loss of forest cover,

fragmentation, increase in edge density) may influence the presence of bat species due to the

importance of roosting and foraging sites for bat reproduction and survival [10–13]. For
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instance, the presence and activity of many bat species are positively associated with forest

cover [14–16], and the loss and alteration of forest cover influences occupancy rates of differ-

ent habitats [17,18]. Forest fragmentation can also negatively impact bat abundance, distribu-

tion, and use of space [19–23] although in some cases forest fragmentation can have a positive

effect of bat activity [24]. Other landscape factors associated with urbanization and develop-

ment may also influence habitat use by bats. Roads can serve as either conduits or barriers to

movement, depending on the type of road and the surrounding habitat [25–31]. For example,

rural unpaved roads surrounded by forests in Indiana are selected over paved roads sur-

rounded by development and open areas [32]. Roads also act as barriers to movements as well

as sources of mortality [33]. Other factors associated with urbanization and loss of forest habi-

tat such as poor water quality and artificial lights may also affect bat habitat use and activity

[34–36]. Additionally, climate change is expected to cause widespread changes in land cover

and habitat for bats [2].

Shrinking habitat for terrestrial vertebrates has been predicted for the southeastern United

States, especially in scenarios with expansion of urban and agricultural areas [37]. For instance,

the percentage of developed land in the contiguous United States is predicted to double from

1997 to 2025, with the greatest increase in southern regions [27], leading to significant reduc-

tions in wildlife habitat and increased habitat fragmentation. Based on historical land use

change, Wear et al. [38] predict urban land coverage to at least double in the southern United

States from 1997 to 2060, and predict a 7–13% decline in forest coverage across the south, with

the Piedmont region losing the greatest percentage of forest (up to 21%). Loss of forest cover

and increasing urbanization are likely to greatly impact the abundance and distribution of bats

across the southeast but few data are available to predict how various bat species will respond.

Effective conservation strategies that address various threats to bat populations in the

southeastern United States require landscape scale monitoring and analyses [2,39]. Thus, our

objective was to conduct an assessment of habitat factors influencing bat species habitat use at

the landscape scale, which may provide valuable insight into how predicted land use and land

cover change could affect bats. We used temporally dynamic (i.e., multi-season) analyses to

estimate effects of habitat metrics on species occupancy rates and calculate annual colonization

and extinction rates to account for year-to-year variation for a suite of bat species encountered

across South Carolina, USA. We also generated species distribution maps based on our model

predictions, which may be used in the future to reveal changes in species distributions in

response to changing habitat [9]. Our species-specific findings can also be used to inform land-

scape management decisions that may affect bat populations, guide subsequent, finer-scale

investigations in species-specific patterns of habitat use, and serve as a baseline for future com-

parative studies examining changes in bat habitat use and species distributions over time.

Methods

Ethics statement

This study did not entail capture of vertebrates and relied on non-invasive acoustic sampling that

did not alter the behavior of the animal. Thus, it was not subject to IACUC review. Approval to

survey on public lands was granted by the Savannah Parks and Recreation Department; Colleton

County Planning and Development Department; Charleston County Park and Recreation Com-

mission; Town of Hilton Head Island; the Edisto Island Open Land Trust; Cape Romain National

Wildlife Refuge; South Carolina Forestry Commission; South Carolina Department of Natural

Resources; U.S. Army Corps of Engineers; Naturaland Trust; Crosswell Elementary School;

South Carolina Department of Parks, Recreation, and Tourism; the U.S. Forest Service; and

Greenville Water. Permission to survey on private lands was granted by all landowners.
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Study area

We conducted our study throughout South Carolina and within 10 km of the state border in

Georgia and North Carolina. Five of the physiographic regions in the southeastern United

States occur in a gradient from northwest to southeast in South Carolina: Blue Ridge, Piedmont,

Southeastern Plains, Middle Atlantic Coastal Plain, and Southern Coastal Plain [40]. Land use

throughout South Carolina includes developed urban areas, silviculture, agriculture, livestock,

and undeveloped land [41], but the dominant land cover varies among regions. Forest was the

dominant land cover in the Blue Ridge, forest and hay or pasture were the dominant land cover

types in the Piedmont, woody wetlands, forest, shrublands, and cultivated crops were the domi-

nant land cover types in the Southeastern Plains and Middle Atlantic Coastal Plain, and herba-

ceous wetlands, woody wetlands, forest, and open water were the dominant land cover types in

the Southern Coastal Plain [41]. Topographic relief and elevation in South Carolina are greatest

in the Blue Ridge, with peaks up to 1085 m, and sharply decrease in the central regions, finally

becoming low-elevation plains and wetlands near the Atlantic coast.

Fourteen temperate insectivorous bat species are known to occur within South Carolina.

During summer, big brown bat (Eptesicus fuscus; EPFU), eastern red bat (Lasiurus borealis;
LABO), Seminole bat (L. seminolus; LASE), evening bat (Nycticeius humeralis; NYHU), tri-col-

ored bat (Perimyotis subflavus; PESU), and Mexican free-tailed bat (Tadarida brasiliensis;
TABR) occur throughout South Carolina. Rafinesque’s big-eared bat (Corynorhinus rafines-
quii; CORA), northern yellow bat (Dasypterus intermedius; DAIN), hoary bat (L. cinereus;
LACI), silver-haired bat (Lasionycteris noctivagans; LANO), southeastern myotis (Myotis aus-
troriparius; MYAU), eastern small-footed bat (M. leibii; MYLE), little brown bat (M. lucifugus;
MYLU), and northern long-eared bat (M. septentrionalis; MYSE) have more limited summer

distributions within the state [42,43].

Sampling design

We used the North American Bat Monitoring Program (NABat) framework to acoustically

survey bat species across South Carolina. The sampling frame for NABat consists of a continu-

ous grid of 10 x 10 km cells across North America [8]. We identified priority survey cells

within South Carolina based on the NABat master sample, which uses the generalized random

tessellation stratified algorithm to assign priority numbers to cells to maintain a spatially bal-

anced and randomly distributed sample (Fig 1 and S1 Table). We conducted stationary point

surveys for four consecutive nights and mobile transect surveys on two of the four nights from

mid-May through mid-July 2015 and 2016. In 2015, we surveyed 35 cells: 15 with mobile tran-

sects only, six with stationary point surveys only, and 14 with both survey methods. In 2016,

we surveyed the 35 cells from 2015 and three additional cells (one with mobile transects only,

and two with stationary points only) for a total of 38 cells surveyed: 13 with mobile transects

only, eight with stationary point surveys only, and 17 with both survey methods. We surveyed

three cells with stationary point and mobile transect surveys in 2016 which were surveyed with

mobile transects only in 2015 (Fig 1). Each stationary point survey began 30 minutes prior to

sunset and ended 30 minutes after sunrise, while each mobile transect survey began 45 minutes

after sunset and was driven at 32 kph, with duration dependent on the length of the transect

(25–48 km). During each year, we surveyed the same stationary point locations and mobile

transect routes within each cell where possible.

We used Anabat SD2 bat detectors with directional, stainless steel microphones (Titley Sci-

entific, Columbia, MO, USA) and 2.5 m microphone cables for both survey methods. For sta-

tionary point surveys we mounted the microphone inside a water resistant PVC housing and

Ecoregion and landscape associations of southeastern bats
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attached it to the top of a 1.8 m high tripod. For mobile transect surveys we placed the micro-

phone at the center of a vehicle’s roof with no waterproof housing.

Data processing

To determine which species we detected during surveys, we first removed call files containing

no bat calls or calls with fewer than three search-phase pulses using a custom noise filter in

AnalookW version 4.2.7 (Titley Scientific, Brendale, Australia) and through manual review of

each file. We classified the remaining call files collected during 2015 to species using EchoClass

version 3.1 and Kaleidoscope Pro version 3.1.5 (Wildlife Acoustics, Inc., Maynard, Massachu-

setts, USA), and manually vetted all classifications based on reference calls of each species. For

the sake of consistency, all calls were vetted by the senior author (BDN) with the concurrence

of the second author (SCL). We observed low classification agreement between automated

classifiers, so we manually classified all high-quality search phase calls from 2016. Our

Fig 1. Distribution of NABat priority cells surveyed across South Carolina using mobile transects only, stationary point surveys only, or both

survey methods, May-July 2015 and 2016. Physiographic regions of South Carolina are also displayed.

https://doi.org/10.1371/journal.pone.0206857.g001
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reference calls were recorded from captured bats which were identified and light-tagged [44].

We aggregated EPFU and LANO calls as EPFULANO, and LABO and LASE calls as LABO-

LASE because these species have very similar echolocation call structures. We also grouped

calls of MYLE, MYLU, and MYSE as MYLELUSE for analyses because we detected them in

very few cells, their echolocation calls can be difficult to distinguish from each other, and their

foraging habitat preferences are very similar [11,16]. We includedMyotis calls that could not

be identified to species from the Blue Ridge and Piedmont regions in the MYLELUSE group

because only these threeMyotis species occur in these regions [43]. However, we did not

include unknownMyotis calls if they occurred in the Coastal Plain due to the possible confu-

sion withM. austroriparius.

Data analysis

We hypothesized that probability of occupancy would vary by ecoregion for species with lim-

ited ranges within our study area, but that it would not vary by ecoregion for species with state-

wide ranges (Table 1) [43]. Thus, we included a categorical covariate (Region) based on the

primary U.S. Level III Ecoregion [40] within each cell.

We hypothesized that the effects of land cover types and forest fragmentation on probability

of occupancy varied among species, based on species summer roosting and foraging site pref-

erences [11,16,26,45,46] (Table 1). We calculated percent land coverage within each cell from

the National Land Cover Database (NLCD 2011) [47] and aggregated “Pasture/Hay” and “Cul-

tivated Crops” as Ag, all classes of development as Dev, upland forest types as Forest, and

“Woody Wetlands” for bottomland forest (F.Wet). We used our reclassified NLCD 2011 data

as input in Fragstats version 4.2.1 [48] and calculated Contagion (a landscape measure which

increases as land cover type interspersion decreases and dispersion increases) and measures of

forest and forested wetland edge density (F.ED and F.Wet.ED) within each cell.

We hypothesized that stream length would have a positive effect on occupancy of many bat

species because they prefer to forage near streams and riparian areas [16,34,35,49]. Addition-

ally, streams can act as forest edges and may be important sources of water, so we also hypothe-

sized positive effects of increasing stream length on probability of occupancy for species that

commonly forage along edges, but may not be explicitly associated with riparian areas

(Table 1). We calculated total stream length within each cell using ‘NHDFlowline’ data from

the National Hydrology Dataset (NHD) [50].

Due to effects of roads on species presence [25,26,28–31,51], and because different road

classes are often associated with different landscapes [52], we hypothesized effects of roads on

bat species occupancy would vary based on road type (Table 1). We used National Transport

Dataset (NTD) RoadSegment data [53] and U.S. Forest Service Roads [54], and classified

roads into four categories, primarily based on Master Address File/Topologically Integrated

Geographic Encoding and Referencing Feature Class Code Definitions (https://www.census.

gov/geo/reference/mtfcc.html): primary roads included divided highways with access ramps

(Pri), secondary roads included highways with intersections (Sec), tertiary roads included sin-

gle lane rural and city roads (Ter), and quaternary roads included forest access roads (Qua).

We then calculated the length of all four road classes within each cell.

Annual turnover rates (i.e., colonization and extinction) at the landscape scale could indicate

changes in species range due to land cover changes or regional threats to bat populations. Given

that we only monitored for two years, we predicted that it would be unlikely for land cover

change to influence turnover rates. However, regionally, the arrival of white-nose syndrome

(WNS) is ongoing in the southeastern US. Therefore, we predicted higher turnover rates for

MYELUSE and PESU, because they are affected by WNS in the northwestern part of our study

Ecoregion and landscape associations of southeastern bats
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area [55]. In addition, the act of migration could influence turnover rates, and we accordingly

predicted high turnover rates for LACI because they exhibit migratory behavior [42].

Due to limited access for stationary point surveys and constraints in establishing mobile

transects [56], some stationary point locations were near cell edges and short segments of

some mobile transects were up to 2.2 km outside cells. Additionally, we may have detected

bats within cells that entered from areas outside cells. Thus, similar to other studies

[11,17,18,30,35], we buffered cell boundaries by 2.2 km before we measured covariates to

include relevant landscape effects.

We used a multi-season Bayesian occupancy modeling approach to evaluate the influence

of hypothesized environmental factors on the probability of occupancy for each species and to

calculate turnover rates. At the sample unit-level, this approach models the probability of occu-

pancy within each sample unit during each sampling period (in our case, each year) as a tem-

porally autoregressive function of intercept and covariate effects with parameterization for

colonization and extinction. At the survey level, this approach models the probability of detec-

tion, which is dependent on the presence of the species, as a function of intercept and covariate

effects [9]. We treated cells as our sample unit, considered each night at each point or transect

as a separate survey occasion, and created presence/non-detection tables for each species on

each survey occasion. We never detected CORA and we detected LABOLASE in every cell

each year; therefore, we were unable to model occupancy for these species. Because we sur-

veyed each cell within one week each year, we treated populations as closed within years, and

open between years and calculated turnover rates for each species between the two years as the

probability that an unoccupied cell became occupied (i.e., colonization), and an occupied cell

became unoccupied (i.e., extinction). We used non-informative priors, treated all terms as

fixed effects, and used JAGS version 4.1.0 (http://mcmc-jags.sourceforge.net/) through pack-

age ‘rjags’ [57] in program R version 3.3.3 (https://www.r-project.org/) to fit models. We ran

three independent chains of 25,000 iterations, discarded an initial 5,000 iterations as burn-in,

and retained every fourth iteration for a total of 18,750 iterations per model. We assumed

model convergence when the potential scale reduction factor (i.e., the Brooks-Gelman-Rubin

Table 1. Predicted and observed effects of environmental variables on the probability of occupancy for each species surveyed in South Carolina, May-July 2015 and

2016.

Species Region Ag Dev Forest F.Wet Contagion F.ED F.Wet.ED Stream Pri Sec Qua

DAIN Y | Y - | 0 - | 0 NA + | 0 0 | 0 NA + | 0 + | 0 - | 0 - | 0 0 | 0

EPFULANO 0 | 0 0 | 0 0 | 0 0 | 0 NA 0 | 0 + | 0 NA 0 | 0 - | 0 0 | 0 + | 0

LACI Y | 0 0 | 0 - | 0 + | 0 NA 0 | 0 0 | - NA + | + - | 0 - | 0 0 | 0

MYAU Y | 0 - | 0 - | 0 NA + | 0 + | 0 NA + | 0 + | 0 - | 0 - | 0 0 | 0

MYLELUSE Y | Y - | 0 - | 0 + | 0 NA + | 0 - | 0 NA + | 0 - | 0 - | 0 0 | 0

NYHU 0 | 0 + | 0 0 | 0 + | 0 NA 0 | 0 + | - NA 0 | + - | 0 0 | 0 + | 0

PESU 0 | 0 - | - - | + + | + NA 0 | 0 + | 0 NA + | 0 - | 0 - | 0 + | +

TABR 0 | 0 + | 0 + | 0 - | 0 NA 0 | 0 0 | 0 NA 0 | 0 - | + 0 | + 0 | +

Predicted effects are left of “|” and observed effects are right of “|”. Significant effects on probability of occupancy are indicated by “Y” as an effect of a categorical

covariate or “0” as no effect, and “+” as a positive effect, “0” as no effect, or “-” as a negative effect for continuous variables. “NA” indicates we did not test an effect for a

species, based on habitat preferences. Effects that were statistically significant are highlighted with gray background. Dasypterus intermedius = DAIN; Eptesicus fuscus
and Lasionycteris noctivagans = EPFULANO; Lasiurus cinereus = LACI; Myotis austroriparius = MYAU; M. leibii, M. lucifugus, and M. septentrionalis = MYLELUSE;

Nycticeius humeralis = NYHU; Perimyotis subflavus = PESU; and Tadarida brasiliensis = TABR. LABOSE were not included in the table because they occurred in every

cell and we were unable to model occupancy. Region = physiographic region, Ag = percent agriculture (pasture/hay and cultivated crops), Dev = percent of all classes of

development, Forest = percent upland forest, F.Wet = percent bottomland forest, Contagion = a measure of dispersion, F.ED = forest edge density, F.Wet.ED = forested

wetland edge densty, Stream = total stream length, Pri = length of primary roads, Sec = length of secondary roads, and Qua = length of quaternary roads.

https://doi.org/10.1371/journal.pone.0206857.t001
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diagnostic; R-hat) of each parameter was< 1.1. We ranked models using the Widely Applica-

ble Information Criterion (WAIC), which we calculated for each model using the package ‘loo’

version 1.1.0 [58], and considered models closely competing when they were within 2.0 WAIC

from the top-ranked model [59]. We calculated ΔWAIC from the top-ranked model, then cal-

culated each model’s relative likelihood, and finally calculated model weights to evaluate rela-

tive support of the models. We considered a covariate effect significant if the estimated 95%

credible intervals did not include zero.

To account for imperfect detection, we modeled detection probabilities for each species

independently and modeled occupancy as a function of intercept only. We used nine survey

variables (Survey Type, Survey Duration, Vegetation Clutter [no, medium, or high amounts of

vegetation within 5 m of the detector], Survey Date, Survey Issue [detector malfunction or

incomplete mobile survey due to weather], Temperature, Relative Humidity, Wind Speed, and

Rain) to test hypothesized effects of single-term models and additive effects models [56]. We

included the covariates from the top-ranked detection model for each species in the occupancy

modeling process (S2 Table).

Based on a priori hypotheses, we used single-term models and models with additive effects

of some covariates to model occupancy by each species (Table 2). We also tested null and

global models. Prior to model fitting, we standardized all continuous covariates to have a

mean of 0 and standard deviation of 1. We used Pearson’s correlation to test for correlations

among covariates and considered those with a Pearson’s |r|> 0.7 as correlated and did not

include them in the same model. Pri, Sec, and Ter road classes were correlated with Dev, Sec

was correlated with Ter, and F.Wet was correlated with F.Wet.ED (S3 Table). Therefore, Ter

was not included in any models. Since DAIN and MYAU are associated with forested wetlands

[16,60], we substituted Forest and F.ED with F.Wet and F.Wet.ED, respectively, and omitted

F.Wet.ED from the global model for these species because it was significantly correlated with

F.Wet.

We used two approaches to evaluate model performance. First, we performed k-fold cross-

validation to calculate area under the receiver-operating curve (AUC) for the top detection

Table 2. Reasoning for 11 a priori occupancy models that we tested for each bat species in South Carolina, USA,

May-July 2015 and 2016.

Model Reasoning

Region May be significant for species with limited distributions

Ag + Dev + Forest/F.Wet Land cover measures may be good predictors of habitat quality

Region + Ag + Dev + Forest/
F.Wet

Land cover composition can vary within regions

Contagion Some species require continuous tracts of preferred habitat

F.ED/F.Wet.ED Many species forage along edges

Forest/F.Wet + Contagion Some species are associated with contiguous tracts of forest cover

Stream Streams often occur at habitat edges, and they may be important sources of drinking

water and foraging areas

Stream + F.ED/F.Wet.ED Streams along forest edges may be more important than those in forest interiors or

urban and agricultural areas

Stream + Ag + Dev + Forest/
F.Wet

May describe important foraging and roosting habitat

Pri + Sec + Qua Roads may act as edges for foraging and commuting

Ag + Dev + Forest/F.Wet
+ Qua

May predict habitat quality and areas for foraging and commuting

We also tested null and global models.

https://doi.org/10.1371/journal.pone.0206857.t002
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model, and each model with WAIC� the null occupancy model. AUC values range from 0 to

1, where 0.5 indicates no predictive power and 1.0 indicates perfect predictive performance

[61]. We randomly partitioned the data five times, with 66% as training datasets and the

remainder of the data as testing datasets. We reviewed partitions to be sure each training data-

set included at least one cell from each of the five ecoregions, and used the same partitions to

evaluate models for each species. We used the package ‘ROCR’ version 1.0.7 [62] to calculate

AUC for each model. We also evaluated model performance by comparing known species dis-

tributions, based on Menzel et al. [43], to predicted species distributions. To generate pre-

dicted range maps, we measured environmental covariates in all 893 10 x 10 km NABat cells

(each buffered by 2.2 km) throughout South Carolina and calculated estimated occupancy

rates for each cell based on the top-ranked occupancy model for each species. We then com-

pared these predicted occupancy maps to historical range maps for each species based on Men-

zel et al. [43].

Results

We recorded 61,397 call files in 2015, 21,972 of which passed our noise filter, and 65,727 call

files in 2016, 42,960 of which passed our noise filter. We classified 15,292 and 27,380 call files

to species in 2015 and 2016, respectively.

Six of the eight species or species groups had occupancy models that ranked higher than the

null model. The null model ranked highest for EPFULANO and MYAU, NYHU had two top-

ranked models, and DAIN, LACI, MYLELUSE, and NYHU had at least three models that

closely competed with the top-ranked model (i.e., within 2.0 WAIC; Table 3). Ecological mod-

els performed better than null models for four of the species, but the predictive performance of

the top-ranked models varied, from 0.46 for LACI to 0.76 for NYHU, and was low for many of

the models (Table 3). Additionally, DAIN, LACI, MYLELUSE, NYHU, and TABR had top-

ranked models with equivalent or lesser predictive performance than competing models

(Table 3). All covariates in all occupancy models reached convergence, except the Piedmont

region in two models for EPFULANO.

We observed support for the Region model for DAIN and MYLELUSE (Table 3). Mean

estimated probability of occupancy for DAIN was significantly higher in the Southern Coastal

Plain than all other regions except the Blue Ridge (Fig 2). The mean probability of occupancy

for MYLELUSE was highest in the Blue Ridge region, but it only significantly differed from

the estimate for the Southeastern Plains (Fig 2).

The Stream + F.ED model was the top-ranked model for LACI and NYHU (Table 3). Forest

edge density significantly affected the probability of occupancy for LACI, but did not signifi-

cantly affect the probability of occupancy for NYHU (Tables 1 and S3). From the lowest (0.50

m/ha) to the highest (101.43 m/ha) forest edge density, LACI probability of occupancy

decreased from 98% to 5%, with a steep negative slope beginning at 50 m/ha (Fig 3). Stream

length did not significantly affect the probability of occupancy for either species (Tables 1 and

S4). In addition to the Stream + F.ED model, we also found equivalent support for the single-

term F.ED model for NYHU (Table 3), where the effect of forest edge density was negative but

not statistically significant (Tables 1 and S4).

The top ranked model for PESU was Ag + Dev + Forest + Qua (Table 3). Probability of

occupancy for PESU was negatively associated with increasing agricultural cover and positively

associated with increasing developed land, forest cover, and quaternary road length (Table 1).

However, none of these effects were statistically significant (Tables 1 and S4).

We found support for the Pri + Sec + Qua model for TABR (Table 3). Occupancy probabil-

ity was positively associated with increasing lengths of all road classes (Table 1). Increasing
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lengths of secondary and quaternary road classes had stronger positive effects on occupancy

than the primary road class. However, none of these effects were significant (Tables 1 and S4).

Based on the top ranked model(s), estimated mean probabilities of occupancy and turnover

rates varied among species (Fig 4 and Table 4). MYLELUSE had the lowest estimated mean

probability of occupancy (0.12) and NYHU had the highest estimated mean probability of

occupancy (0.96; Fig 4). Both top ranked models for NYHU produced the same estimates of

occupancy. Occupancy probabilities were lower for EPFULANO, LACI, MYAU, and NYHU

Table 3. Occupancy probability model results for each species of bat surveyed using acoustic detectors across South Carolina, May-July 2015 and 2016.

Species Occupancy Model WAIC ΔWAIC Weight AUC

DAIN Region 122.9 0 0.15 0.65

Stream + Ag + Dev + F.Wet 123.3 0.4 0.12 0.58

Stream 123.4 0.5 0.12 0.66

Pri + Sec + Qua 123.6 0.7 0.10 0.52

Region + Ag + Dev + F.Wet + Contagion
+ Stream + Qua 124.1 1.2 0.08 0.65

Ag + Dev + F.Wet + Qua 124.1 1.2 0.08 0.52

Ag + Dev + F.Wet 124.6 1.7 0.06 0.51

. 124.6 1.7 0.06 0.53

EPFULANO . 440.0 0 0.12 0.48

LACI Stream + F.ED 170.8 0 0.39 0.46

F.ED 171.8 1 0.24 0.53

. 172.1 1.3 0.21 0.38

MYAU . 214.7 0 0.24 0.62

MYLELUSE Region 81.7 0 0.21 0.62

F.ED 82.7 1 0.13 0.35

. 83.2 1.5 0.10 0.67

NYHU F.ED 457.4 0 0.12 0.76

Stream + F.ED 457.4 0 0.12 0.76

Pri + Sec + Qua 457.7 0.3 0.10 0.68

. 457.8 0.4 0.10 0.34

PESU Ag + Dev + Forest + Qua 467.8 0 0.28 0.71

Ag + Dev + Forest 468.9 1.1 0.16 0.53

Stream + Ag + Dev + Forest 469.1 1.3 0.15 0.52

Region + Ag + Dev + Forest 469.6 1.8 0.11 0.53

Region + Ag + Dev + Forest + Contagion
+ F.ED + Stream + Qua 469.9 2.1 0.10 0.52

Stream + F.ED 471.6 3.8 0.04 0.35

Forest + Contagion 472.2 4.4 0.03 0.52

F.ED 472.2 4.4 0.03 0.41

Pri + Sec + Qua 472.3 4.5 0.03 0.49

. 472.4 4.6 0.03 0.48

TABR Pri + Sec + Qua 390.9 0 0.29 0.60

. 392.4 1.5 0.14 0.60

Models are ordered from highest to lowest performance based on WAIC, and only those which performed better than the null model are shown. The null model (i.e.,

intercept only) is indicated by “.”, and “+” indicates additive effects. Model weights based on WAIC scores, and predictive performance based on area under the receiver

operator curve (AUC) are shown. Refer to Table 1 for species code definitions, S4 Table for covariate beta estimates, and S2 Table for detection covariates used in each

model.

https://doi.org/10.1371/journal.pone.0206857.t003
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in 2016 compared to 2015 and higher for DAIN, MYLELUSE, PESU, and TABR; however,

estimates did not significantly differ between years for any species (Fig 4). Turnover rates ran-

ged from 0.02 for NYHU (both top-ranked models) to 0.55 for MYLELUSE (Table 4) and 95%

credible intervals were narrow for species with low turnover rates and wide for species with

higher turnover rates (Table 4).

We found that predicted distribution maps based on top-ranked occupancy models differed

among species, but closely matched 2003 known ranges (Fig 5). DAIN and MYLELUSE, spe-

cies for which Region was the top-ranked model, each had high probabilities of occupancy in

ecoregions that are completely within their 2003 known ranges, and neither species had a pre-

dicted occupancy greater than 30% outside these regions. In 2003, the known distribution of

NYHU was statewide and both models predicted occupancy rates greater than 90% statewide.

The known distribution of TABR was also statewide, and the model predicted occupancy rates

greater than 90% in most areas, except in areas with fewer roads, but rates were consistently

Fig 2. Mean estimated probability of occupancy of northern yellow bats (DAIN) and small-footed bats, little brown bats, and northern long-

eared bats combined (MYLELUSE) within each ecoregion of South Carolina, May-July 2015–2016. Blue bars indicate 95% credible intervals.

Within species, regions which share a letter above their intervals are not significantly different from one another.

https://doi.org/10.1371/journal.pone.0206857.g002
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above 50%. Although PESU known distribution was statewide, predicted occupancy rates were

lowest, down to 15%, in areas with proportionally high agricultural land cover, and high

throughout the rest of the state. LACI predicted occupancy rates were highest in the Blue

Ridge region, which fully encompasses their 2003 known range. However, LACI occupancy

was also high in much of the Southern Coastal Plain region and areas of other regions where

stream length was high and forest edge density was low.

Discussion

Similar to the diversity of threats facing bat populations, our findings highlight the diverse,

and often species-specific, environmental factors that predict bat occupancy. In the southeast,

where there is ongoing rapid urban and agricultural expansion [27], our results highlight the

need to understand which factors are important to the occurrence of each species in designing

appropriate conservation and management plans. In addition, WNS was only known to occur

Fig 3. Estimated effect of forest edge density on hoary bat (Lasiurus cinereus) probability of occupancy across South Carolina, May-July 2015

and 2016. Probability of occupancy is based on the top ranked model for hoary bats. Gray shading indicates the 95% credible interval.

https://doi.org/10.1371/journal.pone.0206857.g003
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in a small northeastern portion of our study area during our research, but has expanded farther

across the state and the southeastern US (https://www.whitenosesyndrome.org/). Our data can

provide a critical baseline for future analyses of how land use changes influence bat distribu-

tion and habitat use over time [9].

Our results suggest that for some bat species, existing U.S. Level III Ecoregion delineations

[40] incorporate many of the features we predicted to affect occupancy. Despite the Blue Ridge

region making up only a small part of our study area and having only one priority cell (which

led to a very wide 95% credible interval for the estimate in this region, Fig 2), we observed

strong region-specific patterns in species occupancy and distribution for some species. For

example, as we expected based on previous historical range maps [43], we found the highest

probability of occupancy for DAIN in the Southern Coastal Plain region. By contrast, for

MYLELUSE, we found a significantly higher mean estimated probability of occupancy in the

Blue Ridge region than the Southeastern Plains region, as we expected based on their known

Fig 4. Estimated mean probabilities of occupancy of each species across South Carolina, May-July 2015 and 2016. Estimates are based on the top

ranked occupancy model for each species. NYHU had two top-ranked models; NYHU 1 refers to the forest edge density (F.ED) model and NYHU 2

refers to the Stream + F.ED model. Blue bars indicate 95% credible intervals. Refer to Table 1 for species code definitions.

https://doi.org/10.1371/journal.pone.0206857.g004
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occurrence in the Blue Ridge region [43]. However, we detected MYLELUSE in three of the

five regions (although they were not detected in many cells throughout each region), including

one detection in the Coastal Plain. Although this detection was far outside their known histori-

cal range [56], these findings are consistent with a similar study in North Carolina [63]. The

low detections of MYLELUSE and detections across the state likely led to the relatively low

predictive performance (AUC = 0.62) of our model and suggests further research is needed on

these species. In contrast, we did not find support for a predicted effect of Region on LACI and

MYAU occupancy. LACI appear to have more widespread summer distributions within our

study area than expected (Fig 5) as has also been found in North Carolina [63]. MYAU were

not detected in many cells within the regions they are thought to occupy, possibly due to their

preference for forested wetlands [16,60] that occur in small isolated patches and therefore

were not heavily surveyed. MYAU is more of a habitat specialist and typically roosts in tree

cavities in wetland habitats and forages in riparian areas [16,60]. Due to its specific habitat

requirements, measures of forested wetlands and stream lengths at the cell level may not have

been appropriate for modeling MYAU occupancy, and a finer scale analysis may be more suit-

able. Thus, ecoregion may be a useful tool for determining management activities for some bat

species, but not others, especially if species occur in regions in which they were not previously

found or have specialized habitat requirements within the ecoregions in which they occur.

While our approach was sensitive for large-scale differences among ecoregions, it likely was

not sensitive to site-specific habitat conditions that drive fine-scale habitat selection [35]. For

example, apart from region, the only habitat covariate retained in our top candidate model set

and for which parameter estimate confidence intervals did not overlap zero was a negative

association between forest edge density and LACI occupancy. This selection pattern contra-

dicts other studies that found LACI prefer to forage near forest edge and openings [14,64], but

others have observed LACI select for forest interior [65] or exhibit no strong preference

between forest edges and opening interiors [66]. Our observation must be considered within

the context that LACI exhibit migratory behavior and the majority of individuals may move

north, out of our study area during summer [42]. Further, LACI are high flyers [67] and do

not always echolocate when they are commuting [68,69]. This may explain why we found a

very low mean probability of detection (4.0%) [56], relatively high turnover rate (0.42;

Table 4), and a low predictive performance for the top-ranked occupancy model. Although

LACI occupancy estimates were relatively high (averaged about 49%), the higher turnover rate

Table 4. Estimated turnover rates of species occupancy across South Carolina from May-July 2015 to May-July

2016.

Species Turnover Lower CI Upper CI

DAIN 0.44 0.10 0.73

EPFULANO 0.06 0.01 0.17

LACI 0.42 0.06 0.80

MYAU 0.18 0.01 0.50

MYLELUSE 0.55 0.12 0.90

NYHU 1 0.02 5E-4 0.07

NYHU 2 0.02 6E-4 0.08

PESU 0.06 0.01 0.13

TABR 0.07 0.01 0.16

Estimates are based on the top ranked model for each species. Lower and Upper CI indicate 95% credible intervals.

Refer to Table 1 for species code definitions.

https://doi.org/10.1371/journal.pone.0206857.t004
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may be a further indication of transient individuals opportunistically using habitat as well as

low detectability. Further investigation of LACI summer habitat use (e.g., radio tracking of

individuals) may be needed to explain the potential effects of forest edge density on their habi-

tat use. The null model likely ranked highest for EPFULANO because it occurs statewide [16],

so landscape scale environmental covariates were not able to explain slight differences in occu-

pancy. Although environmental models ranked higher than the null model for NYHU, PESU,

and TABR, none of the effects were significant. These species, along with EPFULANO, occu-

pied most of our study area and used a variety of habitats, which could explain why we failed

to find significant effects of any landscape-scale environmental factors for these species. In a

similar occupancy study in Missouri, Starbuck et al. [70] found greater effects of habitat

Fig 5. Predicted distribution maps for bat species across South Carolina. Distributions are based on effect estimates in the top-ranked occupancy model for each

species, if non-null, and measures of environmental covariates in each cell. Black-outlined squares indicate cells where species were detected in 2015, 2016, or both years.

Known summer ranges are based on Menzel et al. [43]. Refer to Table 1 for species code definitions.

https://doi.org/10.1371/journal.pone.0206857.g005
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conditions at the landscape scale than at more localized scales. However, they analyzed occu-

pancy and assessed effects of habitat conditions at each survey point, while we analyzed occu-

pancy and assessed habitat conditions at the scale of 100 km2 cells, and landscape factors that

affect bat occupancy at points near cell edges may not be represented by cell-level metrics.

Thus, conducting multi-scale analyses, with landscape occupancy at the cell level and site use

at the level of stationary points and mobile transects, accompanied by more localized measures

of habitat conditions, may produce results that better reflect bat species roosting and foraging

preferences [35].

While we were not always able to gain insight into individual habitat conditions driving bat

occupancy, our models were still useful and insightful for assessing distributions and will be

valuable for assessing long-term patterns in landscape-level changes in bat populations. For

instance, models for DAIN and MYLELUSE predicted high occupancy rates in regions where

they were known to occur. Additionally, NYHU and TABR generally had high predicted occu-

pancy rates statewide and are typically found throughout the state. PESU are positively associ-

ated with forest cover [18] and their predicted distribution was lower in areas with low forest

coverage and high agricultural coverage. Many of the species which had models with low pre-

dictive performance also had low probabilities of detection [56] (Table 3), which could be an

indication of biased AUC estimates due to false negatives (i.e., non-detection of species where

they were actually present) [71]. Additionally, our data may not have been suitable for assess-

ment with k-fold cross validation and AUC because we had a small sample size (i.e., 38 cells),

which was divided into subsets of 25 cells for training data and 13 cells for testing data. Our

top-ranked models for most species may therefore be sufficient for predicting landscape occu-

pancy and could be used to guide future mist netting efforts and updating species range maps,

even in cases where we determined covariate effects were not significant and found models

had low predictive performance.

With longer-term monitoring, data from our two-year study can be utilized in future stud-

ies or serve as a baseline for additional analyses to assess landscape-level patterns and change

in bat communities in the southeastern US. Overall, populations of some species may be

declining in our study area [55] but it was not evident in our study at the landscape scale, likely

due to only having two years’ of data. However, other studies at similar spatial scales detected

changes in bat populations over time, but these studies were at longer temporal scales (eight to

15 years) [7,9,72]. Thus, if the monitoring we initiated is continued, it is likely that managers

will be able to better detect impacts of WNS and other threats to bat populations in our study

area [73]. Estimated turnover rates appear to be related to species detection probabilities,

where species with high detection probabilities had low turnover rates, averaging about 5%,

and species with lower detection probabilities had higher turnover rates, averaging about 40%

[56] (Table 4). For example, high turnover rates and low probabilities of detection for DAIN

and MYLELUSE could indicate false negatives (i.e., non-detection where species were actually

present) each year. The higher turnover rate for LACI may be related to our potential detection

of transient individuals, due to their migratory behavior [42]. However, species with higher

turnover rates also had wide credible intervals, so these results should be interpreted with cau-

tion, and further study is needed.

Overall, by establishing standardized, statewide acoustic monitoring of bats, we found ecor-

egion and landscape-scale effects on bat occupancy, and provided baseline data which may be

used to further evaluate bat species distributions and occupancy at a landscape scale in the face

of WNS and rapid land use change. Future studies could utilize our predicted distribution

maps and incorporate our data to conduct analyses at various spatial and temporal scales to

potentially reveal additional effects of land cover variables on bat species occupancy, and

changes in bat populations over time if monitoring is continued [8,73]. Results of our study
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and further analyses of our data (e.g., with finer scale habitat measures, and more years of

data) can therefore increase ecological knowledge of bats and be used to inform conservation

priorities [7–9], which is critical to the sustainability of bat populations due to the numerous

threats they currently face.
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21. Reiter G, Pölzer E, Mixanig H, Bontadina F, Hüttmeir U. Impact of landscape fragmentation on a spe-

cialised woodland bat, Rhinolophus hipposideros. Mamm Biol—Z Für Säugetierkd. 2013; 78: 283–289.
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