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ABSTRACT 
 

Concussions resulting from blast exposures represent a significant source of 

injury among military service members and the civilian population. Overall, traumatic 

brain injuries (TBIs) are a significant cause of hospitalization, disability, long-term care, 

and mortality across all age groups in the United States. Blast induced traumatic brain 

injury (biTBI) is an increasingly recognized subtype of brain injury, especially among 

military personnel. Blast exposure may influence a number of neurological processes, 

such as the inflammatory response, representing a unique biological profile. Outcomes 

from a TBI vary, even in similar injuries, and biomarkers including proteins and gene 

expression are increasingly studied to determine potential underlying mechanisms of 

injury and recovery processes. Biomarkers may yield insight into differential biological 

pathways in the various severities and subtypes of brain injury. This novel study proposes 

the examination of clinical and demographic characteristics and the identification of 

possible biological mechanisms through gene expression and protein analysis following 

brain injury. This study will be the first to examine gene expression related to 

inflammatory activation using sequencing and other unique methods to gain insight into 

immune pathways following blast exposure in clinical populations during the acute and 

subacute stages of injury. A deeper understanding of the role of inflammatory activation 

profiles will help direct future research in blast exposure and improve outcomes for 

individuals affected by this injury. 

Keywords: concussion, cytokines, inflammation, biomarkers, RNA sequencing 
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CHAPTER ONE 

 
INTRODUCTION 

 
 

Dissertation Manuscript Outline  

This dissertation manuscript is prepared in accordance with the guidelines set 

forth by the Clemson University Graduate School and the School of Nursing Healthcare 

Genetics Program’s Article-Style Format for Dissertation. The manuscript is comprised 

of five chapters. Chapter One outlines the problem and significance of the research as 

well as provides an overview of the research methodologies as they relate to each article. 

Chapter Two provides context for the research in an in-depth literature review of 

cytokine and gene expression studies in human TBI populations. Chapter Three explores 

the bench research findings for gene expression inflammatory pathways altered following 

blast exposure. Chapter Four examines laboratory findings of changes in inflammatory 

cytokines following concussion and blast exposure. Finally, Chapter Five provides an 

overview of the research findings and implications for healthcare genetics, considers 

strengths and limitations of the work, and offers future directions for research. Chapters 

Two and Three are the articles submitted for consideration of publication, and chapter 

Four is to be submitted for publication. 

Statement of the Problem 
 

Protein and gene expression biomarkers are well-acknowledged in the literature 

for potential clinical utility among traumatic brain injury (TBI) patient populations (Di 

Battista et al., 2015). However, the biological role of these biomarkers in mild TBI 
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pathologies has remained elusive, specifically in concussions occurring with blast 

exposures in military personnel. This information is needed to improve the health of 

military personnel who experience concussion, as there are few ways to determine the 

impact on health. Further research would also help to inform decisions regarding return to 

duty or training in order to prevent potential negative consequences of additional 

exposures on neuronal health (DePalma, 2015; Ruff, Riechers, Wang, Piero, & Ruff, 

2012). Table 1-1 defines key terms used throughout this manuscript.  
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Table 1-1.  
 
Key terms in this manuscript. 

 

Term Definition 
Blast A shock (i.e. overpressure) wave formed 

by an explosion to cause a solid or liquid 
quickly converted to a gas form resulting in 
a release of energy. The shock wave travels 
at supersonic speeds of 3,000-8,000 m/sec 
(Ritenour & Baskin, 2008; Wightman & 
Gladish, 2001) 

Blast injury Within the central nervous system, injury 
from a shock wave can cause damage 
including the neurons, blood brain barrier, 
and cerebrovascular system (Ritenour & 
Baskin, 2008). Also referred to as blast 
induced TBI, or biTBI, in the literature.  

Blunt force head injury / Closed head 
injury 

A blow to the head results in brain injury. 
The skull remains intact.  

Concussion Defined by one of the following: 1) an 
alteration in mental state, loss of memory; 
2) loss of consciousness for less than 30 
minutes; or, 3) another focal neurological 
deficit. Also called a mild traumatic brain 
injury (mTBI) in the literature (Menon, 
Schwab, Wright, & Maas, 2010).  

Cytokine 
 
 
 
Pro-inflammatory 
 
Anti-inflammatory 

Small proteins released by leukocytes 
(white blood cells) and glial cells (i.e. 
microglia) that function in mediating 
inflammatory response (Woodcock & 
Morganti-Kossmann, 2013). 
 
Cytokines that activate the immune 
response. 
Cytokines that induce activity mitigating 
the immune response, such as clearing 
debris. 

Dendritic spine Part of a neuron that receives, stores, and 
sends neurotransmitters.  
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Gene expression The information from a gene is transcribed 
into a functional product. The primary 
control for this process occurs when the 
messenger RNA (mRNA) is transcribed, 
which was studied in Chapter 3.  

*Gene network 
 
 
Hub 

Connected molecular pathway that 
regulates gene expression. 
 
A connection, such as a gene, that has 
multiple interactions within the network. 
For example, the gene AKT1 in Chapter 3.  

Glial cells The most numerous cells in the central 
nervous system; function in maintenance 
and support for neural cells. Microglia are 
one type of glial cell.  

Interleukin-6 (IL-6) Traditionally classified as a pro-
inflammatory cytokine, though may also 
have anti-inflammatory properties. 

Interleukin-10 (IL-10) Traditionally defined as an anti-
inflammatory cytokine. 

Microglia The primary immune cell type in central 
nervous system and the first to respond to 
injury or pathogens. Direct the 
inflammatory response through release of 
cytokines and other inflammatory-related 
products (Hendriksen, van Bergeijk, 
Oosting, & Redegeld, 2017).  

Moderate blast exposure The force of the blast experienced by 
military personnel described in Chapter 3 
(t5psi). This definition has been specified 
by the military collaborators involved in 
this work. 

Neddylation A type of ubiquitination; also regulates 
dendritic spine development (Vogl et al., 
2015).  

Nuclear factor kappa light-chain enhancer 
of activated B cells (NF-κB) 

Among its many functions, is a master 
regulator of cytokines, such as IL-6 and 
TNFD. 

Operation Iraqi Freedom (OIF) and OEF, also known as the Global War on 
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Operation Enduring Freedom (OEF) Terrorism, began in 2001 with targeting al 
Qaeda and the Taliban in Afghanistan. OIF 
began in 2003 with the United States 
invasion of Iraq. Samples for Chapter 4 of 
this study are from Afghanistan.  

Penetrating head injury The skull is perforated, such as by a high 
speed projectile, object, or bone fragment. 

Traumatic brain injury (TBI) A biomechanical force to the head, with or 
without direct impact, resulting in 
pathological changes in the brain. 

Tumor necrosis factor D (TNFD) Traditionally classified as a pro-
inflammatory cytokine 

Ubiquitination The process of removing of oxidized and 
misfolded proteins following injury, which 
can protect neurons from reactive oxidative 
species (ROS)  

Note. See also Chapter 3 for a legend to interpret gene networks. 
 
Significance of Concussion and Blast Exposure in the Military  
 

In Chapters Three and Four, the results of studies in military personnel 

experiencing concussion and blast exposure are discussed. Briefly, concussion, also 

known as mild TBI (mTBI) in the literature, is considered one of the most prevalent 

injuries among military personnel serving in recent combat and training environments 

(Hayward, 2008; Mac Donald et al., 2014). Approximately 80% of concussions occurring 

among military personnel are caused by blast exposures (Defense and Veterans Brain 

Injury Center, 2017; Rigg & Mooney, 2011). However, due to co-occurrence of multiple 

injuries common at the time of a blast exposure, blast injury to the brain is often difficult 

to study alone (Champion, Holcomb, & Young, 2009). Evidence of long-term 

neurological effects shown in the literature highlight the need for deeper understanding of 

the pathophysiology of underlying chronic symptoms and the need to produce data to 
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inform the development of novel treatments for mTBIs (Carr et al., 2015; Echemendia & 

Julian, 2001; Giza & Hovda, 2001; Reid et al., 2014; Schatz & Moser, 2011). Although 

medical care of TBI patients has advanced, at this time there are no FDA-approved 

pharmaceuticals specifically addressing TBI pathology (Hinson, Rowell, & Schreiber, 

2015; Maas, Stocchetti, & Bullock, 2008). Biomarkers, including gene expression and 

proteins, introduced in Chapter One and detailed in the Chapter Two literature review, 

may ultimately identify therapeutic targets to improve the care of patients and foster 

recovery from TBIs (Di Battista et al., 2015; Hinson et al., 2015). Thus, this line of 

research is vital, as biomarkers will ultimately improve diagnosis, prognosis, and care for 

patients with concussion. 

Significance of the Inflammatory Response in Concussion and Blast Exposure 

Recent studies report that serum biomarkers may objectively detect blast 

exposures, as compared to trauma controls, even in the absence of physical symptoms 

(Papa et al., 2016; Papa et al., 2012). Taken together with literature indicating the 

harmful effects of neurological insults over time, further evaluation of potential 

biomarkers to inform diagnosis and prognosis of concussion and blast exposure is needed 

(Echemendia & Julian, 2001; Giza & Hovda, 2001; Schatz & Moser, 2011).  

Introduction to gene expression. 

The Chapter Two literature review highlights the importance of gene expression 

to TBI research, in addition to cytokine activity. Importantly, considered a master 

regulator of cytokines, nuclear factor kappa light-chain enhancer of activated B cells 

(NF-κB) is a transcriptional activator of target genes involved in numerous biological 
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functions including the development of immune cells such as leukocytes and regulation 

of the expression of cytokines and chemokines (Barichello, Generoso, Simoes, Elias, & 

Quevedo, 2013; Kawai & Akira, 2007). Though the NF-κB pathway regulates cytokines 

and has been implicated in clinical TBI gene expression studies (see review in Chapter 

Two), the dynamics of the NF-κB pathway together with inflammatory cytokine 

alterations within the context of clinical blast exposure has not yet been fully explored. 

Chapter Three describes the details of the gene expression study for this dissertation. 

Introduction to cytokines. 

In addition to gene expression, the Chapter Two literature review underscores the 

importance of inflammatory cytokines for understanding neurological recovery processes 

in persons with TBI. Clinical studies show that inflammatory biomarkers, including 

immune cell counts and cytokine concentrations, are associated with sustaining a TBI 

when measured during the acute period, in coordinating recovery during the acute and 

sub-acute periods, and have been proposed as a possible therapeutic target after TBI 

(McKee & Lukens, 2016; Schwarzmaier & Plesnila, 2014). Cytokines are especially 

interesting to the study of concussion as they may serve as practical clinical measures at 

the bedside as well as reveal underlying inflammatory processes (Hinson et al., 2015; 

Woodcock & Morganti-Kossmann, 2013). Chapter Four describes the results of the 

cytokine study for this dissertation. 

Summary 

In Chapter One, a brief overview was included to underline the significance of 

this research. Considering the limited amount of current research in inflammatory and 
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immune pathways related specifically to clinical blast exposure and concussion, literature 

related to inflammatory markers clinical TBI populations will be reviewed in greater 

detail in Chapter Two. Chapter Three describes results of the gene expression study for 

this dissertation, while Chapter Four describes the results of the cytokine study. Research 

questions as they relate to the studies in Chapters Three and Four are introduced below 

for guidance through the dissertation manuscript.  

Research Questions  

The research questions are addressed together in the introduction to better explain 

the collective goals for this dissertation. Specific Aims are addressed separately in 

Chapters 3 and 4 as noted below in order to allow details for each study.   

Background: Concussions, including those caused by blast exposures, are associated 

with poor outcomes among the military population. Blast exposures result in altered 

neurological processes such as inflammatory pathways. Alterations in the NF-NB 

network, a known regulator of cytokines produced during inflammation, have been 

identified in clinical TBI. However, the NF-NB gene pathway has not been fully explored 

following injury specific to blast exposures.  

Purpose: The purpose of this study is to examine gene expression related to 

inflammatory activation using sequencing and protein analyses to gain insight into 

inflammatory pathways following blast exposure in military personnel. 

Aim One (Chapter 3): In a military training environment, determine gene activity 

changes related to NF-NB through RNA sequencing following blast exposure. 
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Hypothesis 1a: Blast exposure will result in alterations in NF-NB inflammatory-related 

gene expression pathways during the sub-acute period.  

Aim Two (Chapter 4): In a combat environment, determine changes in NF-kb activity 

detected through cytokine activity immediately following concussions (blast exposures 

and blunt force injuries).  

Hypothesis 2a: Compared to healthy controls, there will be increased levels of 

inflammatory cytokines including IL-6, IL-10, and TNFD in the concussed group within 

8 hours following injury.  

Hypothesis 2b:  Compared to healthy controls, levels of inflammatory cytokines 

including IL-6, IL-10, and TNFD will return to baseline levels within 24 hours of injury 

in the concussed group.  

Hypothesis 2c: Mean change over time for each cytokine (IL-6, IL-10, and TNFD) will 

be significantly different in the concussed group as compared to the healthy control 

group. 
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ABSTRACT 

Traumatic brain injuries (TBIs) are a significant cause of hospitalization, 

disability, long-term medical care cost, and mortality across all age groups in the United 

States and across the world. Outcomes from a TBI vary, even in patients with similar 

severity and type of injuries, yet, identifying those patients at highest risk for non-optimal 

recovery remains difficult. Biomarkers including proteins and gene expression are an 

increasingly studied area, as they provide a platform to identify underlying mechanisms 

of injury, patients at risk for poor recovery and recovery processes to inform therapeutics. 

Initiation of the inflammatory system is fundamental to recovery from TBIs; however, if 

it is over-activated or prolonged it may compromise recovery and lead to more chronic 

symptoms. The purpose of this literature review is to examine recent clinical studies of 

gene expression in traumatic brain injury and related proteomic pathways, with a focus 

on characterizing the role of inflammation in recovery from TBIs, as well as how it may 

shape more chronic symptoms. This review identified 5 papers that report altered 

inflammatory gene regulation and 17 papers that report altered cytokines as related to 

recovery from TBIs. This paper will link these gene-expression studies to inflammatory 

activation studies and provide an indication of how these acute changes in gene-activity 

may shape immune response to TBIs and recovery.  A deeper understanding of the role of 

immune activity following a TBI will ultimately direct future research for the 

improvement of outcomes for individuals affected by this injury. 

Keywords: traumatic brain injury, cytokines, biomarkers, gene expression
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CHAPTER TWO 

A REVIEW OF GENE EXPRESSION AND INFLAMMATORY RESPONSE IN 
CLINICAL POPULATIONS OF TRAUMATIC BRAIN INJURY 

 
Introduction 

 The dissertation research topic is inflammation, as characterized by gene 

expression and cytokine changes, in military personnel with acute blast exposures and 

concussions. In undertaking a literature review of this topic, very little information is 

available to date in clinical populations. Considering the recent reviews of blast exposure 

in preclinical models, and the limited amount of research in inflammatory pathways 

related specifically to clinical blast exposure or concussion, a review of gene expression 

and cytokine changes as it relates to the broader population of clinical TBI was 

undertaken (Xiong, Mahmood, & Chopp, 2013). This decision to expand to the broader 

TBI category was made with the knowledge that not all of this information may translate 

to the specific population represented in this dissertation research. However, the goal was 

that the knowledge gained from review of studies of human TBI populations would be 

used establish the current state of the science in order to inform the design and 

methodologies of the dissertation research. Additionally, rather than relying on one 

methodology, the integration of -omics data, such as gene expression and protein 

analysis, in the design of research studies has been postulated to strengthen the 

understanding of the complex relationships between genotype and phenotype (Ritchie, 

Holzinger, Li, Pendergrass, & Kim, 2015). Any knowledge thus gained from the 

subsequent research studies, detailed in Chapters 3 and 4, would then add to the growing 
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field of gene express and cytokine research in persons with blast exposure and 

concussion.   

Significance of concussion and blast exposure in the military.  
 
Concussion, also known as mild TBI (mTBI) in the literature, is considered the 

signature injury among military personnel serving in recent combat and training 

environments (Hayward, 2008; Mac Donald et al., 2014). The vast majority (80%) of 

concussions occurring among military personnel are caused by blast exposures (Defense 

and Veterans Brain Injury Center, 2017; Rigg & Mooney, 2011). Over 360,000 

individuals serving in Operation Iraqi Freedom and Operation Enduring Freedom since 

the year 2000 have experienced at least one blast injury, with most exposures due to 

improvised explosive devices (IEDs) (Champion, Holcomb, & Young, 2009; Defense 

and Veterans Brain Injury Center, 2017; Elder, Stone, & Ahlers, 2014; Hayward, 2008).  

Significance of traumatic brain injury. 

Traumatic brain injury (TBI) is a significant healthcare issue, effecting 2.5 million 

Americans each year and leading to 30% of all injury-related deaths (Taylor, 2017). 

Sources of injury may include falls, motor vehicle accidents, assaults, and blunt trauma. 

TBIs occur across all populations, regardless of age, ethnicity, socioeconomic status, or 

sex. TBIs can result in long-lasting disabilities for the injured person, effecting quality of 

life for both the person and his or her family members (Taylor, 2017). TBI care is 

estimated to cost up to $76.5 billion each year in the US from medical care costs and loss 

of work (Coronado et al., 2011; Ma, Chan, & Carruthers, 2014). Significant savings of 

$2.2 million (p<0.05) in projected life care cost for individuals who undergo 
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rehabilitation therapies in the post-acute TBI stage have been reported (Griesbach, 

Kreber, Harrington, & Ashley, 2015). A review of the societal economic burden of TBI 

concluded that successful rehabilitation treatments could result in substantial annual 

savings for society—up to $302 million (Humphreys, Wood, Phillips, & Macey, 2013). 

Decreasing the substantial economic burden to society and individuals is an important 

motivator to improve the clinical care of TBI patients, thereby reducing the symptoms 

and deficits that can result. Though medical care of TBI patients has advanced, at this 

time there are no FDA-approved pharmaceuticals or non-pharmacological interventions 

to reduce the risk of developing symptoms acutely, or to treat symptoms and deficits if 

they become chronic (Maas, Stocchetti, & Bullock, 2008).  

Definition of TBI. 

A TBI is defined as a biomechanical force to the head, with or without direct 

impact, resulting in pathological changes in the brain, and include both blunt force and 

blast related injuries (McCrory et al., 2013; Menon, Schwab, Wright, & Maas, 2010). 

TBIs are categorized into mild, moderate, and severe, most often using the Glasgow 

Coma Scale (GCS), a tool developed by Teasdale and Jennett (1974) classifying subjects 

based on initial clinical exam. The mTBIs account for approximately 80% of traumatic 

brain injuries (Ruff, Iverson, Barth, Bush, & Broshek, 2009). As defined by the American 

Congress of Rehabilitation Medicine, a mTBI is characterized by one of the following: 

loss of memory, loss of consciousness (<30 minutes), alteration in mental state, or any 

focal neurological deficit. Exclusion criteria for this category of TBI include: GCS of <13 

after 30 minutes, loss of consciousness for >30 minutes, and posttraumatic amnesia 



 27 

lasting >24 hours (Menon, Schwab, Wright, Maas, et al., 2010). Traditionally mTBIs 

have been believed to do little or no long-term harm, even though approximately 10% of 

patients experience ongoing complications (Carroll et al., 2004; Cassidy et al., 2014). 

Accumulating recent research demonstrates long-term detrimental effects of mTBIs, with 

the greatest risk in those individuals who sustain multiple events of TBIs (Echemendia & 

Julian, 2001; Giza & Hovda, 2001; Schatz & Moser, 2011). These long-term effects 

highlight the need for additional study in the pathophysiology and treatments for mTBIs. 

Biomarkers obtained in peripheral blood and cerebral spinal fluid (CSF), including gene 

expression and proteins described in the literature review below, are a current 

advancement that may aid in the care of individuals with TBIs in order to help improve 

outcomes. Summarized in this paper are the potential clinical utility of biomarkers for the 

improved diagnosis, prognosis, and individual treatment plans for patients increasingly 

supported by the literature, as well as future directions (Di Battista et al., 2015). 

TBI from blast exposure. 

Brain injury from primary blast injury occurs due to a shock (i.e. blast or 

overpressure) wave formed by an explosion (Ritenour & Baskin, 2008; Wightman & 

Gladish, 2001). Resulting tissue damage depends upon factors such as the magnitude of 

the peak pressure and the duration of the force, as well as enclosures which cause the 

shock waves to bounce thereby intensifying the risk of injury (Rezaei, Salimi Jazi, & 

Karami, 2014; Wightman & Gladish, 2001). The energy from a blast enters the body as 

stress waves and shear waves. Stress waves are longitudinal waves affecting the spaces 

between tissues and gases, resulting in tissue and microvascular damage; while shear 
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waves are transverse waves causing disruption in attachments between tissues (Champion 

et al., 2009; Ritenour & Baskin, 2008; Yeh & Schecter, 2012). Thus, tissues likely to be 

damaged are those in contact with gaseous regions, such as the middle ear, lungs, and 

bowel, as well as the central nervous system (Bochicchio et al., 2008; Kirkman & Watts, 

2011; Mac Donald et al., 2011; Ropper, 2011; Wightman & Gladish, 2001). Brain injury 

results when shearing forces from the explosion result in diffuse or axonal injury to the 

brain, and may also induce cerebrovascular damage and blood brain barrier disruption 

(Cernak, Wang, Jiang, Bian, & Savic, 2001; Ritenour & Baskin, 2008; Yeoh, Bell, & 

Monson, 2013). Whether the clinical presentation and pathophysiology of concussion 

caused by blast is distinct from a penetrating or closed head TBI remains to be 

determined (Courtney & Courtney, 2015; Mac Donald et al., 2014). However, due to co-

occurrence of multiple injuries common at the time of a blast exposure, blast injury to the 

brain is often difficult to study alone (Champion et al., 2009). 

The need for research in mTBI and blast exposure. 

 One in ten patients with mTBI will continue to experience long-term 

complications (Carroll et al., 2004; Cassidy et al., 2014).  Specifically, evidence of 

chronic neurological effects has been shown in repeated concussions and post-concussive 

syndrome as well as chronic low-level blast exposure (Carr et al., 2015; Echemendia & 

Julian, 2001; Giza & Hovda, 2001; Reid et al., 2014; Schatz & Moser, 2011). These long-

term effects underscore the need for deeper understanding of the pathophysiology of 

underlying chronic symptoms and the need to produce data to inform the development of 

novel treatments for mTBIs. Although medical care of TBI patients has advanced, at this 
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time there are no FDA-approved pharmaceuticals specifically addressing TBI pathology 

(Hinson, Rowell, & Schreiber, 2015; Maas et al., 2008). Recent evidence suggests that 

serum biomarkers may objectively detect blast exposures as compared with trauma 

controls (Papa et al., 2016; Papa et al., 2012). Gene expression and protein biomarker 

research is essential, as biomarkers may ultimately identify therapeutic targets to improve 

care and foster recovery for persons with TBIs (Di Battista et al., 2015; Hinson et al., 

2015; Prieto, Ye, & Veenstra, 2008).   

Statement of the Problem. 

 Although the potential clinical utility of biomarkers such as proteins and gene 

expression in patient care is well recognized, the role in various TBI pathologies has yet 

to be fully realized. Inflammation is a key pathway required for recovery from TBIs, but 

much remains unknown about the characteristics of activation and regulation that likely 

contribute to acute and long-term recovery. The purpose of this literature review is to 

examine the current state of clinical TBI research in gene expression and inflammatory 

biomarkers.  

Literature Review 

Method. 

 Considering the limited current research in cytokines and gene expression 

pathways related specifically to clinical blast exposure or concussion, literature related to 

inflammatory markers in acute TBI clinical populations was reviewed. The electronic 

database PubMed was systematically searched from November 1, 2016 to January 30, 

2017. The searches were updated September 2017. Search terms for gene expression 
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studies included: brain injury and gene expression. Search terms for inflammatory protein 

marker studies included: brain injury, cytokines, IL-6, IL-10, and TNFD. Published, full-

text, original research articles in English appearing in peer-reviewed journals over the 

past 10 years were included. The search was limited to human populations. Articles 

meeting these criteria were screened for eligibility based on original studies in human 

populations. Articles for the gene expression review included adults who sustained a mild 

or moderate TBI. Articles for the inflammatory protein markers review included 

adolescents and adults who sustained a mild, moderate, or severe TBI, due to the limited 

number of mild and moderate TBI articles. Articles meeting the eligibility criteria were 

screened for inclusion. The following criteria caused articles to be excluded: studies of 

animals and cell lines, pediatric populations, diagnoses other than TBI, research older 

than 10 years, reviews, case studies, and those that did not include gene expression or 

inflammatory protein markers.  

Results for gene expression. After applying the inclusion and exclusion criteria to 

6,596 titles and abstracts, 952 full-text articles were assessed for eligibility, with only 5 

of these articles evaluating gene expression in adults with mild to moderate traumatic 

brain injury. 

Results for inflammatory protein markers. Following application of the inclusion 

and exclusion criteria to 6,452 titles and abstracts, 1,265 full-text articles were eligible for 

screening, with 17 articles that evaluated inflammatory protein markers in the adult 

population with mild, moderate, or severe brain injury.  
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Gene Expression Studies 

Background.  

Several clinical studies show that gene expression varies after TBI. Gene 

expression is the process by which a sequence of nucleic acids in a gene (i.e. genotype) 

are transcribed into ribonucleic acid (RNA) and translated into protein, which ultimately 

gives rise to the phenotype, or expressed traits, of an organism (Raser & O'Shea, 2005). 

Thus, methods of measuring gene expression can be accomplished at the RNA level by 

examining the activity of genes. Often, gene expression methods in the literature are 

referring to measurement of the messenger RNA (mRNA), the RNA molecules which are 

translated into proteins (Wickramasinghe & Laskey, 2015). mRNA is measured through a 

variety of technologies, notably DNA microarray, Northern Blot, real time PCR, and, 

most recently, high-throughput RNA sequencing methods (RNA-seq) (Bolón-Canedo, 

Sánchez-Maroño, Alonso-Betanzos, Benítez, & Herrera, 2014; Mortazavi, Williams, 

McCue, Schaeffer, & Wold, 2008; Wang, Gerstein, & Snyder, 2009).   

Clinical Studies.  

The literature review returned five clinical studies of gene expression in TBI. 

Results from the studies are summarized in Table 2-1 and Table 2-2.  
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Table 2-1.  

Summary of gene expression literature review results 

Reference Platform Specimen 
Source 

Population Blood Draw 
Timepoints 

Total Number of 
Differentially Expressed 
Genes 

Cho et al. 
(2016) 

Affymetrix  
 
qPCR 

Peripheral 
whole blood 

mTBI (total n=66) 
 
Young (19-35 
years old, n=33) 
 
Old (60-89 years 
old, n=33) 

Acute 
<48 hours 
after injury 
 
Subacute  
1 week after 
injury 

Young: 42 
Old: 5 
 
 
Young: 28 
Old: 1 

Gill et al. 
(2016) 

Affymetrix Peripheral 
blood 
mononuclear 
cells 

Athletes 
 
Sports-related 
concussion (n=15) 
 
Non-concussed 
controls (n=16) 
 

Baseline 
(before 
injury) 
 
Acute 
<6 hours after 
injury 
 
Subacute  
1 week after 
injury 

 
 
 
 
71 
 
 
 
65 

Merchant-
Borna et al. 
(2016) 

Affymetrix Peripheral 
blood 
mononuclear 
cells 

Athletes 
 
Sports-related 
concussion (n=15) 
 
Non-concussed 
controls (n=16) 
 

Baseline 
(before 
injury) 
 
Acute 
<6 hours after 
injury 
 
Subacute  
1 week after 
injury 

 
 
 
 
71 
 
 
 
65 

Livingston et 
al. (2016) 

Affymetrix Peripheral 
whole blood 

mTBI (total n=40) 
 
TMI+ (n=17) 
 
TMI- (n=23) 
 

Acute 
<48 hours 
after injury 

76 

Heinzelmann 
et al. (2014) 

Affymetrix Peripheral 
whole blood 

Military, mild to 
moderate TBI 
 
blast-TBI (n=19) 
 
Controls without 
TBI (n=17) 

Chronic 
symptoms  
</=18 months 
after injury 

29 
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Table 2-2 

Summary of differentially expressed gene pathways from literature 

Reference Gene Pathways Representative 
Genes 

Gene name Fold 
change 

P value 

Cho et al. (2016) Cell signaling, 
development, growth, and 
proliferation 
 

BACH2 
 
 
 

Basic leucine zipper 
transcription factor 2 
 
 
 

1.616 
 
 
 
 

* 

Intracellular regulation of 
calcium 

S100P 
 
 
S100A8 
 
 
LRRN3 
 
 
LEF1 
 
 
NOG 

S100 calcium binding 
protein P 
 
S100 calcium binding 
protein A8 
 
Leucine-rich repeat 
neuronal 3 
 
Lymphoid enhancer 
binding factor 1 
 
Noggin 

1.954 
 
 
1.515 
 
 
2.849 
 
 
1.539 
 
 
1.852 

* 
 
 
* 
 
 
* 
 
 
* 
 
 
* 

Gill et al. (2016) Nuclear factor kappa light-
chain enhancer of activated 
B cells (NF-κB) 
 

IL8 
 
 
 
 
CXCL2 
 
 
 
 
NR4A2 

Interleukin 8 
 
 
 
 
Chemokine (C-X-C 
motif) ligand 2 
 
 
 
Nuclear receptor 
subfamily 4, group A, 
member 2 

acute 
-6.94 
subacute 
-13.80 
 
acute 
-4.47 
subacute 
-7.11 
 
acute 
-7.12 
subacute 
-6.63 
 

 
1.18E-04 
 
2.08E-07 
 
 
1.38E-04 
 
3.77E-07 
 
 
5.87E-07 
 
5.39E-08 
 

Merchant-Borna et al. 
(2016) 

Inflammatory Response, 
Infectious Disease, Renal 
and Urological Disease 
 
 
Glucocorticoid Receptor 
Signaling  
 
Neurological Disease, Cell 
Death and Survival, Cell 
Cycle 

Hubs: 
IL-6  
IL-12  
TRL4  
NF-κB 
 

 
interleukin 6 
interleukin 12  
toll-like receptor 4 
Nuclear factor kappa 
light-chain enhancer 
of activated B cells 

** ** 

Livingston et al. (2016) Inflammatory pathways 
related to cellular 
development  
 
Organismal Injury and 
Abnormalities 
 

LOC100134822 
 
 
 
FcαR (aka CD89) 
 
 

Uncharacterized 
LOC100134822 
 
 
Fc fragment of IgA, 
receptor for 
 

1.62 
 
 
 
1.58 
 
 

5.05E-05 
 
 
 
4.81E-08 
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Cellular Organization 
 
Nuclear factor kappa light-
chain enhancer of activated 
B cells (NF-κB) pathway 
 

MCTP2 
 
 
GPR27 
 
 

Multiple C2 domains, 
transmembrane 2 
 
G-protein-coupled 
receptor 27 

1.54 
 
 
1.52 

1.85E-05 
 
 
5.88E-05 
 

Heinzelmann et al. (2014) Ubiquitin pathway 
 

TNS1 
 
MARCH8 
 
 
 
 
TRIM58 
 
 
 

Tensin-1 
 
Membrane-associated 
ring finger (C3HC4) 
8, E3 ubiquitin 
protein ligase 
 
Tripartite motif 
containing 58 
 

-2.3682 
 
-1.6123 
 
 
 
 
-1.9188 
 
 
 

0.00062 
 
0.00065 
 
 
 
 
0.00012 

Note. For the Cho et al. (2016) study, values are reported at the 48-hour time period; fold 
changes were also significant for all reported genes at one week. Positive numbers 
indicate upregulation; negative numbers indicate downregulation. *p < 0.05; **denotes 
differently expressed gene network.  
 

One study aimed to compare gene expression in older (60-89 years old) and 

younger (19-35 years old) cohorts of mTBI patients within 24 hours of injury (Cho et al., 

2016). Notably, being “older,” has consistently been linked to a greater risk of poor 

recovery in clinical TBI studies (Hukkelhoven et al., 2003; McIntyre, Mehta, Janzen, 

Aubut, & Teasell, 2013). Cho et al. (2016) found that, compared to younger patients, the 

older patients experienced overall worse recovery from injury as determined by magnetic 

resonance imaging (MRI) one-week following the TBI. The MRI findings were linked to 

differential gene activation, including several genes involved in the inflammatory 

response [measured using GeneChip 3’ IVT Plus Expression kit (Affymetrix, Santa 

Clara, CA, USA)]. First, LRRN3 and LEF1, genes implicated in regulation of 

inflammation, were highly upregulated in the younger cohort as compared to the older 

cohort. Lesser upregulation of these inflammatory genes suggests a decreased ability of 

the older population to modulate inflammatory responses. Second, there was a decreased 
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expression of BACH2 gene that transcribes basic leucine zipper transcription factor 2 

(BACH2) in older as compared to younger adults at 48 hours following injury. BACH2 is 

expressed in B cells, and it modulates the proinflammatory response in preclinical models 

(Muto et al., 2004; Roychoudhuri et al., 2013; Vahedi et al., 2015). Decreased BACH2 

gene expression may therefore lead to suppression of the neuroprotective humoral 

immune response in TBI. Third, in older individuals, neuronal recovery may be impaired 

through upregulation of the genes S100 calcium binding protein P (S100P) and S100 

calcium binding protein A8 (S100A8). Both genes are part of the S100 gene family 

involved in the regulation of intracellular calcium levels (Zimmer, Eubanks, 

Ramakrishnan, & Criscitiello, 2013), and previously associated with neuronal recovery 

following injury (Di Battista et al., 2015).  S100P also activates signaling pathways such 

as NF-κB. Considered a master regulator of cytokines, NF-κB is a transcriptional 

activator of target genes involved in numerous biological functions including the 

development of immune cells such as leukocytes and regulation of the expression of 

cytokines and chemokines (Barichello, Generoso, Simoes, Elias, & Quevedo, 2013; 

Kawai & Akira, 2007). For example, one preclinical TBI study found that regulatory T 

cells decreased the expression of proinflammatory cytokines through suppression of the 

NF-κB pathway (Yu, Cao, Ran, & Sun, 2016). These gene expression results from Cho et 

al. (2016) suggest that regulation of immune and inflammatory responses as well as 

neuronal repair following TBI may vary across age groups, with maladaptive responses 

in older adults associated with worse outcomes. Further comparison of gene expression 

profiles, including inflammatory-related pathways such as NF-κB, across young and old 



 36 

age groups may yield insight into the biological mechanisms which lead to better versus 

worse outcomes following TBI. Comparing these types of gene expression studies to 

neuroimaging findings may also yield further insight into neuronal changes occurring 

following injury.  

A second study of acutely concussed collegiate athletes also implicated changes 

in inflammatory gene expression following injury (Gill et al., 2016). Biomarkers in whole 

blood collected following concussion was compared to baseline levels collected pre-

season. Following head injury, 28 differentially expressed genes [Affymetrix HG U133 

Plus 2.0 microarrays (Affymetrix, Santa Clara, CA, USA)] were associated with the 

inflammatory response, including the NF-κB pathway, as seen in Figure 2-1 (Gill et al., 

2016). In the third gene expression study, further gene network analysis of this athlete 

population revealed interleukin 6 (IL-6), interleukin 12 (IL-12), and toll-like receptor 4 

(TRL4) as hubs (see Table 1-1 for definitions) at 6 hours post-injury, in addition to NF-κB 

at both 6 hours and 7 days post-injury (Merchant-Borna et al., 2016) (see Figure 2-2). 

Together, these four hubs modulate both the innate immune response and the transition to 

the adaptive immune response, suggesting alterations in immune system functioning may 

influence neuronal recovery during the acute period (Merchant-Borna et al., 2016).  
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Figure 2-1.  

Differential Gene Expression Following Concussion in Athletes  

 

Note. Used with permission by:  
Gill, J., Merchant-Borna, K., Lee, H., Livingston, W. S., Olivera, A., Cashion, A., . . . Bazarian, J. 

J. (2016). Sports-Related Concussion Results in Differential Expression of Nuclear 
Factor-kappaB Pathway Genes in Peripheral Blood During the Acute and Subacute 
Periods. J Head Trauma Rehabil, 31(4), 269-276. doi:10.1097/htr.0000000000000191 
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Figure 2-2.  

Altered Gene Expression in the NF-NB Pathway Following Concussion in Athletes  

 

Note. Used with permission by:    
Merchant-Borna, K., Lee, H., Wang, D., Bogner, V., van Griensven, M., Gill, J., & Bazarian, J. J. 

(2016). Genome-Wide Changes in Peripheral Gene Expression following Sports-Related 
Concussion. J Neurotrauma, 33(17), 1576-1585. doi:10.1089/neu.2015.4191 

 

 Altered gene expression has also been observed in a fourth study of a 

subpopulation of mTBI patients with traumatic meningeal injury (TMI). Livingston et al. 

(2016) found 76 differentially expressed genes [Affymetrix HG-U133 Plus 2.0 

microarray (Affymetrix, Santa Clara, CA)] in patients positive for TMI (TMI+) (n=17) as 

compared to mild TBI patients with no neuroimaging findings (n=23). The altered genes 
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were found to be involved in three main gene networks. Four genes with the greatest fold 

changes were LOC100134822, FcαR, MCTP2, and GPR27, with FcαR implicated in 

inflammatory processes (Ben Mkaddem, Rossato, Heming, & Monteiro, 2013). In 

addition, three of these genes (FcαR, MCTP2, and GPR27) mapped to inflammatory 

processes in cellular development using Ingenuity Pathway Analysis (IPA). The most 

significantly altered gene pathway in TMI+ patients was the nuclear factor kappa light-

chain enhancer of activated B cells (NF-κB) pathway. While its role in TMI is yet to be 

studied, both findings suggest a potential biological pathway specific to patients with a 

meningeal injury; further studies are needed. To date, this is the only study examining 

gene expression in patients with a meningeal injury (Livingston et al., 2016).  

Finally, in addition to these four acute/subacute studies, a chronic TBI study 

found 29 differentially expressed genes [Affymetrix GeneChip Human Gene U133 Plus 

2.0 Arrays (Affymetrix, Santa Clara, CA, USA)] in a cohort of military personnel with 

medical history of blast-TBI (n=19) as compared to control military personnel with no 

TBI (n=17) (Heinzelmann et al., 2014). Genes within the ubiquitin pathway (TNS1, 

C3HC4, MARCH8, and TRIM58), which functions in the removal of oxidized and 

damaged proteins following neuronal injury, were notably down-regulated in the blast-

TBI population, suggesting a role for this pathway in chronic symptoms following blast-

TBI (Heinzelmann et al., 2014). Although this study differs from previously discussed 

studies regarding population type (military vs. civilian), outcomes over time (chronic vs. 

acute/subacute outcomes), and injury type (blast vs. closed head), the differential gene 
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expression results following neuronal insult contributes to the accumulating evidence for 

the roles of multiple biological pathways in TBI recoveries. 

Summary.  

Results from these five studies show that gene expression changes are observed in 

individuals following mild TBIs and concussions. Specifically, inflammatory gene-

activity is related to response to these brain injuries. It is interesting to note that alteration 

of the NF-κB pathway is implicated in all four of the acute/subacute studies. Notably, the 

NF- κB pathway has been previously associated with the regulation of proinflammatory 

cytokines in meningitis (Barichello et al., 2013) as well as blood-brain barrier 

permeability (Merrill & Murphy, 1997). Based on the current state of research found 

here, and previous neurological-related work, further examination of the role of this NF- 

κB pathway in acute/subacute mTBI recoveries is warranted. These studies used 

variations of the Affymetrix microarray platform to examine gene expression differences. 

This platform has limitations, including batch effect, a recognized systematic error of 

microarray technology which occurs when many samples are processed in separate 

“batches” (Chen et al., 2011). No clinical TBI gene expression studies have yet utilized a 

more global RNA sequencing methodology. Therefore, additional studies are needed that 

use other methods for analyses, such as RNA-seq, and also include cohorts of patients 

with mild TBI and blast exposure. 

Cytokines in Traumatic Brain Injury 

The inflammatory response after a brain injury results in biological changes that 

are interrelated, including those of proteins and gene activity (Jassam, Izzy, Whalen, 
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McGavern, & El Khoury, 2017). Therefore, gene activity and proteins have 

complementary activities that coordinate the response to brain injury. Current studies 

examining gene-activity across the genome have consistently implicated inflammatory 

pathways, including NF-κB, a major regulator of cytokines (Kawai & Akira, 2007). For 

this reason, this section of the review is focused on inflammatory proteins, to more 

comprehensively understand the biological underpinnings that shape onset of symptoms 

following and recovery after TBI.  

 Summary of cytokine review results. 

 Results of the cytokine literature review are summarized in Table 2-3. To give a 

brief overview of the results, 17 studies of cytokines in adult clinical TBI were found. 

Notably, there were only two studies in mild TBI, with the remainder of the studies in 

moderate to severe TBI. There was one blast study and two military studies. Most studies 

(15) focused on measurement of cytokines in the acute time period, although some of 

these studies (5) considered chronic outcomes at 6-12 months. Two studies measured 

cytokines in the chronic period. Increased levels of IL-6 were found in 14 studies, 

increased IL-10 in 10 studies, and increased TNFD in 8 studies. Details of these studies 

are listed in Table 2-3. Considering the complexity of the biological response following 

TBI, the discussion will focus on the understanding of these cytokine findings within the 

wider context of TBI inflammatory processes, as well as broader, potential clinical 

applications. Thus, the review is organized to address important considerations for 

moving the research forward, including: acute and chronic studies, bio-specimen source, 

biological pathways, interventions, as well as age and TBI severity. 
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Introduction to Inflammatory Cytokines and Concussion 

Inflammation is instrumental in the TBI recovery process. Clinical TBI studies 

associate inflammatory biomarkers, such as cytokine concentrations and immune cell 

counts, with TBI during the acute period, as well as during the acute and sub-acute 

recovery periods (McKee & Lukens, 2016). In further support of the critical role of 

inflammation in TBI recovery, modulation of the inflammatory response has been 

proposed as a possible therapeutic target after TBI (Schwarzmaier & Plesnila, 2014). 

Cytokines are especially interesting to the study of concussion as they may serve as 

practical clinical measures at the bedside as well as reveal underlying inflammatory 

processes. The role of cytokines in the inflammatory response following brain injury is 

well-recognized (Hinson et al., 2015; Woodcock & Morganti-Kossmann, 2013). Briefly, 

cytokines, small proteins released by leukocytes and glial cells that function in mediating 

inflammatory response, are a well-documented research area in preclinical and limited 

clinical TBI studies (Lenzlinger, Morganti-Kossmann, Laurer, & McIntosh, 2001; 

Woodcock & Morganti-Kossmann, 2013).   

Inflammatory response to TBI.  

What are Cytokines? Cytokines are a variety of proteins (including interleukins, 

interferons, and growth factors) secreted by immune cells that are involved in signaling 

between cells during the immune response to injuries, such as a TBI. Cytokines are 

generally categorized as having pro-inflammatory (such as IL-1,-12; TNFα, INF-γ) or 

anti-inflammatory effects (IL-10; TGF-β) (Hernandez-Ontiveros et al., 2013; McKee & 

Lukens, 2016), with some having both pro-and anti-inflammatory effects that assist in 
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communication between inflammatory and anti-inflammatory activities (IL-6) (Brandt & 

Pedersen, 2010). Both pro- and anti-inflammatory cytokines are produced by microglia 

and other glia, such as astrocytes, following insult to the brain, and the two types of 

cytokines work in concert to determine the fate of affected neurons. Anti-inflammatory 

cytokines shift the balance toward neuroregenerative and neuroprotective biological 

pathways and pro-inflammatory cytokines shift the balance toward apoptosis and cell 

death. Together these cytokines work to maintain the balance of inflammation 

(Hernandez-Ontiveros et al., 2013). 

What is the inflammatory response in TBI? Inflammation plays a central role in 

the recovery of patients from a TBI; observable through the activities of immune cells 

and cytokines. A TBI initiates a cascade of inflammatory events that are closely regulated 

(McKee & Lukens, 2016; Plesnila, 2016). Specifically, TBIs cause the release of 

substances, damage-associated molecular patterns (DAMPs), also known as alarmins, 

from injured cells that then trigger a subsequent immune response (Bianchi, 2007; Tang, 

Kang, Coyne, Zeh, & Lotze, 2012). The DAMPs signal pattern recognition receptors on 

microglia within the central nervous system (CNS) to produce pro- and anti-

inflammatory cytokines and chemokines; resulting cytokines and chemokines then 

activate and recruit immune cells to the injured tissues (Kigerl, de Rivero Vaccari, 

Dietrich, Popovich, & Keane, 2014). Within 24 hours, peripheral immune cells, such as 

neutrophils, are recruited first across the blood-brain barrier (Plesnila, 2016) to the site of 

injury (Clark, Schiding, Kaczorowski, Marion, & Kochanek, 1994; McKee & Lukens, 

2016; Peruzzotti-Jametti et al., 2014). Within the CNS, astrocytes and microglia, 
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phagocytic immune cells of the brain (Hernandez-Ontiveros et al., 2013), become 

activated 3-5 days post-injury while the number of neutrophils diminishes. T cells, B 

cells, and monocytes, normally found in peripheral circulation, are also found at the 

injury site at 3-5 days (McKee & Lukens, 2016). Of note, CNS produced cytokines and 

activated microglia have been found to remain elevated for months to years following 

injury, indicating an unusually lengthened immune response to TBI in human patients 

(Gentleman et al., 2004; Johnson et al., 2013; Ramlackhansingh et al., 2011). This is 

associated with long-term symptoms (Bombardier et al., 2010; Bryant, 2008) and 

cognitive deficits that patients may experience following TBI (Smith, Johnson, & 

Stewart, 2013). Current research suggests that injury to the brain results in an 

inflammatory response, which is beneficial when regulated appropriately. If 

inflammation is prolonged in time, or it is either excessive or insufficient in the degree of 

activation, it can indicate poor clinical neurological outcome (McKee & Lukens, 2016; 

Santarsieri, Kumar, Kochanek, Berga, & Wagner, 2015).   

A note on “immune privilege.” In further support of the importance of cytokines 

and inflammation to brain injury recovery, the long-held theory of central nervous system 

(CNS) immune privilege has been challenged. Current evidence shows that peripheral 

immune cells cross the blood brain barrier (BBB), and immune cells within the brain 

reach the periphery (Carson, Doose, Melchior, Schmid, & Ploix, 2006; Louveau, Harris, 

& Kipnis, 2015). Microglia activated following brain insult release a cascade of pro- and 

anti-inflammatory cytokines, regulating the innate immune response (Hendriksen, van 

Bergeijk, Oosting, & Redegeld, 2017; Hernandez-Ontiveros et al., 2013). Potential 
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clinical utility of these markers depends on factors such as the specificity to type and 

severity of injury as well as ability to be correlated with other protein markers of injury 

(Woodcock et al., 2013). 

Measurement of cytokines in clinical studies. In clinical TBI studies, 

inflammatory and immune responses are monitored through serum, cerebrospinal fluid 

(CSF) and blood levels, and include: immune cell counts (neutrophils, B cells, and T 

cells), concentrations of cytokines: [interleukin (IL) -1, -6, -8, -10, -18, tumor necrosis 

factor α (TNFα), granulocyte colony-stimulating factor (G-CSF)], inflammasomes, type 1 

interferon (INF), and transforming growth factor β (TGFβ) (McKee & Lukens, 2016). 

Technologies that have been used to measure inflammatory biomarkers in TBI patients 

including, but not limited to: flow cytometry (aka cytometry bead-based array) such as 

the BD™ Cytometric Bead Array (CBA) Human Inflammatory Cytokine Kit (BD 

Biosciences, San Diego, CA) (Ferreira et al., 2014; Schneider Soares et al., 2012); 

multiplex bead array assays (Wisniewski et al., 2007) including the Luminex™ bead 

array assay (Millipore, Billerica, Massachusetts) (Kumar, Rubin, Berger, Kochanek, & 

Wagner, 2016; Santarsieri et al., 2015); the enzyme-linked immunosorbent assay 

(ELISA) (Wisniewski et al., 2007), and Simoa, an ultrasensitive paramagnetic bead-based 

ELISA (Quanterix Corporation, Cambridge, MA) (Devoto et al., 2016). Important 

components of laboratory measures include reliability (the reproducibility of the results) 

and validity (measurement of the intended value; includes sensitivity and specificity) 

(Kane & Radosevich, 2010).  
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Studies of Inflammatory Markers and TBI Outcomes. 

Cytokines are elevated following blast exposure.  

A study in a military blast population demonstrates significantly increased 

concentrations of pro-inflammatory (TNFD, IL-6), and anti-inflammatory (IL-10) 

cytokines, with level alterations dependent upon degree of blast exposure, immediately 

following that exposure in a military training environment (Figure 2-3) (Gill et al., 2017), 

though this finding is yet to be confirmed in additional clinical populations.  
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Figure 2-3.  

Comparison of TNFD and IL-6 in moderate versus no/low blast exposures  

 

 

Note.  Permission obtained from  Gill, J., Motamedi, V., Osier, N., Dell, K., Arcurio, L., 
Carr, W., . . . Yarnell, A. (2017). Moderate blast exposure results in increased IL-
6 and TNFalpha in peripheral blood. Brain Behav Immun. 
doi:10.1016/j.bbi.2017.02.015 

 

Considering the limited clinical research in blast exposure, studies in the wider 

TBI population are considered.  

During the acute phase, serum and plasma cytokines are increased and can 

relate to TBI outcomes.   
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Cytokines are associated with TBI outcomes when measured in the acute period.  

For example, in a study of severe TBI male patients (n=24), significantly higher plasma 

levels of IL-10, -8 and -6 measured both at hospital admission and 24 hours post-injury 

were found in non-survivors as compared to those patients who survived (Ferreira et al., 

2014). Results from a similar study in patients with a range of TBI severities, including 

mild (n=18), moderate (n=16), and severe (n=93), revealed that increased serum IL-10 

levels at 10 and 30 hours post-injury were significant predictors of mortality in the severe 

TBI cohort (Schneider Soares et al., 2012). Additional evaluations of severe TBI patients 

show that elevated plasma IL-10 and TNFD are associated with poor 6 month outcomes 

(Di Battista et al., 2016); increased serum IL-6 is associated with poor neurological 

outcomes (Lustenberger et al., 2016); and increased serum IL-6, IL-10, and TNFD is 

associated with unfavorable 6-month outcomes (Santarsieri et al., 2015).    

Although published previous to the eligibility dates for inclusion in this review, it 

is important to note that these studies have built on 15+ years of previous research 

associating elevated cytokines with poor outcomes. For example, similar to Ferreira et al. 

(2014), a prior study of moderate and severe TBI patients demonstrated that elevated 

plasma IL-6 concentrations (>100 pg/mL) on day 1 following a TBI were associated with 

death within one week of the injury (Woiciechowsky et al., 2002). Likewise, plasma 

elevations of IL-6 and IL-12, and a decrease of malone dialdehyde (MDA) (indicator of 

oxidative stress) were reported within 24 hours following injury in patients who did not 

survive following a severe isolated TBI (n=15) as compared to survivors (n=7) (Arand, 

Melzner, Kinzl, Bruckner, & Gebhard, 2001). These seven studies suggest that elevations 
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of both pro-inflammatory and anti-inflammatory cytokines relate to greater mortality and 

poor neurological outcomes. Collectively, these studies suggest that elevations of 

peripheral IL-10 and/or IL-6 levels may be useful when evaluating severe TBI prognosis, 

and specifically in relation to mortality. IL-10 is considered an anti-inflammatory 

cytokine, to function as a negative regulator of pro-inflammatory cytokine production, 

while IL-6 is considered to have both pro-inflammatory and anti-inflammatory activities 

to signal immune cells, including microglia, to the injury site (McKee & Lukens, 2016). 

To clarify these complex relationships, the need for additional research in mild to 

moderate TBI populations is evident.  

Sample Source and heterogeneity are relevant concerns in TBI cytokine 

research. Given that cytokine levels have been associated with TBI outcomes in clinical 

studies, the implication of clinical utility of these biomarkers has stimulated many 

questions including which bio-specimen source is optimal for the measurement of 

cytokines. Although many studies evaluate serum or plasma concentrations of cytokines, 

circulating concentrations of cytokines may differ from cerebrospinal fluid (CSF) or 

brain tissue concentrations as a direct result of the blood brain barrier (BBB) and the 

blood meningeal barrier (BMB) though these differences remain poorly understood 

(Jensen, Massie, & De Keyser, 2013).  

Previous work in severe TBI patients that examined cytokines in serum and CSF, 

an increase in levels of anti-inflammatory markers (IL-1ra, s-TNF-r-1, and IL-10) were 

found in the serum. This finding was not consistent in the CSF of patients with 

extracranial injuries compared to patients with only isolated head injury and no additional 
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injuries. Additionally, in CSF alone, concentrations of the pro-inflammatory marker (IL-

1β) and anti-inflammatory markers (IL-1ra, s-TNF-r-1, and IL-10) were higher in all 

patients compared to controls regardless of the presence of additional injuries.  Included 

in these marker findings were patients with an increased ICP as well as patients with an 

unfavorable outcome at 6 months (Shiozaki et al., 2005) which suggests that extracranial 

injury may be responsible for observed elevated serum cytokine levels.  

Thus, more recent studies in TBI patients have considered comparison of CSF and 

plasma or serum sources, with elevated levels observed in CSF as compared to plasma or 

serum. Elevated levels of CSF IL-6, and serum IL-10 and TNFα were associated with 

poor outcome at 6 and 12 months (Kumar et al., 2015). IL-6, IL-10, and TNFα CSF 

concentrations were elevated in TBI patients compared to controls during first 6 days 

after injury (Juengst, Kumar, Failla, Goyal, & Wagner, 2015). All biomarkers measured, 

including increased CSF IL-6, IL-10, and TNFα associated with poor 6-month outcomes, 

with IL-6 remaining elevated at day 5 (Nwachuku et al., 2016). Overall, these studies 

seem to give evidence of higher levels of cytokines present in the CSF as compared to 

serum or plasma.  

Considering well-known heterogeneity among TBI studies, such as age as 

observed in some of the studies in this review (Note the delineation of ages in Table 2-3), 

it may be interesting to note differences in pediatric vs adult studies. For example, in 

contrast to the Shiozaki et al. (2005) study, a population of pediatric patients with isolated 

severe TBI (n=14) showed that an increase in plasma or CSF concentrations of IL-1β and 

IL-6 occurring between the 2- and 24-hr post injury was associated with greater injury 
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severity (GCS<5) and worse outcome at 6 months (GOS≤3) (Chiaretti et al., 2005). 

While Shiozaki et al. (2005) did not measure IL-6, the IL-1β concentration was increased 

in CSF, but not serum, from adult patient cohorts with and without additional injuries and 

worse outcomes. IL-1β was also increased in the plasma of the pediatric population, even 

though the pediatric patients were isolated head injuries, while the results in the adult 

population imply elevated serum cytokines are likely due to extracranial injuries 

(Chiaretti et al., 2005; Shiozaki et al., 2005). These studies confirm the need for 

ongoing/continuing research to further understand the role of the BBB in isolated vs. 

extracranial head injuries among heterogeneous populations, such adult vs. pediatric, and 

clarification of the optimal source for measuring inflammatory biomarkers.   

Three other studies measured cytokine levels in the brain tissue of severe patients. 

Using intracranial microdialysis to measure IL-6, significantly higher levels (p=0.04) 

were observed in the brain parenchyma of severe TBI survivors as compared to non-

survivors (Winter, Pringle, Clough, & Church, 2004).  These results suggest a 

neuroprotective role for IL-6 within the injured brain. In a more recent study using 

cerebral microdialysis, post-TBI cerebral production of cytokines was also supported 

(Helmy, Carpenter, Menon, Pickard, & Hutchinson, 2011). Similar to Winter et al. 

(2004), more work in 2011 showed a trend of increased IL-6 (did not reach significance) 

in first 24 hours after injury, followed by gradual decline, which also did not associate 

with poor outcomes (Perez-Barcena et al., 2011). Contrasting results by Shiozaki et al. 

(2005) suggest that extracranial injury contributes to the increased peripheral cytokine 

levels.  More recent evidence suggests that isolated brain injury may, in fact, contribute 
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to the altered circulating (plasma or serum) cytokine levels that are observed post-TBI. 

For example, Di Battista et al. (2016) found that poor outcomes and mortality in 

moderate and severe TBI patients (n=166) were associated with elevated plasma levels of 

IL-1β, IL-10, and TNFα within 24 hours of admission. These cytokine increases are 

possibly associated with the activation of the sympathetic nervous system, as evidenced 

by the positive association of increased levels of epinephrine and norepinephrine with 

elevated levels of cytokines (Di Battista et al., 2016). Overall, evidence from these recent 

seven studies, found in Table 2-3, seems to suggest cytokines are altered in serum, CSF, 

and brain tissue following TBI in the acute period, and that these altered levels may have 

prognostic value in the acute or chronic time periods following TBI. However, additional 

studies are needed to confirm associations of specific cytokines with TBI outcomes, and 

to elucidate the specific biological functions of various cytokines in the inflammatory and 

recovery processes following TBI. Further research is also needed to differentiate the 

roles of cytokines in mild and moderate TBI, as most studies have focused on severe TBI 

cohorts. Future research studies should take into account the following: 1) recent 

development of higher-sensitivity techniques; 2) potential confounding factors within and 

between patient cohorts such as the presence of additional injuries, age, gender, how 

outcomes are measured, and the timing of sample collection [recognized issues in the 

literature (Loane & Faden, 2010)]; and, 3) the potential interrelationship of the 

inflammatory response with other biological pathways.  

Cytokines may persist in the chronic period post-TBI. In addition to 

inflammatory cytokines during the acute period following TBI, three studies described 
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evidence that inflammatory cytokines, measured in serum, contributed to TBI outcomes 

in the chronic period, greater than three months following injury. The most recent study 

was of a military population deployed less than 16 months prior to sample collection, 

increased plasma levels of IL-6 and TNF-α were found in military personnel 

experiencing high PTSD as compared to low PTSD in those military personnel with TBI 

(Devoto et al., 2016). The increased level of IL-6 in the chronic period is interesting 

considering similar observations in acute period studies. These similar observations 

suggest dysregulation of the immune system resulting from an inflammatory state left 

chronically unresolved from the acute response to injury (Gentleman et al., 2004; 

Johnson et al., 2013). The work by Devoto et al. (2016) demonstrates the association of 

chronic inflammation, indicated by elevated cytokine levels in post-TBI persons with 

comorbid conditions, such as PTSD and depression, highlighting the need to detect and 

alleviate chronic inflammation after TBI. Another study of patients with severe TBI 

(n=19) with measurements taken at admission, 3 months, and 6 months, found 

persistently increased plasma levels of TNF-α, IL-6, INF-γ, and IL-1b at 3 and 6 months 

(Licastro et al., 2016). Elevated cytokine levels were associated with a slower rate of 

cognitive recovery and poorer cognitive functioning neuropsychological tests at 12 

months. Increased levels of TNF-α and INF-γ were also associated with poor functional 

recovery at 12 months, using measurements from the Functional Independence Measure 

and Disability Rating Scale (Licastro et al., 2016). Although limited in quantity, chronic 

phase studies are similar to acute phase studies as they seem to point to an important role 

of chronic inflammation, as measured by circulating cytokines, in TBI recoveries. 
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 Inflammation is not independent of other biological pathways. Inflammatory 

markers are part of well-regulated systems that coordinate to promote recovery, but also 

can become dysregulated, and thus may explain poor recovery even in the chronic period 

of TBI. In support of this concept, inflammatory markers may influence other types of 

pathways, such as those in the endocrine system. For example, the hypothalamic-

pituitary-adrenal (HPA) axis regulates cortisol secretion and is known to have a central 

role in the body’s response to physical and psychological trauma (Yeager, Pioli, & 

Guyre, 2011). Cytokines such as IL-1β, IL-6, and TNFα are known to have bidirectional 

interactions with the HPA axis, which provide regulation of inflammation (Black, 1994). 

Specifically, immune cells have glucocorticoid receptors that cortisol activates to reduce 

inflammation (Walker & Spencer, 2018).  These cytokines also feedback on the HPA 

axis, to further regulate cortisol activity, as well as inflammation, such that both systems 

are regulated sufficiently (Yeager et al., 2011). During states of disease and sickness, 

inflammatory cytokines increase along with resistance to glucocorticoid. This likely 

occurs through the interference of inflammatory cytokine pathways with glucocorticoid 

receptor pathways, contributing to the progression of disease (Pace, Hu, & Miller, 2007; 

Yeager et al., 2011). In support of this interaction between cytokines and the HPA axis, 

an acute phase study of severe TBI patients (n=91) correlated a greater inflammatory load 

score (ILS),  calculated by averaging serum concentrations of interleukin (IL)-6, IL-10, 

soluble Fas (sFas), soluble intracellular adhesion molecule (sICAM)-1, tumor necrosis 

factor alpha (TNF-α), and CSF cortisol levels for days 0-6 post injury, to poor outcomes 

at 6 months as measured by the Glasgow Outcome Score-Extended (Santarsieri et al., 
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2015). In this study both a high or low mean cortisol level was found to mediate this 

effect on ILS, implicating the neuroendocrine and immune systems together in TBI 

outcomes. Thus, both under- and over reactive immune/inflammatory responses may 

result in poor outcomes, and cortisol levels may be important in understanding 

inflammation during acute recovery from TBIs (Santarsieri et al., 2015). Another possible 

influence on the endocrine system post-TBI is brain-derived neurotrophic factor (BDNF), 

a neurotrophin expressed in the brain that functions in the plasticity and survival of 

neurons (Hempstead, 2015), which has been found to influence the HPA axis (Colzato, 

Van der Does, Kouwenhoven, Elzinga, & Hommel, 2011; Gray, Milner, & McEwen, 

2013; Shalev et al., 2009). In a follow-up study to Santarsieri et al. (2015), increased 

serum cortisol and decreased serum BDNF at days 0-3 post injury were linked to poor 

clinical outcomes (Kumar et al., 2016).  Elevated CSF BDNF has been previously 

associated with greater risk for mortality after a severe TBI (Failla, Conley, & Wagner, 

2016). Therefore, regulation of immune function, in part through endocrine function, is 

important during the acute period, and relates to a greater likelihood of poor recovery. 

Interventions for inflammation.  

Finally, interventions, including pharmacological and nonpharmacological 

methods may modulate inflammatory responses, thereby altering outcomes following 

TBI. For example, a randomized controlled trial of severe TBI patients demonstrated that 

patients (n=65) receiving pre-hospital resuscitation with hypertonic saline (n=30) 

experienced significantly reduced serum levels of TNF-α and IL-10 as compared to the 

group who received normal saline (n=35) (Scarpelini et al., 2010).  Hypertonic saline has 



 56 

the potential to confer beneficial anti-inflammatory and immune modulation effects in 

addition to the fluid shift from intracellular to intravascular and interstitial spaces 

(Strandvik, 2009). However, the impact on acute or chronic outcomes was not reported 

(Scarpelini et al., 2010). Conversely, a separate study found hypertonic saline did not 

alter 6-month outcomes or survival (GOSE, DRS) in severe TBI patients (n=1087). 

However, serum inflammatory markers were not measured (Williams et al., 2010). Thus, 

the influence of hypertonic saline on TBI patient outcomes as well as inflammatory 

cytokines remains to be answered.  Results of a randomized controlled study of a 

pharmacological agent, ulinastatin, administered every 8 hours revealed TNF-α, IL-2, and 

IL-6 levels as well as incidence of multiple organ dysfunction syndrome (MODS) and 

systemic inflammatory response syndrome (SIRS) were decreased in the treatment 

(n=32)versus control group (n=28), as measured at admission and 10 days post-injury 

outcomes (Tu, Diao, Yang, Sun, & Zhang, 2012).  

Summary and Relevance to Nursing 

TBIs are a significant cause of hospitalization, disability, long-term care, and 

mortality across all age groups in the United States (Taylor, 2017). Factors including 

genetic predisposition, the timing and relative concentrations of immune and 

inflammatory markers, and environmental influences, can modulate neurological 

recovery processes following TBI, and these complicated relationships among the 

aforementioned factors remain largely uncharacterized (McKee & Lukens, 2016; 

Santarsieri et al., 2015). Results of this literature review show that pro- and anti-

inflammatory cytokines (IL-6, IL-10, and TNF- α) are elevated in the acute period 
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following injury, may remain chronically unresolved, and are associated with poorer 

outcomes. Interventions for inflammation are currently in development. Taking note of 

how these interventions influence the balance of inflammatory cytokines in a variety of 

tissues will be critical in future studies to optimize patient outcomes. At this time, studies 

of gene expression following TBI in clinical populations are few, yet promising, 

warranting further exploration into the biological pathways including, but not limited to 

inflammation, altered following TBI. These studies will yield insight into pathways that 

can then be studied at a proteomic biomarker level, such as cytokines, which will allow 

for the development of diagnostics and therapeutics to directly help the patient.  As 

demonstrated in this review, biomarkers, including but not limited to cytokines, are an 

increasingly studied area to determine potential underlying mechanisms of injury and 

recovery processes after TBI. Additionally, biomarkers may yield insight into differential 

biological pathways in the various severity and subtypes of brain injury (Di Battista et al., 

2015). Although the potential clinical utility of biomarkers in patient care is well 

recognized, the roles in TBI pathologies has yet to be fully realized. A deeper 

understanding of biological profiles will help direct future research to aid health care 

providers, nurses, and other medical personnel in improved diagnosis, monitoring and 

treatment for individuals with TBI. 

 



 58 

Table 2-3.  
 
Recent literature examining cytokines in clinical TBI 
 

Reference Population  Biomarkers Specimen 
Source and 
Collection 

Times 

Significant IL-6, IL-10, and TNFD Results 

(Devoto et al., 2016)  
 
 
Inflammation Relates to Chronic 
Behavioral and Neurological 
Symptoms in Military with 
Traumatic Brain Injuries. 
 

Mild and 
moderate TBI 
 
N=83 
Cases = 63 
Controls = 20 
 
All male, military 
personnel; cases 
mean age 33.2 yrs; 
controls mean age 
31.6 yrs 

IL-6; 
IL-10;  
TNFα 
 
 
 
 
 

Plasma 
 
Chronic: <16 
months following 
deployment 

IL-6 and TNF-α levels higher in TBI vs. 
control: 
 
n IL-6, p = 0.007 
n TNFα, p = 0.003 
 
PTSD following TBI associated with higher 
levels of IL-6 and TNF-α: 
 
n IL-6, p = 0.001  
n TNFα, p = 0.013 
 

(Di Battista et al., 2016)  
 
Inflammatory cytokine and 
chemokine profiles are associated 
with patient outcome and the 
hyperadrenergic state following 
acute brain injury. 
 
 

Moderate and 
Severe TBI 
 
N = 187 
Cases = 166 
Controls = 21 
 
74.7% male; age 
16-67 yrs.  
 
 
 

IL-1β; 
IL-2; 
IL-4; 
IL-5; 
IL-8 
IL-10; 
IL-12p70; 
IL-13; 
TNFα; 
IFN-γ; 
IP-10; 
MCP-1; 
MCP-4; 

Plasma 
 
Acute: hospital 
admission, 6, 12, 
and 24-hours 
post-injury 

Elevated IL-10 in all injured patients as 
compared to controls: 
 
n IL-10, p < 0.001  
 
Elevated IL-10 and TNF-α associated with 
poor outcome at 6 months (GOS-E): 
 
n IL-10, p < 0.05 
n TNFα, p < 0.05 
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Reference Population  Biomarkers Specimen 
Source and 
Collection 

Times 

Significant IL-6, IL-10, and TNFD Results 

MDC; 
MIP-1β; 
TARC 
 

 
 
 

(Ferreira et al., 2014) 
  
Increased levels of interleukin-6, -
8 and -10 are associated with fatal 
outcome following severe 
traumatic brain injury. 

Severe TBI 
 
N = 37 
Cases = 24 
Control = 13 
 
Males, 18-74 yrs. 
 

IL-1b; 
IL-6; 
IL-8; 
IL-10; 
IL-12p70; 
TNF-α 
 

Plasma 
 
Acute: hospital 
admission (5.6 
hour mean time 
from injury), 24 
and 72 hours 
post-injury 
 

Il-6, IL-10, and TNFα elevated in TBI patients 
at admission compared to controls:  
 
n IL-6, p < 0.05 
n IL-10, p < 0.05 
n TNFα, p < 0.05 
 
Il-6 and IL-10 elevated in TBI patients with 
fatal injuries, compared to TBI survivors, at 
admission and 24 hours: 
 
n IL-10, p < 0.05 
n TNFα, p < 0.05 
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Reference Population  Biomarkers Specimen 
Source and 
Collection 

Times 

Significant IL-6, IL-10, and TNFD Results 

(Gill et al., 2017) 
 
Moderate blast exposure results in 
increased IL-6 and TNFalpha in 
peripheral blood. 

Blast Exposure 
 
N = 62 
Cases = 30 
Controls = 32 
 
Military; males, 
30.55 yrs. (mean) 
 

IL-6; 
IL-10;  
TNFα 

Serum 
 
Acute: day of 
blast, 24 hours 
later 

Elevated IL-6 and TNFα in cases immediately 
following blast as compared to controls:  
 
n IL-6, p < 0.01 
n IL-10, p < 0.01 
 

(Helmy et al., 2011) 
 
The cytokine response to human 
traumatic brain injury: temporal 
profiles and evidence for cerebral 
parenchymal production. 

Severe TBI 
 
N = 12 
 
Males and females, 
18-61 yrs. 

42 cytokines, 
including: 
IL-6; 
IL-10;  
TNFα 

Plasma;  
Microdialysate  
 
Acute: daily for 
5 days 

Peaks of cytokines (2x higher concentrations 
than the median) in brain microdialysate were 
noted on the following days:  
Day 1: n TNFα 
Day 2: n IL-6 
Day 4-5: n IL-10 
 
Il-6 and IL-10 were 10x higher in brain 
microdialysate than plasma, p < 0.001.  

(Hergenroeder et al., 2010) 
  
Serum IL-6: a candidate 
biomarker for intracranial 
pressure elevation following 
isolated traumatic brain injury.  

Severe TBI 
 
N = 42 
Cases = 28, 
Controls = 14 
 
 
35 males and 7 
females,  
14-56 yrs. 
 

IL-10; 
IL-13; 
IL-15; 
IL-16;  
IL-1α; 
IL-1β; 
Il-1ra;  
IL-2;  
IL-3;  
IL-4;  
Il-5;  

Serum   
 
Acute: first 24 
hours after 
injury, and daily 
for 5 days 

IL-6 levels within 17 hours of injury 
associated with elevated ICP after TBI:  
 
n IL-6, p = 0.002 
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Reference Population  Biomarkers Specimen 
Source and 
Collection 

Times 

Significant IL-6, IL-10, and TNFD Results 

IL-6;  
IL-7 
 

(Juengst et al., 2015) 
  
Acute inflammatory biomarker 
profiles predict depression risk 
following moderate to severe 
traumatic brain injury. 

Moderate and 
Severe TBI 
 
N= 56 
CSF Cases = 41 
Serum Cases = 50  
Controls = 15 
 
 
Males and females, 
18–70 yrs.  

IL-1 β; 
IL-4; 
IL-5; 
IL-6; 
IL-7; 
IL-8; 
IL-10; 
IL-12; 
TNFα; 
sVCAM-1; 
sICAM-1; 
sFAS. 
 

CSF;  
Serum 
 
Acute: CSF was 
collected twice 
daily, serum 
collected once 
daily; for up to 6 
days post injury 
 

IL-6, IL-10, and TNFα CSF concentrations 
elevated in cases compared to controls during 
first 6 days after injury:  
 
n IL-6, p < 0.05 
n IL-10, p < 0.05 
n TNFα, p < 0.05 
 
 
  

(Kumar et al., 2015) 
  
Acute CSF interleukin-6 
trajectories after TBI: 
Associations with 
neuroinflammation, polytrauma, 
and outcome. 

Severe TBI 
 
N = 129 
Cases = 114 
Controls = 15 
 
Males and females, 
18-70 yrs. 

IL-1β;  
IL-4; 
IL-5;  
IL-6;  
IL-7;  
IL-8;  
IL-10;  
IL-12;  

CSF;  
Serum 
 
 
Acute: samples 
collected every 
12 hours, up to 5 
days post injury 

CSF IL-6 levels elevated in cases compared to 
controls at each day following injury:  
 
n IL-6, p < 0.001 
 
CSF IL-10, and TNFα elevated in TBI sub-
group with high IL-6 levels:  
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Source and 
Collection 

Times 

Significant IL-6, IL-10, and TNFD Results 

 TNF-α;  
sVCAM-1;  
sICAM-1;  
sFAS 

n IL-10, p < 0.05 
n TNFα, p < 0.05 
 
Elevated levels of CSF IL-6, and serum IL-10 
and TNFα also associated with poor outcome 
at 6 and 12 months (GOS):  
 
n IL-6, p < 0.001 
n IL-10, p < 0.05  
n TNFα, p < 0.05  
 
Elevated serum IL-6 associated with poor 6-
month outcome:  
 
n IL-6, p = 0.015 
 

(Licastro et al., 2016) 
 
Peripheral Inflammatory Markers 
and Antioxidant Response during 
the Post-Acute and Chronic Phase 
after Severe Traumatic Brain 
Injury. 

Severe TBI 
 
N = 19 
 
Males and females, 
19-61 yrs.  

TNFα; 
IL-6; 
INFγ;  
IL-1b 

Plasma 
 
Chronic: First 
sample collected 
at 15-66 after 
TBI, followed by 
3 and 6 months 
later 

Increased levels of all cytokines measured 
associated with poor cognitive outcomes:  
 
n IL-6, p = 0.0170 
n TNFα, p = 0.0033  
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Source and 
Collection 

Times 

Significant IL-6, IL-10, and TNFD Results 

(Lustenberger et al., 2016)  
 
 
The effect of brain injury on the 
inflammatory response following 
severe trauma. 

Severe TBI 
 
N = 123  
 
Isolated TBI = 26 
 
TBI with  
polytrauma = 36 
 
Polytrauma, no TBI 
= 61 
 
Males and females,  
16-66 yrs.  

IL-6; 
CRP; 
leukocytes 

Serum  
 
Acute: upon 
admission, and 
days 1-3 post 
injury 
 

IL-6 levels significantly different between the 
groups at admission and for 3 days post-
injury, with peak at 1 day: 
 
n IL-6, p < 0.05 
 
Increased IL-6 levels significantly related to 
multiple organ failure, sepsis and neurological 
outcomes (GOS) in TBI cohorts:  
 
n IL-6, p < 0.05 
 
 

(Nwachuku et al., 2016)  
 
Time course of cerebrospinal fluid 
inflammatory biomarkers and 
relationship to 6-month 
neurologic outcome in adult 
severe traumatic brain injury. 

Severe TBI 
 
N = 32 cases  
Biomarkers 
compared to 
laboratory 
standards 
 
Males and females,  
17-80 yrs. 

IL-1β; 
IL-6; 
TNF-α; 
IFN-γ; 
IL-12p70; 
L-10; 
IL-8 

CSF  
 
Acute: samples 
collected days 1-
5 post-injury 
 

Increased IL-6, IL-10, and TNF-α (and all 
biomarkers) associated with poor 6-month 
outcome (GOS) (p < 0.05), with IL-6 
remaining elevated at day 5.  
 
nIL-6, p < 0.05 
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Significant IL-6, IL-10, and TNFD Results 

(Perez-Barcena et al., 2011)  
 
Lack of correlation among 
intracerebral cytokines, 
intracranial pressure, and brain 
tissue oxygenation in patients with 
traumatic brain injury and diffuse 
lesions. 
 

Severe TBI 
 
N = 16   
Feasibility study, no 
controls  
 
Males and females,  
15-65 yrs. 
 
 

IL-1; 
Il-6; 
IL-8; 
IL-10 
IL12; 
TNFα 
 

Serum;  
Microdialysate  
 
Acute: samples 
collected every 
24 hours for 7 
days 

Increased IL-6 (did not reach significance) in 
first 24 hours after injury, followed by gradual 
decline. 
 
No association between IL-6 and ICP, brain 
oxygenation, or edema.  

(Santarsieri et al., 2015)  
 
Variable neuroendocrine–immune 
dysfunction in individuals with 
unfavorable outcome after severe 
traumatic brain injury. 

Severe TBI 
 
N = 115 
Cases = 91 
Controls = 24 
 
Males and females,  
16-75 yrs. 

IL-6; 
IL-10; 
sFas; 
ICAM-1; 
TNF-α; 
Cortisol 
 

CSF; 
Serum  
 
Acute: CSF 
collected twice 
daily, up to 6 
post-injury 
 
Serum collected 
once daily, up to 
6 days 
 

n IL-6, IL-10, and TNF-α higher in cases 
compared to controls, p < 0.01 
 
IL-6, IL-10, and TNF-α significantly 
associated with unfavorable 6-month outcome 
(GOS) and CSF cortisol:  
 
n IL-6, p < 0.01 
n IL-10, p < 0.01  
n TNFα, p < 0.05  
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(Schneider Soares et al., 2012)  
 
Interleukin-10 Is an Independent 
Biomarker of Severe Traumatic 
Brain 
Injury Prognosis.  
 
 

Mild, Moderate, 
and Severe TBI 
 
N = 127 
Cases = 93 
Controls = 34 
 
Males and females,  
18-79 yrs.  

IL-10; 
TNF-α 
 

Serum  
 
Acute: hospital 
admission, and 
two additional 
samples up to 4 
days later 
 
 

Elevated IL-10, but not TNFα, correlated 
significantly with GCS severity: 
 
n IL-10, p < 0.0001  
 
Increased IL-10 levels associated with greater 
mortality rate in severe TBI:  
 
n IL-10, p = 0.01  
 

(Stein et al., 2011) 
  
Relationship of Serum and 
Cerebrospinal Fluid Biomarkers 
with Intracranial Hypertension 
and Cerebral Hypoperfusion After 
Severe Traumatic Brain Injury. 
 

Severe TBI 
 
N = 24  
 
Mostly male 
(95.8%), 18-83 yrs. 
 

TNFα; 
IL-1E; 
IL-6; 
IL-8;  
IL-10  

CSF; 
Serum 
 
Acute: hospital 
admission and 
twice daily for 7 
days  

Increased serum TNFα levels correlate with 
increased ICP and decreased CPP: 
  
n TNFα, p < 0.001 
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Significant IL-6, IL-10, and TNFD Results 

(Yan et al., 2014)  
 
Post-traumatic hypoxia is 
associated with prolonged cerebral 
cytokine production, higher serum 
biomarker levels, and poor 
outcome in patients with severe 
traumatic brain injury. 

Severe TBI 
 
N = 62 
Cases = 42 
Controls = 20 
 
Males and females, 
16-74 yrs. 

IL-2; 
IL-4; 
IL-6; 
IL-8; 
IL-10; 
TNF; 
INFJ; 
GM-CSF; 
NSE; 
S100; 
MBP 

CSF 
 
Acute: Daily 
from hospital 
admission to 5 
days post-injury 
 
 

IL-6 and IL-10 CSF concentrations (and all 
cytokines) were significantly increased 
compared to controls at each day, with higher 
concentrations trending during the first 24-48 
hours:  
 
n IL-6, n IL-10, p < 0.05 
 
 
  

(Yousefzadeh-Chabok et al., 
2015)   
 
The Relationship Between Serum 
Levels of Interleukins 6, 8, 10 and 
Clinical Outcome in Patients With 
Severe Traumatic Brain Injury. 
 

Severe TBI 
 
N = 44   
 
Mostly (97.7%) 
male, ≥ 14yrs.  

Il-6; 
IL-8; 
IL-10 

Serum  
 
Acute: 6 hours 
post injury 
  
 

Increases in Il-6 correlate with unfavorable 6-
month outcome (GOS): 
 
n IL-6, p=0.03 

Note. Glasgow outcome score (GOS); Glasgow outcome score-extended (GOS-E); intracranial pressure (ICP): cerebral 
profusion pressure (CPP): cerebral spinal fluid (CSF): Interleukin (IL); tumor-necrosis factor α (TNFα); soluble vascular 
adhesion molecule-1 (sVCAM-1); soluble intracellular adhesion molecule-1 (sICAM-1); and soluble Fas (sFAS); c-reactive 
protein (CRP) 
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ABSTRACT 

Blast exposure is common in military personnel during training and combat 

operations, yet biological mechanisms reacted to cell survival and function that 

coordinate recovery remain poorly understood. This study explored how moderate blast 

exposure influences gene expression; specifically, gene-network changes following 

moderate blast exposure.  On day 1 (baseline) of a 10-day military training program, 

blood samples were drawn, and health and demographic information collected. Helmets 

worn throughout training measured overpressure in pounds per square inch (psi). On day 

7, some participants experienced moderate blast exposure (peak pressure ≥5 psi). On day 

10, 3 days post-exposure, blood was collected and compared to baseline with RNA-

sequencing to establish gene expression changes. Based on dysregulation data (RNA-

sequencing) and top gene-networks [Ingenuity® Pathway Analysis (IPA®)], a subset of 

genes was validated (NanoString). Five gene-networks were dysregulated; specifically, 

two highly significant networks: 1. Cell death/survival (score: 42), including 70 genes, 

with 50 downregulated, and 2. Cell structure, function, and metabolism (score: 41), 

including 69 genes, with 41 downregulated.  Genes related to ubiquitination, including 

neuronal development/repair: UPF1 (UPF1, RNA Helicase and ATPase) were 

upregulated while UPF3B (UPF3 Regulator Of Nonsense Transcripts Homolog B) was 

downregulated. Genes related to inflammation were upregulated, including ARRB1 

(arrestin β1), implicating inflammation in recovery. AKT1, a gene coordinating cellular 

recovery following TBIs, was upregulated. Moderate blast exposure induced significant 

gene expression changes including gene-networks involved in cell death/survival and 
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cellular development/function. The present findings may have implications for 

understanding blast exposure pathology and subsequent recovery efforts. 

Key words: Blast; overpressure; gene-expression; RNA-sequencing; NanoString 
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CHAPTER THREE 

A MODERATE BLAST EXPOSURE RESULTS IN DYSREGULATED GENE 
NETWORK ACTIVITY RELATED TO CELL DEATH, SURVIVAL, STRUCTURE, 

AND METABOLISM 
 

Introduction 

When an individual is in close proximity to a blast, the resulting overpressure (i.e. 

shock wave) can cause injury to the brain and/or body (Jones, Fear, & Wessely, 2007). 

The increased use of improvised explosives, sophisticated weaponry, and explosive entry 

techniques has led to increased risk of blast exposure. Specifically, in military personnel 

who deployed to recent conflicts of Operation Iraqi Freedom (OIF) and Operation 

Enduring Freedom (OEF), an estimated 300,000 service members were exposed to at 

least one blast from adversary attack (Tenielien & Jaycox, 2008). Blast overpressure from 

firing weapons is increasing commensurate with increases in weaponry power. High 

intensity blast exposure events can damage connective tissues, including the central 

nervous system, resulting in cerebrovascular damage and blood brain barrier disruption. 

Significant overpressure can result in tearing of the long axons of neurons (diffuse axonal 

injury) leading to the associated deficits and comorbidities of a traumatic brain injury 

(TBI) (Mac Donald et al., 2016; Yurgil et al., 2014). There is evidence suggesting blast-

induced TBI (biTBI) has distinct features from blunt-force or penetrating TBI (Courtney 

& Courtney, 2015). However, it is difficult to evaluate the consequences of blast in 

isolation using human subjects, as there is often concomitant blunt force or penetrating 

TBI when objects are propelled and contact the skull (e.g. shrapnel) or the individual is 

thrown. These challenges contribute to the relatively poor understanding of the 
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pathophysiologic responses to blast and lack of therapies to treat blast-exposed 

individuals. Moreover, the response and subsequent recovery from blast exposure 

represent an important line of research that remains to be further explored and may 

elucidate the biological mechanisms associated with blast.  

Differential gene expression is reported in a small number of clinical TBI studies 

(Cho et al., 2016; Gill et al., 2016; Livingston et al., 2016; Merchant-Borna et al., 2016), 

with few studies relevant to blast TBI (Carr et al., 2015; Gill, Cashion, et al., 2017; 

Heinzelmann et al., 2014). Gene expression regulation is imperative to appropriate 

cellular response to external mechanical, environmental, or biological stimuli, and the 

nuclear factor kappa-light-chain enhancer of activated B cells (NF-NB) complex is a main 

transcription factor of these adaptive gene expression changes (Hayden & Ghosh, 2008). 

More specifically, the NF-NB complex is a transcription factor central to numerous 

cellular pathways influencing cell survival and proliferation, including inflammatory and 

immune responses, gene activation, and ubiquitination (Hayden & Ghosh, 2008). Animal 

models demonstrate that the NF-NB complex regulates the innate immune response 

through upregulation of proinflammatory cytokines including tumor necrosis factor 

(TNF) (Bohuslav et al., 1998), interleukin 1 (IL-1) (Lawrence, 2009), and interleukin 6 

(IL-6) (Baeuerle & Baltimore, 1996). In addition, mutations and epigenetic changes 

within the NF-NB pathway have been linked to immune and inflammatory diseases 

(Courtois & Gilmore, 2006). Cytokines are among a number of factors that may activate 

NF-NB. NF-NB becomes activated when ubiquitin degrades its inhibitory protein, INK, 

freeing NF-NB to enter the nucleus and activate gene transcription (Baeuerle & 
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Baltimore, 1996; Chen, Bhoj, & Seth, 2006). Study of gene expression changes following 

blast exposure may elucidate some of these complexities surrounding the roles and 

relationships of ubiquitin and inflammatory cytokines following blast exposure.  

Within clinical studies of TBI, changes in the NF-NB network are reported in a 

limited number of studies (Cho et al., 2016; Gill et al., 2016; Livingston et al., 2016; 

Merchant-Borna et al., 2016), but have not yet been examined in biTBI. Preclinical 

studies of blast exposures have demonstrated altered gene expression, including cognitive 

impairment (Bailey, Sujith Sajja, Hubbard, & VandeVord, 2015; Tweedie et al., 2016) 

and immune function (Struebing et al., 2017). Recent work in military training that 

involves personnel exposure to blast has demonstrated that ubiquitin carboxy-terminal 

hydrolase-1 (UCH-L1) is weakly correlated with repeated exposure to low-level blast 

(Carr et al., 2015), consistent with previous work in TBI (Papa et al., 2012) and blast 

exposure (Heinzelmann et al., 2014; Tate et al., 2013). In particular, Heinzelmann et al. 

(2014) found protein ubiquitination genes (associated with neuronal recovery, central 

regulator in IPA) to be downregulated in military personnel with chronic symptoms 

following blast head injury. UCH-L1 is predominately expressed in the neurons and 

neuroendocrine cells within the brain (Doran, Jackson, Kynoch, & Thompson, 1983; 

Leroy, Boyer, & Polymeropoulos, 1998) and is an enzyme responsible for protein 

degradation, thus providing a role in ubiquitin stability within neurons and maintaining 

neuronal health (Osaka et al., 2003). In animal models, a mutation in the UCH-L1 gene 

causing a truncated protein is associated with neurodegeneration, likely due to the 

buildup of ubiquitin and subsequent lack of protein clearance (Saigoh et al., 1999). Given 
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this limited number of clinical studies, this study sought to further examine differential 

gene expression pathways in a blast exposed population. The purpose of this study was to 

examine gene networks involving cell death and survival as well as cell structure, 

function, and metabolism to investigate the role of these networks specific to biTBI.  

Materials and Methods 
 

To address the gaps in the knowledge surrounding the consequences of exposure 

to isolated blast, a unique cohort of military personnel engaged in training on advanced 

techniques for breaching buildings with controlled explosives was utilized. The breaching 

activities were conducted under close supervision and with personal protective equipment 

and established safety procedures, eliminating the chance of concomitant blunt-force or 

penetrating TBI. Moreover, recruiting from a training environment, as opposed to real-

world combat, facilitated accurate measurement of isolated blast exposures using helmets 

equipped with pressure sensors (see Blast measurement). This novel sampling also 

facilitated a collection of baseline data, including pre-exposure blood draws to support 

assessment of gene expression changes after blast. During the two-week training 

program, some participants (n = 29) experienced a moderate blast exposure with peak 

pressure exceeding 5 pounds per square inch (psi), which exceeded the training range 

limit of 4 psi and was more than 200% greater than typical exposures measured in such 

training (e.g., Carr et al., 2015). These 29 cases were studied for gene expression changes 

related to cell death and survival as well as cell structure, function, and metabolism from 

training day 1 to training day 10. Unbiased RNA-sequencing (RNA-seq) was used to 

detect dysregulated genes (Gill, Cashion, et al., 2017). Ingenuity pathway analysis (IPA) 
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of dysregulated genes was used to identify gene networks, two of which were validated in 

the present study using NanoString’s nCounter® system.  

Participants. 
 
All study protocols were reviewed and approved by the Institutional Review 

Boards (IRBs) at the Naval Medical Research Center and Walter Reed Army Institute of 

Research (NMRC#2011.0002; WRAIR#1796) as described in a past publication (Carr et 

al., 2015). Prior to study participation, each participant provided informed consent. The 

parent study from which the present study is drawn was comprised of (N = 108) male 

active-duty military service members who were engaged in two-week blast training 

programs, as either a student or instructor. The goal of the course was to teach advanced 

techniques for explosive breaching, a tactic used to gain access into secured structures. 

All participants provided demographic and health history data at baseline, as well as 

blood samples. For the present study, participants (n = 29) examined were those who 

experienced a moderate blast exposure (≥ 5psi). These 29 individuals provided blood 

samples at the end of training (day 10) that were used in the present study to examine 

gene expression changes from baseline to 3 days post-moderate blast exposure. 

Self-reported data provided by participants at baseline included demographic, 

health, and blast-history information. Demographic data included age, military rank, and 

educational status. Health information collected included smoking status and history of 

TBI (see Table 3-1). Previous blast exposure data was also obtained through self-reports 

on how many blast exposures had been experienced during breaching and artillery fires 

using the following ordinal scale: 0, 1-9, 10-39, 40-99, 100-199, 200-399, and 400+ blast 
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exposures. Details regarding the surveys used to collect data have been previously 

described (Carr et al., 2015).  

Blast measurement. 

 Objective blast data was collected using standard Army combat helmets equipped 

with bilateral sensors capable of measuring blast parameters greater than a threshold of 

0.4 psi on either sensor. Helmets were worn throughout training and the average of the 

right and left sensor was used as data to approximate levels of explosive blast each 

participant experienced; the sensitivity of the sensors is based on the technological 

specifications of the device itself (micro Data Acquisition System, μDAS; Applied 

Research Associates, Inc., Albuquerque, NM) as well as considerations for signal-to-

noise ratios and effect on data interpretation.   

Laboratory Methods. 
 
Blood Sampling.  
 

Whole blood samples were collected at baseline and at the end of 2-week training; 

3 days after moderate blast. Blood was collected in PAXgene tubes and stored in a -80°C 

freezer until the time of batch processing.  

RNA-seq. 

Random fragmentation of complementary deoxyribonucleic acid (cDNA) 

followed by 5’ and 3’ adapter ligation was used to create a cDNA library. Average 

fragment length was 150-170bp. RNA integrity was assessed using Agilent Technologies 

2100 Bioanalyzer and the mean value was 8.9 with standard error of 0.05. Samples from 

29 participants on day 1 and day 10 were sequenced for mRNA using the Illumina 
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HiSeq®2500 Next Generation Sequencing system (Illumina Inc., San Diego, CA). Using 

this system, we performed RNA-seq to read paired-ends; we read 101 bases per each end. 

Sequencing data used in the study were deposited in the Gene Expression Omnibus 

(GEO) with GEO ID GSE89866. 

Ingenuity Pathway Analysis. 

Dysregulated genes were further explored using IPA® software, build version 

389077M, content version 27821452, released 2016-06-14, Qiagen, Redwood City, CA). 

Two pathways of interest were identified (see “Results” for details and Figures 3-1 and 3-

2).  

NanoString.  

A subset of genes examined in RNA-seq data were selected to validate gene 

expression changes using a direct digital detection system (Nanostring Technologies, 

Seattle, WA). In selecting genes to validate, the extent of dysregulation, biological 

plausibility, and the position of the protein within the IPA® pathway diagrams were 

considered. Two pathways were identified, one focused on cell death and survival and 

another focused on basic structure, function, and development. A panel was designed for 

each pathway to include 50 markers of interest, plus a total of 10 reference/housekeeping 

genes for data normalization (Table 3-2 and Table 3-3). Probes for the 50 genes of 

interest and the housekeeping genes were designed and manufactured by Nanostring 

Technologies. NanoString was used to determine the mean copy number of each mRNA 

probe of interest based on manufacturer’s protocol. The standard manufacturer protocol 
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was followed for sample preparation, hybridization, and detection (see Supplement for 

more detailed information regarding housekeeping genes and NanoString methods). 

Statistical Analysis 
 

Overview. 
 
The Statistical Package for the Social Sciences (SPSS; version 22; IBM 

Corporation, Armonk, NY) and Nanostring’s nSolverTM Analysis Software (version 3; 

Nanostring Technologies, Seattle, WA) were used for all analyses.  

 
RNA-seq Analysis. 
 

The moderate blast exposed cases (n = 29) met quality control (QC) criteria based 

on the RNA Integrity Number (RIN) and were subsequently sequenced. In total, between 

52.5 million and 75.5 million read counts were completed for each sample; in 94.95% of 

base calls, an accuracy of at least Q30 was achieved. To establish bioinformatics QC, 

FastQC (version 0.11.5, Babraham Bioinformatics, Cambridgeshire, UK) was used. Data 

was aligned to a reference genome (hg19) using an open-source aligner, STAR, (version 

2.5) (Dobin et al., 2013). To count the number of reads mapped to genes, HTSeq software 

was used (version 0.6.1p1) (Anders, Pyl, & Huber, 2015). DESeq2 (version 1.12.3) 

(Love, Huber, & Anders, 2014) was used to identify differentially expressed genes, with 

the Wald test used to determine statistical significance, p values adjusted for multiple 

testing using the Benjamini-Hochberg procedure, and a cutoff value of false discovery 

rate (FDR) of 0.05. 

 
Nanostring Validation Analysis.  
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Raw data was analyzed using nSolverTM 3.0 digital analyzer software using 

standard settings and quality control parameters. It was normalized against housekeeping 

genes. Fold changes and p-values were calculated using a t-test adjusted for multiple 

comparisons using the Benjamini-Yekutieli false discovery rate method for samples 

before and after blast exposure, with statistical significance defined at the level of p<0.05.  

 
Results 
 

Demographic results.  

Participants in the study were male military service members with a mean age of 

31.2 and a mean length of service of 11.2 years (Table 3-1). Almost half of participants 

(46.3%) had a history of greater than 40 prior blast exposures. No significant differences 

based on demographic information were noted among the cohort (Gill, Cashion, et al. 

(2017).  

RNA-seq results. 

Results of the RNA-seq analysis demonstrated significant gene-activity changes 

(p<0.05) following a moderate blast with multiple networks being dysregulated (Table 3-

4). The present study reports on two of the most significant gene-network activity 

changes (Figures 3-1 and 3-2) determined by Ingenuity® Pathway Analysis (IPA®) 

software (IPA®, Qiagen, Redwood City, CA). In total, five pathways were identified, 

including two sets of two pathways that shared overlapping functions and were 

subsequently merged together to form two pathways of interest in the present study. One 

merged pathway centered on cell death and survival; this pathway was comprised of 
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genes implicated in apoptosis, necrosis, autophagy, mitophagy, ferroptosis, survival, 

regeneration, and recovery, with a score of 42 (Figure 3-1). The second merged pathway 

focused on development, metabolism and cell structure/function; this pathway consisted 

of genes involved in cytoskeleton, organelles, cellular metabolism, lipid metabolism, heat 

shock, cell motion, cell growth, and differentiation, with an IPA score of 41 (Figure 3-2). 

 NanoString was used to validate the RNA sequencing results. Nanostring 

analysis showed 32 significantly differentially expressed genes in the Cell Death and 

Survival network (p < 0.05) and 35 significantly differentially expressed genes in the Cell 

Structure, Function, and Metabolism network (p < 0.05), validating differential 

expression of these two gene networks following blast exposure.  

Discussion 
 

In this study, activity changes are reported in two gene networks after moderate 

blast exposure in military personnel engaged in training. Differentially regulated 

networks after blast included cell death and survival (see Figure 3-1), which is related to 

nonsense mediated decay, as well as cellular structure, function, and development (see 

Figure 3-2). Genes within these networks relate to ubiquitination, apoptosis, as well as 

activity related to ribosomes, mitochondria, and inflammation. Findings from this study 

provide novel insight for understanding the biological changes that occur following blast, 

which for some individuals, may result in biological changes that increase their risk for 

neurological or behavioral symptoms and deficits. These findings may ultimately 

contribute to characterizing the cellular mechanisms of blast exposure to improve 

diagnosis, monitoring, and prognosis of military personnel exposed to blast.  
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A number of genes related to ubiquitination are increased in activity following 

blast exposure, including tripartite motif containing 12 (TRIP12), a gene encoding an E3 

ubiquitin-protein ligase involved in ubiquitin fusion degradation. Protein ubiquitination 

initiates the removal of oxidized and misfolded proteins following injury, and its 

processes can protect neurons from reactive oxidative species (ROS) which accumulate 

following blast exposure in pre-clinical models (Kochanek et al., 2013). These findings 

support the previous report of increased UCH-L1, the primary protein for ubiquitination, 

following repeated low-level blast (Carr et al., 2015). This finding suggests that there 

may also be overlap with the biological mechanisms related to recovery from TBIs in 

civilians, as UCHL1 increases are one of the most often reported changes following a 

TBI (Diaz-Arrastia et al., 2014; Toman, Harrisson, & Belli, 2016). In contrast, as 

reported in a previous publication, the activity of genes related to ubiquitin were lower in 

activity in military personnel with TBIs, with many related to blast exposures, and 

chronic symptoms (Heinzelmann et al., 2014). Therefore, it may be that ubiquitin activity 

is critical to acute recovery from biTBIs, and that in some individuals, there is a reduction 

in activity that may place them at higher risk for chronic symptoms.  In support of this, 

pre-clinical studies show that reductions or inactivation of ubiquitin activity results in 

poor outcomes, including behavioral deficits, possibly indicating long-term 

neurodegenerative processes (Svetlov et al., 2010).  

Additional genes that may relate to neuronal recovery are altered in activity 

following a moderate blast in this report. Specifically, gene activity changes are observed 

within the nonsense mediated decay (NMD) pathway, including UPF1 and UPF3B, 
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which are responsible for neuronal specific cell development and repair through a 

reciprocal pattern of activity (Kurosaki & Maquat, 2016). Previous studies show an 

interaction in the activity of these two genes, such that when one gene is less active, the 

other gene will compensate, preserving the activity of this network; the present findings 

mirror these previous studies. The present findings show that UPF1 was increased in 

activity, whereas UPF3B was downregulated. These findings suggest that in response to 

the blast, injury mechanisms may have been initiated (inflammation, aberrant cellular 

formation, and cell death), and this initiation may result in an upregulation of UPF1, in 

an effort to preserve the activity of the NMD pathway. Subsequently, the expression of 

UPF3B is suppressed, hindering possible detrimental neurological effects. These findings 

suggest complex gene-activity changes following blast exposure that may be occurring to 

promote recovery, implicating the need for additional studies to understand the temporal 

relationship of these changes and their relation to neuronal recovery.   

Another gene downregulated in military personnel following blast within the 

structure, function, and development pathway was NAE1 (NEDD8 Activating Enzyme E1 

Subunit 1), a protein associated with the neddylation pathway. Vogl, A.M., et al. showed 

that neddylation was a critical regulator of dendritic spine development, reporting that in 

NAE1 knockout mice, there were cognitive deficits as well as synaptic and 

neurotransmitter impairments (Vogl et al., 2015). The down-regulation observed in the 

military population could suggest similarly that exposure to blast hinders the neddylation 

pathway and might suggest a marker of injury resulting directly from blast exposure. 

Additionally, recent in vitro work suggests Il-1β may inhibit NEDD8 and neddylation in 
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conjunction with increased ubiquitination; while activation of NEDD8 downregulates the 

NF-κB pathway (Yan, Guan, Peng, & Zheng, 2017). This is of interest, as genes within 

the NF-κB network also show activity changes, with most genes becoming more active. 

The NF-κB network is a dominant activator of the immune system following TBI and this 

activity is essential as it initiates secondary injury mechanisms required for neuronal 

recovery. However, if activity of this pathway is too high, or too long-lasting, it can be 

detrimental to neuronal recovery (Jassam, Izzy, Whalen, McGavern, & El Khoury, 2017). 

One gene in the pathway, ARRB1(arrestin β1), is increased following blast exposure. This 

gene has been reported to play a role in the beta-adrenergic receptor kinase (BARK) 

mediated desensitization of beta-adrenergic receptors. In TBI patients, catecholamines 

surge after injury has been linked to immunosuppression and greater mortality risk that is 

reversed through β-blocker treatment (Schroeppel et al., 2010). ZBTB7B (zinc finger and 

BTB domain containing 7B) is also upregulated after a blast and is linked to reductions in 

CD8-cytotoxic activity (Wang et al., 2008), which could be a mechanism to prevent 

further cellular damage after blast injury.  

Another gene related to immune activity with increased activity is AKT1, a hub 

that included approximately 14 connections in the structure, function, and development 

network. AKT1 encodes for a serine-threonine protein kinase (AKT1), which is known to 

regulate a vast number of cellular processes including neuronal survival, glucose uptake, 

protein and fatty acid synthesis, cell proliferation, and the previously mentioned role in 

apoptosis (Oeckinghaus & Ghosh, 2009; Vergadi, Ieronymaki, Lyroni, Vaporidi, & 

Tsatsanis, 2017). Additionally, AKT1 may function in the inflammatory response as an 
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upstream activator of the nuclear factor kappa light-chain enhancer of activated B cells 

(NF-NB) (Lian et al., 2015). Interestingly, in this population, significantly elevated levels 

of the cytokines tumor necrosis factor alpha (TNFD) and interleukin 6 (IL-6) have been 

reported during the acute period following moderate blast (Gill, Motamedi, et al., 2017). 

This finding is relevant as NF-NB is recognized as a master regulator of cytokines 

including TNFD and IL-6 (Neumann & Naumann, 2007; Oeckinghaus & Ghosh, 2009). 

Studies of the NF-κB pathway have implicated the pathway in regulation of 

proinflammatory cytokines during meningitis (Barichello, Generoso, Simoes, Elias, & 

Quevedo, 2013) and in blood-brain barrier permeability (Merrill & Murphy, 1997). 

Additionally, the NF-NB pathway has been found to be dysregulated in clinical studies of 

acute and subacute TBI (Cho et al., 2016; Gill et al., 2016; Livingston et al., 2016; 

Merchant-Borna et al., 2016). Upregulation of AKT1 in this sample suggests activation of 

the NF-κB pathway; a finding that supports these prior studies, though the specific role of 

AKT1 in blast effects on the central nervous system remains to be examined.  

Other genes related to NF-NB pathway also show increased activity, including the 

Flt3 (dimer) that encodes for a receptor tyrosine kinase. Flt3 is implicated in multiple 

signaling pathways including regulation of the proliferation and survival of hematopoietic 

cells, which ultimately relates to the number of intermediate monocytes (Zawada et al., 

2016). This has possible implications, as intermediate monocytes promote production of 

inflammatory cytokines within the NF-Nb network, including TNF-D and Il-1E (Wong et 

al., 2012), suggesting the possibility of a pro-inflammatory response through increased 

production of intermediate monocytes.  
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Genes related to apoptosis are observed to change in activity following blast; 

findings of interest as preclinical models show blast exposure results in astrocytic and 

microglial activation, oxidative stress, axonal and vascular damage, and inflammation, 

which ultimately contribute to programmed cell-death (Agoston & Elsayed, 2012; 

Agoston, Gyorgy, Eidelman, & Pollard, 2009; Goodrich et al., 2016; Saljo, Mayorga, 

Bolouri, Svensson, & Hamberger, 2011). Specifically, there is an activation of caspase 

complexes, a family of cysteine-dependent proteases, which have been previously 

associated with neuronal and oligo-dendroglial cell death in both pre-clinical and human 

brain injuries (Schoch, Madathil, & Saatman, 2012). Otherwise referred to as apoptosis 

executioners, caspase-3 and -7 are both indirectly activated by MBIP, a major hub of the 

cell structure, function, and metabolism network. Increased expression in caspase-3 and -

7 complexes have also been previously linked to TBIs in pre-clinical models (Clark et al., 

2000; Larner, McKinsey, Hayes, & KK, 2005) and to mortality in patients with severe 

TBIs (Zhang et al., 2006). Increased activity in other apoptosis genes following blast 

include EPB41L3, or erythrocyte membrane protein band 4.1-like 3, and EPB41L3, a 

tumor suppressor gene strongly expressed in the brain that promotes apoptotic pathways 

and inhibits cellular proliferation (Li et al., 2011). These findings suggest that moderate 

blast results in expression of apoptosis inducing genes, and that mitigating these activities 

may be protective. 

Lastly, several mitochondrial genes and genes connected with the mitochondrial 

gene network are dysregulated, including COA5, HIBH, RPL6, RPL35, as well as 

mitochondrial ribosomal genes MRPL50, MRPL1, MRPL3, and MRPL46. Although the 
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function of mitochondria is not yet well understood in blast exposures, it is worth noting 

that mitochondrial dysfunction has been implicated in preclinical TBI pathology.  

Previous studies have indicated that following TBI an influx of intracellular calcium 

leads to disruption of the mitochondrial membrane potential, impairing ATP production 

and creating ROS, activating cell death pathways and leading to neuronal damage 

associated with cognitive impairments (Ohta et al., 2013; Walker & Tesco, 2013). The 

biological mechanisms specific to blast effects on the central nervous system in the 

context of mitochondrial genes is not yet known.  

Conclusion 
 

The findings reported here provide further characterization of gene activity that 

occurs following moderate blast exposure, including changes in the activity of key 

pathways for ubiquitination, NF-NB, apoptosis and mitochondrial activity. This study had 

a unique design, as it allowed for evaluation of changes in gene-activity following a 

moderate blast exposure, by comparing gene-activity to baseline prior to blast exposure. 

These findings highlight the need for future studies in larger samples that include the 

collection of additional acute days of gene expression data, to complement consideration 

of acute and chronic symptomology and neuronal changes. This study’s gene expression 

findings related to ubiquitination and inflammatory pathways add to previous TBI 

literature even though there was no acute TBI diagnosis in this cohort. Further study of 

such blast-associated effects and the role of these networks and associated proteins is 

warranted.    
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Table 3-1.  
 
Demographic and previous explosive exposure of participants exposed to moderate blast 
 
 Variables Moderate Blast (N=29) 

Mean Age in Years 

(SD) 

31.2 (4.4) 

Mean Years of 

Service (SD) 

11.2 (4.7) 

Number of Prior 

Explosive Breaches  

Artillery Fires, % (n) 

0-9 20.7% (6) 

10-39   34.8% (10) 

40-99 17.2% (5) 

100-199 20.6% (6) 

200-399 6.9% (2) 
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Figure 3-1.  
 
Cell death and survival pathway 
 

 

Note. Ingenuity® pathway analysis (IPA®) figure shows dysregulated cell death and 
survival pathway following moderate blast. Genes described in the text included: UPF1, 
UPF3B, ARRB1,  ZBTB7B, flt3, HIBCH, RPL6, RPL35, MRPL1, MRPL3, MRPL36, and 
MRPL50. See Legend for IPA networks for symbol meanings. 
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Figure 3-2.  
 
Structure, function, and development pathway 
 

 
Note. Ingenuity® pathway analysis (IPA®) figure shows dysregulated structure, function, 
and development pathway following moderate blast. Genes described in the text include: 
TRIP12, NAE1, AKT1, MBIP, COA5, and EPB41L3. See Legend for IPA networks for 
symbol meanings.  
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Note: Legend for IPA® Networks, Figures 3-1and 3-2. 
 

 
 Note. Legend indicates main features of the IPA® network, including molecular shapes, 
targeted and non-targeted relationships between molecules, and color showing increased 
or decreased measurement. Adapted from the Qiagen, Inc. IPA® legend 
http://ingenuity.force.com/ipa/IPATutorials?id=kA250000000TN2wCAG   
 
 
 
 
 
 

http://ingenuity.force.com/ipa/IPATutorials?id=kA250000000TN2wCAG
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Table 3-2.  
 
Genes included in the cell death and survival pathway. 
 

Gene Symbol Gene Name Ref Seq Accession HKG log2 Fold Change Adjusted p-value 

ABCF1 

ATP Binding Cassette 

Subfamily F Member 1 NM_001090.2 Yes 

  

ACBD4* 

Acyl-CoA Binding Domain 

Containing 4 NM_024722.2 - -0.199499195 0.020347576 

ALAS1 5'-Aminolevulinate Synthase 1 NM_000688.4 Yes 0.242752898 0.028367932 

ALOX12B* 

Arachidonate 12-

Lipoxygenase, 12R Type NM_001139.2 - -0.346622555 0.039772707 

ALOXE3* Arachidonate Lipoxygenase 3 NM_001165960.1 - -0.228199903 1 

ARAP1* 

ArfGAP With RhoGAP 

Domain, Ankyrin Repeat And 

PH Domain 1 NM_001040118.2 - 0.269598353 0.04521624 
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ARRB1* Arrestin Beta 1 NM_004041.3 - 0.278700332 0.006452812 

BCL2L13* BCL2 Like 13 NM_001270733.1 - 0.179780094 0.04946175 

BIRC3* 

Baculoviral IAP Repeat 

Containing 3 NM_182962.2 - -0.507459422 0.00558523 

DECR1 

2,4-Dienoyl-CoA Reductase 1, 

Mitochondrial NM_001359.1 Yes 

  DIDO1* Death inducer-obliterator 1 NM_001193369.1 - -0.09345587 0.045208841 

FLT3* Fms Related Tyrosine Kinase 3 NM_004119.2 - 0.389648012 0.018925186 

GAPDH 

Glyceraldehyde-3-Phosphate 

Dehydrogenase NM_002046.3 Yes 

  

GRB2* 

Growth Factor Receptor 

Bound Protein 2 NM_002086.4 - 0.214453639 0.048161569 

GUSB Glucuronidase beta NM_000181.3 Yes 0.194071193 0.03424108 

HIBCH* 3-Hydroxyisobutyryl-CoA NM_014362.3 - -0.137136152 0.048761345 
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Hydrolase 

HMGN3* 

High Mobility Group 

Nucleosomal Binding Domain 

3 NM_004242.3 - -0.201298014 0.02317844 

HPRT1 

Hypoxanthine 

Phosphoribosyltransferase 1 NM_000194.1 Yes 

  IPO8 Importin 8 NM_006390.2 Yes 

  

KCNH7* 

Potassium Voltage-Gated 

Channel Subfamily H Member 

7 NM_033272.2 - 0.441079018 0.038059517 

MAGEH1* MAGE Family Member H1 NM_014061.3 - -0.294631712 0.003622067 

-93 miR  MicroRNA 93 NR_029510.1 Yes 

  

MOCS2* 

Molybdenum Cofactor 

Synthesis 2 NM_004531.4 - -0.266516936 0.049007307 
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MRPL1* 

Mitochondrial Ribosomal 

Protein L1 NM_020236.3 - -0.62382527 0.00331706 

MRPL3* 

Mitochondrial Ribosomal 

Protein L3 NM_007208.2 - -0.330469686 0.030366265 

MRPL46* 

Mitochondrial Ribosomal 

Protein L46 NM_022163.3 - -0.260611172 0.010945064 

MRPL50* 

Mitochondrial Ribosomal 

Protein L50 NM_019051.1 - -0.46102798 0.010773055 

MRPS14* 

Mitochondrial Ribosomal 

Protein S14 NM_022100.1 - -0.277593921 0.003523616 

MRPS28* 

Mitochondrial Ribosomal 

Protein S28 NM_014018.2 - -0.368377224 0.0463031 

NAP1L2* 

Nucleosome Assembly 

Protein 1 Like 2 NM_021963.3 - -0.394155658 0.040740338 
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NAP1L3* 

Nucleosome Assembly 

Protein 1 Like 3 NM_004538.4 - -0.403261661 0.04324522 

NSMCE3* 

NSE3 Homolog, SMC5-SMC6 

Complex Component NM_138704.2 - -0.138835375 0.069775418 

NSMCE4A* 

NSE4 Homolog A, SMC5-SMC6 

Complex Component NM_017615.2 - -0.244479492 0.016903185 

PARK2* 

Parkin RBR E3 Ubiquitin 

Protein Ligase NM_004562.2 - -0.462238206 0.039312303 

PGK1 Phosphoglycerate Kinase 1 NM_000291.2 Yes 0.19447752 0.023843395 

PSTPIP2* 

Proline-Serine-Threonine 

Phosphatase Interacting 

Protein 2 NM_024430.3 - 0.327102801 0.029452324 

RFX2* Regulatory Factor X2 NM_000635.3 - 0.371048376 0.028931549 

RNF10* Ring Finger Protein 10 NM_014868.3 - 0.363231062 0.019697501 
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RPL11* Ribosomal Protein L11 NM_000975.2 - -0.422877581 0.016695613 

RPL15* Ribosomal Protein L15 NM_001253379.1 - -0.285314324 0.023453576 

RPL22* Ribosomal Protein L22 NM_000983.3 - -0.264541621 0.021464081 

RPL30* Ribosomal Protein L30 NM_000989.2 - -0.408465221 0.017083487 

RPL35* Ribosomal Protein L35 NM_007209.3 - -0.43080228 0.010643658 

RPL4* Ribosomal Protein L4 NM_000968.2 - -0.289569243 0.020267917 

RPL6* Ribosomal Protein L6 NM_000970.3 - -0.340254818 0.018412596 

RPL9* Ribosomal Protein L9 NM_000661.4 - -0.714413772 0.001773623 

SH3YL1* 

SH3 And SYLF Domain 

Containing 1 NM_001159597.1 - -0.311600753 0.038059517 

STAU1* 

Staufen Double-Stranded RNA 

Binding Protein 1 NM_017454.2 - 0.19259478 0.016276538 

TBP TATA-Box Binding Protein NM_001172085.1 Yes 

  TESPA1* Thymocyte Expressed, NM_001098815.2 - -0.261036039 0.010073305 
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Positive Selection Associated 

1 

TPM4* Tropomyosin 4 NM_003290.2 - 0.161122161 0.016276538 

TRMT10B TRNA Methyltransferase 10B NM_144964.3 - -0.196738227 0.026654574 

TSPYL4* TSPY Like 4 NM_021648.4 - -0.247290787 0.008592219 

UPF1* 

UPF1, RNA Helicase And 

ATPase NM_002911.3 - 0.254526328 0.03643324 

UPF3B* 

UPF3 Regulator Of Nonsense 

Transcripts Homolog B (Yeast) NM_080632.2 - -0.2020123 0.026669595 

ZBTB7B* 

Zinc Finger And BTB Domain 

Containing 7B NM_015872.2 - 0.243249222 0.025478126 

ZC3H15* 

Zinc Finger CCCH-Type 

Containing 15 NM_018471.2 - -0.335063911 0.026607119 

ZKSCAN3* Zinc Finger With KRAB And NM_001242895.1 - -0.253800344 0.031068942 
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SCAN Domains 3 

ZNF106* Zinc Finger Protein 106 NM_022473.1 - 0.294418924 0.015098223 

ZNF32* Zinc Finger Protein 32 NM_006973.2 Yes -0.355641394 0.012837388 

Note. HKG=house-keeping gene. *Validated by NanoString 
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Table 3-3.  
 
Genes included in the structure, function, and development pathway. 
 

Gene Symbol Gene Name Ref Seq Accession HKG log2 Fold Change Adjusted p-value 

ABCD4* 

ATP Binding Cassette 

Subfamily D Member 4 NR_003256.2 - -0.199499195 0.020347576 

ABCF1 

ATP Binding Cassette 

Subfamily F Member 1 NM_001090.2 Yes 

  ACYP1* Acylphosphatase 1 NM_001107.3 - -0.329474401 0.019194616 

AKT1* 

AKT Serine/Threonine Kinase 

1 NM_001014432.1 - 0.17005921 0.038615925 

ALAS1 

5'-Aminolevulinate Synthase 

1 NM_000688.4 Yes 0.242752898 0.028367932 

ANKS6* Ankyrin Repeat and Sterile NM_173551.3 - -0.235773531 0.040849382 
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Alpha Motif Domain 

Containing 6 

APP* Amyloid Precursor Protein NM_000484.3 - 0.275234781 0.033723847 

ARCN1* Archain 1 NM_001655.4 - 0.171105347 0.046801529 

C12orf65* 

Chromosome 12 open 

reading frame 65 NM_152269.4 - -0.204227132 0.026071674 

C1QB* 

Complement Component 1, Q 

Subcomponent, B Chain NM_000491.3 - 0.584216904 0.011252651 

CIART* 

Circadian Associated 

Repressor of Transcription NM_144697.2 - -0.475138427 0.038059517 

CLEC5A* 

C-Type Lectin Domain Family 

5 Member A NM_013252.2 - 0.43694439 0.013654046 

COA5* 

Cytochrome C Oxidase 

Assembly Factor 5 NM_001008215.2 - -0.188436396 0.030279095 
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COPA* 

Coatamer Protein Complex 

Subunit Alpha NM_004371.3 - 0.2593244 0.019024708 

COPB2* 

Coatamer Protein Complex 

Subunit Beta NM_004766.2 - 0.192983112 0.012365191 

DCLRE1B* DNA Cross-Link Repair 1B NM_022836.3 - 0.198400973 0.017155237 

DECR1 2,4-Dienoyl-CoA Reductase 1 NM_001359.1 Yes 

  

EPB41L3* 

Erythrocyte Membrane 

Protein Band 4.1 Like 3 NM_012307.2 - 0.431151189 0.006476354 

FAAH2 Fatty Acid Amide Hydrolase 2 NM_174912.3 - -0.499379188 0.005745525 

FAM129A* 

Family with sequence 

similarity 129, member A NM_052966.2 - 0.40324029 0.024746754 

GAPDH 

Glyceraldehyde-3-Phosphate 

Dehydrogenase NM_002046.3 Yes 

  GUSB Glucuronidase Beta NM_000181.3 Yes 0.194071193 0.03424108 
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HPRT1 

Hypoxanthine 

Phosphoribosyltransferase 1 NM_000194.1 Yes 

  IPO8 Importin 8 NM_006390.2 Yes 

  KIAA0513* KIAA0513 Ortholog NM_014732.3 - 0.361322535 0.014586154 

LHFPL2* 

Lipoma HMGIC Fusion 

Partner-Like 2 NM_005779.2 - 0.400554788 0.000715584 

LUC7L3* 

LUC7 Like 3 Pre-MRNA 

Splicing Factor NM_006107.2 - -0.279039102 0.042125529 

MAP7D1* MAP7 Domain Containing 1 NM_018067.3 - 0.26655588 0.039772707 

MBIP* 

MAP3K12 Binding Inhibitory 

Protein 1 NM_001144891.1 - -0.304655557 0.017155256 

miR-93  

 

NR_029510.1 Yes 

  

MRPL22* 

Mitochondrial Ribosomal 

Protein L22 NM_014180.3 - -0.361248608 0.023357416 



 117 

MRPL39* 

Mitochondrial Ribosomal 

Protein L39 NM_017446.3 - -0.30416698 0.015173431 

MSMO1* 

Methylsterol Monooxygenase 

1 NM_001017369.1 - -0.237679234 0.041114756 

MTX2* Metaxin2 NM_006554.4 - -0.369413967 0.019530729 

MTX3* Metaxin3 NM_001010891.4 - -0.370201897 0.032915527 

NAE1* 

NEDD8 Activating Enzyme E1 

Subunit 1 NM_001018159.1 - -0.324495292 0.007350252 

OARD1* 

O-Acyl-ADP-Ribose Deacylase 

1 NM_145063.2 - -0.205410287 0.0115853 

OCIAD2 

Ovarian Carcinoma 

Immunoreactive Antigen-Like 

Protein 2 NM_152398.2 - -0.349639139 0.004637306 

OXSM* 3-Oxoacyl- Acyl Carrier NM_017897.2 - -0.306169512 0.028418587 
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Protein Synthase, 

Mitochondrial 

PGK1 Phosphoglycerate Kinase 1 NM_000291.2 Yes 0.19447752 0.023843395 

PIP4K2A* 

Phosphatidylinositol-5-

Phosphate 4-Kinase Type 2 

Alpha NM_005028.3 - 0.180982773 0.033210105 

RAB5A* 

RAS-Associated Protein 

RAB5A NM_004162.4 - 0.18204685 0.136291748 

RAP1GAP2* 

RAP1 GTPase Activating 

Protein 2 NM_015085.4 - 0.219298444 0.011143681 

RSPH3* Radial Spoke 3 Homolog NM_031924.4 - 0.272080541 0.032117983 

SSH1* 

Slingshot Protein 

Phosphatase 1 NM_018984.3 - 0.269175026 0.010309573 

SSH2* Slingshot Protein NM_033389.3 - 0.315283525 0.024375198 



 119 

Phosphatase 2 

TBP TATA-Box Binding Protein NM_001172085.1 Yes 

  

TCEAL8* 

Transcription Elongation 

Factor A Like 8 NM_153333.2 - -0.242696303 0.044714506 

TIGD1* 

Tigger Transposable Element 

Derived 1 NM_145702.1 - -0.53120337 0.012433895 

TMEM237* Transmembrane Protein 237 NM_001044385.1 - -0.394403177 0.032253724 

TMEM261* Transmembrane Protein 261 NM_001318058.1 - -0.464675435 0.002668268 

TMEM263 Transmembrane Protein 263 NM_152261.2 - -0.34231287 0.048588716 

TOMM5* 

Translocase Of Outer 

Mitochondrial Membrane 5 NM_001001790.2 - -0.354166369 0.045960581 

TP53RK* TP53 Regulating Kinase NM_033550.3 - -0.213093565 0.017767807 

TPD52* Tumor Protein D52 NM_005079.2 - -0.330475184 0.038005975 

TPRKB* TP53RK Binding Protein NM_016058.2 - -0.443196546 0.006016182 
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TRIP12* Tripartite Motif Containing 12 NM_004238.1 - 0.231188855 0.003223298 

ZDHHC23 

Zinc Finger CCHC-Type 

Containing 23 NM_173570.3 - -0.520810011 0.004066651 

ZNF706* Zinc finger protein 706 NM_001042510.1 - -0.10910689 0.031066687 

ZRANB2* 

Zinc Finger RANBP2-Type 

Containing 2 NM_005455.4 - -0.40446744 0.019490303 

Note. HKG=house-keeping gene. *NanoString validation. 
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Table 3-4.  
 
IPA® Network Scores 
 
Network IPA Network Score 

Metabolic 45 

Cell Death and Survival 42 

Post-Translational 

Modification 42 

Cancer, Cell Death and 

Survival 42 

Immunological Diseases 37 

Merged Networks IPA Network Score 

Cell Death and Survival 42 

Cell Structure, Function, and 

Metabolism 41 

Note. Network scores are numerical values used to 
rank fit of molecules to the network. The scores are 
calculated using an algorithm based on Fisher’s Exact 
Test. Eligible molecules are compared to the Ingenuity 
Knowledge Base of over 1 million molecules curated 
from literature findings. Highly interconnected genes 
imply significant biological function.   
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CHAPTER FOUR 

INTERLEUKIN-6 ASSOCIATED WITH ACUTE CONCUSSION IN MILITARY 
COMBAT PERSONNEL 

 
Introduction 

Concussion, or mild traumatic brain injury (mTBI), is recognized as one of the 

most prevalent injuries among military members serving in Operation Iraqi Freedom 

(OIF) and Operation Enduring Freedom (OEF), yet biomarkers related to these injuries 

and the related recovery processes remain elusive (DePalma, 2015; Jones, Fear, & 

Wessely, 2007). The most common cause of concussions sustained by deployed 

personnel worldwide is blast exposures, especially by improvised explosive devices 

(IEDs) (Ritenour & Baskin, 2008). A blast exposure can directly result in a concussion, 

and it may also contribute to blunt force injuries if the soldier comes into contact with 

objects resulting from the exposure to the blast, i.e. being thrown into objects or being hit 

by objects from the blast (Champion, Holcomb, & Young, 2009; Ramasamy, Harrisson, 

Clasper, & Stewart, 2008). Blast exposure effects multiple organs and tissues, including 

the central nervous system, which is well documented in preclinical models (Mac Donald 

et al., 2011). It is also increasingly recognized that military personnel can sustain multiple 

blast exposures as well as concussions during combat deployments, and the consequences 

of these injuries are just now being determined (Carr et al., 2016). Over time, blast 

exposures as well as blunt force injuries are associated with neurological symptoms that 

are garnering concern for the health and well-being of military personnel and veterans 

(Carr et al., 2015; Mac Donald et al., 2016; Mac Donald et al., 2014). At this time, 

limited objective measures exist for identification of individuals who may be at high risk 
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for developing complications and poor outcomes following concussion, including those 

affected by concussion and blast exposures during deployment. Thus, identifying 

underlying biological changes that occur following a concussion or mTBI are crucial to 

identify those military personnel who may 

be at the most risk, who require increased monitoring and preventive interventions, and 

for ongoing monitoring of individuals who may be at high risk for poor outcomes (Prieto, 

Ye, & Veenstra, 2008).  

Peripheral biomarkers show promise in distinguishing patients with traumatic 

brain injuries (TBIs) who require additional monitoring and interventions, yet most 

previous studies primarily include severe patients (Papa et al., 2016; Papa et al., 2012). 

Thus, protein biomarkers may be useful in monitoring those at high risk for poor 

outcomes, which may be especially beneficial among concussed individuals who may not 

otherwise follow up on mild subjective symptoms (Menon, Schwab, Wright, & Maas, 

2010). Specifically, studies of blood-based inflammatory protein biomarkers may 

implicate the underlying inflammatory processes following concussions that are 

important for acute recovery (Ferreira et al., 2014; Woiciechowsky et al., 2002) and may 

relate to chronic symptoms (Kumar, Boles, & Wagner, 2015; Licastro et al., 2016). Not 

only may inflammatory biomarkers help monitor outcomes, but they may also help 

identify inflammatory pathways that may be targeted for therapies (McKee & Lukens, 

2016). Of interest are pro- and anti-inflammatory cytokines, as they have been implicated 

in the underlying balance of inflammatory processes which occur following a TBI 

(Hinson, Rowell, & Schreiber, 2015; Woodcock & Morganti-Kossmann, 2013). For 



 130 

example, preclinical brain injury studies of interleukin (IL)-6 indicate some IL-6 activity 

is beneficial for recruiting immune cells and improving outcomes, especially in the acute 

phase (Penkowa et al., 2003). However, harmful outcomes may result from either IL-6 

deficiency, as demonstrated in IL-6 knockout mice (Penkowa, Giralt, Carrasco, Hadberg, 

& Hidalgo, 2000), or chronic IL-6 overexpression (McKee & Lukens, 2016; Penkowa et 

al., 2003).  Likewise, the study of IL-10 in preclinical brain injury models has shown 

poor outcomes in IL-10 knockout mice, with IL-10 administration improving 

neurological function and decreasing lesion volume (Kline et al., 2002). In human 

studies, elevated levels of IL-6, IL-10, and TNFD, among others, have been associated 

with poor outcomes in severe cases of TBI (Arand, Melzner, Kinzl, Bruckner, & 

Gebhard, 2001; Ferreira et al., 2014; Woiciechowsky et al., 2002). However, fewer 

studies have evaluated cytokines in concussions. This lab has previously reported that 

elevated levels of plasma inflammatory cytokines, IL-6 and TNFD, are concurrent with 

chronic neurological symptomology among military personnel who experienced blunt 

force and/or blast injury (within 16 months of deployment) (Devoto et al., 2016). This lab 

also reported an association between moderate blast exposure and acute increases in 

levels of IL-6 and TNFD within 16 months of deployment in a military training 

population (Gill et al., 2017). Yet, peripheral levels of IL-6, IL-10, and TNFD have not 

yet been measured during the first 24 hours following concussion sustained during a 

military combat deployment.  

To better understand the role of inflammatory cytokines in concussions, cytokines 

levels of (IL-6, IL-10, and TNFD) were measured acutely following a medically 
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diagnosed concussion, during transport to a medical facility, and then again 24 hours later 

to characterize the relationship between cytokines and recovery from acute brain injury. 

This project is needed to expand the understanding of peripheral inflammatory biomarker 

levels in a cohort of deployed military personnel who sustain concussions. Findings from 

this line of research will provide the basis to identify the biological underpinnings of 

inflammatory processes occurring in the acute stage of recovery from concussion 

sustained in austere environments like military deployment where blast has become a 

primary cause of injury, which is necessary to improve recovery trajectories.  

Methods 

 Participants.  

This study protocol was reviewed and approved by the Research Institutional 

Review Boards at the US Army Medical Research and Materiel Command (M-10216) 

and the Walter Reed Army Institute of Research (WRAIR #2028, #2529). Each study 

participant provided informed consent prior to participation. This unique, observational 

cohort study consisted of: 1) deployed military personnel who sustained a concussion, 

provider diagnosed, without other major medical diagnosis and received acute medical 

care (n=45) and 2) healthy control participants in the same deployment environment who 

did not sustain concussion or other illness or injuries (n=49). Both groups were deployed 

to units in the same region of operations in Afghanistan during 2012. Participants had 

blood draws at two time points: 1) time point 1 was at the time of medical care, less than 

8 hours after concussion, or at the time of initial encounter for the healthy control group 

and 2) time point 2 was at 24 hours following the time of the first blood draw.  
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 Blood sampling.  

Whole blood was drawn and processed for serum, using standard protocols, 

within one hour of the blood draw. Serum was aliquoted and stored at -80 C until batch 

processing and analyses.  

 Laboratory methods.  

IL-6, IL-10, and TNFD concentrations were measured using Simoa technology. 

Simoa™ (Quanterix, Lexington, MA), an ultrasensitive single-molecule enzyme-linked 

immunosorbent assay, as previously described (Mondello et al., 2014). The IL-6, IL-10, 

and TNFD assays have low limits of detections (0.006pg/mL, 0.0022pg/mL, and 

0.011pg/mL, respectively). Samples were run in duplicate, and the personnel running 

analyses were blinded to group. Average coefficient of variance (CV) were 4.75%, 

4.43%, and 4.78% for IL-6, IL-10 and TNFD, respectively. Samples with CVs > 15% 

were excluded.  

 Statistical methods.  

SPSS version 25 (IBM Corporation, Chicago, IL) was used to conduct statistical 

analyses, and GraphPad Prism version 7.0d (Graph Pad Software, San Diego, CA) was 

used to create figures. Baseline demographic characteristics were compared between 

healthy and concussed groups using Pearson’s chi square (race and gender) and ANOVA 

(age). Distributions did not require adjustment for normality. The differences in 

concentrations of IL-6, IL-10, and TNFD at two time points (time point 1 = <8 hours after 

injury with time point 2 = 24 hours following time point 1) were compared between the 

healthy and concussed groups using Mann Whitney U tests. Mean difference was 
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calculated by subtracting each participant’s cytokine concentration at time point 2 from 

the concentration level at time point 1, resulting in a variable that reflects the total change 

in each cytokine between the groups. This calculated change resulted in the creation of a 

variable that could then be compared between the groups to determine if there were 

differences in the change in cytokine concentrations between these groups. A Mann 

Whitney U test was conducted to evaluate if there was a significant change in the 

cytokines in the concussed group compared to the healthy control group. Since groups 

were similar in demographic characteristics, we did not include any covariates in these 

models.  

Results 

 Demographics. 

The sample included primarily male (96.8%) participants who were active duty 

service members (n=94) deployed to Afghanistan. The mean age was 26.41 years 

(SD=6.364) with a range of 19 to 48 years of age. Here, military personnel who were 

medically diagnosed with a concussion and received acute care (n=45) were compared to 

healthy controls with no diagnosis of concussion (n=49) deployed to the same combat 

station. The two groups did not differ in demographic features including sex, race, or age 

(see Table 4-1). All participants within both groups had a Glasgow Coma Score (GCS) of 

15. The concussed personnel were diagnosed by a healthcare provider <8 hours following 

injury. Of the concussed personnel, 33 (73.3%) participants were exposed to blast during 

the injury event, with the others reporting a blunt force injury (see Table 4-2).  
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Table 4-1.  

Demographic Data 

 Healthy Controls 
(N=49) 

Concussion 
(N=45) 

Significance 

 
Mean age in years 
(SD) 
 

 
26.63 (6.978) 

 
26.36 (5.747) 

 
p=0.841a 

F=0.041a 

 
Sex 
 
     Male 
 
     Female 
 

 
 
 
49 (100%) 
 
  0     (0%) 

 
 
 
42 (93.3%) 
 
  3   (6.7%) 

 
p=0.066b 

 
Race  
 
     White 
     Black  
     Hispanic 
     Pacific Islander 
     Asian 
     Middle Eastern 
     Other 
 

 
 
 
35 (71.4%) 
  5 (10.2%) 
  6 (12.2%) 
  2   (4.1%) 
  1   (2.0%) 
  0   (0.0%) 
  0   (0.0%) 
 

 
 
 
21  (67.7%) 
  0    (0.0%) 
  5    (7.5%) 
  1    (3.2%) 
  1    (3.2%) 
  1    (3.2%) 

2    (6.5%) 

 
p=0.297b 

 

Note. The percentages in each column refer to the proportion of individuals in each sex 
and race category. aAnova bPearson’s chi square *p value significant at the p<0.05 level.  
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Table 4-2.  

Clinical Data  

Reason for visit   Concussion (N=45) 

 

Blast exposure  

Blunt force injury, only 

 

n=33 (73.3%) 

n=12 (26.7%) 

Note. The percentages in each column refer to the proportion of individuals with each 
reason for visit.  

 

Inflammatory protein changes following mild concussion. 

 Comparisons at time point 1 and time point 2. Differences in IL-6, IL-10, and 

TNFD between healthy and concussed groups were evaluated at each time point (time 

point 1 = <8 hours after injury; time point 2 = 24 hours following time point 1). At time-

point 1, IL-6 concentrations were significantly greater in the concussed group (M=3.92, 

SD=9.30) compared to the healthy control group (M=1.48, SD=0.50; U = 420.00, z= -

5.12, p<0.001) (see Figure 1a). Compared to healthy controls, the concussed group did 

not significantly differ at time point 1 in concentrations of IL-10 (p=0.358) or TNFD 

(p=0.382) (see Figure 4-1,b-c). At time point 2, no significant differences were detected 

between concussed and healthy controls for IL-6 (p=0.075), IL-10 (p=0.937), or TNFD 

(p=0.390) concentrations (see Figure 4-1,a-c). 
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Figure 4-1 a-c 

 Comparison of Cytokines between Concussed and Healthy Controls at Two Time Points 

 

 

a
. 
. 

b.  
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Note. Time point 1 is <8 hours after injury. Time point 2 is 24 hours after time point 1. 
Mann Whitney U tests were conducted to compare each cytokine’s concentration 
between the healthy and concussed groups at each time point for a. IL-6, b. IL-10, and c. 
TNFD. IL-6 concentration was significantly higher in the concussed group at time point 1 
at p<0.0001.  
 
 

Mean Change Across Time. The mean difference between time point 1 and time 

point 2 was compared between the concussed and healthy control groups for IL-6, IL-10, 

and TNFD. A Mann Whitney U test was conducted to determine that the mean difference 

in IL-6 was significantly different in the concussed group as compared to the healthy 

control (M= -1.94, SD=7.91; U = 315.00, z= -5.96, p<0.001) (see Figure 4-2a). However, 

there was no difference between groups in the change of IL-10 (p=0.158) or TNFD 

(p=0.777) (See Figure 2b-c). The percentage change in IL-6 was -67.7% in the concussed 

group compared to 33.5% in the healthy controls.    

c. 
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Figure 4-2 a-c  

Mean Difference in Each Cytokine Over Time from Time Point 1 to Time Point 2  

 

 

a
. 

b
. 
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Note. Time point 1 is <8 hours after injury. Time point 2 is 24 hours after time point 1. 
Mean difference = (each participant’s cytokine concentration at time point 2) -( each 
participant’s concentration level at time point 1). Mann Whitney U tests were conducted 
to determine if there were differences in the mean change variable between these groups. 
a. IL-6, b. IL-10, and c. TNFD. IL-6 was significantly different in the concussed group as 
compared to the healthy control at p<0.0001. 
 

Discussion 

The findings of higher IL-6 within 8 hours of  a medically diagnosed concussion 

sustained during combat deployment is consistent with previous studies that report 

acutely elevated levels of IL-6 in severe TBI patients (Arand et al., 2001; Ferreira et al., 

2014; Woiciechowsky et al., 2002). In fact, this study is the only one known that reports 

acute biomarker findings in a deployed cohort of military personnel with concussion. 

There are a variety of factors that make a deployed population unique, and for this study, 

paramount is the high rate of blast exposure. This finding is in line with this lab’s 

previous report that linked IL-6 elevations to a moderate blast exposure sustained during 

c.
. 
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training by an undiagnosed population which did not include blunt force. That elevation 

was then followed by a decrease in IL-6 in sampling on subsequent days to below 

baseline levels (Gill et al., 2017). Therefore, the present findings indicate that 

concussions sustained during deployment, highly comorbid with blast, result in elevations 

of IL-6, following by a decrease in concentrations within 24 hours. This finding suggests 

that IL-6 is coordinating recovery from concussions, as well as blast exposures, and that 

understanding these complex relationships may be important to improving care provided 

to military personnel with complex, and often overlapping injuries sustained in combat 

stations. 

 IL-6 is involved in the modulation of pro- and anti-inflammatory activity 

following a TBI, with evidence pointing to the importance of the balance of IL-6 levels in 

the promotion of recovery following TBIs and concussions (McKee & Lukens, 2016). 

Cytokines, such as IL-6, orchestrate the acute inflammatory response to brain injury 

(Helmy, Carpenter, Menon, Pickard, & Hutchinson, 2011; Hinson et al., 2015). In 

support of this, preclinical models that knock out IL-6 activity result in poor behavioral 

performance following a TBI (Ley, Clond, Singer, Shouhed, & Salim, 2011) as well as 

increased apoptosis and delayed neuronal regeneration (Penkowa et al., 2000). 

Detrimental outcomes also occur with elevated IL-6 activity following a TBI, including 

delays in motor coordination and neuronal tissue repair in preclinical models (Penkowa et 

al., 2003; Yang, Gangidine, Pritts, Goodman, & Lentsch, 2013). There is also evidence of 

increased IL-6 concentration in human post-mortem brain tissue obtained following a 

severe TBI that resulted in mortality, compared to patients who died from non-central 
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nervous system causes (Frugier, Morganti-Kossmann, O'Reilly, & McLean, 2010). There 

may be long-term health consequences that result if IL-6 remains imbalanced, as findings 

of elevated IL-6 may be indicative of chronic neurological symptoms or deficits (Devoto 

et al., 2016).Therefore, findings from the current study showing that an IL-6 elevation 

occurs within hours of a concussion, and are then similar to healthy controls at 24 hours 

later, suggests that IL-6 is playing a role in recovery from these mild injuries. 

Considering these early findings in concussion, additional studies with longer follow up 

are warranted to understand the role of IL-6 in recovery and links to long-term 

consequences.  

Conversely, here is reported that IL-10 and TNFD were not significantly different 

between the concussed and healthy military cohorts. This differs from a previous report 

of elevated levels of TNFD in military personnel following blast exposure, along with 

elevated IL-6 levels (Gill et al., 2017). One explanation may be differences between the 

samples in the two studies. Gill et al. (2017) studied military personnel in a well-

controlled training environment, with no reported incidences of blunt injuries and no 

medical diagnosis, while the present cohort included military personnel diagnosed with a 

concussion. These reported differences in injury event characteristics may account for a 

lack of TNFD differences between the concussed and healthy military personnel. 

Likewise, IL-10 was not significantly different between the groups in the present study, a 

finding that replicated Gill et al. (2017).  As would be expected from non-significant 

findings of IL-10 and TNFD cohort differences at time point 1, mean change over time 

was also not significant between the healthy and concussed cohorts. The absence of an 
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upregulation of IL-10 concurrently with the IL-6 elevation is suggestive of possible 

immune dysregulation. Both pro- and anti-inflammatory cytokines are produced by 

microglia following insult to the brain, and the two types work in concert to determine 

the fate of affected neurons, with anti-inflammatory cytokines shifting the balance toward 

neuroregenerative and neuroprotective biological pathways, and pro-inflammatory 

cytokines shifting the balance toward apoptosis and cell death (Hernandez-Ontiveros et 

al., 2013). Specifically, elevations concurrently in IL-6 and IL-10 have been observed in 

studies of severe TBI (Ferreira et al., 2014) and, increases in serum IL-10 seem positively 

correlated with more severe TBI (Di Battista et al., 2016; Schneider Soares et al., 2012). 

Thus, in the current study, the lack of an increase of IL-10 is not surprising based on the 

previous literature, and the mild injury in these cases suggests a state of immune 

dysregulation that may have consequences that require larger sampling and more in-depth 

clinical measures. IL-10 is traditionally classified as exerting anti-inflammatory effects, 

while IL-6 is traditionally defined as pro-inflammatory characteristics (Brandt & 

Pedersen, 2010; Hernandez-Ontiveros et al., 2013; McKee & Lukens, 2016), with 

increasing evidence for IL-6 anti-inflammatory characteristics (Brandt & Pedersen, 

2010). IL-10 may confer neuroprotective effects in animal models (Barrett et al., 2017; 

Chen et al., 2014; Zou et al., 2017). Thus a lack of increase in IL-10 suggests that there 

may be immune dysregulation that may relate to clinically relevant implications that 

should be determined in future studies.  

There are a number of factors in the current study that limit interpretations of 

these findings, including a relatively small sample size, yet this is the first study to report 
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acute biomarkers obtained from active duty military personnel who sustained concussions 

during a military deployment. Additional limitations in the scope of this study include a 

lack of neuroimaging, such as computerized tomography (CT) scans, as well evaluation 

of long-term outcomes. The nature of the combat environment may limit specificity in the 

current study, as blast exposure and blunt injuries often occur concurrently in the same 

injury event. Differences between injury types may account for discrepancies with the 

literature, though it is outside the scope of this study to delineate effects of blast from 

blunt force injury causes.  

In conclusion, reported here is a significant elevation of IL-6 levels in concussed 

military personnel less than 8 hours following injury. This is the first reported 

observation of peripheral levels IL-6, -10, and TNFD in a combat environment to 

determine biomarkers of concussions sustained during combat station deployments, in a 

cohort that had high rates of comorbid blast exposure. The present finding of IL-6 

elevation warrants further exploration of inflammatory cytokines in combat injuries 

involving concussion and blast, especially in future studies designed to account for the 

aforementioned limitations. Future studies may examine acute and chronic neurological 

symptomology associated with inflammatory cytokine levels, distinguish individuals at 

high risk for developing neurological complications, and identify underlying biological 

pathways to mitigate inflammation and improve outcomes. The present findings of 

elevated IL-6 may be further explored in larger cohorts, as well as to determine 

inflammatory pathways that may be targeted for therapies.  
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CHAPTER FIVE  
 

DISCUSSION 
 

Concussions are a significant health concern worldwide, especially among 

military personnel (Defense and Veterans Brain Injury Center, 2017; Taylor, 2017). 

Given the limited FDA-approved interventions, substantial societal economic burden, and 

risk of long-term neuronal health consequences, it is essential that new therapeutic 

approaches are explored and developed (Carroll et al., 2004; Cassidy et al., 2014; Ma, 

Chan, & Carruthers, 2014; Maas, Stocchetti, & Bullock, 2008). This research aimed to 

build on the biological foundation necessary for future developments in treatment, 

monitoring, and prognosis by investigating underlying inflammatory processes, through 

gene expression and protein analysis, immediately following concussions with blast 

exposures. As a result, this research has contributed to emerging knowledge of 

inflammatory response in military personnel experiencing acute concussion.  

Summary of Key Outcomes 

The purpose of the dissertation research was to examine alterations in 

inflammatory processes following traumatic brain injury. During the course of this 

research, gaps were identified in current literature specific to gene expression and 

inflammatory cytokines following concussion in military personnel. Additionally, we 

were presented with the unique opportunity to analyze samples collected both in a 

military training environment, as well as overseas during combat in Afghanistan. Each 

factor is discussed below, as well as the response in the research program, and a brief 

overview of key outcomes resulting from each study.  
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1. Gap Identified: While a literature review of multiple clinical studies 

examined the significance of the inflammatory response in persons with TBI, 

there are few research publications which describe inflammatory-related gene 

expression and proteins in clinical populations with mild TBI or concussion.  

Response: The research results in Chapter 2 addressed Gap 1 by examining 

the current state of the literature over the last 10 years in two ways: 1) gene 

expression studies in mild TBI and, 2) inflammatory protein markers in mild 

TBI. 

Key Outcomes: In Chapter 2, a review of the current literature demonstrated 

that inflammatory cytokines, including IL-6, IL-10, and TNFD, may be 

elevated in the acute time period following mild TBI or concussion and that 

chronically elevated levels are associated with poor outcomes. In addition, 

gene expression studies showed that alterations do occur following mild brain 

injury, including inflammatory pathways. One of these inflammatory 

pathways is NF-NB, which is considered a master regulator of inflammatory 

cytokines. However, studies in inflammatory cytokines, and especially gene 

expression, are limited in number at this time, with findings requiring 

validation in additional studies. Further, most studies are limited to the 

civilian population, and they do not consistently delineate between different 

subtypes of injury including blast exposure. Thus, examination of cytokines 

and gene expression in military personnel with concussion from blast 

exposure is needed to continue to build on this knowledge.  
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2. Gap Identified: Although concussion is recognized as the signature injury in 

military personnel serving in recent conflicts, gene expression data related to 

recovery processes remain poorly studied, especially in the most common 

cause of injury—blast exposure.  

Response: Chapter 3 explored gene expression alterations following moderate 

blast exposure in a military training population.  

Key Outcomes: Chapter 3 describes the contribution to existing literature 

which demonstrates that gene expression is altered following brain injury. 

This dissertation study showed two differentially regulated gene networks 

following moderate blast exposure: 1) cell death and survival, and 2) cellular 

structure, function, and development. These gene networks included 

alterations in key biological pathways related to ubiquitination, neuronal 

recovery, and immune and inflammatory pathways. Specifically, gene 

expression changes were observed that activate immune and inflammatory 

pathways involving the NF-NB pathway and the AKT1 gene. These findings 

build on previous work in the same population of moderate blast exposure 

showing increased concentrations of inflammatory cytokines IL-6 and TNFD 

(Gill et al., 2017). 

3. Gap Identified: Inflammatory cytokines (IL-6, IL-10, and TNFD) in the acute 

stage following concussion have not been examined in deployed military 

personnel who experienced concussion and blast exposures.  
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Response: In Chapter 4, measured IL-6, IL-10, and TNFD concentrations 

were described at two acute time points following provider-diagnosed 

concussion in military combat personnel. 

Key Outcomes: Results identified in Chapter 4 contributed to existing work 

demonstrating acute elevations of IL-6 following concussion. Specifically, the 

findings showed significantly increased concentrations in IL-6 less than 8 

hours following concussion, which were highly comorbid with blast (>70% of 

concussed individuals reporting blast).  This increased IL-6 concentration was 

followed by a decrease in IL-6 concentration within 24 hours. IL-6, in balance 

with other cytokines, is known to modulate the inflammatory process 

following brain injury; this is also supported in preclinical models (Ley, 

Clond, Singer, Shouhed, & Salim, 2011; McKee & Lukens, 2016; Penkowa, 

Giralt, Carrasco, Hadberg, & Hidalgo, 2000; Penkowa et al., 2003). Thus, 

findings from this study suggest that IL-6 is coordinating recovery from 

concussions, including those caused by blast exposures. Further research 

could contribute to the understanding of the cytokine balance, important to 

improving care of the complex, and often interrelating, concussion and blast 

injuries sustained by military personnel in combat stations. Importantly, this 

study is unique in that it is the only one at this time to measure cytokines in 

deployed military personnel with concussion. 
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Significance of Key Outcomes  

 The research outcomes within this dissertation provide several key contributions 

to knowledge about inflammatory responses following concussion, including:  

1. The first review of gene expression and inflammatory cytokines in mild traumatic 

brain injury clinical populations;  

2. Contribution to the growing body of research demonstrating altered gene 

expression networks following blast exposure in human populations;  

3. Evidence of altered inflammatory gene pathways, including the regulator of 

cytokines NF-NB, following blast exposure in a military training population; 

4. The only study to date that measures inflammatory cytokines in military 

personnel deployed to combat stations who experienced concussion highly 

comorbid with blast; and,  

5. Evidence of increased IL-6 concentrations in the acute period following 

concussion comorbid with blast exposure.  

Strengths and Limitations of the Research 

The strengths and limitations of each chapter has been discussed previously but 

the cumulated strengths and limitations of the overall research program are discussed 

here.  

The research program has multiple strengths. First, the research papers have 

addressed complex questions using different study designs and research methodologies. 

During the course of this study, this lab was presented with the unique opportunity to 

analyze samples collected both from military training personnel as well as combat 
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personnel overseas in Afghanistan. Thus, questions regarding activation of the 

inflammatory response following blast exposure and concussion were able to be 

addressed in two cohorts of military personnel: 1) A well-controlled training environment 

with only blast exposures; and, 2) A real-world combat setting with concussions and blast 

exposures representing the experience of deployed military personnel. Second, the 

controlled training environment represents a unique opportunity to explore the impact of 

blast alone, as there were no other known blunt force injuries observed. In the training 

environment, samples obtained in PAXgene DNA tubes were collected pre and post 

moderate blast exposure, which allowed for the analysis of gene expression changes 

before and after the moderate blast exposure. Previous reports in the same population that 

indicate an increase in inflammatory cytokines (IL-6 and TNFD), together with the 

present study findings of activation of inflammatory pathway genes, strengthened the 

evidence for altered inflammatory systems following blast exposure in human 

populations. Third, the combat setting, to date, is the only deployed military population in 

which blood has been collected for the purpose of measuring biomarkers following 

concussion.  Importantly, inflammatory cytokines (IL-6, IL-10, and TNFD) were able to 

be examined in a real-world combat environment, with concussions often occurring 

simultaneously with other sources of injury and involving blast exposures. Data from this 

dissertation study aligned with previous reports of acute increases in IL-6, suggesting that 

further exploration of IL-6 is relevant to future research in concussions and blast 

exposure.  
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There are several limitations in this program of research. In addition to the 

strengths described above, the use of two cohorts presented challenges. First, there are 

differences in the descriptions of the injuries between the two cohorts. While the combat 

population had provider-diagnosed concussions, largely comorbid with blast exposure, 

there was a lack of concussion diagnosis in the military training population exposed to 

moderate blast. Despite these differences, it is important to note that both cohorts 

experienced blast exposures. Second, the nature of the combat environment creates 

unavoidable differences from a controlled training environment. For example, the force 

of the blast exposure was not able to be measured in the combat environment as it is in a 

training setting. Additionally, blunt force injury is difficult to delineate from blast 

exposures in a combat setting. Though the nature of this sample presented some 

limitations, the majority of combat personnel experienced blast exposure as the cause of 

concussion so met eligibility for inclusion in this research study. Rarely does the 

opportunity arise to study the effects of blast in human populations. Thus, despite the 

differences between the cohorts, these researchers believe that both the training and 

combat populations have made significant contributions to understanding inflammatory 

processes following blast, and that knowledge gained from each study will help guide 

future studies moving forward.  

Implications for Healthcare Genetics and Future Directions for Study 

This research program has presented a number of novel findings in the context of 

understanding activation of the inflammatory response following concussion and blast 

exposure in the military. Namely, knowledge gained from these studies to be considered 
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in moving the research forward include activation of inflammatory gene networks and 

changes in IL-6 over time. However, there is a pressing need to investigate the 

relationship between inflammatory processes to recovery from concussion and blast 

exposures. Specifically, the research methodology of examining gene expression and 

protein products has application to the field of Healthcare Genetics in its potential for 

translation from bench to bedside care. 

Research agenda.  

The literature review in Chapter 2 looked at clinical traumatic brain injury studies 

of gene expression and related proteomic pathways. Those results identified a continued 

need to conduct additional research studies in both gene expression and cytokine activity 

following concussions in human populations. This dissertation research contributed to 

that need through two studies in the military population described in Chapter 3 and 4. 

However, as identified in Chapter 2, additional studies, both in civilian and military 

populations, with standardized identification of various brain injury subtypes and 

severities, are recommended. Additionally, there is a need to map outcomes with gene 

expression and cytokines over time, a need which is reflected in Chapters 3 and 4 of this 

research program.  

Results in Chapter 3, which identified differentially regulated gene networks 

following blast exposure in a military training environment, suggested a need for further 

evaluation of gene expression in larger cohorts, with additional acute days of blood 

sample collection. Collection of data over time would allow for a more in-depth analysis 

of gene expression changes over time. With collection of the participants’ symptoms 
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using objective and measureable tools, the gene changes could be mapped to poor 

outcomes. Finally, exploration in gene network changes would give indications of the 

underlying biological processes. Similar to cytokines and the changes related to the NF-

NB network in the Chapter 3, protein products of those gene changes could be 

measured—a technique which would have clinical utility for healthcare personnel caring 

for patients at the bedside. Specifically, in application to the field of Healthcare Genetics, 

a future study could be designed to capture gene expression data and cytokines at the 

same time points within the same cohort.  

Per results in Chapter 4, it is recommended that inflammatory cytokines in 

military personnel with concussion and blast exposures be further explored in larger 

cohorts. Future studies should be designed to account for the limitations mentioned 

above, including delineating blast from other subtypes of concussion. Acute and chronic 

neurological symptoms may be collected and associated with inflammatory cytokine 

levels over time. This information may help to characterize individuals at risk for 

developing neurological complications, as well as further elucidate the underlying 

inflammatory pathways that may be targeted for therapies in order to improve outcomes. 

Finally, as referred to in Chapter 3 above, the measure of protein biomarkers may have 

potential clinical utility for identification and/or monitoring of inflammatory processes 

over time. The elevated IL-6 concentration in this study is interesting given the similar 

increase in IL-6 seen in a previous report by Gill et al. (2017), as well as the increased 

expression of inflammatory-related genes in Chapter 3 of this work. Thus, there may be 

reason to further explore the question of cytokines informing concussions. 
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Conclusion 

Concussion and blast exposure in the military remains an important concern for 

military personnel, as well as civilians, around the world. The acute period following 

injury is crucial for appropriate activation of the inflammatory response, with prolonged 

imbalances in the inflammatory response likely leading to poor outcomes. This research 

program resulted in 3 papers, each of which focused on the essential need to further 

elucidate inflammatory gene expression and cytokine responses to acute concussion. 

With research from Chapters 2 and 3, Chapters 3 and 4 respectively, indicating 

significantly altered gene expression networks and increased IL-6 during the acute time 

period, this research contributes to the existing literature and provides direction for 

continued exploration. The research findings and potential future directions will have 

application to the field of Healthcare Genetics for researchers and health care 

professionals seeking to develop, and eventually implement, therapeutics to improve 

patient outcomes following concussion.  



 158 

References 

Carroll, L. J., Cassidy, J. D., Peloso, P. M., Borg, J., von Holst, H., Holm, L., . . . Pepin, 
M. (2004). Prognosis for mild traumatic brain injury: results of the WHO 
Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil 
Med(43 Suppl), 84-105.  

Cassidy, J. D., Cancelliere, C., Carroll, L. J., Cote, P., Hincapie, C. A., Holm, L. W., . . . 
Borg, J. (2014). Systematic review of self-reported prognosis in adults after mild 
traumatic brain injury: results of the International Collaboration on Mild 
Traumatic Brain Injury Prognosis. Arch Phys Med Rehabil, 95(3 Suppl), S132-
151. doi:10.1016/j.apmr.2013.08.299 

Defense and Veterans Brain Injury Center. (2017). DoD Worldwide Numbers for TBI.   
Retrieved from http://dvbic.dcoe.mil/dod-worldwide-numbers-tbi 

Gill, J., Motamedi, V., Osier, N., Dell, K., Arcurio, L., Carr, W., . . . Yarnell, A. (2017). 
Moderate blast exposure results in increased IL-6 and TNFalpha in peripheral 
blood. Brain Behav Immun. doi:10.1016/j.bbi.2017.02.015 

Ley, E. J., Clond, M. A., Singer, M. B., Shouhed, D., & Salim, A. (2011). IL6 deficiency 
affects function after traumatic brain injury. J Surg Res, 170(2), 253-256. 
doi:10.1016/j.jss.2011.03.006 

Ma, V. Y., Chan, L., & Carruthers, K. J. (2014). Incidence, prevalence, costs, and impact 
on disability of common conditions requiring rehabilitation in the United States: 
stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, 
rheumatoid arthritis, limb loss, and back pain. Arch Phys Med Rehabil, 95(5), 
986-995.e981. doi:10.1016/j.apmr.2013.10.032 

Maas, A. I., Stocchetti, N., & Bullock, R. (2008). Moderate and severe traumatic brain 
injury in adults. Lancet Neurol, 7(8), 728-741. doi:10.1016/s1474-
4422(08)70164-9 

McKee, C. A., & Lukens, J. R. (2016). Emerging Roles for the Immune System in 
Traumatic Brain Injury. Front Immunol, 7, 556. doi:10.3389/fimmu.2016.00556 

Penkowa, M., Giralt, M., Carrasco, J., Hadberg, H., & Hidalgo, J. (2000). Impaired 
inflammatory response and increased oxidative stress and neurodegeneration after 
brain injury in interleukin-6-deficient mice. Glia, 32(3), 271-285.  

Penkowa, M., Giralt, M., Lago, N., Camats, J., Carrasco, J., Hernandez, J., . . . Hidalgo, J. 
(2003). Astrocyte-targeted expression of IL-6 protects the CNS against a focal 
brain injury. Exp Neurol, 181(2), 130-148.  

Taylor, C. A. (2017). Traumatic Brain Injury–Related Emergency Department Visits, 
Hospitalizations, and Deaths—United States, 2007 and 2013. MMWR. 
Surveillance Summaries, 66.  

 
 

 
 
  

http://dvbic.dcoe.mil/dod-worldwide-numbers-tbi


 159 

 
 
 

 
 

 

 

 

 

 

 

APPENDICES 



 160 

Appendix A 

Abbreviations 

BBB: blood brain barrier 

CNS: central nervous system 

GCS: Glasgow Coma Scale 

GOS: Glasgow Outcome Scale 

ICP: intracranial pressure 

IL-6: interleukin 6 

IL-10: interleukin 10 

IPA: ingenuity pathway analysis 

ISF: interstitial fluid 

TBI: traumatic brain injury 

mRNA: messenger ribonucleic acid 

mTBI: mild traumatic brain injury 

NF-NB: nuclear factor kappa light-chain enhancer of activated B cells 

OEF: Operation Enduring Freedom 

OIF: Operation Iraqi Freedom 

ROS: reactive oxygen species 

TNFD: tumor necrosis factor D 

Tregs: Regulatory T cells 
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appropriately resourced by Jeffrey L. Thomas, COL, MS, Director, Center for Military Psychiatry 
and Neuroscience, on 31 January 2018.  
 
5. No additional information is needed at this time. However, should the study team gain access 
to any personal identifiers or codes linking the participants with their specimens, the submitted 
project would need an independent determination by either the WRAIR Institutional Review 
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Board Chair or the Director, Human Subjects Protection Branch (HSPB), as to whether or not 
the investigator is engaged in human subjects research, and whether or not the WRAIR IRB 
review and approval are required.  The HSPB reserves the right to review the project records to 
re-assess the determination of research not involving human subjects. The WRAIR HSPB also 
reserves the right to review the project records and re-assess the NHSR determination as part 
of post approval compliance monitoring. The PI is responsible for maintaining records that 
confirm that the executed activities match the project that was evaluated and found to be 
research not involving human subjects. 
  
6. The point of contact for this action is Anna Sanner, M.D., M.P.H, at 301-319-9866 and 
Anna.V.Sanner.ctr@mail.mil.    

 
 

 
        
TIBOR TUZSON, MD  

                                                                              Exemption Determination Official 
                                                                              Human Subjects Protection Branch  

Walter Reed Army Institute of Research  
 
 

mailto:Anna.V.Sanner.ctr@mail.mil
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Eiserman, Julie (NIH/OD) [C]

From: Gill, Jessica (NIH/NINR) [E]
Sent: Wednesday, February 18, 2015 7:41 AM
To: Eiserman, Julie (NIH/OD) [C]
Subject: RE: Follow Up re: Request for Determination for OHSRP #12767

Julie‐ No, he has de‐identified the samples so that there are not longer any identifiers for the subjects.  
Thanks 
‐Jessica 

From: Eiserman, Julie (NIH/OD) [C]  
Sent: Wednesday, February 18, 2015 7:40 AM 
To: Gill, Jessica (NIH/NINR) [E] 
Subject: RE: Follow Up re: Request for Determination for OHSRP #12767 

Your collaborator won't have access to the code key as the PI of the other study? 

Sent with Good (www.good.com) 

From: Gill, Jessica (NIH/NINR) [E] 
Sent: Wednesday, February 18, 2015 7:20:05 AM 
To: Eiserman, Julie (NIH/OD) [C] 
Subject: RE: Follow Up re: Request for Determination for OHSRP #12767 

Julie‐ Yes, they will be coded, so the correct answer is b. I apologize for this error, please let me know how I may be of 
help in correcting it.  
Thank you 
‐Jessica 

From: Eiserman, Julie (NIH/OD) [C]  
Sent: Tuesday, February 17, 2015 10:05 PM 
To: Gill, Jessica (NIH/NINR) [E]; Olivera, Anlys (NIH/NINR) [F]; Livingston, Whitney (NIH/NINR) [F]; Martin, Christiana 
(NIH/NINR) [F] 
Subject: Follow Up re: Request for Determination for OHSRP #12767 

Hello,  

I am reviewing  your request for determination and I just want to confirm something about this request related to your 
answer (below).   
9. Select the best description that applies to the specimens or data:

(a)   X_  Specimens, data or information will not contain any identifiable information, 
and cannot be linked to individual subjects by you or your collaborators. 
(b) ___ Specimens, data or information will be coded, however that code cannot be 
used by either the provider or the receiver to identify specific individuals. 
(c) ___ Specimens, data or information will be coded so that the provider of the 
samples/data can link them to specific individuals but the receiver will not be able 
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to do so. 
  
I just want to confirm that the specimens and data will be coming to you completely anonymous rather than coded since 
your collaborator is the PI of the project and would likely have access to identifiers.  In addition, because  you will be 
receiving data and specimen, you would likely need to receive everything coded rather than anonymous so you can link 
the specimens and data to each other.  If I am misunderstanding something, please let me know.   
  
Julie M. Eiserman, MA, CCRP [C] 
Health Science Policy Analyst 
Office of Human Subjects Research Protections 
10 Center Drive, Bldg. 10, Suite 2C146 
Bethesda, MD  20892‐1154 
Office Phone: 301‐402‐3444 
Fax: 301‐402‐3443 
OHSRP website: https://federation.nih.gov/ohsr/nih/index.php (NIH login required) 
Public site: http://ohsr.od.nih.gov/ 
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 Date of Request:   1‐26‐2015 

Requestor’s name: Jessica Gill   e‐mail: gillj@mail.nih.gov 

Role: X Investigator    __Administrative support   __Other, explain: ________ 

Name of NIH Senior Investigator: Jessica Gill 
             (The investigator must be an NIH employee) 

IC:   NINR   Laboratory/Branch:  Tissue Injury Branch          

Building & Room No.:  60, 254  Tel. No.:   451‐8452  FAX No.:  301‐451‐1678 

Is the NIH Senior Investigator an NIH employee (FTE)?     X    Yes  _______No 

Senior Investigator Signature:  
(Signature of Investigator who will conduct research, Dr. 

Jessica Gill) 

Supervisor Signature: 

____ ______________________________________________ 
(Signature of official for IC, e.g., Lab/Branch Chief, Dr. Ann 

Cashion) 

Name of NIH investigator conducting research if not the NIH Senior Investigator:  (i.e, 
junior investigator, contractor investigator, fellow, student) 
Anlys Olivera, Ph.D, IRTA Postdoctoral Fellow, Whitney Livingston, post‐bac IRTA, and 
Christiana Martin, post‐bac IRTA 

Please provide the name and e mail of any others who should receive a copy of the 
OHSR determination:  Hyung‐Suk Kim, kimy@mail.nih.gov 

1. What role will the NIH investigator(s) have in this research project? (check all that
apply)
__x_ Analyze samples/data
___ Consultant/advisor to collaborator(s)
__x_ Author on publication(s)/manuscript(s) pertaining to this research
___ Investigator or the NIH holds an IND/IDE for this research
___ Other, please describe: ______________________________________________

OHSRP #12767



 REQUEST FORM: OHSRP DETERMINATION FOR 
RESEARCH-USE OF DE-IDENTIFIED SPECIMENS OR DATA 
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2. Title:  An Examination of Neurological Proteins Related to Traumatic Brain
Injuries in Military Personnel Deployed in Afghanistan

3. Describe in lay terms the research activity that will be performed:

The overall objective of this project is to examine concentrations of proteins including 
tau and GFAP following acute traumatic brain injuries (TBls) in military personnel who 
were deployed to Afghanistan. Subjects had 2 blood samples, with the first occurring 
within 12 hours of the TBI, and the second 24 hours following the TBI. These samples 
were collected during deployment to Afghanistan under a protocol with the primary 
investigator of Dr. Walter Carr “A Comparative Evaluation of Blood Biomarkers and 
Automated QEEG from Concussed and Non‐Concussed Cohorts in a Combat Zone, 
Walter Reed Army Institute of Research Protocol #2028.”   

4. Proposed start date:  2/20/15      Proposed completion date:  2/09/16

5. Specify the nature of the specimens or data: (select all that apply)
___   iPSC lines     ___   hESC             ___   Fetal Tissue
___   WES/WGS       ___   GWAS
X     Other human specimens (e.g. tissue, blood, derivatives),   describe: Blood
X     Data (e.g. clinical or research information or laboratory results) describe:

De-identified data, including demographics (age, sex, race), and traumatic brain 
injury-related information 

     Other, describe:  

6. Will specimens or data be? (select all that apply)
Collected     Yes__ No         
Received  Yes  X  No__ 
Sent  Yes    No__ 

7. If receiving or sending, list the collaborating investigator(s):

Name       Institution/IC     Address/e‐mail    FWA number* 
Walter Carr  Walter Reed Army Institute of Research walter.s.carr.mil@mail.mil, 
FWA= 00000152 

8. Do the specimens, data or information:
Already exist?  Yes X     No__ 

If “no”, explain:_________________________________________________ 

9. Select the best description that applies to the specimens or data:
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(a)   X      Specimens, data or information will not contain any identifiable information, 
and cannot be linked to individual subjects by you or your collaborators.  

(b) ___   Specimens, data or information will be coded, however that code cannot be 
used by either the provider or the receiver to identify specific individuals. 

(c) ___   Specimens, data or information will be coded so that the provider of the         
samples/data can link them to specific individuals but the receiver will not be able 
to do so. 

10. If c is selected above, please follow the instructions below:
Projects involving coded research specimens obtained from a non‐NIH collaborator 
will require a de‐identification agreement. Please e‐mail your collaborator(s) the 
following agreement language modified to reflect the nature of your collaboration. 
Attach the completed agreement to this submission. 

De identification Agreement: 

Provider of coded specimens or data: 

I, [Name] of [Institution], holder of the code‐key or cipher for the coded 
[specimens, data (specify)], promise not to release the identity of the subjects 
from whom the coded [specimens, data (specify)] originated, until the subjects 
decease to [Recipient Name] at [Recipient Institution]. 

Recipient of coded specimens or data:  

I, [Name] of [Institution], recipient of the coded [specimens, data (specify)], 
promise not to request the identity of the subjects from whom the coded 
[specimens, data (specify)] originated, until the subjects decease from [Sender 
Name] at [Sending Institution]. 

11. If data are being extracted from existing records, who will extract the data? (if
applicable)
(a)  ___ NIH Investigator
(b)  _x__ non‐NIH Collaborator
(c)  ___ NIH Contractor
(d)     Other, specify:

If a or c, will an Honest Broker or data use agreement be used? Yes__ No__

If yes, complete and attach the Honest Broker Assurance or Data Use Agreement to
this submission; e‐mail ohsr_nih_ddir@od.nih.gov  to request the form.

12. Where are the subjects of this research activity located? Subjects were recruited
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while deployed as active duty military personnel deployed in Afghanistan.  
13. If human subjects are located elsewhere (not at NIH), will you have direct contact
or intervention with them?  (For example, as subject's physician, obtaining specimens 
directly from the subject?)  Yes__ No X     

14. Do the specimens, data or information come from:
___ NIH BTRIS
___ NIH Medical Records
X    Repository

If an NIH Repository, specify: ________________________________________ 
___ Pathological waste
___ Autopsy material
___ Publicly available source
___ Originate from an IRB‐approved protocol?
___ Other_____________________________________________________________

15. Will the results of the research be returned to the provider(s) of the specimens or
data?
(a)  ___ No, results will not be returned to the provider(s)
(b)  X    Yes, aggregated results will be returned to the provider(s)
(c)  ___ Yes, results that are linked to identifiable individuals, will be returned to

provider(s) 
(d)  ___Yes, the results of this project will be returned to an active NIH IRB‐approved

protocol?  If yes, protocol ID: ____________  

If b or c, is the NIH project consistent with the IRB/EC‐approved protocol at the 
collaborating institution? Yes_x_ No__ 

16. Per NIH guidance, are all conflicts of interest by NIH employees, if any, resolved?
X    Yes   _____No**

*A Federalwide Assurance (FWA) is issued by the U.S. Department of Health and Human
Services (DHHS)/ Office of Human Research Protections (OHRP) to institutions which 
receive Federal funds/support to conduct human subjects research. To search for the 
FWA# for domestic or international institutions go to 
http://ohrp.cit.nih.gov/search/fwasearch.aspx?styp=bsc  

**If the answer is “No”, note that OHSRP will be unable to make a determination and 
research may not proceed until all conflicts are resolved. For more information, see the 
October 2011, A Guide to Preventing Financial and Non‐Financial Conflict of Interest  in 
Human Subjects Research at NIH. For assistance review the list of Ethics Coordinators 
and find the contact for your IC: http://ethics.od.nih.gov/coord.pdf 
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OHSR (NIH/DDIR)

From: Gill, Jessica (NIH/NINR) [E]
Sent: Monday, January 26, 2015 4:47 PM
To: OHSR (NIH/DDIR)
Subject: review of possible exempt protocol
Attachments: gill_CARR_OHSRP.doc

Hello‐ I am attaching an application for the review of a possibly exempt protocol . Please let me know if any questions 
arise or if other information would be of help. Thank you. 
‐Jessica 
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OHSR (NIH/DDIR)

From: OHSR (NIH/DDIR)
Sent: Friday, January 30, 2015 12:34 PM
To: Gill, Jessica (NIH/NINR) [E]
Subject: Req for Determination Rec'd_OHSRP 12767

Good afternoon Dr. Gill, 
  
This email is to verify that OHSR has received your Request for Determination and it is currently being processed as 
OHSRP #12767. Please use this number in any future correspondence regarding this study.    
 
Protocol Title: An Examination of Neurological Proteins Related to Traumatic Brain Injuries in Military Personnel 
Deployed in Afghanistan 
 
Thank you. 
Sincerely,  
Chris Brentin 
OHSRP ‐ National Institutes of Health 
Bldg 10, Suite 2C146                                                                                                                           
Bethesda, MD 20892 
Office Telephone: 301‐402‐3444 
Office Fax: 301‐402‐3443 
  
The NIH is committed to maintaining the highest standards for the protection of human 
subjects.  
3Please consider the environment before printing this e-mail 
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2.  ABSTRACT 
 
2.1 Purpose 
The purpose of this study is to evaluate the cognitive and neurophysiological effects of chronic exposure 
to repeated low-level blast overpressure.  The results of previous studies (NMRC.2007.0006; 
NMRC.2009.0011; NMRC Project #60) show converging evidence for a neurophysiological effect from 
cumulative exposure to blast that is consistent with anecdotal reports of cognitive impairments by 
members of the professional community known as “Breachers”.  These studies were undertaken as a 
result of a request by the Breacher instructors who had subjective complaints of memory impairment and 
on occasion, balance and sleep difficulties.  However, the number of instructors was small and a larger 
group evaluation is needed at this time to verify whether breaching activities may result in increased risk 
for cognitive impairment.  The proposed study will expand on these findings by examining a larger cohort 
of experienced Breachers who may be incurring a cumulative effect of low-level blast exposure over the 
course of several years in the profession.  Analysis of this unique population will yield a greater effect 
size than previous studies of Breacher instructors with the goal of identifying the mechanisms underlying 
cognitive deficits specifically related to repeated low-level blast exposure and identify the most 
efficacious means of detecting mild traumatic brain injury (mTBI) in soldiers.  
 
2.2 Research Design  
Volunteers will be recruited from the military and civilian law enforcement Breacher communities for a 
multi-phase, cross-sectional study of chronic exposure to low-level blast overpressure (“breaching blast”).  
Experienced Breachers are those with at least 4 years of experience with exposure to low-level blast from 
breaching either in the field or as instructors for explosive entry training courses.  Phase A of the study 
will include field assessments of Breachers during explosive entry training to measure breaching 
environments and blast exposure and evaluate the acute effects of low-level blast exposure.  Phase B will 
involve subjects travelling to the National Institute of Neurological Disorders and Stroke (NINDS) of the 
National Institutes of Health (NIH) in Bethesda, MD for neuropsychological testing, neuroimaging, blood 
components analysis, vestibular and auditory testing, and a sleep assessment.  Subjects will also be 
invited back to NINDS for a 1-year follow-up assessment to look at the progression of the effects. 
 
2.3 Methodology / Technical Approach  
We will evaluate individuals from the military and civilian law enforcement Breaching communities with 
extensive breaching experience and compare their cognitive performance with that of age, gender, and 
service length matched individuals with exposure to non-blast related overpressure (e.g. artillery units) 
and those with no prior exposure to overpressure.  For Phase A, we will evaluate between 100 to 150 
breachers and between 25 and 50 artillery personnel during breacher and artillery training.  In addition, 
we will evaluate between 25 and 50 unexposed individuals for a total of up to 250 subjects.  For Phase B, 
we will evaluate a minimum of 15 subjects from each of the three groups (breachers, artillery personnel, 
and unexposed individuals) for a total of at least 45 subjects, with an upper limit of 60 subjects (20 per 
group).  Subjects for Phase B may come from the subject pool for Phase A, however, subjects are not 
required to participate in Phase A in order to be eligible for Phase B.  In addition, subjects from all 3 
groups will be asked to bring a companion to NIH for an interview to capture changes in daily functioning 
that subjects may not be able to self-assess, which could yield an additional 60 subjects.  However, 
subjects are not required to bring a companion to participate in the Phase B; therefore, the actual number 
of companions that will be evaluated is unknown.  Companions can also participate in the study remotely.  
The sum of the maximum number of possible subjects over all groups in both phases is 370. 
 
During Phase A of the study, staff from the Naval Medical Research Center (NMRC) and the Walter 
Reed Army Institute of Research (WRAIR) will conduct daily field assessments during explosive entry 
training to evaluate the acute effects of breaching in an experienced population.  These assessments will 
include neuropsychological tests of cognitive and emotional functioning, symptomology, vestibular 
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system assessments, eye-tracking, analysis of sleep patterns, and blood components sample analysis for 
biomarkers of brain injury.  In addition, blast measurement experts from Applied Research Associates, 
Inc. (ARA) will accompany the research team to gather data on blast pressure using pressure sensors on 
the subject and in the environment to estimate the magnitude and frequency of the overpressure energy 
transmitted to the head.   
 
In Phase B, subjects will travel to NINDS in Bethesda, MD for a multi-day visit for a series of evaluations 
to measure cognitive and neurophysiological changes related to exposure.  These procedures are 
described in detail in Appendix A and will include neuropsychological testing, blood components 
analysis for biomarkers, vestibular and auditory testing, a sleep assessment (polysomnography), and 
neuroimaging studies using diffusion tensor imaging (DTI), susceptibility weighted imaging (SWI), 
perfusion imaging, imaging with Gadolinium contrast, and functional magnetic resonance imaging 
(fMRI).  To participate in this study, volunteers will be required to consent to both DOD and NINDS 
protocols; however, they can opt out of individual procedures for any reason. 
 
All procedures outlined in this protocol are subject to modification or replacement with methods that are 
similar in time commitment and method of administration to tasks contained in the current version of the 
protocol.  We will not substitute tasks that introduce additional risks beyond that of the approved tasks 
without explicitly requesting their use via an amendment to this protocol. 
 
 
3.  OBJECTIVES AND SPECIFIC AIMS 
 
The objective of this study is to determine the cognitive and neurophysiological effects of chronic 
exposure to low-level blast overpressure in the professional community of “Breachers” (explosive entry 
personnel).  The primary goal is to detect differences in cognitive performance and neurological 
functioning between experienced Breachers and well-matched control groups to substantiate and guide 
surveillance. 
 
The specific aims of the study are as follows: 
 
Phase A 
 
Specific Aim #1: Replicate and augment NMRC.2007.0006, by examining the acute effects of breaching 
on cognitive and emotional functioning in individuals with chronic exposure to low-level blast 
overpressure using blast exposure characterization in conjunction with neuropsychological testing, 
vestibular system assessments, eye-tracking, and sleep pattern analysis. 
 
Specific Aim #2: Characterize multiple breaching blast environments, as well as a non-blast generated 
overpressure environment, and measure variations in individual exposure levels due to tactical and 
environmental factors. 
 
Specific Aim #3: Develop acute time-courses of blood biomarker levels that are associated with brain 
injury by collecting blood samples from subjects before, during, and after breaching blast exposure. 
 
Phase B 
 
Specific Aim #4: Examine long-term effects of chronic exposure to breaching blast on neurophysiological 
and cognitive functioning using neuropsychological testing, structural and functional neuroimaging, 
blood components sample analysis, vestibular and auditory testing, and a sleep assessment. 
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Specific Aim #5: Determine the most effective techniques for detecting neurophysiological and cognitive 
changes specific to breaching blast exposure by contrasting the experimental population with a well-
matched control group consisting of individuals with extensive exposure to overpressure not related to 
blast (e.g. artillery units), as well as a control group with no history of overpressure exposure. 
 
Specific Aim #6: Capture changes in daily functioning that the subjects may not be able to self-assess by 
conducting interviews with a close companion using questionnaires that target the companion’s 
perception of the primary subject’s daily function and by comparing responses to questionnaires that both 
the companion and subject answer. 
 
Specific Aim #7: Examine the progression of long-term neurophysiological and cognitive changes in 
experienced Breachers by conducting a 1-year follow-up assessment. 
 
 
4.  MEDICAL APPLICATION / MILITARY RELEVANCE 
 
In both training and operations, Warfighters are repeatedly exposed to blast events in the course of 
carrying out their duties.  Very little data exists on the effect of this exposure on the physiological 
function of the human body, and none of the available data addresses the risk of cognitive impairment as 
a result of chronic repeated blast exposures.  In 2005 and 2006, Breachers from both military and civilian 
law enforcement units began expressing some sensitivity to the risk of injury as a result of multiple blast 
exposures.  Because Breachers apply explosives as a means of gaining access to barricaded or hardened 
structures, these specialists can be exposed to as many as a dozen 0.3 to 10 pound charges per day during 
training exercises and even larger numbers during night time operations.  Although the Breachers’ 
concerns are based upon anecdotal data and self-diagnosis, the symptoms they report, including sleep 
pattern disruption and short term memory loss, are similar to those reported by the Defense and Veterans 
Brain Injury Center (DVBIC) and others in the military community in regard to veterans returning from 
the recent and ongoing conflicts in Afghanistan and Iraq. 
 
To address the profound issues related to the diagnosis and treatment of TBI, the United States Congress, 
through Public Law 110-252, established the Center for Neuroscience and Regenerative Medicine 
(CNRM) as a collaborative intramural program in May 2008.  The CNRM is a contributing program 
resources for the execution of this study to include use of the CNRM funded MRI scanner, personnel and 
data sharing; however, no CNRM funds are being utilized in the performance of this study.  Imaging data 
will be processed and stored by the CNRM at the NIH Clinical Center. 
 
The concerns raised by Breachers present a unique opportunity for the blast injury research and medical 
communities to gather blast injury data on human subjects in a fully characterized blast environment. 
Analysis of this blast injury data will serve to answer the Breachers’ question, “Are we being injured in 
our breaching maneuvers?” and will provide some characterization of the blast effects.  This information 
can then be applied to improve our understanding of non-penetrating, non-impact neurological injuries 
occurring in the combat environment and develop appropriate mitigation strategies. 
 
 
5.  BACKGROUND AND SIGNIFICANCE 
 
Significance of breacher research 
There is limited published literature on the neurophysiological effects of blast exposure in humans and 
none of that literature represents repeated exposure to low-level blast.  Breachers, more formally known 
as explosive entry personnel, are a unique population who are by occupational definition exposed to 
controlled blast.  Instructors who train new breachers, by virtue of their job description, are routinely 
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exposed to low-level blast. Although this blast exposure does not result in clinical injury, the cadre of 
breacher instructors at USMC Weapons Training Battalion reported concerns with potential for injury 
from this repeated blast exposure.  It is on the basis of these anecdotal reports that the original study of 
bio-effects from repeated exposure to blast was conducted. Those anecdotal reports included memory 
difficulty, sleep disturbance, and characteristics similar to those reported by the Defense and Veterans 
Brain Injury Center (DVBIC) for patients with traumatic brain injury returning from OEF/OIF. The 
primary objective of that study was to collect data during USMC breacher training to support the 
evaluation of potential for injury, with particular attention to breacher instructors. A multi-disciplinary 
collaboration was employed to meet this objective, including investigative teams for blast environment 
characterization, neurocognitive assessment, auditory/vestibular assessment, toxicological evaluation, and 
neuroimaging evaluation. 
 
Reports from this ongoing study and others conducted by NMRC and WRAIR are currently in 
preparation for submission as publications.  The results of these studies are largely a function of 
converging evidence, that is, complimentary observations across measures and across modalities. This 
converging evidence points to a previously undocumented phenomenon in this professional community.  
It also illustrates that further exploration of this issue is warranted. There are many benefits to studying 
this further including: risk management, the preservation of health and safety for members of this 
professional community, and the potential to generalize findings to blast-related post-concussion disorder 
and mild traumatic brain injury.  Obtaining a larger sample of control subjects, which is also a part of this 
proposed protocol, is necessary to improve the quality of analyses of these data sets and assist in 
identifying subtle changes in central nervous system function. 
 
Primary injury from blast 
Primary injury from exposure to blast is not well understood and remains controversial, especially in 
respect to injury to the brain (Warden, 2006). Primary injury from blast is only beginning to be 
documented with neuroimaging techniques (Warden et al., 2009) and animal models are in development 
(Ahlers et al., 2008). The principal means to characterize this injury for clinical and research purposes is 
through behavioral evidence. The study proposed here will address primary blast injury as specific to the 
breacher training environment.  Results of this study may be generalizeable to primary blast injury from 
other settings, an ancillary objective of this research. The importance of this ancillary objective is 
underlined in the documented blast exposures among U.S. service personnel deployed to operations in 
Afghanistan and Iraq (OEF/OIF). 
 
A potential injury resulting from repeated exposure to low-level blast in the breacher training 
environment should be expected to be a relatively small effect. A large effect, a noticeable injury or 
impact on behavior, that occurred in any repeated fashion would be expected to have been recorded by 
training command personnel and appropriately prevented through revision in procedures. Regular 
operations yielding noticeable injuries would not be sustainable and, through logical consideration alone, 
should not be expected. A small injury or effect, developing slowly over time and exposure and to 
differing degrees across individuals, might be expected to escape notice. A slow to develop small effect to 
which some individuals are resilient might be detectable only with targeted objective measurement. 
 
The type of insidious injury potentially at issue here may be present in breacher instructors, as a function 
of their routine exposure to low-level blast. Instructors for breacher training activities are exposed to 
repeated controlled low-level blast with each training session, for each group of new breacher trainees. 
Also, for breacher instructors, such repeated exposure to blast in a training setting can be expected to 
occur following a successful career of blast exposure as a breacher in operational settings. Those 
operational exposures would be less controlled than in the training environment. The breacher trainees 
cycling through this training environment would not have the same history of blast exposure or frequency 
of exposure. The trainees are much greater in number than the instructors and their absence of any small 
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injury might further mask the detection of an effect among the instructors from an occupational exposure 
to blast. 
 
Relevance of sports concussion studies 
The sports concussion literature can guide our understanding of blast injury hypothesized in the original 
study of breacher bio-effects. The research literature on closed head injury includes multiple terms of 
concussion, post-concussion syndrome, and mild traumatic brain injury (mTBI). These diagnostic labels 
have significant overlap in meaning, associated symptoms, and assessment methods, so such research is 
relevant to the present study, even though the injury mechanisms differ. (The breacher training 
environment presents potential for primary blast injury but not secondary, tertiary, or quaternary injury.) 
It is useful to point out now that there is also overlap in symptomology between post-concussion 
syndrome and post traumatic stress disorder (PTSD) but that the subject population of primary focus in 
this research, breacher instructors, is exposed to blast in the controlled settings of a training environment 
so the contributions of PTSD to the present study will be minimized. 
 
In a specific study from the sports concussion literature McCrea’s (McCrea et al., 2003) NCAA 
concussion study tracked 1631 collegiate football players from baseline on assessments of memory, 
cognitive processing, mental flexibility, verbal fluency as well as balance and other symptoms. These data 
showed not only changes in these assessments as a function of concussion but also showed a time course 
of recovery, using a daily testing schedule not dissimilar to that proposed in the present study.  Also 
relevant to the proposed effort, two studies of military populations susceptible to sports concussion 
(Bleiberg et al., 2004; Warden et al., 2001) showed decrement in cognitive function association with 
concussion.  Bleiberg (Bleiberg et al., 2004) administered preseason baseline testing with the Automated 
Neuropsychological Assessment Metrics (ANAM) to 729 athletes who were members of the United 
States Military Academy (USMA). ANAM is a computer-based behavioral assessment of neurocognitive 
performance, reflecting brain function. Following baseline, those who sustained head injury and those 
who were not injured (control group) were subsequently administered ANAM at regular intervals. In this 
repeated testing, cognitive impairment was present in the injured group on the day of injury and 1-2 days 
post-injury (Bleiberg et al., 2004). The injured subjects recovered from their cognitive impairment 3-7 
days post-injury.  In this study of USMA head injury using ANAM, concussion was demonstrated not 
only by a decrease in performance on the ANAM, but also by a lack of practice effects. 
 
A meta-analysis of sports concussion literature Broglio (Broglio & Puetz, 2008) showed that the 
demonstration of effects of concussion on neurocognitive status were moderated by several factors: the 
inclusion of control groups, time from baseline testing to date of injury, and method of neurocognitive 
testing administration.  A separate meta-analysis of the neuropsychological effects of sports concussion 
Belanger (Belanger & Vanderploeg, 2005) showed that there are impairments across several different 
neuropsychological domains, with the largest deficits in the following areas: global functioning, memory 
acquisition, and delayed memory. Also, concussed athletes were found to fully recover 
neuropsychologically within 7-10 days following injury. The effect sizes of concussion on 
neuropsychological performance for single assessments were double that of serial assessments; this 
finding is likely due to the practice effects from repeated administration of the neuropsychological tests. 
The studies that included subjects with previous head injuries had larger effect sizes than those that did 
not include such subjects; it was concluded by the authors that this finding indicates that prior head injury 
is associated with poorer cognitive performance (Belanger & Vanderploeg, 2005). These meta-analysis 
findings – ability-specific impairment, recovery from injury, practice effects in serial assessments, testing 
modality and individual differences in impairment as a function of previous injury – all have direct 
bearing on the present study.  
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Justification for proposed experimental procedures 
 
Blast characterization (Phase A) 
The purpose of the environment instrumentation is to characterize the blast environment to which the 
breachers are exposed, thus supporting the first aim of the study: examining the acute effects of 
breaching. The addition of the environmental characterization data addresses the primary shortfall 
associated with pure clinical blast injury studies, which is the ambiguity of the blast conditions associated 
with the observed neurophysiological changes. At this time, we do not know which components of the 
blast are dominant causal factors in the onset of mild TBI from blast, but based upon the physics of blast 
and research by the Naval Medical Research Center using a porcine model, blast overpressure is believed 
to be the most likely component.  We will measure individual blast exposure levels while subjects are 
performing breaching techniques and correlate these levels with symptom reports and neuropsychological 
data collected before, during, and after breacher training. 
 
Neuropsychological Tests (Phase A & B) 
The neuropsychological tests for this protocol include the Automated Neuropsychological Assessment 
Metrics (ANAM4) TBI Battery and the Immediate Post-concussion Assessment and Cognitive Test 
(ImPACT 2.0).  We selected the ANAM4 TBI Battery as a central tool in this protocol given the 20+ year 
history of ANAM development in DOD medical research activities, National Rehabilitation Hospital’s 
specific efforts in ANAM4 validation for TBI, and DVBIC’s extensive use (N>8,000) of ANAM4 TBI 
Battery with paratroopers in ongoing evaluations at Ft. Bragg.  Key references for the type of cognitive-
behavioral symptoms associated with TBI and mild TBI come from research and clinical observation in 
sports medicine described above.  It must be noted that the two studies with military populations and 
ANAM reported above both suffer from methodological weaknesses and also that there are still 
unresolved issues in the use of computerized test batteries for clinical assessment of cognitive function.  
A thorough review of ANAM, its use, and approaches to analyses is available in a special issue of 
Archives of Clinical Neuropsychology (Kane, 2007).  This ANAM-dedicated supplement includes 11 
papers that provide a comprehensive review of ANAM, including a review paper focusing on the use of 
ANAM with concussion (Cernich et al., 2007).  From consideration of this literature, key 
recommendations in the use of ANAM4 are captured in the proposed research. 
 
In addition to the ANAM4 TBI Battery, we are also proposing to include the Immediate Post-Concussion 
Assessment and Cognitive Testing (ImPACT 2.0) (Lovell, 2006) and the Defense Automated 
Neurobehavioral Assessment (DANA).  ImPACT is a computerized neuropsychological test battery 
developed in the early 1990’s by the University of Pittsburg Medical Center that was specifically 
designed for the evaluation of sports concussion.  This battery has recently been adapted for the military 
for the assessment of mTBI and is currently in use as part of a baseline neurocognitive testing program by 
the United States Army Special Operations Command (USASOC).  ImPACT has been shown to be 
sensitive to the acute effects of concussion and has been validated as a reliable measure of neurocognitive 
performance related to concussion (Iverson et al., 2004; Iverson et al., 2005; Lovell et al., 2006).  
Furthermore, studies using reliable change indices demonstrated that repeated administrations over a 2-
week period revealed no practice effects (Iverson et al., 2002).  From consideration of this literature, we 
are proposing to use ImPACT as part of the neuropsychological tests included in this protocol.  DANA is 
a behavioral assessment tool developed for DOD use in field settings to reflect personnel impairment and 
level of functioning. DANA's development leverages what the DOD has learned through the employment 
of ANAM and other neurocognitive assessment tools (NCATs) for the evaluation of head injury. DANA 
is a flexible platform and can accommodate many uses, including a 40-minute exhaustive assessment and 
as a 5-minute surveillance assessment.  The 40-minute DANA augments what will be learned from the 
ANAM and ImPACT; however, the ANAM and ImPACT are principal measures in this protocol and the 
40-minute DANA is a supporting measure. If there are operational requirements limits in personnel 
availability in the before and after training paradigm, ANAM and ImPACT would be used preferentially; 
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the 5-minute DANA is relatively brief and non-intrusive and is expected to be used without operational 
requirements limits in personnel availability. 
 
In addition to cognitive impairment following mild traumatic brain injury, mood disturbances may occur 
as well.  Moore (Moore et al., 2006) found in their review of the literature on mTBI and anxiety that the 
prevalence of anxiety among those with mTBI was 23%, higher than an estimated rate for a non-injured 
population.  The authors also found that PTSD, the re-experiencing of traumatic events, ranges in 
frequency from 20-84% among mTBI patients (Moore et al., 2006).  The authors point out that the co-
morbidity rate of depression and anxiety ranges 33-65% and that the majority of studies of mTBI focus on 
depression and anxiety separately.  In one of the few studies that focused on both of these disorders 
within TBI, Jorge (Jorge et al., 2004) found that all subjects who met the criteria for generalized anxiety 
disorder (GAD), defined as excessive worry over issues in everyday life, also met criteria for depression.  
From consideration of this literature, a series of questionnaires and cognitive/emotional test batteries will 
be used to capture mood and other behavioral disturbances. 
 
Biomarkers (Phase A & B) 
Evidence is accumulating that TBI initiates a physiologic cascade that can be detected in blood 
components.  Initial findings of research with this professional community have shown evidence for a 
positive relationship between blast exposure, elevated symptomology, performance deficits, and elevation 
of specific biomarkers in blood serum (including UCH-L1, SBDP150, SBDP120, MAP-2, EMAP-11, 
GFAP, and VCAM).  This research has been conducted by WRAIR in partnership with Banyan 
Biomarkers (Alachua, FL, USA) and was most recently presented at the Advance Technology 
Applications for Combat Casualty Care 2010 Conference (St. Pete’s Beach, FL). More recent pilot studies 
with mTBI patients and also with rodent models have indicated mTBI-related changes in other 
biomarkers (S100 beta, neuron specific enolase, brain derived neurotrophic factor, monocyte chemotactic 
protein, and peroxiredoxin 6) and in epigenetic and gene expression (using genes identified from separate 
studies with rodents exposed to repeated blast), and methylation analysis (which allows identification 
potential epigenetic changes that might be specific to human blast-related TBI).  These results suggest 
that blood components biomarkers could serve as field-able diagnostic tools for mild traumatic brain 
injury that could augment non-field-able conventional diagnostic tools, such as CT and MRI, which may 
not be sensitive to mild and diffuse brain injury.  Therefore, we will analyze blood components samples 
for a panel of biomarkers that will provide extensive information on blast-induced brain injury and 
potential mechanisms of injury. 
 
Neuroimaging (Phase B) 
To achieve maximal sensitivity and specificity for the detection of TBI, the current study incorporates 
multiple magnetic resonance imaging (MRI) neuroimaging endpoints, including diffusion tensor imaging 
(DTI), perfusion imaging, susceptibility weighted imaging (SWI), imaging with Gadolinium contrast, and 
functional magnetic resonance imaging (fMRI).  These endpoints have been efficacious in demonstrating 
changes in mild TBI that are otherwise occult using routine anatomical computerized tomography (CT) 
and MRI approaches (Arfanakis et al., 2002; Inglese et al., 2005; McAllister et al., 1999; McAllister et al., 
2001; Sigmund et al., 2007). 
 
DTI is a recently developed MRI-based quantitative technique that can measure macroscopic axonal 
organization in nervous system tissues.  Diffusion is the random microscopic translational motion of 
molecules (in MRI, usually water) in a fluid system and in the biological tissues.  The DTI sequence is 
particularly effective in the detection of microstructural disruption of white matter (Arfanakis et al., 
2002).  Choice of this sequence is based upon recent data generated in a porcine model of mild blast-
induced TBI clearly demonstrating traumatic axonal injury occurs following experimental low-level blast 
exposure.  This sequence relies upon the normal anisotropic movement of water within brain white matter 
tracts.  While water normally moves longitudinally down the length of white matter tracts, microstructural 
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disruption of white matter tracts will cause a reduction in this normal anisotropic movement of water.  
This loss of normal anisotropy may be quantified through the DTI approach.  DTI has proven effective in 
detecting changes across the spectrum of TBI, from moderate to severe, which are occult on standard T1 
and T2 MRI sequences. 
 
Perfusion imaging techniques are sensitive to microscopic levels of blood flow (Hoeffner, 2005).  Arterial 
spin labeling as a recently developed perfusion MRI technique measures perfusion without the need for 
an exogenous tracer by labeling the water in the arterial blood entering the brain, to provide an 
endogenous tracer of perfusion (Keston et al., 2003).  Perfusion imaging can provide insights into the 
relationship between cognitive function and blood flow in the brain (Hillis, 2007).  It has long been 
recognized that reduction in regional cerebral blood flow (rCBF) is associated with impairment of neural 
function in that area of brain.  The reduced rCBF (hypoperfusion) can be secondary to dysfunction, as 
exemplified by the temporal and parietal hypoperfusion, for example, seen in studies of patients with 
Alzheimer’s disease (Grossman et al., 2001).  Adequate blood flow is necessary for both neural function 
and neural viability.  Tissue receiving blood flow that is between 10 and 30% of the normal blood flow 
rate is getting just enough to survive, but not enough to function (Astrup et al., 1977).  Therefore, imaging 
of blood flow can reveal areas of dysfunctional tissue that may be responsible for cognitive deficits after 
blast injury. 
 
The SWI sequence is particularly effective in the detection of microhemorrhage within the brain 
(Sigmund et al., 2007).  Microhemorrhage is a known feature of diffuse brain injury.  This sequence 
capitalizes upon differences in magnetic susceptibility between deoxyhemaglobin and the surrounding 
neurological tissues.  The SWI approach combines magnitude and phase information from a high-
resolution, 3D T2 weighted gradient echo sequence to dramatically increased contrast of magnetically 
susceptible tissues. 
 
Gadolinium-based contrast agents are used during MRI to increase the sensitivity for detecting 
differences between tissues and are used by radiologists to look at changes in blood vessels in the brain.  
Using this contrast agent can enhance the image in the area near a leak or proliferation of blood vessels, 
indicating a disruption of the blood-brain barrier (Giesel et al., 2010).  Blast injury has been shown to 
causes increased permeability of the blood-brain barrier (Hicks et al., 2010).  However, the duration of 
this effect and its association with clinical and other markers of injury are not understood.  Therefore, we 
propose to administer Gadolinium contrast during structural MRI scanning to explore the hypothesis that 
cumulative exposure to low-level blast causes chronic increased permeability in the blood-brain barrier.    
 
While the previous sequences provide exquisite sensitivity in detecting microstructural changes in brain 
tissues, fMRI is highly sensitive at detecting changes in neurological activity within the brain.  The 
principle of fMRI is similar to SWI in that it detects susceptibility differences associated with 
deoxyhemaglobin within the brain.  However, in contrast to increases in deoxyhemaglobin at sites of 
hemorrhage, fMRI detects decreases in deoxyhemaglobin that accompany the increased delivery of 
oxygenated blood to areas of high neurological activity.  fMRI is typically performed during and 
following the performance of specific tasks.  These tasks are designed to test particular neurological 
function which may relate to motor function, sensation, or cognition.  In the current investigation, tasks 
will be employed which assess working memory, executive functioning, and social functioning given the 
recommendation of clinicians experienced with current military TBI patient populations and anecdotal 
evidence of symptoms reported by experienced Breachers.  Previous use of fMRI in the study of brain 
function has shown that fMRI is a technique useful for identifying prefrontal dysfunction related to 
executive cognitive abilities in TBI patients without structural lesions on MRI (Fontaine et al., 1999; 
McAllister et al., 1999; McAllister et al., 2001), whereas CT scans and conventional MRI are only weakly 
related to executive function deficit in TBI patients (Fontaine et al., 1999; Vilkki, 1992). 
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Sleep (Phase A & B) 
Sleep disturbances are observed in 50% of the TBI population (Castriotta et al., 2007), however, the sleep 
architecture that characterizes specific degrees of TBI (mild, moderate, and severe) has been addressed by 
few studies.  A recent meta-analysis concerning sleep disturbances and TBI suggested that mild TBI 
correlates more strongly with sleep disruption than severe forms of TBI (Orff et al., 2009), giving 
credence to anecdotal accounts of sleep disturbances reported by Breacher Instructors and revealing a 
further need to dissect the sleep architecture of TBI subpopulations to determine a acute and long term 
treatment strategies.  We will study acute effects of blast exposure on sleep-wake patterns and circadian 
rhythms during breacher training by assessing movement using wrist-worn actigraphy devices.  
Actigraphy is the use of a portable device that records movement over extended periods of time to give an 
accurate measure of sleep patterns and circadian rhythms (Morgenthaler et al., 2007) and has been 
validated against the gold-standard polysomnography for recording sleep/wake under field conditions 
(Signal et al., 2005).  In addition, subjects who participate in Phase B who have a significant sleep 
disturbance as indicated by actigraphy data collected during Phase A or self-report, will undergo a sleep 
assessment using a one night polysomnographic recording to rule out the presence of overt sleep disorders 
(e.g., obstructive sleep apnea, periodic leg movements during sleep, etc.). 
 
Vestibular and Auditory Assessments (Phase A & B) 
Breachers wear hearing protection during all breaching maneuvers however, exposure to blast presents an 
inherent risk to the auditory and vestibular systems.  Both military and law enforcement Breachers report 
incidents of transient post-blast auditory and balance problems (observation and USMC Dynamic Entry 
School verbal report, June 6, 2007) and recent studies have demonstrated a link between blast exposure 
and vestibular disorders (Hoffer et al., 2010; Scherer & Schubert, 2009; Sylvia et al., 2001).  Furthermore, 
research shows that athletes demonstrate decreased stability up to three to five days post injury, which 
may be the result of ineffective use of one or more of their sensory systems (Guskiewicz et al., 1997).  
There is strong evidence demonstrating the impact of balance deficits on functional performance and 
increased risk of re-injury (Goldie et al., 1994; Lehmann et al., 1990).  Therefore, to evaluate potential 
effects from this exposure, the auditory and vestibular systems will be assessed in this protocol using a 
sensory integration of balance test using the Portable BioSway Device, as well as self reports as part of a 
daily symptom questionnaire (e.g. dizziness, tinnitus, noise sensitivity).  In addition, subjects who 
participate in Phase B will be assessed using computerized dynamic posturography as well as clinical 
tests of balance function and a self-reported questionnaire to evaluate the impact of symptoms on quality 
of life.  Similar assessments have been shown to be successful in characterizing sequelae with TBI 
(Basford et al., 2003; Jury & Flynn, 2001; Newton, 1995; Wober et al., 1993) and vestibular disorders 
(El-Kashlan et al., 1998; Furman, 1995; Yardley et al., 1998).  Additional tests will also be employed to 
assess peripheral vestibular and auditory functioning and to distinguish disorders of the peripheral and 
central vestibular systems. 
 
Eye-Tracking Test (Phase A) 
TBI has been shown to increase performance variability in visuomotor tasks that require sustained and 
focused attention (Robertson et al., 1997; Stuss et al., 1989).  Because predictive visual tracking requires 
both intact attention and working memory (Barnes, 2008), it has been suggested that visual tracking 
performance can be used to supplement conventional evaluations of mTBI (Heitger et al., 2009).  In 
addition, increased performance variability during predictive visual tracking has been demonstrated in 
individuals with mTBI and correlated with white matter track vulnerability (Maruta et al., 2010).  
Therefore, we will use a portable eye-tracking system that uses a highly predictable circular pursuit 
paradigm to evaluate anticipatory eye-tracking.  This paradigm involves the anticipation of target motion, 
which requires higher cognitive input than visual-feedback controlled smooth pursuit eye movements.  
This test will provide additional insight into the link between blast exposure and higher cognitive 
processes known to be mediated by the prefrontal cortex. 
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Justification for the use of human subjects 
Human subjects are required for this protocol to understand the impact of years of cumulative exposure to 
low-level blast generated overpressure that service members and law enforcement personnel experience.  
While animal experimentation with artificially generated overpressure can provide dose-response curves 
that exceed safety thresholds for humans, it is critical to compliment this research with human subjects 
that have cumulative exposure over several years.  
 
Potential Benefits 
There is no direct benefit to subjects for participating in this study.  The documentation of neurocognitive 
change or other injury in this study that can be reasonably associated with exposure to blast would be an 
important first step in a means to mitigate risks in future training and in breaching operations.   
Enhancement of protection from blast exposure would be a benefit for military members and civilian law 
enforcement personnel assigned to Breacher duty and for all exposed to operational blasts.  Payment to 
subjects is not considered a benefit because it is a fair compensation for time and inconvenience 
associated with participating in this research. 
 
 
6.  PLAN 
 
6.1 New Investigational Drugs / Investigational Devices Exemption Status 
 
N/A 
 
6.2 Selection of Subjects 
 
6.2.1 Type of the Subject Population 
 

The target population for this study consists of individuals from military and civilian law enforcement 
Breacher communities with at least 4 years of experience in the breaching profession and extensive 
exposure to breaching blast.  Breachers with less experience will also be included in Phase A of the 
study.  In addition, the study will include a control group consisting of experienced active duty or 
prior active duty military personnel with extensive exposure to non-blast generated overpressure (e.g. 
artillery units) and a second control group consisting of experienced active duty or prior active duty 
military personnel with no prior exposure to overpressure.  We will also include companions of the 
primary subjects. 
 

6.2.2 Inclusion and Exclusion Criteria (see Eligibility Checklist, Appendix B) 
 
a. Inclusion Criteria 
 

Experimental Group: Breachers 
To be included in the experienced Breacher Group, individuals must be active duty or prior active 
duty military personnel or civilian law enforcement personnel, between the ages of 18 and 60, with at 
least 4 years of experience in the breaching profession and actively involved in breacher training 
and/or operations (minimum of annual exposure).  An alternate criterion to years of breacher 
experience is exposure to a significant number of breaching blasts, specifically, exposure to 400 
breaching blasts or more within a career, will be considered “experienced” by the investigators.  
Individuals who are eligible to participate in breacher training will be allowed to participate in Phase 
A regardless of inclusion/exclusion criteria in order to preserve training group integrity, unless they 
decline to provide informed consent. 
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Control Group 1: Artillery 
To be included in Control Group 1, individuals must be active duty or prior active duty military 
personnel that are demographically similar to the Breacher Group in terms of age, gender, service 
length, and operational and/or deployment experience, and have at least 4 years experience with 
exposure to concussive environments not related to blast (e.g. artillery units) (minimum of annual 
exposure).  An alternate criterion to years of experience is exposure to a significant number of 
concussive evolutions, specifically, exposure to 400 or more within a career, will be considered 
“experienced” by the investigators.  Individuals who are eligible to participate in artillery training will 
be allowed to participate in Phase A regardless of inclusion/exclusion criteria in order to preserve 
training group integrity, unless they decline to provide informed consent. 
 
Control Group 2: Unexposed 
To be included in Control Group 2, individuals must be active duty or prior active duty military 
personnel or law enforcement personnel that are demographically similar to the Breacher Group in 
terms of age, gender, service length, and operational and/or deployment experience. Operational 
experience is defined as years of experience actively involved in military or law enforcement 
operations and/or number of operations with the condition that operations include direct mission 
engagement roles rather than support roles. Military deployment or law enforcement patrol are 
examples of direct mission engagement roles and shore logistics or office based call center are 
examples of support roles. 
 
Companion Group (Phase B) 
To be included in the companion group, individuals must be considered a close companion of an 
experimental or control group subject over the age of 18 with knowledge of the subject’s daily 
functioning (e.g. spouses, family members, domestic partners, close friends, etc.). 

 
b. Exclusion Criteria 
 
In order to preserve training group integrity, all individuals participating in breacher or artillery training 
will be invited to participate in Phase A of the study.  The following exclusion criteria are applicable only 
to Phase B. 
 

Experimental/Control Groups 
x Children will be excluded from this study 
x History of moderate or more severe brain injury with loss of consciousness greater than 5 minutes 
x Current diagnosis of other CNS disorder (e.g. epilepsy) 
x A medical condition that would make participation detrimental to the subject (e.g. severe clinical 

depression, unstable heart disease) 
x MRI contraindications (see MRI Safety Questionnaire, Appendix B; includes pregnancy, screening 

test will be performed prior to MRI) 
 

Control Group 1 
x Previous experience with explosive entry training 
x Exposure to blast from Breaching (greater than 40 individual blasts) 
 

Control Group 2 
x Previous experience with explosive entry training 
x Exposure to blast or overpressure of any kind (greater than 40 individual blasts) 
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Companion Group (Phase B) 
x None 

 
6.2.3 Recruitment 
 
a. Equitable Selection of Subjects 

 
Children will be excluded from this study as a consequence of not being eligible to participate in 
explosive entry training. Women who meet eligibility criteria will be included as primary subjects and 
will also be included in the companion group.  There is no exclusion of any minority from 
participation in this protocol. 
 

b. Recruitment Procedures 
 
This collaborative research team is already in contact with individuals who will be eligible to 
participate in this protocol, by virtue of blast-related engineering programs (ARA), active research 
protocols, and interaction at annual breacher meetings.  Investigators and other personnel named on 
this protocol will advertise this study by word of mouth and approved advertisements (e.g., 
information sheet). Individuals who believe they are eligible and are interested in this research would 
contact the research team and would be invited to participate. 
 
Phase A will differ from Phase B in that environmental characterization will include coordination 
with a breaching site and chain of command or supervisory support in addition to individual consent.  
For Phase A, an in-person meeting will be arranged between members of the research team and the 
representatives from the unit conducting breacher training.  In that meeting, copies of this protocol 
and informed consent forms will be provided and the protocol procedures will be discussed.  The 
discussion will resolve the feasibility of the protocol for that site and logistics required to support the 
study.  The unit representatives will also be briefed on the possibility of individual subjects being 
invited to travel to NIH to participate in Phase B.  Providing that protocol criteria are met and 
procedures are feasible and accepted, Informed Consent will be reviewed.  If consent is granted by 
unit representatives, scheduling and other arrangements will be made.  Informed Consent and 
eligibility criteria will then be reviewed for each individual participating in the training before any 
research participation.  Any individual not consenting to participate will not be affected by this 
research, in terms of either the conduct of research procedures or participation in training activities.  
In order to avoid influence from senior leadership, officers and senior non-commissioned officers 
from the subjects’ units and/or the training group will not be present during the consent process.  In 
addition, officers, non-commissioned officers, and training supervisors who are participating in the 
study will be consented separately and will not be present during the consenting of subordinates.  
Recruitment of the control groups will be conducted in a similar fashion by coordinating with units 
that conduct artillery training as well as a unit at one of the performance sites that can provide 
personnel who would be eligible to participate as unexposed control subjects.  Initial contact with 
these units will be conducted via informal word of mouth advertizing.  Interested parties can follow 
up with the research team via coordination with unit commanders as described above. 
 
For Phase B, interested persons will be recruited as individuals.  Interested individuals will be 
contacted by the Research Contact and eligibility criteria and Informed Consent will be reviewed.  
Additional information about the study can be provided to the individual over the phone or via e-mail 
if requested.  One additional criterion for this DOD protocol is MRI compatibility.  The items on a 
standard of care MRI Safety Questionnaire (Appendix B) will be reviewed and the questionnaire will 
be provided to the individual.  Similarly, persons for the Companion group will also be contacted by 
the Research Contact and invited to participate as individuals.  The initial contact to the Companion 
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will, of course, be made by the subject who has already agreed to participate.  Companions who are 
unable to travel to NIH may participate in the study remotely.  “Off-site” companions will be 
screened over the phone and will exchange study documents with the investigators via mail.  For any 
individual agreeing to participate in Phase B, scheduling, travel arrangements, and question and 
answer will be completed over the telephone by the Research Contact. 
 
Recruitment may be by advertisement in multiple media formats including Facebook, Twitter, 
newspapers, newsletters, and radio. Recruitment may also include word of mouth, oral presentations 
and/or distribution of approved recruiting materials at events, meetings, and briefings wherein the 
desired recruit population might reasonably be expected to attend. In accordance with DoD 
Instruction 3216.02, an ombudsman will be present for the recruitment of Service members in a group 
setting. All advertisements, both general and specific to this study, will have been reviewed and 
approved by the IRB prior to their use. 
 
Additionally, the approved flyers and written advertisements will be used in color as submitted, or 
may be printed in black and white.  The color of the ads may vary. Color changes will not be used to 
change the emphasis of an ad. The size of the ads may vary, but all parts of the ads, including fonts 
and pictures, will be changed proportionately to the rest of that ad.  Disproportionate changes in size 
will not be used to change the emphasis of an ad. The flyer and the IRB approved written ads may be 
placed in print publications of recruitment venues such as authorized military bases, base newspapers 
or magazines, as well as on the US military (.mil) domain websites for the military bases, their 
newspapers, magazines, or Facebook pages.  It is recognized that posting recruitment notices must be 
in accord with the recruitment venue’s policies and may require specific approval before proceeding. 

 
c. Compensation 

 
Military service members may not be compensated for their participation in research while “on duty” 
with the exception of compensation for blood draws.  During Phase A of the study subjects will be 
compensated $25 per blood draw.  Military service members must be on official leave status during 
their participation in Phase B of the study, and they must have their supervisor’s and Unit 
Commander’s written approval.  For participation in Phase B, compensation for primary research 
subjects will be provided in accordance with NIH and DOD guidelines, and will include $70 per day 
of participation.  Total possible compensation ($70.00/day up to 5 days, plus an additional $50 for 
completion of the sleep study) = $400.00.  Individuals who participate in the 1-year follow-up visit 
will be compensated according to the same guidelines described above.  This visit is expected to last 
3 days for a total possible compensation of $210.Companions of primary subjects will not be 
compensated for participating in the companion group interviews. 
 
Study related expenses for primary subjects and companions participating in Phase B will be paid for 
by NIH, including travel to and from NIH, hotel fees, and the NINDS standard per diem 
reimbursement for 3 meals per day. 

 
6.2.4 Consent Process   

 
Information about this protocol, including purpose, risk, benefit, eligibility criteria, contact points, 
and volunteers’ right to decline participation or withdraw at any time with no consequence, will be 
provided to prospective subjects either in person or through an initial email to interested subjects.  
During the consent process, the Consent Form describing in detail the study procedures and risks is 
given to the subject and written documentation of informed consent and HIPAA authorization are 
required prior to enrolling in the study.  A copy of the informed consent document will be given to 
the subjects for their records.  Separate Consent Forms will be used for participation in each Phase of 
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the study, as individuals may only be eligible or available to participate in specific portions of the 
study.  The consent procedures will be the same for the experimental and control groups. 
 
For Phase A, arrangements to obtain Informed Consent from individual volunteers will first be made 
with the Commanding Officer of the training site after obtaining permission for protocol activity.  
Informed Consent will be obtained at the training site by a member of the research team listed as a 
“Consenter” (see Section 9. Roles and Responsibilities).  Subjects will be assigned a random study 
number at the time of consent.  This procedure prevents coercion as the Consenter is not in the 
volunteers' chain of command or connected to any medical treatment to which they are entitled.  
Subjects may be asked to participate in multiple evolutions of Phase A (e.g. if the research team 
revisits a field site for additional data collection) and can do so under the original consent form as 
long as it is valid.  As there is no training site for the unexposed control group, consent for these 
subjects will be conducted in a suitable location, such as the unit’s headquarters facility. 
 
For Phase B, volunteers will be asked to sign both the DOD consent form for this protocol and the 
NINDS consent form (NINDS consent forms are included in Appendix A).  The consent process for 
Phase B is described in detail in the NINDS protocol.  Interested individuals will be contacted by the 
Research Contact and questions about research participation, if any, will be addressed and 
arrangements for travel to NIH will be made.  Informed Consent will be obtained when the individual 
is on site at NIH in Bethesda. “Off-Site” companions will be consented over the phone. 

 
6.3 Study Design and Methodology   
 
6.3.1 Study Design 

 
This is an observational study that will evaluate neurophysiological and cognitive changes related to 
chronic exposure to low-level blast overpressure by comparing experienced Breachers to a well-
matched control group using a battery of neuropsychological assessments, physiological markers, and 
experimental procedures. 
 

6.3.2 Study Methodology/Procedures 
 

Subject Participation  
This protocol consists of 2 phases.  Subjects may participate in the entire study as per their 
availability and eligibility, or may elect to only participate in one portion of the study.  Subjects are 
not required to participate in Phase A in order to enroll in Phase B, and vice versa.  Subjects may 
participate in Phase A first and then choose to enroll in Phase B, or vice versa, depending on their 
availability and the training schedule of their operational group.  Furthermore, subjects may be asked 
to participate in multiple data collection evolutions (e.g. multiple visits to field sites by the research 
team for Phase A; 1-year follow-up visit to NIH by the subject for Phase B). 
 
A goal of Phase A is to evaluate up to 150 breachers, 50 artillery personnel, and 50 unexposed 
controls using neuropsychological measures and blood components analysis in order to develop a 
time-course of biomarker levels that are associated with brain injury.  In order to achieve this goal, 
and to maximize the efficient use of resources during site visits to training facilities, we will also 
include individuals who do not meet criteria for experienced operators with extensive exposure.  In 
order to preserve training group integrity, all individuals participating in breacher or artillery training 
will be invited to participate in Phase A of the study.  From this pool of subjects, operators and 
instructors with at least 4 years of experience and who meet eligibility criteria may be invited to travel 
to NINDS to participate in Phase B.  Recruitment for Phase A will continue after the enrollment goals 
for Phase B have been met. 
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Demographics Form and Head Injury Questionnaire 
After Informed Consent has been obtained, subjects will be asked to complete a Demographics Form 
and Head Injury Questionnaire (Appendix B) that will ask them to provide information about their 
breaching history, other blast exposure, operational and deployment history, history of major medical 
issues, history of sleep patterns, and history of head injury (dates and duration will be recorded when 
is present).  In addition, the questionnaire will include items related to cognitive and psychological 
health, including elements of the Post Traumatic Stress Disorder scale (Bombardier et al., 2006) and 
the Beck Depression Inventory (Beck et al., 1996).  Subjects will also be asked to complete the 
Combat Exposure Checklist, which measures the frequency of stressful events experienced during 
deployments. If possible, scores from the Armed Services Vocational Aptitude Battery (ASVAB) , 
standard predeployment baseline assessments, or an equivalent law enforcement aptitude test will be 
recorded for pre-exposure baseline functioning.  These data are collected in support of interpretation 
of primary research data. 
 
Phase A: Field Assessments 
In Phase A, a research team consisting of staff from NMRC, WRAIR, and ARA will travel to various 
breacher training facilities (for example: Ft. Benning, GA; Marine Corps Base Quantico, VA; Fort 
Bragg, NC; Montgomery County Police Department, MD) to conduct daily field assessments before, 
during, and after explosive entry training and concomitant blast exposure.  Individual sites will be 
added to the protocol as each collaboration is formalized.  Our research team is currently in the 
process of establishing a formal partnership with the United States Army Special Operations 
Command (USASOC), which will provide access to various sites where breacher training is 
conducted.  The field assessments will include symptomology, neuropsychological tests, vestibular 
system assessments, eye-tracking, sleep pattern analysis, and blood components analysis for 
biomarkers.  These procedures are described in the following subsections of this document.  
Additionally, during the training period, the research team will instrument the training environment to 
measure blast exposure.  An important principle guiding this research protocol is to make no changes 
to the standard protocols for explosive entry training and to minimize additional burdens (e.g., 1-hour 
end-of-the-day test session) on the volunteers participating in this research.  Parallel data collection 
using all of the above mentioned procedures will occur daily for 5 days prior to the start of breacher 
training, on breaching days, and for up to 7 days after training is complete in order to establish a 
baseline and observe the time-course of signal changes.  A typical breacher training evolution 
involves a 2-week course with approximately 5 days of exposure to breaching blast (see section 6.3.5 
Study Time Line), however, training schedules and amount of exposure varies between training 
groups.  Participation in any of the data collection sessions or individual procedures will be subject to 
the requirements of the operational community and may be refused without consequence by any 
individual subject or for all subjects at a particular site by the training group commander. 
 
Subjects from control group 1 will be assessed during artillery training with the same procedures as 
the Breacher subjects.  Control group 2 will be assessed according to the same methods and 
scheduling, albeit absent any connection to blast or other exposure to overpressure.  Arrangements for 
an appropriate location for data collection for control group 2 will be made with the participating unit.  
As there will no blast measurements taking place for this group, a classroom would be sufficient for 
the 1-hour of daily testing. 
 
Phase B: Hospital Assessments 
In Phase B, subjects will travel to NINDS in Bethesda, MD to undergo 5 days of neurophysiological 
and cognitive assessments including neuropsychological tests, blood components analysis for 
biomarkers, vestibular and auditory testing, a sleep assessment, and neuroimaging studies using DTI, 
SWI, perfusion imaging, imaging with Gadolinium contrast, and fMRI.  The details of these 
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procedures are described in the NINDS protocol attached as Appendix A.  A companion will be 
invited to accompany each subject to NINDS and asked to complete questionnaires that may capture 
changes daily functioning that subjects are not able to self-assess.  Subjects will be invited back to 
NINDS 1 year following their initial visit for follow-up testing.  As with Phase A, participation in any 
of the procedures may be refused without consequence. 
 

6.3.3 Collection of the Human Biological Specimens 
 
For Phase A, no greater than 10ml of blood per collection will be acquired once a day from subjects 
via venipuncture to the volunteer’s extremity (e.g., antecubital vein) by a military phlebotomist or 
other individual certified to draw blood, with the exception of an additional 10 ml drawn on the first 
and the last days of sample collection (i.e., an additional 20 ml).  For a typical 2-week training 
evolution, with maximum daily participation before, during, and after blast exposure, approximately 
19 blood draws would take place, for a total of 210ml of blood.  However, the specific number of 
blood draws will vary between training groups depending on the length of the training course, subject 
availability, and feasibility as determined by the researchers and training directors.  These samples 
will be sent to the following laboratories where they will be assayed to look for internal indicators for 
changes after neurological insult at a molecular and cellular level: Banyan Biomarkers in Alachua, 
Florida; James J. Peters VA Medical Center/Mount Sinai School of Medicine in Bronx, NY; National 
Institute of Nursing Research, National Institutes of Health, Bethesda, MD. The samples will also be 
used to quantify biomarkers in blood from subjects to see how they correlate to measures of injury 
severity, progression, and outcome.  The samples will be stored by study identification code, but the 
key that links the specimen by code to the individual’s information will also be stored (separately) at 
NMRC/WRAIR so data will be identifiable for the duration of their storage.  For Phase B, a single 
20ml sample will be collected using the same procedures and will be sent to the collaborating 
laboratories described above to be assayed in the same way as described for Phase A.  All samples 
will be destroyed once assayed. 
 
See Appendix B for details of the Banyan Biomarkers standard operation procedures for serum 
collection and storage.  Once analyzed, the blood samples will be destroyed.  Note that collection of 
cerebrospinal fluid (CSF) is described in this appendix but will not be executed in this protocol. 
Collection and storage of other blood components (peripheral blood mononucleated cells) will be by 
parallel methods but with difference in collection container (e.g., green top vacutainer v red top or 
tiger top vacutainer). 
 

6.3.4 Data Collection 
 
Phase A: Field Assessments 
 

Physical Characteristics of Exposure 
This protocol for the environmental characterization will use two pressure sensors per individual. The 
pressure transducers sensing the exposure will be mounted to the left and right exterior surface of the 
helmet. Since the entire system is located on the exterior of the helmet, the drilling of holes that could 
potentially compromise the ballistic performance of the shell will not be necessary. Also, because the 
entire system is located on the exterior of the helmet, there is no risk of the system causing discomfort 
to the wearer. The output from the transducer will be recorded and digitized by a miniature data 
acquisition system (uDAS) mounted to the rear surface of the helmet. The sampling rate of the uDAS 
system is 1 million samples per second. Each unit is self triggered so a trigger cable, which is a 
tripping hazard, is not required. The uDAS system and sample output from the unit are shown in the 
Figure below.  Each pressure gage weighs approximately 0.0025 ounces (0.08 grams) and has 
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diameter of 6.6 millimeters and a thickness of 0.84 millimeters. The entire uDAS system, including 
the power supply and automatic trigger, weighs 0.40 kilograms (15 oz). 
 
The proposed sensor system was designed for, approved in the associated protocol for, and used in 
the Congressionally Directed Medical Research Programs (CDMRP) sponsored program, Brain 
Injury Biomarkers and Behavioral Characterization on mTBI in Soldiers Following Repeated, Low-
Level Blast Exposure (WRAIR #1635). 
 
Data down-loads from each helmet system will occur at the end of every test day when the batteries 
in the units are recharged. The charging and download will occur through a common USB download 
port which mates with a docking station that has enough ports to automatically charge and download 
data from all of the helmets at one location. The docking station will have an automated link to a 
secure server at ARA’s office in Denver, Colorado. This system allows the coded laboratory-quality 
pressure data to be recorded on breachers and transmitted without having any of the research team 
permanently located at the test site for the duration of the study. Data in this study will be stored in 
Denver, CO by the individual’s study identification code and processed by trained personnel. 
 

   
Figure 1: uDAS System and sample pressure output 

   
The data from the systems will be used to estimate the magnitude, energy, and frequency content of 
the shock wave transmitted to the head region from each exposure. The results from each exposure 
will be tabulated and time stamped so that the cumulative exposure for each individual will be 
calculated. 
 
To augment the pressure measurements recorded on each individual, the research team will make a 
site visit to each test location to deploy additional instrumentation to aid in the interpretation of each 
individual’s pressure data. During these visits the research team will use additional pressure gauges 
positioned inside the structure while the breaching exercises are being conducted. These additional 
gauges will be used to assist in the explanation of any pressure anomalies observed in the individual’s 
pressure data.  
 
Supporting all of the electronic data collected, video recording of field exercises will be made using 
wireless camera systems in and around the breaching area to enhance the precision in determining 
physical relations between study subjects, features in the environment, and distance from blast. 
Videos collected for data analysis purposes will be used in briefings to training group commanders to 
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demonstrate the relationship between the characteristics of the exposure event and the exposure 
levels.  Videos will be used only if individuals in the video are “blurred” or otherwise de-identified. 
 
Symptomology 
Subjects will complete a Symptom Questionnaire (Appendix B) daily at multiple time points before, 
during, and after training, as per subject availability.  This questionnaire will be used to assess the 
presence of symptoms consistent with brain injury (e.g. headaches, ringing in ears, forgetfulness, 
etc.).  It includes 32 items rated by the subject on a 5-point Likert Scale (0-4; 0 = not experienced at 
all; 4 = a severe problem) and a constant vs. intermittent choice.  The questionnaire also includes 
space for the subject to report other symptoms they are experiencing. 
 
Neuropsychological Measures 
Subjects will perform the ANAM4 TBI Battery daily at multiple time points before, during, and after 
training, as per subject availability.  The ANAM4 TBI battery is specifically designed, based on 
empirical data and experience, to be sensitive to TBI and to be administrable within approximately 20 
minutes. This test battery is administered on computer, which allows it to be administered to large 
groups with multiple workstations, and it is designed to easily accommodate repeated administration, 
by sampling from a large pool of items for each administration.  The ANAM4 TBI Battery includes 
the following 8 tests, with the neuropsychological qualities assessed listed in brackets: 

 
x Stanford Sleepiness Scale [Self-Assessment Fatigue (state/trait)] 
x Mood Affect Score [Vigor (high energy level), Happiness (positive disposition), Depression 

(dysphoria), Anger (negative disposition), Fatigue (low energy level), Anxiety (anxiety level), 
Restlessness (motor agitation)] 

x Simple Reaction Time [Basic Neural Processing (speed/efficiency)] 
x Code Substitution [Associative Learning (speed/efficiency), Visual Search, Sustained Attention, 

Working Memory] 
x Procedural Reaction Time [Processing Speed (Choice RT/Rule Adherence)];  
x Mathematical Processing [Working Memory] 
x Matching to Sample [Visual Spatial Memory] 
x Code Substitution (Delayed) [Retention] 
 

In addition to the ANAM, subjects will also perform the ImPACT Version 2.0 and the Defense 
Automated Neurobehavioral Assessment (DANA).  ImPACT will be conducted before and after 
training, as per subject availability.  Version 2.0 of ImPACT is a computer administered 
neuropsychological test battery that has been shown to be sensitive to the acute effects of concussion 
and can be administrable within approximately 25 minutes.  It consists of six individual test modules 
that measure aspects of cognitive functioning including attention, memory, reaction time, and 
processing speed.  This test can also accommodate multiple administrations, albeit separated by 
several days to avoid interference, by sampling from additional versions of the individual modules.  
The ImPACT 2.0 includes the following 6 modules, with the neuropsychological qualities assessed 
listed in brackets: 
 
x Word Memory [Immediate and delayed memory for words] 
x Design Memory [Immediate and delayed memory for designs] 
x X’s and O’s [Attention, concentration, working memory, reaction time] 
x Symbol Match [Visual processing speed, learning and memory] 
x Color Match [Focused attention, response inhibition, reaction time] 
x Three Letters [Attention, concentration, working memory, visual-motor speed] 
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DANA will be conducted before and after training as well as periodically during training, as per 
subject availability. DANA is a behavioral assessment tool developed for DOD use in field settings to 
reflect personnel impairment and level of functioning. In the current study, its 2 principal uses will be 
a 40-minute exhaustive assessment and as a 5-minute surveillance assessment. The 40-minute 
assessment includes the following 16 tests (in order of execution): Simple Reaction Time, Verbal 
Learning Test (Learning), Code Substitution (Learning), Verbal Learning Test (Recall, short delay), 
Procedural Reaction Time, Spatial Processing, Code Substitution (Recall), Choice Reaction, 
Sternberg Memory Search, Verbal Learning Test (Recall, long delay), Simple Reaction Time, 
Combat Exposure Scale, Patient Health Questionnaire-9, Pittsburgh Sleep Quality Index, PTSD 
CheckList-Military, and Deployment Stress Inventory. The 5-minute assessment includes the 
following 3 tests (in order of execution): Simple Reaction Time, Procedural Reaction Time, and 
Choice Reaction. The 40-minute assessment can be used twice and would be used in a before and 
after training paradigm in the proposed work. The 5-minute assessment can be used repeatedly, in 
rapid succession, without limit on number of administrations; the 5-minute assessment would be used 
in a daily paradigm in the proposed work. 
 
See Appendix B for examples and additional descriptions of the ANAM4 TBI Battery, ImPACT 
Version 2.0, and DANA. 
 
mTBI Biomarker Analysis 
Blood samples will be collected daily at multiple time points before, during, and after training, as per 
subject availability.  No greater than 10ml of blood per collection will be collected via venipuncture 
to the volunteer’s extremity (e.g., antecubital vein) by a military phlebotomist or other individual 
certified to draw blood, with the exception of an additional 10 ml drawn on the first and the last days 
of sample collection (i.e., an additional 20 ml).  Samples will be separated into aliquots and frozen.  
Each aliquot will be labeled with the volunteer’s unique identifier (no identifiable information will be 
recorded on the sample labels).  The samples will be stored temporarily at the study site before 
transport to the following laboratories to be assayed: Banyan Biomarkers in Alachua, Florida; James 
J. Peters VA Medical Center/Mount Sinai School of Medicine in Bronx, NY; National Institute of 
Nursing Research, National Institutes of Health, Bethesda, MD.  Banyan Biomarkers is the 
established leader in discovery of innovative brain injury biomarkers, and will analyze serum samples 
for a panel of biomarkers that may include: 

 
x UCH-L1: A biomarker of cell body injury 
x SBDP150: Biomarker of axonal injury and cellular necrosis 
x SBDP120: Biomarker of axonal injury and cellular apoptosis 
x MAP-2: A persistent biomarker of dendritic injury 
x GFAP: A biomarker of glial injury 
x sICAM-1: A biomarker of vascular damage, and 
x s100β: A well-established benchmark biomarker for brain injury 

 
Biomarker levels in serum samples obtained from study subjects will be determined by standard 96-
well microtiter plate based Enzyme-Linked Immunosorbent Assay (ELISA) technology.  This ELISA 
format employs a biomarker-specific capture antibody attached to the surface of the microtiter plate 
well. An aliquot of the serum sample is mixed with buffer and applied to the microtiter well for 60-90 
minutes to allow for binding of the biomarker to the capture antibody. After washing of the plate to 
remove all unbound material a secondary antibody is added, which is also specific for the biomarker, 
but typically which binds to a different portion (epitope) of the biomarker molecule. The resulting tri-
molecular complexes or sandwiches are then detected via an enzymatic reaction that involves horse 
radish peroxidase (HRP). This enzyme may be directly attached to the detection antibody through 
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conjugation, or indirectly via a biotin-streptavidin bridge, or through attachment of a tertiary antibody 
that carries this enzyme. The enzymatic reaction involves the turn-over of a substrate that results in 
formation of a color, fluorescence, or chemiluminescence, whereby the amount of substrate turn-over 
is directly proportional to the number of biomarker molecules trapped in the sandwich. Measurement 
of the amount of color, fluorescence or luminescence that is generated and comparison to a 
calibration curve allows accurate quantization of the biomarker with a lower level of detection that 
varies between 0.1 and 1.0ng/ml in serum. The precision (intra- and inter-assay coefficients of 
variation) may vary between 10% and 25%, which then determines the lower limit of quantization. 
 
In addition to serum-based biomarkers assessed by Banyan, serum and other blood components will 
be assayed by other collaborators listed above.  Epigenetic analyses will be performed for modulation 
of gene expression mediated by DNA methylation in response to neurological insult and analysis of 
autoimmune- or inflammation-based responses and broad mircoRNA arrays will be assessed as 
markers of neurological insult. 
 
See Appendix B for details of the Banyan Biomarkers standard operation procedure for serum 
collection and storage.  Once analyzed, the blood samples will be destroyed.  Note that collection of 
cerebrospinal fluid (CSF) is described in this appendix but will not be executed in this protocol. 
Collection and storage of other blood components (peripheral blood mononucleated cells) will be by 
parallel methods but with difference in collection container (e.g., green top vacutainer v red top or 
tiger top vacutainer). Analysis of serum and other blood components will also be open to other 
collaborating laboratories, based on new collaborator findings and pilot data. 
 
Vestibular System Assessment 
Subjects will undergo vestibular testing using the Portable BioSway Device (Biodex Medical Systems 
Inc., Shirley NY) daily at multiple time points before, during, and after training, as per subject 
availability.  The Clinical Test for Sensory Integration of Balance (CTSIB) helps to determine which 
sensory system (visual, vestibular, or somatosensory) a person relies on to maintain balance.  It 
provides a generalized assessment of how well a patient can integrate various senses with respect to 
balance and compensate when one or more of those senses are compromised.  It is administered by: 
1) manipulating the support surface (firm vs. foam); 2) visual conditions (eyes open vs. eyes closed); 
and 3) vestibular system sway reference by using the computerized sway platform, while an 
individual is asked to maintain their standing balance.  A 3" Airex® Indexed Foam Pad is used as the 
compliant surface for the unstable support surface.  The CTSIB requires subjects to complete four 30 
sec tests. 
 
x Condition 1 – Eyes open firm surface: Baseline: Incorporates visual, vestibular and 

somatosensory inputs 
x Condition 2 – Eyes closed firm surface: Eliminate visual input to evaluate vestibular and 

somatosensory inputs. 
x Condition 3 – Eyes open on a dynamic surface used to evaluate somatosensory interaction with 

visually input. 
x Condition 4 – Eyes closed on dynamic surface: used to evaluate somatosensory interaction with 

vestibular input 
 
See Appendix B for a detailed description of the Portable BioSway Device and standard operating 
procedure for its use. 
 
Eye-Tracking Test 
Subjects will perform a Smooth Pursuit Eye Movement (SPEM) task using the head mounted, 
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Portable Eye-Tracking Device (Brain Trauma Foundation) daily at multiple time points before, 
during, and after training, as per subject availability.  The SPEM task requires the subject to visually 
track a target stimulus, a red circle of 0.2 º diameters, which follows a circular clockwise trajectory 
with a radius of 7º and at a speed of 0.4 Hz.  The red circle takes exactly 2.5 seconds to complete a 
revolution, or cycle.  A circular pursuit task was chosen because it allows for the recording of both 
horizontal and vertical components concurrently, enabling a greater amount of data to be acquired in 
a shorter amount of time.  The signals representing eye and target movements will be simultaneously 
processed during the testing trials by a proprietary “attention-detection algorithm” to produce the 
“attention score”, which will represent the subject’s eye movement variability on a 1-100 scale, with 
100 representing near-to-zero variability (a perfect score) and 1 representing very high variability.  
The attention score, subject identifier, testing date/time and other inputted information will be saved 
automatically on an irremovable storage card in a handheld control tablet for future recall. 
 
See Appendix B for a detailed description of the Portable Eye-Tracking Device and standard 
operating procedure for its use. 
 
Sleep/Wake Actigraphy 
Subjects will wear a wrist-worn device called an actigraph (ReadiBand, Fatigue Science, Honolulu, 
HI, or comparable alternate product) throughout the course of data collection before, during, and after 
training, as per subject availability.  The actigraph records wrist movements, which are subsequently 
processed through a sleep-scoring algorithm to determine sleep/wake amounts. Alternate devices 
(e.g., Actiheart, CamNtech, Boerne, TX) can supplement the movement record with a heart rate 
monitor record, improving sleep/wake assessments by calculating activity energy expenditure in free-
living conditions. In an example, low level exercise may yield a motion record similar to sitting in a 
rocking chair or riding in an automobile but the types of activities here can be expected to have 
bearing on derived sleep/wake measures.  
 
See Appendix B for a detailed description of the ReadiBand Actigraph Device and standard operating 
procedure for its use. 
 

Phase B: Hospital Assessments 
 

Detailed descriptions of the procedures to be conducted during Phase B appear in the NINDS protocol 
attached as Appendix A. 
 
Neuropsychological Measures 
Subjects will perform a series of neuropsychological tests as well as paper-and-pencil and computer 
tests of executive function, emotional function, language, memory, intelligence and other cognitive 
abilities (e.g. California Verbal Learning Test, Delis-Kaplan Executive Function System Sorting Test, 
and Booklet Category Test). 
 
Note: Questionnaires or interviews related to history of abuse, sexual behaviors, or drug/alcohol 
abuse will not be included as part of this study. 
 
Blood Components Analysis 
Subjects will be asked to provide a single 20ml blood sample to be sent to the following laboratories 
where they will be assayed in the same way as described for Phase A: Banyan Biomarkers in 
Alachua, Florida; James J. Peters VA Medical Center/Mount Sinai School of Medicine in Bronx, NY; 
National Institute of Nursing Research, National Institutes of Health, Bethesda, MD. 
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Neuroimaging 
Subjects will undergo multiple neuroimaging sessions during their visit at NINDS using routine, 
microstructural, and functional imaging techniques to achieve maximal sensitivity and specificity for 
the detection of TBI.  Structural imaging procedures will include magnetic resonance imaging (MRI) 
to look for possible brain lesions, diffusion tensor imaging (DTI) to evaluate microstructural 
disruption of white matter, perfusion imaging to look at microscopic levels of cerebral blood flow, 
and susceptibility weighted imaging (SWI) to detect microhemorrhages within the brain. 
 
Subjects will also be asked to participate in an imaging procedure that involves the use of 
Gadolinium, which is a contrast agent that enhances blood vessels in MRI for detecting disruptions of 
the blood-brain barrier.  Only subjects that meet specific screening criteria for safe use of this 
compound will be eligible for this procedure (see Potential Risks section below).  Subjects will be 
specifically screened for prior allergic reactions and for risk of decreased renal function according to 
NIH policies.  Eligible subjects who agree to participate in this procedure will have an angiocatheter 
placed by an intravenous (IV) nurse in the NIH radiology department.  The angiocatheter will be 
placed in the upper extremity, and be of a sufficient size to accommodate power injection.  Following 
contrast administration, dynamic susceptibility contrast (DSC) imaging and standard structural 
imaging will be performed. 
 
Functional magnetic resonance imaging (fMRI) will be used to measure changes hemodynamic 
signals related to neural activity in response to cognitive and emotional stimulation using 
experimental paradigms such as the N-Back and Task Switching tasks. 
 
Vestibular and Auditory Assessments  
Subjects will undergo balance testing using computerized dynamic posturography (CDP) with a 
SMART EquiTest System (NeuroCom International, Inc.).  The CDP allows for the objective 
quantification and differentiation among the wide variety of possible sensory, motor, and central 
adaptive impairments to balance control.  Tests may include the Sensory Organization Test (SOT), 
which is used to identify which sensory system (vestibular, visual, or somatosensory) is abnormally 
used to control balance; the Limits of Stability test (LOS), which is used to identify problems with 
voluntary motor control of balance; and Dual Tasking Posturography (DTP), which is used to assess 
the interaction between cognition and the control of balance.  Subjects will also undergo balance 
testing using the Five Times Sit to Stand test (FTSST) and the Dynamic Gait Index (DGI), and the 
self-reported Dizziness Handicap Inventory (DHI). 
 
In addition, subjects will undergo three tests of specifically designed to identify vestibular 
dysfunction and distinguish disorders of the peripheral and central vestibular systems.  These tests 
include Sinusoidal Harmonic Acceleration (SHA), which examines the vestibulo-ocular reflex and its 
response to rotations at a variety of stimulus frequencies; the caloric irrigation subtest of 
videonystagmography (VNG), which examines horizontal semicircular canal function; and Vestibular 
Evoked Myogenic Potentials (VEMP), which is used to evaluate the vestibulo-colic response.  They 
represent a diagnostic extension of the functional assessments conducted during posturography.  
Finally, subjects will undergo tests of auditory functioning including pure-tone threshold assessment 
and tympanometry. 
 
Polysomnography 
Subjects that have a significant sleep disturbance as indicated by self-report or actigraphy data 
collected during Phase A (average total sleep time and/or sleep continuity are two standard deviations 
from age-appropriate norms), will undergo a sleep assessment using one night of polysomnographic 
(EEG) recording to rule out the presence of overt sleep disorders (e.g., obstructive sleep apnea, 
periodic leg movements during sleep, etc.).  Electrodes will be applied over the head for the EEG 
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recording, around both eyes to monitor eye movements, around the chest and abdomen to monitor 
respiration, and on both legs to monitor leg movement.  Analyses of polysomnographic recording 
includes total sleep time, sleep efficiency, latency to sleep onset and REM (rapid eye movement) 
sleep, and sleep architecture with ratios of various sleep stages (stages 1, 2, 3, and REM sleep). 
 
Companion Interview 
The companion interview will consist of surveys which include demographic information, 
measurements for companions’ stress, and self-rated health, as well as questionnaires that ask about 
the subject including the presence of symptoms, depressed mood, physical function, and self-care.  
Furthermore we will ask caregivers to complete some of the same questionnaires as the subject in 
order to compare responses.  For “Off-site” companions, once informed consent has been obtained, 
study personnel will mail the Companion Questionnaire Battery for completion.  Companions will be 
instructed to contact study personnel with any questions or concerns regarding the questionnaires or if 
they chose to withdraw their consent to participate in the project. 

 
6.3.5 Study Time Line 
 
Phase A 
This diagram illustrates a hypothetical schedule of data collection adapted to a typical evolution of an 
explosive entry course. 
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6.4 Statistical Consideration 
 
6.4.1 Primary Endpoints 
 
The primary endpoints of this study will be the data collected from the neuropsychological tests, blood 
components analysis, neuroimaging sessions, vestibular assessments, and sleep analysis.  These measures 
were selected based on their known sensitivity to brain injury and are expected to demonstrate significant 
differences when comparing the experimental groups.  The outcome of this research effort will be 
documentation of findings and recommendation to mitigate operational risk.  Results will be presented to 
military commands engaged in breaching as well as prepared as manuscripts for publication. 
 
6.4.2 Data Analysis 
 
Data will be analyzed by repeated measures ANOVA with both within-subject factors (degree of 
exposure) and between-subjects factors (Breachers vs. Artillery Controls vs. Unexposed Controls) 
followed by a priori planned post-hoc tests.  Post-hoc tests will use a standard correction for number of 
comparisons within an analysis (e.g. Bonferonni or Geiser-Greenhouse procedures).  Note that if the 
distribution of data within a group on any single variable is skewed or non-normal, either non-parametric 
tests will be used to analyze the data or the data will be normalized using a standard transformation such 
as a log-normal transformation.  Any subjects from Phase A data collection who endorse exclusion 
criteria for Phase B will be considered separately in analysis. 
 
6.4.3 Safety Monitoring 
 
Safety monitoring will be in place primarily due to the use Gadolinium as a MRI enhancing contrast agent 
during Phase B of the study.  Gadolinium contrast imaging presents some moderate risks (see Potential 
Risks section below for complete list).  The primary risk is to people with kidney disease as they may 
have a serious reaction to gadolinium contrast called “nephrogenic systemic fibrosis” which has resulted 
in a very small number of deaths.  Careful screening of subjects for abnormal kidney function will be the 
primary process for mitigating this risk.  Subjects that have diabetes, kidney disease or liver disease will 
undergo a blood test to assess kidney function within 4 weeks before any MRI scan with gadolinium 
contrast and those whose kidney function is not normal will not receive gadolinium for a research MRI 
scan. 
 
6.4.4 Sample Size Estimation 
 
The goal for Phase A of this protocol is to recruit up to 250 subjects (150 breachers, 50 artillery controls, 
and 50 unexposed controls).  Multiple training sites will need to be visited to meet the primary goal of 
this study, which is the collection of data from a significant number of individuals with chronic exposure 
to blast in order to develop a time-course of acute signal changes during breacher training.  In order to 
maximize the efficient use of resources during visits to training facilities, we will also collect data from 
individuals who do not meet criteria for experienced individuals.  Therefore, the number above was 
estimated based on the expected ratio of experienced individuals (operators and instructors) to 
inexperienced trainees that typically appear in breacher training courses.  
 
The goal for Phase B of this protocol is to recruit a minimum of 60 subjects (20 breachers, 20 artillery 
controls, and 20 unexposed controls) to travel to NIH for the hospital based assessments.  The number of 
subjects to be included in this protocol was determined from consideration of the main objective of 
detecting a chronic exposure effect, typically reported as an effect on cognitive ability (esp., "memory 
difficulty"), and the previously observed effect size among the cohort of interest (Carr et al., unpublished 
manuscript). The use of the same computer-based testing paradigm in both the completed study and the 
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proposed study affords a straightforward estimation of sample size. In the more difficult and more 
sensitive of the 2 computer-based tests involving demand of memory, Code Substitution Delayed, the 
mean difference in accuracy (percent correct) at baseline between the experienced group and members of 
the more naïve group matched according to IQ, age, and blast history, was 6.6%. With a standard 
deviation of 8.46 and 6.26 for each of these 2 groups and an intergroup correlation of .33, the resultant 
large effect size (.76) yields an estimate of 16 subjects needed per group to re-detect this difference at 
baseline (Erdfelder et al., 1996). This effect size is consistent with related literature on concussion and 
military populations (Warden et al., 2001). In the protocol proposed, considerable effort will be expended 
to carefully select and support research volunteers so attrition is not expected. However, to accommodate 
some attrition, error, and data loss, the requested sample size for this protocol will be 25% above the 
minimum required, so 20 subjects per group are requested. 
 
6.5 Reporting Adverse Events 
 
6.5.1 Expected Adverse Events from Research Risks and Reporting 
 
Potential Risks 
Risks associated with the testing procedures are mitigated by having qualified medical personnel on the 
team to supervise safety procedures.  A risk of loss of anonymity due to data being linked to the subject’s 
identity applies to both phases of the study, however, this risk is mitigated by the confidentiality 
procedures (subject coding) described below.  The confidentiality of active duty military service members 
may not be able to be maintained as their chain of command may request information obtained during our 
study (e.g. copies of consent forms, copies of questionnaires, raw or processed data).  In addition, there 
may be circumstances where reporting to the chain of command may be required (e.g. violations of 
UCMJ, abuse, etc.).  As with all research subjects, active duty service members can choose not to answer 
sensitive questions. 
 

Phase A 
x The significant risk of being exposed to explosives and repeated blasts that will occur during the 

field assessment phase of this protocol is not different than the subjects’ level of risk during 
routine explosive entry training.  This protocol will have a minimal effect on their training 
regimen and will be conducted during previously scheduled training events. 

x There is minimal risk due to the addition of sensors to subjects’ helmets, but the light weight of 
this equipment (15 oz.) is not a significant burden.   

x During blood draw, the subject may experience some discomfort at the site of needle entry and 
there is a risk of bruising.  There is a remote risk of fainting or local infection.  These risks are 
mitigated by having trained military and civilian medical personnel conduct the blood draws. 

x There is a small risk of falling off of the BioSway apparatus.  This will be mitigated by having a 
member of the research team supervising vestibular tests. 

x The neuropsychological tests, eye-tracking, and sleep/wake actigraphy are not expected to pose 
any risk to the subjects. 

 
Phase B 
Risks associated with the hospital phase of this protocol are described in detail in the NINDS protocol 
(Appendix A).  The following is a summary of these risks: 
x There is some risk in the transport of volunteers to Bethesda, MD, but this risk is not greater than 

that most people encounter every day. 
x During blood draw, the subject may experience some discomfort at the site of needle entry and 

there is a risk of bruising.  There is a remote risk of fainting or local infection.  These risks are 
mitigated by having trained military and civilian medical personnel conduct the blood draws. 



37 
 

x The neuropsychological tests and questionnaires may be frustrating or stressful.  Subjects may 
refuse to answer any question or stop a test at any time and for any reason. 

x All vestibular and auditory tests are standard clinical practices and present only minimal risk to 
the subject including some sensation of dizziness or nausea. 

x During the sleep assessment, there is a risk of discomfort during the application and removal of 
the EEG electrodes. 

x There is a small risk of emotional discomfort from performance of the functional neuroimaging 
tasks; however, this risk is mitigated by explaining the nature of these tasks to the subject and 
giving them the option of stopping a test at any time. 

x The MRI scanning procedures in this protocol present some risk to volunteers in the case of any 
unsecured metal in the strong magnetic field, of unprotected exposure to the MRI noise 
environment, and of potential discomfort from lying supine for an hour in a movement-restricted 
environment. These risks, however, are present for any MRI procedure and are well demonstrated 
to be successfully mitigated by standard protections offered in metal safety, hearing conservation, 
patient screening, and patient monitoring.  If participants have a question about any metal objects 
being present in their body, they should inform the staff.  If there is uncertainty about the 
presence of metal, we will obtain plain radiographs before performing MRI.  These studies are 
considered part of standard care before MRI. There is a risk to operational readiness from 
incidental clinical findings; however, subjects are informed beforehand of this possibility. 

x Gadolinium contrast imaging presents some moderate risks.  The risks of the IV catheter 
placement include bleeding, infection, or inflammation of the skin and vein with pain and 
swelling.  Symptoms from the contrast infusion are usually mild and may include coldness in the 
arm during the injection, a metallic taste, headache, and nausea.  In an extremely small number of 
patients, more severe symptoms have been reported including shortness of breath, wheezing, 
hives, and lowering of blood pressure.  Subjects will not receive gadolinium-based contrast 
agents if they previously had an allergic reaction to them.  Subjects will be asked about such 
allergic reactions before a contrast agent is administered.  People with kidney disease are at risk 
for a serious reaction to gadolinium contrast called “nephrogenic systemic fibrosis” which has 
resulted in a very small number of deaths.  Subjects that have diabetes, kidney disease or liver 
disease will undergo a blood test to assess kidney function within 4 weeks before any MRI scan 
with gadolinium contrast.  Subjects will not receive gadolinium for a research MRI scan if their 
kidney function is not normal. 

 
6.5.2 Reporting Serious and Unexpected Adverse Events to the IRB 
 
Serious Adverse Events: The PI will report all serious adverse events (SAE) and unanticipated problems 
involving risk occurring in subjects enrolled in this DOD protocol to the NMRC Office of Research 
Administration (ORA) within 24 hours.  Formal reporting of all adverse events and unanticipated 
problems will be completed within 5 days using the NMRC ORA IRB Form 3.  Serious adverse events 
will be reported even if the PI believes that the adverse events are unrelated to the protocol. 
 
The WRAIR Division of Human Subjects Protection (DHSP) will be copied on all such reports for 
acknowledgment.  A summary of all serious or unexpected side effects also must be included in the 
Annual Progress Report. 
 
6.5.3 Medical Care for Research-Related Injury 
 
No compensation will be provided for injuries that are a direct result of being in this study.  It will be 
explained to subjects in the consent forms that this is not a waiver or release of their legal rights and that 
they should discuss this issue thoroughly with the principal investigator before they enroll in this study. 
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For Phase A, military service members as well as civilians will be treated at a Military Treatment Facility 
in accordance with MRMC Command Policy Memorandum 2010-10, Medical Care for Research-Related 
Injury.  DOD healthcare beneficiaries (e.g. active duty military, military spouse or dependent), are 
entitled to medical care for injuries within the DOD healthcare system, as long as they remain a DOD 
healthcare beneficiary.  This care includes but is not limited to free medical care at a military treatment 
facility.  Non-DOD healthcare beneficiaries are also entitled to free medical care for their injury at a 
military treatment facility.  It cannot be determined in advance which military treatment facility will 
provide care.  If non-DOD healthcare beneficiaries get care for research-related injuries outside of a 
military treatment facility, the subject or their insurance will be responsible for medical expenses.   
 
For Phase B, the NIH Clinical Center will provide short-term medical care for any injury resulting from 
participation in research at that site.  In general, no long-term medical care or financial compensation for 
research-related injuries will be provided by the National Institutes of Health, the Clinical Center, or the 
Federal Government.  However, subjects have the right to pursue legal remedy if they believe that their 
injury justifies such action. 
 
6.5.4 Subject Withdrawal from Participation 
 
Subjects may withdraw from participating in the study at any time with no consequences.  If a subject 
withdraws during Phase A, the research team will stop data collection from that subject immediately and 
it will not affect their ability to complete the training program.  If a subject withdraws during Phase B, the 
research team will stop data collection from that subject immediately and arrangements will be made for 
their return home.  Subjects who withdraw early from either Phase will be asked if we are permitted to 
retain data collected up to that point.  Should the subject request, their individual data will be excluded.  
Subjects will be compensated for the time and/or procedures they completed as outlined in the 
compensation section above. 
 
The principal investigators may terminate participation in this study if continued participation is 
considered to be detrimental to the subject’s health, if the subject fails to cooperate with the study, or if 
the military mission requires it.  The same rights and procedures described above apply when the 
investigators terminate participation. 
 
6.6 Human Biological Specimens/Tissue 
 
Procedures for the collection and use of blood samples are described in this protocol.  Blood samples will 
be sent to collaborating laboratories and destroyed once analyzed.  Details of procedures used for samples 
can be reviewed in Appendix B.  Collection of blood samples will be highlighted in the Informed Consent 
form and described to the subject before consent is obtained. 
 
6.7 Subject Confidentiality Protection 
 
All subjects will be assigned a 4-digit identifier (e.g. subject #7264) generated from a random number 
generator during the informed consent process.  This ID# will be stored with the subject’s name and 
research group assignment (i.e., breacher, control 1, or control 2) in a password protected record at 
NMRC.  All other data records will be labeled only with the subject ID#, vice identifying information. 
 
The coded data from this project will be stored in locked and password-protected facilities. All data from 
this project will be subject to review by blinded external reviewers. With appropriate authorization to 
release, all aspects of this study and the de-individualized data may appear in open publication. 
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NINDS and CNRM follow similar subject confidentiality procedures, which are described in detail in 
Appendix A. 
 
Auditing authorities for the Navy and Army, CNRM, Uniformed Services University, Henry M Jackson 
Foundation, and NIH may request to review study documents, which could affect the confidentiality of 
subjects’ identity and research records.  Specifically, the Department of the Navy Human Research 
Protections Program (DON HRPP) and the United States Army Medical Research and Materiel 
Command (USAMRMC) Human Research Protection Office could perform an audit of the files, which 
could include the consent forms. 
 
6.7.1 Certificate of Confidentiality 
 
This study does not include a Certificate of Confidentiality.  Subject confidentiality will be secured using 
the procedures described in this protocol.  As described in the section above on potential risks, the 
confidentiality of active duty military service members may not be able to be maintained as their chain of 
command may request information obtained during our study (e.g. copies of consent forms, copies of 
questionnaires, raw or processed data).  In addition, there may be circumstances where reporting to the 
chain of command may be required (e.g. violations of UCMJ, abuse, etc.).  As with all research subjects, 
active duty service members can choose not to answer sensitive questions. 
 
6.7.2 HIPAA Authorization 
 
This study will include the collection of “Identifiable Protected Health Information” as well as the 
following personal identifiers: name, address, age, telephone number, e-mail address, social security 
number.  Therefore, in accordance with the requirements of the Health Insurance Portability and 
Accountability Act (HIPAA) and DOD HIPAA regulations 6025.LL-R, subjects will need to sign a 
HIPAA Authorization form (see Appendix F). 

 
a. Confidentiality of research source documents 

 
Data in this study will be stored by study identification code, vice other identifying information.  The 
key that links data code to the individual’s information will be stored separately from the data, 
according to the description in the paragraph below.  This stored key will be the only means to 
identify subjects' data for the duration of storage and will be accessible only by the principal 
investigators.  
 
Coded hardcopies of data will be stored in locked cabinets in a locked office at NMRC/WRAIR 
(Building 503, room 2W109) and at ARA’s facility in Littleton, CO (10720 Bradford Rd., Suite 102).  
Data will be accessible only by study lead investigators.  Electronic data will be kept in 2 forms. 1) 
PC-compatible files in various software formats (e.g. MS Excel, E-Prime, Presentation, ASCII text, 
MS Word; 2) neuroimaging files will be kept in the following Unix/Linux-compatible software 
formats: AFNI, ANALYZE, DICOM, NIFTI.  The PC-compatible files will be stored on a computer 
at NMRC/WRAIR (Building 503; room 2W109) with access limited to study personnel via DOD 
Common Access Card-enabled logon policy and user account privilege.  NMRC/WRAIR computer 
data are backed up per DOD requirements.  Neuroimaging files will be kept on a non-networked 
computer with Linux operating system at NMRC/WRAIR (Building 503; room 2W109), with access 
limited to study personnel via physical access to the room and username/password logon 
requirements. 
 
Details for the protection of coded data stored at NINDS and CNRM are described in Appendix A. 
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b. Storage and destruction of the research source documents 
 
Upon completion of the study, data will be archived but available for future study.  Data in this study 
will be stored by study identification code, vice other identifying information, but the key that links 
data by code to the individual’s information will also be stored (separately) so data will be 
identifiable for the duration of their storage. The rationale for retaining subject identity to data is 
because these data may be used in a future investigation, and that investigation could include 
individuals from this protocol, for examination of longitudinal effect of exposure to blast, an 
important research question for this protocol. That investigation could not be performed without 
retaining data identity. 
 

c. Sharing of research data 
 
Data exchange with study partners will be with de-identified data and in a sample of at least 5 
subjects rather than on an individual basis.  The primary institutions for execution of work in this 
protocol and the storage of protocol data are NMRC, WRAIR, NINDS, and ARA.  NMRC holds 
United States Department of Health and Human Services (DHHS) FWA Number FWA00000152; 
WRAIR holds DHHS FWA Number FWA00000015; NINDS holds DHHS FWA Number 
FWA00005897; and ARA holds DHHS FWA Number FWA00014065. 
 

6.8 Reporting Protocol Deviations, Amendments, and Continuing Reviews 
 
Any protocol deviations during the course of the study will be promptly reported to the NMRC IRB and 
sponsor, as well as the WRAIR DHSP for acknowledgment. 
 
All amendments to research documents (protocol, consent forms, etc.) will be submitted for approval to 
the NMRC IRB and WRAIR DHSP.  Amendments will include a memorandum outlining the changes, 
clean copies of the changed research documents, as well as copies with the changes marked.  Annual 
continuing review reports outlining study progress and a study closeout report upon completion of the 
research will also be provided to the NMRC IRB and WRAIR DHSP. 
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8.  FACILITIES/ORGANIZATIONS TO BE USED   
 
8.1 Collaborators (see Appendix C for the Research Collaborative Agreement):  

x Naval Medical Research Center 
x Walter Reed Army Institute of Research 
x National Institute of Neurological Disorders and Stroke 
x Applied Research Associates, Inc. 
x University of Virginia 

 
8.2 Performance Sites (see Appendix G for letters of approval from performance sites):†  

x United States Army Special Operations Command 
x 75th Ranger Regiment 
x John F. Kennedy Special Warfare Center and School 
x Forced Entry Tactical Training 
x United States Army Engineer School 

 
† Individual sites will be added to the protocol as each collaboration is formalized (reference pg. 24) 
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9.  ROLES AND RESPONSIBILITIES OF EACH INVESTIGATOR AND COLLABORATOR 
 
  NAME DEGREE INSTITUTION ROLE 

1  LCDR Peter Walker PhD NMRC LEAD INVESTIGATOR,  
Neurocognitive Investigator 

2 MAJ Angela Yarnell PhD WRAIR LEAD INVESTIGATOR,  
Neurocognitive Investigator 

3 CAPT Eric Wasserman MD NINDS LEAD INVESTIGATOR,  
Neurocognitive Investigator,  
Consenter 

4 Lee Ann Young MA ARA LEAD INVESTIGATOR,  
Engineer 

5 CPT Matthew LoPresti PhD WRAIR Neurocognitive Investigator,  
Neuroimaging 

6 MAJ Walter Carr PhD WRAIR Neurocognitive Investigator,  
Consenter 

7 Thomas Baker PhD WRAIR Neurocognitive Investigator, 
Consenter 

8 Gary Kamimori PhD WRAIR Neurocognitive Investigator,  
Consenter 

9 CPT Angela Yarnell PhD WRAIR Neurocognitive Investigator, 
Consenter 

10 Tracy Doty PhD WRAIR Neurocognitive Investigator,  
Neuroimaging 

11 Tim Walilko PhD ARA Engineer 

12 James Stone MD 
PhD 

UVA Neuroimaging 

13 Yvonne Allard BA WRAIR Research Assistant 

14 Nora Prindle BA WRAIR Research Assistant 

15 Jessica Kim BS WRAIR Research Assistant 

16 SGT Sharae Murray  WRAIR Research Assistant 

17 SPC George Adams  WRAIR Research Assistant 

18 LT Jacob Norris PhD NMRC Neurocognitive Investigator,  
Consenter 

19 Carmen Contreras-Sesvold 
 

MS NMRC Neurocognitive Investigator,  
Consenter 

20 Elena Polejaeva BS WRAIR Research Assistant,  
Consenter 

21 Kristine Dell BA WRAIR Research Assistant,  
Consenter,  
Research Contact 
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22 John Butman MD, PhD NIH Neuroradiologist,  
Neuroimaging 

23 Leighton Chan MD, 
MPH 

NIH Neurocognitive Investigator, 
Vestibular Testing 

24 Christiane Zampieri-Gallagher PhD NIH Vestibular Testing 

25 Carmen Brewer PhD NIH Vestibular and Auditory Testing 

26 John Dsurney PhD NIH Neurocognitive Investigator 

27 MAJ Jeffrey Lewis MD, PhD NINDS Neurocognitive Investigator,  
Consenter 

28 Michael Tierney MA NINDS Neurocognitive Investigator,  
Consenter 

29 Kristine Knutson MA NINDS Neuroimaging 

30 CPT Aaron M. Smith Psy.D WRNMMC Neurocognitive Investigator, 
Consenter 

31 CDR John Hughes MD NMRC Research Monitor 

32 Richard McCarron PhD NMRC Neurocognitive Investigator 

33 Thomas Balkin PhD WRAIR Neurocognitive Investigator 

34 Laura Coombs PhD ACR Neuroimaging 

35 Corrina Lathan PhD AnthroTronix Data Analysis of Non-human 
Subjects Data 

 
----------------------------------------------ROLE DEFINITIONS------------------------------------------------------ 

x LEAD INVESTIGATOR ................Primary responsibility for IRB compliance, documentation, 
reporting, data storage 

x Consenter ........................................Administration of informed consent 
x Site Coordinator …………………..Primary responsibility for coordinating data collection at 

performance sites for Phase A (identified in Delegation Log for each site) 
x Engineer ..........................................Design, measurement, and analysis of blast 
x Neurocognitive Investigator ...........Administration and analysis of neurocognitive testing 
x Neuroimaging .................................Design, execution, and analysis of neuroimaging data, subject 

screening/MRI safety 
x Neuroradiologist .............................Interpretation of neuroimaging results 
x Vestibular and Auditory testing…...Administration and analysis of vestibular and auditory tests 
x Research Assistant………………...Assist with data collection and analysis 
x Research Contact.............................Primary contact for Phase B subjects 
x Research Monitor ............................Primary responsibility for overseeing safety of subjects 

 
 
10.  TIME REQUIRED TO COMPLETE THE RESEARCH (INCLUDING DATA ANALYSIS)  
 
Study Duration = 5 years 
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11.  APPENDICES 
 
APPENDIX A – Experienced Breacher Study (EBS), National Institute of Neurological Disorders 
and Stroke (NINDS), Protocol # 12-N-0065, Version 6.0 

x NINDS IRB Approval Letter 
x Protocol and Consent Forms 
x EBS Test Battery Forms 

 
APPENDIX B – Questionnaires/Procedure Descriptions 

x Eligibility Checklist 
x Demographics Form and Head Injury Questionnaire 
x Combat Exposure Checklist 
x Symptom Questionnaire 
x Automated Neuropsychological Assessment Metrics (ANAM4), TBI Battery 
x Immediate Post-concussion Assessment and Cognitive Test (ImPACT), Version 2.0 
x Defense Automated Neurobehavioral Assessment (DANA) 
x Banyan Biomarker standard operating procedure (BANDITS) 
x Portable BioSway Device product description and standard operating procedure 
x Portable Eye-Tracking Device product description and standard operating procedure 
x Fatigue Science ReadiBand Actigraph Device product description and standard operating 

procedure 
x National Institutes of Health MRI Safety Questionnaire and Standard of Practice: MRI Contrast 

Policy 
x National Institutes of Health Radiology Department MRI Safety Questionnaire 

 
APPENDIX C – Research Collaborative Agreement 
 
APPENDIX D – Consent Forms 

x Phase A: Field Assessments 
x Phase B: Hospital Assessments (Primary Subjects) 
x Phase B: Hospital Assessments (Companions) 

 
APPENDIX E – Supervisor Permission Form 
 
APPENDIX F – HIPAA Authorization Form 
 
APPENDIX G – Performance Site Approval Letters 

x United States Army Special Operations Command 
x 75th Ranger Regiment 
x John F. Kennedy Special Warfare Center and School 
x Forced Entry Tactical Training 
x United States Army Engineer School 

 
APPENDIX H – Research Monitor Addendum 
 
APPENDIX I – Delegation of Roles and Responsibilities Log and Best Practice Recommendations 
 
APPENDIX J – Communication to subjects for re-consent request 
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Supplement: 

NanoString Methods 

A subset of genes examined in RNAseq data were selected to validate gene 

expression changes by assaying 50 ng of mRNA using a direct digital detection system 

(Nanostring Technologies, Seattle, WA). A panel was designed for each pathway to 

include 50 markers of interest, plus a total of 10 reference/housekeeping genes for data 

normalization, including ABCF1, ALAS1, DECR1, GAPDH, GUSB, HPRT1, IPO8, 

PGK1, and TBP (these genes are also noted in Table 3-2 and 3-3 of the dissertation 

manuscript). Care was taken to ensure that reference genes selected met the following 

criteria: 1) not dysregulated in the RNA-seq data for the same samples; 2) not clearly 

implicated in traumatic brain injury, blast exposure, or a similar condition; and 3) no 

published evidence that this is an unstable reference gene in human blood. Probes for the 

50 genes of interest and the housekeeping genes were designed and manufactured by 

Nanostring Technologies. Briefly, probes for marker and reference RNAs were 

multiplexed and assayed using the nCounter Digital Analyzer. Samples were randomly 

assigned to plates to avoid run-order bias. In an effort to control for plate-to-plate 

variations and drift, one sample was used as an internal control. We also validated the 

result with 50 genes from each network (100 genes total) using NanoString technology, 

which showed congruent finding with RNA sequencing data.  
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