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Abstract

This dissertation considers different approximate solutions to Markov decision problems

formulated within the dynamic programming framework in two health care applications. Dynamic

formulations are appropriate for problems which require optimization over time and a variety of

settings for different scenarios and policies. This is similar to the situation in a lot of health care

applications for which because of the curses of dimensionality, exact solutions do not always exist.

Thus, approximate analysis to find near optimal solutions are motivated. To check the quality of

approximation, additional evidence such as boundaries, consistency analysis, or asymptotic behavior

evaluation are required. Emergency vehicle management and dose-finding clinical trials are the two

heath care applications considered here in order to investigate dynamic formulations, approximate

solutions, and solution quality assessments. The dynamic programming formulation for real-time

ambulance dispatching and relocation policies, response-adaptive dose-finding clinical trial, and

optimal stopping of adaptive clinical trials is presented. Approximate solutions are derived by

multiple methods such as basis function regression, one-step look-ahead policy, simulation-based

gridding algorithm, and diffusion approximation. Finally, some boundaries to assess the optimality

gap and a proof of consistency for approximate solutions are presented to ensure the quality of

approximation.
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Preface

It is safe to say that in almost every nation, health care systems are inadequate, inefficient

and often costly to meet the demands. In the United States, a high-income country, 17.8% of GDP is

spent on health care as of 2015 (National Center for Health Statistics 2016), nearly twice the amount

of any other high-income or industrialized country. However, the outcomes do not justify such high

costs and a plethora of studies and reports, which often include measures of performance such as

access, equity, and responsiveness as well as measures of health, consistently rank the U.S. health

care system as one of the least efficient systems among the most advanced industrialized countries

(e.g., Schneider et al. 2017, World Health Organization 2000). Although, the challenges facing low

and high-income nations are different, inefficiencies in health care systems such as inequality in ac-

cess results in disturbing outcomes: the life expectancy gap between poor and rich people in some

high-income countries (including the U.S.) is greater than the average life expectancy gap between

low and high-income nations (Dwyer-Lindgren et al. 2017, World Health Organization 2015). The

need for a more adequate, efficient and accessible health care system persists in both rich and poor

nations. Design and implementation of a system able to deliver quality service given limited re-

sources requires careful management and decision making. Brandeau et al. (2004) and Rais & Viana

(2011) survey a wide range of applications in health care operations management and clinical prac-

tices where operation research methods support decision making procedures. In this dissertation,

the focus is on the applications of dynamic programming methods in health care systems.

Dynamic programming formalization. Optimizing a system over time and a series of settings

which usually requires a variety of actions arises in many situations in health care management.

These situations often involve a sequential pattern between decision making and observing informa-

tion with uncertainty, where a decision or an action at one period results in a probabilistic transition
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from the current state to another state in the next period. Markov decision processes (MDPs) are

a general method to model such dynamics under uncertainty. Dynamic programming formalizes a

framework for optimization of a performance criterion with respect to current, past and uncertain

future states of MDP models and binds the decisions made at each time into a policy. In fact, typi-

cal sources of uncertainty in health care systems such as different responses of patients to the same

treatments requires the transitions to a new state to be different at each decision epoch. The uncer-

tain transitions are accommodated within the dynamic programming framework since the transition

probabilities governing the stochastic processes are permitted to be dependent on the decision at

each epoch (Schaefer et al. 2005).

Because of this inherent flexibility in the dynamic programming framework, the literature

on its use in health care is rich and covers a wide range of applications. For example, Green et al.

(2006) and Patrick et al. (2008) applied dynamic programming frameworks to capacity allocation

in diagnostic facilities and patient management in hospitals where facing diminishing government

subsidies, the diagnostic facilities and hospitals are under immense pressure to reduce costs (Green

2005). Haijema et al. (2007) developed a dynamic programming approach for blood platelet produc-

tion and inventory problem while considering complicating factors such as multiple types of demand

and production lead time. The approach differs from classic supply chain and inventory manage-

ment problems since blood products are perishable and their demands and supplies are random

(Pierskalla 2005). Zaric & Brandeau (2001, 2002) presented dynamic programming formulations

to allocate limited resources among competing prevention and treatment programs in controlling

epidemics of infectious diseases. Zenios et al. (2000) and Alagoz et al. (2004) studied dynamic allo-

cation schemes in organ transplants while considering the trade-offs between equity and efficiency.

Maillart et al. (2008), Lee et al. (2008), and Khademi et al. (2015) investigated the screening and

treatment practices and policies in breast cancer, dialysis therapy, and HIV treatments, respectively,

by using dynamic programming methods. Wu et al. (2005) and Hall et al. (2008) provided dynamic

programming solutions to vaccine formulary selection problem in immunization programs. Dynamic

programming formulations to ambulance service planning (or emergency vehicle routing), one of

the earliest applications of operation research in health care is discussed in Chapter 1. Response-

adaptive design of dose-finding clinical trials and optimal stopping of adaptive dose-finding clinical

trials are discussed in Chapters 2 and 3, respectively.

Exploiting the flexibility of dynamic programming framework in terms of the state space, the
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action space, and the transition probabilities, all of which allow to capture the complexity of health

care problems, comes with a cost: dynamic models tend to be extremely information intensive and

thus become harder to solve exactly for real world problems (Schaefer et al. 2005). This problem,

usually referred to as “the curses of dimensionality”, arises because the general algorithm to solve a

dynamic program involves evaluating a recursive value function for each decision epoch across the

state and action spaces. As dimensions of a problem increase, the number of possible states, actions,

or transitions grow exponentially and evaluating the value function becomes intractable (Powell

2007). Therefore, a fertile research area known as “approximate dynamic programming” (ADP) has

been developed recently to address these issues and produce implementable high quality solutions.

Approximate dynamic programming. Since backward recursions to solve the value functions

are not tractable if the state and action spaces are multidimensional, an alternative strategy is to

iteratively step forward in time and estimate the value function. Using this estimation, a decision

is made to optimize the estimated value function followed by a random transition to a new state

generated in a Monte Carlo sample path simulation. Iterating over this procedure for a large enough

set of sample paths allows the decision maker to approximate the value of a policy by taking a

sample average (Powell 2007).

There are several different algorithms in the ADP literature which are able to estimate a

value function in absence of proper information as a result of moving forward in time. Using such

algorithms provides an upper (lower) bound for the true optimal value of the value function which is

useful in comparing a range of policies with the current practices in health care applications. It can

be shown that some of these algorithms converge to optimal solutions thus the quality of solutions

are only dependent on computational power. However, the quality of solutions for some algorithms

with unknown convergence properties remains in question. For such problems, assessing the quality

of solution is analyzed by developing a bounding system and measuring the optimality gap.

In Chapter 1 of this dissertation, the ambulance dispatching and relocation problem is

investigated in order to develop new policies for ambulance service planning in an emergency medical

service (EMS) system. These policies determine, (i) which ambulance to dispatch when a call arrives

to the system, (ii) is it beneficial to relocate an ambulance from one base to another such that a

certain coverage level is maintained, and (iii) what to do with an ambulance which has finished

its service. The problem is modeled within a dynamic programming framework and the solutions
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are derived by an approximate dynamic programming method which uses a linear combination of

functions to estimate the true value function. The linear combination of basis functions is tuned by a

multiple linear regression model. Numerical evaluations of performance measures, e.g., the expected

response time or the average fraction of lost calls, provide evidence that dynamic approximate policies

such as considering multiple bases for redeploying an ambulance which has finished its service instead

of sending the ambulance back to its original base significantly improves the performance of the

system. The quality of solutions across multiple performance measures are assured by developing

a lower bounding system which is used for quantifying the optimality gap. These solutions offer

managerial insights for ambulance movements in an EMS system.

Chapter 2 studies the response-adaptive design of dose-finding clinical trials in which a

number of volunteers are assigned to different dosage levels to identify a target dose. The policies

should determine how to modify design elements such as allocation schemes at each decision epoch

based on data collected so far to learn the target dose more efficiently. A state-of-the-art and a

proposed approach for the design of dose-finding trials with unknown dose-response relationships

are formulated using dynamic programming framework. The solutions to these dynamic models

are computed via a “one-step look-ahead” policy which estimates the value function one decision

epoch into the future by evaluating it for a large number of sample paths, i.e., a Monte Carlo

simulation of value function. Several performance measures such as the variance of the target dose

at the end of the trial and patient assignment patterns are derived to show a more efficient design

of dose-finding clinical trial is possible without sacrificing the accuracy in learning the unknown

dose-response relationship and thus the target dose while the trial is still in progress. However, the

convergence properties of the state-of-the-art approach is not known and thus only upper bound

solutions exist which do not ascertain if the true target dose will be eventually identified. This is not

the case for the proposed approach. The consistency proof implies that the approximate dynamic

programming policies are able to eventually learn the unknown dose-response relationship and thus

the target dose with certainty.

Chapter 3 considers another aspect of adaptive designs in dose-finding clinical trials. In the

previous chapter, it was shown that an adaptive design to identify a target dose of an unknown dose-

response relationship is able to eventually learn the dose-response and thus the target dose. However,

sampling more and more participants in the trial increases the costs and may not be necessary

if enough evidence is already gathered. Therefore, an optimal stopping problem is motivated to

x



determine whether to (i) abandon the trial due to a lack of positive evidence about a significant

improvement in the target dose versus placebo, (ii) continue the trial for a more promising significant

improvement, (iii) or terminate the trial because enough evidence about a significant improvement

is gathered and sampling more participants would only increase the costs. New information after

sampling each participant is transformed to financial evidence in order to evaluate each decision in

a dynamic programming framework. Multiple approximate solutions to the dynamic formulation,

i.e., simulation-based gridding algorithm, one-step look-ahead policy, and diffusion approximation,

are compared to show that there are cases for which classic approaches like the simulation-based

gridding, and the widely used one-step look-ahead policies fall apart in finding high quality solutions.

In particular, when the true dose-response curve is flat, both simulation-based algorithm and the

one-step look-ahead policy prematurely terminate the trial half the times. In order to improve their

performance, a statistical check measuring the accuracy of unknown dose-response curve estimation

is added to both algorithms. However, numerical results show that the diffusion approximation

method still outperforms both approximate procedures in terms of correctly deciding to abandon,

continue, or terminate the trial.
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Chapter 1

Real-Time Ambulance Dispatching

and Relocation

Summary. In this chapter, we develop a flexible optimization framework for real-time ambulance

dispatching and relocation. In addition to ambulance redeployment, we consider a general dispatch-

ing and relocation strategy by which the decision maker has the option to (i) select any available

ambulance to dispatch to a call or to queue the call, and (ii) send an idle ambulance to cover the

location of an ambulance just dispatched to a call. We formulate the problem as a stochastic dy-

namic program and because the state space is unbounded, an approximate dynamic programming

(ADP) framework is developed to generate high-quality solutions. We assess the quality of our solu-

tions by developing a lower bound on expected response time, and computing a lower bound on the

expected fraction of late calls of any relocation policy. We test the performance of our policies and

available benchmarks on an emergency medical services system in Mecklenburg County, NC. The

results show that our policies are near-optimal and significantly outperform available benchmarks.

In particular, our ADP policy reduces the expected response time and fraction of high priority late

calls by 12% and 30.6% over the best available static benchmark in the case study. Moreover, they

provide insights on the contribution of each dispatching, redeployment, and reallocation strategy.

Published: Nasrollahzadeh, A., Khademi, A., Mayorga, M., “Real-Time Ambulance Dispatching

and Relocation”, Manufacturing & Service Operations Management, 20(3): 467-480
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1.1 Introduction

Motivation. Emergency medical services (EMS) provide out-of-hospital acute medical care and

transport the sick or injured to hospitals for definitive care. Typically, EMS providers’ performance

is evaluated based on their response time (National Association of State EMS Officials n.d.), the

amount of time that an ambulance takes to arrive to the scene of a call once the call is received, as

reducing the response time is an essential factor in lowering patient mortality rates (Wilde 2013).

In particular, a target for the proportion of urgent calls whose response time is less than a threshold

is a common measure of performance. For example, the U.S. National Fire Protection Association

suggests a target that 90% of emergency medical calls be reached by a first responder within four

minutes followed by an Advanced Life Support response within eight minutes (NFPA 2010). Also,

in North America a common target is reaching 90% of urgent urban calls within nine minutes (Fitch

2005).

Factors such as increased non-emergency calls, which (by law) require that an ambulance

be dispatched, and insufficient funding have increased pressure on EMS providers to “do more with

less” or, at best, to use the same level of resources to achieve response time targets set by municipal-

ities or contracts (Ward 2014). This has spurred EMS providers to better manage their ambulances

by using more complex dispatching and location policies. Studies of realistic settings show that the

performance of static policies, those that send the closest ambulance and preassign a location to

each ambulance, can be quite poor (Maxwell et al. 2010). Recently, the availability of real-time

information to dispatchers via geographical information systems, and the affordability of comput-

ing power has facilitated using real-time ambulance management, which provides a platform that

enables EMS providers to consider more sophisticated operational strategies to improve the perfor-

mance of ambulance deployment policies. One potential strategy is ambulance relocation, which

refers to repositioning idle ambulances in real-time to better respond to future calls. It is possible

for some locations to be covered by more than one ambulance, therefore some ambulances might be

idle at their locations while providing no additional coverage value. Note that an area is covered

if an idle ambulance can reach it in a specific time threshold. Repositioning these ambulances to

improve the coverage level is a strategy we call “ambulance reallocation.” This strategy can improve

the performance of EMS systems because idle ambulances at other locations can compensate for

a “coverage hole” caused by dispatching the only ambulance covering a region. A second type of

2



strategy is to send an ambulance that just finished service to a new location rather than sending it to

a preassigned base, which we call “ambulance redeployment.” A third potential strategy is to decide

which ambulance should serve a call (if immediately), which we call “ambulance dispatching,” as

sending the closest ambulance for every incident may be suboptimal (Swersey 1994). This strategy

can significantly improve the performance of the system as supported by our numerical analysis.

For example, suppose a high priority call arrives and the closest ambulance is 20 minutes away from

the call location, however, another ambulance is currently in service just two minutes away from the

call location and will be available in three minutes. Sending the closest ambulance immediately will

result in a late call in this example and is shown to be suboptimal in realistic settings. We intend to

develop a flexible mathematical framework to explore a variety of strategies for real-time ambulance

operations management. Pursuant to this goal, we formulate the problem as a stochastic dynamic

program and use an approximate dynamic programming (ADP) approach to produce efficient real-

time dispatching and relocation policies.

Main Contributions and Results. In this chapter, we make the following contributions: (1)

We develop a flexible optimization framework by simultaneously considering general dispatching,

redeployment, and reallocation strategies for real-time stochastic dynamic ambulance operations

management. We consider a general dispatching rule upon receiving a call in that the decision

maker can send any available ambulance in addition to not serving the call immediately. Therefore,

we let the model decide which ambulance should immediately be dispatched to a received call or the

call has to wait for an ambulance in the near future. EMS providers are also motivated to spread out

ambulances on the roads to meet the performance standards. To improve coverage level, we consider

relocating an available ambulance to the location of an ambulance just dispatched to serve a call

and we name it “ambulance reallocation.”(2) In order to assess the quality of solutions produced by

our ADP approach, we develop a novel lower bound on the expected response time of any relocation

policy. To create this bound, we consider a lower bounding system as in Maxwell et al. (2014).

However, instead of solving a maximum covering location problem, upon receiving a call in the

original system, we reposition the available ambulances to minimize the expected response time by

solving a different p-median integer program. (3) We develop new basis functions which estimate the

expected response time of the calls in the system and modified some of the available basis functions in

the literature to enhance the performance of the ADP policies. In particular, we introduce new basis
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functions that estimate a future state of the system in which a busy ambulance becomes available,

thus enabling the ADP algorithm to react to the future coverage level. These basis functions serve

an important purpose in that, they allow the algorithm to delay or alter a dispatching or relocation

decision in response to a situation by considering future costs of an appropriate response when a new

ambulance configuration has emerged. (4) We measure the contribution of each strategy in terms

of a variety of objective functions such as the expected discounted priority-adjusted response time

and the expected discounted priority-adjusted fraction of late calls. We discover insights regarding

the relative contribution of each strategy, as well as available benchmarks.

We test the performance of six static benchmarks in the literature on our data set to find

the best static benchmark in terms of expected response time and fraction of late calls. Our analysis

shows that Maximum Expected Covering Location Problem (MEXCLP) and Maximum Covering

Location Problem (MCLP) outperform other static benchmarks when the objective is to minimize

the expected fraction of late calls and the expected response time, respectively. Thus, the static

policy, hereafter, refers to MEXCLP (MCLP) when the objective is to minimize the fraction of late

calls (response time).

In addition, we consider five dynamic benchmarks, including a heuristic which has been

reported to be efficient in the literature. In order to analyze the contribution of each dispatching,

redeployment, and reallocation strategy on performance improvement, we design three dynamic

benchmarks by adding each strategy to the static policy one at a time. That is, Benchmark 1 builds

on the static policy by considering a general dispatching rule instead of sending the closest available

ambulance; Benchmark 2 builds on the static policy by considering a redeployment strategy after

an ambulance has finished serving a call; Benchmark 3 builds on the static policy by sending an

available ambulance to the location of an ambulance just dispatched to serve a call. Benchmark 4,

which consists of redeployment and reallocation strategies, is used to compute the optimality gap

as both lower bounds assume the closest ambulance is dispatched; Benchmark 5 uses the dynamic

heuristic relocation policy proposed by Jagtenberg et al. (2015) to evaluate its performance with

respect to our relocation strategies.

Our results show that when the ADP objective function is to minimize the expected response

time, ADP policies generated by Benchmarks 1, 2, and 3 outperform the MCLP static benchmark

by 2.7%, 6.8%, and 1.3%, respectively. However, when the ADP objective function is to minimize

the expected fraction of late calls, the ADP policies produced in Benchmarks 1, 2, and 3 outperform
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the MEXCLP static benchmark by 13.5%, 21.3%, and 9.8%, respectively. This shows that each

strategy can significantly improve the static benchmarks. Note that the contribution of a rede-

ployment strategy is significantly greater than that of dispatching and reallocation strategies. Also,

this observation is consistent in both ADP objective functions, i.e., minimizing response time and

fraction of late calls. Furthermore, the expected frequency that Benchmark 2 deviates from the

static benchmarks is significantly greater than other dynamic benchmarks. The ADP approach that

simultaneously considers all three strategies outperforms both the static and dynamic benchmarks.

In particular, when the ADP objective is to minimize the expected fraction of late calls, our ADP

approach outperforms Benchmark 2, in expected response time and fraction of late calls by 4.3% and

14.5%, respectively. Benchmark 2 is similar to the setting studied in Maxwell et al. (2010), where

only ambulance redeployment is considered. Our results suggest that expanding the action space

beyond redeployment can significantly improve the performance of the system, e.g., 14.5% improve-

ment in the fraction of late calls when the ADP objective is to minimize the fraction of late calls.

Furthermore, Benchmark 1, which uses a general dispatching rule, provides novel insights to the

discussion around optimality of policies that deviate from sending the closest available ambulance.

Our results show that Benchmark 1 simultaneously reduces the fraction of late calls and response

time as our ADP policy shifts the entire response time distribution toward shorter times (see Figure

2.3). This result is different from Jagtenberg et al. (2016) where deviating from sending the closest

ambulance resulted in an improvement on fraction of late calls, but significant increase in response

time.

1.2 Background

The literature on ambulance operations management is quite rich. Therefore, we briefly

discuss previous works related to this chapter and refer the reader to the following survey papers

and the references therein for a comprehensive review. Swersey (1994) and Brotcorne et al. (2003)

reviewed deterministic and probabilistic ambulance location and relocation models. Also, Ingolfsson

(2013) provided a survey on the analytical stochastic models focusing on ambulance station selection

and ambulance allocation to stations with respect to performance measures such as response time.

Early models of ambulance location problem seek to minimize the number of ambulances

required to respond to future calls for a determined time threshold or to maximize the demand
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covered using a fixed fleet size; see Church & ReVelle (1974) and the references therein. These

approaches did not consider the fact that when an ambulance is dispatched, the coverage level

might fall below a minimum threshold. One possibility to address the unavailability of dispatched

ambulances over time includes considering multiple coverage, i.e., demand points that are supposed

to be covered by more than one vehicle. Gendreau et al. (1997) introduced the double standard model

by including multiple coverage. Doerner et al. (2005) extended their work with respect to capacity

constraints and different demand density in each location. Gendreau et al. (2001, 2006) developed

dynamic models to formulate the ambulance repositioning problem, where the objective function is

to maximize the total covered demand. Because these approaches require solving an integer program

every time the dispatcher makes a decision, they are computationally very intensive. Also, these

models are deterministic and do not capture the effect of randomness in the system.

Berman (1981a,b) used Markov decision theory to minimize the long-run cost of reposition-

ing ambulances. They provided an exact dynamic programming approach to find available ambu-

lances to compensate for coverage level drop induced by dispatched ambulances. However, these

exact formulations are only tractable in oversimplified settings for a few number of ambulances

over a small network of routes. Restrepo et al. (2009) used an Erlang loss function to compute

the fraction of late calls, those not responded to within a time threshold, and embedded it into an

optimization model to minimize the percentage of late calls by static deployment of ambulances.

McLay & Mayorga (2013) formulated the ambulance dispatching problem as a Markov decision

process to optimally dispatch ambulances to prioritized patients. Alanis et al. (2013) developed a

two-dimensional Markov chain model to analyze ambulance repositioning according to a compliance

table, which suggested where to reposition an ambulance based on the number of available ambu-

lances. (In this setting, the closest ambulance is dispatched to serve the call. After the ambulance

finishes its service, the decision maker seeks to reposition ambulances in such a way that maintains

the configuration of the available ambulances similar to the one suggested by the compliance table.)

Andersson & Varbrand (2007) measured the ability of an ambulance to cover a future call by in-

troducing a “preparedness function,” which approximates the value function in a dynamic program.

However, in order to apply it to real-time applications even with small sets of available ambulances

and relocation destinations, the dynamic relocation problem is solved heuristically. van Barneveld

et al. (2016) designed a heuristic dynamic repositioning policy by minimizing the “unpreparedness

function,” which returns the expected penalty that the next request generates. In that setting, the
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best relocation policy is found in terms of a “motion” from an origin base to a destination base. To

prevent long transition times, a linear bottleneck assignment problem is solved to determine how

available ambulances should move to reach the new configuration.

Mason (2013) developed a dynamic repositioning policy, which relocated ambulances in de-

mand zones when coverage levels dropped below a threshold. However, repositioning idle ambulances

every time coverage levels fall below a certain level may result in shortage of available ambulances

at times of dispatch. Therefore, to limit the repositioning time, a neighborhood search strategy

is developed to solve the base allocation problem, which leads to solutions that differ only slightly

from the initial base locations. Jagtenberg et al. (2015) developed a heuristic approach to real-time

ambulance relocation by maximizing the expected marginal contribution of each available ambu-

lance to the coverage level. van Barneveld (2016) extended MEXCLP to incorporate a non-negative

nondecreasing function of response time into the objective function to calculate performance mea-

sures related to response time instead of coverage level. By solving the extended formulation for

different levels of available ambulances, compliance tables are obtained offline and when the number

of available ambulances changes, an assignment problem is carried out to reconfigure the system,

i.e., move the ambulances to new positions according to the compliance tables. Sudtachat et al.

(2016) modified the steady state probabilities calculated in Alanis et al. (2013) and incorporated

them into an integer program to maximize the coverage level in a single type ambulance and call

priority system with zero-length queue. The resulting nested compliance policy, when out of com-

pliance, requires at most one vehicle movement at a time to reconfigure accordingly. Bélanger et al.

(2016) modified the double standard model to consider multi-period and dynamic settings with or

without relocations. In the multi-period settings, ambulances were only relocated between the pe-

riods and returned to the same base throughout the period. In the dynamic settings, the double

standard model is solved whenever an ambulance is dispatched if certain time has passed since the

last relocation and a secondary coverage level falls below a threshold.

To make ambulance redeployment decisions in an uncertain dynamic setting, Maxwell et al.

(2010) developed an ADP approach based on approximate policy iteration. They formulated the

ambulance redeployment problem as a dynamic program and approximated the value function by an

affine combination of basis functions. They used an iterative simulation-based procedure to estimate

tunable parameters of the approximation. The objective is to minimize the fraction of late calls only

through redeployment. Their model, however, does not consider ambulance reallocation and uses a
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myopic dispatching rule, i.e., the closest ambulance is sent to a call, calls are served in decreasing

order of priority, and a first-come first-served strategy is considered for each priority. Schmid (2012)

also used ADP to real-time ambulance dispatching and relocation. Our approach is different both in

problem scope and methodology used. In particular, Schmid (2012) did not consider the relocation

of idle ambulances and assumed that an ambulance must be immediately dispatched to a call. In

terms of ADP, Schmid (2012) used a general ADP framework based on aggregation and post-decision

states. However, we develop an ADP approach specific to ambulance operations management by

exploiting novel basis functions, as well as developing a lower bound on expected response time.

There is another stream of literature related to approximate dynamic programming. Many

researchers have used ADP to come up with high-quality solutions for a variety of applications, e.g.,

allocating resources in service systems (Adelman 2007); resource allocation in healthcare (Bertsimas

et al. 2013, Khademi et al. 2015); and supply chain management (Lai et al. 2010, Van Roy et al.

1997).

1.3 Problem Formulation

This section presents an infinite-horizon Markov decision process formulation of the prob-

lem. Let L := {0, 1, 2, . . . , L} be the set of call locations and B := {0, 1, 2, . . . , B} be the set of all

ambulance bases. We assume a total of N ambulances are available and at most J calls are tracked.

This assumption is not restrictive because one may consider a large J .

State space. An ambulance i is represented by mi = (fi, oi, di, ti), where fi is the status of the

ambulance, oi is the original location of the ambulance, di is the destination of the ambulance, and

ti is the start time of the latest movement of the ambulance. For the purposes of this chapter, it is

sufficient to consider six possibilities for the status of an ambulance, i.e., fi ∈ {0, 1, 2, 3, 4, 5}, where 0

shows that the ambulance is available at base, 1 shows that the ambulance is going to a call location,

2 shows that the ambulance is serving a call on scene, 3 shows that the ambulance is going to hospital,

4 shows that the ambulance has finished serving a call, and 5 shows that the ambulance is being

reallocated and going to another base or the ambulance is going to a base after finishing service.

Note that if ambulance i is idle in a location, the original location is set to the current location and

the destination to null. Similarly, when an ambulance is serving a call on scene, we set the original
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location to the call location and destination to null. We let vector m = (m1,m2, . . . ,mN ) ∈ M

represent the state of all ambulances. A call j is represented by cj = (gj , lj , pj , qj), where gj is

the status, lj is the location, pj is the priority, and qj is the arrival time of the call. In particular,

gj ∈ {0, 1}, where 0 shows that the call is waiting for service and 1 shows that the call is assigned to

an ambulance. When an ambulance reaches the call scene, the call is removed from the list. Aligned

with literature, we consider two priority levels for a call, pj ∈ {0, 1}, where 0 shows that the priority

of a call is low, and 1 shows that the priority of the call is high (Maxwell et al. 2010). Extending

the framework presented in this chapter to consider more priority levels is straightforward. We let

vector c = (c1, c2, . . . , cJ) ∈ C represent the state of all calls.

Without loss of generality, we assume that decisions are made at transition times. In our

model, transition times are associated with the following events: “call j arrives,” “ambulance i is

in transit to call j,” “ambulance i arrives at the location of call j,” “ambulance i is finished serving

call j at scene,” “ambulance i is finished serving call j at hospital,” and “ambulance i arrives at a

base.” Let E be the set of all possible events. Therefore, the state space of the system is represented

by S := {s = (τ, e,m, c) : e ∈ E,m ∈M, c ∈ C}, where τ corresponds to the current time.

Action space. The action space is described in four cases. We assume that dispatching, real-

locating, and redeploying the ambulances are non-preemptive. One can relax this assumption by

defining an event “consider preemption,” which occurs with a certain frequency and upon occur-

rence, one may preempt any of the ambulance services and reconsider actions. However, Maxwell

et al. (2010) showed that considering only the service preemption of ambulances that are returning

to base significantly increases the computational effort while its benefit may be marginal.

Case 1: If call j arrives, the decision maker has two types of decision: (i) which ambulance

should be immediately dispatched to serve the call (if any), and (ii) which ambulances should

be reallocated to other bases (if any). Note that in this case, an ambulance is not necessarily

dispatched upon receiving a call immediately. If this happens, the call will join the queue and will

be served later. The rationale for considering reallocation decisions is that by spreading out the

ambulances over the area it is likely that a location is only covered by one ambulance, thus, sending

the ambulance to a call may cause a coverage hole. Since coverage level does not decrease unless

an idle ambulance becomes unavailable, reallocation decisions are considered when an ambulance

is dispatched. Because multiple reallocations in short intervals are expensive and could become a
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burden on the ambulance crew (van Barneveld et al. 2016, Jagtenberg et al. 2015), we assume that

reallocations are limited to at most one ambulance upon dispatching an ambulance. Let M(s) be

the set of available ambulances, i.e., M(s) := {i : fi = 0}, B1(s) represent the location of the

ambulance just dispatched to a call, and M1(s) represent the set of all available ambulances right

after dispatching ambulance i when the state is s. If no ambulance is dispatched upon receiving

a call, we set B1(s) = ∅ and do not consider ambulance reallocation. Note that when ambulances

are in transit towards a base (fi = 5), they are not considered available due to the non-preemption

assumption. It is possible to use the event “consider preemption” to preempt an ambulance that is

moving towards a base and dispatch it to a call. However, the benefit of such preemptions may be

marginal (Maxwell et al. 2010).

Define Xi,j = 1 if ambulance i is assigned to call j, and Xi,j = 0, otherwise. Also, define

Yi,b = 1 if ambulance i is reallocated to location b, and Yi,b = 0, otherwise. Therefore, if event e is

of the type “a call arrives,” and J1(s) denotes a set that points to the index of the call, the action

space is given by

A1(s) :=

{
(Xi,j , Yi,b) :

∑
i∈M(s)

Xi,j ≤ 1, j ∈ J1(s);
∑

i∈M1(s)

Yi,b ≤ 1, b ∈ B1(s)

}
,

where the first constraint ensures that at most one ambulance is assigned to a received call j and the

second constraint ensures that at most one ambulance is reallocated to the location of the dispatched

ambulance.

Case 2: Let Q(s) denote the set of all calls waiting in the queue for ambulance assignment,

i.e., Q(s) := {j : gj = 0}. If Q(s) = ∅ and event e is of the type “ambulance i has finished serving

a call at scene,” or “ambulance i has finished serving a call at hospital,” the decision is where to

redeploy the ambulance. Let M2(s) denote the set of available ambulance for redeployment in

state s and Zi,b = 1 if ambulance i is redeployed to location b, and Zi,b = 0, otherwise. We set

M2(s) = {i} in this case. The action space is presented by

A2(s) :=

{
(Zi,b) :

∑
b∈B

Zi,b = 1, i ∈M2(s)

}
,

where the constraint ensures that ambulance i is redeployed to only one location.

Case 3: If Q(s) 6= ∅ and event e is of type “ambulance i has finished serving a call at scene,”
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or “ambulance i has finished serving a call at hospital,” or “ambulance i has arrived at a base,” the

decision is to dispatch an available ambulance to a call in the queue, or to redeploy it to a location.

If there is more than one call in the queue, the calls are served in decreasing order of priority, and

within a given priority level, they are served based on a first-come first-served rule. Let J3(s) denote

the set that points to the highest priority call with the longest waiting time in the queue andM3(s)

denote the set of available ambulances for redeployment when the state is s. Set M3(s) = {i} in

this case. The action space is given by

A3(s) :=

{
(Xi,j , Zi,b) :

∑
i∈M(s)

Xi,j ≤ 1, j ∈ J3(s);
∑
b∈B

Zi,b = 1−Xi,j , i ∈M3(s), j ∈ J3(s)

}
,

where the first constraint considers dispatching an ambulance to call j in the queue, and the second

constraint ensures that the ambulance that has just become available will be redeployed to a location

if it is not already assigned to a call.

Case 4: If an event is of type “ambulance i is in transit to call j,” or “ambulance i arrives

at the location of call j,” we set A(s) = ∅.

Transitions. We assume that call arrivals in location l follow a non-homogeneous Poisson process

with rate λτl at time τ . If an ambulance arrives at call j scene, it completes the service at the scene

with probability ρj , and it will transfer the patient to a hospital with probability 1−ρj . We assume

that travel times are deterministic, and the time required to serve a call at scene or taking a patient

to hospital follows an arbitrary distribution with a finite mean, independent of call location. Note

that if destination is a hospital, in addition to travel time, our historical data also considers both

the service time on scene before going to hospital and the time that it takes to handover the patient

to hospital personnel. We estimate all of the distributions by using historical data from Mecklen-

burg County, NC. Let sκ be the state of the system when the κth event happens. The evolution of

state sκ can then be characterized by action aκ, a random element ω(sκ, aκ), and a function F , i.e.,

sκ+1 = F (sκ, aκ, ω(sκ, aκ)).

Objective function. We consider minimizing the expected discounted priority-adjusted total re-

sponse time and the expected discounted priority-adjusted fraction of late calls as the primary ADP

objective functions for the optimization framework. We also report other performance measures
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such as response time of late calls and fraction of late high priority calls in our case study. Let

h(sκ, aκ, sκ+1) denote the cost of a transition from sκ to sκ+1, when action aκ is taken. In order to

minimize the expected discounted priority-adjusted response time, define

h(sκ, aκ, sκ+1) =



w1(τ(sκ+1)− qj) A high priority call j arrives and the event e(sκ+1)

is of the form “ambulance i arrives at the scene of

call j,”

w2(τ(sκ+1)− qj) A low priority call j arrives and the event e(sκ+1)

is of the form “ambulance i arrives at the scene of

call j,”

0 otherwise,

where (τ(sκ+1) − qj) measures the response time of call j, and w1 and w2 are priority adjustment

weights. This cost structure is flexible in that w1 and w2 can be tuned to capture the relative

importance of high priority versus low priority calls.

Similarly, in order to minimize the long-run priority-adjusted fraction of late calls, define

h(sκ, aκ, sκ+1) =



w3

(
1{τ(sκ+1)−qj≥4}

)
A high priority call j arrives and the event e(sκ+1)

is of the form “ambulance i arrives at the scene of

call j,”

w4

(
1{τ(sκ+1)−qj≥4}

)
A low priority call j arrives and the event e(sκ+1)

is of the form “ambulance i arrives at the scene of

call j,”

0 otherwise,

where 4 denotes the given time threshold and 1{τ(sκ+1)−qj≥4} is an indicator function, which takes

the value of one if the call is not responded within the time threshold. The cost structure can capture

the relative importance of call priorities by tuning w3 and w4. Note that one might use different

time thresholds for different priorities.

Optimality equation. Let Jπ(s) denote the expected total discounted cost when s0 = s under

policy π ∈ P, where P denotes the set of all stationary non-anticipative policies. That is,
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Jπ(s) = E
{ ∞∑
κ=1

γτ(sκ)h(sκ, π(sκ), sκ+1)

∣∣∣∣s0 = s

}
, s ∈ S, π ∈ P,

where π(sκ) denotes the action selected by policy π in state sκ at time τ(sκ), and 0 ≤ γ < 1 is a

discount factor. The decision maker solves for v(s) = infπ∈Π

{
Jπ(s)

}
, where Π ⊆ P denotes the set

of admissible policies under consideration and v(s) satisfies the Bellman optimality equation

v(s) = min
a∈A(s)

{
Ea
(
h(s, a, s′) + γ(τ(s′)−τ(s))v(s′)

∣∣s)}, ∀s ∈ S, (1.1)

where the expectation is taken with respect to action a and s′ = F (s, a, ω(s, a)) (Puterman 2005).

Moreover, a stationary optimal policy exists, which is myopic relative to the optimal value function.

1.4 Approximate Solutions

Solving formulation (1.1) to optimality is impractical due to the curse of dimensionality.

The state space of the system, S, is unbounded and the traditional methods do not apply. Section

1.4.1 adapts approximate policy iteration to produce high-quality solutions, which provide an upper

bound on the optimal value function and Section 1.4.3 computes lower bounds on the long-run

fraction of late calls and response time under any relocation strategy in order to assess the quality

of the solutions.

1.4.1 Upper Bound

The standard policy iteration algorithm starts with an arbitrary policy π0. At iteration n,

it evaluates πn by calculating vn(s) for all s ∈ S by solving vn(s) = Lπnv
n(s), where Lπnv

n(s) =

E
{
h(s, a, s′) + γτ(s′)−τ(s)v(s′)

}
. Next, it improves the policy by choosing a myopic policy relative

to vn, i.e., πn+1(s) ∈ arg mind∈DMD

{
E
(
h(s, a, s′) + γτ(s′)−τ(s)vn(s′)

)}
, where d ∈ DMD denotes

a decision rule in the set of stationary Markovian deterministic policies (DMD). This iterative

procedure is continued until πn+1 = πn (Puterman 2005). Because the state space is unbounded,

the policy evaluation and improvement steps are intractable in this problem. To overcome this issue,

the value function is approximated by an affine combination of basis functions, i.e., v(s) ≈ v̂(s) =

α0 +
∑K
k=1 αkφk(s), where each φk(s) is a basis function and αk is its associated weight in the
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approximation. The quality of the approximation depends on the choice of basis functions, which

should be able to characterize the optimal value function (Powell 2007). Section 1.4.2 discusses our

choice of basis functions in detail. Therefore, by replacing the value function with its approximation,

the policy improvement step at iteration n of the approximate policy iteration involves solving

πn(s) ∈ arg min
a∈A(s)

{
Ea
(
h(s, a, s′) + γ(τ(s′)−τ(s))v̂(s′)

∣∣∣∣s)
}
, ∀s ∈ S, (1.2)

where Ea(·) denotes the expectation with respect to action a. We use Monte Carlo simulation to

approximate Ea(·) via a sample average. Starting from state s and taking action a, we simulate

the system for one step, and use v̂(s) as the cost-to-go estimate. Because the simulation is only

evaluated until the next event, enumerating all trajectories is manageable. The next event could be

a call arrival or a busy ambulance completing one stage of its transition, which is either reaching a

call scene, finishing service (at scene or hospital), or arriving at a location after finishing service.

Solving formulation (1.2) involves enumerating all actions for a given state. In our setting,

this is manageable because if the event is “call j arrives,” the decision maker has to determine which

ambulance should be immediately dispatched to the call (if any) and which ambulance should be

reallocated to the location of the ambulance just dispatched (if any). Let |M(s)| denote the number

of available ambulances. The size of the action set will be 1 + |M(s)|
(
|M(s)| − 1

)
. If the event

is of the type “ambulance becomes available after serving a call” and no calls are in the queue,

then the decision maker determines which location the ambulance should be redeployed to. This

is equal to the number of locations, denoted by |B|, which in our case study is 40. If there are

calls in the queue and the event is of type “ambulance becomes available after serving a call,” or

“ambulance has just arrived at its location,” then the decision maker determines which ambulance

to dispatch to the call based on a first-come first-served rule, and if the decision is not to dispatch,

which location the ambulance should be redeployed to, which is at most |M(s)| + |B|. Once the

expectation is estimated for all actions, the decision that yields the smallest value is chosen by the

policy. Formulation (1.2) provides v̂-improving decision rules for a fixed state s. However, solving it

for each state is not possible because the state space is unbounded. Therefore, in order to evaluate a

policy, we use formulation (1.2) upon visiting a state on the fly in the Monte Carlo simulation. That

is, it is solved only for states observed in simulation. In the settings of interest, our computational

experiments demonstrate that solving formulation (1.2) for a state is instantaneous.
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Next, we develop an algorithmic approach to estimate α = (α0, α1, . . . , αk) and consequently

derive high-quality solutions. Consider an appropriately large finite horizon, initialize α = α0 and

evaluate the policy associated with it for states in Ŝ, where Ŝ is a subset of S. We construct Ŝ

by sampling states that are more likely to be visited by the optimal policy and update v̂n(s) at

iteration n of the algorithm (de Farias & Van Roy 2004). For the policy evaluation step, we propose

the following procedure. Start from an initial state s, use Monte Carlo to simulate the system, and

upon observing a state, find actions by solving formulation (1.2), and calculate the total discounted

cost for that realization of the system. Let Cr(s) denote the total discounted cost of the realization

of the system, starting from state s in replication r, i.e., the simulated value function for state s in

replication r. Let Rs be the total number of replications of the Monte Carlo simulation for state s.

To estimate α, solve the following optimization problem

min
α

∑
s∈Ŝ

Rs∑
r=1

(
Cr(s)− α0 −

K∑
k=1

αkφ(s)
)2
, (1.3)

which minimizes the squared error between the approximate value function and the simulated value

function. Note that formulation (1.3) is a regression model and computational experiments in our

case study show that solving it is instantaneous. This procedure continues until convergence in some

norm is achieved. Algorithm 1 formalizes this approach.

1.4.2 Basis Functions

This section describes the basis functions {φk(·) : k = 1, . . . ,K} used for the value function

approximation. Jagtenberg et al. (2015) noted that basis functions in the ambulance relocation

literature may not produce high-quality solutions in general, but our computational results show

Algorithm 1 Approximate policy iteration

Set n = 0, ε > 0 and α = α0.
while |v̂n(s)− v̂n−1(s)| > ε or n 6= 0 do

Policy improvement: Find a myopic policy induced by v̂n(s) by solving formulation (1.2).
Policy evaluation: Use Monte Carlo to simulate the system; find actions for each state visited
by the simulation via solving formulation (1.2); calculate Cr(s), the total discounted cost for
each initial state s and replication r.
Projection: Use Cr(s) from the Monte Carlo simulation and solve formulation (1.3) to estimate
αn+1 for the next iteration.
Set n← n+ 1.
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that our ADP approach based on the following basis functions produces near-optimal solutions.

Response time. This novel basis function estimates the expected response time of a call when

the state of the system is s. To that end, let rl(s) denote the expected response time of a call in

region l in state s, and set φ1(s) =
∑
l∈L λ

τ
l rl(s). Response time is comprised of travel time of an

ambulance to reach a call plus potential waiting time of a call in queue for ambulance assignment.

In order to estimate the expected waiting time of a call in a region, we develop an M/G/c queueing

system for each region, and estimate the expected waiting time in the queue. Let Nl(s) denote

the number of available ambulances (the number of servers in the M/G/c queuing system) that

cover location l when the state of the system is s. We consider a region covered by ambulance

i, if the time that it takes for an available ambulance to reach to the center of the region, l̄,

is less than a threshold 4. Therefore, Nl(s) =
∑
i∈M(s) 1{t(oi,l̄)≤4}, where t(x, y) denotes the

travel time between location x and y. We estimate the service rate of an ambulance in region l,

µl(s), by considering the average travel time in region l, plus the average time that an ambulance

spends on scene, plus the average time of handing over a patient to hospital personnel. Because

ambulances in a region may also serve other regions, we adjust the arrival rate of calls in region l

by summing over call arrival rates of regions covered by an available ambulance in region l, using

λ′l,τ (s) =
∑
u∈L

∑
i∈Ml(s)

λτu1{t(oi,ū)≤4}, whereMl(s) denotes the set of available ambulances that

cover region l, i.e., Ml(s) := {i ∈ M(s) : t(oi, l̄) ≤ 4} and λτl is the call arrival rate in region l

at time τ . We use µl(s) and λ′l,τ (s) to compute the expected waiting time in queue in an M/M/c

queuing system in region l, i.e., W q,l
(M/M/c)(s). The expected waiting time in the queue in an M/G/c

queuing system is then approximated by

W q,l
(M/G/c) ≈

1 + cv2
l

2
W q,l

(M/M/c),

where cvl denotes the coefficient of variation of the service time in region l (Allen 1980). Let t̄l

denote the average travel time within region l, then

rl(s) = 1{Ml(s)=∅}

[
W q,l
M/G/c(s) + t̄l

]
+ 1{Ml(s)6=∅}

[
min

i∈Ml(s)
t(oi, l̄)

]
.

Note that the queuing theory approach may not accurately estimate arrival rates, service rates, and
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the number of the servers for a region. To overcome this issue, we calibrate the model by scaling

the arrival rates and find the scaling factor through experimentation.

Future response time. Ambulances in transit can serve a (currently in queue or future) call after

their service is finished. Therefore, the destination of the busy ambulances is as important as their

current location. This is the underlying motivation for the second and the fourth basis functions.

Let ~s denote the state that corresponds to the earliest time when one of the following events occur:

“an ambulance finishes serving a call (at scene or hospital),” or “an ambulance arrives at a base.”

The future response time in state ~s is important because it evaluates the trade-off between imme-

diate and future cost. Given that the current state of the system is s = (τ, e,m, c), we construct a

new state ~s(s) =

(
~τ(s), ~e(s), ~m(s),~c(s)

)
, where ~τ(s) denotes the time that the future state ~s will

be visited and

(
~e(s), ~m(s),~c(s)

)
denotes predicted future event, ambulance status, and call status

at time ~τ(s). Also, ~s(·) is determined by searching the earliest time that a busy ambulance becomes

available. Predicting future events, ambulance statuses, call statuses and the earliest time that a

busy ambulance becomes available is possible by searching the future event list in the simulation.

We then set φ2(s) = φ1(~s). This basis function is novel in that ~s computes the state that corresponds

to the earliest time that an ambulance becomes available compared to Maxwell et al. (2010) where

the future state is computed by replacing the locations of all busy ambulances with their destinations.

Uncovered call rate. The third basis function computes the rate of uncovered calls. Recall that

Nl(s) is the number of available ambulances in region l in state s, and calls arrive with rate λτl from

location l at time τ . If no ambulance covers region l, then the call may be late (Restrepo et al.

2009). We define the uncovered call rate by φ3(s) =
∑
l∈L λ

τ
l 1{Nl(s)=0}.

Future uncovered call rate. The fourth basis function calculates the uncovered call rate for a

future state ~s, which is constructed in the same way discussed in the second basis function, i.e.,

φ4(s) = φ3(~s).

Unreachable calls. The fifth basis function computes the number of calls for which an ambulance

is assigned but it cannot reach the scene within the time threshold 4, i.e.,
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φ5(s) =

J∑
j=1

1{gj=1}

N∑
i=1

1{fi=“ambulance i is going to call scene j”}1{ti+t(oi,l̄)−qj≥4},

where ti is the time that ambulance i started to move to the scene of call j. The above expression

first checks whether the call is assigned to an ambulance and then checks whether the ambulance

will fail to reach the call location within the time threshold (Maxwell et al. 2010).

Aggregated delay time. This novel basis function computes the aggregated delay time for calls

in the queue for which an ambulance is assigned, but is not going to reach to the call scene within

the time threshold 4, i.e.,

φ6(s) =

J∑
j=1

1{gj=1}

N∑
i=1

1{fi=“ambulance i is going to call scene j”}1{ti+t(oi,l̄)−qj≥4}(ti+ t(oi, l̄)−qj ≥ 4).

The indicator function 1{fi=“ambulance i is going to call scene j”}1{ti+t(oi,l̄)−qj≥4} ensures that only late

calls are counted.

1.4.3 Lower Bound

This section provides a lower bound on the expected total response time for a broad class

of relocation policies over a finite time horizon. The bound is based on a lower bounding system

in which the call arrival process is exactly the same as the original system, and the number of

available ambulances just before the arrival of a call is greater than or equal to that in the original

system under policy π. This is achieved by computing a stochastic lower bound on the service

time distribution of ambulances in the original system, which is independent of the ambulance

configuration in an EMS system, thus the relocation policies (Maxwell et al. 2014). Therefore, we

simulate a multi-server queuing system (ambulances resemble servers and calls resemble customers)

with the bounding service time distribution, where calls arrive according to the same process as the

original system. However, just before the arrival of a call, the available ambulances are repositioned

to minimize the expected response time by solving an integer program. Because we use the same

bounding system as Maxwell et al. (2014), the same set of assumptions hold true.

Let D be the (random) number of calls over a horizon and T denote the (random) total
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response time over the same horizon. The goal is to compute a lower bound on E(T ) independent

of relocation policy π, which is given by

E(T ) = E
( ∞∑
j=1

Tj1{j≤D}
)

=

∞∑
j=1

E
(
1{j≤D}E[Tj

∣∣Aj , τj , Cj ]) ≥ ∞∑
j=1

E
(
1{j≤D}ν(Aj)

)
= E

( D∑
j=1

ν(Aj)
)
,

where Tj is the response time of the jth call, τj is the arrival time of the jth call, Cj is the con-

figuration of ambulances at time τj , Aj is the number of available ambulance at time τj , and

ν : {0, 1, . . . ,A} → [0,∞] is a decreasing function such that E(Tj |Aj , τj , Cj) ≥ ν(Aj). Maxwell

et al. (2014) constructed a bounding system by a coupling of the ambulance dynamics such that

the number of available ambulances in the bounding system, Ãj , at the arrival time of the jth call

satisfies Ãj ≥ Aj for all j almost surely. Therefore, E(T ) ≥ E
(∑D

j=1 ν(Aj)
)
≥ E

(∑D
j=1 ν(Ãj)

)
.

Having ν(·) allows us to approximate the above expectation by simulating the bounding

system. Let ν(Aj) denote the response time when Aj ambulances are available at the arrival time

of the jth call. For 1 ≤ Aj ≤ A, ν(Aj) is is the optimal objective function of the following integer

program

ν(Aj) = min

L∑
l=1

dl

|Aj |∑
k=1

L∑
b=1

ykblt(b, l) (1.4)

s.t.

|Aj |∑
k=1

L∑
b=1

ykbl = 1, ∀l,

ykbl ≤ xkb, ∀b, l, k,
L∑
b=1

xkb = 1, ∀k,

xkb ∈ {0, 1}, ykbl ∈ {0, 1}, ∀b, l = 1, 2, . . . ,L and ∀k = 1, 2, . . . , |Aj |.

where ykbl is an indicator taking a value of 1 if ambulance k is stationed at base b and is assigned

to serve location l, xkb taking a value of 1 if ambulance k is stationed at base b, t(b, l) denotes

the travel time between base b and location l, and dl denotes the proportional call arrival rate in

location l. The first constraint ensures that each location is served by exactly one ambulance, and

the third constraint prevents an ambulance to be located at different bases at the same time. Thus,

formulation (1.4) seeks to minimize the expected response time to the demand. We set ν(0) = ν(1).

We also use the “cover bound” developed in Maxwell et al. (2014) to assess the quality of our
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Figure 1.1: Mecklenburg County, NC.

solutions when the ADP objective function is minimizing the expected fraction of late calls.

1.5 Case Study: Mecklenburg County, NC

This section presents the result of implementing our ADP framework using data from the

EMS provider in Mecklenburg County, which contains the city of Charlotte, and is the most pop-

ulated and densely populated county in the state of North Carolina, with a population of over a

million as of 2014 estimates (United States Census Bureau 2014). The EMS system in the county

has, on average, 17 ambulances, three hospitals, and we consider 40 potential ambulance locations.

We divide the county into 168 regions, where each region is a 2×2 mile square rectangle. As many

EMS providers distribute ambulances along the road to meet the performance targets, we could

consider all regions as a potential location for ambulances. However, in order to keep computations

tractable, we limit the number of possible ambulance locations to 40 bases. Section 1.5.1 provides

further details on the choice of base locations, which serve as the main contributing factor in de-

signing static benchmarks. We assume that all ambulances are the same and turn-out time (the

activation delay needed for the ambulance crew to get ready and depart the base) is 45 seconds.

Travel times are calculated in rectilinear measurement (Manhattan distance) based on historical

data from more than 40,000 incidents and travel speed is assumed to be constant. Figure 1.1 shows

168 zones in Mecklenberg County where darker regions correspond to higher call arrival rates, “b”

denotes bases, and “H” points to hospitals in the county. We divide a day into four time intervals

(12:00 am-06:00 am, 06:00 am-12:00 pm, 12:00 pm-06:00 pm, and 06:00 pm-12:00 am) and estimate
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the rates λτl using historical data. A few regions on the borders of the county had too few data

points to fit a distribution and are excluded from the study. The amount of time that an ambulance

serves a call at scene has a normal distribution with mean and standard deviation of 54.18 and 15.18

minutes, respectively. Historical data show that 77% of calls are transferred to a hospital. The

service time of calls that are transferred to a hospital has a normal distribution with a mean and

standard deviation of 56.7 and 13.6 minutes. Note that this time includes the amount of time that

an ambulance spends on the scene, travel time to hospital, and the time that it takes to handover

the patient to the hospital. A call not reached within eight minutes is considered to be late. The

simulation horizon is two weeks and we set γ = 0.99 per day. A sample of the 100 most visited states

is used in formulation (1.3). Increasing the sample size to 200 and 500 states had minor effects on

the results. We initialize the approximate policy iteration algorithm by setting α = (1, 1, 1, 1, 1, 1, 1)

and Rs = 5 in each iteration of ADP (recall that Rs is the total number of replications of the Monte

Carlo simulation for state s). After a warm-up period under the best static benchmark, we begin

collecting the statistics at the extant state when the warm-up period ends. Priority adjustment

weights (w1, w2) and (w3, w4) are such that high priority calls are 10 times more important than low

priority calls. Each iteration of ADP takes about two days of CPU time on an Intel Core i7 3.4 GHz

processor with 16 GB of RAM. However, this procedure is carried out off line and after estimating

an appropriate α, solving formulation (1.2) is instantaneous, which is what an EMS system needs

for real-time ambulance management.

1.5.1 Choice of Static Benchmark

This section investigates the performance of several static benchmarks and considers the

best in terms of response time and the best in terms of fraction of late calls, as benchmarks to

dynamic policies. A static policy sends the closest available ambulance to a call and returns an am-

bulance after finishing service to its predetermined base if no call is in the queue. If no ambulances

are available, the call will join a queue and will be served according to a first-come first-served rule

in a decreasing order of priority. In the absence of repositioning policies, identifying the base for

each ambulance is the key to design efficient static benchmarks to ensure that a certain fraction

of demand is reached within a specified response time target. Some models seek to maximize the

fraction of demand covered by available ambulances, and others focus on minimizing the response

time. We consider six frequently used models and refer the reader to van den Berg et al. (2016) for a
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Table 1.1: Performance of static benchmarks
Ambulance location models

MCLP DSM MEXCLP MALP ARTM ERTM
Fraction of late calls (%) 25.3 25.6 24.4 27.1 48.3 24.7
Average response time (min.) 7.3 7.9 7.5 7.4 9.7 7.8

complete description and formulation of each model. Maximal Covering Location Problem (MCLP)

maximizes the weighted number of demand locations covered by at least one ambulance. Double

Standard Model (DSM) focuses on covering a demand location with two ambulances to prevent

a coverage drop if an ambulance becomes busy. The DSM guarantees a certain level of coverage

within the target response time for at least a fraction of demand and defines a second type of cover-

age with higher target response time that must be maintained for all demand locations. Maximum

Expected Covering Location Problem (MEXCLP) maximizes the expected coverage of all demand

locations by calculating the marginal contribution of each ambulance to coverage while considering

that the ambulance might not be available with a certain probability called the “busy fraction,”

which is calculated by dividing the priority-adjusted total workload of the system in minutes by

total ambulance capacity in minutes. Maximum Availability Location Problem (MALP) calculates

the minimum number of available ambulances to guarantee a specific coverage level prior to formu-

lating an instance of the model and uses it to maximize the covered demand. Average Response

Time Model (ARTM) is equivalent to the p-median model applied to ambulance location problem

and minimizes the average response time from the closest base. Expected Response Time Model

(ERTM) is similar to MEXCLP in that it minimizes the expected response time by incorporating

the probability of a demand location being served by the pth nearest ambulance.

The initial base of ambulances in the static benchmarks is determined by solving each model to

optimality. The static benchmarks are simulated for two weeks and their performance is measured

with respect to fraction of late calls and average response time. Table 1.1 shows that MEXCLP and

MCLP outperform other models in the fraction of late calls and expected response time, respec-

tively. Therefore, the performances of static benchmarks based on MEXCLP and MCLP are used

to compare with that of dynamic benchmarks and ADP policy in terms of fraction of late calls and

average response time, respectively.
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1.5.2 Dynamic Benchmark Policies

We design three dynamic benchmarks to assess the contribution of each strategy, dispatch-

ing, redeployment, and reallocation. The fourth dynamic benchmark is used to test the quality of

our solutions, and the fifth is a relocation heuristic designed by Jagtenberg et al. (2015). Benchmark

1 (dispatching only) allows the dispatcher to assign any available ambulance when a call is received.

However, redeployment and reallocation decisions are not considered. That is, every ambulance

in the EMS system is preassigned to a base and returns to that base after serving a call, and the

repositioning of idle ambulances to the base of an ambulance, that was just dispatched to a call, is

not considered. Note that if the dispatcher does not immediately send an available ambulance to a

received call in this benchmark, the call will join a queue. After an ambulance finishes serving a call,

the dispatcher decides whether the ambulance serves a call in the queue or returns to its preassigned

base. Calls in the queue are served based on a first-come first-served rule in a decreasing order

of priority. Benchmark 2 (redeployment only) sends immediately the closest available ambulance

to a call and does not consider the possibility of ambulance reallocation after dispatching an am-

bulance. However, Benchmark 2 determines the redeployment policy, i.e., after an ambulance has

finished serving a call, the dispatcher decides whether the ambulance serves a call in the queue or

is redeployed to a base. Benchmark 2 is similar to the settings studied by Maxwell et al. (2010).

Benchmark 3 (reallocation only) sends the closest available ambulance to serve a call and after an

ambulance has finished serving a call, decides whether the ambulance serves a call in the queue or

returns to its preassigned base. However, upon dispatching an ambulance to a call, Benchmark 3

considers the possibility of reallocating an available ambulance to the base of the ambulance that

is just dispatched. The performance of Benchmark 4, which considers both redeployment and real-

location, is used to test the quality of the solutions by calculating the optimality gap with respect

to the lower bounding system. The ADP approach, presented in Section 3.3, considers all of the

dispatching, redeployment, and reallocation strategies simultaneously.

Relocation heuristic (Benchmark 5). Jagtenberg et al. (2015) developed a simple relocation

heuristic, which is easy to implement and showed strong performance in some data sets. We use

this heuristic as another benchmark. The dispatching policy in this benchmark is to send the closest

ambulance to a received call; however, the relocation policy can reallocate an available ambulance
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to a base, or redeploy an ambulance that just finished its service to a base that results in the largest

marginal contribution to coverage according to the MEXCLP model. The marginal contribution of

adding a kth ambulance to cover demand in region l is given by Ek − Ek−1 = λτl (1 − α)αk, where

α denotes a “busy fraction” similar to MEXCLP and λτl is the demand (call arrival) rate in region

l at time τ . The base that gives the largest marginal contribution over all demand is chosen as the

destination for relocation.

1.5.3 Results and Managerial Insights

We compare the performance of ADP and benchmark policies with the static benchmarks

with respect to four major measures, (i) average response time, (ii) fraction of late calls, (iii) av-

erage response time of late calls, and (iv) fraction of late high priority calls. Table 1.2 reports

the performance of each policy when the ADP objective is to minimize the expected discounted

priority-adjusted total response time. The average response time for the ADP policy is 6.5 ± 0.2

minutes (95% confidence interval) while the MCLP static benchmark is estimated to have an average

response time of 7.3 ± 0.2 in 30 replications. Table 1.2 shows that the fraction of late calls for the

ADP policy is significantly less than that of the MCLP static and other benchmarks. In particular,

the fraction of late calls is 18.3 ± 0.1% for the ADP policy and 25.3 ± 0.2% for the MCLP static

benchmark. The performance of the ADP policies for average response time of late calls and the

fraction of high priority late calls is also significantly better than that of benchmarks. Similarly,

Table 1.3 reports the performance of the ADP policy and benchmarks when the ADP objective is

to minimize the expected discounted priority-adjusted fraction of late calls. Tables 1.2 and 1.3 show

that the ADP policy improves various performance measures compared to other benchmarks.

Table 1.2: Performance of ADP policy and benchmarks for response time minimization

Avg. response Fraction of Avg. response Fraction of late
time (min.) late calls (%) time of late calls (min.) high priority calls (%)

MCLP 7.3±0.2 25.3±0.2 11.7±0.1 4.9±0.2
Benchmark 1 7.1±0.1 22.5±0.1 10.5±0.1 4.2±0.1
Benchmark 2 6.8±0.1 20.2±0.1 9.1 ±0.1 3.8±0.1
Benchmark 3 7.2±0.1 22.9±0.1 10.4±0.1 4.5±0.1
Benchmark 4 6.7±0.1 19.2±0.2 9.0 ±0.2 3.5±0.2
Benchmark 5 6.8±0.1 19.7±0.1 10.1±0.1 3.7±0.2
ADP 6.5±0.2 18.3±0.1 8.9 ±0.2 3.4±0.2

Note: The ADP objective function in this table is to minimize the expected total discounted priority-adjusted
response time, and the results are reported in 95% confidence intervals.
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Table 1.3: Performance of ADP policy and benchmarks for late calls minimization

Avg. response Fraction of Avg. response Fraction of late
time (min.) late calls (%) time of late calls (min.) high priority calls (%)

MEXCLP 7.5±0.2 24.4±0.2 12.7±0.2 4.6±0.2
Benchmark 1 7.1±0.1 21.1±0.1 11.2±0.1 3.9±0.1
Benchmark 2 6.9±0.1 19.2±0.1 10.1±0.1 3.5±0.1
Benchmark 3 7.3±0.1 22.0±0.1 10.7±0.1 4.2±0.1
Benchmark 4 6.8±0.1 18.3±0.2 9.9 ±0.2 3.4±0.2
Benchmark 5 6.8±0.1 19.7±0.1 10.1±0.1 3.7±0.2
ADP 6.6±0.2 16.4±0.1 9.2 ±0.1 3.1±0.1

Note: The ADP objective function in this table is to minimize the expected total discounted priority-adjusted
fraction of late calls, and the results are reported in 85% confidence interval.

Our results indicate that the contribution of redeployment-only strategy is significantly

greater than that of dispatching-only and reallocation-only strategies in improving the performance

over static benchmarks in all measures. Our analysis shows that one reason for this observation may

be that the expected proportion of time that the dispatching-only ADP strategy deviates from the

best static benchmark is much less than the proportion of time that the redeployment-only ADP

strategy deviates from it. Particularly, the redeployment-only ADP strategy sends the ambulance to

its previous base after finishing service only 19% of times, while the dispatching-only ADP strategy

immediately sends the closest ambulance to a received call nearly 70% of times. Further analysis of

the dispatching-only ADP strategy shows that, conditioned on not immediately sending the closest

ambulance, a non-closest ambulance is dispatched in nearly 87% of times, while calls are delayed in

13% of times. Moreover, the performance of the dispatching-only ADP strategy does not significantly

change if the dispatcher is not allowed to queue a call when an ambulance is available. Although

both high and low priority calls can be queued in our framework, our numerical analysis shows that

only 1% of high priority calls are delayed. Our results also show that the reallocation-only ADP

strategy relocates an idle ambulance to the base that just emptied in nearly 10% of times, and the

reallocation flows are toward empty bases in high demand zones. Comparing the results for the

relocation heuristic and Benchmark 4 shows that the relocation heuristic is an efficient policy when

only relocation strategies are considered.

Figure 1.2 shows the empirical cumulative distribution function of the response times for

the MCLP static benchmark to the dispatching-only strategy (a), and to the ADP policy (b). One

could think that minimizing the expected discounted priority-adjusted total response time might

involve the risk of losing some of the closer calls by trying to concentrate the optimization on calls

with larger response times. Figure 1.2 suggests that the ADP policies do not abandon a few calls to
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wait for a long time, instead, it shifts the entire distribution of response times to the left.

To illustrate the quality of solutions produced by the ADP framework, we compute a lower

bound on the expected response time and fraction of late calls. Recall that we assumed a non-

homogeneous Poisson process for call arrivals in Section 3.3. However, in reporting the results for

comparing our lower bounds with Benchmark 4, an assumption of a constant call arrival rate for

each location is forced in both the lower bounding system and Benchmark 4. Our results show

that in the lower bounding system the expected response time and fraction of late calls are 5.1

minutes and 11.7%, respectively. We use Benchmark 4 to assess the quality of solutions with respect

to the lower bounding system, because both Benchmark 4 and the lower bounding system use a

myopic dispatching rule, i.e., immediately sending the closest ambulance and only rely on relocating

available ambulances to improve performance, which in case of Benchmark 4 consists of redeployment

and reallocation strategies. Our results show that the absolute difference between Benchmark 4 and

lower bound on average response time (fraction of late calls) is 1.6 minutes (6.6%) when the objective

function is to minimize the response time (fraction of late calls).

1.5.4 Sensitivity Analysis

Varying fleet size. We explore the effect of fleet size of the EMS provider on the performance of

our ADP and the MCLP static benchmark. Figures 1.3(a) and 1.3(b) show the performance of ADP

and MCLP static benchmark on response time and fraction of late calls for a variety of fleet sizes,

respectively, and confirm that ADP policies consistently outperform the MCLP static benchmark in
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Figure 1.2: Empirical cumulative distributions of the response time
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Figure 1.3: Performance of ADP and MCLP static benchmark with different fleet sizes

both measures. The difference in the gap between the performance of the ADP and the best static

benchmark narrows when the fleet size becomes very large or small. If the fleet size is very small,

the ambulances remain busy most of the time and less opportunity will be available for optimal

repositioning of ambulances. On the other hand, if the fleet size is very large, there are always

idle ambulances to respond to a call and intelligent repositioning of ambulances cannot significantly

improve the performance. Table 1.4 shows the average utilization of ambulances for different fleet

sizes, as given in Figure 1.3.

Time-dependent fleet size. We assume that the fleet size is constant in our simulation horizon

whereas in practical situations, EMS managers may increase or decrease the number of emergency

vehicles with respect to varying demand in different times of a day. In order to capture the effect

of varying fleet sizes during different shifts, we compare the performance of time-dependent fleet

size ADP with the best time-dependent fleet size static benchmark. We use the predicted fleet sizes

provided in Rajagopalan et al. (2008) for each 6-hour time interval which guarantees at least 95%

coverage while minimizing the cost of ambulance scheduling. Note that the fleet sizes are calculated

based on a similar data set of Mecklenburg County, NC. Our results show that increasing the fleet

Table 1.4: Average utilization of ambulances for varying fleet sizes

Fleet size 13 14 15 16 17 18 19 20 21 22
Average utilization 46.9 45.1 43.3 40.8 38.6 36.2 34.7 32.7 30.9 28.1

Note: The ADP objective function in this table is to minimize the expected discounted priority-adjusted response
time.
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Figure 1.4: Performance of ADP and MCLP static benchmark for different call arrival rates

size during rush hours may improve the performance in terms of fraction of late calls and expected

response time. In particular, when the ADP objective is to minimize the expected response time,

the fraction of late calls for a time-dependent fleet size ADP is 16.4% while the fraction of late calls

for time-dependent fleet size MCLP static benchmark is 21.7%.

Varying travel times. Travel times are deterministic in our model and are computed from the

actual travel times between the regions reported in our historical data set. Since travel times may

increase especially during rush hours, we increase the ambulance travel times by 10% to test the

performance of ADP policies in such settings. To that end, we use the ADP policies produced

in the settings with no travel time increase. Results indicate that our ADP approach continues to

consistently outperform the MCLP static benchmark and improvement percentage for response time

and fraction of late calls, compared to the best static benchmark is 6.5% and 28.9%, respectively. It

is worth mentioning that the improvement for both measurements is larger with longer travel times

compared to the results in Section 5.3.

Varying call arrival rates. In order to explore the sensitivity of the ADP policy to changes in

call arrival rates, we vary the call arrival rates in each region over the interval [λτl ± 10%λτl ]. In

order to test the performance of our ADP approach, decisions are continued to be made under the

optimal policy with original call arrival rates. Figure 1.4 shows that the ADP policy continues to

outperform the MCLP static benchmark. Ambulance bases for the static benchmark used in Figure
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1.4 is also found by solving MCLP under the original call arrival rates.

Priority weights. Most of ambulance relocation studies only focus on optimizing the policy in

response to high priority calls. This focus is usually justified either by considering all the calls to

have high priorities or assuming that EMS providers are judged by their performance regarding to

the highest priority calls (e.g., van Barneveld et al. 2016). In our numerical results, high priority

calls weigh 10 times more than low priority calls. Table 1.5 reports the performance of each policy

when the optimization is carried over just high priority calls, i.e., the weight of low priority calls in

the ADP objective function is set to zero.

1.6 Conclusion

We formulated a real-time ambulance dispatching and relocation problem as a stochastic

dynamic program and solved it via approximate dynamic programming. We extended the literature

on real-time ambulance management via ADP, which considers only ambulance redeployment, in

two dimensions. First, we considered a general dispatching strategy in which the decision maker can

send any available ambulance to a received call in addition to having the option of not dispatching

an ambulance immediately, but rather waiting for an ambulance that may become available soon.

Second, we introduced an ambulance reallocation strategy in which the decision maker may send

an available ambulance to the location of an ambulance just dispatched to a call. The ambulance

reallocation strategy can improve performance by reducing the expected time that a region is uncov-

ered, which is caused by dispatching the only ambulance that covers it. We tested the performance

of policies generated by our ADP framework on an EMS system in Mecklenburg County, NC and

Table 1.5: Performance of ADP policy and benchmarks for high priority late calls minimization

Avg. response Fraction of Avg. response Fraction of late
time (min.) late calls (%) time of late calls (min.) high priority calls (%)

MEXCLP 8.2 43.0 11.3 43.0
Benchmark 1 7.2 39.1 10.3 39.1
Benchmark 2 6.9 36.6 9.3 36.6
Benchmark 3 7.4 39.6 10.4 39.6
Benchmark 4 6.8 35.4 9.6 35.4
ADP 6.4 33.0 8.8 33.0
Note: The ADP objective function in this table is to minimize the expected discounted priority-adjusted fraction of

late calls, and the results are reported in 95% confidence interval.
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our results show that our policies significantly improve static benchmarks. In particular, our near-

optimal policies reduce the response time and fraction of high priority late calls by 12% and 30.6%

compared to the best static benchmarks.

We designed three benchmarks to analyze the contribution of each strategy, general dis-

patching, redeployment, and reallocation, by adding a strategy to the static policy one at a time.

Our results show that each strategy significantly improves the static benchmarks and considering

all three strategies simultaneously is significantly better than each strategy alone. We also showed

that the redeployment strategy is the best when only one strategy could be added to the static

policy. This observation, our analysis shows, is due to the fact that the expected frequency that the

redeployment-only ADP policy deviates from the static benchmarks is significantly greater than the

frequency that the dispatching-only ADP policy deviates from the static benchmarks. Allowing the

dispatcher to queue a received call when an ambulance is available did not significantly improve the

performance. Considering a general dispatching rule, redeployment and reallocation can significantly

improve the performance of an EMS system.
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Chapter 2

Response-Adaptive Design of

Dose-Finding Clinical Trials

Summary. Identifying the right dose is one of the most important and challenging decisions that

has to be made in drug development. Adaptive designs are promoted to conduct dose-finding clinical

trials as they are more efficient and ethical compared to static designs. However, current techniques

in response-adaptive designs of dose allocations are complex and need significant computational ef-

forts, which is a major impediment for implementation in practice. This chapter provides a novel

framework to produce high-quality dose allocation policies with significant reduction in complexity

and computational effort, as well as novel properties to the learning problem. In addition, sim-

ulation results of a broad range of dose-finding studies reveal that the proposed policies perform

competitively against the standard approach with significantly less computational effort. Moreover,

consistency proof of the proposed policies ensure that the learning algorithm will eventually identify

the correct target dose.

Manuscript: Nasrollahzadeh, A., Khademi, A., “Dynamic Programming to Response-Adaptive Dose-

Finding Clinical Trials”, Revision for submission to INFORMS Journal on Computing
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2.1 Introduction

Motivation. Clinical trials are studies in which participants are assigned to one or more treatments

to evaluate their effects on health-related outcomes. The objective is usually to determine whether

new treatments are safe and effective by measuring certain responses in trial participants (National

Institutes of Health 2014). The U.S. Food & Drug Administration (FDA) classifies the approval

procedure of a medical product into four phases. Phase I studies a small group of volunteers with

the disease/condition for several months to identify a safe dosage range and potential side effects.

Phase II increases the number of participants up to several hundred, and extends the length of

study up to two years. These studies are not large enough to determine if the drug will be beneficial,

however, they provide safety evaluations and allow researchers to refine their methods for the next

phases. In Phase III, 300-3000 volunteers are studied for a period of one to four years to confirm the

drug’s efficacy and to monitor its adverse reactions, particularly its long-term and rare side effects.

Phase IV is carried out once the medical product has been approved by the FDA and involves several

thousand volunteers and post-market safety monitoring (FDA 2017). The average cost of inventing,

developing, and introducing a new drug to market has exponentially increased (see Figure 2.1) and

it has surpassed $2.6 billion (Tufts 2014). The biggest drivers of this rise are expensive clinical trials

(Roy 2012). Their costs depend on factors such as number of participants, locations of research

facilities, complexity of the trial protocol, and the reimbursements provided to investigators. The

total cost can reach $300-$600 million for large trials (Griffin et al. 2010). Phase II clinical trials

constitute about 18% of pharmaceutical companies R&D expenditures while its probability of success

remains almost half of that in Phase I (Roy 2012, Hay et al. 2014). Identifying the “right” dose,

carried out in Phase II, is a critical step in drug development partly because of high attrition rates in

Phase III clinical trials, the most costly phase, which may be due to inadequate dose selection, i.e.,

doses that are too low to achieve a desired benefit or doses that are too high and result in adverse

reactions (Bornkamp et al. 2007).

In a standard (static) clinical trial, patients are randomly assigned to predetermined doses

such that the number of patients allocated to each dose is roughly equal. Such a design may

be inefficient. For example, if the slope of a dose-response curve is observed at a dose range not

anticipated, equal assignment of patients to other dose ranges may lead to inefficient use of resources.

These allocations may expose patients to toxic or ineffective doses which raises ethical concerns. In
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Figure 2.1: Exponential increase in cost of developing a new drug over time

addition, observations in the trial may indicate a larger variability in response to a particular dose,

and thus fixed sample sizes cannot compensate for the unanticipated variability (Berry et al. 2002).

A better strategy is adaptive design in which modifications are made, while the study is

in progress, as information accrues during the course of the trial. For example, the experimenters

may increase the number of doses under consideration in the study, drop some doses from analysis,

and change the patients’ randomization procedure to avoid large sample sizes at doses where the

shape of the curve is reasonably well estimated by the available data. Thus, adaptive designs tend to

generally reduce length, total sample size, and costs of trials without compromising their integrity.

Furthermore, such designs have an ethical motivation as they randomize patients to doses currently

thought to be the best with greater probability (Rosenberger 1996).

Main contributions. In this chapter, we make the following contributions: Instead of using

a Normal Dynamic Linear Model (NDLM) to approximate the dose-response curve as is done in

the literature, we propose a new approximation to the curve such that the dynamic programming

formulation of the problem enjoys conjugacy property, by which (i) we derive a couple of structural

properties to the learning problem, (ii) reduce problem complexity and computational efforts, (iii)

achieve faster convergence rates without sacrificing accuracy, and (iv) prove consistency of the design,

i.e., learning the true underlying dose-response model when the number of patients becomes large

almost surely, thus the right dose.
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Figure 2.2: Dose-response curve of loop diuretic

2.2 Background

Before reviewing the vast literature on finding the right dose in a clinical trial, we describe

the dose-response relationship, which is usually demonstrated by a curve and formulated as a random

function of doses and unknown parameters. Then, we briefly review related works and highlight the

distinctions of our approach.

2.2.1 Dose-Response Relationship

A dose-response curve identifies the relationship between the treatment dose of a drug and

the patient’s response usually measured by a numerical score. For example, consider the increase

in fractional excretion of Sodium as the response to the amount of loop diuretic dose prescribed.

Figure 2.2 shows a typical dose-response relationship for heart failure patients (Felker 2012). Let y

denote the response score for a patient, and z ∈ Z denote the dose assigned to the patient, where

Z := {Zj : j = 1, . . . , J} refers to the set of allowable doses, and Z1 denotes the placebo. We

let f(z,Θ) denote the dose-response curve as a function of dose z, parameterized by an unknown

parameter vector Θ = (θ1, . . . , θJ)′. Hereafter, to ease the notation, we use index j in to refer to

dose Zj , e.g., θZj = θj . In particular, we assume that

y = f(z,Θ) + ε, (2.1)

where ε ∼ N (0, σ2) (see, e.g., Berry et al. 2002).

Existing literature focuses on three definitions for the right dose: 1) Minimum effective dose
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defined as the smallest dose producing a particularly relevant response. 2) Maximum tolerable dose

defined as the highest dose producing a desired response without unacceptable toxicity. 3) ED95

defined as the smallest dose at which 95% of the maximal response is achieved. In this chapter, we

focus on estimating the ED95 formally represented as

ED95 = min
z

{
z ∈ Z : f(z,Θ) ≥ 0.95f(zmax,Θ)

}
, (2.2)

where zmax is a dose at which maximal response is observed. However, our proposed approach can

be used for other definitions as well.

2.2.2 Related Works

There are three streams of literature related to this problem: literature on (i) optimal

design of dose-finding trials in which finding a target dose is the objective, (ii) adaptive design of

dose-finding trials in which sampling policies are adapted to observed responses while the trial is

still in progress, and (iii) dynamic learning and knowledge gradient policies which demonstrate how

dynamic learning techniques could be utilized in deriving adaptive policies.

Optimal design of dose-finding trials. In this line of literature, researchers have investigated ef-

ficient designs for estimating the target dose (right dose) by, e.g., minimizing its asymptotic variance

under a particular dose-response model. For example, Biedermann et al. (2006), Wang (2006), Dette

et al. (2008), Bretz et al. (2010), Dette et al. (2014) and Holland-Letz & Kopp-Schneider (2015) pro-

posed optimal designs estimating the dose-response curve but did not consider response-adaptivity,

and thus their designs are unable to modify dose range, sample size, or allocation scheme while

the trial is still in progress. These designs are also dependent on prespecified dose-response models

which are susceptible to misspecification of assumption and parameters. In contrast, the decisions

in response-adaptive designs are subject to change as data is accrued and the dose-response models

are not prespecified. In fact, the dose-response curves are assumed to be unknown and are usually

approximated by a piecewise linear model which can estimate a wide range of practical dose-response

relationships; see Berger & Wong (2009).

Response-adaptive clinical trials. In response-adaptive designs, patient allocation, dose range,

and sample size are subject to modification when a new response is observed. Multi-armed bandit

framework and Bayesian decision theory have been two of the most active lines of literature in
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response-adaptive designs. In the multi-armed bandit approach, a decision maker selects a treatment

based on observed information to maximize an expected (discounted) reward. For example, Cheng

& Berry (2007), and Press (2009) developed response-adaptive two-armed bandits for sequential

experiments such as clinical trials where information acquired during the trial was used to modify

the allocation scheme and sampling size. Such designs were applicable only when two treatments

are considered and their responses are binary (success or failure) in nature. Lai & Liao (2012)

and Villar & Rosenberger (2018) extended the two-armed design to multi-armed bandits capable

of comparing multiple treatments with continuous responses. However, the bandit structure is

designed to identify the maximum reward when compared to a control treatment, and thus the

policies derived are applicable for Phase III of clinical trials where a confirmatory study is necessary

to test the benefits of new treatments versus a control treatment. For more details on benefits and

challenges of applying multi-armed bandits in clinical trials, see Villar et al. (2015) and references

therein.

Here, our focus is on the response-adaptive dose-finding clinical trials where Bayesian deci-

sion theory is utilized to design response-adaptive sequential sampling policies to identify a target

dose. For example, Berry et al. (2002) and Müller et al. (2006) used NDLM, a piecewise linear model

in which a point and the slope of each linear piece is updated in a Bayesian framework in order to

approximate an unknown dose-response curve, and to formulate an adaptive dose allocation scheme

(see details in Section 2.3). Weir et al. (2007) compared the standard Markov chain Monte Carlo

(MCMC) simulation of NDLMs to estimate the dose-response curve with that of an importance

sampling method. Furthermore, Krams et al. (2003) employed a similar approach in Acute Stroke

Therapy by Inhibition of Neutrophils (ASTIN) clinical trial and used a fully Bayesian analysis for pa-

tient randomization and stopping criterion which was approved by the regulatory authorities. Smith

et al. (2006), Warner et al. (2015), Lenz et al. (2015), Liu et al. (2017), and Holm Hansen et al.

(2017) employed similar approaches in real dose-finding clinical trials or proof of concept studies.

Similar to response-adaptive designs that employ NDLM to approximate an unknown dose-response

curve, our approach also uses a piecewise linear model to estimate the dose-response curve. However,

the induced conjugacy of our design eliminates the required time consuming MCMC simulation and

has the benefit of consistency, in that the design learns the underlying true dose-response model per-

fectly and thus the right dose. Consistency of sequential allocation policies for dose-finding studies

has not been addressed yet. In fact, our numerical analysis provides examples where the standard
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approach fails to identify the target dose (Figures 2.15 and 2.16). Moreover, we exhibit several

structural properties to the dose-response problem via dynamic programming techniques.

Dynamic learning and knowledge gradient. Next, we briefly review dynamic learning literature

related to the problem in this chapter. For a comprehensive review of optimal learning, see Powell

& Ryzhov (2012) and references therein.

Ranking and selection is a class of learning problems in which a risk-neutral decision maker

seeks to find the best population, in terms of their expected value given a fixed budget to learn

the unknown true distribution of the population (Gibbons et al. 1999). For this class of learning

problems, Gupta & Miescke (1996) introduced the knowledge gradient (KG) algorithm for offline

versions of ranking and selection problems where the algorithm chooses its future measurements

by optimizing the one-step expected value function with respect to what is known so far. Frazier

et al. (2008) extended the KG algorithm by assuming an independent multivariate normal prior on

a piecewise linear approximation of an unknown function. Thus, the algorithm could learn the true

function through Bayesian updating of prior moments. Frazier et al. (2009) further developed the

method to accommodate correlated normal prior beliefs. Ryzhov et al. (2010) and Ryzhov & Powell

(2011b) extended the algorithm to solve multi-armed bandits with exponential, Bernoulli, Poisson

and uniform rewards. Ryzhov et al. (2012) adapted the method for a general class of online problems

in multi-armed bandit literature. Furthermore, Negoescu et al. (2011) investigated KG policies in

drug discovery problems; Ryzhov & Powell (2011a) applied it in information collection on graphs;

Xie et al. (2016) developed a KG policy for pairwise sampling by common random numbers; and

Wang et al. (2016) provided a KG policy for multi-armed bandits with binary responses. Edwards

et al. (2017) reviews KG algorithms and identifies one important limitation, namely “dominated

actions” which are chosen by KG in multi-armed bandit settings when in fact the chosen arms have

inferior exploitation and exploration values for non Gaussian rewards. The objective in these studies

is to maximize the expected total reward, where the reward function is equivalent to the posterior

mean of the unknown parameter. In contrast, our approach minimizes the variance of the target

dose, a non-linear function of the unknown parameter describing the dose-response curve.

There are several recent studies employing dynamic learning into clinical trials. Kotas &

Ghate (2016, 2017) formulated a dynamic programming to optimal dose-finding and approximated

the Bellman equation by suppressing uncertainty of the unknown parameters and random transitions

between states. Ahuja & Birge (2016), Chick et al. (2017), and Negoescu et al. (2017) considered
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adaptive two-armed bandits and implemented dynamic learning techniques to identify the most

efficacious treatment in a variety of settings. However, as elaborated earlier, the structure of such

designs are appropriate for Phase III clinical trials.

2.3 The State-of-the-Art Approach

In this section, we present a formal dynamic programming formulation for the existing

response-adaptive dose-finding models (e.g., Berry et al. 2002) and formalize the one-step look-ahead

policy available in the literature (e.g., Krams et al. 2003, Weir et al. 2007). The standard approach for

a response-adaptive Phase II clinical trial studies the problem of allocating a number of homogeneous

patients to a set of dose options. Patients are sequentially assigned to doses and their responses

are observed before the assignment of the next patient. Assume that the investigator chooses a

model to describe the dose-response relationship and uses data from patients to estimate model

parameters and consequently identifies the target dose. Aligned with Berry et al. (2002), we use

NDLM to describe the dose-response relationship as it provides the most flexibility to summarize the

data. In particular, NDLMs are piecewise linear models that can approximate both monotonic and

non-monotonic dose-response relationships. Furthermore, recursive methods to calculate moments

of their posterior distribution already exist. Note that the following formulation is an approximation

of the true dose-response relationship described in Section 2.2.1.

Let N denote the total number of patients to be sampled in the trial. Define ykj as the

response of kth patient assigned to dose j, where 1 ≤ k ≤ N . Following Berry et al. (2002),

assume that the dose-response relationship is formalized by f(z,Θ) = θz. Therefore, according to

formulation (2.1), the resulting dose-response model is

ykj = θj + εkj , j = 1, . . . , J, 1 ≤ k ≤ N. (2.3)

Construct vector Y nj from responses of patients assigned to dose j when n observation has been

made. Recall that Θ indicates the column vector Θ = (θ1, . . . , θJ)′ and zn denotes the dose assigned

to patient n. Therefore, the observed response after assigning dose zn to patient n is ŷn+1 = θzn +

εn+1. Note that conditional on Θ and zn, the sampled observation ŷn+1 has a normal distribution

(ŷn+1|Θ, zn) ∼ N (θzn , σ
2). Define filtration Fn as the σ-algebra generated by sampling doses and
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corresponding responses by time n, i.e., Fn is a σ-algebra generated by z0, ŷ1, z1, ŷ2, z2, . . . , zn−1, ŷn.

Notice that z0 denotes the assignment dose before observing any response.

State space. The response-adaptive dose-finding problem is formulated within a dynamic program-

ming framework. To that end, we set the decision epochs at times when a dose is allocated to patient

n where n ∈ {0, . . . , N}. No decision is made at decision epoch N . Using the piecewise linearity of

the second order NDLM, we fit a locally linear curve to the true underlying dose-response relation-

ship, i.e., for dose z close enough to dose j, the response is a straight line θj + (z − j)δj . Figure 2.3

shows such a piecewise linear approximation to the dose-response curve. Linear extrapolation will

result in the relationship θj = θj−1 +δj−1 between one dose to the next (see, e.g., Berry et al. 2002).

Therefore, the evolution of parameters (θj , δj) from one dose to the next is adjusted by

introducing normal residual errors in the following form

(
θj
δj

)
=

(
θj−1 + δj−1

δj−1

)
+

(
νj
ωj

)
, (2.4)

where νj and ωj ∼ N (0,Wj). Assume that Wj = W for all j = 1, . . . , J , with known and fixed

W . Let δ = (δ1, . . . , δJ)′ indicate a column vector. In order to define the state space of the

problem, let qn(Θ, δ) denote a probability distribution on parameters Θ and δ given data Fn, i.e.,

qn(Θ, δ) = p(Θ, δ|Fn), which is the posterior distribution of Θ and δ after observing responses of

n patients. The state of the system is therefore sn = qn(Θ, δ) and the state space S is the set of all
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probability distributions on (Θ, δ|Fn) such that

sn ∈ S :=

{
p(Θ, δ) : θj = θj−1 + δj−1 + νj , δj = δj−1 + ωj , νj and ωj ∼ N (0,Wj), j = 1, . . . , J

}
,

where p(·) denotes a probability density function (pdf) and conjugate hyperpriors for θ1 and δ1 are

given. Note that qn(Θ, δ) is in proportion to a multivariate normal distribution where (θj , δj |Fn)

follows a bivariate normal distribution, the moments of which are given by recursive equations (2.6).

However, sampling from the joint distribution qn(Θ, δ) remains computationally quite challenging.

Therefore, methods such as “forward filtering, backward sampling” have been proposed to sample

from such distributions (West & Harrison 1997). Also, only E(θ1), E(δ1), Var(θ1), and Var(δ1) are

fixed and the prior expectation and variance for δj and θj , j > 1 are determined by the evolution

equations (2.4).

Action space. This is described by whether dose zn = j is assigned to patient n. Let anj denote

the action prescribed for patient n when the state of the trial is qn(Θ, δ), i.e,

anj =

 1 if dose j is assigned to patient n,

0 otherwise.

Therefore, the action space is denoted by

A(sn) :=

{
anj ∈ {0, 1} ∀j :

J∑
j=1

anj = 1

}
.

Transitions. Assume that the response of a patient is observed before the assignment of a dose

to the next patient. Given anj = 1 and Θ, the response of a patient has a normal distribution

ŷn+1 ∼ N (θj , σ
2). We wish to find the posterior distribution of (Θ, δ) given the response to action

anj is observed. Using Bayes’ law,

qn+1(Θ, δ) = p(Θ, δ|Fn+1) ∝ L(Y n1 , . . . , Y
n
J |Θ, δ)qn(Θ, δ),

where L(·) is the likelihood function. Here, the action anj determines zn which along with its response

ŷn+1 are included in Fn+1.

West & Harrison (1997) provided a recursive algorithm to generate samples from the poste-
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rior distribution qn(Θ, δ) under certain prior assumptions for a general multivariate NDLM. Notice

that the size of Y nj is known at decision epoch n and denote it by Lnj where
∑
j L

n
j = n. consider

the following multivariate NDLM model

(Y nj )′ = F ′jαj + Vj ,

αj = Gjαj−1 + Ωj ,
(2.5)

where αj =
(
θj
δj

)
is a 2-dimensional vector; Fj is a known (2 × Lnj ) dynamic regression matrix;

Gj is a known (2 × 2) evolution matrix; Vj ∼ N (0, Ej) and Ωj ∼ N (0,Wj) where Ej and Wj are

known (Lnj × Lnj ) and (2 × 2) variance matrices, respectively. Note that Vj and Ωj are (Lnj × 1)

and (2 × 1) column vectors. In particular, Fj =
[

1 ... 1
0 ... 0

]
(2×Lnj )

, Gj =
[

1 1
0 1

]
, Ej is a diagonal matrix

with εkj as the elements of the main diagonal, and Wj is also a diagonal matrix with νj and ωj on

the main diagonal. Notice that formulation (2.5) is a general form of observation equations (2.3)

and evolution equations (2.4). The posterior probability distribution on αj given Fn is a bivariate

normal (αj |Fn) ∼ N (mj , Cj), where

mj = dj +Djκj , Qj = F ′jRjFj + Ej ,

dj = Gjmj−1, Cj = Rj −DjQjD
′
j ,

Dj = RjFjQ
−1
j , κj = Y nj − fj ,

Rj = GjCj−1G
′
j +Wj , fj = F ′jdj .

(2.6)

Note that hyperparameters m1 =
[ E(θ1)
E(δ1)

]
and C1 =

[Var(θ1) 0
0 Var(δ1)

]
are given. Carter & Kohn

(1994) and Frühwirth-Schnatter (1994) developed a “forward filtering, backward sampling” (FFBS)

algorithm to generate random samples from the full posterior distribution. In case of a general

multivariate NDLM, the algorithm samples αJ from (αJ |Fn) ∼ N (mJ , CJ) and then, for each

j = J − 1, J − 2, . . . , 1, samples αj from (αj |αj+1,Fn) ∼ N (hj , Hj) where

hj = mj +Bj(αj+1 − dj+1),

Hj = Cj −BjRj+1B
′
j ,

Bj = CjG
′
j+1R

−1
j+1.

(2.7)

Thus, the algorithm moves forward from j = 1 to j = J , and computes mj , Cj , Rj , Bj , and dj . At

j = J , αJ is sampled and the algorithm moves backwards from j = J to j = 1 to compute hj and
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Hj at each step and samples αj (see West & Harrison 1997, Ch. 15).

Objective function. In Phase II of the response-adaptive dose-finding trials, finding the target

dose, e.g., ED95 is considered amongst the ultimate goals. The decision maker must choose a

sequence of dose assignments such that learning the target dose is achieved quickly and accurately.

Therefore, minimizing the variance of the target dose at the end of the trial which is equivalent

to minimizing the uncertainty about the target dose is considered as the objective. Note that the

target dose at the end of the trial is a random variable at times n < N . The expected cost at the

end of the trial is

rN (sN ) = Var
(
g(Θ)|sN

)
, (2.8)

where sN = qN (Θ, δ), g(Θ) = ED95 = minz
{
z ∈ Z : f(z,Θ) ≥ 0.95f(zmax,Θ)

}
, and rn(sn) = 0 for

n = 0, . . . , N−1. Define policy π as a mapping from the state space to the action space, and let lπ(s0)

denote the expected variance of ED95 with respect to FN at the end of the trial under policy π when

the initial prior on (Θ, δ) is s0 = q0(Θ, δ). The decision maker solves for V 0(s0) = infπ∈Π lπ(s0),

where Π is the set of non-anticipative admissible policies under consideration. The optimal value

function is the unique solution to the Bellman equation

V n(sn) = minanj ∈A(sn) E
{
V n+1(sn+1)

∣∣∣sn, anj }, n = 0, . . . , N − 1,

V N (sN ) = Var
(
g(Θ)

∣∣sN). (2.9)

One-step look-ahead policy. Since the state space corresponds to a set of uncountable probability

distributions, solving (2.9) is computationally infeasible. Therefore, a one-step look-ahead policy is

proposed in the literature and carried out in dose-finding studies (e.g., Krams et al. 2003). This

policy selects the dose with the minimum expected variance of ED95 while assuming the trial stops

after assigning the next dose. The approach is formalized by Algorithm 2 which must run for each

patient. In particular, after dose z∗ is selected for assignment at time n, a true response yn+1
z∗

is observed and is added to vector Y n+1
z∗ , which is used to update equations (2.6) and (2.7) and

thus moments of prior distributions on (Θ, δ), i.e., mJ , CJ , hj , and Hj . Note that Θ̃, δ̃, ỹzm, and

Ỹz as well as Θ̂, δ̂, m̂, Ĉ, ĥ, and Ĥ are temporary and would be discarded at the end of each loop.

Furthermore, in reporting the results, the “for” loop sampling Θ(m=1:M) is parallelized using the

“foreach” package in R. Notice that generating a posterior sample of (Θ, δ|Fn) involves running

the FFBS algorithm, which even with applying the one-step look-ahead policy is extremely time
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Algorithm 2 One-step look-ahead policy for the state-of-the-art approach

for each dose z ∈ Z do
Generate M samples of (Θ̃, δ̃) from prior where (θJ , δJ) ∼ N (mJ , CJ) and (θj , δj) ∼ N (hj , Hj)

for each sampled Θ̃(m=1:M) do

Simulate future observation ỹzm ∼ N (θ̃zm, σ
2).

Add response ỹzm to vector Ỹz and update equations (2.6) and (2.7)

Generate T posterior samples of (Θ̂, δ̂) using the updated N (m̂J , ĈJ) and N (ĥj , Ĥj).

for each sampled Θ̂(t=1:T ) do

Find g(Θ̂(t)) = minz{z ∈ Z : f(z, Θ̂(t)) ≥ 0.95f(zmax, Θ̂(t))}.
Estimate the observed variance Uzm = Var

[
g(Θ̂)

∣∣Fn ∪ (z, ỹzm)
]

using sample variance.

Estimate the variance Uz for each dose by taking a Monte Carlo sample average
∑
m
Uzm
M .

Select the dose z∗ that minimizes Uz.

consuming. In the next section, we propose a new approach and show that it produces high-quality

solutions more efficiently.

2.4 The Knowledge Gradient Approach

Recall that the standard approach in Section 2.3 approximates the dose-response relation-

ship by a piecewise linear function, where at each dose j, a straight line with slope δj and point

(j, θj) estimates the curve. We propose a novel approximation where the curve is approximated by

connecting the points (j, θj) such that the slope between two consecutive doses is θj+1 − θj . The

proposed piecewise linear approximation enjoys conjugacy property over the states and the sampling

distribution under the same assumptions as in Section 2.3, which significantly reduces the complexity

of the problem and the computational effort needed to solve it. Figure 2.4 compares the proposed

piecewise linear approximation with the NDLM approximation in a typical dose-response curve.

Similar to the standard approach, assume that the dose-response curve is of the form

f(z,Θ) = θz and samples from dose z are independent and normally distributed with mean Θ and

known variance σ2. One only needs to keep track of θj for each dose j in the proposed approach.

Therefore, the state only includes the decision maker’s belief regarding Θ = (θ1, . . . , θJ)′. Let En

be the conditional expectation with respect to Fn, i.e., En[·] = E[·|Fn]. Defining µn := En[Θ] and

Σn := Cov[Θ|Fn] while assuming a multivariate normal prior with mean µ0 and positive semidef-

inite covariance matrix Σ0 on the belief about Θ, i.e., Θ ∼ N (µ0,Σ0), will result in a multivariate
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Figure 2.4: Standard vs. proposed piecewise linear approximation to dose-response curve

normal posterior belief about Θ with mean µn and covariance matrix Σn when conditioned on Fn.

State and action spaces. Similar to Section 2.3, decision epochs are at the times when doses are

assigned to patients. The state of the system at decision epoch n is also the probability distribution

on parameter Θ given data Fn, i.e., qn(Θ) = p(Θ|Fn). However, in our proposed approach,

the random variable Θ, our belief about the true response means of allowable doses, is normally

distributed at time n. Therefore, the probability distribution on Θ is normal and can be completely

described by its mean vector µn and covariance matrix Σn. Thus, define sn := (µn,Σn) as the state

of the trial at time n and set S to be the state space

sn ∈ S :=
{

(µ,Σ) : µ ∈ RJ , Σ ∈ Ψ
}
,

where Ψ denotes the set of J × J positive semidefinite matrices. The action anj has a value of 1 if

doze j is assigned to patient n and 0 otherwise. The action space is denoted by A(sn) :=
{
anj ∈

{0, 1} ∀j :
∑J
j=1 a

n
j = 1

}
.

Transitions. Recall that our prior belief on Θ is a multivariate normal distribution. In addition,

sample observations ŷn+1 are normally distributed. Therefore, the posterior distribution on Θ, which

is specified by µn+1 and Σn+1 is also a multivariate normal distribution. The relationship between

the prior and the posterior is characterized by state sn, action anj and the random response ŷn+1.

Assuming that the covariance matrix Σn is nonsingular for now, µn+1 and Σn+1 can be written as

(Gelman et al. 2004)

µn+1 = Σn+1
(
(Σn)−1µn + (σ2)−1ŷn+1ej

)
,

Σn+1 =
(
(Σn)−1 + (σ2)−1eje

′
j

)−1
,

(2.10)
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where ej is a J-vector of 0s and a single 1 at jth index assuming anj = 1. This formulation only

holds when Σn is positive-definite and invertible, however, notice that (σ2)−1eje
′
j only changes one

element of matrix (Σn)−1. Using Sherman-Morrison formula to adjust the inverse of a matrix when

only one element has changed, formulation (2.10) can be written in such a way that Σn is positive

semidefinite and no longer needs to be invertible (Sherman & Morrison 1950),

µn+1 = µn +
ŷn+1 − µnj
σ2 + Σnjj

Σne′j ,

Σn+1 = Σn −
Σneje

′
jΣ

n

σ2 + Σnjj
.

(2.11)

Define σ̃ as a vector-valued function σ̃
(
Σ, anj

)
:=

Σej√
σ2 + Σjj

, and note that Var[ŷn+1 − µn|Fn] =

Var[θzn + εn+1|Fn] = σ2 + Σnjj . Define random variable Xn+1 :=
(ŷn+1 − µn)√

Var[ŷn+1 − µn|Fn]
by which

formulation (2.11) is equivalent to

µn+1 = µn + σ̃
(
Σn, anj

)
Xn+1,

Σn+1 = Σn − σ̃
(
Σn, anj

)
σ̃′
(
Σn, anj

)
,

(2.12)

where random variable Xn+1 is standard normal when conditioned on Fn.

Objective function. Similar to Section 2.3, consider minimizing the variance of the target dose

at the end of the trial as our objective. Therefore, the expected cost at the end of the trial is

rN (sN ) = Var
(
g(Θ)

∣∣sN) where sN = (µN ,ΣN ). At each decision epoch, the selected dose zn is

allowed to depend on samples by time n, that is zn ∈ Fn. Note that zn is completely determined

by anj , i.e., if anj = 1, then zn = j. Thus, in order to ease the notation, hereafter, we use zn to

denote the selected dose by action anj at time n. Define Π :=
{

(z0, . . . , zN−1) : zn ∈ Fn
}

to be the

set of measurement policies, where π = (z0, . . . , zN−1) is an element in Π. Let lπ(s0) denote the

expected variance of ED95 at the end of trial when the initial prior on θ is N (µ0,Σ0). Choosing a

policy that minimizes the expected cost is achieved by solving

V (s0) = inf
π∈Π

lπ(s0), (2.13)

where lπ(·) = Eπ
{

VarN
[
g(Θ)

]∣∣∣∣s0 = (µ0,Σ0)

}
, Eπ

{
·
}

indicates expectation taken with respect to a

fixed measurement policy π, and VarN (·) is the variance with respect to FN . Defining a sequence
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of value functions at each decision epoch n ≤ N − 1 as V n(sn), the optimal value function is the

unique solution to these Bellman equations

V n(sn) = minzn E
{
V n+1(sn+1)

∣∣∣sn, zn},
V N (sN ) = Var

(
g(Θ)

∣∣sN). (2.14)

Define Qn(s, z) := E
[
V n+1

(
η(sn, zn, Xn+1)

)∣∣∣∣sn = s, zn = z

]
for any s ∈ S as a function

measuring the value of assigning dose z to patient n when the trial is in state sn, where η(·) is

a transition function which by using the updating equations (2.12) determines the next state, i.e.,

sn+1 = η(sn, zn, Xn+1). Denote V n+1(sn) as the value of making no measurements while in state

sn. The following theorem states that the optimal policy always prefers to make a measurement.

Theorem 2.4.1 The optimal policy always prefers to measure an alternative dose rather than to

measure nothing at all, i.e, Qn(s, z) ≤ V n+1(s) for every s ∈ S, 0 ≤ n < N and z ∈ {1, . . . , J}.

Proof. The theorem is proven by induction on n. First, we show that the theorem holds for n = N−1.

QN−1(s, z) = E
{
V N
(
η(sN−1, zN−1, XN )

)∣∣∣∣sN−1 = s, zN−1 = z

}
= E

{
Var
(
g(Θ)

∣∣∣η(sN−1, zN−1, XN )
)∣∣∣∣sN−1 = s, zN−1 = z

}
= E

{[
E
(
g2(Θ)

∣∣∣η(sN−1, zN−1, XN )
)
−
(
E
(
g(Θ)

∣∣∣η(sN−1, zN−1, XN )
))2]∣∣∣∣ ·}

= E
{
E
(
g2(Θ)

∣∣∣η(sN−1, zN−1, XN )
)∣∣∣∣ ·}− E

{(
E
[
g(Θ)

∣∣∣η(sN−1, zN−1, XN )
])2
∣∣∣∣ ·},

where the σ-field generated by sN−1 and zN−1 is a subset of the σ-field of the transition function

at (sN−1, zN−1), i.e., σ(sN−1, zN−1) ⊆ σ
(
η(sN−1, zN−1, XN )

)
, thus by using the tower property of

conditional expectation

QN−1(s, z) = E
[
g2(Θ)

∣∣∣ · ]− E
{(

E
[
g(Θ)

∣∣∣η(sN−1, zN−1, XN )
])2
∣∣∣∣ ·}

≤ E
[
g2(Θ)

∣∣∣ · ]−(E{E[g(Θ)
∣∣∣η(sN−1, zN−1, XN )

]∣∣∣∣ ·}
)2

= E
[
g2(Θ)

∣∣∣ · ]− (E{g(Θ)
∣∣ · })2

= Var
[
g(Θ)

∣∣sN−1, zN−1
]

= V N (s),
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where the inequality is the result of Jensen’s inequality for convex functions. Therefore, QN−1(s, z) ≤

V N (s). Now, suppose the induction hypothesis is true for N − 1, . . . , n+ 1. Then,

Qn+1(s, z) = E
{
V n+2

(
η(sn+1, zn+1, Xn+2)

)∣∣∣sn+1 = s, zn+1 = z

}
≤ V n+2(s).

We must show that the induction hypothesis also holds for n. Recall that V n(s) = minz Q
n(s, z),

Qn(s, z) = E
{
V n+1

(
η(sn, zn, Xn+1)

)∣∣∣sn = s, zn = z

}
= E

{
min
z′

Qn+1
(
η(sn, zn, Xn+1), z′

)∣∣∣∣sn = s, zn = z

}
≤ min

z′
E
{
Qn+1

(
η(sn, zn, Xn+1), z′

)∣∣∣∣sn = s, zn = z

}
= min

z′
E
{
E
[
V n+2

(
η(η(sn, zn, Xn+1), z′, Xn+2)

)∣∣∣η(sn, zn, Xn+1), z′
]∣∣∣∣ ·}

= min
z′

E
{
V n+2

[
η
(
η(sn, zn, Xn+1), z′, Xn+2

)]∣∣∣∣ ·},
where the inequality is justified by the Jensen’s inequality for concave functions, and the tower

property of conditional expectation is applied. Note that η
(
η(sn, zn, Xn+1), z′, Xn+1

)
describes the

state at which we arrive at time n+ 2 if we measure zn first and then z′. However, since zn and z′

are fixed, the measurement order of zn and z′ does not affect the distribution of the state, thus we

can change the order we measure zn and z′. Therefore,

Qn(s, z) ≤ min
z′

E
{
V n+2

[
η
(
η(sn, zn, Xn+1), z′, Xn+2

)]∣∣∣∣ ·}
= min

z′
E
{
V n+2

[
η
(
η(sn, z′, Xn+2), zn, Xn+1

)]∣∣∣∣ ·}
= min

z′
E
{
E
[
V n+2

(
η
(
η(sn, z′, Xn+2), zn, Xn+1

))∣∣∣η(sn, z′, Xn+2), zn
]∣∣∣∣ ·}

= min
z′

E
{
Qn+1

(
η(sn, z′, Xn+2), zn

)∣∣∣∣ ·}.
The induction hypothesis shows that Qn+1

(
η(sn, z′, Xn+2), zn

)
≤ V n+2

(
η(sn, z′, Xn+2)

)
which

results in

Qn(s, z) ≤ min
z′

E
{
Qn+1

(
η(sn, z′, Xn+2), zn

)∣∣∣∣ ·} ≤ min
z′

E
{
V n+2

(
η(sn, z′, Xn+2)

)∣∣∣∣ ·} = V n+1(s).�
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Theorem 2.4.1 shows that any extra measurement would be beneficial (not worse) to the

value function at time n. In the following corollaries, the first suggests that there is no value in

measuring a dose which is already known (its variance is zero), and the second corollary implies that

the extra measurement should be made according to the optimal policy.

Corollary 2.4.1 Let i, j denote any two doses where i 6= j, n < N , and s = (µ,Σ). If Σjj = 0

then Qn(s, i) ≤ Qn(s, j)

Proof. If Σnjj = 0, then dose j is known almost surely and Cov(θj , θt) = 0 for all dose t ∈ {1, . . . , J}.

Therefore, the jth row and column of the Σn matrix are equal to zero which results in σ̃(sn, j) = 0.

Recall that η(sn, j,Xn+1) uses equations (2.12) to update the state. Since σ̃(sn, j) = 0,

(µn+1,Σn+1) = sn+1 = η(sn, j,Xn+1) = sn = (µn,Σn).

Then, by applying Theorem 2.4.1,

Qn(sn, j) = E
{
V n+1

(
η(sn, j,Xn+1)

)∣∣∣sn = s
}

= V n+1(sn) ≥ Qn(sn, i).�

Corollary 2.4.2 V n(s) ≤ V n+1(s) for all states s ∈ S.

Proof. Theorem 2.4.1 shows that Qn(s, z) ≤ V n+1(s). Therefore, minz Qn(s, z) ≤ V n+1(s), where

min
z
Qn(s, z) = min

z∈{1,...,J}
E
{
V n+1

(
η(sn, zn, Xn+1)

)∣∣∣∣sn = s, zn = z

}
= V n(s).

Thus, V n(s) ≤ V n+1(s).�

Solving formulation (2.14) to optimality is impractical because of the state space continuity.

Following the one-step look-ahead framework, we assume that the next patient in the trial will be

the last, and allocate a dose to the next patient to minimize the expected value of a single period

decision process. Note that Varn[g(Θ)] is the value we would receive if we were to stop the trial at

decision epoch n. Define the KG policy πKG for every s ∈ S according to

X π
KG

(s) ∈ arg min
z

En
{

Varn+1[g(Θ)]−Varn[g(Θ)]

∣∣∣∣sn = s, zn = z

}
for every n < N, (2.15)

where X πKG(sn) is a decision function which returns the dose selected in state sn under the KG
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policy πKG, i.e., X πKG(sn) := zn. In order to compute the KG policy, one needs to evaluate

min
z

En
{

Varn+1[g(Θ)]
∣∣sn = s, zn = z

}
for every sn ∈ S at each decision epoch n since Varn[g(Θ)] is constant with respect to Fn. To

that end, a similar approach to Algorithm 2 is applicable where random samples of Θ are generated

by a multivariate normal distribution via equations (2.12) instead of computationally heavy FFBS

approach. Algorithm 3 formalizes this approach. Since the recursive FFBS algorithm in the standard

approach is replaced by a simple multivariate random generation process in our proposed approach,

Algorithm 3 is significantly more efficient. Note that recursive equations (2.6) and (2.7) used to

update the posterior after simulating a dummy future observation ỹzm, are replaced with simple

equations (2.12). Similar to Algorithm 2, Algorithm 3 must run for each patient. In particular, after

dose z∗ is assigned to a patient at time n, a true response yn+1
z∗ is observed and is used to update

µn and Σn for the next patient. Note that m̂ and Σ̂ are also temporary and should not be stored in

memory.

2.5 Consistency of the Knowledge Gradient Policy

A measurement policy is “consistent” if it is able to learn the truth perfectly in the limit. In

a response-adaptive dose-finding study, learning the true value of the target dose ED95 is achieved

only if the true underlying dose-response relationship is known in the limit. In this section, we show

that the knowledge gradient policy introduced in Section 2.4 learns the true proposed dose-response

Algorithm 3 Proposed knowledge gradient policy

for each dose z ∈ Z do
Generate M samples of Θ̃ from the prior N (µn−1,Σn−1).
for each sampled Θ̃(m=1:M) do

Simulate future observation ỹzm ∼ N (θ̃zm, σ
2).

Using ỹzm, update (µn−1,Σn−1) according to formulation (2.12) to obtain (µ̂nzm, Σ̂
n
zm).

Generate T posterior samples of Θ̂ by sampling from N (µ̂nzm, Σ̂
n
zm).

for each sampled Θ̂(t=1:T ) do

Find g(Θ̂(t)) = minz{z ∈ Z : f(z, Θ̂(t)) ≥ 0.95f(zmax, Θ̂(t))}
Estimate the observed variance Uzm = Var[g(Θ̂)|Fn ∪ (z, ỹzm)] using sample variance.

Evaluate expected variance Uz for each dose by taking a Monte Carlo sample average
∑
m
Uzm
M .

Select the dose z∗ that minimizes Uz.
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model, thus the target dose, when the number of patients goes to infinity.

Consistency of some sampling policies has been studied in the literature. For example, rein-

forcement learning algorithms which force the measuring policy to explore all alternatives infinitely

many times are consistent (Singh et al. 2000). However, in most response-adaptive designs, it is

difficult to ensure that all alternatives are sampled frequently often to prove consistency. Frazier

et al. (2008, 2009) derived the consistency conditions for a class of knowledge gradient policies, with

independent and correlated normal prior beliefs in ranking and selection problems. Ryzhov et al.

(2012) showed that the KG policy in a Gaussian multi-armed bandit problem finds the best alterna-

tive in the limit with probability one when the discount factor approaches one. Furthermore, Frazier

& Powell (2011) provided a more general set of sufficient conditions for consistency of a broad class

of sequential sampling policies. However, these methods do not directly apply because the objective

function in our problem, which is minimizing the variance of the target dose, differs from typical

ranking and selection objectives where one seeks to find the alternative with the highest mean.

In this section, we assume a multivariate normal prior on Θ with independent components,

i.e., Σ0 is diagonal with σ2
0j elements. Therefore, the posterior is also normal with independent

components. Sampling dose j may provide valuable information about the dose-response relationship

through a reduction in uncertainty about the mean response in θj . In our case, this information

(the reduction in uncertainty) is observable by measuring the reduction in variance of the target

dose when dose j is sampled. Therefore, in order to know the dose-response curve perfectly, this

uncertainty should approach zero in the limit for every dose, and thus a consistent policy should

measure each dose infinitely often. However, it is possible that a measuring policy sticks to a set

of doses for which the dose-response curve is already known perfectly thus providing no valuable

information if sampled again. To avoid sticking to such doses, it is sufficient for a measurement

policy to maintain an open neighborhood U , i.e., an open ball with arbitrary small radius ru > 0,

around states for which sampling particular doses has no value. The open neighborhood ensures

that, when in such states, the measurement policy cannot encounter an infinite sequence of states

for which measuring a dose would result in its variance to converge to zero and thus to stick.

Denote the mean and variance of θj at decision epoch n with µ̂nj and σ2
nj , respectively.

Using minimal-rank and mean-value parametrization of the exponential family distributions, the

posterior distribution at time n can be described completely by kn = [µ̂njλ, −λ(µ̂2
nj +σ2

nj)/2] where

λ = 1
σ2 is the precision of (ŷn+1|Θ, zn) distribution (Bickel & Doksum 2015). Define set K and its
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closure as

K :=
{

[ujλ, −λ(u2
j + vj)/2]j∈{1,...,J} : u ∈ RJ , v ∈ RJ++

}
,

cl(K) =
{

[ujλ, −λ(u2
j + vj)/2]j∈{1,...,J} : u ∈ RJ , v ∈ RJ+

}
,

(2.16)

where u = (u1, . . . , uJ), v = (v1, . . . , vJ), and R++ denotes the set of strictly positive real numbers.

Hereafter, the term “knowledge state” is used to refer to k ∈ K, or k ∈ cl(K). Retrieving the mean

and variance of θj from any knowledge state k ∈ cl(K) is done by functions µ̂j : cl(K) → R, and

σ2
j : cl(K)→ R+ as follows

µ̂j(k) =
kj1
λ
, σ2

j (k) = −
(kj1
λ

)2 − 2
kj2
λ
,

where µ̂nj = µ̂j(k
n), and σ2

nj = σ2
j (kn) (see Frazier & Powell 2011).

To quantify the value of information for the KG policy, define vKGz (k) as a function that

measures the incremental reduction in variance of the target dose after sampling dose z in knowledge

state k ∈ cl(K), i.e.,

vKGz (k) =

 En
[
Varn+1

(
g(Θ)

)∣∣∣kn = k, zn = z
]
− En

[
Varn

(
g(Θ)

)∣∣∣kn = k, zn = z
]

if σ2
z(k) > 0,

0 if σ2
z(k) = 0,

(2.17)

where En
[
·
]

hereafter denotes the expectation with respect to probability measure φn on Θ deter-

mined by kn ∈ cl(K) under which θj is distributed according to a normal distribution whose moments

are given by functions µ̂j(k
n) and σ2

j (kn) if σ2
j (kn) > 0, or it is distributed according to µ̂j(k

n) al-

most surely if σ2
j (kn) = 0. Note that En

[
Varn

(
g(Θ)

)∣∣∣kn = k, zn = z
]

is a constant at time n. Also,

function vKGz (k) is well-defined for all k ∈ cl(K) because Jensen’s inequality for convex functions

and the tower property of conditional expectations imply that En
[
Varn+1

(
g(Θ)

)∣∣∣kn = k, zn = z
]

is

bounded above by a constant term (see proof of Lemma 2.5.1), which implies vKGz (k) is non-positive.

Therefore, cl
(
dom(vKG)

)
= cl(K), where dom(vKG) denotes the domain of function vKG. Then,

the KG policy defined in (2.15) can also be written in terms of the value of information, satisfying

X π
KG

(kn) ∈ arg min
z

vKGz (kn). (2.18)

Using the definition of value of information and its function vKGz , it is possible to partition

the posterior states based on doses that have value or not. Define the partitioning sets Mz and M∗
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as

Mz :=
{
k ∈ cl(K) : ∃(kn) ⊆ dom(vKG) converging to k with limn→∞ vKGz (kn) = 0

}
,

M∗ :=
{
k ∈ cl(K) : ∀(kn) ⊆ dom(vKG) converging to k, limn→∞ vKGz (kn) = 0 ∀z ∈ Z

}
,

where Mz is the set of knowledge states kn for which sampling dose z does not have any informative

value on the variance of the target dose at the end of the trial, i.e., sampling dose z does not reduce

the variance of the target dose, and M∗ is the set of knowledge states for which sampling any dose

has no value. In addition to sets Mz and M∗, we partition the measurements z ∈ Z for each

knowledge state k ∈ cl(K) according to measurements that have value or not. To that end, define

Ak := {z ∈ Z : k ∈ Mz} for each k ∈ cl(K) to be the set of doses for which sampling provides

no value in knowledge state k. As discussed earlier in this section, to guarantee consistency, the

sampling policy should avoid measuring dose z when the trial is in state k ∈ Mz, and maintain an

open neighborhood around the sets Mz \M∗ in which measuring dose z has no value whereas other

measurements do. The following lemma allows us to simplify the partitioning sets.

Lemma 2.5.1 For each z ∈ Z, k → vKGz (k) is continuous on dom
(
vKG(k)

)
and can be extended

continuously onto cl
(
dom(vKG)

)
= cl(K).

Proof. First, we show that for every k ∈ K, En
[
Varn+1

(
g(Θ)

)∣∣∣kn = k, zn = z
]
≥ 0 is finite and

therefore, dom(vKG) = cl(K). Using the tower property of conditional expectation and Jensen’s

inequality for convex functions,

En
[
Varn+1

(
g(Θ)

)∣∣∣kn = k, zn = z
]

= En
{
En+1

[
g2(Θ)

]
−
(
En+1

[
g(Θ)

])2
∣∣∣∣kn = k, zn = z

}
= En

{
En+1

[
g2(Θ)

]∣∣∣∣ ·}− En
{(

En+1

[
g(Θ)

])2
∣∣∣∣ ·}

≤ En
{[
g2(Θ)

]∣∣∣∣ ·}− (En{g(Θ)
∣∣∣ · })2

= Varn

[
g(Θ)

∣∣∣kn = k, zn = z
]
,

where Varn

[
g(Θ)

∣∣∣ · ] is finite for every k ∈ K because g(Θ) has finite support. Next, we show

that vKG(k) is continuous on its domain. Note that in formulation (2.17), En
[
Varn

(
g(Θ)

)∣∣∣kn =

k, zn = z
]

is constant at time n. Therefore, it suffices to show continuity of En
[
Varn+1

(
g(Θ)

)∣∣∣kn =

k, zn = z
]

for every k ∈ cl(K). Define h(Θ, kn) = Varn+1

[
g(Θ)

∣∣kn] (for ease of notation we drop
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zn = z in Varn+1

[
g(Θ)

∣∣kn, zn = z
]
). The function Varn+1[·] is a random variable at time n, thus

Θ → h(Θ, kn) is measurable by definition for each n and kn ∈ cl(K). Let (kn∗ )∞n=1 ⊆ cl(K) be a

sequence converging to k∗ ∈ cl(K) almost surely. Therefore,

lim
n→∞

h(Θ, kn∗ ) = lim
n→∞

Varn+1

[
g(Θ)

∣∣kn∗ ]
= lim
n→∞

{
En+1

[
g2(Θ)

∣∣kn∗ ]− (En+1

[
g(Θ)

∣∣kn∗ ])2
}

= lim
n→∞

En+1

[
g2(Θ)

∣∣kn∗ ]− lim
n→∞

(
En+1

[
g(Θ)

∣∣kn∗ ])2

= lim
n→∞

∫
g2(Θ)dφn − lim

n→∞

(∫
g(Θ)dφn

)2

,

where φn denotes the probability measure on Θ given kn∗ . Since the probability measure φn is

a continuous function of converging sequence k∗n, continuous mapping theorem implies that φn

converges weakly to φ∗ when limn→∞ kn∗ = k∗. Note also that g2(Θ) and g(Θ) are bounded,

measurable and almost everywhere continuous functions. That is, the set where g(Θ) and g2(Θ)

are not continuous lies in RJ−1 and thus has a measure of zero. Therefore, by applying continuous

mapping theorem and Portmanteau’s theorem (see, e.g., Billingsley 2013)

lim
n→∞

∫
g2(Θ)dφn − lim

n→∞

(∫
g(Θ)dφn

)2

=

∫
g2(Θ)dφ∗ −

(∫
g(Θ)dφ∗

)2

= En+1

[
g2(Θ)

∣∣k∗]− (En+1

[
g(Θ)

∣∣k∗])2

= Varn+1

[
g(Θ)

∣∣k∗] = h(Θ, k∗),

which shows that function h is almost everywhere continuous on its domain. Note that g(Θ) ∈ Z.

Then by applying Popoviciu’s inequality we have h(Θ, kn) ≤ 1
4 (J − 1)2 < ∞. Therefore, H(kn) =∫

RJ h(Θ, kn)dΓ(Θ) exists by dominated convergence theorem, where Γ(Θ) is the desired probability

measure, and thus

H(kn) =

∫
RJ
h(Θ, kn)dΓ(Θ) = En

[
h(Θ, kn)

∣∣∣kn = k, zn = z
]

= En
[
Varn+1

(
g(Θ)

)∣∣∣kn = k, zn = z
]
.

Using continuity of h(Θ, kn) through Lebesgue’s dominated convergence theorem results in

lim
n→∞

∫
RJ
h(Θ, kn∗ )dΓ(Θ) =

∫
RJ

lim
n→∞

h(Θ, kn∗ )dΓ(Θ) =

∫
RJ
h(Θ, k∗)dΓ(Θ).
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Therefore, H(kn) = En
[
Varn+1

(
g(Θ)

)∣∣∣kn = k, zn = z
]

is continuous. Furthermore, the set cl(K) ={[
ujλ, −λ(u2

j + vj)/2
]
j∈{1,...,J}, uj ∈ RJ , vj ∈ RJ+

}
has closure points such that σ2

j (kn) = vj = 0.

Note that if σ2
zn(kn) = 0, then kn+1 = kn. Thus,

vKG(kn) = En
[
Varn+1

(
g(Θ)

)∣∣∣kn = k, zn = z
]
− En

[
Varn

(
g(Θ)

)∣∣∣kn = k, zn = z
]

= 0,

which is exactly equal to the value of information when σ2
zn = 0. Therefore, vKG is continuous on

cl
(
dom(vKG)

)
= cl(K).�

Using Lemma 2.5.1, we can rewrite the sets Mz and M∗ as

Mz :=
{
k ∈ cl

(
dom(vKG)

)
: vKGz (k) = 0

}
,

M∗ :=
{
k ∈ cl

(
dom(vKG)

)
: vKGz (k) = 0 ∀z ∈ Z

}
,

which by definition in formulation (2.17) can be further simplified to

Mz :=
{
k ∈ cl(K) : σ2

z(k) = 0
}
,

M∗ :=
{
k ∈ cl(K) : σ2

z(k) = 0 ∀z ∈ Z
}
.

The doses and posterior knowledge states are partitioned according to which doses have informative

value about the variance of the target dose. However, we still need to show that the KG policy

avoids sampling z when in states Mz \M∗. To that end, define the set U for any k ∈ cl(K) \M∗ as

U :=
{
k′ ∈ cl(K) : min

z∈Ak
vKGz (k′) > max

z/∈Ak
vKGz (k′)

}
. (2.19)

If Ak = ∅, then U = cl(K). Note that minimum over empty set is +∞ (and maximum is −∞).

Thus, there exist an open set in U such that the KG policy chooses an alternative which is not in

Ak almost surely. Now, suppose that Ak 6= ∅.

Lemma 2.5.2 If Ak 6= ∅, then U is open and k ∈ U for any k ∈ cl(K) \M∗.

Proof. Assuming Ak 6= ∅, we first show that k ∈ U . Consider any k ∈ cl(K)\M∗ such that σ2
z(k) = 0

for dose z. Therefore, sampling dose z does not change the posterior on Θ and En
[
Varn+1

(
g(Θ)

)∣∣∣kn =
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k, zn = z
]

= En
[
Varn

(
g(Θ)

)∣∣∣kn = k, zn = z
]
, which implies that vKGz (k) = 0. Thus,

min
z∈Ak

vKGz (k) = 0. (2.20)

Now, consider any k ∈ cl(K) \M∗ such that σ2
z(k) > 0. Using the tower property of conditional

expectation and Jensen’s inequality for convex function (see proof of Lemma 2.5.1),

En
[
Varn+1

(
g(Θ)

)∣∣∣kn = k, zn = z
]
< Varn

[
g(Θ)

∣∣∣kn = k, zn = z
]

= En
[
Varn

(
g(Θ)

)∣∣∣kn = k, zn = z
]
,

where inequality is strict since
[
En+1

(
g(Θ)

)]2
is strictly convex almost surely if σ2

z(k) > 0. Thus,

vKGz (k) < 0, and

max
z/∈Ak

vKGz (k) < 0. (2.21)

Therefore, equations (2.20) and (2.21) result in

min
z∈Ak

vKGz (k) > max
z/∈Ak

vKGz (k),

which implies that k ∈ U . Continuity of k → vKGz (k), shown in Lemma 2.5.1, suffices to show that

U is open. To that end, consider an open set K̃ ⊂ cl(K) such that
(
vKGz

)−1
(K̃) = U . Since vKGz is

continuous, the inverse image of any open set under vKGz is an open set, thus U is open.�

Therefore, for any k ∈ U , minz∈Ak v
KG
z (k′) > maxz/∈Ak v

KG
z (k′) where k′ ∈ cl(K). Thus,

the KG policy in knowledge state k, avoids sampling doses in set Ak for which there is no uncertainty

about the belief because there are always doses such as z /∈ Ak where vKGz (k) shows better values.

Note that any knowledge state in k ∈ cl(K) \M∗ satisfies the inequality in (2.19). Therefore, KG

policy does not stick to a set of doses and measures every dose infinitely many times and thus is

consistent.

2.6 Numerical Analysis

This section presents the results of implementing our proposed algorithm and compares

it to the standard approach used in, e.g., Berry et al. (2002), the ASTIN study by Krams et al.

(2003), Smith et al. (2006), Müller et al. (2006), and Weir et al. (2007). We implement both
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adaptive policies on three different types of dose-response curves, i.e., bell-shaped, sigmoid, and

non-monotonic piecewise linear functions, and show the patient assignment patterns for each curve,

as well as the fitted posterior dose-response curves. The true dose-response curves used in these

experiments resemble a wide range of practical dose-response relationships. For example, bell-shaped

and non-monotonic dose-response curves are studied in, e.g., Owen et al. (2014) and Bulayeva

& Watson (2004), respectively, while sigmoid shaped curves are among the most occurring dose-

response relationship studied (Gadagkar & Call 2015).

2.6.1 Simulation Initialization

In our experiments, we consider 11 doses which are placed equidistant. Typically this

number in Phase II trials is between 4-12 doses (Berry et al. 2002). Aligned with the ASTIN trial,

the first dose is considered as placebo with its response marking the baseline score for the treatment

in the trial. Performance of the state-of-the-art and the proposed approaches are compared by

developing three measurement policies within the one-step look-ahead framework. We use “NDLM”

to refer to the measurement policy of the state-of-the-art approach (see Algorithm 2). “KG-I” and

“KG-C” denote the policies developed for the proposed approach (see Algorithm 3) where KG-I

denotes the policies in which no correlation is considered on prior beliefs about Θ whereas “KG-C”

assumes an exponential covariance function on prior beliefs about Θ.

A simulation is carried out in order to compare the performance of these policies. At each

decision epoch a patient arrives at the trial and is given a dose according to the latest posterior

estimate of the dose-response curve which minimizes the variance of ED95. The patient’s response

is then generated from the true distribution and is added to the data. To estimate the posterior

dose-response curve, M and T sample sizes (parameters of the algorithms) are set to 500 and 1000

in both algorithms, and sequences of 60 and 200 patients are used in reporting the results. A

thinning factor of 5 is considered for random variable generation in both Algorithms where every

fifth randomly generated number was used in the simulation to avoid serial correlation in a sequence

of random numbers. In reporting each performance measure, 30 simulations with different sequence

of random numbers are considered. We assume that the variance of normal residual of the dose-

response function is known in both approaches and its value is fixed at one unit. We conduct a

sensitivity analysis on this variance, and show that our approach is robust with respect to variation

in normal residual. The simulation is coded in R and is run on an Intel core i7 3.7 GHz processor
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with 16 GB of RAM.

In case of “NDLM”, m1 and C1 diagonals in N (m1, C1) are set to placebo and 100, re-

spectively. This is to ensure that the prior carries little information about the beliefs on Θ. The

observation variance matrix Ej is set to have diagonal values equal to the normal residual. No

covariance structure is considered since observations are assumed to be independent of each other.

Aligned with Weir et al. (2007) and West & Harrison (1997), the evolution variance matrixWj is set

to have diagonal values equal to a discounted structure
Cj(1−γ′)

γ′ , where γ′ ∈ [0, 1]. The discounted

structure provides stability for the system and allows for information decay when moving from dose

j − 1 to dose j. We set γ′ = 0.6 in our experiment, which produces the fastest convergence in

the standard approach. Our sensitivity analysis show that the quality of solutions produced by the

standard approach is highly sensitive to the choice of γ′.

In case of “KG-I”, µ0 and Σ0 are set equal to m1 and C1 in the “NDLM” case. However, for

“KG-C” policy, where correlation is considered about the beliefs on Θ, Cov(θi, θj) is calculated by

a Gaussian covariance function where Cov(θi, θj) = β exp{−γ(i− j)2} where β is usually estimated

by Var(θi) (Rasmussen & Williams 2006). The Gaussian structure of the covariance function allows

for less correlation when doses are further apart. To keep symmetry of the covariance matrix, β is

chosen to be equal to
Var(θi) + Var(θj)

2 = 100, and γ, the lengthscale factor is set to 0.01 for the

sigmoid curve and one for the bell-shaped and piecewise linear curves where smaller values of the

lenghtscale factor correspond to smoother changes between θs.

2.6.2 Results

Patient assignment. Figure 2.5 shows the patient assignment pattern to three dose-response

curves for 60 patients. In particular, Figures 2.5(a), 2.5(b), and 2.5(c) show the results of patient

assignments for bell-shaped, sigmoid and piecewise linear curves, respectively. Note that the hori-

zontal axis shows the dose indices, the left-hand side vertical axis denotes the proportion of patients

assigned to a dose while the solid line represents the dose-response curve, with score on the right-

hand side vertical axis. Our results show that KG-I and KG-C outperform the NDLM approach

in assigning more patients to the target dose; see Table 2.1. For example, KG-I and KG-C assign

21.1±0.3 (95% confidence interval) and 20.8±0.4 patients to the target dose on the bell-shaped

curve, respectively, while NDLM assigns 20.1±0.3 patients to the target dose.
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Figure 2.5: Patient assignments to dose-response curves (sample size=60)
Note: The diamond on the dose-response identifies the ED95 dose.

Table 2.1: Patient assignments to target dose (sample size=60)
bell-shaped sigmoid piecewise linear

KG-I (%) 21.1±0.3 13.0±0.4 23.1±0.3
KG-C (%) 20.8±0.4 20.2±0.3 22.5±0.4
NDLM (%) 20.1±0.3 18.2±0.3 21.5±0.3

Note: The performance is reported in terms of proportion of patients assigned to the target dose out of 60 total
patients in 95% confidence interval.

Posterior variance of the target dose. Figures 2.6(a), 2.6(b), and 2.6(c) show how the expected

variance of ED95 for dose z∗, i.e, minz En
{

Varn+1

[
g(θ)

∣∣Fn, z)
]}

, changes under KG-I, KG-C, and

NDLM policies during the trial for bell-shaped, sigmoid, and piecewise linear dose-response models,

respectively. As can be seen, KG-I and KG-C policies achieve lower variances of the target dose for

the same number of patients earlier in the trial, thus they learn the target dose more quickly than

the NDLM policy. For example, in case of sigmoid curves, after simulating 15 patients on average,

the expected variance under KG-C policy drops below 0.1 level, the KG-I policy achieves similar

precision after 50 patients while NDLM policy never drops below 0.1 with 60 patients.

Posterior estimate of the dose-response curve. Figure 2.7 shows the estimated posterior dose-
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Figure 2.6: Expected variance of ED95 for dose z∗ (sample size=60)
Note: The horizontal axis shows the patients number and the vertical axis denotes the variance of the target dose.

response curves of KG-I, KG-C and NDLM policies with respect to the same three dose-response

curves used in Figure 2.5 for 60 patients. In particular, Figures 2.7(a), 2.7(b), and 2.7(c) show the

estimated posterior dose-responses of 60 patients for bell-shaped dose-response curve under KG-

I, KG-C, and NDLM policies. Posterior dose-response estimates of sigmoid and piecewise linear

models are shown in Figures 2.7(d)-2.7(i). Note that the vertical axis denotes the response score

of a dose while the horizontal axis shows the dose indices. The solid black line represents the true

dose-response curve whereas the gray lines show the estimated posterior fitted dose-responses with

darker lines representing later fits in the simulation. As more patients are simulated in the trial,

gray lines representing posterior estimates become darker and move closer to the true dose-response

curve.

L2 distance between estimated posteriors and the true dose-response curve. Figures

2.7(a)-2.7(i) show that both KG-I and KG-C are able to learn the dose-response curve at least as

well as the NDLM policy. However, they do not demonstrate which algorithm achieves learning

the true dose-response curve more efficiently. To differentiate the learning processes, Figure 2.8
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Figure 2.7: Posterior estimates to dose-response curves (sample size=60)

shows the L2 distance between the posterior estimate means and the true dose-response model, i.e.,∥∥En(Θ)−Θ∗
∥∥, where Θ∗ represents the true value of Θ. The results suggest that both KG-I and KG-

C polices outperform the NDLM policy in reducing the L2 distance between the posterior estimate

means to the dose-response curves and their true values, thus learning the true dose-response curve

faster. Moreover, Figure 2.8(b) shows that KG-C reduces the L2 distance considerably faster than

KG-I in the sigmoid curve where correlation between doses and their responses is stronger. Notice

that similar behavior is observable in Figure 2.6(b).

As mentioned earlier, one major impediment in applying the standard framework to design

of dose-finding trials is its difficulty to implement and heavy computational effort requirement. Table

2.2 shows that proposed policies are significantly more efficient because they do not require the time

consuming recursive FFBS algorithm to estimate the posterior dose-response curve. Note that the
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Figure 2.8: L2 distance (sample size=60)
Note: The horizontal axis shows the patients number and the vertical axis denotes the L2 distance

results in Table 2.2 are reported for simulating a single decision epoch along 30 sample paths,

and the performance of NDLM policy is enhanced, compared to the original standard method, by

parallelizing independent “for” loops in Algorithm 2.

2.6.3 Sensitivity Analysis

Assignment pattern for 200 patients. Figure 2.9 shows the assignment pattern for bell-shaped,

sigmoid, and piecewise linear models when 200 patients are simulated under KG-I, KG-C and NDLM

policies. Our results show that KG-I, KG-C assign more patients to the target dose than the NDLM

policy. Note that we omitted figures for posterior estimates and variance of the target dose because

Table 2.2: Computational time for a single decision (in hours)
bell-shaped sigmoid piecewise linear

KG-I 0.16 0.17 0.18
KG-C 0.16 0.17 0.18
NDLM 5.63 5.73 6.18
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simulating more than 60 patients does not affect the results in such a way to be shown clearly in

figures similar to Figures 2.6 and 2.7.
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Figure 2.9: Patient assignments to dose-response curves (sample size=200)
Note: The horizontal axis shows the dose indices, the left-hand side vertical axis denotes the proportion of

assignment, and the right-hand side vertical axis denotes the dose-response score. The diamond on the
dose-response identifies the target dose.

Sensitivity to the Variance of the normal residual. In Section 2.2, the dose-response model

is presented as

y = f(z, θ) + ε,

where ε is normally distributed by mean zero and variance σ2, i.e., ε ∼ N (0, σ2). We assumed that

σ2 is known throughout this chapter and is fixed at one in reporting the results. Here, we conduct

a sensitivity analysis on the variance of the normal residual and show that our proposed policies,

similar to the “NDLM” policy, is robust with respect to variation of the normal error. The following

results are reported for σ2 = 4. Our results indicate that the proposed approaches, KG-I and KG-C

are robust with respect to the variation in normal error and outperform the NDLM policy when

the variance of the normal residual increases. However, it also assigns more patients to larger doses
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Figure 2.10: Sensitivity in terms of patient assignments to observation variance
Note: The horizontal axis shows the dose indices, the left-hand side vertical axis denotes the proportion of

assignments, and the right-hand side vertical axis denotes the dose-response score. The diamond on the
dose-response identifies the target dose.

on one side of the bell-shaped curve. For an instance of 60 patients, Figure 2.10 shows the patient

assignment pattern for the bell-shaped curve where our proposed policies assign more patients to the

target dose than the NDLM policy. Figure 2.11 demonstrates that the expected variance of ED95

for dose z∗ reduces faster under KG-I and KG-C policies. Figure 2.12 shows that the L2 distance

between the posterior estimate means and the corresponding true values reduces faster under KG-I

and KG-C policies, thus learning the true dose-response model is achieved more quickly. Figure 2.13

shows posterior estimates to the dose-response curve.
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Figure 2.11: Sensitivity in terms of posterior
variance of ED95 for dose z∗ to observation

variance
Note: The horizontal axis shows the patients

number and the vertical axis denotes the variance of
the target dose.
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Figure 2.12: Sensitivity in terms of L2

distance to observation variance
Note: The horizontal axis shows the patients

number and the vertical axis denotes the L2 distance
between posterior estimates and the true model.

Sensitivity of the standard approach to the variance of evolution equations. The evolution

equations presented in Section 2.3 in equation (2.5) show that

αj =

(
θj
δj

)
= Gjαj−1 + Ωj ,
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Figure 2.13: Sensitivity in terms of posterior estimates to observation variance
Notes: The horizontal axis shows the dose indices and the vertical axis denotes the dose-response score.

where Gj =
[

1 1
0 1

]
and Ωj is distributed according to N (0,Wj) where Wj is a known (Lnj × Lnj )

matrix. In Section 3.5, we set the diagonal values of Wj equal to
Cj(1−γ′)

γ′ where γ′ was set to 0.6.

However, our results show that the NDLM policy is highly sensitive to the choice of γ′. Figure

2.14 compares the patients assignment to the target dose under NDLM policy when γ′ changes by

±0.1 for the bell-shaped curve. In particular, Figure 2.14 shows that when γ′ changes by +0.1, the

NDLM policy can not approximate the dose-response correctly
(
see Figure 2.15(c)

)
, thus is unable

to identify the target dose. Figure 2.15 shows the posterior estimates to the dose-response curve,

0

5

10

15

20

25

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11

'=0.5 '=0.6

'=0.7 Dose-response

Figure 2.14: Sensitivity in terms of patient assignment to evolution variance
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and Figure 2.16 demonstrates the L2 distance between the estimated posterior means and the true

value of bell-shaped dose-response curve. Notice that, slightest changes in γ′ contribute to inefficient

learning of the dose-response curve apparent in Figures 2.15 and 2.16, especially when γ′ is changed

by +0.1. These observations suggest that the one-step look-ahead policy in the standard approach

may not be consistent. Heavy computational effort required by the NDLM policy reported in Table

2.2 increases this inefficiency in fine tuning the model parameters and implementing the design in

practice.
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Figure 2.15: Sensitivity in terms of posterior estimates to evolution variance
Note: The horizontal axis shows the dose indices and the vertical axis denotes the dose-response score.
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Note: The horizontal axis shows the patients number and the vertical axis denotes the L2 distance between posterior

estimates and the true model.
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2.7 Conclusion

In this chapter, we developed a novel framework to identify the target dose in response-

adaptive Phase-II clinical trials, derived analytical insights regarding the learning process, and pro-

posed a knowledge gradient policy to solve it. We also showed that our knowledge gradient policy

is consistent in that it learns the dose-response model perfectly, and thus the target dose, if the

number of patients tends to infinity. In contrast, we showed that the state-ot-the-art approach may

fail to identify the target dose. To assess the quality of our solutions, we presented a dynamic pro-

gramming formulation of the state-of-the-art approach (Section 2.3), which has been implemented

in real clinical trials (e.g., Krams et al. 2003), and compared it with our proposed approach (Section

2.4). To that end, we created a simulation study and tested the performance of both approaches on

practical instances in literature. Our results show that the proposed policies outperform the state-

of-the-art approach in terms of solution quality and time efficiency. In particular, our results show

that our policies assign the right dose to more patients than the standard approach. In addition,

our policies learn the target dose faster as they reach smaller expected variances of ED95 with fewer

number of patients. Finally, our knowledge gradient policies are far easier to implement because

they reduce the complexity of the problem, and they require significantly less computational power

and time. In particular, our policies are significantly more efficient than the standard approach in

terms of runtime in an environment where computational burden of a design is a major challenge

for implementation in practice. Therefore, our proposed approach may have a significant impact on

how dose-finding studies will be conducted.
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Chapter 3

Optimal Stopping of Adaptive

Dose-Finding Clinical Trials

Summary. The ultimate goal in a dose-finding clinical trial is to identify the target dose such that

its efficacy and adverse effects be tested afterwards in a confirmatory phase for a large population.

Adaptive designs enable decision makers to terminate or abandon the trial early on because enough

evidence is gathered for efficacy or futility, which can help reduce the costs among other significant

benefits. The optimal stopping formulation for this problem has unique features because the target

dose is not fixed at each decision epoch and its advantage over placebo is random. Therefore, conse-

quences of such uncertainty in the next confirmatory trials should be considered in decision making.

We implement a standard method developed for this problem and propose two methods: one based

on a one-step look-ahead policy and the other based on a continuous version of the problem and

approximating transitions by an Itô process. Our results reveal that if there is not a significant

advantage over placebo in the true dose-response curve, the standard method has a low probability

of selecting the right decision, which may have significant adverse consequences. In contrast, our

method based on the continuous version produces high quality solutions. Motivated by these results,

we propose a constraint on accuracy of dose-response curve estimation before deciding for stopping.

Manuscript: Nasrollahzadeh, A., Khademi, A., “Optimal Stopping of Adaptive Dose-Finding Clini-

cal Trials”, Under review at Manufacturing & Service Operations Management
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3.1 Introduction

As mentioned in Section 3.1, dose-finding trials contribute significantly to the cost of a

clinical trial. Therefore, authorities and pharmaceutical companies are motivated to reduce cost

by designing a more efficient process where efficacy or futility decisions can be made as soon as

evidence allows. Chapter 2 also identifies the main goal of dose-finding clinical trials to be searching

for the “target dose,” a critical step in the drug development process (Bornkamp et al. 2007). This

is because a poor selection of the target dose may cause the Food and Drug Administration (FDA)

to disapprove the next phase (Phase III), which is the most costly phase in drug development, due

to futility (insignificant positive evidence) or adverse effects (exposure to unnecessary risk)(Snapinn

et al. 2006). In particular, during 2000-2012, failure to select optimal drug doses was a leading

factor for delay or denial of drug submissions in the first submission round by the FDA (Sacks et al.

2014). Moreover, the European Medicines Agency stresses the importance of rigorous/scientific

dose finding by relying on model-based estimation, rather than hypothesis testing with pairwise

comparisons (Mullard 2015).

Adaptive designs of dose-finding clinical trials generally can reduce the cost of conducting

a clinical trial, in addition to having other benefits such as changing the patient randomization

decisions to avoid allocating large samples to doses that are not beneficial, and thus decreasing the

overall length of the trial. For example, in a fully sequential design, at each decision epoch, the

decision maker can terminate the trial because there is already sufficient evidence that the target

dose is efficacious or the decision maker can abandon the trial because there is not enough evidence

that the drug is effective. Therefore, adaptive designs can significantly reduce the length and sample

size of a trial which are key factors in increasing the overall costs (Berry et al. 2002), and thus optimal

stopping of a clinical trial for efficacy or futility has a natural motivation in adaptive clinical trials.

This chapter studies the optimal stopping of an adaptive dose-finding clinical trial. There is

a major difference between optimal stopping of a dose-finding clinical trial with that of a Phase III

trial, which is the confirmatory phase. This is because if the decision is to terminate a dose-finding

trial for efficacy, the next step is to run an extremely expensive Phase III trial for regularity approval

and eventual marketing. Therefore, termination decisions in dose-finding trials should consider the

probability that the confirmatory phase is successful and estimate the profit/loss upon success or

failure.
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We formulate the optimal stopping of an adaptive dose-finding trial as a finite-horizon

stochastic dynamic program (SDP), where at each intermediate decision epoch the decision maker

may abandon the trial for futility, continue the trial to collect more evidence about the dose-response

curve, or terminate the trial for efficacy and move to the confirmatory phase. A key feature in this

problem is that upon termination the decision maker has to consider the probability of success in

the next clinical trial. Before further discussion on this key feature, note that the main goal of a

dose-finding trial is to identify the target dose for which efficacy should be tested versus a standard

treatment or placebo by a large patient population in Phase III. Therefore, in order to estimate the

probability of success in Phase III, it is natural for the decision maker to consider the power of the

hypothesis test H0 : df∗ ≤ 0 versus H1 : df∗ > 0, where df∗ denotes the expected response improve-

ment over placebo or standard treatment (assuming higher response is more favorable) (Müller et al.

2006).

However, two main challenges are involved in the definition of df∗ in a Bayesian setting:

(i) The target dose is a random variable at the beginning of each decision epoch given the history

of the states, actions, and observations up to said period; (ii) The expected response of any dose

(including the target dose) is also a random variable at the beginning of each decision period given

said history. Addressing such challenges requires a proper dose-response model and a SDP setup,

which are discussed in Sections 3.2.1 and 3.3, respectively. The resulting SDP formulation, how-

ever, suffers heavily from the curse of dimensionality because the state space of the formulation is

multidimensional and unbounded.

For this problem, Brockwell & Kadane (2003) proposed an approximation procedure, which

was partially applied to optimal stopping of a fully Bayesian dose-finding trial (Berry et al. 2002).

The approximation is based on discretizing the state space by a grid, using forward simulation

until the last decision epoch to create sample paths, and using backward induction to estimate

the value function in each cell of the grid at each time period. This method is computationally

extremely time-consuming and Berry et al. (2002) stated that applying this method at each decision

epoch in a fully adaptive design is “impractical.” We implement this method in a fully adaptive

setting by parallelization of different sample paths as a benchmark, in terms of solution quality and

computational time, to our methods.

We propose two solution methods for this problem. The first one adapts the one-step look-

ahead framework, in which the decision maker assumes that the next decision epoch is the terminal
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time. This approach is computationally much less demanding than the benchmark method because it

only requires one-step forward simulations. However, the induced stopping time by this method may

happen earlier than the optimal stopping time (Proposition 3.4.1). In the second proposed method,

we consider a two-armed bandit version of the problem with one unknown arm (the target dose) and

one known arm (placebo), where the posterior of df∗, i.e, the advantage of target dose over placebo,

happens to be normally distributed in our setup. Therefore, in a continuous sampling regime, a

scaled mean of df∗ follows an Itô process, which enables us to formulate a continuous-time Bellman

equation for the continuous-time optimal stopping counterpart. By using Itô’s lemma, we show that

the optimal value function to the continuous-time Bellman equation satisfies a partial differential

diffusion-advection equation with boundary conditions (Proposition 3.4.2). In addition, the solution

to the partial differential equation depends only on the utility function (objective function of the

decision maker) which can be found upfront, and identifies a continuation region over a mean response

(vertical axis) and time (horizontal axis) coordinates, which is easy to understand and implement.

This method is also computationally appealing because it bypasses forward simulations to find the

optimal decision regions. Finally, we develop a heuristic to extend the results of one unknown arm

setting to multiple unknown arms, which has to address the challenge that the target dose is a

random variable and the observations may not belong to the true target dose.

We test the performance of the two proposed methods along the available benchmark via

simulation. In addition to monetary value of a stopping decision, which is the primary objective

function, we report the probability of correct decision at stopping time for each method. We test

the results on two setting: one where there is a significant difference between the average response

of the target dose and placebo (the ultimate decision should be termination), and one where said

difference is negligible (the ultimate decision is abandonment). Our simulation results shed light on

behavior and performance of each method.

3.2 Background

Optimal stopping is an important decision making problem and is studied in different com-

munities because of its vast applications. For classical references on optimal stopping problems see

Chow et al. (1971) and Peskir & Shiryaev (2006). The optimal stopping of a clinical trial has also

received significant attention due to its importance. For an overview of advancements in optimal
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stopping of clinical trials see a survey by Hee et al. (2016) from a Bayesian perspective and Jennison

& Turnbull (1999), O’Brien & Fleming (1979), and Whitehead (1997) from a frequentist perspec-

tive, and references therein. Also, Stallard et al. (2001) reviewed different stopping rules for Phase

II clinical trials. Here, we only focus on Bayesian decision theoretic methods developed for optimal

stopping of dose-finding trials. One main method used in Bayesian decision theoretic designs is

based on forward simulation of the trial to the end and using backward induction to estimate the

value function over a grid to ultimately evaluate the stopping region. Details of this methodology

is presented in Brockwell & Kadane (2003) and it is used in Berry et al. (2002), a fully adaptive

trial, and is also adapted to binary outcomes in Jiang et al. (2013). Note that these authors use

“constrained backward induction” terminology but we choose to use backward induction to ease

exposition. However, this method is computationally demanding and we propose two more effi-

cient algorithms to this problem which our simulation results confirm their competitive and superior

performances depending on the settings.

Our first proposal is to adapt the one-step look-ahead approach to optimal stopping of

dose-finding trials. This approach is used for sequential sampling in Bayesian settings by Gupta &

Miescke (1996) and Chick & Inoue (2001). Frazier et al. (2008) applied this method for optimal

stopping of a ranking and selection problem. Also, Branke et al. (2007) proposed two stopping

rules that stop experimenting when: i) the probability of good selection exceeds a target, or ii) the

expected opportunity cost exceeds a target in a ranking and selection setting. However, the optimal

stopping of a dose-finding trial is different from a ranking and selection setup because the decision

maker has to consider the effects of termination decision on the next confirmatory phase of the drug

development process. This consideration is handled by a hypothesis test in which the significance of

the advantage of the target dose over placebo, calculated by subtracting the placebo response from

that of the (random) target dose, is tested. Therefore, application of this method to our problem

deems its own analysis.

Our second proposed approach is inspired by a work presented in Chernoff (1961), where

a diffusion approximation is used to test whether the mean of a normal distribution is positive or

negative. Such a method is used for optimal learning of patient response types (Negoescu et al.

2017), local time method for targeting and selection (Ryzhov 2018), hiring and retention policies of

workers (Arlotto et al. 2013), discounted economic analysis in sampling selection problem (Chick &

Gans 2009), undiscounted economic analysis in sampling selection problem (Chick & Frazier 2012),
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an application of the later in optimal stopping of a Phase III clinical trial (Chick et al. 2017), and

in optimal stopping of a clinical trial with correlated treatments (Chick et al. 2018). However, the

structure of our problem is different from previous studies because the decision maker has to consider

the power of a hypothesis test and thus a need for a separate analysis. Moreover, the heuristic to

extend the diffusion results to multiple doses setting is different from the heuristic that are proposed

in the literature and is tailored to our setting; see Section 3.4.3 for details.

3.2.1 Dose-Response Model

The relationship between treatment dose of a drug and its induced response, e.g., change in

a measurable medical outcome, is essential in dose-finding studies and is usually described by a curve

or function referred to as a dose-response curve. To identify this relationship, we use the same model

as in Section 3.2.1. For example, Figure 3.1 presents three typical dose-response curves where the

sigmoid shape in Figure 3.1(a) is one of the most recurring dose-response relationships in theory and

practice (Gadagkar & Call 2015). The target dose is also defined similar to Section 3.2.1 in equation

(3.2), i.e., ED95. Note that the dynamic formulation and the approximate solutions presented in

this chapter are flexible enough to accommodate other definitions of target dose such as minimum

effective dose (MED), or maximum tolerable dose (MTD) (see Chow 2003). The motivation for

ED95 is that the highest response may correspond to high dosages (toxic doses) which may induce

unwanted adverse side effects. However, there are several ways to incorporate toxicity. For example,

one might assume that a safe dosage range is approved in Phase I of the trial, or model efficacy and

toxicity jointly; see e.g., Zhang et al. (2006). In our setup, one could define a ratio of efficacy/toxicity

as a function of f(z,Θ) instead of ED95 to consider limiting exposure to toxic levels of the drug

(Berry et al. 2002).

There are two main classic approaches to estimate the dose-response curve and, in par-

ticular, f(z,Θ). The first approach considers a functional form for f(z,Θ) upfront and seeks to

estimate the parameters Θ by using observations and prescribes decisions based on that (e.g., Kotas

& Ghate 2018). For example, one may consider an Emax model as f(z,Θ) = θ0 + θ1z
θ2+z , where

(θ0, θ1, θ2) are unknown parameters to be estimated. However, one major issue with this approach

is susceptibility to model misspecification because information arising from observations might re-

veal that the true dose-response curve is bell-shaped and thus the pre-identified Emax model was
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Figure 3.1: Typical dose-response curves

misspecified. In addition, because we consider a normal distribution on error, thus the response, a

Bayesian setup suffers from nonconjugacy, which poses significant computational challenges as one

has to use time-consuming Markov chain Monte Carlo approaches to generate samples from the

posterior distribution. Also, the state space of a SDP involves the set of all probability distributions

on the unknown parameter, making the analysis for decision making extremely challenging since the

parameters’ marginal distributions might not be known. The second approach to estimating the

dose-response curve is to use piecewise linear approximations to the curve, which addresses the chal-

lenges discussed above. In particular, because this method approximates the curve at each dose, it

does not assume a functional form for the response upfront and it is therefore less likely to experience

model misspecification error. Moreover, as we next discuss, a proper choice for curve approximation

will result in conjugacy, which significantly reduces computational efforts and simplifies analysis.

In this chapter, similar to Section 3.4, we assume that at any given dose j, the response

follows a model such that yj = θj + ε, i.e., f(Zj ,Θ) = θj . By this first-order construction, the

response of patients at dose j is normally distributed with unknown mean θj and known variance
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Figure 3.2: Two dose-response approximations
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σ2. We can interpret that such construction approximates the true dose-response curve by fitting a

piecewise linear function connecting consecutive θjs. Figure 3.2 shows a true response curve along

with the piecewise linear approximation induced by the proposed model. More complicated models

can also be considered to approximate the dose-response curve. For example, in Figure 3.2, a second

order normal dynamic linear model (NDLM) is also used to approximate the true dose-response

curve, by which a patient’s response for doses close enough to dose z ∈ Z is estimated by fitting a

straight line using the expected response at dose z and a slope at that dose as model parameters.

This is the approach proposed by Berry et al. (2002) and applied in dose-finding trials by Krams

et al. (2003), Warner et al. (2015), Lenz et al. (2015) and Liu et al. (2017); see Section 3.3. The

NDLM model is flexible in approximating any dose-response curve and allows for a linear correlation

structure with random deviations. Although our proposed one-step look-ahead policy can be adapted

to more complicated dose-response models such as NDLM, the diffusion approximation method relies

on the proposed first-order model and its extension to more complicated models is not clear since

df∗, the advantage over placebo, will not follow an Itô process any longer. Moreover, it is shown

in Chapter 2 that the first-order approximation model is competitive to the NDLM in representing

the true dose-response curve when adapted in an optimal learning setting. In addition, the one-step

look-ahead policy for the first order construction, with the objective of minimizing the variance of

the target dose, is consistent as the number of patients grow to infinity. There is also another method

known as Gaussian process regression which approximates the dose-response curve in a continuous

fashion, where new measurements are not limited to a predetermined set of doses; see Powell &

Ryzhov (2012). However, since the FDA only accepts the dosages for which patient responses are

available, a discrete approach in approximating the dose-response curve is sufficient.

In this chapter, we only investigate the optimal stopping problem and fix the allocation

policy and the dose-response approximation model to those proposed in Section 3.4. Therefore,

we consider a Bayesian setup where the decision maker has a multivariate normal belief about the

expected response Θ and updates her belief upon each observation of patient’s response.

3.3 Problem Formulation

In this section, we present a stochastic dynamic programming formulation for the response-

adaptive optimal stopping of dose-finding clinical trials. At each decision epoch, based on the
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information accrued so far, an investigator decides whether to (i) abandon the trial due to lack of

significant positive evidence about effectiveness of the treatment, (ii) continue the trial to collect

more information if there is significant positive evidence about the effectiveness of the treatment with

expectation of improvement, or (iii) terminate the trial for efficiency and move to a confirmatory

study such as Phase III when effectiveness is verified by testing the treatment for a large population.

The optimal stopping problem is coupled with an adaptive patient allocation decision, i.e., upon

continuation, the decision maker has to allocate a dose to the next patient in the trial. The objective

of the decision maker in patient allocation problem is to identify the target dose with higher accuracy,

i.e., minimization of variance of the target dose, which is called D-optimal design in statistical

literature (Berry et al. 2002). However, the objective of optimal stopping in this context is expressed

in terms of monetary value as will be discussed later in this section. This objective, which is

called net present value (NPV) in finance literature, is appropriate in stopping problems where

sampling costs and rewards are financial measures themselves (Brealey et al. 2012). Therefore, in

this chapter, we assume that the allocation decisions, upon continuation of the trial, are based on

variance minimization objective and is independent of the optimal stopping problem. In particular,

we follow a one-step look-ahead policy in allocating patients to treatments to minimize the variance

of the target dose, proposed in Chapter 2.

Recall that Θ represents a vector of unknown expected responses corresponding to doses

in set Z where the resulting dose-response function is formalized by f(z,Θ) = θz. Let n de-

note decision epochs, N be the total number of (potential) homogeneous patients in the trial, and

yn+1 = θzn + εn+1 be the observed response of patient n + 1 after assignment to dose zn where

(yn+1|Θ, zn) ∼ N (θzn , σ
2). We assume that the response of a patient is observed before the next

decision epoch. Define Fn as the sigma-algebra generated by z0, y1, z1, y2, . . . , zn−1, yn. Note that

z0 is the assignment dose before observing any response and τ represents some stopping time at

which F τ describes the accrued information gathered by sampling τ patients. We use y and ŷ to

denote true and simulated observations, respectively.

State space. Decision epochs are set at times when response of a patient is observed. We assume

a possibly correlated multivariate normal prior on our belief about Θ, i.e., Θ ∼ N (µ0,Σ0). Recall

that said construction approximates the dose-response curve by a piecewise linear function using

estimates θj at each dose Zj . Observations y form a normal likelihood distribution resulting in a

Bayesian conjugate setup where posterior distributions on Θ are also multivariate normal. Define
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µn := E[Θ|Fn], and Σn := Cov[Θ|Fn] as posterior moments of the belief about Θ. At decision

epoch n in the trial, an investigator decides about abandoning, continuing, or terminating only

based on the current estimate of the dose-response curve, which is summarized by the posterior

normal probability distribution on parameter Θ given historical information Fn, i.e., P(Θ|Fn).

This posterior can be completely described by state variable sn = (µn,Σn). Thus, the state space

S is defined as

sn ∈ S :=
{

(µ,Σ) : µ ∈ RJ ,Σ ∈ Ψ
}
∪ O,

where Ψ denotes the set of J × J positive semidefinite matrices, and O denotes an absorbing state

showing the end of the decision making process.

Action space. At each decision epoch, if enough evidence (in the form of current estimate of the

dose-response) has emerged to suggest that an effective target dose is identified, and sampling more

patients will not improve the estimate by a significant margin considering the cost of sampling,

the investigator may decide to “terminate” the trial and switch to a confirmatory phase where the

target dose is further tested to confirm its effectiveness. On the contrary, the decision maker might

learn that the current estimate of the dose-response curve shows no signs of effectiveness, e.g., a

flat dose-response curve, and sampling more patients will only increase trial costs, and thus the

investigator may “abandon” the trial. However, if the current estimate of the dose-response curve

suggests that an effective target dose may be identified and continuing the trial with more sampling

potentially may lead to a significant improvement of the estimate and utility, then the investigator

may “continue” the trial by allocating a dose to the next patient, observe the response, and update

the current estimate of the dose-response curve. Recall that the allocation scheme is assumed to be

given and independent of optimal stopping problem. Define an(s) ∈ {0, 1, 2} as the decision variable

when in state s, where “0” shows that the decision is to abandon the trial, “1” shows the continuation

of the trial, and “2” shows that the trial is terminated. Thus, the action space is described by

A(s) :=
{
an(s) ∈ {0, 1, 2}, ∀n ≤ N

}
,

where at stopping time n = τ , or the last decision epoch n = N , an ∈ {0, 2}. For s = O, set

A(s) := ∅.

Transitions. Terminating or abandoning the trial at decision epoch n determines the stopping

time as τ = n, and the dynamic system transits to state O where no more sampling is allowed and
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the current estimate of the dose-response curve remains unchanged. However, if the decision is to

continue the trial, a dose is selected according to an allocation policy and its observed response will

be used in order to update the current estimate of the dose-response curve, i.e., transit to a new

state. The new state sn+1 = (µn+1,Σn+1) is described by

µn+1 = µn + σ̃
(
Σn, j

)
Xn+1,

Σn+1 = Σn − σ̃
(
Σn, j

)
σ̃′
(
Σn, j

)
,

(3.1)

where an(s) = j denotes the allocated dose, σ̃(Σn, j) :=
Σnej√

(σ2+Σnjj)
, ej is a J-vector of 0s and a single

1 at the jth index, and Xn+1 := yn+1−µn√
(σ2+Σnjj)

is a standard normal random variable when conditioned

on Fn.

Objective function. We consider maximizing monetary equivalent of benefits acquired due to

early termination or abandonment of the trial versus costs incurred by continuing the trial with

more sampling. If the decision is to abandon the trial, i.e., an = 0, then no immediate reward or

cost is incurred. If the decision is to continue the trial, i.e., an = 1, then only a sampling cost

c1 > 0 is paid. In case of termination, i.e., an = 2, immediate reward consists of the monetary value

of the advantage over placebo, if such an advantage is significant, minus the setup/sampling cost

in the confirmatory phase. Define utility function u(an, sn,Fn) as the expected immediate benefit

(reward−cost) incurred when deciding on action an in state sn given information Fn by

u(an, sn,Fn) =


0 if an = 0,

−c1 if an = 1,

−c′1np + c2mnE[1{Bn}|Fn] if an = 2,

(3.2)

where c′1np is the cost of sampling np patients in the confirmatory phase (c′1 > 0), and c2 > 0 is

the payoff per unit advantage of the current estimate of the target dose over placebo. Note that

mn = E[df∗|Fn] denotes the expected advantage over placebo where df∗ = θz∗ − θ0, z∗ being

the (random) target dose, and θ0 is the known and fixed response of placebo. Since z∗ is random

with respect to Fn, θz∗ denotes the posterior expected response at dose z∗, and thus df∗ identifies

the posterior advantage over placebo. Furthermore, The indicator function 1{Bn} determines the

significance of the advantage over placebo by considering the event Bn in which the null hypothesis
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is rejected when comparing H0 : df∗ ≤ 0 versus H1 : df∗ > 0. In particular,

Bn :=

{√
np(ȳ∗ − ȳ0)
√

2σ2
> qα

}
, (3.3)

where ȳ∗ and ȳ0 denote np-sample average responses of the estimated target dose and placebo at

decision epoch n, and qα denotes (1−α) quantile of normal distribution with α being the significance

level for the hypothesis. The expectation E[1{Bn}|Fn] can be estimated with an arbitrary accuracy

by Monte Carlo as follows: Create a sample from Θ and calculate the target dose, z∗, for said

sample by equation (3.2); Create np samples from N (θz∗ , σ
2) and N (θ0, σ

2); Calculate ȳ∗ and ȳ0

and identify whether the event Bn occurs; Continue this process for enough samples and take a

sample average to estimate E[1{Bn}|Fn]. Note that the utility function defined in this section is

tailored to our specific problem. However, both of our proposed methods can handle various utility

functions as long as they are measurable with respect to the defined filtration.

Given that a decision to abandon or terminate the trial has been made at stopping time

n = τ , the optimal expected utility is given by

G(sτ ) = max
aτ∈{0,2}

u(aτ , sτ ,F τ ) = max
{

0,−c′1np + c2mτE[1{Bτ}|F τ ]
}
. (3.4)

Therefore, for every n < τ , the decision has to be an = 1 and a sampling cost c1 is paid as the

expected immediate utility, i.e., u(an = 1, sn,Fn) = −c1. Let lπ(s0) denote the expected utility at

stopping time τ given historical information F τ under policy π when the initial prior on the belief

about Θ is s0 = (µ0,Σ0); that is,

lπ(s0) = Eπ
{
− c1τ + max

π(aτ )∈{0,2}
u
(
π(aτ ), sτ ,F τ

)∣∣∣s0
}
, ∀π ∈ Π, (3.5)

where Π is the set of all non-anticipative admissible policies, and the investigator selects a policy

π ∈ Π such that V (s0) = supπ∈Π lπ(s0). Therefore, the optimal value function is the solution to the

following optimality equations

V (sn) = Eτ supτ≥n+1

{
− c1(τ − n) + E

[
V (sτ )

∣∣Fn
]}
,

V (sτ ) = G(sτ ),
∀s ∈ S. (3.6)
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The state space defined on our belief about the dose-response curve Θ is unbounded, and

thus standard SDP techniques are computationally intractable. We describe and implement the

status-quo algorithm to approximate this problem and propose two different alternative techniques

to solve it.

3.4 Approximate Solutions

In this section, we explain three approximate methods. In particular, Berry et al. (2002)

used a simulation-based gridding algorithm discussed in Section 3.4.1 to evaluate stopping times.

This approach is computationally extremely expensive in implementation and gives rise to “static

terminator” where for a few sample dose-response curves, a large number of trials are simulated

forward in time to compute their average expected utility over a discretized grid by backward

induction. These approximations are used statically to evaluate stopping times for “similar” dose-

response curves. Section 3.4.2 proposes a one-step look-ahead policy to find stopping times. At each

decision epoch, this policy assumes that the next decision epoch is the last, and thus selects the

decision with the maximum expected utility, eliminating simulation of a large number of trials to

the end. Finally, Section 3.4.3 proposes a diffusion approximation method within which the Bellman

equation resulting from optimality equations (3.6) is approximated by a diffusion-advection partial

differential equation from which stopping boundaries are derived. Because this approach depends

only on prior information and utility function, it finds the stopping region upfront and does not

require any forward simulation or backward induction while being far more efficient.

3.4.1 Simulation-Based Gridding Approximation

A full solution to the response-adaptive optimal stopping problem in Section 3.3 requires

backward induction where final stage of observation is evaluated first, and then earlier stages are

computable using optimal values of later stages. Note that the final stage can be enumerated because

it does not involve future expectation of utility. However, since the state space is unbounded, this

method is computationally intractable. Brockwell & Kadane (2003) and Müller et al. (2007) proposed

a method in which the state space is discretized by a grid and a sufficient number of experiments are

run to estimate the final stage value function. The key idea is that in each cell of this grid, say cell

j, the value of termination and abandonment can be evaluated easily. The value of continuation is
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the sample average (Monte Carlo) of all the cells which are visited in the next decision epoch by the

experiments currently visiting cell j. We present the details of the approach for completeness and

to clarify the differences between the assumptions used in this approach with those in our setup.

To construct the grid, Berry et al. (2002) assumed a normal prior on the advantage over

placebo, i.e., df∗ ∼ N (m0, ν
2
0). Let (mn, νn) denote the posterior mean and standard deviation

of the advantage over placebo at ED95 at time n, i.e., mn = E[df∗|Fn] and ν2
n = Var[df∗|Fn].

Construct a bivariate grid over possible values of m and ν carefully considering their upper and

lower bounds as follows. Given the allocation scheme and thus the allocation dose zn, simulate

trials i = 1, . . . ,M by generating observations ŷ
(n+1:N)
i , and update the current estimate of the

mean for dose-response curves Θ by calculating µ
(n+1:N)
i and Σ

(n+1:N)
i . In order to estimate mn

and ν2
n, at each decision epoch, after the current Θ is evaluated, simulate samples from Θ, identify

the target dose for each sample, and calculate the posterior mean and standard deviation of df∗

through sample mean and variance estimation. Record the trajectory of each trial, i.e., the sequence

of (mn, νn), over the bivariate grid for (m, ν). For example, Figure 3.3(a) shows 30 trial trajectories

of mn on a simplified univariate grid (only mn versus n) for N = 10 patients. It might be the

case that some of the grid cells remain empty, i.e., no simulated trials resulted in m and ν values

corresponding to that cell, which affects the quality of the approximation. To fix that, consider a

particular (mn, νn) corresponding to those cells as priors and simulate a number of trials starting

from those cells. Thus, the entire grid is populated.

Remark 3.4.1 Note that we assumed a correlated multivariate normal prior on our belief about Θ,

that is Θ ∼ N (µ0,Σ0). However, as noted before, z∗=ED95 is random with respect to Fn, and

thus θz∗ is not distributed normally with respect to Fn. In the simulation-based gridding algorithm,

the actual unknown distribution of θz∗ is approximated by a normal distribution in the literature.

However, we do not make such an assumption in the proposed one-step look-ahead policy and the

diffusion approximation method in Sections 3.4.2 and 3.4.3.

To evaluate the optimal decision in each cell, start from the last decision epoch N when the

continuation decision is not available and the optimal value function can be computed by equation

(3.4). Denote Anj as the subset of indices i ∈ {1, . . . ,M} whose trajectories terminate in the jth

cell (which corresponds to a (m, ν) pair) in the grid (mn, νn, n). For the last decision epoch N ,

this is demonstrated by darker trajectories which end up in a specific cell in Figure 3.3(a). The
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termination utility function in the jth cell is evaluated by taking a sample average of the value

functions corresponding to trial simulations whose trajectories terminated in that grid cell, i.e.,

ÛNj (aN = 2) ≈ 1

|ANj |
∑
i∈ANj

uNj (aN = 2, ŝNi ), (3.7)

where ÛNj (aN = 2) is the approximated utility function at decision epoch N in the grid cell j when

the decision is to terminate the trial, | · | denotes set cardinality, and the utility function uNj (aN , ŝNi )

is known for aN ∈ {0, 2} and ŝNi = (mN
j , ν

N
j ) for all i ∈ ANj where mN

j and νNj correspond to the

jth cell values for m and ν, respectively. Therefore, the expected utility of termination at the last

decision epoch N is given by

uNj (aN = 2, ŝNi ) = −c′1np + c2m
N
j E[1{BN}|FN ] ∀i ∈ ANj ,

where BN :=

{ √
np(ȳ∗−ȳ0)√

(2σ2+(νNj )2)
> qα

}
with

√
2σ2 + (νNj )2 denoting the posterior predictive variance

of ȳ∗ − ȳ0, and thus the approximated value function in each cell of the grid at decision epoch N is

V̂ ∗,Nj = max
{

0, ÛNj (aN = 2)
}
, (3.8)

where if V̂ ∗,Nj = 0, the optimal decision is to abandon the trial in the jth grid cell, i.e., a∗,Nj = 0.

Otherwise, the optimal decision is to terminate the trial, a∗,Nj = 2. Working backwards, the utility

function in the jth cell for n < N when the decision is to continue the trial is given by the following

sample average

Ûnj (an = 1) ≈ 1

|Anj |
∑
i∈Anj

V̂ ∗,n+1
j(i) , (3.9)

where j(i) denotes a cell that trajectory i visits at decision epoch n+1. Therefore, the approximated

value function in each cell of the grid at decision epoch n < N is

V̂ ∗,nj = max
{

0, Ûnj (an = 1), Ûnj (an = 2)
}
. (3.10)

Enumerating the entire grid backwards until decision epoch n identifies the optimal decision and

value function for each cell. Figure 3.3(b) shows a hypothetical example of optimal decisions on

the grid (m, ν) at a particular decision epoch n. Algorithm 1 describes the gridding algorithm in
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Figure 3.3: An example of gridding approximation

an online fashion where after each observation the entire process is repeated to find the stopping

region. At each period, dose allocation zn is given and the state variable (µn,Σn) is known. Steps

3-14 describe the M forward simulations of the trial starting from decision epoch n to the end of

trial N . In particular, for each i ∈ {1, . . . ,M} and for any decision epoch n ≤ k ≤ N , dose zki

is determined by the fixed allocation policy. A future observation is simulated using the posterior

predictive distribution. This observation is then used to update the state variable (µki ,Σ
k
i ). Using

the updated state variable, a sample of T dose-response curves Θ are generated whereafter mk
i and

νki are evaluated using sample mean and sample variance, respectively. Steps 16-23 implement a

similar procedure for the cells that are not populated already. Note that experiments i ∈ {1, . . . ,M},

or i ∈ {1, . . . ,M ′} are independent of each other and can run in parallel. We used the “foreach”

package in the R programming language to parallelize the forward simulations and reduce run time.

When the grid is fully populated, starting from step 25, we use backward induction to evaluate the

optimal value function and thus the optimal decision for each cell in the grid. Starting from the last

epoch N , the optimal value function is the maximum expected value of termination or abandonment

for that cell since only these two decisions are available. The expected value of termination is easily

evaluated because in each cell (m, ν) are known. Working backwards, in order to find the optimal

value function and the optimal decision for each cell, we need to consider the expected value of

continuation as well. This is achieved by tracking which experiments are visiting each grid cell in

Akj at each decision epoch. Therefore, using equation (3.9), the utility of continuation in each cell j

at decision epoch k is the average optimal value function of the cells at decision epoch k + 1 which

are visited by an experiment originating from cell j.
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Algorithm 1 is run at each decision epoch n to evaluate the optimal value function and

thus the optimal decision across the entire grid. Thereafter, at decision epoch n, true response yn

is observed, and using a similar procedure to steps 7 − 11, (mn, νn) are evaluated and the optimal

decision is identified by finding the corresponding grid cell for (mn, νn). Berry et al. (2002) applied

this approach under a set of “typical dose-response curves” where the approximate value function

for each grid cell was computed by taking the average of expected utilities under the same set of

dose-response curves. Therefore, when a true observation from a dose-response curve investigated

in the trial becomes available at decision epoch n, (mn, νn) tuple is evaluated and depending on

which grid cell it falls into, the optimal decision is identified. This approach may be problematic

particularly when the unknown dose-response curve does not closely resemble those in the typical

set. Furthermore, when the shape of the dose-response curve is unknown and a response-adaptive

dynamic allocation scheme is trying to learn it, the resulting response-adaptive optimal stopping

problem becomes computationally demanding since every time a true observation is received and the

approximated dose-response curve is updated, a large number of forward simulations from decision

epoch n to N are required to update the grid and evaluate the optimal decision for each cell. In fact,

Berry et al. (2002) stated that this approach is “impractical” to be repeated when a new observation

becomes available. In Sections 3.4.2 and 3.4.3, we propose alternative methods that are significantly

more efficient and can be used in a fully sequential setting.

3.4.2 One-Step Look-Ahead Policy

Frazier et al. (2008) proposed a kind of one-step look-ahead policy (knowledge gradient) to

optimal stopping of ranking and selection problems by assuming the experiment has to terminate

at the next decision epoch. We adapt such a framework into the optimal stopping of a dose-finding

trial with unique challenges. In particular, we consider three actions at each decision epoch, i.e,

abandonment, continuation, and termination, whereas in most standard ranking and selection prob-

lems, only continuation and termination decisions are available. Furthermore, our utility function

consists of E[1{Bn}|Fn], which is emanated from evaluating the significance of the advantage over

placebo via a hypothesis test, when the decision is to terminate the trial.

To quantify the value gained in continuing the trial, define V KG
an=1(s) as a function that

measures the difference between terminating or abandoning the trial at time n, and continuing the
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Algorithm 4 Simulation-based Gridding Algorithm

1: Input. The allocation scheme zn and state (µn,Σn).
2: ######## Forward simulations: Populate the grid with M experiments ########
3: for i := 1 to M do
4: for k := n to N do
5: Using the fixed and given allocation scheme, evaluate dose zki .
6: Simulate future observation ŷk+1

i |µki ,Σki , zki ∼ N (µki,z, σ
2 + Σki,zz).

7: Update the state using ŷk+1
i to obtain (µk+1

i ,Σk+1
i ) by equation (3.1).

8: Generate T samples of dose-response Θk
i,t ∼ N (µk+1

i ,Σk+1
i ).

9: Estimate the target dose z∗,ki,t for each Θk
i,t using equation (3.2).

10: Let df∗,ki,t = f(z∗,ki,t ,Θ
k
i,t)− f(0,Θk

i,t).

11: Estimate mk
i and νki using T -sample mean and T -sample variance.

12: Record the trajectory of (mk
i , ν

k
i ) in the grid (m, ν, k) for experiment i.

13: ########### Forward simulations: Populate the empty cells ###########
14: for each empty cell j in the grid (m, ν, n : N) do
15: Identify (mj , νj , nj).
16: for i := 1 to M ′ do
17: for k := nj to N do
18: Repeat steps 5-12.
19: ################# Backward induction ###################
20: for k := N to n do
21: for each cell j in the grid (m, ν, k) do
22: Determine Akj defined in Section 3.4.1.
23: if k = N then
24: Evaluate the optimal approximated value function by equation (3.8).
25: else
26: Evaluate the approximated utility of continuation by equation (3.9).
27: Evaluate the optimal approximated utility by equation (3.10), thus the optimal decision.

trial incurring the cost of sampling and terminating or abandoning the trial at time n+ 1, i.e.,

V KG
an=1(sn) = E

{
− c1 + max

an+1∈{0,2}
u(an+1, sn+1,Fn+1)

∣∣∣Fn
}
− max
an∈{0,2}

u(an, sn,Fn), (3.11)

where the knowledge gradient policy πKG, hereafter KG policy, decides to continue the trial, i.e.,

aπ
KG

(sn) = 1, when V KG
an=1(sn) > 0. In the case that V KG

an=1(sn) ≤ 0, the optimal decision is

identified by aπ
KG

(sn) ∈ arg max
an∈{0,2}

u(an, sn,Fn). Note that aπ
KG

(s) is a function returning the

optimal decision selected when in state sn under the KG policy πKG. In order to evaluate V KG
an=1(sn),

one needs to estimate both the current expected utility function u(an, sn,Fn), and the one-step

utility function u(an+1, sn+1,Fn+1) by taking a sample average (Monte Carlo). Algorithm 2 details

this procedure. At each decision epoch n the state (µn,Σn) is given. To evaluate the utility of

termination, a T -sized sample of dose-response curves Θn
t is generated. For each Θn

t , target dose
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z∗,nt is evaluated via equation (3.2), and thus the advantage over placebo, i.e., df∗ can be calculated

where df∗n,t = f(z∗t ,Θ
n
t )− f(0,Θn

t ). Estimate mn, and νn using sample mean and sample variance.

These values are later used in step 9 to evaluate the expected utility of termination. Then, np

observations of y∗ and y0 are generated where ŷ|Θ, z ∼ N (θz, σ
2) in order to estimate E[1{Bn}|Fn]

by Monte Carlo. The value of termination is then computed via equation (3.2).

Instead of simulating the entire trial to the last participant N to evaluate the value of

continuation, a one-step look-ahead policy is implemented where at each decision epoch n, the next

stage is assumed to be the last. Therefore, the value of continuation is computed by looking one

step into the future. Starting from step 11 in Algorithm 5, the trial is simulated one-step into the

future by generating future observations and updating the estimate of the dose-response curve Θ

with respect to them. For each simulated observation, our belief about the dose-response curve is

updated and the expected value of termination in the next stage is estimated. Taking a sample

average over all these values results in an approximation of the expected utility of termination at

decision epoch n + 1. Since the expected value of abandonment is fixed to 0, one can approximate

the value of continuation in equation (3.11) by taking the maximum over 0 and the approximated

expected value of termination. The one-step look-ahead stopping rule is checked in step 17 of

Algorithm 5. This approach replaces a large number of trial simulations from decision epoch n

to N by one-step forward simulations of the trial, which significantly reduces the complexity and

computational time of the algorithm.

The following result bounds the optimal decision from below, and shows that the KG policy

may stop sooner than the optimal policy, i.e., whenever the KG policy decides to continue the trial,

the optimal decision is also continuation of the trial. This proposition motivates a sensitivity analysis

with respect to the history of the trial. In particular, we later show that stopping sooner than the

optimal policy may result in low probability of correct decision in certain situations.

Proposition 3.4.1 The optimal stopping time τ is bounded below by the KG stopping time τKG,

i.e., τKG ≤ τ .

Proof. Consider the optimal stopping problem at time n when the system is in state sn. Based on
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Algorithm 5 One-Step Look-Ahead Policy

1: Input. State (µn,Σn) at the beginning of each decision epoch.
2: Generate T samples of Θn

t ∼ N (µn,Σn).
3: Estimate the target dose z∗,nt using equation (3.2).
4: Let df∗n,t = f(z∗t ,Θ

n
t )− f(0,Θn

t ).
5: Estimate mn and νn using T -sample mean and T -sample variance.
6: Generate np observations of ŷn∗,t − ŷn0,t|Θn

t .

7: Check whether the event Bnt := {
√
np(ȳ∗,t−ȳ0,t)√

2σ2
> qα} holds true.

8: Estimate E[1{Bn}|Fn] by taking a sample average over T samples.
9: Evaluate the value of termination, i.e., an = 2 using equation (3.2).

10: ################One-step forward simulation##################
11: for t := 1 to T do
12: Simulate future observation ŷn+1

t |Θn
t , z

n ∼ N (θt,zn , σ
2).

13: Update the state using ŷn+1
t to obtain (µn+1

t ,Σn+1
t ) by equation (3.1).

14: Generate M posterior samples of Θn+1
t,m ∼ N (µn+1

t ,Σn+1
t ).

15: Repeat steps 3-9 to evaluate the value of termination by taking sample average of M values.
16: Evaluate V KG

an=1 via equation (3.11) by taking a sample average of T estimated termination values
in the above “for” loop.

17: if V KG
an=1 > 0 then

18: The optimal decision is to continue, go to step 2, n← n+ 1.
19: else
20: Terminate or abandon the trial using the expected value of termination evaluated at step 9.

equation (3.11), the KG policy decides to continue the trial only if

max
(

0,−c′1np + c2mnE[1{Bn}|Fn]
)
< En

{
− c1 + max

an+1∈{0,2}
u(an+1, sn+1,Fn+1)

∣∣∣Fn
}
,

where the left hand side of the inequality denotes the value of terminating or abandoning the trial at

time n while the right hand side denotes the value of continuing the trial. To prove the proposition,

it is enough to show that whenever the KG policy decides to continue the trial, the optimal policy

also chooses continuation. The optimal policy decides to continue the trial if

max
(

0,−c′1np + c2mnE[1{Bn}|Fn]
)
< Eτ sup

τ≥n+1

{
− c1(τ − n) + En

[
max

aτ∈{0,2}
u(aτ , sτ ,F τ )

∣∣Fn
]}
,

where the value of termination or abandoning is equal to that of the KG policy, i.e., the left hand

sides in both above inequalities are equal. Note that the supremum is taken over the set τ ≥ n+ 1
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which contains τ = n+ 1, and thus

Eτ sup
τ≥n+1

{
− c1(τ − n) + En

[
max

aτ∈{0,2}
u(aτ , sτ ,F τ )

∣∣Fn
]}

= Eτ sup
τ≥n+1

{
En
[
− c1(τ − n) + max

aτ∈{0,2}
u(aτ , sτ ,F τ )

∣∣Fn
]}

≥ En+1
{
En
[
− c1(n+ 1− n) + max

an+1∈{0,2}
u(an+1, sn+1,Fn+1)

∣∣Fn
]}

= En
{
− c1 + max

an+1∈{0,2}
u(an+1, sn+1,Fn+1)

∣∣∣Fn
}
,

where the last equality is justified by the tower property of conditional expectation. Therefore,

whenever the KG value of continuation is greater than abandoning or terminating the trial at time

n, the optimal value of continuation is also greater and the optimal policy decides to continue the

trial. �

3.4.3 Diffusion Approximation

Although the complexity and computational time of the knowledge gradient method is

significantly better than the simulation-based gridding method, both require forward simulations to

approximate the optimal solution to the value functions in (3.6). Instead, we propose a method that

assumes a prior belief about the actual benefit of the target dose over placebo and approximates

its increments over time by a continuous-time Wiener process, which enables us to analyze the

optimal stopping boundaries offline. This framework is inspired by Chernoff (1961), where a diffusion

approximation is used to sequentially test whether the drift of a Wiener process is positive. Brezzi

& Lai (2002), Chick & Gans (2009), Chick & Frazier (2012) and others used this framework to

approximate the solution of the Bellman equation in option pricing, ranking and selection, and

multi-armed bandit settings. Our approach also approximates the stopping time of sequential normal

means (i.e., advantage over placebo) by solving a continuous-time Bellman equation. To that end,

we first consider a setting where there is a single unknown dose versus a known placebo and develop

optimal stopping boundaries for it. Then, we design a heuristic that uses the said boundaries to

create decisions in multiple doses settings. Details of this method are included to demonstrate the

challenges when extended to multiple doses.

A single dose with unknown mean response versus a placebo with known mean response.

For now, assume that the trial involves a placebo with known expected response and a single dose
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with unknown expected response. In particular, without loss of generality assume that y0 ∼ N (0, σ2)

and y∗ ∼ N (θ, σ2), where θ is unknown and a prior θ ∼ N (m0, ν
2
0) is given, where we set t0 = σ2

ν2
0

.

For a single dose, the advantage over placebo is given by df∗ = θ−0 = θ; see Section 3.3. Therefore,

at each time period, a sample from the dose with unknown mean is observed and the posterior on

θ and, therefore, on df∗ becomes df∗|Fn ∼ N (mn,
σ2

tn
) where

tn = t0 + n,

mn =
t0
tn
m0 +

∑n
i=1 ŷ

i
∗

tn
.

(3.12)

Note that in this setting df∗ naturally follows a normal distribution. Recall that in the utility

calculation there is an expectation to calculate, which by this construction has a closed form. In

particular, we have

E[1{Bn}|Fn] = P

{√
np(ȳ∗ − ȳ0)
√

(2σ2 + σ2

tn
)
> qα

∣∣∣∣Fn

}

= 1− Φ
(
Qα(mn, tn)

)
,

where Qα(mn, tn) = qα −
mn
√
np

√
(2σ2+σ2

tn
)
, 2σ2 + σ2

tn
is the posterior predictive variance of ȳ∗ − ȳ0, and

Φ(·) denotes a normal cumulative distribution function.

Redefine the state variable ŝ = (mn, tn), and using ŝ0 = (m0, t0), let l̃π(ŝ0) denote the

expected utility at stopping time τ under policy π ∈ Π when the initial prior is parametrized by

(m0, t0), i.e.,

l̃π(ŝ0) = Eπ
[
− c1τ + max

{
0,−c′1np + c2mτ

(
1− Φ(Qα(mτ , tτ ))

)}∣∣∣∣ŝ0

]
, (3.13)

where the investigator selects a policy π ∈ Π such that V ∗(ŝ0) = supπ∈Π l̃π(ŝ0).

Define x0 = m0t0 and xn = x0 +
∑n
i=1 ŷ

i
∗ where mn = xn

tn
. Using these definitions, the state

variable can be rewritten as ŝn = (xn, tn). Let G(xτ , tτ ) denote the optimal expected utility at the

stopping time given by

G(xτ , tτ ) = max
{

0,−c′1np + c2
xτ
tτ

(
1− Φ

(
Qα(

xτ
tτ
, tτ )

))}
. (3.14)

Since the utility functions are uniformly bounded for any state and action, and the action space is
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finite, there exits a Markovian and deterministic optimal policy (Bertsekas & Shreve 1996, Chapter

8). Therefore, the optimal policy to V ∗(m0, t0) = supπ∈Π l̃π(m0, t0) is also the solution to the

following Bellmen equation

B(xn, tn) = max
{
G(xn, tn),−c1 + E

[
B(xn+1, tn+1)

∣∣xn, tn]},
B(xτ , tτ ) = G(xτ , tτ ),

(3.15)

where tn+1 = tn + 1, and xn+1 = xn + ŷn+1
∗ .

Note that optimality equation (3.15) has a continuous state space and thus it is computa-

tionally intractable to solve. Therefore, in order to approximate the solution to the Bellman equation

in (3.15), suppose that patients’ responses are observed continuously rather than at discrete deci-

sion epochs tn. Also, extend xn to be a continuous real valued random variable for real valued tn.

Therefore, the cumulative sum xn = x0 +
∑n
i=1 ŷ

i
∗ may be interpreted as accumulated diffusion of

patients’ responses where xn is a Brownian motion with drift mn and variance σ2 per unit time,

that is,

dxn = mn dt+ σ dWn, (3.16)

where Wn is a standard Brownian motion. Note that the diffusion process is utilized to approximate

the posterior mean of the dose level. Extend the definition of filtration Fn to be the natural

sigma-algebra generated by the process {xn}n∈[t0,tn], i.e., F
n∈[t0,tn]
ct . Therefore, the continuous-

time approximation of the Bellman equation in (3.15) is given by

Bct(xn, tn) = max
{
G(xn, tn),−c1∆t+ E

[
B(xn+∆t, tn + ∆t)

∣∣Fn
ct

]}
,

Bct(xτ , tτ ) = G(xτ , tτ ).

(3.17)

The following proposition shows that Bct(xn, tn) is the solution to a free boundary problem with a

partial differential diffusion-advection equation and two boundary conditions.

Proposition 3.4.2 Bct(xn, tn) is the solution to the following partial differential equation in the

continuation set C :=
{

(xn, tn) : −c1∆t+ E
[
Bct(xn+∆t, tn + ∆t)

∣∣Fn
ct

]
> G(xn, tn)

}
,

0 = −c1 +
∂Bct(xn, tn)

∂t
+
∂Bct(xn, tn)

∂x

xn
tn

+
1

2

∂2Bct(xn, tn)

∂x2
σ2, (3.18)
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where Bct(xn, tn) = G(xn, tn) outside of the continuation set C . The free boundary ∂C is given by

Bct(xn, tn) = G(xn, tn), on ∂C ,

∂Bct(xn, tn)

∂x
=
∂G(xn, tn)

∂x
, on ∂C .

(3.19)

Proof. Assuming that Bct(xn, tn) is twice differentiable in the continuation set C , Bct(xn+∆t, tn+∆t)

in equation (3.17) may be written according to the Taylor series expansion by

Bct(xn, tn) = −c1∆t+E
[
Bct(xn, tn)+

∂Bct(xn, tn)

∂t
∆t+

∂Bct(xn, tn)

∂x
∆x+

1

2

∂2Bct(xn, tn)

∂x2
(∆x)2+O(∂t)

]
,

where O(∂t) denotes all the terms in the Taylor expansion with ∂t2, ∂t∂x, or higher degrees of

differentiability in ∂t. Replacing ∆xn with mn dt+ σ dWn, we have

Bct(xn, tn) = −c1∂t+ E
[
Bct(xn, tn) +

∂Bct(xn, tn)

∂t
∂t+

∂Bct(xn, tn)

∂x
(mn ∂t+ σ ∂Wn)

+
1

2

∂2Bct(xn, tn)

∂x2
(mn ∂t+ σ ∂Wn)2 +O(∂t)

]
.

Using Itô’s lemma, and noting that ∂t2 and ∂t∂W tend to zero faster than ∂W 2 when ∂t→ 0,

Bct(xn, tn) = −c1∂t+ E
[
Bct(xn, tn) +

(∂Bct(xn, tn)

∂t
+
∂Bct(xn, tn)

∂x
mn +

1

2

∂2Bct(xn, tn)

∂x2
σ2
)
∂t

+ σ
∂Bct(xn, tn)

∂x
∂Wn

]
,

where ∂Wn
2 is substituted with ∂t. Noting that E[∂Wn] = 0 because Wn is a standard Brownian

motion, we have

0 = −c1 +
∂Bct(xn, tn)

∂t
+
∂Bct(xn, tn)

∂x

xn
tn

+
1

2

∂2Bct(xn, tn)

∂x2
σ2,

where the terms Bct(xn, tn) cancel each other on both sides of the equality, the equation is divided

by ∆t = ∂t, and mn is replaced with xn
tn

. The first boundary is derived by the definition of the

continuation set, and the second boundary is a so-called smooth pasting condition. �

Note that the boundaries to the continuation set C can be found without any trial simula-

tion, which significantly reduces the complexity and computational effort required to obtain optimal

stopping times. The solution to the free boundary problem in Proposition 3.4.2 is evaluated using a

trinomial tree discretization method. To that end, create a grid over (xn, tn) for all 0 ≤ n ≤ N by
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considering a rectangle [t0, t0 +N ]× [x, x] where x and x are appropriately selected lower and upper

bounds for x. These bounds are selected to be similar to the range considered in the simulation-

based gridding algorithm. According to the trinomial tree method, the Brownian process defined

in equation (3.16) in any given cell in the grid, i.e., (xi, ti), can move to one the following three

different cells: 
(xi−1, ti+1) with probability pd,

(xi, ti+1) with probability pm,

(xi+1, ti+1) with probability pu,

where probabilities pd, pm, and pu satisfy the following equations (see Ingber et al. 2001)


pu + pm + pd = 1,

∆x(pu − pd) = x∆t

(∆x)2(pu + pd) = σ̃2∆t,

where ∆x and ∆t are carefully selected grid intervals, and σ̃ = 2σ2

t −
2σ2

t+1 denotes the posterior

variance at t + 1. To choose appropriate grid intervals, set ∆t such that 1
∆t is equal to an integer

value. In Section 3.5, we considered ∆t = 0.05. Following Arlotto et al. (2010), we also assume

that pu = pd, thus pu = pd = σ̃2∆t
2(∆x)2 , and pm = 1 − 2pd. Therefore, the probabilities pd or pu are

maximized when t = t0. Since pu + pd ≤ 1, pu ≤ pmax ≤ 0.5, we have ∆x = σ
√

2∆t√
2t0(t0+1)pmax

. We

assume pmax = 0.495. The backward solution to the grid is given by

B(xi, ti) = puB(xi+1, ti+1) + pmB(xi, ti+1) + pdB(xi−1, ti+1),

where at the top or bottom row of cells in x axis, the cell values are extended in a linear fashion.

Therefore, at i = 0, or i = I, we have

B(xI+1, t) = 2B(xI , t)−B(xI−1, t),

B(x0−1, t) = 2B(x0, t)−B(x1, t).

Note that in the last column of cells in t axis where t = t0 +N , the cell values are calculated by the

boundary condition B(xi, t0 + N) = G(xi, t0 + N). After enumerating the entire grid by values of

B(xi, ti), grid cells for which B(xi, ti) = G(xi, ti) are recorded and their (xi, ti) values are extracted.
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Figure 3.4: An example of boundaries of the continuation set

To apply the smooth pasting condition in the free boundary problem, we apply a smoothing spline

package in R programming language to smooth the extracted (xi, ti) values; thus the lower and

upper boundaries. To find the optimal decision at each decision epoch, observing true observations

yn, update the values of mn, νn, and n, then calculate xn and tn by using the following formulas

already given in Section 3.4.3.

t0 =
2σ2

ν2
0

,

tn = t0 + n,

xn = mntn.

If (xn, tn) correspond to a cell inside the area marked by lower and upper boundaries, the trial is

still in the continuation set and the optimal decision is to continue. However, if the corresponding

cell falls outside of the boundaries, the decision is to stop the trial, i.e., terminate or abandon.

Figure 3.4 demonstrates an example of the solution to the free boundary problem. The

area between the two lines denoted by C represents the continuation set, whereas A and T show

abandonment and termination regions, respectively.

Multiple doses with unknown mean responses. In the previous part, we construct the contin-

uation boundaries where there is only a single dose with unknown response. However, the original

problem consists of multiple doses for which the mean response is unknown. Therefore, the target

dose z∗ = ED95 is random and each continuation decision may yield a different target dose with

respect to the sample path. This results in an unknown distribution for df∗ when multiple doses

are considered. In fact, if there was only a single dose with unknown response, the allocation dose
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for continuation decisions and the target dose were similar, and posterior advantage over placebo,

df∗, was distributed according to a normal distribution. However, in multiple doses setting, the

allocation dose for continuation decisions may estimate a different target dose, which results in df∗

to not enjoy conjugacy with respect to the patient’s response. In the literature, a variety of heuristic

approaches have been proposed to extend the results of a single alternative case to multiple doses

settings. For example, Chick & Gans (2009) proposed a hierarchical approach in multi-armed bandit

settings, where each armed is treated separately at first and an optimal stopping policy is identified

assuming only one arm exists at a time. Then, Gittin’s indices are evaluated for each arm to se-

quentially select which arm to sample from if any; see Glazebrook (1979). The authors also consider

a fully sequential settings where each arm is simulated according to a one-step look-ahead policy

and the the arm with the highest expected reward is selected to sample from. Chick & Frazier

(2012) considered a system where at each time, one arm has an unknown mean and is compared

in a single dose setting to another arm with known mean where the value of the known mean is

equal to the maximum of the posterior expected reward of other arms. Then, a diffusion approx-

imation problem is solved considering each arm at a time as the unknown arm, and the arm with

the highest solution to the approximated Bellman equation is selected as the arm to continue to

sample from. The algorithm stops if no arm produces a positive solution to the Bellman equation,

and it is indifferent to solutions equal to zero. Chick et al. (2018) proposed an indexing policy by

which the incremental value of sampling only from one arm beyond stopping point and selecting the

current best arm is used to generate diffusion approximation subproblems for each arm. Then, the

solutions to these problems are used to select the arm with the highest index to be sampled from.

However, these approaches are dependent on assuming the reward in optimal stopping problem is

equivalent to maximum expected reward of simulating the arm with the highest mean whereas in

our formulation, the arm with the highest mean does not necessarily yields the maximum expected

utility, and thus they are not directly applicable in our settings. Therefore, we propose the following

heuristic to extend the single dose system to multiple doses case.

Recall that for each dose Zj , there is a prior on the expected response θj . The diffusion

approximation boundaries only depend on the prior and the shape of the utility function. There-

fore, for each dose j, we construct the continuation boundaries upfront. The idea is that, at each

decision epoch, we estimate m∗n =
x∗n
tn

of the target dose z∗ and make decisions by considering the

optimal region corresponding to dose z∗ to check whether m∗n falls into termination, abandonment,
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or continuation regions. To that end, we create a sample from the posterior on Θ, and for each

sample we use equation (3.2) to find the target dose. Then, we take a sample average to estimate

the target dose and since said sample average may not be in Z, we round it to the closest dose.

Given the estimate of target dose z∗, we simply have m∗n = E{θz∗ |Fn}. The decision is found by

referring to the optimal decision region corresponding to dose z∗ and checking whether m∗n belongs

to abandonment, continuation, or termination zone at tn. Assuming a continuation decision at time

n, a patient is assigned to a dose according to the allocation scheme. Its response yn+1 is observed

and is used to update the estimate of the dose-response curve, i.e., Θ. Then, the above process

continues until the stopping time or all patients are tested.

3.5 Numerical Analysis

In this section, we present implementation results of simulation-based gridding algorithm,

one-step look-ahead policy, and diffusion approximation for a variety of settings. Since the per-

formance of these solution methods may differ depending on the adaptive allocation scheme, we

assume that the allocation algorithm is given and fixed to that in Section 3.4. To assess the qual-

ity of solution methods with respect to termination, abandonment, and continuation decisions, two

different types of dose-response curves are tested: (i) A sigmoid curve with a significant advantage

over placebo, one of the most recurring dose-responses in practice (e.g., Gadagkar & Call 2015).

This curve is used to test the performance of different stopping rules with respect to continuation

and termination decisions. Note that for this curve the optimal decision at stopping is to terminate

the trial for efficacy. (ii) A flat dose-response curve, which is used to assess the quality of different

algorithms when the correct decision at stopping is to abandon the trial for futility.

Note that the problem is modeled as a Bayesian Markov decision process and naturally it is

optimal when assessed according to a fully Bayesian setup, i.e., problem instances, or in other words,

true dose-response curves must be generated randomly from the same prior and the performance

must be measured with respect to expectation under the particular assumed prior. However, because

of computational difficulties in generating results for the simulation-based gridding approach, we

assess the performance of these approximation methods with respect to two dose-response curves

(a frequentist setting). Assessing different algorithms with respect to specific configuration is not

without precedence particularly in clinical trials; see for example Berry et al. (2002), and Krams et al.
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(2003). A sigmoid and a flat curve are considered to highlight the performance of these algorithms

when facing favorable and unfavorable cases and to derive managerial insights with respect to the

design of clinical trials.

3.5.1 Simulation Initialization

A typical number of doses under investigation in Phase II of clinical trials is between 4-12

(e.g., Berry et al. 2002). We considered 11 doses including placebo. The first dose is considered

placebo and its known and fixed mean response marks the baseline score for any particular treatment.

At each decision epoch if the decision is to continue the trial, a dose must be allocated to the next

patient. We use a one-step look-ahead policy (knowledge gradient) to optimally select a dose which

minimizes the one-step posterior variance of the target dose ED95. Thereafter, the patient’s response

is generated from the true distribution and is used to update the posterior estimate of the dose-

response curve. Aligned with literature (e.g., Berry et al. 2002), we assume that the stopping

algorithm is applied only after observing the responses of a certain number of patients, e.g., 20, have

already been through the trial. The total number of participants volunteered for the trial is assumed

to be 400. We later show why one may be interested in applying the stopping rules only after a

certain number of patients have been through the trial. We assume that the observation variance is

known and is fixed at 100 units. A sensitivity analysis is also conducted on this assumption. The

significance level is considered to be 1% across all experiments. We assume that the sampling cost

c1 = 1000, sampling cost in confirmatory phase c′1 = 1000, and reward per unit advantage over

placebo c2 = 1, 000, 000. The prior (µ0,Σ0) is set according to µ0 = (0, . . . , 0), and Σ0 is initiated by

a Gaussian covariance function where Cov(θi, θj) = β exp{−γ(i− j)2} where β is usually estimated

by Var(θi) (Rasmussen & Williams 2006). The Gaussian structure of the covariance function allows

for less correlation when doses are further apart. To keep symmetry of the covariance matrix, β is

chosen to be equal to
Var(θi) + Var(θj)

2 = 100, and γ, the lengthscale factor is set to 0.01 for both

sigmoid and flat curves. A thinning factor of 5 is used in generating random variables where every

fifth random variable created is used to avoid serial correlation in a computer generated sequence of

random numbers. In reporting the results, 30 simulations with different sequence of random numbers

are considered. The simulation is coded in R programming language and is run on an Intel core i7

3.7 GHz processor with 16 GB of RAM.

In case of the simulation-based gridding algorithm, recall that the advantage over placebo,
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i.e., df∗, in the literature, is assumed to be normally distributed according to N (m, ν2) with respect

to filtration F . The prior values for m0 and ν0 are set equal to 0 and 10 to ensure that the prior

carries little information about the belief on df∗. In constructing the grid overm and ν, we considered

the range of m to be 20 units, i.e., [0, 20], and the range of ν to be 10 unit, i.e., [0, 10]. The grid is

divided into 40 and 20 intervals in the m and ν axes, respectively. We later conduct a sensitivity

analysis on grid range and cell size. Initially, to populate the grid, M = 1000 experiments are run

and their (m, ν) trajectories are recorded over the grid. Afterwards, from each empty cell in the

grid, M ′ = 10 more simulations are initiated and their trajectories are recorded. Each experiment

is a multi-step forward simulation from decision epoch n to N , which is equivalent to repeating a

one-step forward simulation multiple times using the estimated dose-response curve at the end of

each step as the prior dose-response curve estimate for the next step. To implement the algorithm

in an online fashion, we parallelize forward simulations to speed up the computation. For more

details regarding the implementation of the simulation-based gridding algorithm and the one-step

look-ahead policy, we refer the readers to Algorithms 4 and 5.

For diffusion approximation, the prior values for m0 and ν0 are chosen to replicate those of

the simulation-based gridding algorithm. We also assume a similar range for m as in the gridding

algorithm, i.e., m ∈ [0, 20]. The discretization in diffusion approximation is different from the grid

construction in the simulation-based gridding algorithm. Here, the grid is constructed over values of

x and t. Since 20 patients have already been through the trial, t is considered to be in [20+t0, 400+t0]

where t0 = σ2

ν2
0

. The details to calculate both axis intervals are given in Section 3.4.3. We later do

a sensitivity analysis on the grid size for both the simulation-based gridding algorithm and the

diffusion approximation method.

Because the simulation of the trial for all three methods is the same, we report the com-

putational time required to find the stopping decision for each method. At each decision epoch,

the gridding algorithm runs a forward simulation and uses backward induction which takes 1 hour

on average. Note that in this method the computational time in early stages when there are many

patients to consider is considerably longer than the later stages when fewer patients are left. At

each time period, the one-step look-ahead policy takes about 30 seconds to find the decision. The

diffusion approximation creates the stopping regions upfront and for a given dose allocation and its

response, finding the stopping decision is instantaneous. These results confirm that the proposed
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Figure 3.5: Posterior estimates to the dose-response curve after 20 patients

methods are much less demanding than the standard method.

3.5.2 Results

State of dose-response estimation. Figures 3.5 and 3.6 show the state of the dose-response

estimation after assigning 20 patients. In particular, Figures 3.5(a) and 3.5(b) show the posterior

estimates to the dose-response curve where each point on the piecewise linear dotted line is the sample

average of 30 posterior estimates of µ in Θ ∼ N (µ,Σ) after observing 20 patients. Furthermore,

Figures 3.6(a) and 3.6(b) show the maximum posterior variance where each point denotes the sample

average of 30 posterior estimates of maximum Σjj , j = 1, . . . , J for each patient.

Expected utility and stopping time. Figure 3.7 shows the estimated expected utility lπ(s0)

when stopping at patient τ . Recall that the objective is to select a policy, thus a stopping time, such

that lπ(s0) is maximized, i.e., supπ∈Π lπ(s0). Figure 3.7(a) achieves its maximum expected utility
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Figure 3.6: Maximum posterior variance
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Figure 3.7: Expected utility lπ(s0)

at patient 54 where lπ ∼= 11, 319, 361, whereas Figure 3.7(b) reaches its maximum expected utility

at patient 30 where lπ ∼= 2, 604, 865. Note that in the flat curve, Figure 3.7(b), the first maximum

happens in the first 20 patient initialization and thus is not identified as the maximum expected

utility. The best approximate solution method would choose a stopping time closest to 54 and 30

when the true dose-response curve is sigmoid and flat, respectively.

Tables 3.1 and 3.2 show the expected utility at stopping time, the average stopping time and

the probability of correct decision (PCD) for the three stopping rules with respect to sigmoid and

flat dose-response curves, respectively. In case a significant advantage over placebo exists, correct

decision is to detect significance and terminate the trial. If the true dose-response curve is flat,

abandoning the trial is considered as the correct decision. Notice that all three algorithms correctly

terminate the sequential sampling process when the dose-response curve is sigmoid with significant

advantage over placebo. The KG policy stops sooner but the expected utility at stopping time is

higher for the simulation-based gridding algorithm. The diffusion approximation method achieves

lower expected utility time and stops later. In particular, Figure 3.8(a) demonstrates a few diffusion

paths crossing into the termination region from the continuation region. Note that the average

stopping time and expected utilities reported in both Tables 3.1 and 3.2 are the average over 30

sample paths. Note that the reported probability of correct decision only considers the stopping

decisions and is independent of the target dose selection in case of detecting a significance.

When sampling from a flat dose-response curve, the simulation-based gridding algorithm
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Figure 3.8: Diffusion paths

and the KG policy incorrectly terminate the trial most of the times. In case of KG policy, as

soon as the next step expected utility is estimated to be less than the current one, the policy

stops sampling. If the allocation policy overestimates the expected response of the target dose, the

current expected utility may become positive and thus the incorrect decision to terminate the trial

instead of abandoning. The simulation-based gridding algorithm performs better than the KG policy

since it allows the forward simulation to continue until the end of the trial. However, the forward

simulations depend on the predictive posterior distribution and if the prior does not provide accurate

information, which is unlikely in early stages, then the multiple-steps look-ahead simulations may

not accurately predict the future expected utilities and thus the incorrect decision. Table 3.2 shows

that the diffusion approximation algorithm correctly abandons 96% of times when the dose-response

curve is flat although the average abandonment time comes significantly further in the trial. For

example, Figure 3.8(b) shows a few diffusion paths crossing into abandonment region. Furthermore,

the expected utility at stopping time for the diffusion approximation algorithm, although lower than

the simulation-based gridding and the KG policy, is closer to the true expected utility for the flat

dose-response curve. Therefore, one might conclude that the simulation-based gridding and KG

Table 3.1: Performance of approximate solutions for sigmoid curve (20 patient initialization)
Expected utility ($) Stopping time PCD

Simulation-based gridding 11,076,870 80 1
KG 10,791,346 38 1
Diffusion approximation 10,632,415 106 1

Note: Stopping times are reported in terms of number of patients going through the trial before an stopping decision
is made.
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algorithms do not accurately represent the true dose-response curve at the time of stopping. These

results show that in this setting the standard method may produce significantly poor solutions, which

may have severe consequences in terms of costs of the next phase and the health of future patients:

see Rojas-Cordova & Hosseinichimeh (2018) for a discussion on consequences of misspecification

errors in adaptive clinical trials.

One approach to address such a shortcoming of the gridding and KG policies is to start

considering stopping decisions if enough evidence is gathered regarding the dose-response curve.

This evidence may be interpreted as the accuracy of the dose-response estimation, i.e., the diagonal

of the covariance matrix Σ in state variable sn. In order to avoid tracking a J-sized vector, the

maximum posterior variance is used to ensure the quality of estimation. Therefore, we consider

stopping decisions if max
j

Var[θj |Fn] ≤ V̄ , where V̄ is a tuning threshold.

Table 3.2: Performance of approximate solutions for flat curve (20 patient initialization)
Expected utility ($) Stopping time PCD

Simulation-based gridding 1,926,790 34 0.10
KG 1,840,765 28 0.10
Diffusion approximation -3,910 277 0.96

Note: Stopping times are reported in terms of number of patients going through the trial before an stopping decision
is made.

3.5.3 Sensitivity Analysis

Sensitivity to history Fn. Motivated by our results, we propose applying the stopping rule

only after a certain number of patients’ responses have already been observed. As more patients’

responses are added to the history, the accuracy of the estimation about Θ increases. This is because

sampling dose j results in lowering Σjj which in turn is a measure of uncertainty about the dose-

response estimation at dose j. Therefore, bounding max
j

Var[θj |Fn] is ensuring a minimum level of

accuracy about the state of dose-response curve estimation. Note that this modification does not

contribute to the complexity of the stopping rule since Var[θj |Fn] = Σjj is already available to the

decision maker as part of the state space.

We propose the following heuristic: At each decision epoch, follow the standard method

(or our proposed methods) to find stopping decisions; if the decision is to continue, continue; if

the decision is to stop, check whether maxj Var[θj |Fn] ≤ V̄ is satisfied; if it is satisfied, follow the
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Table 3.3: Performance of approximate solutions for sigmoid curve (after maxj Var[θj |Fn] ≤ 4)

Expected utility ($) Stopping time PCD
Simulation-based gridding 10,001,441 289 1
KG 9,957,969 282 1
Diffusion approximation 9,916,273 280 1

Note: Stopping times are reported in terms of number of patients going through the trial before an stopping decision
is made.

decision; otherwise, continue.

As mentioned before, one can tune V̄ to change the amount of evidence gathered before

the stopping decisions are applied. We consider V̄ = 4 units in presenting the results. Figure 3.9

shows the state of dose-response estimation in terms of posterior estimate to the dose-response curve

when max
j

Var[θj |Fn] ≤ 4 for the first time. Figure 3.10 shows the maximum posterior variance

from the start of the trial until max
j

Var[θj |Fn] ≤ 4 for the first time. In case of the sigmoid

dose-response curve, max
j

Var[θj |Fn] ≤ 4 when n ≥ 280, and supπ∈Π lπ(s0) = 10, 011, 765 which is

achieved at patient 286. For a flat dose-response curve, max
j

Var[θj |Fn] ≤ 4 when n ≥ 243, and

supπ∈Π lπ(s0) = −312 is achieved at patient 296. Similar to Section 3.5, Tables 3.3 and 3.4 show the

performance measures for the three stopping rule with respect to the sigmoid and flat dose-response

curve, respectively.

Figure 3.11 shows the new continuation set boundaries and a few diffusion paths for sigmoid

and flat dose-response curves. In case of the sigmoid dose-response curve, all diffusion paths would

cross into the termination region before max
j

Var[θj |Fn] ≤ 4. Thus, the average stopping time in

Table 3.3 is reported to be equal to 280 because the diffusion algorithm decides on termination

before further sampling. In case of the flat dose-response curve, a few diffusion paths cross into the

abandonment region before max
j

Var[θj |Fn] ≤ 4 is satisfied. However, a few diffusion paths remain

in the continuation region a little longer and some do not cross into abandonment region at all which

is why the average stopping time reported in Table 3.4 happens later and the probability of correct

Table 3.4: Performance of approximate solutions for flat curve (after maxj Var[θj |Fn] ≤ 4)

Expected utility ($) Stopping time PCD
Simulation-based gridding -11,199 284 0.69
KG -12,889 244 0.64
Diffusion approximation -12,571 304 0.96

Note: Stopping times are reported in terms of number of patients going through the trial before an stopping decision
is made.
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Figure 3.9: Posterior estimates to the dose-response curve when maxj Var[θj |Fn] ≤ 4

decision remains the same with respect to the results in Table 3.2.

Sensitivity to the variance of observation. The dose-response model in Section 3.2.1 is pre-

sented as

y = f(z,Θ) + ε,

where ε ∼ N (0, σ2). In reporting the results in Section 3.5, we assumed that σ2 is constant and

equal to 100 units throughout the trial. However, this might not be the case in the real world, and

thus we propose a sensitivity analysis with respect to the variance of observation, and show that our

conclusions are robust. The following results are reported for σ2 = 1000. In particular, Figure 3.12

shows the maximum posterior variance at each decision epoch for both sigmoid and flat dose-response

curves until max
j

Var[θj |Fn] ≤ 4 is satisfied. Note that to satisfy this condition in case of the sigmoid

dose-response curve, n ≥ 815, where the maximum expected utility is 8, 590, 869 achieved at n = 825.
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Figure 3.10: Maximum posterior variance until maxj Var[θj |Fn] ≤ 4
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Figure 3.11: Diffusion paths after maxj Var[θj |Fn] ≤ 4

For the flat dose-response curve, n ≥ 612 satisfies the condition and results in a maximum expected

utility of −589, 975 at n = 621. Tables 3.5 and 3.6 denote the performance measurements of the

three solution algorithm with respect to the sigmoid and flat dose-response curves, respectively. The

results for the sigmoid dose-response curve are compatible with those of Tables 3.3 and 3.4 in Section

3.5. However, in case of the flat dose-response curve, the probability of correct decision has improved

significantly for the simulation-based gridding algorithm and the one-step look-ahead policy. Notice

that by increasing the variance of observation, the allocation algorithm requires a larger number of

samples such that the cost of sampling cancels out any incorrect identification of improvement over

placebo, and thus all algorithms abandon correctly.
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Figure 3.12: Sensitivity of maximum posterior variance to observation variance

Sensitivity to discretization parameters. The simulation-based gridding algorithm and the

diffusion approximation rely on discretization of the state space variables. In the simulation-based

algorithm, the approximation is modified to depend on the true state variable, i.e., s = (µ,Σ), only
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Table 3.5: Sensitivity of approximate solutions for sigmoid curve to observation variance
Expected utility ($) Stopping time PCD

Simulation-based gridding 8,555,127 830 1
KG 8,550,258 815 1
Diffusion approximation 8,550,258 815 1

Note: Stopping times are reported in terms of number of patients going through the trial before an stopping decision
is made.

Table 3.6: Sensitivity of approximate solutions for flat curve to observation variance
Expected utility ($) Stopping time PCD

Simulation-based gridding -627,207 616 1
KG -627,207 613 1
Diffusion approximation -792,184 612 1

Note: Stopping times are reported in terms of number of patients going through the trial before an stopping decision
is made.

through s̃ = (m, ν). In constructing the grid, the range over m is considered to be [0, 20] divided

into 40 intervals. The range over ν is considered to be [0, 10] which is divided into 20 intervals. Our

numerical analysis shows that expanding the range does not contribute to the solution in a significant

way. However, doubling the number of intervals in each axis produced better results shown here in

Table 3.7. Because of the very expensive computation efforts, we could never discretize the grid as

finely as the diffusion approximation method.

In the case of diffusion approximation, the grid is constructed over another modified state

variable ŝ = (x, t). As described in details in Section 3.4.3, ∆t is selected in such a way that 1
∆t is

an integer. In reporting the results for the diffusion approximation method, we assumed ∆t = 0.05.

The interval in the x-axis is calculated by the procedure described in Section 3.4.3 and is dependent

on ∆t. Our numerical analysis showed that refining the grid cell sizes by changing ∆t = 0.01, or

expanding the range over x-axis does not contribute to the solution significantly. Note that the

range for the t-axis cannot be changed.

Table 3.7: Sensitivity of simulation-based gridding to discretization
Sigmoid dose-response curve

Expected utility ($) Stopping time PCD
Grid interval=0.5 10,001,441 252 1
Grid interval=0.25 10,007,286 253 1

Flat dose-response curve
Grid interval=0.5 -11,199 284 0.69
Grid interval=0.25 -8907 289 0.69

Note: Stopping times are reported in terms of number of patients going through the trial before an stopping decision
is made.
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3.6 Conclusion

In this chapter, we studied the optimal stopping problem of a fully adaptive dose-finding

clinical trial with unique features, which separates it from standard optimal stopping problems. We

implemented a standard algorithm (gridding) to approximately solve this problem and compared

it with two methods that we proposed in terms of solution quality and computational effort. Our

first proposed method assumes that the next decision epoch is the last one (KG) and produces

stopping decisions accordingly. Our second proposal considers a two-doses continuous version of the

sampling and stopping problem and creates an Itô process for the state transition by which solving

the continuous Bellman equation coincides with solving a partial differential diffusion equation. We

proposed a heuristic approach to extend the algorithm to multiple drug doses.

Our results show that if in the true dose-response curve the target dose has a significant

advantage over placebo, all three methods make a right decision in terminating the trial for efficacy;

the stopping time of KG is sooner, then the standard method, followed by the diffusion approxi-

mation. The estimate of the utility for the standard approach is higher than KG, followed by the

diffusion approximation. However, if in the true dose-response curve the target dose does not have a

significant advantage over placebo, the gridding and KG method perform extremely poorly in terms

of probability of correct decision. In particular, these two methods decide on termination 90% of

the times on average while the correct decision is abandonment, i.e., the error probability is 0.9 for

these methods, which may have significant adverse consequences and is unacceptable for regular-

ity approval. In fact, these two methods stop too early and significantly overestimate the benefits

upon termination. In a stark contrast, the diffusion approximation method produced abandonment

decision in 96% of time in this setting, producing only 4% error, and estimated the utility more

accurately upon termination. The reason for such results is that the diffusion method stops the trial

much later when it has enough evidence for making decisions.

Our results suggest that applying the standard method in a fully adaptive setting from early

on, where a decision maker can stop or terminate the trial at each decision epoch, may have severe

consequences when the true decision is to abandon. Motivated by such observations, we proposed

a modified stopping rule, where the stopping decisions become activated only if the maximum

posterior variance about the mean response Θ falls below a threshold. max
j

Var[θj |F ] is a metric

that measures the uncertainty about the whole dose-response curve and is available to decision
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makers at each decision epoch because it is part of the state variable in both the allocation and

the stopping problem. Our results show that using a constrained method significantly improves the

performance of the simulation-based gridding algorithm and the KG policy.

Therefore, although considering financial evidence in designing a stopping rule for Phase II

clinical trial is justified because of the usual high costs associated with sampling more participants

particularly if measured with respect to the benefit they may provide, our results show that the

standard method cannot guarantee a correct decision in certain situations, i.e., flat dose-response

curves, and may lead to unnecessary and costly Phase III trials. However, we showed that utilizing

the diffusion approximation method in optimal stopping of a dose-finding clinical trial consistently

provides better probability of correct decision and may be a reliable method when considering

financial evidence in stopping a trial.
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