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Abstract

Advances in additive manufacturing expand the possibilities of what can be de-

signed and produced. One such example is producing structures that possess designed

properties. Because the structure itself has the designed property, it does not require

the structure’s base material to have it. This allows the use of materials that lack a

property to gain that property through geometry. Most elastic materials such as steel

do not possess any form of energy loss under loading in their elastic regime. This

research asks if a structure made from an elastic material could be designed in such

a way to provide energy loss.

One structure of interest is curved-bistable beam switches found in MEMs ma-

chines. These switches are of interest because they have different loading and un-

loading force-displacement curves, resulting in different energy levels between loading

and unloading. This results in the system having a hysteresic energy loss. Because

individual beams have energy loss, this begs the question if a system of these beams

could be designed to produce a structure with energy loss. This structure could then

be used to substitute existing systems, such as a suspension system.

The goal of this research is to investigate the behavior and to optimize a structure

featuring these curved-bistable beams. On the system level, the deformation pattern,

stresses throughout the structure, and total energy loss is calculated. To better un-

derstand how the variables of the curved beam affect energy loss, a surrogate model

for Eloss is produced. This model is then used to optimize both a single beam and a

structure of multiple beams. Finally, the material selection’s role in optimization is

discussed.
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

All vehicles use some sort of spring-damper system to help level out and smooth the

ride. Current systems use a system of springs, either coil or leaf, in tandem with

dampeners to provide vibration damping and remove energy from the system in the

form of heat and vibrations. Because energy is being removed from the system, these

systems can be said to provide energy loss. This research investigates whether these

systems could be replaced with a metamaterial or metastructure.

Metamaterials are structures with designed properties originally used in electromag-

netic and optical devices [4]. Since their introduction, they have expanded into elastic

and thermo applications [11]. At their core, Metamaterials consist of repeated geo-

metric structures. The property that is being modified or added is derived from these

geometric structures. For example, [10] produces a metamaterial with a designed

1



nonlinear deformation response. This is achieved by using cantilever beams meshed

together to form a grid. The dimensions of these beams are then optimized to repro-

duce a targeted nonlinear response [5]. More specifically, this metamaterial matches

the loading behavior of rubber.

Speaking of rubber; when rubber is loaded, its loading and unloading paths vary

slightly as seen in figure 1.1 [8]. When a system undergoes loading, energy is added

into the system causing deformations. Calculating the energy necessary to deform

the structure is achieved by integrating underneath the force-displacement curve cor-

responding to loading. When the system is unloaded, this energy is released from

the system. Similar to loading, to find the energy released one can integrate under

the force-displacement curve corresponding to unloading. In the rubber’s case, its

force-displacement curves differ, these integrals also differ. This indicates that there

is an energy difference between the loading and unloading curves. The energy lost is

the difference between the two areas, highlighted in figure 1.1.

Because matching the loading behavior of rubber is possible, this begs the question

if matching rubber’s hysteresic energy loss is possible. Previous studies have shown

that geometric structures can be used to produce energy loss [3]. This would allow

materials that otherwise would not have energy loss, such as steel, to be manufactured

in such a way to contain energy loss. This structure could then be optimized in order

to provide a specific amount of energy loss.

1.2 Literature Review

One such structure with different loading and unloading behaviors was investigated

in [3] and consists of several curved-bistable beams. These beams were originally

designed to be used in micro-electro-mechanical systems [9]. [9] explores the behavior

2



Figure 1.1: Loading and Unloading curves for a Rubber Specimen [8]

of this structure, and derives several of its properties. An example of this structure

can be seen in figure 1.2.

Figure 1.2: Single Cell

Figure 1.2 features two curved beams, connected at their centers. Each beam takes

the shape of a cosine curve. From [9], the shape of each beam is given by:

y =
h

2

(
1 − cos(2π

x

l
)
)

(1.1)
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where h is the height of the apex of the beam and l is the span of the beam. Each

beam is t thick, and has a depth of b. x in equation 1.1 ranges from 0 to l. A drawing

of this system can be seen in figure 1.3.

Figure 1.3: Dimensional Diagram

Under most circumstances, the depth of the structure (b) will be larger than its

thickness (t). Generally, would indicate the structure is a plate, not a beam. However,

previous works modeled the structure as a beam and produced highly accurate results

[9][6]. Because of this, in the rest of this document, the structure will be considered

to be a beam.

When a beam is being loaded, once the load has surpassed a critical value the beam

will buckle. This buckling takes the form of the beam flexing out of its original shape.

Generally, systems will buckle in a manner that produces a single flex, referred to

as mode 1 buckling. However, under specific circumstances, the system may buckle

under higher modes of buckling. Each of these higher modes adds additional ’flexes’

to the structure. These modes of buckling for a straight beam can be seen in figure

1.4.

In either figure 1.2 or 1.3 it can be seen that the mechanism has two curved beams

connected at the center. Counter to most beams, this beam buckles in mode 3 buckling

instead of mode 1 buckling. Because the beam is designed in the shape of mode 1

buckling, it seeks to buckle under the next available mode; mode 2. However, as seen

4



Figure 1.4: Buckling Modes 1 2 & 3

in figure 1.4, mode 2 buckling requires twisting in the center. By adding the center

support, this twisting is suppressed. Because of this, the system moves to the next

highest buckling, mode 3. Why the removal of mode 2 buckling is necessary will be

discussed later in section 1.2.2.

A simple FEA model was constructed to simulate the structure to verify it’s snap-

through and bistability properties. The shape of the structure is obtained by using

equation 1.2 with the following dimensions: h = 3.0mm, t = 0.5mm, l = 30mm,

and b = 10.0mm. The material chosen was aluminum. The simulation was run as

force-controlled, with two rigid plates attached to the top and bottom portions of

the structure. The top rigid plate fixes rotation and applies a linearly increasing

load, while the bottom has an encaster boundary condition. Finally, the RHS has an

x-symmetry boundary condition. These boundary conditions can be seen in figure

1.5.

Figure 1.5: Example FEA Boundary Conditions

5



Extracting several frames from the FEA the snap-through can be seen in figures

1.6-1.8.

Figure 1.6: Shape A Figure 1.7: Shape B Figure 1.8: Shape C

Shape A shows the system prior to loading. Shape B shows the system just prior to

snap-through. Comparing Shape B with the modes of buckling found in figure 1.4,

Shape B is undergoing mode 3 buckling. Finally, Shape C shows the beam after it

has snapped-through.

The finite element simulation ran for a few seconds post snap-through. Post snap-

through the beam undergoes mild vibrations. These vibrations are how the system

losses energy.

1.2.1 Theoretical Relations

As mentioned previously, [9] has derived several equations pertaining to these mech-

anisms. Their paper largely focuses on these structures for use in a MEMs machine

[9]. Because of this, their work deals with the forces involved. A later work [6] builds

upon the work of [9] and makes more accurate versions of the equations, as well as

investigates the force-displacement curves and stress involved.

From [9], the buckling equation of a beam is given by:

EI
d4w

dx4
+ P

d2w

dx2
= 0 (1.2)

6



The general solution for equation 1.2 has the form of:

w(x) = C1 sin(kx) + C2 cos(kx) + C3 + C4 (1.3)

where k =
√

P
EI

and Cn are constants.

The bistable beam shape seen in figure 1.3 has clamped-clamped boundary conditions.

This makes the boundary conditions of equation 1.3:

w(0) = w′(0) = w(l) = w′(l) = 0 (1.4)

In order for equation 1.3 to have non-zeros solutions, the dimensionless axial force,

N , defined as Pl2/EI must satisfy:

sin

(
N

2

)[
tan

(
N

2

)
− N

2

]
= 0 (1.5)

Equation 1.5 has an infinite amount of solutions indicating a modal solution:

w(x) =
∞∑
j=1

ajwj(x) (1.6)

The index aj found in equation 1.6 refers to the contribution of each mode, while wj

is the shape of that mode. Breaking equation 1.6 in half, there is:

wj(x) = C(1 − cos(Nj
x
l
)

Nj = (j + 1)π

 j = 1, 3, 5... (1.7)

7



which is the solution of the odd modes of buckling, and

wj(x) = C(1 − 2x
l
− cos(Nj

x
l
) + 2

sin(Nj
x
l
)

Nj

Nj = 2.86π, 4.92π...π

 j = 2, 4, 6, 8... (1.8)

which corresponds to the even modes of buckling.

Continuing from equation 1.6, the force-displacement curve for the structure can be

obtained. The full derivation of the force-displacement curves may be seen in either

[9] or [6]. However, there is an important distinction to be made between the two

works; [9] focused on only a single mode of buckling seen in equation 1.6, while [6]

investigated this equation with all buckling modes. While the equation with only a

single mode has an algebraic solution, it is not very accurate. However, the solution

with higher terms, while lacking an algebraic solution, is far more accurate. Because

of this, the higher mode solution is used in optimization. To obtain an algebraic

solution, the solution with the higher terms is used to produce a surrogate model.

1.2.2 Force-Displacement Curve

From [9], the force-displacement curve of considering only a single term from equation

1.6 is:

F =
3

2
π4Q2∆

(
∆2 − 3∆ + 2 +

4

3Q2

)
(1.9)

where ∆ is d
h

and ranges from 0 to 2. d is the displacement being added to the system.

When d = 2h, the system has fully snapped-through.

With the shape manufactured in mode 1 buckling, when loaded the structure skips

mode 1 buckling and seeks to buckle under the next available mode.[9] also provides

8



the next two buckling modes. These are:

FMode2 = 4.18π4 − 2.18π4∆ (1.10)

FMode3 = 8π4 − 6π4∆ (1.11)

A graph of equations 1.9, 1.10, and 1.11 can be seen in figure 1.9.

Figure 1.9: Force-∆ Curve with Mode 1 and 2 Buckling

Figure 1.9 shows that each buckling mode intersects the force displacement curve. At

these intersections, the system translates from its normal force-displacement curve to

the intersected buckling curve. The system continues loading along that path until

the buckling mode re-intersects the force-displacement curve. At this instance, normal

loading resumes.

9



Upon closer inspection of figure 1.9, mode 2 buckling intersects the force curve before

intersecting the x-axis, where the system continues loading. Because of this, the

system lacks a second 0 force point; ie it lacks bistability. Mode 3 intersects the

x-axis prior to intersecting the curve. Because of this, it has an intersection with the

force curve that occurs below the x-axis. This means that after that intersection,

the system follows its original force-displacement curve, and therefore has a zero

intersection later along its path. For mode 2, this intersection occurs above the x-

axis, and the force curve only continues upward from there. An intersection with the

0-force curve indicates bistability, and its location is the second stable point. This is

why the second mode needs to be constrained, while the third mode of buckling does

not. Constraining the second mode takes the form of a center connection as seen in

figure 1.2. This is why the beam takes the shape of equation 1.1

Returning to the force-displacement solutions; unlike the single mode solution, the

force-displacement curve for higher modes lacks a clear algebraic solution. Its solution

comes in the form of 2 separate equations. The first relation relates the mechanism’s

normal (N) and axial forces (F ) together.

From [6]:

3

16N4

(
1+

tan2 N
4

3
−

tan N
4

N
4

)
F 2− 4π2

(N2 − 4π2)2
F+

N2

12Q2
−π

2N2(N2 − 8π2)2

4(N2 − 4π2)2
= 0 (1.12)

Equation 1.12 is solved by finding the range of N that produces only real solutions

in equation 1.12. Once this has been done, the pair of N and F are then sent to

equation 1.13 to solve for their corresponding ∆:

F =
N4

N
4
− tan(N

4
)

( N2

N2 − 4π2
− ∆

)
(1.13)
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To get the F −∆ for the higher-mode solution, the following algorithm is preformed:

1. Find the range N that equation 1.12 only has real solutions

2. Using the range of N , solve the corresponding F in equation 1.12

3. Use both N and F in 1.13 to solve for their corresponding ∆s

4. Dimensionalize N , F , and ∆

Equation 1.12 takes the form of a quadratic leading to two solutions. Each of these

solutions forms half of the force-displacement curve; when combined, they complete

the force-displacement curve.

As mentioned previously, the single mode is not quite as accurate as of the solution

with higher modes. A comparison between theory featuring only a single mode, theory

with higher modes, and a finite element analysis can be seen in figure 1.10 with the

variables used were: E = 169GPa, l = 5mm, t = 20µm, b = 10mm and h = 80µm

It can be seen from figure 1.10 that the higher mode theory is in agreement with the

FEA solution. While the single model solution is slightly off.

A quick note about the FEA results seen in figure 1.10: They were obtained by

using displacement-control rather than force-controlled. This means the location of

the apex of the structure is prescribed at each iteration when solving. Because of

this, snap-through does not directly occur when using displacement-control. On the

other hand, FEA with force-control would show snap-through. Displacement-control

was selected to show mode 3 buckling, and compare the FEA mode 3 buckling to

that of the theories. Additionally, due to the suddenness of snap-through, there is

a heavy amount of vibrations that obscure the force-displacement curve. Switching

from force-control to displacement-control eliminates these vibrations. A discussion

11



Figure 1.10: f-d Comparison of FEA, Single Mode, and Higher Mode Solutions

of the force-displacement curve is in section 2.1.

Figure 1.10 shows us the force-displacement curve of the curved beam system. Re-

turning to the problem statement, the goal is to find the energy of the system. This

is obtained by integrating along the force-displacement curve. Integrating the theo-

retical curve with higher modes results in the figure seen in figure 1.11. The left curve

shows the energy being put into the system; while the right curve shows the energy

necessary to go back. Point A in figure 1.11 shows when snap-through happens. As

soon as it occurs, no more energy is added into the system as the system moves under

its own volition. Likewise, point B shows when snap-back occurs, and the system

moves again under its own volition.

The energy as a function of ∆ can be explained by using a business card. Flexing

12



Figure 1.11: ∆-Eloss

a business card with two fingers produces an arc. When pressing down on the apex

of this arc, energy is inserted to the system. Once the card has passed a critical

threshold, the card snaps-through under its own volition. Once snap-through begins,

it isn’t touching the finger anymore and it moves on its own. Because the card isn’t

touching the finger anymore, the finger can’t apply any force to the card. Meaning

there is no energy being inserted to the system. This causes a sudden stop of energy

insertion occurring at point A in figure 1.11. The same happens in the reverse; with

a person applying force in the opposite direction until the card snaps back; and again

the finger leaves the card.

This business card analogy can be seen better in figure 1.12. Starting at the top, row

A shows the business card prior to loading. Once the finger comes in contact with
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the card, seen in row B, the card begins to deform, and the force-displacement curve

begins to progress. Once the loading has reached a certain point, snap-through begins.

In figure 1.12 this is seen in row C. The sudden decrease in the force-displacement

curve is the result of the finger no longer in contact with the card; meaning the force

being applied to it is zero. Row D shows the snap-through position of the card, as

well as the complete force-displacement curve. The complete force-displacement curve

seen in D forms a triangle-like shape. The area of this triangle directly relates to the

total energy being inserted into the system.

Figure 1.12: Business Card Analogy

This analogy provides a good example of how the bistable curved beam mechanism

works, however, there are a few differences between the business card and the curved-

bistable system. To begin with: business cards are flat. By flexing the card into the

shape of the curved beam, one is stressing the structure. In contrast, the bistable
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curved beams are pre-manufactured in their curved state. The other difference is in

the boundary conditions; squeezing the card with two fingers applies a roller-roller

boundary condition, compared to the fixed-fixed boundary condition found in the

curved-beam structure. A system with the same features of the business card has

been investigated previously and has a perfectly symmetric force-displacement curve

[1]. If the force-displacement curve is symmetric, this means the areas contained to

snap-through and snap-back are the same; ie there is no energy loss in this structure.

This is yet another reason why the curved bistable beam is needed.

Moving back to the literature, an equation for maximum stress is provided in [6] and

can be seen in equation 1.14. This equation can be used to find the maximum stress

of the system and ensure the system does not yield.

σmax = π2Eht

l2

(
4

3
+

4

3Q
+

4

27

√
192

π2
+ 162 − 972

1

Q2

)
(1.14)

Lastly, the ratio h : t must be constrained above a 2.314 value or the system itself will

not exhibit bistablility [9]. This makes one of the constraints to be equation 1.15.

h

t
> 2.314 (1.15)

1.2.3 Network of Beams

Up to this point, only a single bistable beam has been discussed. However, the goal of

this research is to produce a metamaterial or metastructure out of multiple bistable

beams. These beams can be combined in several ways to produce a mesh of beams.

[2] studied a rectangular mesh pattern as seen in figure 1.13.

The mesh seen in figure 1.13 features uniform beams and therefore it could be as-
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Figure 1.13: Rectangular Mesh [2]

sumed that each beam could snap-through at the same time. However, as seen in its

corresponding force-displacement curve, figure 1.14, this is not the case. The reason

for this difference is minor perturbations in the powder that makes up the structure

[2]. These minor changes cause each beam to vary very slightly, which causes each

beam to buckle at different displacements.

This structure was produced out of nylon 11. When loaded from the top, the structure

produced the force-displacement curve seen in figure 1.14. The top curve of figure

1.14 is the loading path the force-displacement curve takes, while the lower curve

is the unloading portion. Just like the force-displacement curve of a single beam,

the loading and unloading paths are different in the mesh structure. The difference

between the two curves is the energy lost by the system.
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Figure 1.14: Force-Displacement curve of Rectangular Mesh [2]

The top curve of figure 1.14 features several ”hills” that bear resemblance to a single

beam’s snap-through behavior as seen in figure 1.10. These peaks correspond to each

individual beam snapping-through [2]. To obtain the total area underneath the top

curve in figure 1.14 simply add each individual beam’s area together, ie:

Eloading =
∑

EloadingforSinglebeam (1.16)

A similar reasoning can be applied to the lower curve.

Eunloading =
∑

EunloadingforSinglebeam (1.17)

As seen in figure 1.13, there are horizontal supports that run the span of these cells.

These supports exist to prevent expansion and rotation of the cell during loading [2].

If the expansion and rotation were not suppressed, the boundary conditions found in
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equation 1.4 would not be enforced. These changes limit the stiffness behavior of the

structure [2].
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Chapter 2

Energy loss and

Force-Displacement Curve

Investigation

2.1 Derivation of Energy Loss

The force-displacement curve of the structure alongside mode 2 and 3 buckling can

be seen in figure 1.9. If mode 2 buckling is suppressed, figure 1.9 becomes figure

2.1. Figure 2.1 features both the loading curve (equation 1.9) and mode 3 buckling

(equation 1.11).

Once the loading path (solid line) intersects the buckling mode, the loading path shifts

away from its current loading path. Figure 2.1 shows that there are two intersections

along the loading path. At those locations, snap-through is either beginning or ending.

Figure 2.2 shows the loading curve with these transition points circled.
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Figure 2.1: Force Displacement Curve
with Buckling Modes 3

Figure 2.2: Force Displacement Curve
with Buckling Mode Hidden

As mentioned in Section 1.3, these two transition points are not directly connected

as seen in figure 1.10 under force-controlled situations. Rather, as soon as the system

receives enough loading to begin snap-through, the resulting force into the system is

reduced to zero. This is because the system no longer needs any additional force for

displacement to occur, and the system buckles under its own volition. With this in

mind, the true force-displacement curve of the system can be seen in figure 2.3.

Figure 2.3: True Force Displacement Curve

From figure 2.3, the force-displacement curve produces two clear areas each relating

to loading or unloading. Figure 2.4 highlights these areas so they may be discussed
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easier. Area A represents the total energy added to the system to cause snap-through.

Area B represents how much energy is necessary to snap-back. The reason for it lying

under the curve is that the force required to return the system to its first stable point

is in the opposite direction of the force required to deform the system.

Figure 2.4: Force Displacement Curve with Highlighted Areas

A quick glance at figure 2.4 shows these two areas are not the same, with the purple

area being larger than the orange area. Calculating the difference in the areas can be

obtained by integrating across both sections, and subtract the unloading area from

the loading area. i.e.:

Eloss = AreaA − AreaB = Eloading − Eunloading (2.1)
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2.2 Example Energy Loss Calculation

Take a beam with the following dimensions:

h = 6mm

t = 0.75mm

l = 150mm

E = 113.8E3MPa

b = 10mm

Running a simulation with displacement control yields figure 2.5. The corresponding

force-controlled curve is seen in figure 2.6.

Figure 2.5: Resulting Force-
Displacement Curve

Figure 2.6: Highlighted Areas

Trapezoidal integration on these areas yields:

Eloading = 32.6229mJ (2.2)

Eunloading = 6.4685mJ (2.3)
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Using the results from 2.2 in equation 2.1 yields the energy lost by the structure:

Eloss = 26.1544mJ

2.3 Conclusion

With the knowledge of how the energy is lost by a single spring via equation 2.1,

investigation can begin on how the assembly of the system will behave.
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Chapter 3

Investigation of System Behavior

3.1 System Level Introduction

Moving beyond a single beam, there are two main ways to assemble snap-through

beams to attempt to maximize energy loss and creating a suspension system. They

can either be assembled in a rectangular or triangular mesh as seen below:

Figure 3.1: Rectangular Mesh

Figure 3.2: Triangular Mesh

[2] puts horizontal supports in these cells as seen in figure 1.13. These horizontal

supports are vital, as they enforce the boundary conditions found in equation 1.4.

During loading without these horizontal supports, the beams would deflect outward,

affecting the bistable and snap-through behaviors. This document assumes that the
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boundary conditions found in equation 1.4 are enforced. They can be enforced by

either the horizontal beams as seen in figure 1.13, or by the usage of rollers attached

to the vertical connectors. During loading, the outside edges of the structure flex

outward. It will be assumed that this movement is constrained.

Regardless of which assembly is chosen, each has energy loss associated with it. There

are, however, nuances between the two arrangements when it comes to the deformation

pattern, the exact calculation of energy loss, and the stress generated within the

structure. This chapter discusses and derives these differences.

3.2 Energy Loss at the System Level

To sum the energy lost by the overall system consisting of several smaller cells, one

sums the energy lost by each individual cell:

Esystemloss =
n∑
j

m∑
i

Elossi,j (3.1)

where i and j relate to the row and column the cell lies on respectively. The Elossi,j

would be calculated as it was previously shown in equation 2.1 with any dimensional

changes specific to that beam.

When it relates to each of the meshes, equation 3.1 can be simplified with a few

assumptions. For the rectangular case, if the cells only vary row to row, and not

column to column, 3.1 simplifies down to:

ERectangularsystemloss =
n∑
j

n× Elossj (3.2)
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Similarly, the triangular mesh becomes:

ETriangularsystemloss =
n∑
j

j × Elossj (3.3)

Because the dimensions are changing throughout the structure, equations 3.2 and 3.3

can be used for metastructures. Periodic-metamaterials feature a single cell replicated

throughout a mesh and a cell size much smaller than the design domain. If the

cells do not change throughout the mesh, the energy loss for a rectangular periodic-

metamaterial becomes:

EUniformRectangularsystemloss = Eloss × n×m (3.4)

Likewise, the periodic-metamaterial’s Eloss for a triangular mesh becomes:

EUniformTriangularsystemloss =
1

2
Eloss × n(n+ 1) (3.5)

3.3 Stresses Generated in Vertical Connectors

3.3.1 Introduction

The meshes consist of several beams attached to one another. As seen in either

figures 3.1 or 3.2, there are vertical connectors that attach each beam together. These

connections are ”legs” that the beams stand on to form a mesh. Seeing how the

maximum stress within the curved beam portions are known by equation 1.14, the

connecting regions are the only regions in which the stress is not known. If the stress

is determined in these regions, the stresses throughout the structure will be known

and can be designed to not surpass its yield limit.
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As mentioned in the introduction of this chapter, it will be assumed that the beam’s

ends are held in such a way to enforce the boundary conditions found in 1.4. Addi-

tionally, the legs will be considered thick enough as to not buckle.

3.3.2 Rectangular Mesh

To get a free body diagram of the system, one can simplify the curved-beam system

shown previously in figure 1.2. Simplifying this drawing to a stick drawing yields:

Figure 3.3: Single Cell

Using figure 3.3 along with figure 3.1 one can create a simplified stick drawing of the

rectangular system seen in figure 3.4.

Figure 3.4: Stick Rectangular Mesh

Focusing on a single row; setting a force F distributed on the top of the structure and

fixing the bottom yields the free-body diagram seen in figure 3.5

Figure 3.5 shows that the forces within the structure remain the same, while the forces

on the outside are half-that of the inside. Generalizing the rectangular mesh seen in
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Figure 3.5: Rectangular Free Body Diagram

figure 3.5 to all rectangular meshes yields:

finternalbeam =
fapplied
m

(3.6)

fexternalbeam =
1

2
finternalbeam =

1

2

fapplied
m

(3.7)

where m is the number of beams in a row

Assuming the legs are thick enough to prevent any buckling; the moment being applied

to the tip of each leg is:

mexternalbeam =
1

4

fapplied
m

L (3.8)

This moment is only present on the outside beams as internal beams produce couples

that cancel one-another out.

Putting everything together, the normal stress for the internal member’s legs are:

σRectangularinternal =
F

A
=

f

xt2b
(3.9)

where t2 is the thickness of the supporting leg as seen in figure 3.6

The external beams have combined loading from the resulting normal stress from the

28



Figure 3.6: Connector Variables

axial force and the normal stress generated by the resulting moment. When combined,

the stress for the external beams are:

σRectangularExternal =
F

A
+
My

I
=

f

2xt2b
+

3fL

2xbh32
(3.10)

where h2 is the height offset between the beams, t2 is the thickness of each leg, and I

is the moment of inertia

3.3.3 Triangular Mesh

Using the stick drawing found in figure 3.3 and the reference from 3.2 a stick drawing

of the triangular mesh can again be constructed. This stick drawing can be seen in

figure 3.7.

Figure 3.7: Stick Triangular Diagram
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Just like the rectangular mesh, this can be solved statically. Doing so yields figure

3.8.

Figure 3.8: Triangular Free body Diagram

While one could use the force being applied on each individual leg to find the di-

mensions of that leg, this would result in varying t2, causing beam spans to change

slightly throughout a row; causing meshing problems between layers. Designing each

row’s leg to withstand the maximum force being applied to that row, ensures that

meshing problems stemming from varying beam spans do not occur.

Figure 3.8 shows that the forces in each row are at a maximum in the center of the

structure. Each rows maximum force is given by:

Fmaxtriangular = F

(
K
K
2

)
× 1

2K


K = n when n is even

K = n+ 1 when n is odd

(3.11)

Knowing this, each row’s leg should be designed to support:

σTriangular =
Fmaxtriangular

t2b
(3.12)
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3.3.4 Redimensionalizing F

Equations 3.9, 3.10, and 3.12, are functions of the input force. Seen in figure 2.3,

the maximum force applied to the structure occurs right as snap-through begins.

Snap-through is a geometric phenomenon that occurs at a known displacement. [6]

approximates this displacement as:

dmaxForce = h

(
28

27
− π

2

3

√
1

6
+

16

81π2
− 1

Q2

)
(3.13)

While there is no equation for the force-displacement curve with higher buckling

modes; snap-through occurs when N = 4π [6]. Knowing this, and then combining it

with equations 3.13 and 1.13 yields the maximum force necessary for snap-through:

fmax =
1

12

Ebht3

l3

(
512

27
π2 + π3128

3

√
1

6
+

16

81
π2 − 1

Q2

)
(3.14)

Using this equation, f can now be substituted in equations 3.9, 3.10, and 3.12. Doing

so yields:

σRectangularInternal =
1

12

Ebht3

l3
π2

xt2b

(
512

27
+ π

128

3

√
1

6
+

16

81
π2 − 1

Q2

)
(3.15)

σRectangularExternal =
1

12

Ebht3

l3
π2

2xb

(
1

t2
+

3lt2
h32

)(
512

27
+ π

128

3

√
1

6
+

16

81
π2 − 1

Q2

)
(3.16)

σTriangularExternal =
1

12

Ebht3

l3
π2

t2b

(
512

27
+ π

128

3

√
1

6
+

16

81
π2 − 1

Q2

)
×
(
K
K
2

)
1

2K
(3.17)
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In the event that uniform leg dimensions throughout the structure are required, equa-

tions 3.15, 3.16 and 3.17 can be altered to become:

σRectangularInternal =
1

12
EC1

π2

xt2

(
512

27
+ π

128

3

√
1

6
+

16

81
π2 − C2

2

)
(3.18)

σRectangularExternal =
1

12
EC1

π2

2x

(
1

t2
+

3lt2
h32

)(
512

27
+ π

128

3

√
1

6
+

16

81
π2 − C2

2

)
(3.19)

σTriangularExternal =
1

12
EC1

π2

t2

(
512

27
+ π

128

3

√
1

6
+

16

81
π2 − C2

2

)
×
(
K
K
2

)
1

2K
(3.20)

where C is:

C = max

{
hct

3
c

l3c
,
tc
hc

}
(3.21)

where c is every beam

It is likely that only h and t would vary in between beams, with l being defined by

the problem statement. If that were the case, l could be held constant in equation

3.21.

3.4 Deformation Pattern

If the cells change from row to row, each row will snap at alternative displacements.

This section will show when these transactions occur, and how to predict and utilize

them.
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3.4.1 Introduction

As seen in figures 3.1 and 3.2, each system consists of multiple rows of curved beams.

Figure 1.14 shows that near uniform beams buckle at different displacements. The

reason that some beams buckle before others is a result of minor perturbations during

manufacturing that effects that beam’s stiffness. Less stiff beams reach the force

necessary to snap-through before more stiffer beams. On the system level, the force

felt by each beam is the same. Because the force to cause the less stiff beams is less

than the stiffer beams, they snap-through first. This indicates that the system will

snap-through in ascending order of beam stiffness. If the stiffness of each beam can

be uncovered, the beams can then be sorted accordingly. This can cause the system

to snap-through bottom-up, top-down, or a mix of the two.

3.4.2 Derivation

Stiffness is defined as:

k =
F

d
(3.22)

Equation 3.22 can be used along side equations 3.13 and 3.14 to calculate the stiffness

of a single curved beam. As the exact stiffness is not required, the constants will be

ignored to create a simpler equation. The simplified stiffness equation can be seen in

3.23.

k ∼=
Ebt3

l3
(3.23)

To reiterate, in this instance, it is desired that the beams deform in a specific order.

Under most circumstances, the depth of the beam, b, the span of the beam, l, and the

material it’s made out of will remain constant throughout the structure. This leaves

t as the only variable. To differentiate between rows, the subscript n can be used,
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where n is the nth row starting from the bottom row; row 0.

With these in mind, the stiffness of the initial row can be related to the stiffness of

the nth row. Thus, relation 3.23 yields:

t30 :: t3n (3.24)

Dropping the cube root and dividing the LHS by the RHS produces:

t0
tn

:: 1 (3.25)

If the initial beam is stiffer than the nth beam, that means that the nth row will

buckle before the initial row, meaning if:

t0
tn
> 1 (3.26)

The system would buckle in descending order (top-down). Likewise, if:

t0
tn
< 1 (3.27)

The nth row would buckle before the initial row. So, the system would buckle in

ascending order (bottom-up). The final arrangement is:

t0
tn

= 1 (3.28)

This would cause each row to buckle at the same time. While this might be interesting,

minor perturbations at the manufacturing level prevent this from being realisable as

seen in figure 1.14.

Relations 3.26, 3.27, and 3.28 only force the beams to buckle in a specific order,
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ascending or descendingly. If finer control is required, multiplying a stiffness-factor,

fn, would result in each beam being f times smaller or larger from the initial beam.

Doing this to equation 3.25 results in:

t0 :: fntn (3.29)

fn can remain constant to give a uniform stiffness scaling throughout the structure.

Alternatively, fn could be altered between layers to give a non-uniform stiffness scal-

ing. More interestingly fn could fluctuate being above and below 1, to make beams

deform in a unique pattern, or be optimized to fit a specific pattern.

3.4.3 FEA Deformation Example

To validate the results obtained from the deformation analysis, n FEA model was

created to test the deformation pattern.

Using Abaqus, a 2D dynamic-implicit model was created. Made from Titanium the

following variables were used: E = 113.8E3, ν = 0.35 and l = 100 were used through-

out the structure. To get a specific deformation pattern, relation 3.26 was used. The

dimensions of each beam can be seen in table 3.1. The initial mesh alongside the

h t
0 5 1

beam
(top-
down)

1 4 0.75
2 5 0.5
3 6.33 0.25

Table 3.1: Curved Beam dimensions 0-3

boundary conditions can be seen in figure 3.9. This also shows the curved beams and

their numbers associated with table 3.1.
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Figure 3.9: Initial FEA model with BC shown for Deformation Test

The results of the simulation can be seen in figure 3.10. On the left side of figure

3.10 is the initial shape of the structure. Moving left to right indicates the passing of

time. The series of images A, B, C, and D show the buckling order the system goes

through. This matches the order expected as the beam with the smallest thickness,

beam 3, buckles first. This continues in order until the last beam, beam 0, buckles.

This order confirms relation 3.24.
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3.5 Wrap up

This chapter went over several key components of the metamaterial and metastruc-

ture systems. Section 3.2 covers how to calculate the energy lost by the entire system.

Section 3.3 discusses the last regions of the system with unknown stress. Lastly, sec-

tion 3.4 discusses how the beams buckle, and how to control this deformation pattern.

With these factors known, investigation now begins on seeing how the system’s vari-

ables affects Eloss.
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Chapter 4

Scaling and Surrogate Model

4.1 Introduction

Lacking a direct equation, the amount of energy lost by the structure is obscure.

Investigating how the variables E, b, h, t and l affect the energy lost by the system

will help to better understand and optimize the structure.

4.2 Scaling Behavior

Geometrically, the variables will not be on the same scale. Broadly speaking:

l >> h > t (4.1)

One can use this scale to see how the equations of stress and energy scale. Using

the scale 4.1 alongside with the curved beam stress equation, equation 1.14, stress
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primarily scales with:

σmax ∼
Eth

l2
(4.2)

Meaning increasing E, t, or h linearly increases the stress, while l will quadratically

decrease it.

Eloss does not have a direct equation, so its scale is not as clear. To obtain Eloss’s

scales, multiple simulations were run to see how variables E, b, h, t, and l effect it.

For example, figure 4.1 shows a curve comparing the variable t to the corresponding

Eloss with a constant E, b, h, and l. Similar graphs for E, b, h, and l are available in

Appendix A.

Figure 4.1: Eloss as a function of t

Figure 4.1 shows us that t scales the energy cubically. Repeating the process for
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variables E, b, h and l,the following scale for energy is produced:

Eloss ∼
Ebh2t3

l3
(4.3)

Meaning the energy linearly scales with E and b, quadratically with h, and cubically

with t; while decreasing cubically with l.

While scales do not tell exactly how much energy is lost, they are helpful in under-

standing how the structure behaves. To better understand how energy loss is scaled,

equation 4.3 may be altered slightly. E and b are likely both defined by the problem,

so they may be ignored. Secondly, one can multiply the scale by 1 in the form of

t2/t2. Doing these, and rearranging the equation, the following is produced:

Eloss ∼
(
h

t

)2(
t

l

)3

t2 (4.4)

t2/t2 was multiplied in to show how the aspect ratios increase the energy loss. With

h/t being the height aspect ratio, and l/t being its length aspect ratio. Moving forward

the height aspect ratio h/t will be called Q, while the length aspect ratio l/t will be

called R. Q already has significance [9][6], while the term R was selected to produce

a length aspect ratio. The length aspect ratio was selected due to its importance in

studying beams. Additionally, scale 4.3 was expanded as testing several dimensions

with it gave inconsistent results, hinting at the presence of a coupling term.

A variable can be considered coupled when changing the variable relative to an equa-
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tion produces different results. Take two systems with the following variables:

E = 1

b = 1

h = 6

t = 1

l = 100

E = 1

b = 1

h = 2.921

t = 0.75

l = 100

Using the scale 4.4 produces:

EbQ2R−3t2 = 3.6E−5

Q = 6

R = 100

EbQ2R−3tt2 = 3.6E−5

Q = 3.9

R = 133.3

Because the scales are identical, it would be expected that the Eloss would be of

the same scale. However, this is not the case, with the right equation giving Eloss =

2.0929E−4mJ and the left equation giving Eloss = 2.9757E−5mJ. This difference shows

the existence of a coupling term. Running multiple simulations varying only Q or R

can be seen in figures 4.2 and 4.3. The non-constant behavior of Q shows that it is a

coupling term.

Figure 4.2: Eloss as a function of Q Figure 4.3: Eloss as a function of R
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Redefining scale 4.4 to use Q and R produces equation 4.5.

Eloss ∼ EbQ2 1

R3
t2 (4.5)

4.3 System Energy Scaling

Say there is a rectangular domain and it is desired to subdivide this domain into a

mesh as seen in figure 4.4. What thickness t is required to keep the same Eloss scale?

Figure 4.4: Rectangular Scaling Example

The height and length of the system are defined, with the mesh’s local height and

length defined by:

h =
H0

n
(4.6)

l =
L0

m
(4.7)

where h and l are the height and length of a single curved beam, and H0 and L0 are

the maximum dimensions of the rectangular mesh.

Defining α to be the thickness scaling coefficient. Using scale 4.4 with equations 4.6

and 4.7 produces:
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(
H0

t

)2(
t

L0

)3

t2 = n×m×
( 1

n
H0

αt

)2(
αt
1
m
L0

)3

(αt)2 (4.8)

where the left side is a single curved beam, and the right side is the mesh

Working out equation 4.8, α is found to be:

α = 3

√
n

m4
(4.9)

Equation 4.9 shows us an interesting relation. Given a fixed rectangular domain; sub-

dividing it into additional rows makes each beam’s thickness needs to get thicker and

thicker just to provide the same energy loss scale. Counter to this, as more columns

get added, the thinner the beam’s thickness needs to become to match the same en-

ergy loss scale. When optimizing the structure, it is expected that the system will

always move to the minimum number of rows and the maximum number of columns.

This is done to give the largest number of springs, with each spring contributing the

same scale of energy loss. This, alongside equation 3.1, provides the largest amount

of energy lost by the system. However, when designing the system, the system will

have to have some number of rows to fulfill the stress constraint given in equation

1.14.

4.4 Material Selection

Material selection is an interesting factor when it comes to Eloss. Both equations of

stress and energy scale with E. Choosing a material with a large E would return a

structure with a large Eloss, but also a large σmax. A large σmax raises concerns about

material yielding. Because increasing E increases both Eloss and σmax, finding the
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material with a high E and σyield ensures that the stress, while high, remains within

its yield limit and gives the largest possible Eloss.

4.5 Surrogate Model

A surrogate model is a method used to predict the outcome of an experiment by

producing a model that has been fit to match experimental data. To better under-

stand how the variables affect energy loss, a surrogate model will be produced that

accurately predicts the energy lost by the system.

It will be assumed that the surrogate model takes the form of equation 4.10.

Eloss = A(E, b, h, t, l)α ×B(E, b, h, t, l)β × C(E, b, h, t, l)γ... (4.10)

The initial scale for Eloss, scale 4.3, can be used as one of the functions, leading to

equation 4.11.

Eloss = E × b× h2 × t3 × 1

l3
×B(E, b, h, t, l)β × C(E, b, h, t, l)γ... (4.11)

Expanding scale 4.3 into scale 4.4 shows some coupling terms, Q and R. It will be

assumed that these two scales make up the functions B and C. With this in mind,

equation 4.11 now becomes 4.12.

Eloss = E × b× h2 × t3 × 1

l3
×B(Q)β × C(R)γ (4.12)

To produce the surrogate model, the goal is to find these functions of B and C. Figure
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4.3 shows the R has no impact on Eloss, so its term may be eliminated, leaving only

Q. This reduction makes equation 4.12 into equation 4.13.

Eloss = E × b× h2 × t3 × 1

l3
×B(Q)β (4.13)

To find the function B, varying Q and keeping the rest of equation 4.13 constant will

show some relation between the function of B and Eloss. This relation can be seen in

figure 4.5 and shows that this relation is linear. Meaning that β in equation 4.13 is

equal to 1.

Figure 4.5: Relation between B and Eloss

To determine the function of B(Q), equation 4.13 can be rewritten as equation 4.14.

B(Q) =
Eloss
Ebh2t3

l3

(4.14)

Running multiple simulations produces B as a function of Q. Q was set to a domain

of [3, 30]. This function is then curve fitted with a rational function of degree 2. This
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rational function can be seen in equation 4.15. Equation 4.15 can be seen plotted

alongside the experimental data in figure 4.6.

B(Q) =
4.251Q2 + 3.134Q+ 45.4

Q2 + 0.8436Q− 3.689
(4.15)

Figure 4.6: B vs h/t

A different type of function could have been used in curve fitting, but a rational

function gave the best curve fit with an RMS of 1.

Combining equations 4.14 and 4.15 produces equation 4.16 which is the surrogate

model of Eloss.

Eloss = Eb
4.251Q2 + 3.134Q+ 45.4

Q2 + 0.8436Q− 3.689

h2t3

l3
(4.16)

A comparison between the surrogate model and the theoretical model can be seen in

figure 4.7. The dimensions of each simulation were obtained by using a latin-hyper-

cube on the ranges of Q = [3, 30] and R = [30, 500]. The exact dimensions used and

the results can be seen in Appendix B.
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Figure 4.7: Surrogate Model alongside
Experimental Data

Figure 4.8: Contour plot of Eloss

Figure 4.7 shows a strong agreement between the theory and the surrogate model,

with the largest percent error being 0.05%. B(Q) was obtained from curve fitting

over the range of [3, 30]. For cases in which Q is outside of this range, a new function

of B(Q) will have to be curve fitted to approximate the system.

The surrogate model can be used to rapidly predict the energy lost by the system.

Using it, a contour plot of Eloss can be seen in figure 4.8. It shows that Eloss is

maximum when the height aspect ratio is maximized, while the length aspect ratio is

minimized.

Using the surrogate model alongside equation 1.14 (maximum stress in the curved

beam) allows us to see the domain of solutions. Titanium has a Young’s Modulus of

113.8GPa and yield stress of 970MPa [7]. Using these as the E and maximum stress

values, a contour plot of Eloss can be seen in figure 4.9. The highlighted point on the

right side is the maximum Eloss. The white zone on the bottom-right side is where

the stress exceeds the yield limit.
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Figure 4.9: Domain of Solutions for Titanium

A similar plot may be produced for AISI 1006 steel, with an E = 206GPa and

σyield = 285MPa seen in figure 4.10.

Figure 4.10: Domain of Solutions for AISI 1006

A third contour plot can be seen in figure 4.11 made from a Aluminum 6061-T6 with

E = 68.9GPa and σyield = 276MPa
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Figure 4.11: Domain of Solutions for Al 6061T6

4.6 Effect of Number of Cells on Energy Loss

A metamaterial consists of a number of uniform cells in multiple directions. Equation

4.16 can be used alongside equations 4.6 and 4.7 to calculate what number of rows

and columns provide the most energy loss similar to how the scaling coefficient α was

found in equation 4.8.

To compare mesh sizes, it will be assumed that the rectangular domain L0 wide and

H0 has been found. In it features a single spring spanning those dimensions with a

thickness T0. This single spring will then be compared to a mesh of smaller springs

that combined fill the same domain. The mesh of springs consists of Num. springs.

Similar to the local h and l found in equations 4.6 and 4.7, a similar reduction can

be made for t.

t =
T0
n

(4.17)
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Using equations 4.6, 4.7 and 4.17 in 4.16 produces:

Eb
4.251Q2 + 3.134Q+ 45.4

Q2 + 0.8436Q− 3.689

H2
0T

3
0

L3
0

= Num. × Eb
4.251Q2 + 3.134Q+ 45.4

Q2 + 0.8436Q− 3.689

H0

n

2 T0
n

3

L0

m

3

H2
0T

3

L3
0

= Num. ×
H0

n

2 T0
n

3

L0

m

3

= Num. × m3

n5

H2
0T

3
0

L3
0

1 = Num. × m3

n5

(4.18)

If the mesh is uniformly reduced in size, m=n, meaning equation 4.18 becomes:

1 = Num. × 1

m2
(4.19)

For a rectangular mesh, Num. is:

Num. =


n×m

m2 when uniform

(4.20)

Equations 4.19 and 4.20 indicate that reducing the single meta-material spring into

similar smaller springs has no impact on energy loss. If the system is not reduced

uniformly, equation 4.18 alongside 4.20 becomes:

Eloss =
m4

n4
Eb

4.251Q2 + 3.134Q+ 45.4

Q2 + 0.8436Q− 3.689

h2t3

l3
(4.21)

A similar approach can be done with triangular meshes, with the number of springs

found in them to be:

Num. =
1

2
×m(m+ 1) (4.22)
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Making the energy lost for a triangular mesh:

Eloss =
1

2
m(m+ 1)Eb

4.251Q2 + 3.134Q+ 45.4

Q2 + 0.8436Q− 3.689

h2t3

l3
(4.23)

Equation 4.23 indicates that the energy loss in triangular meshes diminishes as more

and more springs are added.

4.7 Effect of Number of Cells on Maximum Stress

Similar to how the energy loss in the metamaterial was calculated, a similar procedure

can be done on the maximum stresses found in the structure. Doing so results in

equation 4.24.

σmax =
m2

n2
π2Eth

l2

(
4

3
+

4

3Q
+

4

27

√
192

π2
+ 162 − 972

1

Q2

)
(4.24)

Equation 4.24 shows that if the structure is uniformly reduced (m = n) the stresses

remain the same. Otherwise, they increase with more columns being added and

decrease with more rows being added. The additional rows decrease the overall height

of the structure, thus resulting in a lower h found in equation 1.14. This reduction in

h decreases the overall stress. A similar methodology can be applied to t and l.

4.8 Conclusion

Scale 4.4 shows how the primary variables of the structure will scale the energy lost

by the system. From this scale, a surrogate model of the structure was produced

in equation 4.16. This function was expanded to see how the system behaves as a
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metamaterial in equations 4.21 and 4.23. Lastly, a similar approach was done to

examine how the stress scaled within the structure. Now that the variables and

the effects are known, the results obtained by this chapter may be used directly in

optimization or be used to help select variable ranges in optimization.
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Chapter 5

Optimization

5.1 Introduction

With the system’s behavior understood, optimization of the system can now take

place. The system has 5 variables: E, b, h, t, and l. These parameters will be optimized

to produce a structure with the highest Eloss values. This chapter will begin by

discussing the optimization procedure and discuss key portions of the MATLAB R©

code. For optimization, first a single beam will be optimized, followed by a structure

of these beams. For the structure optimization, it is assumed that the boundary

conditions found in equation 1.4 are enforced.

5.2 Optimization

To optimize the structure, the objective is to maximize the energy lost by the system,

equation 3.1. The constraints are the geometric constraints defined by the problem,

and the stress constraint found in equations 1.14 and either 3.9 and 3.10 for rectangu-
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lar meshes, or 3.12 for triangular meshes, and the ratio of h to t found in equation 1.15.

Because the surrogate model was produced on the range Q = [3, 30], the constraint

on Q will be set to 3.

For rectangular meshes:

Maximize:

Eloss =
m∑
j

n× Ej

Subject to:

σyield >



π2Eth
l2

(
4
3

+ 4
3Q

+ 4
27

√
192
π2 + 162 − 972 1

Q2

)
1
12
EC π2

xt2

(
512
27

+ π 128
3

√
1
6

+ 16
81
π2 − 1

Q2

)
1
12
EC π2

2x

(
1
t2

+ 3lt2
h32

)(
512
27

+ π 128
3

√
1
6

+ 16
81
π2 − 1

Q2

)

Q >3

For triangular meshes:

Maximize:

Eloss =
m∑
j

j × Ej

Subject to:

σyield >


π2Eth

l2

(
4
3

+ 4t
3h

+ 4
27

√
192
π2 + 162 − 972 1

Q2

)
1
12
Ebht3

l3
1
t2b

(
512
27
π2 + π3 128

3

√
1
6

+ 16
81
π2 − 1

Q2

)
×
(
K
K
2

)
1
2K

h
t
>3

K = n when n is even

K = n+ 1 when n is odd
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One additional function that might be of some interest is minimizing the cross-

sectional area or volume of the structure. The approximate cross-sectional area of

a single beam neglecting the overlap from the apex to a connector is:

A = t× l + t2 × h2 (5.1)

To get the volume instead, equation 5.1 can be multiplied by b.

To find the area of the structure, it will be assumed that t changes layer to layer.

With this in mind, using equation 5.1, the area for the structure becomes:

A =
m∑
j

(tj × l × +t2 × h2) ×Kshape (5.2)

where Kshape varies based upon the mesh. For rectangles:

Krectangles = n (5.3)

For triangles:

Krectangles = j (5.4)

where n is the number of columns and m is the number of rows. Equation 5.2 can be

added to the optimization outlined previously to optimize the entire structure. Just

like with 5.1, the volume of the structure can be obtained by multiplying equation

5.2 by b.

Lastly, if a specific deformation pattern is required, relations 3.26 and 3.27 can be

used to make the system buckle descendingly or ascendingly respectfully. Alterna-

tively, relation 3.29 could be used to fit a specific deformation pattern. If there is a
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rectangular mesh, this step may be skipped in optimization, and done in post process-

ing to sort the layers. The triangular mesh must include this step in the optimization

as the layers can not be sorted. This is because the number of springs per row changes

throughout the structure.

The optimization parameters outlined above are for a metastructure. If a metamate-

rial is to be designed, a single cell can be optimized to produce the maximum Eloss.

That spring’s dimensions can then be scaled down to form a mesh. This can be seen

in equation 4.21. If the ratio m and n remain constaint, so does the energy loss.

5.3 Optimization Scripts

To preform optimization, MATLAB R© and ModeFrontier R© were used. A MATLAB R©

script was made to model the theoretical relations, while the surrogate model was

coded into the optimizer. Both scripts take in the parameters E, b, h, t, and l, and

output σmax and Eloss.

5.3.1 Key Portions of the MATLAB R© Code

The equations to solve the higher order system can be found in equations 1.12 and

1.13 and the algorithm to solve the system can be seen immediately after. These

equations are recreated below:

3

16N4

(
1 +

tan2 N
4

3
−

tan N
4

N
4

)
F 2 − 4π2

(N2 − 4π2)2
F +

N2

12Q2
− π2N2(N2 − 8π2)2

4(N2 − 4π2)2
= 0

and

F =
N4

N
4
− tan(N

4
)

( N2

N2 − 4π2
− ∆

)
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With the algorithm being:

1. Find the range N that equation 1.12 only has real solutions

2. Using the range of N , solve the corresponding F in equation 1.12

3. Use both N and F in 1.13 to solve for their corresponding ∆s

4. Dimensionalize N , F , and ∆

Solving 1.12 with 1.13 provides two solutions for F and ∆. Plotting the solution

directly obtained by these can be seen in figure 5.1.

Figure 5.1: Initial F − ∆ solution using Higher Modes

The portions prior to snap-through match the expected behavior, but the section in

the middle is undesired. To cut these away, the following code is used:
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1 #Remove por t i on s exceed ing the maximum disp lacement

2 F 1 top ( Delta 1>Delta top )=NaN;

3 F 2 top ( Delta 2>Delta top )=NaN;

4 De l ta 1 top ( Delta 1>Delta top )=NaN;

5 De l ta 2 top ( Delta 2>Delta top )=NaN;

6 #Remove por t i on s exceed ing the maximum fo r c e

7 De l ta 1 top ( F 1 top>F top )=NaN;

8 De l ta 2 top ( F 2 top>F top )=NaN;

9 F 1 top ( F 1 top>F top )=NaN;

10 F 2 top ( F 2 top>F top )=NaN;

Lines 2-5 clip the portions of the curve that exceed the distance of the buckling mode

intersection. In the example plot seen in figure 5.2, the parameters are E = 1, b =

1, t = 0.5, h = 3.5, and l = 50. Some cases of h being exceedingly large cause the

loops to extend prior to the buckling mode. In this instance, lines 2-5 would not

clip the entire portion of the curve. To correct this, lines 7-10 double check the

curve and eliminate the portions of the curve higher than the buckling mode. This

process is repeated on the lower half of the curve. Re-running the model produces

the force-displacement curve seen in figure 5.2 which matches the expected curve.

To find the areas, the plot is redimensionalized and trapezoidal integration is used to

integrate the loading and unloading sections. Subtracting these two areas nets the

energy lost by a single beam.

The maximum stress is given by equation 1.14. This is modeled along side the force-

displacement curve to provide the stress constraint.

59



Figure 5.2: F − ∆ solution using Higher Modes

5.4 Optimization Examples

To optimize the structure, MATLAB R© was linked to ModeFrontier R© 2017R1. This

section will show the results of the MATLAB R© model using the theoretical force-

displacement curve and the surrogate model’s results.

5.4.1 Single Spring Optimization using the Theoretical Model

For this instance, the structure is made out of Titanium Ti-6Al-4V, with E =

113.8MPa and σyield = 970MPa [7]. The ranges of t, h, and l are:
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0.1 < t < 2.0 (5.5)

3.0 < h < 30.0 (5.6)

30.0 < l < 500.0 (5.7)

The diagram of the optimization from modefrontier can be seen below in figure 5.3.

Figure 5.3: MATLAB - ModeFrontier Optimization Outline

The optimization ran for 5000 iterations and its optimal design can be seen in 5.8.

h = 6.0mm

t = 2.0mm

l = 205.78mm

(5.8)

with

Eloss = 44.639Nmm

σmax = 970MPa
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5.4.2 Single Spring Optimization using Surrogate Model

Using the surrogate model defined by 4.16 allows rapid simulation of the system. This

model is based upon the theoretical model and should give similar results. However,

due to its simplicity, the model can be run for more iterations to allow for better

searching of the design space.

Running optimization on the surrogate model for 20000 iterations time on a single

spring with the same constraints and limits as the previous examples nets the following

dimensions:

h = 6.0mm

l = 205.77mm

t = 2.0mm

(5.9)

with

Eloss = 44.64Nmm

σmax = 970MPa

Alternatively, due to the simplicity of the surrogate function, solving for the maximum

Eloss can be done with traditional optimization processes. Doing so yields:

h = 6.0mm

l = 205.77mm

t = 2.0mm

(5.10)
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with

Eloss = 44.64Nmm

σmax = 970MPa

It can be seen that results from 5.9 are the same as 5.10.

5.4.3 Comparison of Single Spring Optimization

Sections 5.4.1 and 5.4.2 each show separate optimization techniques. A table showing

direct comparisons of the optimization results can be seen in table 5.1.

Theory Surrogate
Eloss(mJ) 44.639 44.64
σmax(MPa) 970 970
h (mm) 6 6
t (mm) 2 2
l (mm) 205.78 205.77
Num. Iter. 5000 20000
Q=h/t 3 3
R=l/t 102.89 102.885

Table 5.1: Optimization Results

An FEA model was constructed to compare the results from the optimization. The

FEA model used the same dimensions found in table 5.1. More specifically, displace-

ment controlled was used, and it was modeled as dynamic explicit over a time frame

of 1 minute. A table comparing the two can be seen in table 5.2.

Optimization
Results from

Theory Surrogate
Theory 44.639 44.6352

Re-Run with: Surrogate 44.6439 44.640
FEA 40.275 40.281

Table 5.2: Comparison of Results
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A comparison between the force-displacement curve obtained from the theory and

one obtained from FEA can be seen in figure 5.4.

Figure 5.4: Comparison between force-
displacement curves of FEA and The-
ory using the optimum solution obtained
from theory

Figure 5.5: Comparison between force-
displacement curves of FEA and The-
ory using the optimum solution obtained
from the Surrogate Model

Similarly, a force-displacement comparison between the FEA and the results obtained

from the surrogate model can be seen in figure 5.5. Because the surrogate model just

tells the energy lost, the theoretical model was used to generate the force-displacement

curves using the results from the surrogate model.

As seen in either figure 5.4 or 5.5 snap-through occurs at roughly the same displace-

ment across all models, however the force at which snap-through occurs is less in the

FEA model than in the surrogate or the theoretical model. This reduction in the

force causes the energy difference seen in table 5.2.

Section 5.4.3 shows the optimization of a single spring. If this single spring was

replicated throughout a structure, it would form a metamaterial. Equation 4.21 tells

us that if the spring was uniformly scaled down to fill a mesh, the energy loss would

remain constant.
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5.5 Rectangular Metamaterial Optimization using

Surrogate Model

Equations 4.21 and 4.24 show how splitting the curved beam system down into smaller

beams effects energy loss and maximum stress. In this instance, a rectangular domain

is considered with fixed dimensions, while the number of curved beams, n and m, are

the variables. The initial curved beam system has a height of 75mm, a thickness of

5mm, a depth of 25mm, and a span of 1500mm.

The following is how the structure is to be optimized:

Maximize:

Eloss =
m4

n4
Eb

4.251Q2 + 3.134Q+ 45.4

Q2 + 0.8436Q− 3.689

h2t3

l3

Subject to:

σyield >


σmax = m2

n2 π
2Eth
l2

(
4
3

+ 4t
3h

+ 4
27

√
192
π2 + 162 − 972 t2

h2

)
hj
tj
> 3

With:

n ε [1, 10]

m ε [1, 20]

t = 5

b = 25

h = 75

l = 1500

Rather than running this structure through an optimizer, n and m can be algebraically

solved for. Equation 4.24 says the stress is related to (m/n)2 times the initial curved

beam’s stress. Meaning:
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m

n
≤
√

σyield
σinitial

(5.11)

Running the domain dimensions in the surrogate model produces initial Eloss and

σmax values.

Eloss = 2657.2mJ

σmax = 635.3252MPa

(5.12)

Using this initial stress, equation 5.11 becomes:

m

n
≤
√

970

635.3252

≤ 1.2357

(5.13)

If the ratio m
n

exceeds 1.2357, then the structure would yield, making 1.2357 the

highest that m
n

can be. Equation 4.21 shows that the energy lost is scaled by (m/n)4.

Setting m/n to be less than or equal to 1.2357 will produce the structure with the

maximum energy loss. With the ranges nε[1, 10] and mε[1, 20], the n and m are

optimized to:

[n,m] = [5, 6] or [10, 12] (5.14)

Making the energy lost in either case to be:

Eloss = 5509.9mJ (5.15)

This Eloss is over twice that of a single beam as seen from 5.12.
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5.6 MetaStructure Optimization

For this optimization, a metastructure will be produced. In this case, the structure

is 3 rows tall and 4 cells wide. It is assumed that the spring dimensions vary only

across each row, and not within each column. This leads to having a consistent l, and

then three h and t values. The overall dimensions are set to the same values found

in section 5.5, with L0 = 1500mm, H0 = 75mm, and b = 25mm. With a constant l,

equation 4.7 gives l to be 375mm. Making the optimization outline to be:

Maximize:

Eloss = 4 × Eb
3∑
j

4.251Q2
j + 3.134Qj + 45.4

Q2
j + 0.8436Qj − 3.689

h2j t
3
j

l3j

Subject to:

σyield > max

{
π2Etjhj

l2

(
4
3

+
4tj
3hj

+ 4
27

√
192
π2 + 162 − 972

t2j
h2j

}
150 > h1 − h2

Qj > 3

with:

t1,2,3 ε [0.1, 2]

h1,2 ε [10, 150]

h3 = 150 − h1 − h2

b = 25

l = 375

E = 113.8E3

σyield = 970MPa

Optimizing this structure using Powell’s Conjugate directions in ModeFrontier R©
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yields:

Elosstotal = 23161.6

Elossrow1 = 2701.12

Elossrow2 = 388.556

Elossrow3 = 2701.12

σmax1 = 969.6

σmax2 = 970

σmax3 = 969.6

(5.16)

with:

h1 = 17.8 h2=114.4 h3=17.8

t1 = 2.00 t2=0.319 t3=2.00

(5.17)

As seen in 5.17 the system was optimized to have two identical curved-beams and one

unique curved-beam. The pair of identical beams provide the most energy loss, while

the unique beam provides the least.

The results for a metastructure can be compared to that of a metamaterial in the

same domain. Equation 4.6 gives the height of each spring to be 50mm. The system is

still 4 cells wide, meaning the l is the same at 375mm. The maximum thickness these

beams can have while remaining within the yield limit is 0.725mm. A 3x4 rectangular

mesh with these dimensions gives an energy loss of:

Elosssimilarsprings
= 2625.7mJ (5.18)

Comparing the results for the metastructure, seen in 5.16, to the metamaterial’s

results shows that the metastructure with the same domain has a higher energy loss
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than a similarly sized metamaterial.

5.7 Material Selection’s Effect on Optimization

As mentioned in section 4.4, the material selected has a large impact on the maximum

Eloss obtainable by the structure. More specifically, a balance must be struck between

the Modulus of Elasticity of the structure and its yield strength. Table 5.3 shows the

results of optimizing systems with various materials with the same constraints outlined

in 5.5, 5.6, and 5.7 obtained by using the surrogate model. Only elastic behavior was

modeled.

Eloss
(mJ)

E
(MPa)

σyield
(MPa)

h
(mm)

t
(mm)

l
(mm)

b
(mm)

Ti-Al6-4V 44.64 113.8e3 970 6 2 205.77
CoCr 14.42 210e3 560 6 2 367.89
Al 6061 T6 8.71 68.9e3 276 6 2 300.16
PolyCarbine 5.24 3.1e3 70 6 2 126.42
AISI 1006 Steel 5.06 206e3 285 5.87 1.96 500
Stainless Steel 2.76 193e3 215 5.27 1.76 500 1
PLA 2.46 3.5e3 35.9 6 2 169.44
Bronze, SAE 40 2.13 93e3 125 5.79 1.93 500
Titanium, Ti 2.03 116e3 140 5.49 1.83 500
Nylon 11 1.76 6.8e3 44 6 2 236.17
Copper 3.3E-5 110e3 33.3 3 0.79 500

Table 5.3: Material Selection’s impact on Eloss

Table 5.3 shows that materials with a high E and a high σyield allow for structures

with higher energy loss.
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Chapter 6

Conclusion

6.1 Conclusion

Overall the research presented in this document shows that a metamaterial or metas-

tructure can be created out of elastic materials that provides energy loss.

Chapter 2 discusses how the system loses energy, how that energy is transformed, and

how to calculate it. By obtaining the force-displacement curves of the structure under

loading, the areas contained by these portions can be discovered. The difference be-

tween these sections relates to how much energy is dissipated. Due to the suddenness

of the translation, the energy is dissipated in the form of vibrations.

Moving beyond a single cell, chapter 3 investigates how a network of these springs

will work as a whole. Section 3.2 shows how to calculate the energy loss of a mesh

of these cells. Section 3.4 tells how the springs deform in that network. Lastly, in

order for the structure to be constructed, section 3.3 relates how to design portions

connecting each spring to one another.
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With the structure’s intricacies understood, understanding how the structure’s di-

mensions effect the Eloss is helpful in setting the bounds of the optimization. How

the Eloss scales is obtained by scale 4.4. Moving beyond a single spring to a mesh

of springs, a relation of the thickness of the springs to the number of springs in x-y

is obtained by equation 4.9. Lastly, the scale is used to construct a surrogate model

seen in 4.16 to be used later in optimization. This scale was found in equation 4.16,

and accurately predicts the energy lost by the system.

Speaking of optimization, chapter 5 begins by discussing how the optimization is

performed, and the three systems used to perform it: FEA, Theoretical Relations,

and the Surrogate Model. Optimizations of a single spring using each of the three

methods are then compared and discussed. Using the surrogate model, a rectangular

mesh is then optimized and discussed.

6.2 Future Work

6.2.1 Physical Parts

This research solely focused on understanding how energy is lost by the system, calcu-

lating it, then optimizing it. Because of this, there were no physical models produced

and tested. An important piece of work is to physically produce one or several of

these parts to test and verify the simulation results.

The individual springs could be tested to verify the theoretical energy loss and fatigue

limits. The same can be said for a mesh of these springs. A physical test can also be

performed to test the deformation pattern of the structure.
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6.2.2 Mesh Combinations

Chapter 3 investigated the system behavior of a network of these springs in either a

rectangular or triangular pattern. However,these meshes themselves can be combined

to produce more complex meshes. Take figure 6.1 for example. It features three

rectangular meshes combined to form one whole mesh with a hole in the bottom

center. The purple dotted lines mark the outline of each rectangular mesh. In this

example, each mesh is 2 springs tall. Mesh 1 is 4 wide, 2 is 1 wide, and 3 is 2 wide.

This mesh can be useful to produce a maintenance opening. However,the removal of

the spring marked in green can cause some issues when loading. Exactly how this

structure behaves and how to predict and mitigate undesired deformation is an area

of future study.

Figure 6.1: Assembly of Mesh Example.

6.2.3 Mesh with Varying l

The meshes studied in this paper make the assumption that the spring’s span, l,

remains constant throughout the structure. If the span is a variable, this would open

up the design space possibly leading to better structures. However, by varying the
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span, this opens up alignment issues that need to be dealt with.

Preliminary analysis showed strange twisting behavior present in the structure when

the spans were varied. This is likely due to snap-through occurring at varying forces

throughout the structure. If a mesh with varying l is desired, additional investigation

is necessary.
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Appendix A

Eloss with varying E, b, h, t, and l

To get the scale of the function, five tests were performed. In each of these tests, one

variable from E, b, h, t, and l was varied, and the others were held constant. Running

multiple tests shows how each individual variable scales the Eloss.

Varying E:

Figure A.1: Eloss as a function of E

74



Varying b:

Figure A.2: Eloss as a function of b

Varying h:

Figure A.3: Eloss as a function of h
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Varying t:

Figure A.4: Eloss as a function of t

Varying l:

Figure A.5: Eloss as a function of l
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Appendix B

Dimensions for Theory and

Surrogate models.

Using a uniform Latin hypercube on the range h/t = [3, 30] and l/t = [30, 500] pro-

duces:

H L Theory Surrogate Model

10.2 419 6.74E-06 6.75E-06

28.9 95 4.20E-03 4.20E-03

5.69 150 5.76E-05 5.75E-05

27.9 217 3.28E-04 3.28E-04

8.75 181 6.41E-05 6.41E-05

15 485 8.84E-06 8.84E-06

3.7 286 5.13E-06 5.14E-06

21.2 132 8.52E-04 8.52E-04

25.2 383 4.89E-05 4.89E-05

12.2 72.1 1.83E-03 1.83E-03

26.5 327 8.67E-05 8.67E-05
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23 301 8.43E-05 8.43E-05

24.6 375 4.97E-05 4.97E-05

20.3 255 1.09E-04 1.09E-04

8.16 465 3.36E-06 3.36E-06

18.5 30 5.58E-02 5.58E-02

16.5 227 1.03E-04 1.03E-04

6.72 103 2.27E-04 2.27E-04

16 347 2.73E-05 2.73E-05

13.5 441 9.65E-06 9.65E-06
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