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Abstract

There has been a continuous evolution in deep neural network architectures since Alex Krizhevsky

proposed AlexNet [22] in 2012. Part of this has been due to increased complexity of the data and

easier availability of datasets and part of it has been due to increased complexity of applications.

These two factors form a self sustaining cycle and thereby have pushed the boundaries of deep learn-

ing to new domains in recent years.

Many datasets have been proposed for different tasks. In computer vision, notable datasets like

ImageNet [7], CIFAR-10, 100 [21], MS-COCO [24] provide large training data, with different tasks

like classification, segmentation and object localization. Interdisciplinary datasets like the Visual

Genome Dataset [20] connect computer vision to tasks like natural language processing. All of these

have fuelled the advent of architectures like AlexNet [22], VGG-Net [34], ResNet [12] to achieve

better predictive performance on these datasets. In object detection, networks like YOLO [31],

SSD [25], Faster-RCNN [32] have made great strides in achieving state of the art performance.

However, amidst the growth of the neural networks one aspect that has been neglected is the prob-

lem of deploying them on devices which can support the computational and memory requirements

of Deep Neural Networks (DNNs). Modern technology is only as good as the number of platforms

it can support. Many applications like face detection, person classification and pedestrian detection

require real time execution, with devices mounted on cameras. These devices are low powered and

do not have the computational resources to run the data through a DNN and get instantaneous

results. A natural solution to this problem is to make the DNN size smaller through compression.

However, unlike file compression, DNN compression has a goal of not significantly impacting the

overall accuracy of the network.
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In this thesis we consider the problem of model compression and present our end-to-end training

algorithm for training a smaller model under the influence of a collection of “expert” models. The

smaller model can be then deployed on resource constrained hardware independently from the expert

models. We call this approach a form of compression since by deploying a smaller model we save the

memory which would have been consumed by one or more expert models. We additionally introduce

memory efficient architectures by building off from key ideas in literature [14, 4, 15] that occupy

very small memory and show the results of training them using our approach.
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Chapter 1

Introduction

Deep Neural networks have revolutionized the way we interact with data. They are currently being

deployed in computer vision system, medical imaging systems and even speech recognition appli-

cations. As the abundance of datasets has grown, deeper neural networks have been proposed to

achieve competitive performance on those datasets. However, the increase in predictive accuracy

comes with the growing cost of model size. For example, ResNet-18 [12] has a size of 128 MiB while

a WideResNet [36], with same number of layers can go upto 442MiB. Additionally, deeper neural

network models take longer to process data once they have been trained (this is called inference time

from here on). In real world deployment scenarios, it is critical that a trained neural network model

has a low latency while processing real time input. Considering that modern deep neural networks

are both large and have high latency, it is imperative that techniques to compress them are applied,

which has given rise to the field of model compression. In this work, we will define the problem

and explore techniques that have been proposed so far. We will then demonstrate our method and

discuss the relative benefits and the trade-offs that we make.

The weights in any given neural network layer have high redundancy, i.e. there are several weights

in the same layer which can be set to zero without any significant decrease in accuracy. Hence, many

previous techniques have focused on removing the redundant weights to reduce the model size. Some

of these techniques involve pruning, quantization or SVD decomposition. However, a drawback of

removing redundant weights is that it sparsifies the neural network weight matrices, prompting the

use of specialized storage formats like compressed sparse column (CSC) format. Depending on the
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degree of sparsity, this could become a major limiting factor in the inference times of a compressed

model. Recently, a newer paradigm of compression by knowledge transfer has been proposed. It

seeks to avoid the drawback of sparsifying weight matrices and “compress” the knowledge in a larger

model into a smaller model such that the smaller model has comparable accuracy to that of a bigger

model. We will discuss these techniques in detail in Chapter 3.

1.1 Contributions

In this work, we chose the newer paradigm of compressing neural network models by knowledge

transfer by considering the formulation of Distillation Loss proposed by Hinton, et al .[13]. The

original implementation assumes a single teacher student paradigm of transferring knowledge by

proposing a loss function that encourages the student to produce a similar softmax distribution over

the classes as a teacher model. This transfer of “dark knowledge” is achieved by “softening” the

softmax probability distribution by a constant temperature T .

We extend this loss function to incorporate the knowledge from multiple teachers into a single

smaller student model. Additionally, we do not assume the temperature T to be a uniform constant

and show analytically and experimentally that it outperforms the performance of a student model

trained with Distillation Loss. More importantly, our proposed loss function shows that it is possible

to control the amount of distillation of knowledge from each teacher.

We introduce two new student model architectures in this work as well. These architectures are

oriented to be as memory efficient as possible, while still having comparable accuracy. The focus is

on mobile deploy-ability and the ability to learn from multiple teachers. We describe them in detail

in Chapter 4.

In order to evaluate the results we perform experiments with both student architectures on the

CIFAR-10 [21] dataset. To further validate our hypothesis, we perform similar experiment with

smaller student models on the SVHN [28] dataset. In other related approaches to knowledge distil-

lation, there has been a lack of focus on the mechanism of knowledge transfer between two different

networks. We experimentally examine this question by modifying a standard dataset and removing
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instances of a particular class from the student training set. We then compare the rate of misclas-

sification achieved by the approach proposed by Hinton et al .and our approach. These results are

presented in Chapter 5.

1.2 Thesis Overview

This work is organized into roughly two parts. The first part comprising of Chapters 2-3 comprehen-

sively introduces the background on model compression and surveys some of the existing approaches

in the field. The second part comprising of Chapters 4-5 provides an in-depth view of our contribu-

tions to model compression.

Chapter 2 introduces the supervised learning paradigm in detail. It details the perceptron model

of computation and then builds off of it to introduce the concept of non-linear activation functions.

Multilayer perceptrons are discussed in the next section, followed by a general overview of the

stochastic gradient descent algorithm. Chapter 3 motivates and formalizes the problem of model

compression before examining some of the major approaches like Optimal Brain Damage [6], Weight

Approximation via SVD Decomposition [8], etc. We present our own approach along with proposed

student architectures in Chapter 4. Experimental simulations and results are discussed in Chapter

5. Finally, we conclude our work and offer suggestions for future work in Chapter 6.

5



Chapter 2

Background

This chapter introduces the background material for understanding the supervised learning paradigm

and the need for model compression. Section 2.1 introduces the overall supervised learning paradigm.

Section 2.2 introduces the McCulloch Perceptron model and Section 2.3 builds on that to introduce

the concept of non-linearities and activation functions. Finally, Section 2.4 introduces the Multi

Layer Perceptron and Section 2.5 formally defines the stochastic gradient descent algorithm.

2.1 Supervised Learning

Supervised learning is a machine learning paradigm in which the model under training is explicitly

provided with correct labels for each data point. Formally, in the supervised learning paradigm in

which sample pairs (x, z) are drawn from a training set ζ during the training phase of the algorithm.

Each sample pair consists of a data point and an associated correct label. Additionally, a disjoint set

of samples is drawn from the same input data distribution and is not presented to the model during

training. Instead this is used to get a measure of how accurately the model maps the input data

to the given correct labels. This set is called validation set and this ability of a machine learning

model to learn from a small distribution and make predictions on unseen samples drawn from a

similar distribution is called generalization. The training task generally attempts to minimize an

error function E which is defined as the distance between the predicted value y and z. The error

function is sometimes referred to as a loss function. We shall describe some common loss functions

when we discuss Neural networks in Section 2.4

6



Figure 2.1: The Perceptron

There are two broad subcategories of tasks in the supervised learning paradigm - linear and logistic

regression. The two tasks differ in the way they train the model to map the inputs to the outputs.

Logistic regression aims to map a set of inputs x ∈ Rn to a set of distinct classes c ∈ C. This can be

thought of a bin-assignment problem in which ranges of continuous inputs are mapped to discrete

bins. Linear regression on the other hand, attempts to map a set of inputs x ∈ Rn to a continuous

output variable Θ.

2.2 The Perceptron Model

We have reviewed the theoretical framework of traditional approaches to machine learning in the

previous section. Before we discuss the theoretical framework of neural network learning and opti-

mization, it is imperative to discuss the perceptron algorithm.

Figure 2.1 shows the perceptron computation diagram. We define the input vector X = {x1, x2....xn}

to be an ordered set of the dimensions of the data which may or may not be conditionally independent

of each other. The weight vector W = {w1, w2....wn} determines the “degree of importance” of

each individual input dimension. We denote the output of the cell marked Σ to be y. With this

information we define:

y = w1 ∗ x1 + w2 ∗ x2 + ...wn ∗ xn + w0(t) (2.1)

7



Figure 2.2: An example of linearly separable data in 2 dimensions

Here, w0(t) is called the bias. Equation 2.1 can be more succinctly written as:

y =

N∑
i=0

W ∗XT + w0(t) (2.2)

Equation 2.2 is similar to the equation of a straight line in two dimensions. Effectively, it gives

a “hyperplane” which divides the input space into two linearly separable halves. The perceptron

algorithm does not assume the weight vector W to be fixed. Instead, the weights are tunable

parameters that get trained using a training set. Like most superivsed learning algorithm, the

training set for a perceptron comprises of (xi, zi) pairs where zi ∈ {0, 1}. For each data, label

pair we have a set Y = {y1, y2, y3.....yn} where each yi is computed via equation 2.2. The training

proceeds under a certain learning rule, which relies on computing an error measure between the

computed samples yi and label zi. If the predicted output matches the correct label, then no action

is performed, else the weight vector W is adjusted as:

ŵi = wi − η ∗ (zi − yi) ∗ xi (2.3)

Equation 2.3 is the Delta learning rule. The training continues by making several passes on the

training set and continuously testing on the test set. The algorithm is said to have converged when

the error in classification is below the tolerance threshold. It must be noted here that the perceptron

model assumes that the data is linearly separable and only consists of two classes. To maintain rigor,

8



we define the data being linearly separable when the following is true for all data points:

y =
w ∗XT + w0(t) > 0 xi ∈ X0

w ∗XT + w0(t) < 0 xi ∈ X1

(2.4)

In Equation 2.4, the set X0 corresponds to all xi ∈ X whose label is 0 and X1 corresponds to all

xi whose label is 1. For example, in figure 2.2 the two data points cluster in two different positions.

We can assign label 0 to all green points and label 1 to all red points since they fall on either side

of a line y = −x. The perceptron training algorithm seeks to minimize the error function E to the

least value possible over the input space. However, the perceptron framework is too rigid and only

allows for binary classification over linearly separable data.

2.3 Towards Neural Networks

Figure 2.3: The Neuron Model

To overcome the limitations of the perceptron model, we now explore the neuron model of compu-

tation and generalize it to the case where the neurons are not individual computation unit, but are

abstracted into a bigger computation unit called layer. Finally, we explore multilayer perceptron

model.

The neuron computation model is shown in Figure 2.3. It is very similar to the perceptron model

9



in terms of the input vectors X and the weight vectors W . However, it differs from the perceptron

model in one very significant aspect. In the perceptron, the output of the model was a binary class

value. In the case of neuron however, y = 1 if and only if the value from the cell before it is greater

than a threshold. The cell before y is called an activation function or simply activation and is

responsible for turning the real valued input of the Σ cell into a non-linear function of X between a

certain fixed range. We will discuss the activation function in more detail in Section 2.4.1. Denoting

the activation function as σ, we compute y as:

y = σ(

n∑
i=0

W ∗XT + w0(t)) (2.5)

If σ(x) is greater than some threshold t then the neuron is said to be in the “firing” state. The

resulting y is then a real value bounded by the upper and lower bounds of the activation function

and is fed forward to other directly connected neurons. We will introduce another computational

abstraction in our simplistic model when we discuss multilayer perceptrons in Section 2.5.

2.3.1 Activation Functions

We have discussed the significance of activation function in the neuron computation model in the

previous section. In this section, we define and describe many commonly used activation functions

in modern deep convolutional neural networks. However, before discussing the individual activation

functions, we define the desirable properties that are required for a mathematical function to be

used as an activation function:

1. It should have a strictly defined upper and lower bound i.e. any output value produced by

this function can approach the limits but never attain the limit and beyond.

2. It should be continuous and differentiable for all input x.

We discuss some commonly used activation functions in modern CNNs in the next subsections

2.3.1.1 The Sigmoid Nonlinearity

The sigmoid nonlinearity is defined as:

σ(x) =
1

1 + e−x
(2.6)

10



Figure 2.4: The sigmoid nonlinearity

Figure 2.5: The Tanh and RELU nonlinearities

The gradient ∂σ(x)
∂x is simply σ(x) ∗ (1− σ(x)). Figure 2.4 shows the graphical representation of the

sigmoid function. It can be seen that the output is constrained to be between [0, 1]. However, this

function is not widely used in modern deep CNNs since it has a tendency to saturate and kill the

gradients, i.e. when the sigmoid function saturates to produced only 1 as a response to any input,

then the gradients approach zero. In deep neural networks this can be an issue since the weights

in the lower levels of the network don’t get updated. Another key factor is that the response is

not zero centered which can cause the sign of the gradient to change in a zigzag manner during

backpropagation.

2.3.1.2 The Tanh and ReLU nonLinearities

Figure 2.5 shows the graphical representation of the Tanh and ReLU nonlinearities. The Tanh

nonlinearity is defined as:

tanh(x) =
1− e−x

1 + ex
(2.7)

This function can be simplified to tanh(x) = 2∗σ(x)−1. This formulation makes it easy to calculate

the gradient using standard differentiation and the definition of gradient of σ(x). A key point of

difference in tanh(x) and σ(x) is that the former constrains the output values to be between [−1, 1]
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Figure 2.6: Multilayer Perceptron model

and is zero centered. Hence this nonlinearity is almost always preferred in place of the latter.

The ReLU nonlinearity is defined as relu(x) = max(0, x). Thus any x < 0 is simply quashed to

0. This nonlinearity was shown to be extremely helpful in allowing a neural network to converge

via gradient descent (we will discuss this shortly) by Krizhevsky, et al . in [22]. Computationally,

the ReLU units are a simple thersholding operation that is very simple to compute during different

phases of the training. However, the units are susceptible to producing an output of 0 if proper care

is not taken during training.

2.4 Multilayer Perceptrons

In the previous sections we have seen the computational model for a perceptron and neuron. In this

section we introduce a computational abstraction over a neuron and then introduce the multilayer

perceptron. We then describe in detail the two training passes in a multilayer perceptron. However,

before we start it must be noted that the term multilayer perceptrons is a bit of a misnomer since

the individual units are neurons.

We have seen the computation of the output y in a neuron. While this is feasible for one neuron and

one dimension, it quickly becomes computationally infeasible for data with thousands of dimensions
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and corresponding neurons. We thus introduce the computational abstraction of a layer which is

defined to be a collection of neurons, such that if one computes the output of a layer, they would

have computed the output of each individual neuron. We represent a layer by a matrix of (m+1)×1

dimensions where m is the number of neurons in that layer. The additional neuron is the constant

“bias” that we saw earlier.

Multilayer perceptrons are typically organized into layers with each neuron in Layer Li connected

to each neuron in Layer Lj for j > i. If we consider this model to be a black box then only the

input layer and the output layer are visible to the user. The inner layer through which the feature

vector passes are hidden. Hence these layers are called hidden layers. A neural network (henceforth

used in place of multilayer perceptron) follows the composability principle, i.e. it can be composed

of various layers stacked one after the other (in the horizontal point of view). It has been observed

that there is a direct correlation between the performance of the neural network and the number

of hidden layers in between the input and output layers. In Figure 2.6 we show a neural network

comprising of one hidden layer.

2.4.0.1 Forward Pass

Neural networks are parametrized algorithms, i.e. they try to estimate the maximum log likelihood

P (y|x; θ) such that it matches the expected values. The parameter θ can be interpreted as the

weights and the biases of each layer in a neural network. From a high-level perspective, a neural

network then attempts to approximate a universal function defined over the input space by tuning

these parameters. An interesting property of neural networks is that they can be described in terms

of both graphs and equations. We show a graphical view of a simple neural network in Figure 2.6.

Equation 2.10 shows the forward pass in a multi-layer perceptron. An implicit assumption in the

equation is the use of the sigmoid nonlinearity σ(x). We refer to the output of a layer as uij indi-

cating that it’s the ith layer connected to the jth layer.

Computing the forward pass in a neural network is essentially a vector operation where we compute

the matrix-vector products of the input vector (to a layer) and it’s parameters. We have previously

defined the input to be an (m+1) dimensional vector. A layer also maintains it’s own parameters θl

which are it’s weights and biases. Since each neuron in layer i connects to every neuron in layer j we
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can define the weights wljk to be the weights of layer l connecting weight k of layer l− 1 to weight j.

More succinctly, the layer weights can be represented as a weight matrix of dimensions RM×Nwhere

M refers to the number of neurons in layer l − 1 and N refers to the number of neurons in layer l.

For the network shown in Figure 2.6 we compute the forward pass according to the equations below

(we don’t assume a constant bias node):

Y1 = X ∗WT
1 (2.8)

Y2 = Y1 ∗WT
2 (2.9)

Ŷo = Y2 (2.10)

Ŷo is the output vector produced by the neural network. The number of weight matrices are equal

to the number of layers in the neural network with the exception of the input layer. Thus for our 3

layer network we have 2 weight matrices. Now since there were m inputs in the input layer and it

was connected to a layer with N neurons, W1 has dimensions RN×M . Similarly, in the output layer

there were k neurons hence W2 has dimensions RK×N . It is also evident from the equations that

the forward pass is a staged matrix vector product that ultimately produces parameters for either

classifcation or regression. If the network in figure 2.6 was being used for classification, then we

would define a function softmax as:

ζ =
exi∑
j e
xj

(2.11)

Equation 2.11 normalizes the output vector Ŷo into probability values between [0, 1]. We could then

predict the most likely class as ŷ = argmax(Ŷ ).

2.5 Stochastic Gradient Descent

In the previous section we’ve discussed the computational model of a multilayer perceptron. We

presented a way to compute the output of the neural network by succesively applying matrix-vector

products to each layer. However, this alone does not solve the problem of finding the minima for

some objective function J(θ). In this section, we introduce Gradient Descent and present a brief

overview of how modern deep neural networks are trained via this algorithm.
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Figure 2.7: A two dimensional view of gradient descent

2.5.1 Gradient Descent

Figure 2.7 graphically represents the process of gradient descent in two dimensions. The ball at the

top of parabola aims to ultimately travel to the bottom of the curve, which also coincides with the

minima. Formally, let the cost function J(θ) define a non-convex optimization surface (i.e. it can

have multiple local minima and maxima) over N dimensions and let θ completely determine the

value of J(θ), then we define gradient descent as an iterative algorithm, that minimizes the cost

function by updating values of θ at each step. We say that the algorithm has converged when for

any θ − δ: J(θ − δ) = J(θ). At each step t the parameters are updated according to the equation:

θ̂ = θ − η ∗ ∂J(θ)

∂θ
(2.12)

In Equation 2.12, η is known as the learning rate. In Figure 2.7 this corresponds to the initial push

that is provided to the ball so that it rolls down the curve. In gradient descent this is one of many

different constant that are set before a network is set to training. In practice, care must be taken to

select η correctly since a high learning rate will cause the network to overshoot the minima while a

too low learning rate will cause the opposite effect.

In Equation 2.12 we note that the next value of a parameter θ also depends on it’s rate of change

w.r.t the cost function. For the algorithm to converge, all θ is every layer must be updated. An

efficient way to compute this is introduced by the “Backpropagation Algorithm” which is an algo-

rithm to compute the update for each layer’s parameters by successively applying the chain rule of

differentation.
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Algorithm 1 The Stochastic Gradient Descent Algorithm

1. Select input training data Dn containing data label pairs. x ∈ Rhxwxc and y ∈ {1...m} for m
possible classes.

2. Select a network Γ to be trained with an objective function O.

3. Select a network optimizer Ω.

4. Compute the forward pass for i = 0→ n or convergence.

procedure Forward Pass(Dn,Γ, O)
while (x, y) ∈ Dn do . Compute the forward loss function given label and predictions

ŷ ← Γ(x)
loss← O(ŷ, y)

end while
end procedure

5. For each iteration i 6= n compute the backward pass.

procedure Backward Pass(loss,Γ)
loss

′ ← ∂loss
∂O

for l = n− 1→ 0 do . Compute gradients for all layers in reverse

lα ← ∂loss
′

∂α

Γ[l]← ∂lα
∂x

end for
end procedure

6. Update the weights across the neural network using Equation 2.12 and optimizer Ω
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Algorithm 1 provides an overview of the stochastic gradient descent (SGD) algorithm for a classi-

fication task. The algorithm proceeds until the training iteration reaches the maximum iteration

or we find that the training has converged. A training procedure in SGD is said to have converged

when at an iteration i+ 1, θi+1 = θi. At each training step, the algorithm requests a batch of data

and computes the most likely output for that batch. Prior to any training procedure, we define a

Loss Function that measures the dissimilarity between the predicted and the actual ground truth

values. In a training step, this loss function is used to compute the error. In the backward pass we

compute the gradient of the loss. Then for each layer l in our network Γ we compute the gradient

of the loss w.r.t the activation function and then compute the gradient of this value wrt the input.

Since this computation proceeds from the outermost layer to the input layer, this is also referred to

“reverse mode differentiation” in the literature.

We have mentioned that at each training step, the algorithm requests batches of data. The reason for

this is that modern datasets contain data that cannot be fit on a single computational unit. Hence,

we divide the data into pre-determined size called batch size. Varying this parameter, has a direct

effect on the time it takes the SGD procedure to converge (assuming the data has a local minima).

The larger the batch size the faster the convergence. Additionally, the batches are shuffled and

chosen in a stochastic manner, i.e at any given training step a random batch of input patterns can

be considered. This prevents a phenomemon called overfitting in which a neural network achieves

high accuracy on the training set while having a poor accuracy on the unseen testing set.

2.6 Chapter Summary

In this chapter we defined the supervised learning task and formally defined two types of tasks

that fall under this family of learning approaches. We then looked at different types of learning

units that have been proposed to learn the mapping between a given input pattern X and desired

output pattern Y , starting from a simple perceptron to more complex architecure of a multi-layer

perceptron. Finally, we looked at an algorithm to stochastically estimate a minima starting from

a random initialization point and computing forward and backward variables across layers in a

network. In the next chapter, we examine the problem of model compression and look at different

approaches that have been proposed so far to solve it.
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Chapter 3

Introduction to Model

Compression

In this chapter we discuss the motivation for model compression. We then formalize the problem

and then present some existing approaches for model compression. We present our own findings in

chapter 4 and illustrate some of the extensions to our work in Chapter 5.

3.1 Motivation

Deep learning has seen exponential growth in the last five years. Part of it has been due to the rise

in the computational capability of Graphics Processing Units (GPUs) which had been erstwhile seen

as essential to video games and building graphical simulations of real world models. Additionally,

the growing amounts of data in different domains have also fuelled the development of more and

more complex deep neural networks(DNNs) that can accurately generalize to unseen data in those

domains.

Apart from scientific research, DNNs have found applications in consumer applications as well. From

face recognition in selfies to digital voice assistants like Siri, there is a growing demand for instant

access to highly accurate models. The ideal approach would be to deploy the DNN on the device

and reduce any communication latency from a data server. However in practice, this means that
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Figure 3.1: Memory consumption of some popular DNN architectures.

we need to somehow have the model in the DRAM of the device itself. This is difficult to achieve

out of the box since as the complexity of data and the associated model grows, it directly impacts

the size and the energy consumption of the model. This motivates the need for having some way

of decreasing the memory footprint of a trained model without affecting the overall accuracy of the

network. Figure 3.1 shows the memory consumption of some successful deep convolutional neu-

ral networks on the Imagenet [7] dataset. It can be observed that the high accuracy of a DNN

is highly correlated with a higher memory consumption. In a neural network the main sources of

memory consumption are the tunable parameters (weights, biases) of a given model. The deeper the

model, the more number of tunable parameters are needed to optimize the nework on a given dataset.

Figure 3.2: Energy Consumption per Memory access

Energy cost of common read operations in different precisions in a neural network is shown in Fig-

ure 3.2 [9] [10]. Most neural networks are trained in full precision i.e. the word size is 128 bits or

more. From the figure, it can be seen that the energy per read operation significantly increases as
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the word size is increased. Thus, from an energy point of view, having a full precision network on a

resource constrained device could lead to faster battery drain and decreased performance.

As a result, we formalize the model compression problem as follows: Given a neural network model

trained on a dataset D consisting of N training samples (Xi, Yi) with Γ parameters and having an

accuracy α on the test set drawn from the same dataset, obtain a neural network model with Γ̂

parameters and accuracy α̂ such that Γ̂ << Γ and α̂ ≈ α.

We discuss approaches to this problem through the rest of this chapter.

3.2 Saliency Based Network Pruning

The earliest approaches to model compression were developed keeping the multilayer perceptron

architecture in mind. Implicitly, that assumes that each neuron in layer j is connected with each

neuron in layer i and weighted as wji. Additionally, it also assumes that the network was sufficiently

shallow to allow a backward pass to be computed relatively easily. Abstractly, the approaches are

focused on somehow computing a measure of redundant weights in neural networks. From our

discussion of the SGD algorithm, we know that a network has converged when θl + ε ≈ θl. It then

follows, that during the course of weight updates there may be some parameters in the same layer

that converge to same value, no matter their initial point. Hence, removing one redundant parameter

should not (in theory) affect the accuracy of the neural network. Moreover, one can compensate

for the loss of a redundant weight by increasing all others by a proportional amount. However,

computing which parameter to remove is a hard task. In this section we examine some approaches

that have been proposed to compute not only the redundant weights but also a measure of their

saliency.

3.2.1 Hessian Based Approaches

Some of the earliest approaches to network pruning involved perturbing the trained parameter by a

small amount ∆θ and then measuring the change in the overall objective function δE. For simplicity

in analysis we assume that the only trainable parameters in the network are the weights w and we

are perturbing them by ∆w. The change in the objective function is obtained by a Taylor Series
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Expansion and ignoring the higher order terms as:

δE =
∑
i

giδwi +
1

2

∑
i

hiiδw
2
i +

1

2

∑
i 6=j

hijδwiδwj +O(||δw||3) (3.1)

In Equation 3.1 gi are the element of a vector G = ∂E
∂w . The second and third terms comprise of hii

and hij , which are elements of a Hessian matrix H = ∂E2

∂wi∂wj
. The information contained in the

inverse of Hessian matrix elements can help determine the saliency of the weights to be pruned. We

explore two main works in the following sub-sections:

3.2.1.1 Optimal Brain Damage

In Optimal Brain Damage [6], LeCun,et al . propose a method to compute the terms in equation 3.1

in an efficient manner. It assumes that the total change in the objective function must be caused

only by the changes in the parameters themselves, i.e. δE is solely the sum of pertubations in wii.

Thus, any cross terms are neglected. Based on this assumption, Equation 3.1 reduces to:

δE =
1

2

∑
i

hiiδw
2
ii (3.2)

Additionally, the perceptron model is considered to be shared weights, i.e. wij is same for any

connection from neuron i to j. If Vk is the set of connectivity indexes for a neuron k, then the

diagonal elements hii can be computed as:

hii =
∑

(i,j)∈Vk

∂E2

∂2wij
(3.3)

The overall procedure for Optimal Brain Damage is Algorithm 2:

Algorithm 2 Optimal Brain Damage Procedure

1. Train the network using gradient descent until convergence.
2. Compute hii using Equation 3.3
3. Compute saliencies sii = hiiw

2
ij/2

4. saliency list ← SortSaliency(saliencies)
5. Eliminate weights with low saliencies in the saliency list.
6. Iterate to step 2 until there is no more change in in the hessian.

The main computational bottleneck stems from steps 3 and 4 in the procedure. During every

backward pass, the procedure requires knowledge of every weight connection from neuron i to j and
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then performs an explicit sorting step, before pruning the low saliency weights. Another similar idea

was proposed Karnin et al .in [18] where instead of computing the Hessian, a shadow saliency list of

weights is built and then low saliency weights are removed. In the context of modern deep neural

networks, this bottleneck becomes a significant source of affecting both training and inference times.

3.2.1.2 Optimal Brain Surgeon

In [11], Hassibi et al .propose a more general procedure called Optimal Brain Surgeon. Unlike OBD,

this method does not assume that the weight change arises due to self connections only. They build

from Equation 3.1 and show that the general solution for computing δw given the constraint of

deleting one weight is:

δw = − wq

H−1qq
.eq (3.4)

Lq =
1

2

w2
q

H−1qq
(3.5)

Here, eq is a unit vector in the qth direction in weight space and H−1 is the inverse of the Hessian

matrix. Lq is the saliency measure for the qth weight. The optimal brain surgeon procedure is

described in Algorithm 3.

Algorithm 3 Optimal Brain Surgeon Procedure

1. Train a multilayer perceptron for a given data until convergence.
2. Let E be the learned energy, compute H−1.
3. Find q that belongs to min(Lq). (Equation 3.5)
4. Delete wq and update other weights by δw. (Equation 3.4)
5. Repeat Step 2.
6. Stop when δwt ≈ δwt+1, where δwt is the weight change at time t.

The most significant (and time consuming) step in this procedure is step 2. A recursive method to

compute step 2 has been proposed in [11]. Since the procedure is recursive, the memory requirement

for computing the inverse Hessian will considerably increase as the network depth is increased.

Another assumption made by the Hassibi et al . is that there is total connectivity in the network,i.e.

all neurons in layer i are assumed to be connected to all neurons in layer i + 1. However, this is

not the case in convolutional layers where there is a spatial connectivity in a fixed region. Hence,
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if a low saliency weight is deleted in one region, it will be difficult to update the weights in other

regions.

3.3 Deep Neural Network Compression

In this section, we discuss two techniques that have extended the goals of the previous approaches to

modern deep neural network. Most of these techniques have been proposed for convolutional neural

networks, but the same principles apply to other kinds of networks as well. A common theme that

unifies both the approaches is that they both exploit some inherent property of a given network to

remove redundancy in a computationally efficient manner.

3.3.1 Deep Compression

Figure 3.3: The Deep Compression Pipeline

Figure 3.3 shows the compression pipeline proposed by Han, et al . in [9]. As can be observed from

the figure, there are three distinct stages, sequentially arranged to compress a given DNN. The first

stage in the pipeline involves iterative pruning. We have already discussed the necessity of pruning

and how by removing redundant weights, it can lead to a smaller model size. In this procedure,

the first step is to learn the connectivity, i.e. the magnitude of weights wij from neuron i to j. An

arbitrary threshold is chosen and any weight that is below the threshold is then pruned.

Like previous approaches, we note that changing the connectivity by δw needs to be compensated by

the same amount in other weights. In this approach, this step is performed by retraining the network
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Figure 3.4: Trained Quantization in Deep Compression.

to learn the new connectivity. The second stage in Figure 3.3 involves trained quantization(Figure

3.4). During this stage, n bins are chosen and n centroids are initialized. Then, in a kmeans like

procedure, weights are quantized as shown in Figure 3.4 to one of the n bins. During the backward

pass, the gradients are also grouped together, and the weight update is performed according to

Equation 2.12. Finally, the centroids are updated as well. The resulting weights then have a direct

mapping to a particular bin i ∈ {1...n}. Finally, the indices of the bins and the code book can be

further compressed via Huffman Encoding.

3.3.1.1 Drawbacks

The proposed approach is not as computationally intensive as building sensitivity lists and pruning.

However, it does have its demerits. We note that the first stage involves setting an arbitrary thresh-

old, and then pruning the connections. Since this threshold is arbitrary, in some cases it may lead

to necessary weights being pruned as well. Another drawback is the explicit re-training step after

pruning. In many cases, especially in production there may not be enough training time available

to accommodate the re-training of the remaining weights.

While trained quantization is able to quantize continuous weights into discrete bins, it leads to

sparsity in the network. While a sparse weight matrix occupies smaller space, it requires a special

format (CSR, CSC) to be represented in memory. However, most high performance libraries like

LaPack [2], BLAS [1], Intel MKL [16], cuBLAS [5] do not support indirect lookups for matrix-matrix

and matrix-vector computation.
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3.3.2 Weight Approximation by Tensor Decomposition

Figure 3.5: Approximation of Weight Tensors to Rank-1 Tensors

An approach to exploit linear structure in convolutional layers and approximate weight tensors is

introduced by Denton,et al . in [8]. The central idea of the approach is to approximate the weight

matrix of a W with a close enough matrix Ŵ . The tensor Ŵ then can be computed much more effi-

ciently and have similar accuracy as before. The overall flow of the approach in shown in Figure 3.5.

The decomposition is first proposed for a low order (2 Dimensions) weight matrix W ∈ Rmxk, which

is approximated as W = USV T . An assumption made in the paper is that the singular values for

this type of decomposition decays rapidly and hence only the first t entries can be considered signfi-

cant. For higher order tensors, i.e. W ∈ Rmxnxk the approach is adapted by folding the dimensions

other than the first into one i.e. W ∈ Rmx(nk). This can also be seen from Figure 3.5 where the

higher order weight tensors are ultimately converted to rank-1 tensors.

It should be noted that this approach does not involve any re-training of the network at all. However,

it exclusively focuses on removing the redundant weights in the convolutional layers while resting

on the assumption that the singular values decay rapidly enough. Additionally, it does not discuss

this approach in context of fully connected layers in a CNN, which acutally contribute to majority

of the space requirement.
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3.4 Compression By Knowledge Transfer

All approaches considered thus far have a common underlying theme - a trained network was the

input to the algorithm and some sort of inherent property was exploited to prune, quantize, or

approximate the weights. The output of the algorithms was the same network with significantly

less weights. In this section, we discuss a different approach to compression, i.e. training a smaller

dense network under the influence of an “expert” teacher. We describe some of the existing work in

the domain of knowledge distillation and discuss their drawbacks. We discuss our own method and

it’s intuition in detail in the next chapter.

Before discussing related work in this area, we first define the notation of “teacher” and “student”

model. A teacher model is a deep neural network (or an ensemble) that has a high performance on

a given dataset. A student model, is another neural network, not necessarily as deep as the teacher

and doesn’t perform as well as the teacher on the same dataset. There are some benefits to this

approach towards model compression. Firstly, there is no computational bottleneck of computing

saliency values of connectivity between neurons i and j during training which leads to a faster training

time. Secondly, there is no re-training involved. The student network occupies lesser memory, and

once trained can be deployed anywhere. Thirdly, it doesn’t make any assumptions on the underlying

rank or eigenvalues of the weights in the student, since the student is train in a conventional manner

by gradient descent.

3.4.1 Knowledge Distillation

In [3], Caruana,et al . train a smaller network by drawing synthetic samples from a data distribution

that mimicked the one on which a larger expert model was trained. More formally, they propose an

algorithm to approximate a joint probability distribution p(θs) that mimics the probability distri-

bution of Dn where Dn is the training set of the expert model. The training samples for the smaller

model are then drawn from this distribution with an a-priori probability of p(x|θs). The smaller

model then is the “compressed” version of a larger teacher model. However, this procedure depended

heavily on the training data for the larger model, and hence if that were to change a retraining of

the smaller model would be required.
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In [13], Hinton, et al . showed that it is not necessary to approximate the data distribution. Rather,

they proposed an end-to-end knowledge distillation framework with a loss function called Distillation

Loss. In the framework, there is a large complex model (which is assumed to be pre-trained) and a

smaller “student” model. The large complex teacher model’s output is used as a soft target for the

smaller model and the overall loss function is proposed in Equation 3.6.

Ld = αKL(oz, vi) + (1− α)CE(oz, yi) (3.6)

Here vi is a softened softmax probability at a particular temperature T and oz is the output logits

produced by the student model. Finally, yi are the actual “hard labels” obtained from the labelled

dataset. We shall discuss softening temperature and it’s relevance from a non-linear system point

of view in later chapters. Additionally, we define the softened softmax probability for a class c for

a particular output as in Equation 3.7.

p(c|xi, θ) =
exi/T∑
j e
xj/T

(3.7)

It must also be noted here that the student logits, oz, are also softened at the same temperature

as T . A particular merit of this approach is that it is data agnostic. The teacher model could be

trained on any data and the student model can be then trained on the same data, with a slightly

lower accuracy, but a smaller model size. Moreover, once the student is trained, the teacher model

is not required during inference. It is due to these merits, we chose to extend this work, and propose

a more general loss function which will be introduced in Chapter 4.

3.4.2 Privileged Information and Knowledge Distillation

In [35], Vapnik, et al . propose the concept of learning using priviledged information or LUPI. The

paradigm extends the traditional supervised learning paradigm where the pair (xi, yi) ∈ D are ex-

tended to a triplet (x, x∗, y). Here x∗ is the privileged information only available to the teacher model

at training time. For example, if we train a student network to segment different parts of a human

tissue, then the images of tissue and associated labels will correspond to the dataset available to

both student and teachers. However, the teachers also will have access to say, a medical report from

a human doctor certifying if the tissue is healthy or not. This would be the privileged information.
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In [26], Bottou et al . propose unifiying LUPI and Knowledge Distillation into one paradigm. The

training algorithm is presented in Algorithm 4.

Algorithm 4 Unifiying LUPI and Knowledge Distillation

1. Given a triplet (x, x∗, y) ∈ D+, separate (x∗, y) ∈ DT and (x, y) ∈ DS .
2. Train a teacher model to learn FT with DT .
3. Compute soft labels s = σ(FT ) for the student model by softening them at a temperature T .
4. Train the student model on DS with s and y using loss function from Equation 3.6.

In the algorithm, D+ denotes the overall training set comprising of privileged and common training

samples. At the start, the set is partitioned into DT and DS where the teacher model is trained on

the privileged information, and it generates the soft labels necessary for training the student. It is be

very easily seen that in the case x = x∗, the paradigm becomes equal to the knowledge distillation

paradigm.

A variation in this paradigm is provided by Zhang, et al . in [37]. Their proposed approach does not

involve a highly trained teacher model. Instead, they propose training two or more students, where

they learn from each other. Thus, the soft labels si are the KL divergence between the output logits

of a student and it’s mutual learning partner. Equation 3.8 shows the loss function.

L1 = CE(oz1, yi) +KL(oz2, oz1) (3.8)

Here, CE(oz1, yi) is the cross entropy between one student’s logits and the actual labels, and

KL(o1, o2) is the KL divergence. The loss is similar for the second student as well.

3.4.2.1 Relation to Our Work

The aforementioned work proposes a paradigm that aims to distill knowledge from a specialized

teacher to the student. Effectively, this aims to provide the student model some extra information

that it may not learn if the teacher wasn’t there to guide it. However, the paradigm makes no

mention of learning from an ensemble. Moreover, knowledge transfer between a teacher and student

is assumed to take place at a uniform temperature.

In the case of mutual learning, the authors measure the cross-entropy between the softmax proba-
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bilities generated from both teacher and student models which is then used to train both the models

at the same time. Zhang,et al . propose summing the KL-Divergences between each model in teacher

ensemble and using that for the student, while broadcasting the student probabilities across all the

models in the ensemble. However, this approach does not work since the KL divergence with student

softmax proabilities offers lesser information to the teachers, leading to a poorer convergence, which

in turn leads to student learning a bad representation of the classes.

Our approach in contrast, differs from the above mentioned approaches. We approach learning from

multiple teachers where all teacher and student models are trained on (x, y) ∈ D. However, we do

not assume a uniform rate of knowledge transfer. In contrast with mutual learning [37], we propose

a unidirectional flow from highly trained teacher models, thereby avoiding the problem of “bad

learners” that has been previously mentioned.

3.5 Other Related Approaches

Recently, some other approaches to model compression (using knowledge distillation) have been

proposed. Some of the approaches focus on training low precision student networks using different

teacher models while other approaches focus on quantization and knowledge distillation. In this

section, we briefly examine these techniques and discuss their differences with our method.

In Apprentice [27], Mishra, et al . propose a framework for trainining low-precision student networks

with the knowledge distillation paradigm. A low-precision network would represent the weights by

a signed int as opposed to a float or a double data type. This significantly reduces the memory

consumption. The student (or apprentice) network is either trained alongside a full precision teacher

model or knowledge is distilled from a trained full precision teacher model. Fine tuning a student

model is also considered as another scheme. All three schemes expectedly show improvement in

performance due to the distillation from a full precision trained model. However, the paper does

not directly extend or modify the knowledge distillation paradigm itself and hence is not directly

related to our work.

An approach to unifying quantization and distillation is proposed by Polino, et al . in [30] where
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they propose quantized distillation. The algorithm describes a way to use quantized weights in a

student model and then use the knowledge distillation paradigm to learn better connectivity. A

way to visualize the input to this scheme is to consider Q = {q1, q2, ...qn} discrete bins that contain

quantized weights. The continuous weights wij belonging to a certain qi ∈ Q can be computed using

a quantization function that performs a mapping from a continuous to discrete domain. Next, if WQ

be the set of quantized weights obtained from a quantization function, then distillation loss can be

computed w.r.t. wq ∈WQ. However, during backward pass we need to somehow update wij . Polino,

et al . propose updating the weights in full precision before requantizing the weights. We observe that

the quantization function is not differentiable for every input i.e.
∂Lq
∂wq

only exists when wq belongs

to a particular qth bin, it is zero everywhere else. Moreover, the quantize-train-quantize cycle has

a computational bottleneck of quantizing the weights during the forward and backward pass in one

epoch. To get around this limitation, the authors propose differentiable quantization in which they

define the gradient of the quantization function and eliminate the need for re-quantizing. Our work

in contrast, does not need quantization to perform well. A major design goal of our approach is to

eliminate the need for workarounds in the deep learning train-eval-deploy cycle. A student model

trained via our approach can be effectively considered a smaller instance of a larger ensemble and

expected to perform just as well as the ensemble would.

Finally, we discuss a recent work by Lan, et al . in [23] where they propose an on the fly ensemble

as shown in Figure 3.6. The idea is to extend a single teacher model with a common shared low

level layer and m auxilary branches. Thus, the teacher is an ensemble of m branches which learn

the same low level representation but higher order features are learned differently by each 1, 2...m

branches. It must be noted that the auxiliary branches cannot differ too much from the base lower

level, since it will make gradient propagation to the lower layers difficult. For example, if a branch

i resembled VGG-11 and branch j resembled VGG-19 then it is possible that gradients from jth

branch may never be backpropagted back to the lower layers. The “on-the-fly” part of this approach

comes from the fact that m is variable and hence it can be adjusted at run time.

Overall, the m auxiliary branches are treated as an ensemble of teachers and each branch is a stu-

dent model. The logits from all branches are collected via a gate module and then knowledge is

distilled back into each individual branches. The temperatures however are kept uniform. Our
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Figure 3.6: Knowledge Distillation by On the fly Ensemble (ONE) by Lan et al .

approach has some similarity to this work since we consider learning from an ensemble. However,

there are a couple of differences. The learning approach proposed by Lan, et al . can be considered

an extended case of mututal learning [37] where the ensemble of m branches is mutually trained

with each individual branch. In contrast, our approach is to take a pre-trained ensemble of different

teacher architectures and non-uniformly distill knowledge from them into the student. Next, we

note that the architecture of the auxiliary branches can not be too distant from the architecture of

the lower layers,- this limits the overall choice of ensemble to a particular architecture. However,

in our proposed approach there is no limitation on the architecture of the student model since we

assume that the teachers are not trained during the learning phase.

3.6 Chapter Summary

In this chapter, we defined the problem of model compression by showing the energy and memory

consumption of deep neural networks. We then examined related approaches starting from the

earliest work to the current state of the art. Additionally, we compared the approaches to our

proposed algorithm. In the next chapter we formally introduce our specific contribution.
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Chapter 4

Experience Loss

In the previous chapters we have introduced the underlying framework for supervised learning tasks

and looked at training algorithms to train Deep Neural Networks. We have also motivated the

problem of model compression and examined in some detail the different approaches that have been

proposed so far along with their relative benefits and demerits. In this section, we introduce our

specific contribution. Section 4.1 begins by formalizing the notation used throughout the analysis in

this Chapter. We introduce the proposed loss function in Section 4.2 and theoretically analyze the

gradient to show that we can control the knowledge distilled by varying a single hyperparameter.

Section 4.3 then introduces a memory efficient training scheme that is designed to scale well with

different number of teachers. Finally, in Section 4.4 we look at two student architectures that are

designed for memory efficiency. We survey existing approaches and propose a new architecture.

4.1 Notation

Let (xi, yi) denote the input and label sample pairs of a training set D. Also let E = {m0,m1..mN−1}

be a collection of N deep neural networks that have high accuracy on D. For a particular input

sample xi ∈ D we obtain a softmax response o from the model. This vectoris of length C representing

the probabilities of xi belonging to a class ci ∈ C. For a model mi we can define the softened-softmax

for a particular class yj ∈ C at a temperature Ti as:

oTi =
eyj/Ti∑
z e

yz/Ti
(4.1)
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For a particular output class j, we define the set κ = {oT0 , oT1 ..oTN−1} to be the softened softmax

response at different temperatures. In other words, ki ∈ κ represents the soft-softmax repsonse at

temperature Ti.

4.2 Experience Loss

Our goal is to train an optimal smaller student model that learns a function FS under the influence

of teachers in E and the labels yi ∈ D. We hypothesize that the student model performs much

better when distillation occurs from multiple teachers at different temperatures and the training

process is more stable due to the regularization effect from different teacher architectures. The

former intuition arises due to the observation that an ensemble of models trained on the same task

have much better performance than a single model and the latter intuition arises by noting that the

student model is trained under the influence of teacher architectures that have obtained a minima

over the input space. Thus, the output of such teachers act as regularizers to the student model.

We mathematically define our approach as:

Lexp = α

N∑
i=1
ki∈κ

KL(oTz , ki) + (1− α)H(ỹz, y) (4.2)

The first term in Equation 4.2 is the KL-divergence between the softened-softmax of the student

oTz and the softened-softmax of the teacher models for a particular class (cj ∈ C). The student

logits are softened at a temperature Tz using Equation 4.1. We will discuss different approaches for

initializing Tz in the experiments section. For the purpose of the analysis, we will consider Tz to be

an independent quantity that can be adjusted independently. The second term in the loss function

is the cross-entropy between the student’s unsoftened softmax prediction and the acutal labels for

a given input sample. Both terms are weighted by a hyperparameter α that controls the weight we

put on each term’s contribution. Throughout this work, we will weigh the first term more heavily

than the second to encourage the student to learn more from the teacher models.
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4.2.1 Novelty and Significance

We have discussed different approaches to knowledge distillation in Chapter 3. While Hinton et

al . [13] discuss the possibility of extending their approach to an ensemble of networks, they do not

provide a theoretical framework for the same. The novelty of our work lies in the fact that we are

the first to consider a diverse ensemble of deep neural networks and distill knowledge into a smaller

model. We do so without employing any bagging or boosting techniques and experimentally show

that a simplistic formulation yields better results than in [13]. Additionally, our framework allows

for a non-uniform rate of knowledge transfer, even though our formulation relies on pre-selection of

these rates. To the best of our knowledge, we are the first to consider the problem of knowledge

distillation from the point of non-uniform rate of transfer.

Another contribution of our work is to define an end-to-end training algorithm that can be memory-

efficient at training time by querying the ensemble for their outputs on a particular model. This

approach can be further adapted by querying only the top k most important models, with the

importance being determined by a small meta-network or a nearest neighbor analysis.

4.2.2 Theoretical Analysis

In order to understand what the student network learns from an ensemble E, we look at the gradient

of our loss function w.r.t. and output logit zj . This logit is produced by a student model in response

to an input sample xi. We assume that for the same input sample a model mi produces a logit vij

and a softened softmax response ki. The error contribution of the logit w.r.t to the loss function

can be defined as:

∂Lexp
∂zj

= α
1

Tz

N∑
i=1
ki∈κ

(oTz − ki) (4.3)

We use the definition of softened softmax from Equation 4.1 to expand Equation 4.3 as:

∂Lexp
∂zj

= α
1

Tz

N∑
i=1

(
e
zj
Tz∑

c e
zc/Tz

− e
vij
Ti∑

c e
vic/Ti

) (4.4)

Here Tz is the student temperature, i.e. the temperature at which the student logits are softened and

c is an index into all possible classes C for the given data set. If Ti >> vij then we can approximate
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Equation 4.4 via Taylor Series Expansion and re-write it as:

∂Lexp
∂zj

= α
1

Tz

N∑
i=1

(
1 +

zj
Tz

C + 1
Tz

∑
c zc
−

1 +
vij
Ti

C + 1
Ti

∑
c vic

) (4.5)

Equation 4.5 shows the gradient of the first term of experience loss with no approximations and

M possible output classes. We can further simplify this equation by considering that we usually

zero-mean the input training examples (i.e. subtract the mean from each of the individual samples),

thus we can consider
∑
c zc and

∑
c vic to be zero. Hence, we can approximate the gradient as:

∂Lexp
∂zj

≈ α 1

CTz

N∑
i=1

(
zj
Tz
− vij
Ti

) (4.6)

From Equation 4.6 we observe that the contribution of the KL divergence w.r.t. a student logit

zj is effectively the sum of the difference between the softened logit and the the softened logits of

the teachers in the ensemble E. A key distinguishing feature between our formulation and the one

proposed by Hinton et al . in [13] is that we assume that Tz and Ti can be adjusted independently.

The distillation from a particular teacher can then be controlled by varying Ti. Interestingly, if we

consider Ti = T = Tz and N = 1, Equation 4.6 reduces to:

∂Lexp
∂zj

≈ α 1

CT 2
[zj − vj ] (4.7)

Equation 4.7 is similar to the one proposed by Hinton et al . in Distillation Loss [13]. We can easily

see how our approach, which we call Experience Loss, describes a more general case of Knowledge

Distillation. We shall later show this experimentally that Experience Loss also outperforms Distilla-

tion Loss if the temperatures are chosen correctly. Additionally, we will showcase some “strategies”

for initializing Tz from T = {T1, T2..TN}.

4.3 Training Procedure

In this section we describe a training algorithm that allows for training a student model with mul-

tiple teachers. Our goals are twofold - we want the student model to be at least as accurate as

the teacher models (within 5% tolerance limit) and the training to be scalable as different teacher

models are added to the ensemble. Hence, we focus on memory efficiency as opposed to the compute

cost of the logits.
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Algorithm 5 Experience Loss Training Procedure

1. Select a training set D containing (x, y) pairs where x ∈ Rhxwxc and y ∈ C = {1..m}.

2. Select set of teacher models E = {E1..EN} and instantiate student S.

3. Select the teacher temperatures T for teachers and set initialization strategy for Tz.

4. Compute the forward pass

procedure Forward Pass(D,E, S, T, Tz) . Compute Lexp
while (xi, yi) ∈ D do

lkl ← []
s← S(xi)
i← 0
while i 6= N do

tout ← Ei(xi)
lkl ← KL(s/Tz, tout/Ti)

end while
lce ← CE(s, yi)
Lexp ← α ∗

∑
(lkl) + (1− α) ∗ lce

end while
end procedure

5. Compute backward pass using SGD or similar optimizer.

In Algorithm 5 we see that the training procedure is designed to be as network and dataset agnostic

as possible. The inputs to the algorithm is a dataset D containing xi ∈ Rhxwxc and yi ∈ {1..m}, a

student network S, and an ensemble E. The hyperparameters are α, T , and Tz. The main procedure

is described in Forward Pass. For one epoch, the procedure initializes lkl and then computes the

student and teacher logits. The KL divergences are added to lkl and finally the loss is obtained as

a weighted sum.

The key to the memory efficient procedure is the inner most while loop. We see that we obtain

tout by passing the input training feature xi through a network Ei ∈ E. This happens at run

time instead of pre-caching of the logits. Pre-caching of logits is a major memory bottleneck and

severely limits the amount of teachers a student model can be trained with at a given time. Our

approach however, simply queries the outputs at run time and the result is detached from the

computational graph i.e. the gradient of Lexp is not backpropagated to the teacher models. We

found the machine learning library PyTorch [29] to support dynamic computational graphs and

implemented this training procedure in Python using this library.
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We have mentioned that the loss function is made up of two functions that are differentiable every-

where. We take advantage of this in our training procedure and compute the gradients of the two

terms separately and backpropagate through different layers. This approach also allows us to use

different optimizers like SGD, Adam [19], etc. in a plug and play fashion. Overall, the training

procedure is highly modular and can work with different datasets, network architectures, and teacher

ensembles.

4.4 Student Network Architectures

The knowledge distillation paradigm is flexible when it comes to the architectures of teachers and

students. However, the effectiveness of the approach is limited to some degree by the student

architecture used during training. Another factor is that the student model is ultimately intended

to be deployed on a resource constrained device, which means that the student architecture has to

as memory efficient as possible. In this section, we will begin by discussing some prior work in the

areas of memory-efficient architectures and then introduce our contribution in the form of memory

efficient student architectures that directly benefit from the experience of an ensemble of teachers.

4.4.1 Prior Work

Network architecture design is a broad space and design decisions are often trade-offs between a

network’s size and the generalization ability. Additionally, the target application influences the de-

cisions made in different stages of the network. We discuss some related work in the areas of creating

small and efficient network architectures that can be deployed on devices with memory constraints.

The 3-D Convolutional operation found in most of the modern CNNs is a parameter heavy opera-

tion. Algorithmically, a Convlayer C takes in an input feature map of dimensions (H ×W ×C) and

produces N output feature maps of dimensions (H
′ ×W ′

). A convolutional filter F has dimensions

FH × FW × C. Usually FH and FW are equal and have odd number sizes to produce appropriate

feature maps. Overall, for N such filters, a convolutional layer has N × FH × FW parameters. If

FH , FW > 1, then this becomes a parameter heavy operation. In [15], Iandola et al .introduce

SqueezeNet, i.e. a network architecture that has similar accuracy to that of AlexNet but occupies

much less memory. A key design decision they introduce is to replace the majority of (3× 3) filters
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Figure 4.1: Reduced Compuation Architectures. Left: The Xception Module, Right: The
MobileNet module.

(i.e. FH = FW = 3) with (1× 1) filters. Another important observation they make is to reduce the

input channels to (3× 3) convolution filters.

Another important observation about convolutional layers is that they are computationally intensive.

As reported in [14], a regular convolutional operation is O(FH × FW ×N ×C ×H ×W ). However,

the convolutional operation can be made parallel. We consider a 3-D convolution operation to be

a spatial correlation of features across an input image and then a linear cross-correlation across

channels. However, these two operations can be separated [14, 4] into two specific operations -

DepthWise Convolution and Point Wise Convolution. The former is a spatial convolution that

operates on the spatial dimension FHxFW in size while the latter is a channel wise convolution

that operates on the channel dimensions to accept M channels as input and produce N channels as

output. Moreover, the order of operations can be interchanged. Given this formulation from [14],

the reduction in computation is:

ρ =
1

N
+

1

FW ∗ FH
(4.8)

Based on this observation, two architectures have been proposed. Figure 4.1 shows the Xception [4]

and Mobilenet [14] building blocks. In the former, the input is converted to an N channel out-
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Figure 4.2: The Wide Basic Block (Wbv1) Architecure.

put, which is then spatially convolved with (3 × 3) filters. The result is then concatenated. If we

denote F(FH , FW , N) to be the original spatial 3-D convolution then the Xception block learns

F1(1, 1, N) + F2(FH , FW , 1). Similarly, the mobilnet module learns the same represenation with

a small difference - after every depthwise/pointwise convolution the output feature map is passed

through a nonlinearity. This approach is different from the former approach where the non-linearity

is applied to the output of F1 + F2.

Many newer architectures that are optimized for mobile applications, employ residual connections.

Most notably in [33] Sandler, et al . introduce the concept of inverted residuals and linear bottlenecks.

These two are relatively new techniques and beyond the scope of discussion in this work. We however

mention residual connections because in [36] Zagoruyko, et al . make an interesting observation about

ResNets - the standard residual branch often ends up learning small or no represenation of the input

at all. They then introduce the WideResNet architecture, which adds a parameter heavy residual

branch and outperforms the conventional ResNet in classification tasks.

4.4.2 The WideShallow and WideDeep Architectures

In this section we build off of these ideas to present two types of student architectures used in

studying the effects of our proposed loss function. The architectures are motivated by initial studies

that used 5 or 6 layer networks. These networks, though small in terms of memory consumption,
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Type Filter Shape Input Shape Output Shape # Params
conv1, stride=2 3x3x32 32x32x3 17x17x32 896
WBv1, stride=1 3x3x32x64 17x17x32 17x17x64 31.23K

max pool - 17x17x64 6x6x64 0
WBv1, padding=1, stride=1 3x3x64x128 6x6x64 8x8x128 123.90K

batch norm - 8x8x128 8x8x128 256
avg pool 4x4 4x4 8x8x128 2x2x128 0

Linear 512x1 1x512 1xM 5130
Total Params - 161.48K

Table 4.1: The Wide Shallow Net architecture. In the second wide basic block padding is applied
for correct input propagation. Avg Pooling is performed instead of Max Pooling in upper layers.

were unable to converge under the influence of different teacher models. Thus, we reviewed existing

literature and developed two newer architectures to study the effects of non-uniform temperature

distillation. A common feature in both of the architectures is the use of convolutional blocks that

learn a particular F(x). These blocks are then replicated at different stages in the architecture.

However, the design of these blocks are different in both architectures. We shall look at the two

architectures separately.

4.4.2.1 Wide Shallow Architecture

Figure 4.2 shows the architecture of the WideBasic (WBv1) block. The block is composed of stacks

of 4 layers, the first of which is a 3× 3 convolution; the rest are 1× 1 convolutions. This structure

of the block follows from Iandola, et al . observation in [15], where replacing majority of the 3 × 3

convolutions with 1 × 1 depth convolution resulted in significantly less parameters with no signifi-

cant impact on accuracy. The first convolutional layer is necessarily “wide” to capture more regions

of interest in a given training input pattern. Table 4.1 shows the overall output shapes and the

parameter in the Wide Shallow Architecture.

The shallow architecture has 161.48K parameters. If we assume full precision weights, then the size

of the network comes to about 2MiB after compression by a standard utility like tar or zip. We also

note the lack of aggressive max-pooling operations in the architecture since it has been observed

that max-pooling leads to a loss of spatio temporal information. Our proposed architecture is not

too deep and hence it cannot afford to lose the spatio temporal information across the feature maps.

Following Iandola, et al . [15], we replace max-pooling with average pooling before flattening the
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Figure 4.3: The WideBasicv2 (WBv2) blocks. Left: The entry/exit blocks; Right: The middle
residual bock.

feature vector. The reason for this is that the activations produced by a depth convolutions are not

high in magnitude. A max-pooling operation would cause a loss of information and consequently

lead to worse performance on a given dataset.

Although not shown in Figure 4.2, each convolutional layer in the stack is followed by a BatchNorm [17]

layer.

4.4.2.2 Wide Deep Architecture

Figure 4.3 shows the newer version of the WideBasic block introduced in the Wide Shallow archi-

tecture i.e WideBasicv2 (WBv2). This block incorporates some of newer approaches proposed in

recent literature [14, 4, 12, 36]. More specifically, it introduces separable convolutions and residual

connections in parts of the network. We have already discussed the benefits of separating a convo-

lution operation into depthwise and pointwise convolution operations in Section 4.4.1.

We borrow the concept of “network flows” from Chollet et al . [4] and divide the network into three

flows - entry, exit and middle. For the entry and exit layers, the “WideBasic” block is a depthwise

separated convolution block with ReLU and BatchNorm [17] layers in between. This approach is

similar to Mobilenetv1’s [14] block. The stride of the 3 × 3 could be set to x ∈ [1, 2]. Since we do

not use maxpooling operation in the architecture, we use strided convolutions to reduce the spatial

dimensions of the feature map. The middle flow is similar to entry/exit flows in the sense that it uses

depthwise separable convolutions. However, it restricts the 3x3 depth wise layer to have a stride of
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Type Filter Shape Input Shape Output Shape Parameters
3x3 Conv stride=2 3x3x32 32x32x3 16x16x32 928
WBv2, stride=1 (3x3) + (1x1)x32 x 64 16x16x32 16x16x64 2528
WBv2, stride=2 (3x3) + (1x1)x64 x 128 16x16x64 8x8x128 9152

3x WBv2, stride=1 (3x3) + (1x1)x128x256 8x8x128 8x8x256 34688
WBv2, stride=2 (3x3) + (1x1)x256x512 8x8x256 4x4x512 206.59K

1x1 conv, stride=1 1x1x512x8192 4x4x512 4x4x8192 4194.30K
AvgPool 4x4 4x4 4x4x8192 1x1x8192 0

Linear output=M 8192x1 1x8192 1xM 81.9K
Total 4.53M

Table 4.2: The Wide Deep Net Architecture. WBv2 refers to the newer version of the wide basic
block.

1 and the input/output channels to be the same. Additionally, it introduces residual mapping from

the input. It must be noted that we do not follow Zagoruyko, et al . [36] and keep the residual branch

free of any trainable parameters since our objective is not to attain state of the art performance but

to have memory efficient architectures.

Table 4.2 shows the overall architecture of the proposed Wide Deep Net. The entry and exit blocks

are organized as shown in the left side of Figure 4.3 and the middle ones are arranged as on the

right of the same figure. The first two WBv2 blocks constitute the entry flow while the last WBv2

block forms the exit flow. Since the newer wide basic blocks have separable convolutions the filter

sizes are shown separately. We note that we do not use any sort of max-pooling operations in this

architecture and restrict ourselves to one average pooling layer before the feature maps are passed

to the logistic regression branch. The inputs to the architecture are assumed to be of x ∈ R32×32×3.

Additionally, we introduce a 1× 1 convolutional layer to produce a “flat” output feature map. This

is later down sampled by the average pooling layer.

We immediately see that this network has more trainable parameters and consequently bigger size

than the Wide-Shallow Architecture. However, the majority of the trainable parameters are con-

tributed by 1x1 convolutions. Thus they do not end up occupying too much memory (even when

full precision is used). The total size of this networks comes to about 18-24 Mib, without employing

any file compression algorithm.
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4.5 Chapter Summary

In this chapter we derived our approach to model compression by knowledge distillation. We then

presented a training procedure to train with an ensemble of teacher models by querying them

for output during the run time. Furthermore, we introduced two memory efficient architectures by

building off of ideas found in literature. We look at experiments and the results on these architectures

with our proposed loss function in the next chapter.
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Chapter 5

Experiments and Results

This chapter introduces the results of our experimental simulations with the two student architecture

introduced in the last chapter on different datasets. We group our experiments by architecture since

we find that the student models learn differently. Section 5.1 details the results with the wide-shallow

student architecture and Section 5.2 details the results with the wide-deep architecture.

5.1 Experiments with Wide Shallow Net

This section introduces the experimental setup and results with different teacher models with the

wide-shallow network(Section 4.4.2) as the student model. To draw better conclusions, we kept the

dataset as an invariant. However, we perform different experiments with other datasets, the results

of which are discussed in future sections.

CIFAR-10 [21] is a dataset by Krizhevsky et al .containing 60,000 images and 10 classes. The dataset

is further subdivided into training set Dtrain containing 50,000 images and a test set Dtest containing

10,000 images. All images are of dimensions R32x32x3. Figure 5.1 shows some images in the dataset.

5.1.1 Experimental Setup

To train the wide-shallow net we trained VGG-11, VGG-19 [34], WideResNet [36] and ResNet-

18,50,110 [12] as the teachers. All teachers were trained for 200 epochs with a learning rate of 1e−2.
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Figure 5.1: A sample of images in the CIFAR-10 Dataset. (Krizhevsky et al .)

The student model in turn was trained for 50 epochs with the same learning rate. In our initial

experiments we found that if the Adam optimizer was used in training the student model, it would

lead the student model to overfit the training set. We surmise that since Adam is an adaptive

algorithm, shallow networks may quickly shoot beyond the local minima. On the other hand an

SGD based optimizer, works according to Algorithm 1 and thus is dependent on the current state

of the gradient. We noted that the training was more stable, and the trained models did not overfit

the data. Moreover, we noted that training with multiple teachers has a regularizing effect on the

student model. We will discuss this effect in more detail in the coming sections.

To provide an effective comparison between Distillation Loss [13] and our proposed approach, we

use the distillation loss formulation in cases when there is one teacher or (Ti = T )∀Ti ∈ T . In every

other case, we use Experience Loss (Equation 4.2) to compute the loss.

5.1.2 Initialization Strategies and Optimal Temperature

We have shown in Equation 4.6 that we can control the amount of knowledge distilled from a

teacher to a student by independently varying T and Tz. Since we treat the softening temperatures

as hyperparameters, we need to choose optimal values for a given task and dataset for both teacher

and student temperatures which introduces a lot of manual tuning in the overall framework. One

way to reduce manual tuning could be to auto-initialize the student temperatures from given teacher

temperatures. This constrains all manual tuning to finding optimal teacher temperatures. In this
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work, we introduce three initialization strategies:

• Mean Strategy: Initialize the student temperature to be the mean of teachers, i.e. Tz =

mean(T ).

• Max Strategy: Initialize the student temperature to be the max of the teachers, i.e. Tz =

max(T ).

• Min Strategy: Initialize the student temperature to be the min of the teachers, i.e. Tz =

min(T ).

To study the effects of temperature on the knowledge distillation we performed controlled experi-

ments with temperatures in the range [5, 50] with a step size of 5. In the case of two or more teachers,

we empirically found that the networks converged well when T < 30. As temperature is increased,

we found that the accuracy dropped uniformly in all initialization schemes. We also tried combining

very high and very low temperatures and observed that the network either did not converge or it

learned very little from the teachers. Table 5.1 shows the results of our experiments with different

number of teachers in the ensemble.

Teachers Mean Max Min

VGG-11 0.171 0.174 0.18
VGG-19, VGG-11 0.169 0.163 0.161

Resnet18, VGG-19, VGG-11 0.172 0.168 0.166
Baseline 0.207

Table 5.1: Top-1 error rates on CIFAR-10 validation set with different temperature initialization
schemes and teachers. The baseline was trained without using any teachers.

To measure the effects of temperatures, we performed an ablation study by progressively adding

heavier architectures. We distinguish a “heavy” architecture by noting that it has significantly more

trainable parameters than a “light” architecture. In the case of one teacher, where we use Distillation

Loss, we note that the error rate is uniformly worse than the ones obtained with Experience Loss and

two/three teacher ensembles. In the case of a three teacher ensemble, we note that the error rates

are slightly higher than the two teacher ensemble. However, we note during training that the three

teacher ensembles produce a much more regularizing effect than two teacher ensembles. Figure 5.2

shows the accuracy on the test set for three initialization strategies for both two and three teacher

ensembles.
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Figure 5.2: Relative comparison of accuracies of two and three teacher ensembles.

The left graph shows the validation accuracy with two teacher ensemble and the right graph shows

the same with three teacher ensemble. We note that for the three teacher ensembles, the graph is a

lot smoother and as training progresses there are lesser random spikes, showing that the student is

better regularized. We also note that well trained teachers can also be used as regularizers for more

complex networks.

5.1.3 Effect of Teacher Ensembles

In our experiments with different temperature initialization schemes we noted that softening different

teacher models at different temperatures could produce different results. In order to study the

relative effect of different teacher models on overall knowledge distillation, we performed experiments

with different combinations of teachers. For ease of understanding, we encode the ensembles as

follows:

• E1: Two teacher ensemble consisting of VGG-19 and Wide-ResNet.

• E2: Two teacher ensemble consisting of Resnet-18 and Wide-ResNet.

• E3: Two teacher ensemble consisting of VGG-11 and Wide-Resnet.

• E4: Three teacher ensemble consisting of VGG-11, VGG-19 and Wide-Resnet.
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E1 E2 E3 E4
mean max min mean max min mean max min mean max min
83.10 82.57 83.12 82.58 83.10 83.52 83.67 83.21 83.27 82.92 83.41 83.46
83.84 83.69 83.33 83.84 83.69 83.33 83.84 83.69 83.33 83.03 83.53 83.60

Table 5.2: Top-1 Validation accuracies(%) with different ensembles and different initialization
schemes.

Based on our observations from the optimal temperature selections we constrain the teacher tem-

peratures to be T ∈ {10, 15, 30}. We set the softening temperature for heavy architectures such

Wide-Resnet and VGG-19 to be 15 and lighter architectures like VGG-11 to be 30. In the case of

three-teacher ensemble, we use all three temperatures. Empirically, we found that these settings

allowed a student to converge to a much better local optimum. Table 5.2 shows the results of our

experiments.

The top row in Table 5.2 shows the top-1 validation accuracy with different ensembles. The bottom

row, shows the top-1 validation accuracy obtained with the ensembles in the optimal temperature

experiments (Section 5.1.2). We make several observations from the table. When two heavy archi-

tectures are paired together (E1, E2), then accuracy uniformly dips across all three initialization

schemes. Conversely, we find that two heavy architectures (WideResNet and ResNet-18) perform

relatively well when the “min” initialization scheme is used. For the “mean” initialization strategy

and two teacher ensemble, we find the student model learns best with a combination of two lighter

architectures. Additionally, we see that when a heavier architecture is paired with lighter one (E3),

the accuracy drops a little. Interestingly, the “min” strategy is the least affected by the change in

ensembles. In fact, in E2, the performance even improves marginally. Since the gradient of Experi-

ence Loss (from Equation 4.6) is the sum of differences between two softened logits, we surmise that

softening the student logits by different initialization schemes, gives rise to varying magnitude of the

difference between the two logits. With the “min” strategy, the logits of the student are softened very

little, giving a strong indication that lower temperatures could lead to better knowledge transfer.

Figure 5.3 shows the error rates of the two teacher ensemble using two different initialization schemes.
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Figure 5.3: Error Rate on CIFAR-10 validation with max and min strategy. Left: Max Strategy,
Right:Min Strategy.

5.2 Experiments with Wide-Deep Net

In this section, we present our experiments with the Wide-Deep architecture. Like the Wide-Shallow

architecture, we present our results in two different types of studies. The first study focuses on the

effect of varying the temperatures with different number of teachers in the ensemble. The second

study looks at the effect of varying the network architectures of the teachers in a given ensemble.

As with the Wide-Shallow net, we present our results on the CIFAR-10 dataset. The rationale

behind keeping the dataset constant in the studies is that it allows us to isolate the effect of different

temperatures and ensembles.

5.2.1 Teacher Ensemble Study

In our earlier study with Wide-Shallow network we noted that the final accuracy of the student

model depended on the architecture of the teacher models in a given ensemble. We perform the

same study with the Wide-Deep Net with a more diverse set of teacher ensembles. We combine

VGG-11, VGG-19 [34], Resnet [12] and WideResNet [36] in different combinations to study the

relative effects of mixing different architecture styles. We encode these ensembles as follows:

• E1: VGG-19, WideResNet

• E2: ResNet-18, WideResNet

49



Strategy E1 E2 E3 E4 E5

Mean 83.15 83.18 84.27 83.71 83.73
Min 84.05 84.21 83.73 83.87 84
Max 83.61 83.22 83.48 83.56 84.29

Table 5.3: Top-1 Validation Accuracies(%) with different ensembles and initialization strategies

• E3: VGG-11, WideResNet

• E4: VGG-11, VGG-19, WideResNet

• E5: VGG-11, VGG-19, ResNet-18

For each of these ensembles we compared the effect of the three initialization strategies mentioned

in Section 5.1.2 which allows us to draw conclusions about the best strategy for initialization given

a fixed teacher ensemble. These heuristics work in the same way as selecting hyperparameters and

can be adaptively used during the training process. Table 5.3 shows the results of our experiments

with these ensembles. All experiments are carried out for 50 epochs with a learning rate of 0.01 on

CIFAR-10 dataset. For the two teacher ensembles the temperatures were set to T = {5, 10} and the

three teacher ensemble were set to T = {5, 10, 15}.

We make some interesting conclusions from the table. First, we observe that like Wide-shallow

net, the accuracy of Wide-Deep Net also decreases uniformly across all initialization schemes. This

consistent observation lends strength to our original argument that adding more number of teachers

creates a sort of regularising effect which may not lead to increase in the accuracy but allows for more

stable training. Second, we observe that for the “min” strategy the accuracy increases uniformly

with a “heavy” ensemble. This accuracy however drops noticeably when a “light” architecture is

paired with a “heavy” architecture. Since the Wide-Deep Net is heavier than architectures like

VGG-11 and has a higher baseline accuracy than VGG class of models, setting a lower temperature

for a lighter architecture is akin to encouraging the student from a low-accuracy model. Interest-

ingly, the accuracy for the “mean” initialization strategy increases when a lighter architecture is

paired with a heavy one. Additionally, we observe that the “min” initialization strategy works best

across different ensembles. This observation can be explained by Equation 4.6 and expanding the

sum where Tz = min(T ). The sum is necessarily bigger for logits from heavy architectures and

smaller with lighter architectures. The overall sum then provides more information to the student
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model, allowing it to learn a much more complete representation. When compared with mean and

max strategies, the sum of differences is much higher initially and converges to a lower value in the

end.

For the case with three teacher ensembles, we note that the accuracies with different initialization

schemes are more closely clustered together. Even so, we notice that the “min” strategy works

better than other initialization schemes. A reasonable conclusion from these observation is that

lower temperature works better for knowledge distillation. Another key observation is that if we use

an ensemble of deep neural networks, a richer knowledge is distilled in the student model. This can

be observed from Figure 5.4.

5.3 Why does Experience Loss Work?

In the previous sections we have shown that Experience Loss significantly outperforms the baseline

results obtained by a smaller network and is able to distill knowledge in the student network from

multiple teacher models. In this section, we examine Experience Loss from a qualitative and exper-

imental perspective to understand why it works and how it defines a scalable method for knowledge

distillation.

We can think of neural networks as non-linear systems and the logits (or log probabilities) produced

by a trained neural network to be a dirac-delta response that peaks on the correct label y of the

associated input pattern x. However, if we soften the normalized logits by a certain amount then

the dirac-delta response is spread over some classes. This broader response gives the student more

information about the output distribution of classes as a whole. With Experience Loss, we soften

the logit response of the teachers at different temperatures and thus introduce diversity in the re-

sponses. For instance, a model m1 might say that the input pattern belongs to class 3 with 98%

confidence, while another model m2 in the same ensemble may associate 3 with only 90% confidence.

This diverse opinion amongst correct and incorrect classes transfers much more knowledge than just

softening all logits at the same temperature.

Figure 5.4 shows the output heatmaps of logits obtained via Distillation and Experience Loss. The
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Figure 5.4: Comparison between output logits produced by Distillation and Experience Loss. Top:
Distillation Loss

Bottom:Experience Loss(min strategy). [Best Viewed in Color]
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lighter color on the diagonals indicate better performance. We observe that for almost all classes,

Experience Loss has more correct predictions than Distillation Loss. To further validate our obser-

vations we trained Wide-Net (Section 5.1) and VGG-11 [34] as students using Distillation Loss and

Experience Loss. Table 5.4 shows the result of our experiments.

Model Distillation Loss Experience Loss
Mean Max Min

Wide-Net 83.02 83.1 83.7 83.9
VGG-11 83.35 83.46 83.40 83.87

Table 5.4: Performance of Distillation Loss wrt Experience Loss.

Both networks were trained for 50 epochs on the CIFAR-10 dataset. We observe that Experience

Loss with min strategy outperforms Distillation Loss in both shallow and deep architectures. Ex-

perimentally, this lends strength to our earlier hypothesis that Experience Loss takes advantage of

the diversity of an ensemble.

5.4 Learning with Partial Information

In Section 5.3 we hypothesized that the student network learns a much more complete information

if the logits of the models in an ensemble are softened at non-uniform temperatures. However, the

underlying assumption in the earlier experiments was that the student and teacher had access to

the same training set Dtrain. In the LUPI paradigm (Chapter 3) by Vapnik et al .we observed that

the teachers could distill more knowledge if they had acess to some privileged information. In this

section, we look at translating that paradigm to knowledge distillation in an ensemble.

5.4.1 Experimental Setup

We performed our experiments on the CIFAR-10 dataset. In order to generate a privileged dataset for

the teachers, we removed all instances of the frog class from the student training set Ds. Thus, from

the student’s viewpoint it has no idea of what a frog looks like. On the other hand, the teachers know

of the entire input patterns and their associated class. Given this setup, we performed experiments

with 3 different optimization strategies:

• Strategy 1: Student model trained on Ds with information from y ∈ Ds.

53



• Strategy 2: Student model trained with one teacher and Distillation Loss.

• Strategy 3: Student model trained with two teachers and Experience Loss.

We chose Wide-Net as our student model of choice.

5.4.2 Results

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

Figure 5.5: t-SNE Visulaziation of predicted classes from a student model.

A student that is trained with no information about a particular class will expectedly misclassify each

of those samples. However, if we focus on how much the student misclassifies the information, then

we can gain an understanding of how much knowledge is transferred to the student via distillation

or experience loss. In our experiments, a student model trained via strategy 1 misclassified about

8.5% of the total images as belonging to class 5 (“dog”), while strategy 2 reduced it to about 8%.

With strategy 3, the rate of misclassification to class 5 further dropped to 7.4%. Figure 5.5 shows

the t-SNE visualization of the output distribution produced by the student with partial access to

information.

5.5 Experiments with SVHN Dataset

In this section we discuss the performance of Experience Loss on the SVHN Dataset [28]. The SVHN

dataset is another classification dataset that has data collected by Google’s street view of different
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Teachers Temperatures Validation
Accuracy

VGG-11 [10] 92.04
VGG-11,
Resnet-18

[10, 20] 95.59

VGG-11,
Resnet-18,
Wide-Resnet

[10,1.5,20] 95.73

Baseline - 88.13

Table 5.5: Results on SVHN Dataset with different teacher models.
In case of one teacher, Distillation Loss was used.

house numbers. Figure 5.6 shows some samples from the dataset.

Figure 5.6: Samples from the SVHN Dataset.

We trained the same teacher models as with Wide-Net, i.e. Wide-ResNet [36], VGG [34] and

ResNet [12]. However, the student model we chose were simple 5 and 6 layer CNNs. All teacher

models were trained for 100 epochs, while the student models were trained for 50 epochs. In order

to measure the performance more accurately, we limited ourselves to 32x32 crops of single digits.
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5.5.1 Results

We observed our insights from earlier experiments and used the “min” strategy when training a

student model via experience loss. Table 5.5 shows the results of our experiments with different

teacher models and a 6-layer CNN as a student. The higher accuracies can be explained by the fact

that a single 32x32 image contains a single digit which is easily distinguishable. Table 5.6 shows the

accuracies obtained by the teacher models on the SVHN dataset.

Teacher Model Validation Accuracy
Resnet-18 99.98
VGG-11 99.86

Wide Resnet 97.53

Table 5.6: Best validation accuracy of teacher models with SVHN dataset. All teachers were
trained for 100 epochs.

From Table 5.5 we observe a similar trend as with the CIFAR-10 dataset when the student model

is trained with Experience Loss i.e. a model trained with Experience Loss performs better than the

baseline and comparably with Distillation Loss. We also measured the class predictions by a 6 layer

CNN when it is trained via two and three teachers. Figure 5.7 shows the class predictions as a

bar-graph.

Figure 5.7: Class Predictions of a model trained with 2 and 3 teachers respectively.
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Ensemble Models Total Ensemble Size (MB) Compression Ratio(φ)
Wide-Shallow Wide-Deep

VGG-19, WideResnet 218 357 12.82
Resnet-18, WideResnet 184 301 10.8
VGG-11, WideResnet 176 288 10.35

VGG-11, VGG-19, WideResnet 255 418 15
VGG-11, VGG-19, Resnet-18 161 263 9.47

Table 5.7: Compression Results on Wide-Shallow and Wide-Deep Net on CIFAR-10 Dataset.

From the graph we can clearly see the contrast between the predictions of a model when trained with

two and three teachers. A model trained with three teachers performs slightly better than a model

trained with two teachers. We can explain this observation using our hypothesis in Section 5.3.

Since an ensemble containing more teacher models introduces more diversity in the information

transmitted to the student, measuring cross entropy between the different teacher and students

leads to overall performance. On a shallow net architecture like a 6-layer CNN, we also note that a

larger ensemble has a regularization effect that prevents it from overfitting.

5.6 Compression Results

In model compression a key question arises - how well does the model compress? For pruning based

approaches, the answer is simply the size difference between the model obtained after pruning to the

one before. On the other hand, there is no standard way to measure the effectiveness of compression

in the knowledge distillation paradigm since the size of the student model is independent of the size

of the teacher model(s).

If one observes the training procedure in a knowledge distillation paradigm then it becomes apparent

that a student model, once trained under the influence of either a single teacher or an ensemble can

be independently deployed on any platform. Thus, a way to quantify compression could be to

compare the size of the student model to the total size of the ensemble. Mathematically, we can

define the compression ratio as:

φ =

∑N
i=0 Ω(mi)

Ω(s)
(5.1)

In Equation 5.1, Ω(mi) refers to the size of the ith model in the ensemble while Ω(s) refers to the

size of the student model. Based on the formulation in Equation 5.1, we present the compression
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ratios of the Wide-Shallow and Wide-Deep Net on the CIFAR-10 dataset in Table 5.7.

We used a PyTorch add-on called “torchsummary” to calculate the number of trainable parameters

in a given model. Since we used weights in full precision, we multiplied the number of parameters by

four and obtained the memory consumption. For Wide-Shallow Net (Section 5.1) the total memory

was 0.61MiB while for the Wide-Deep Net (Section 5.2) the total memory was 17MiB. Table 5.7

shows the total size of the ensemble along with the compression ratio of the Wide-Shallow and Wide-

Deep Networks. We can see that our approach yields significantly smaller networks while increasing

the baseline accuracy of these smaller networks to within tolerable range of the ensemble accuracy.

5.7 Chapter Summary

In this section we looked at experimental results with a varying number of teacher models in an

ensemble. We introduced three initialization strategies for selecting the student temperature Tz.

We then examined in some detail the relative effects of different teacher model architectures on

our proposed student models. From the results it becomes clear that lower temperatures lead to

better knowledge transfer in our proposed scheme. Additionally, we observe that ensemble of teacher

models lead to better regularized student models. We conclude our work in the next chapter.
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Chapter 6

Conclusion and Future Work

In this section, we conclude our work and provide avenues for future work and extensions to our

original idea. We will begin by examining the insight gained from our experiments in Section 6.1

and then discuss the future work in Section 6.2

6.1 Conclusions

In this thesis we have examined the problem of model compression from first principles. We defined

the need and theoretically motivated the problem of model compression. We then examined differ-

ent approaches that have been proposed to solve the problem and then introduced our own novel

contribution. This contribution enables scalable model compression, i.e. it gives a way to compress

diverse knowledge from different sources into one small model, which is both energy and memory

efficient. We also introduced two new architectures by drawing ideas from different related sources.

These models are intended to be memory efficient as well as able to fit to different datasets and

tasks. Finally, we looked at the reduction in memory consumption by using a student model trained

under our scheme in place of the ensemble that trained the student model.

The core contribution of our work is in defining an end-to-end training algorithm to distill the

knowledge from an ensemble of diverse deep neural networks at different softening temperatures.

Additionally, we examine the underyling principles in memory efficient architecture design and pro-

pose ideas to make existing architectures less memory heavy.
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Experimentally, we observe that the “min” scheme for selecting the student temperature consistently

outperforms all other initialization schemes. A reasonable conclusion from the observation is that

lower “temperature” leads to better knowledge transfer. We additionally observe two conflicting

observations. On one hand, the accuracy of the student increases when the number of models in

an ensemble are increased whereas on the other hand, the accuracy tends to plateau with three

or more teachers. An explanation of these observations could be that as more models are added

in an ensemble, the difference between the parameters of the ensemble and the student increases

linearly and hence there must exist an upper bound on the number of models that can be fit into an

ensemble for our given approach. We believe that this unknown upper bound on number of models

is a potential drawback to our approach.

6.2 Future Work

We have defined a training algorithm, introduced two memory efficient networks, and developed a

training strategy in our work. This leads to some exciting areas of research and extending our work

in different directions. In this section, we examine some of the major areas of extending our work.

6.2.1 Automatic Temperature Selection

In our formulation, we have treated the temperature as a hyperparameter, i.e. a given constant that

needs to manually adjusted. However, given the amount of datasets and the tasks that exist in deep

learning, it is cumbersome to manually adjust and find the optimal hyperparameter for each and

every data set. A good future work in this direction will be to identify techniques to infer the opti-

mal softening temperature for a given dataset. For instance, the student temperature could be set

to the harmonic mean of the teacher temperatures which could lead to much better convergence rates.

Another possibility to extend this would be incorporate the temperature prediction as a layer in the

architecture. Similar to BatchNormalization [17] one can compute the optimal temperature for a

given batch of data and keep a running track of this statistic. In this way, we can free the formulation

from unnecessary manual tuning of an additional hyperparamter.
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6.2.2 Extending Networks to Other Tasks

The two memory-efficient networks introduced in our thesis can be adapted to other tasks as well.

For instance, the Wide-Deep Net achieves comparable performance to VGG-19 on the CIFAR-10

dataset. Thus, for tasks like object detection or instance segmentation the Wide-Deep Net can

be used a feature extractor backbone. A direct advantage of this would be a significantly lighter

detector or segmentation model. Additionally, one can formulate a scheme where the feature ex-

tractor backbone is trained from an ensemble, while the regressor focuses on the information from

the ground truth label.

Another exciting direction of work is to focus on a more efficient DNN architecture that can compete

with MobileNet [14] in terms of resource usage and yet have a higher accuracy due to being trained

by our loss function.

6.2.3 Ensemble Methods

An area of possible extension lies in the direction of optimizing ensemble methods of machine learning

for knowledge distillation. If we assume the ensemble to be solely comprised of neural networks then

adaptive ensembles of teachers can be used to introduce even more diversity in the resulting logits.

Currently, the ensemble methods are not fully explored in context of knowledge distillation and thus

formulating innovative methods to capture the knowledge learned by the ensemble could be a valid

direction of future research.
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