
Clemson University
TigerPrints

All Theses Theses

5-2019

Analyzing and Developing Aspects of the Artist
Pipeline for Clemson University Art
Kunta Kwaku Lowe
Clemson University, kuntakwaku055@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Lowe, Kunta Kwaku, "Analyzing and Developing Aspects of the Artist Pipeline for Clemson University Art" (2019). All Theses. 3098.
https://tigerprints.clemson.edu/all_theses/3098

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3098&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3098&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3098&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3098&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3098?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3098&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Analyzing and Developing Aspects of the Artist Pipeline
for Clemson University Digital Production Arts

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree
Master of Fine Arts

Digital Production Arts

by

Kunta Lowe

May 2019

Accepted by:

Dr. Eric Patterson, Committee Chair

Dr. Victor Zordan

Dr. Jerry Tessendorf

Abstract

Major digital production facilities such as Sony Pictures Imageworks, Pixar Animation stu-

dio, Walt Disney Animation Studio, and Epic Games use a production system called a pipeline.

The term “pipeline” refers to the structure and process of data flow between the various phases of

production from story to final edit. This paper examines current production pipeline practices in

the Digital Production Arts program at Clemson University and proposes updates and modifica-

tions to workflow. Additionally this thesis suggests tools that are intended to improve the pipeline

with artist friendly interfaces and customizable integration between software and remote-production

capabilities.

ii

Acknowledgments

The support, feedback, and guidance of my advisor, Dr. Eric Patterson, made this thesis

research a success and thus has my sincere gratitude. His efforts not only enabled me to face and

succeed in the challenges of my graduate studies, but also helped in getting me prepared for a career

in the industry.

A special thanks to Dr. Victor Zordan and Dr. Jerry Tessendorf for advising and guiding

me through the thesis research. Their insight and knowledge greatly aided in its success.

To my fellow colleagues, Daniel Hale, DN Cherry, Derek Andrews, Kira Foglesong, Caroline

Requierme, John Welter, Margaret Wages, Amanda Smoak, Chance Cochran, and students in the

Digital Production Arts program, thank you for your support, insight and encouragement during

the research process.

Finally, to EdVania Powell for being a pillar and mentor throughout my time as a graduate

student, Jeff Denton for his support and wisdom during my research, and Wes Holladay for his

endless encouragement. Your advice and goodwill is greatly appreciated.

iii

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iii

List of Figures . vi

1 Introduction . 1
1.1 Asset Management . 2
1.2 Project Management . 3
1.3 Art and Pipeline . 4

2 Background . 6
2.1 Industry Production Pipelines . 6
2.2 DPA Pipeline . 8
2.3 Shotgun Toolkit . 10

3 Case Studies . 11
3.1 “The Boy Who Cried” . 11
3.2 “Brave Player” . 15
3.3 “Disconnect” . 25
3.4 “For A Rainy Day” . 29
3.5 Statistics . 34

4 Design . 41
4.1 Workflow . 41
4.2 DPA-pipe Proposal . 46
4.3 Toolkit Proposal . 48

5 Implementation . 50
5.1 DPA-pipe Shotgun Publisher . 50
5.2 Tractor Queue Submit . 52
5.3 Toolkit: Ubuntu Linux . 54

6 Conclusion . 55
6.1 Analysis . 55
6.2 Future Implementations . 57

Appendices . 58
A Statistics Questionniare . 59
B Palmetto Singularity Recipe . 62

iv

Bibliography . 68

v

List of Figures

1.1 Pixar Traditional Pipeline . 2
1.2 Maya Shader Dependency Graph . 3
1.3 Ramirez - Fortnite character . 5

2.1 Spiderman: Into the Spider-Verse . 7

3.1 “The Boy Who Cried” . 12
3.2 “Brave Player” Character Model in DPA-pipe . 16
3.3 “Brave Player” Character Rig in DPA-pipe . 17
3.4 “Brave Player” Character Animation in DPA-pipe 18
3.5 “Brave Player” Character render in DPA-pipe . 18
3.6 “Brave Player” project on Shotgun . 19
3.7 “Brave Player” project in Toolkit . 20
3.8 “Brave Player” project publisher in Toolkit . 21
3.9 “Brave Player” project loader in Toolkit . 21
3.10 Disconnect project on Shotgun . 26
3.11 Disconnect dog rig in Toolkit . 27
3.12 Disconnect dog rig in Toolkit . 28
3.13 “For A Rainy Day” game production in Toolkit . 30
3.14 Shotgun Desktop . 31
3.15 “For A Rainy Day” Coin Model . 31
3.16 “For A Rainy Day” Coin FBX Publish . 32
3.17 “For A Rainy Day” Custom Exporter . 32
3.18 “For A Rainy Day” Play Test . 33
3.19 Type of productions done by students . 34
3.20 Production pipeline experience of students . 35
3.21 Modeling tools used by students . 35
3.22 DPA pipeline experiences of students . 36
3.23 Texturing tools used by students . 36
3.24 Renderer tools used by students . 37
3.25 Shotgun Web Service experience of students . 37
3.26 Animation tools used by students . 38
3.27 Shotgun Toolkit experience of students . 38
3.28 Game Development experience of students . 39
3.29 Game Engine used by students . 39
3.30 Student work locations . 40
3.31 Compositing experience of students . 40

4.1 Animation production workflow . 43
4.2 Maya workflow . 45
4.3 Game production workflow . 46

vi

5.1 DPA-pipe Shotgun Publisher . 51
5.2 Tractor Render Queue Submission tool . 53

vii

Chapter 1

Introduction

Production is defined as “the action of making or manufacturing from components or raw

materials”. In computer graphics, “pipeline” refers to the collection of scripts and processes that

streamline passing data between programs and across departments [13]. An example of a production

pipeline in manufacturing is building a car. Getting the raw materials, developing the parts, and

finally assembling the car are its various production stages. This same principle applies in film

making. A game development pipeline might differ from its motion picture counterpart, but they

all have a standard shared workflow from which they originate.

Every film starts with an idea or a story. The story then goes through a series of refinements

in a phase called pre-production. In pre-production, the story or idea goes through script writing,

concept art, storyboarding, and pre-visualization. After the scripts and story boards have been

approved, the next phase of film making is called production. Artists in different departments start

working on creating characters, environments, and props generalized as assets. These assets are

passed on to layout, texturing, and rigging artists.

The layout artist is responsible for creating “shots” described in the scripts from pre-

production. The rigging artist creates the anatomical mechanics of the characters and the animation

artist takes the “rigs” and creates movement in the shots from layout. Texturing and surfacing artists

design the material qualities of the assets in a stage called look development. Look development

starts at concept art where an artist would draw the general appearance of characters and props.

After animation, the shots and surfacing materials are given to the lighting artist to create the

“mood” of a scene. Some shots are also passed along to an Effects(FX) artist who specializes in

1

simulating cloth, water, magic, and character extras like human crowds. The final image is rendered

from lighting or FX and composited together. A compositing artist is responsible for making final

touches and fixing errors in the rendered images. After compositing, editorial takes all the shots

from the previous artist, adds color corrections and finesses the shots to push the story with dialogue

and music. The final product is an animated film that is shown in theaters and festivals. Figure 1.1

shows a traditional pipeline from Pixar Animation Studio [14].

Figure 1.1: Example of a Traditional Pixar Pipeline

1.1 Asset Management

The production process can last as long as a few months to many years with teams of a

dozen to hundreds of thousands of artists across many studios. To manage all the interactions

between artists and data passed between them, a system had to be created to manage and track the

chaos. Asset management is the process of documenting and tracking all assets in a production and

making sure they remain connected and readily accessible [6]. Most studios have dependency graph

systems that track assets and all their dependencies in the pipeline through meta-data embedded

in published files. Dependency graphs can be visualized as a relationship between a parent and a

child. Decisions made by the parent can affect his/her children. To put this in perspective, a scene

2

consists of a cube with a rig and texture. If the modeling artist changes the cube to a sphere, the

rig and textures of the cube are affected by this modification. This makes modeling the parent with

rigging and texturing as its children. Another example of a dependency graph system is Autodesk’s

Maya node editor. This editor keeps track of histories that make up the current asset in the form

of a node graph. Figure 1.2 shows an example of a node graph for a simple Lambert shader.

Figure 1.2: Example of Maya Shader Dependency Graph

Asset management systems can be as simple as folder structures or as elaborate as graphical

user interfaces(GUI) that have access to a database of assets in a production. This forms a strong

foundation for tracking and managing large or small projects.

1.2 Project Management

Project management is the practice of initiating, planning, executing, controlling, and clos-

ing the work of a team to achieve specific goals and meet specific success criteria at the specified

time [20]. This system allows managers and department supervisors better assess the progress of

their teams and prioritize and reassign tasks during bottlenecks in production. Artists are more

efficient when these systems work effectively. Unfortunately, a project management system is only

as good as the person who uses it.

Pipelines ensure each stage in the production is receiving the right data format whilst the

asset management system keeps track of the data being transferred to each stage. Finally, the

project management system makes sure each task is completed efficiently and on schedule. These

three systems ensure the success of the artist and the project. Although pipelines are very beneficial

3

in productions, sometimes they can be a hindrance to efficiency and can create bottlenecks. A

pipeline might automate several tasks an artist would take to perform an action but, more often

than not, this task may take the automation tool several minutes to complete versus a couple of

minutes for the artist. If this action needs to be performed multiple times in several steps down the

pipeline, the pipeline becomes inefficient. Pipelines are only as good as the tools in it.

1.3 Art and Pipeline

“Star Wars” film Director, George Lucas once said, “All art is dependent on tech-

nology because it’s a human endeavour, so even when you’re using charcoal on a wall

or designed the proscenium arch, that’s technology.” Technology in art empowers artists

to push their creativity, explore new techniques, and produce incredible experiences in storytelling.

Pipeline is a form of technology. Tools in production pipelines streamline tedious processes in pro-

ductions giving the artist and directors the liberty to expand their creative ideas. Epic Games’

“Kite” Demo and “Fortnite” Launch trailer introduced the concept of using a game engine such

as Unreal Engine, to make an animated short film. This process of film making is called “Machin-

ima.” Using a game engine allows artists to create, iterate, and render the film in half the time

it takes to make a traditional animated film. The game engine as their renderer - “a software or

hardware process that generates visual images from a model”[22] allows artists to produce images at

a maximum rendertime of 41.67 milliseconds per frame compared to traditional animated film

rendertime of a few minutes to several days. A pipeline tool used in the “Fortnite” trailer was

a custom Filmbox(FBX) Alembic export format that gave animation artists the liberty to create

high resolution facial animations. This tool utilizes all of Autodesk Maya’s deformations and rigging

techniques with little no compromise in the game engine[2].

4

Figure 1.3: Ramirez - Fortnite character

When an artist dreams up an idea, the technology is created to support that idea. This

technology sparks a new idea that brings about innovation. Pipelines fuel creative innovations in

film making which bring new and captivating experiences to its audience.

Why use pipelines in production? Pipelines allow artist to iterate during productions with

ease and efficiency. This enables artist to explore new ideas and focus on the content they are

creating. Pipelines also enable project scalability by allowing artist to easily share content and data

between themselves. This streamlined process reduces the burden of artists knowing the intricate

details of the production process and helps them focus on what they enjoy doing.

For this thesis, I will explore ways of encouraging and promoting the artists creative processes

through a study on previous production workflows in Clemson University’s Digital Production Arts.

This study will also give insight into the advantages and disadvantages of production pipelines in

projects and how to better tailor pipelines to allow ease of use, efficient workflow and enhanced

creative exploration for artists.

5

Chapter 2

Background

2.1 Industry Production Pipelines

Production pipelines in most studios vary from project to project. In 2014, Rhythm and

Hues Studios(R&H) presented a pipeline solution the studio has used in its feature films since the

year 2006. This pipeline was designed to support multiple locations and vendors. “The entire

production pipeline is modeled as a dependency graph. Each node in the graph represents a work

area - a production context where an artist does their work; for example modeling a pig, rigging

a tiger, or animating a shot”[4]. During the production of “Evan Almighty”, the pipeline team

streamlined the animation of several hero characters in a shot by creating multiple work-areas for

animators with a few of the hero characters each scene. As the animators worked, they would export

cached geometry from their scenes of which animators in the other work areas could subscribe to

and see how their characters animated with the rest of the hero characters[3].

As production pipelines evolve, film makers and artists explore other ways of telling stories

using tools in the pipeline. Pixar’s “Incredibles 2” director, Brad Bird, wanted to explore making

“Incredibles 2” with a live-action film technique. Computer Generated(CG) cameras and lights

had to mimic the behaviors of its real-life counterparts. Advances in the rendering pipeline allowed

layout and lighting artists to employ their knowledge in photography to better push the visual

fidelity of each shot in the film. This freedom for the director and artists gave the film its iconic

cinematic and live action aesthetic[14].

A few productions go against the traditional workflow of film making and require the pipeline

6

team to make changes to accommodate them. “Spiderman: Into the Spider-Verse,” made by Sony

ImageWorks, winner of Best Animated Feature Film 2019 Academy Awards, is a very good example

of a visual style that required the production team to modify the pipeline. Figure 2.1 shows the

visual style of “Spiderman: Into the Spider-Verse”[10].

Figure 2.1: Spiderman: Into the Spider-Verse

“Into the Spider-Verse” introduces a new Spiderman and a revolutionary visual style of

animation to Sony Picture ImageWorks’ production pipeline. The production pushed the boundaries

of traditional computer graphic animation pipelines so its creators could stay true to the inspiration

of traditional comic-book storytelling. This technique required several department artists to invent

new ways of animation and simulations [7][23].

Traditional computer graphic animations are created at 24-30 frames per second also known

as real-time - which means there is an image for every single frame. With “Into the Spider-Verse,”

the animators dropped 12 frames out of the 24 to achieve the visual style they wanted. Slowing down

the motion of characters created a sort of staggered effect which mimicked traditional 2D animation

styles from well known animators like Glen Keane. This change in animation broke the traditional

way of simulation, lighting, and camera work. Motion blur, an important part of cinematography

created by camera or character movement, was dropped in support of more traditional print style

chromatic shifts. Simulations that require real-time motion to calculate physics on objects also had

to be reinvented to pull off 12 frames per second[9]. Ghost frames in between animations on two’s

had to be developed to allow the cloth simulations to calculate normally.

7

Production pipelines scale based on project needs but the fundamental workflow stays rel-

atively the same. Small projects may not require as many resources as big budget films or AAA

(pronounced “triple A”) games may need. A short film, about 2 minutes long, may only have a

main character and a few supporting actors, props, and environment in the story. This can be done

with as little as 1-5 artists. Bigger projects may have hundreds of characters, environment pieces,

and props spanned across multiple shot sequences done by hundreds, if not thousands, of artists

and technical artists. This workflow usually outputs gigabytes to even terabytes of data requiring a

robust infrastructure to be in place to handle this immense amount of data.

2.1.1 Pipeline Infrastructure

Large Data facilities are a part of most large scale studio pipelines. An artist may create a

single asset for an environment piece in a project. This asset would go through several iterations be-

fore it is finally approved to be the final representation of what the supervisor or director envisioned.

These iterations are represented as versions in the pipeline workflow. Data facilities in studios are

usually server based and shared across departments for easy data transfer and access. These data

centers also have strict permissions and security protocols to avoid client information from “leaking”

to the general public. This strategy allows the studio to control how they market their products to

the public and clients and also prevents unauthorized users to make modifications to files.

2.2 DPA Pipeline

The DPA Pipeline also known as “DPA-pipe”, is a custom pipeline framework developed

and lead by Dr. Jerry Tessendorf, Josh Tomlinson, and students in the Clemson Univeristy Digital

Production Arts program with the intended purpose of encouraging student artists to use and learn

pipelines in production. DPA-pipe’s architecture gets its inspiration from the successful Unified

Pipeline infrastructure from Rhythm and Hues Studios. The core concept behind the pipeline was,

artists do work in multiple locations, they use software, and each artist shares data. This concept

influenced the hierarchical nature of the pipeline introduced as “Production Task” or “pTask”.

“PTask” are abstract representations of tasks that need to be completed on production[1]. Each

pTask is identified by a type that gives insight on the location within a production hierarchy. These

types are: project, phase, build, shot, stage, work [1].

8

• project: This is the root level production task. All other pTask are represented under project.

An example is, “The Boy Who Cried”.

• phase: Phases are split into production, pre-production, and research and development.

• build: As the name implies build can be categorized as the location for creating character,

prop, and environment. An example is a “Boy” asset in “The Boy Who Cried” project.

• shot: A series of frames that run for an uninterrupted period of time[21].

• stage: “Defines the major work stage of a project”[5]. This can be animation, modeling,

texturing and rigging.

• work This can be defined as a place where an artist does work. This is usually the workarea

in a stage.

DPA-Pipe has been used in almost all major projects in Clemson University’s Digital Pro-

duction Arts program since the year 2014. Productions like “Peanut Butter Jelly”, Dream-

Works Summer Projects: “Swept Up, Disposable”, and many others each created and used

tools available in the pipeline to help push storytelling and create a seamless experiences for artists.

Tools like dpa subscribe gives artists the ability to request and use assets created in other stages

of the pipeline without searching for its physical location. The subscribed assets are also updated

when a change is made upstream in the pipeline. Other tools developed in the pipeline such as

darkKnight (pronounced Dark Knight), and dpaffmpeg (pronounced dpa f f m peg) allow artists to

streamline tasks such as sending render jobs to a renderfarm and generating movie files for review

from a sequence of frames. In “Roboasis”; a 2013 student film, the team developed several tools

in the pipeline to help surfacing artists, animators, character Technical Directors, layout artists,

and lighting artists streamline their work and focus more on the aesthetics. An animation tool

developed during production allowed animators to move the main robot character in 3 dimensions

while the tool took care of rotating the character’s four wheels. The animator was able to focus

more on pushing the character’s expressions without worrying about a trivial task like keyframing

wheel rotations. Although DPA-pipe has had many successful uses in several productions, some

recent projects have not been able to utilize the pipeline and its tools due to legacy features. We

will explore this in further details in the next chapters.

9

2.3 Shotgun Toolkit

Shotgun is a project management system that has been in the industry for over a decade.

This management system is used by major studios such as, Weta Digital, Rodeo FX, Image Engine,

and many others to track, schedule, and distribute task to artists[17]. Shotgun also serves as a

revision tool that allows producers, supervisors, and clients to monitor, review and give feedback

on artist work during productions. Shotgun is integrated with an asset management system called

“Toolkit”. “Toolkit” is the bridge between Shotgun and asset management applications. It is based

on the concept of, “identifying what it means to build pipeline components that are useful for

studios of all sizes without being able to make assumptions about how those studios operate”[12].

This robust system has allowed many studios to integrate in-house pipeline tools and workflows with

Toolkit. This product is one of the most popular pipeline solutions in the industry.

In Clemson University’s Digital Production Arts’ program, Shotgun has been used in several

productions to manage, schedule, review, and track project progress from both Clemson University’s

Main Campus and Charleston locations. Full integration with Shotgun and Toolkit has also been

used in multiple productions including a recent game production in Unity 3D. The integration of

project management and asset management allows students in productions to collaborate with each

other through peer review sessions and shared work experiences. Toolkit allows default features in

the pipeline to be extended to support unique workflows. In the game production “For a Rainy

Day”, a FilmBox(FBX) feature was integrated into the publish application to allow Unity 3D

compatible exports from Maya. This integration allowed the modeling artist to focus on creating

the main characters for the game while the added feature in the publish application took care of

preparing the asset for Unity. Toolkit has been and continues to be a robust pipeline for productions

but due to its “one size fits all” nature, it requires a deep understanding of how the system works

and how to integrate custom tools. This sometimes makes the pipeline difficult to use during short

production scheduled time.

Both DPA-pipe and Toolkit are very robust pipelines, and in most cases, its features are

similar. This makes it difficult to choose a pipeline solution to use and forces the production team

to determine the resources of the project beforehand. In the next chapters, we will explore some

of the use cases of both pipelines in production; how it was used, what worked and what did not

work.

10

Chapter 3

Case Studies

3.1 “The Boy Who Cried”

“The Boy Who Cried” is a story about a boy who befriends a wolf but his mother

does not approve of this friendship. The short film was produced in a DPA Production class with

a team of 7 student artists. A remote client(the director) and commuter students made Shotgun

Toolkit the pipeline of choice for the production. This decision allowed the director to review and

critique production progress from a remote location. The distributed configuration in Toolkit also

gave student artists the opportunity to collaborate and work from home. This was the first Digital

Production Arts project that used the full Shotgun and Toolkit integration. The production team

decided to explore a style that had not been used in previous animated shorts at the University such

as, setting the characters in a world made of paper and narrated by a child.

11

Figure 3.1: “The Boy Who Cried”

The production tools and pipeline used in this short film allowed the artists and creative

directors to enhance the story by giving them the ability to use tools like the MASH node in Autodesk

Maya. MASH allowed the artist to create real world scaled vast terrains - a pillar in the narrative of

the film. This terrain enhanced the sense of vastness and loneliness of the character’s surroundings.

With the help of the pipeline, artist were able to add fog, and push the lighting of each shots to give

the story a stark and desolate appeal through a streamlined sharing process from the layout artist

to the lighting and FX artist. This vision came with a set of challenges during production. In the

next sections, we will explore the production and creative process of the film whilst looking at some

of the challenges the artist faced during the production process in relation to pipelines.

12

3.1.1 Production

This film was produced with Shotgun Toolkit using the distributed configuration system.

Each computer needed to have the configurations of the project stored in the Public Documents

directory. This location allowed students to log into the campus computers and be able to access the

project irrespective of their username and permissions. Autodesk Maya, DaVinci Resolve, Render-

Man 21.4, Nuke, and Tractor were the softwares used in the production. The production workflow

was Modeling -> Rigging -> Animation -> Photography -> Surfacing -> 2D FX ->

Lighting -> Rendering -> Compositing -> Editorial. Listed below are the assets that were

created for this project.

• Boy

• Mother

• Wolf

• Cabin

• Mountain

• 9 different Pine Trees

• Axe and Wood Pile

3.1.2 Process

This section describes the process used to make the short production in each pipeline. Each

itemized section is a brief description of the process used in the various workflows.

• The team created all the assets, shots, and sequence list on Shotgun web and used the “create

folders” command to setup their project directory on a shared drive,

• due to the visual style of the short, the modeling team had to design the characters as low

polygon shapes with hard edges to match the feel of origami.

13

• After modeling, the layout team used the Autodesk Maya MASH tool to populate the envi-

ronment with hundreds of trees. MASH also allowed the layout artist to control the location

and scale of each individual tree.

• Rigging and surfacing were done in parallel. This allowed the lighting artist to start lighting

downstream in the pipeline.

• After rigging, the layout artist placed cameras and characters in their start positions and

passed on the characters to animation.

• Animation was done in each layout shot and then published to lighting.

• Due to the two main characters of the film having simulated clothing, after animation each

character’s garment was simulated in FX then later exported to lighting.

• After lighting, each shot was sent to a renderfarm for rendering and then published to the

compositing and editing artist to add final touches to the film.

3.1.3 Success

This section describes features of the pipeline that helped in the production process. The

itemized list is a brief description of how useful the feature was.

• Toolkit gave artists the opportunity to switch tasks when there were bottlenecks during pro-

duction.

• Shotgun review in collaboration with Cinesync, allowed artists and supervisors to review and

critique work from remote locations.

• Toolkit’s multi operating system capability, allowed artists to work in environments with which

they were most comfortable and use software that were not available on artists default operating

systems.

3.1.4 Challenges

This section describes difficulties which were encountered during the production that related

to the pipeline.

14

• Toolkit could not resolve files that were created on one operating system and opened on

another. Referenced geometry in Maya was not auto-resolved when opened on operating

systems that did not initially create it due to Maya’s absolute path system.

• Toolkit did not have an engine for DaVinci Resolve and Substance Painter. The exports for

their software had to be moved and managed manually.

3.2 “Brave Player”

“Brave Player” is about a soccer player who meets his untimely demise while playing a

soccer game. This short project was created with the intent of exploring the most current version

of the DPA pipelines.

Since there were only two artists working on this project, it did not require a lot of resources.

For this project in DPA-pipe, Autodesk Maya 2016, Nuke 11, and Renderman 21.4 were the software

used in the production. In Toolkit, Autodesk Maya 2018, and Renderman 22.3 were used. Both

pipelines followed the same workflow to avoid duplicate work. Assets made in one pipeline were

exported and reconstructed in the other. Below is a list of assets in the short.

• Soccer Player

• Large Soccer Ball

• Small Soccer Ball

• Soccer Field

• Trees

• Fence Post

• Two Stadium Light Posts

The production pipelines (both DPA-pipe and Toolkit) enable the artist to create this short

film from start to finish in less than two days. Due to the tools in the pipeline that allowed easy

transfer of geometry and animation data, the artists were able to focus on the aesthetics of the

production. In the next subsections, I will discuss the software, processes, and findings made in the

pipeline during the production process.

15

3.2.1 Production

For DPA-pipe, the team initially used the “anim-short” pipeline template to create the struc-

ture of the project. This was later abandoned for a custom template since the team wanted to con-

trol the file structure of the project. The pipeline used was, Modeling ->Rigging ->Animation

->Surfacing ->Lighting ->Rendering ->Editorial, with Editorial completed in Nuke. Ren-

derman was the chosen renderer as this was what the team was most familiar.

3.2.2 Process

3.2.2.1 DPA-pipe

• Modeling was done outside of the pipeline and later brought into the Maya scene

“Brave player=preprod=player=model=hero=maya=model player.ma”.

Figure 3.2: “Brave Player” Character Model in DPA-pipe

• After modeling, the geometry was exported out as an obj file, UV’ed in “Headus UV Layout”

on Windows, reimported into the Maya scene, and replaced the original geometry with the

UV’ed version for texturing later.

• The scene was cleaned up by freezing transforms, deleting history, and grouping the geometry

under one top group. A Maya set was created as suggested by the pipeline documentation

16

called “export workfile masterPlayerGeo” for exporting the geometry to the next stage in the

pipeline.

• The rigging artist then subscribed to the exported workfile and imported it into the rigging

scene “Brave player=preprod=player=rig=maya=rig player.ma”

• The character was rigged with a single five-joint chain spine and bound to the geometry with

five controls parented to the joints and exported to animation.

Figure 3.3: “Brave Player” Character Rig in DPA-pipe

• Animation was done in “Brave player=prod=Go Get It=anim=hero=maya=Shot 01.ma” then

the animated character was put in a set and exported to

“Brave player=prod=Go Get It=light=Go Get It Light=maya=Shot lighting.ma”

17

Figure 3.4: “Brave Player” Character Animation in DPA-pipe

• After surfacing, the lighting artist placed a few lights to match a nighttime soccer field scene

and rendered through “dark knight.”

Figure 3.5: “Brave Player” Character Model in DPA-pipe at 64 samples

18

3.2.2.2 Toolkit

• The team created a project on Shotgun called “Brave Player” and setup an asset list, shot list,

and sequence.

Figure 3.6: “Brave Player” project on Shotgun

• Shotgun desktop was installed, completing the project setup process.

• The default configuration name and distributed setup was used so the team could work on

multiple operating systems.

• After the Toolkit setup was complete, the team created folders for the project through the

create folders command on Shotgun.

19

Figure 3.7: “Brave Player” project in Toolkit

• Modeling was done outside of Toolkit and brought into the respective scene in the pipeline.

• After modeling, the geometry was exported out as an obj file, UV’ed in “Headus UV Layout”

on Windows, reimported into the Maya scene and replaced the original geometry with the

UV’ed version for texturing later.

• The scene was cleaned up by freezing transforms, deleting history, and grouping the geometry

under one top group. The file was saved through Toolkit and published using the built-in

publisher.

20

Figure 3.8: “Brave Player” project publisher in Toolkit

• Once assets were published, they were accessible via the loader app in Toolkit. The rigging

artist used this to import the player model into rigging scene.

Figure 3.9: “Brave Player” project loader in Toolkit

21

• The character was rigged with a single five-joint chain spine and bound to the geometry with

five controls parented to the joints and exported to animation. See Figure 3.2

• Animation was completed in the GoGetIt shot step and then published to the lighting step of

the same shot.

• After surfacing, a few lights to match a nighttime soccer field were placed in the scene and

rendered through the local queue as Toolkit does not have access to a native renderfarm.

3.2.3 Success

3.2.3.1 DPA-pipe

• Due to the hierarchical nature of the pipeline, you cannot create a ptask where it is not allowed.

• Exporting geometry and caches were very intuitive and simple(Artist Workflow documenta-

tion). You can selectively export specific caches.

• Pipeline seems highly customizable but strict enough to avoid project setup errors.

• Maya plugin supports shader transport. (This feature was not used in the production).

• The pipeline allows running surfacing and Rigging in parallel.

• A renderfarm plugin was available to render batch jobs from lighting.

3.2.3.2 Toolkit

• Toolkit has tutorials and documentation on how to navigate and use their interface.

• The pipeline is highly organized and setup in distinct categories, making file traversal easy.

• Native export of caches and scenes from asset step.

• The pipeline also recognizes playblast and rendered images during publishing.

• Toolkit allows artist sandboxing - which means artist are able to work on scenes that are not

passed along to the next step.

• Supports Mac, Windows, and Linux.

22

• Mostly supports new and some Legacy versions of software.

• User interface was very straight forward and ties in well with Shotgun project management

system without opening a browser.

• Allows setting up multi location configurations, thereby allowing outside sources to work on

the same project.

3.2.4 Challenges

Some of the difficulties were due to first time user errors and would be noted.

3.2.4.1 DPA-pipe

• “pipeup” and “dpaset” commands were very slow

• Setting up the project took a long time to create due to the nature of the pipeline (first time

users).

• Understanding the structure of setting up phases, builds, and stages were somewhat difficult.

This process took a couple of tries but the team did not have enough time budgeted to figure

out how to customize folder structures (first time users).

• The project manager on the team could not figure out how to delete a directory after it had

been created, project, phase, or stage otherwise.

• The team could only use Maya 2016, a version two years behind the current Maya version.

The idea of using XGEN for procedurally placing grass had to be abandoned and textures used

instead.

• Mari did not open using the “dpa open” command so textures were done outside of the pipeline.

• “dpa open” was not setting the Maya projects properly. The team later learned to “dpaset”

into a specific directory then use the Linux “cd” to keep moving down the file hierarchy(first

time users).

• The team could not update subscriptions because the subscription process was made in the

wrong directory(first time users).

• Batch render could not find the textures that were imported into the scene (first time users).

23

3.2.4.2 Toolkit

• Since texturing was done outside of the pipeline, the Publish2 app had to be used to bring in

the textures but the textures would not show up in the loader app.

• The Publisher app in Maya exports the entire scene and does not allow selective publishes of

elements, like animated characters to lighting instead of the entire layout with animation.

• Toolkit only exports the Maya scene and not an animation cache in the animation step.

• Toolkit does not allow switching OS’s after referencing in Maya.

• Toolkit could not import a scene that had a reference.

3.2.5 Untested

This section describes features of the pipeline that were documented but not tested in this

production.

3.2.5.1 DPA-pipe

• The team did not test texturing inside of the pipeline due to the software version of Mari.

• Compositing was not tested due to the software version of Nuke.

• FX as not tested in the short.

• Editorial step is currently not supported.

3.2.5.2 Toolkit

• Texturing was not tested inside of the pipeline due to the software of preference not sup-

ported(Substance).

• The team did not test FX as the short production did not require FX.

• Editorial software of choice is currently not supported (DaVinci Resolve). The supported

software is not built for Ubuntu Linux.

24

3.3 “Disconnect”

“Disconnect” is a student short film project made by a Clemson University Digital Pro-

duction Arts student, Daniel Hale, for his thesis. “This short film is an animated narrative critiquing

our society’s increasing focus on communication through digital devices at the expense of traditional

interactions. The film features stylized 3D animated characters composited with realistic 2D pho-

tographed environments to further accentuate the feeling of an augmented reality”, said Hale.

The Toolkit pipeline enabled Daniel to focus on creating the aesthetic appeal and message

he was trying to portray in this short film. After rendering the film, he thought it would enhance the

story if he added an extra shot with a closeup of his character to push the emotion in the film. He

was able to easily create an extra scene with all the characters and camera setup he needed without

compromise to the other shots by using the publish and loader tools available in the pipeline. In

the next sections, we will explore Daniel’s production process and the challenges he faced during the

making of “Disconnect.”

3.3.1 Production

This short film was produced with Shotgun Toolkit using the default configurations. To

make this project portable, the configurations were customized to store workfiles and published

data on Daniel’s personal mass storage drive. This allowed him to work from home as well as on

campus with only being at the mercy of an internet connection and the read/write speed of his

storage drive. Daniel used Autodesk Maya 2018, Arnold renderer, Adobe Photoshop, Headus UV

Layout, Nuke, Adobe Lightroom and Adobe Premiere for the project. To reduce the amount of

time it would take to produce the film, the assets were prebuilt by supporting artist outside of

the pipeline. The workflow used on the production is, Modeling -> Rigging -> Surfacing ->

Lighting -> Animation -> More Lighting -> Rendering -> Compositing -> Editorial.

Below is a list of the assets in the short film.

• 2 Human characters

• 2 Dog characters

• 2 Cellphones props

• Stuffed Animal props

25

• Ice Cream Cone prop

• Sunglasses prop

• Projection Planes

• Proxy Geometry(shadow catchers)

In the next section we will discuss the process used in making this short film.

3.3.2 Process

• Daniel created a project on Shotgun called “Disconnect” and set up an asset list, shot list, and

sequence.

Figure 3.10: Disconnect project on Shotgun

• He installed Shotgun desktop on his local machine completing the project setup process.

• The default configuration and distributed setup for Toolkit was used. This gave him the

opportunity to work on multiple operating systems from different locations.

• After the Shotgun setup was complete, he created the folders for the project through the

“create folders” command.

26

• Modeling and Rigging were done outside of Toolkit and brought into their respective scenes

in the pipeline.

• After modeling, the geometry was exported out as an obj file, UV’ed in Headus UV Layout

on Windows, reimported into the Maya scene and used to replace the original geometry’s UV.

• He cleaned up the scene by freezing transforms, deleting history and grouping the geometry

under one top group. The file was saved through Toolkit and published using their built-in

publisher.

• Once assets were published, they were accessible by the Loader app in Toolkit. Since the

characters where already rigged, Daniel went straight into animating his shots.

Figure 3.11: Disconnect dog rig in Toolkit

• Textures were made in Adobe Photoshop and published to the Maya scenes to be used for

surfacing.

• After surfacing and lighting, the Toolkit scenes were rendered.

• After rendering, the rendered images were exported into Nuke, composited, and exported out

as an EXR file format to Adobe Premiere for editing.

27

Figure 3.12: Disconnect dog rig in Toolkit

3.3.3 Success

• Toolkit helped him keep the project organized and aided in reviews with professors and col-

laborators on Shotgun.

• Due to the portability of the pipeline, Daniel was able to work in different locations - at home

and on campus.

• Setup on a campus computer was simple during times a slightly more powerful computer was

necessary.

3.3.4 Challenges

• The startup process were sometimes slow, usually when minor updates to a scene was all that

was needed.

• Adobe Premiere was not supported in Toolkit.

• Not having a renderfarm access built into the pipeline made getting final frames difficult.

3.3.5 Untested

• The film did not require FX so that workflow process was skipped.

28

• Character models were pre-built, so modeling and rigging were not done in the pipeline.

3.4 “For A Rainy Day”

“For A Rainy Day” is a game about three children who are stuck inside their house due

to bad weather outside. The children decide to put on a puppet show as a means of whiling away

time. The player’s job, is to control the hero puppet. The hero’s objective is to stamp out evil.

This is accomplished by collecting coins in the level, avoiding obstacles, and defeating the boss at

the end with the current health of the player.

The pipeline tools in this production allowed the artist to focus on creating the mechanics

and gameplay logic. Artists were able to export proxy geometry to the game engine to start the

process of creating the mechanics and level design. During the course of the production, the level

designers were able to increase the visual fidelity of the game by replacing the proxy geometry with

its high resolution counterpart exported by the modeling and animation artist. In the next sections,

we will explore the pipeline tools and processes used in the production in addition to the challenges

the team faced with the pipeline tools.

3.4.1 Production

The production had a unique pipeline. It combined Shotgun Toolkit and Github version

control system between the first and the last half of the pipeline. Shotgun and Toolkit were used for

asset creation and tracking: modeling, rigging, animation and texturing. Github functioned as the

version control tool for assets, levels, and scripts created in the game engine, Unity 3D. A custom

exporter tool was developed to transfer assets made in Shotgun into the game project directory.

The Unity project directory was created using a special script that contained information about

the assets and game data that would be needed during production. Other software that were used

in the production were: Autodesk Maya, Allegorithmic Substance Painter and Designer, Adobe

Photoshop, Headus UV Layout, Zbrush, Topogun, and Google drive for documentation and task list

summary.

Pipelines in game production are very complex as they require many iterations between

asset creation and mechanics. The workflow used in this production followed a modified traditional

workflow hierarchy. Proxy modeling -> proxy rig -> placeholder animation -> mechan-

29

ics development -> Low resolution modeling -> update rig -> update animation ->

update mechanics -> play testing. This cycle of refinement continues until a high quality asset

and game play is achieved. The following are the assets that were created for the game production:

• A Main Character

• “Imaginary world” Stage

• “Real world” Stage

• Rabbit

• Cannons

• Slope set pieces

• Dragon Boss

3.4.2 Process

• The project was created on Shotgun and Toolkit was setup with a custom configuration from

Github. Git had to be installed on the artist computer to use Toolkit for the project.

Figure 3.13: “For A Rainy Day” game production in Toolkit

30

Figure 3.14: Shotgun desktop

• A custom script was used to create the unity project directory

• Proxy geometries were created outside of Toolkit then later brought into the pipeline through

the builtin publish application.

Figure 3.15: “For A Rainy Day” Coin Model

31

Figure 3.16: “For A Rainy Day” Coin FBX Publish

• Texturing was also done outside the pipeline and later published into the pipeline.

• After rigging and animation, a custom exporter tool was used to move assets from a Toolkit

publish directory to the Unity project directory.

Figure 3.17: “For A Rainy Day” Custom Exporter

32

• After play testing in Unity, high resolution assets were exported from Toolkit and imported

into Unity, replacing the proxy geometry.

• Since the game is in a real time engine, the final playable content was built and released

through Unity.

Figure 3.18: “For A Rainy Day” Play Test

3.4.3 Success

• Centralized storage location allowed artists to collaborate on the project effectively.

• Shotgun made project management more efficient by being able to assign tasks to artists and

view the progress of the project.

• Version control in the pipeline allowed artists to roll back mistakes or items that were acci-

dentally deleted.

3.4.4 Challenges

• The functionality of Shotgun and Toolkit were too broad for the needs of the production.

• The extra step of using the exporter became a bottleneck when moving assets from one project

location to the other.

33

• Shotgun Task Management system did not support creating task that weren’t linked to assets.

• Artists’ knowledge of the pipeline were limited.

• Toolkit was very strict on naming conventions, which did not allow special characters. This

unexpected behaviour did not give artists the opportunity to be more descriptive in naming

their assets.

3.4.5 Untested

• Editorial was not needed for the project since all the cut scenes were done in the game engine.

3.5 Statistics

A survey was conducted across Clemson University Digital Production Arts graduate stu-

dents on both main campus and Charleston about production experience and their understanding

of pipeline. There were 11 total responses. The charts below where generated from student surveys.

Figure 3.19: Type of productions done by students

34

Figure 3.20: Production pipeline experience of students

Figure 3.21: Modeling tools used by students

35

Figure 3.22: DPA pipeline experiences of students

Figure 3.23: Texturing tools used by students

36

Figure 3.24: Renderer tools used by students

Figure 3.25: Shotgun Web Service experience of students

37

Figure 3.26: Animation tools used by students

Figure 3.27: Shotgun Toolkit experience of students

38

Figure 3.28: Game Development experience of students

Figure 3.29: Game Engine used by students

39

Figure 3.30: Student work locations

Figure 3.31: Compositing experience of students

The results above queried from student artists expresses the current state of Digital Pro-

duction Arts’ students knowledge and use of production pipelines. See Appendix A for the questions

asked in the survey. Without prior knowledge of its workflow, students spend most of the produc-

tion time learning how to use the pipeline and its application rather than focusing on the artistic

endeavors of the production. In the next chapters, we will look at proposed workflows and tools that

serve as templates or starting points for student productions. These workflows will enable students

to focus more on the art of the production as well as learn the production pipeline process. The

pipeline tools also proposed in the next chapter will enable students to use software they a most

familiar with, learn new ones and gain experience with production and asset management systems.

40

Chapter 4

Design

Pipelines support artists by automating tedious processes and streamline hand-off proce-

dures between artists but, sometimes it can create bottlenecks when tools break or custom features

for a production are not supported in the pipeline. In Fall 2017, students in the DPA program in

Charleston worked on a short film called “Phooled” for a production class. The production team

planned to use Shotgun as their project management system and DPA-pipe as their asset manage-

ment pipeline system. DPA-pipe was abandoned halfway through the production process because of

an unsupported version of Maya in the pipeline that was necessary for the success of the production.

The students had to use google drive as an alternative to the pipeline. This change jeopardized

artist efficiency which pushed production past its intended deadline. “Phooled” was an example

of a pipeline having a negative effect on a production.

In this section, three template workflows are proposed for various productions with feature

updates to the current pipelines to improve efficiency, scalability, and usability based on the survey

from DPA students.

4.1 Workflow

Pipelines are “living” structures that are intended to grow and evolve. It is designed to

adapt to changing requirements of various productions whilst catering to the needs of the artist that

use it. A dynamic pipeline allows projects to scale on a magnitude of artist and tasks required for a

particular production. This also allows several projects to be ran concurrently without barely any

41

compromise from each other. At the core of the pipeline is the workflow. Workflows determine the

interactions between steps in a pipeline. A pipeline step can be summarized as a specialized task

within a production. Most art and technical teams in studios are categorized into these pipeline steps:

Modeling, surfacing, and animation. The other steps in the pipeline are split up into specialized

departments with sometimes internal pipelines between the artists and technical directors in the

department. Workflows help these departments share data between themselves more efficiently and

gives a clear structure on the steps in a pipeline (Note: This workflow assumes Research and

Development(R&D) has been done for the project in pre-production).

In the next sections, a workflow is proposed for animation and live action short films with

diverse tool integration for the steps in the pipeline. Additionally, a Maya based workflow is also pro-

posed for the aforementioned films. And lastly, a workflow for real-time film and game productions

is suggested. These proposed workflows are intended to serve as templates for various production

but do not serve as a “one size fits all” workflow. Projects may use parts, all, or none of the workflow

steps proposed.

4.1.1 Diverse Tool Workflow

This workflow includes popular specialized industry tools that are licensed by Clemson

University and can be supported by both the DPA Pipeline and Toolkit Pipeline. This workflow

covers a broad part of the pipeline but is dependent of the needs of the project. A project might

depend heavily on lighting but not FX or vise versa. Figure 4.1 shows a 3D based diverse tool

workflow.

42

MA – MAYA NU – NUKE SU – SUBSTANCE MR – MARI KT – KATANA

HU – HOUDINI RS – DAVINCI RESOLVE PR – PRIMERE UE – UNREAL ENGINE UT – UNITY

ANIMATION SOFTWARE INTEGRATION

MODELING MA

RIGGING MA

TEXTURING

MR / SU

LAYOUT MA
ANIMATION

MA LIGHTING KT

SURFACING

KT

FX HU

COMPOSITING &
EDITORIAL

NU RS

EDITORIAL
(STORYBOARD)

RS

EDITORIAL (ANIMATIC)

RS

FBX

Maya Ascii

PNG

Alembic

Katana Look File

Maya Ascii

Resolve Native

MOV

EXR

Alembic Open
VDB

H264

WORKFLOW

Alembic

Alembic Maya Ascii Maya Ascii

Figure 4.1: Animation production workflow

Starting at the modeling, the next steps in the pipeline can be paralleled with little to no

bottlenecks since the steps may not be dependent on each other till later down the pipeline. Since

animation is going to be done in Maya, a native Maya ascii file type is exported to the rigging and

layout steps in the pipeline to prevent data loss. An FBX file type is exported to the texturing

step. FBX is a high level export format supported by Autodesk and many third party texturing

software like Mari and Allegorithmic Substance. The FBX format allows storing geometry, material

information, cameras, and animations in one file. During texturing, rigging and layout may be

completed and shots are created for animation. Keeping the native ascii file between rigging, layout,

and animation ensures custom nodes made in rigging move seamlessly between layout and animation.

After texturing, a low resolution version of textures is shared with animation whilst the high

resolution texture is passed on to surfacing. The textures shared with animation allow animators to

analyze the impact of geometry deformation on textures. Maya supports several image file formats

but, for this workflow, Portable Network Graphics(PNG) is suggested. PNG is a lossless compressed

format which is good for getting high quality images at smaller file sizes than formats like Tagged

Image File Format(TIFF). This format also allows alpha channels for transparency in textures.

After animation, an alembic geometry cache is exported from the Maya scene for lighting.

Alembic caches like the FBX, are popular data sharing formats supported by many third party

43

software, in this case Katana. They allow storing cameras and geometry information with animation.

This cache also supports the transfer of animation data to FX. Final frames can be rendererd out

of FX and composited later, but let us assume a cloth simulation was made so we will export an

alembic cache into lighting.

Katana, developed by Sony Imageworks and later purchased by The Foundry, is a specialized

tool for surfacing and lighting. It allows the surfacing artists to share data with the lighting artists

seamlessly with a native file type called a “Lookfile”. Lookfiles allow surfacing artists to setup

surfacing details about a geometry and share it with the lighting artist. The lighting artist only

needs to import the Lookfile and resolve it with the built-in resolve node. This process speeds up

lighting with an added bonus of geometries auto resolving to its shaders.

Final images are rendered out of lighting and/or FX as EXR file formats and passed along

to compositing and editorial. Editorial runs parallel to the entire pipeline starting at storyboards

in pre-production. They maintain the director’s vision of the whole story through a comprehension

of all the sequences and shots made from storyboard, previsualization, animation, compositing, and

sound. For this workflow, we will use DaVinci Resolve. Resolve is a popular industry nonlinear

editing software that allows the editorial team to edit, color grade, and sound mix a sequence of

images or movies. The final export format from Editorial is dependent on the needs of the project

or client.

All the software and tools mentioned in the workflow above have public Application Pro-

gramming Interface(API) that allows integration with pipeline tools. These software are also sup-

ported on the three major operating systems: Windows, MacOS, and Linux.

4.1.2 Maya Workflow

Similar to the Diverse Tools setup, the Maya Workflow follows the same hierarchy and

data sharing model. The difference is in the software application used in the various steps. This

workflow is designed around an Autodesk Maya pipeline. Maya would be used for modeling, rigging,

layout, animation, FX, and lighting. The setup is designed for students who do not have access

to commercial software like Katana, Houdini, and Nuke but would like to work on high quality

productions. DaVinci Resolve, as of version 15, has a built-in compositing software called Fusion

that is rival to Nuke. Maya and Resolve allow students to create high quality projects with minimal

software data transcoding. Figure 4.2 shows a workflow with Maya and DaVinci Resolve.

44

MA – MAYA NU – NUKE SU – SUBSTANCE MR – MARI KT – KATANA

HU – HOUDINI RS – DAVINCI RESOLVE PR – PRIMERE UE4 – UNREAL ENGINE UT – UNITY

MAYA INTEGRATION

MODELING MA

RIGGING MA

TEXTURING

MR / SU

LAYOUT MA
ANIMATION

MA LIGHTING MA

SURFACING

MA

FX MA

COMPOSITING &
EDITORIAL

NU RS

EDITORIAL
(STORYBOARD)

RS

EDITORIAL (ANIMATIC)

RS

FBX

Maya Ascii

PNG

Maya Ascii

Maya Ascii

Maya Ascii

Resolve Native

MOV

EXR

Alembic Open
VDB

H264

WORKFLOW

Maya Ascii

Maya Ascii Maya Ascii Maya Ascii

Figure 4.2: Maya workflow

4.1.3 Real-Time Engine Workflow

The Real-Time Workflow is designed for game and cinematic productions that use real-time

rendering. Similar to the previously mentioned workflows, modeling is done in Maya and exported

as an FBX format to texturing and the game engine for level design. Because of FBX’s wide

use and robust data format, it is also the main import file type for real-time engines like Unity

and Unreal Engine. Pipelines in game engines are very complex. A game may depend heavily

on mechanics which requires only proxy geometry and a high level of in engine testing. Another

project may require simple mechanics but emphasis on the visual fidelity of assets and materials.

This requires several iterations of assets and textures on the front end and very little time spent

in engine. The most important component of this workflow is version control. Version control is a

system that records changes to a file. This system helps recover unexpected catastrophes by allowing

the artists and technical teams to roll back to previous versions of assets or “states” of work. The

most popular version control systems are Git, Subversion, Mercurial, and Perforce. Most real-time

rendering engines have plugins for the version control systems that not only store the state of items,

but also stores a snapshot of the engine configuration. In bigger productions, these configurations

are excluded in the version control since every artist in a production may have their own working

45

environment. Excluding these configurations reduces possible conflicts and data storage size on the

server.

This workflow only gives a broad overview of the workflow for a real-time rendering engine.

Figure 4.3 shows the workflow of a game and cinematic workflow in a real-time rendering engine.

MA – MAYA NU – NUKE SU – SUBSTANCE MR – MARI KT – KATANA

HU – HOUDINI RS – DAVINCI RESOLVE PR – PRIMERE UE – UNREAL ENGINE UT – UNITY

GAME DESIGN SOFTWARE INTEGRATION

MODELING MA

RIGGING MA

TEXTURING

MR / SU

LEVEL DESIGN

UE / UY
GAME LOGIC

UE / UY
TEST DEMO

SURFACING

UE / UY
RELEASE

ANIMATION MA
Maya Ascii

FBX

FBX

SBSAR

PNG

In Engine

In Engine

Maya Ascii

FBX

VERSION CONTROL

WORKFLOW

Figure 4.3: Game production workflow

Next, updates and upgrades to the current DPA pipeline are proposed to support current

industry tools that boost efficiency and inclusion.

4.2 DPA-pipe Proposal

The DPA-pipe has been one of the cornerstone projects of the program since 2014. The

pipeline has been used in several productions over the years and has benefited many students in

getting experience working on and in a production. Although the DPA-pipe supports certain needs

of a production, there are features that can be added that would be beneficial to current and next

46

generation productions. Listed are the features that would help improve the pipeline.

• Interface with Shotgun project management:

Shotgun Web is a robust project management interface that supports asset, task, and project

tracking. It also allows applications outside of the web interface to connect and query infor-

mation through a REST API. Once a project is created on shotgun, a command for DPA-pipe

can be written to query project information and used to automate local file system creation.

This process reduces the time it takes for production setup by 50%. This also allows an artist

to create a project and start working in a short amount of time without the intervention of a

pipeline technical artist.

• Plugins for Substance Engines, Katana, and DaVinci Resolve: The Substance Engines

are a suite of texturing tools widely used in the industry. They speed up the process of

authoring textures for assets by giving artists a real-time view of the materials. It also generates

export maps that can be used in other render engines for high quality images. A plugin for

Substance would allow artists to quickly create and export textures for their assets. These

exports can then be accessible downstream in surfacing and lighting.

As previously mentioned, Katana is a lighting software designed to speed up the process of

lighting sequences and shots. This software gives artists the ability to light multiple shots in

a sequence at once whilst giving the artist control over each shot lighting through overrides.

An application or plugin for the pipeline within this software allows all the previous steps to

supply lighting with products non-destructively while speeding up the process of getting final

images rendered.

A plugin for DaVinci Resolve allows final images from lighting and compositing to be dynam-

ically loaded in its editing system. Resolve also uses the concept of databasing to give artists

the ability to collaborate and share tasks without moving data or reloading settings.

• Tractor Render Manager: Tractor is a render manager developed by the Pixar team used

to render and process batch jobs across networked computers. Tractor’s robust scalability

allows batch jobs to be processed in parallel or serially. Artists can process rendering tasks,

composited images, and FX simulations at the same time from multiple locations.

• Offload rendering to an independent renderfarm: Rendering is the most resource in-

47

tensive process in the pipeline. Most rendering jobs are configured to use all the resources of a

computer, CPU, and memory to produce an image. Using artist workstations not only slows

artists down during deadlines but also reduces the life of the workstation. Offloading render

intensive jobs to a farm like the Palmetto cluster, allows artists to work efficiently during close

deadlines, reduces the cost of maintenance on workstations, and rendered frames are returned

quicker due to the availability of computer resources.

• Multi-platform load and publish assets: Currently, DPA-pipe is only supported on the

Linux operating system. This feature excludes art softwares like Adobe Photoshop and Zbrush.

An application that allows artist to load assets into a software not native to the pipeline, gives

the artist the ability to explore options when a problem arises. This applications will allow

artists to publish assets to the right task or step without compromise to the workflow of the

pipeline.

4.3 Toolkit Proposal

• Launch Toolkit on Ubuntu: Currently, Toolkit is supported on Windows, MacOS and

Redhat based Linux operating systems like CentOS and Fredora, but DPA, being School of

Computing, only supports Ubuntu Linux. Adding a tool to launch Toolkit on Ubuntu, gives

artists the opportunity to access renderfarm resources that are currently only available on the

DPA School of Computing workstations. This also reduces transfer and data decoding between

operating systems since the software native file formats are irrespective of the system running

them.

• Add Engines for substance, Katana, and DaVinci Resolve: Similar to DPA-pipe, a

Katana and Resolve engine would be beneficial in creating a more streamlined workflow.

• Add Tractor Batch Manager to Toolkit: Currently, Toolkit does not have a built-in

plugin for a renderfarm manager. Adding tractor to the Toolkit pipeline will allow artists to

submit batch jobs from steps within the pipeline and get multiple results back.

• Support export caches from animations: Animation caches help reduce data size and

information that are not needed or supported in the subsequent steps. This process allows

faster scene load times in lighting or FX. Toolkit exports static alembic caches from Maya in

48

the asset creation phase but currently does not support caches from the shot phase similar to

DPA-pipe. Adding this feature will make shots from animations made in Maya, transferrable

to a simulation software like Houdini or a lighting software like Katana.

• Support Shader and Camera exports: Adding Shader and Camera exports to Toolkit,

allows access to camera data from layout downstream in the pipeline without exporting work-

files. Compositing artists will benefit from this feature when a reference camera is needed in

a shot after the rendering process.

49

Chapter 5

Implementation

Based on the pipeline proposal from the previous chapter, three items were chosen, de-

veloped, and implemented as proof of concept. The tools were designed as templates that can be

modified and implemented as plugins for DPA-pipe and Toolkit. First, a custom publisher that was

created for artist to upload rendered images and movie files to Shotgun for review from DPA-pipe.

This application would be similar to the builtin functionality in Toolkit. Second, a render submis-

sion tool was created to allow artists to submit render jobs from Maya to Tractor render manager.

The submission tool has been modified to support other renderers like Arnold. The default Tractor

submission tool that comes with Renderman for Maya only supports Renderman renderer. Lastly,

a shell script was created to launch Toolkit on Ubuntu Linux.

5.1 DPA-pipe Shotgun Publisher

Revision is a fundamental task in production that allows artists and production supervisors

to critique and give feedback on a project’s progress. Although Shotgun is mainly used for project

management, it also serves as a revision tool when integrated with a pipeline. To integrate DPA-

pipe with Shotgun Web, a publisher tool was developed using the Shotgun Python Application

Programming Interface(API) [18]. This publisher gives artists the opportunity to submit rendered

images or movie files for review. The Application Programming Interface(API) contains modules

for querying project data and uploading and downloading media. Publishing uploads media to a

Shotgun server under a specific attribute like a project or asset. To make the publisher user friendly,

50

it was designed using QT. QT is a cross platform widget toolkit used in creating graphical user

interfaces. Using this widget toolkit allowed the publisher to interface with Autodesk Maya since

Maya’s graphical interface is also built on this platform. Figure 5.1 shows the custom publisher

developed for DPA-pipe.

Figure 5.1: DPA-pipe Shotgun Publisher

The host, login, and password fields authenticates the user with the Shotgun Web interface.

A successful authentication triggers a query event and populates the project window with projects

listed on the site filtered by the username in the login field. Each project has an auto generated tag

on Shotgun called an ID. The ID is unique to every piece of data on Shotgun. This allows pinpoint

accuracy in filtering large amounts of data stored in the Shotgun database. On the publisher, each

project in the project window has a drop-down list of assets and shots associated with it. During a

publish, each item from the list is uploaded to the selected object in the project window. The add

and remove options give artists the opportunity to add more publishable items or remove a selected

publish item from the list. On Shotgun, upload versions are created for each published item from

the tool and displayed in the overview section of the project. During a publish, logs are printed out

to a dedicated window to show the status of a publish or any errors that may have occurred.

Although the applications has been tested and successfully used in small projects like

“Brave Player”, it has not been battle tested in a full production. The application has also

not been tested with all possible media formats that are supported by Shotgun. Although Shotgun

51

allows artist to publish workfile data about a current task, this tool does not support that func-

tionality. These may be “chinks in its armor” but with moderated enhancement to the tool, these

features ban be supported.

5.2 Tractor Queue Submit

Tractor Queue Submit is an application that was developed for submitting batch render

jobs from Maya to Tractor. Tractor is a network renderfarm manager that allows a set a computers

to perform several tasks simultaneously. Tractor also lets an artist monitor the status of a task

through a Web interface. The manager, also known as Tractor-Engine, is responsible for tracking,

scheduling, and distributing job task. Renders are submitted to the Tractor-Engine as a queued

job, through an “Alfred job file”. This job may consist of several tasks. Each task in the job is

distributed to a computer, also known as a Tractor-Blade. After a task is completed, the Tractor-

Blades report to the Tractor-Engine and waits for the next assignment. Tractor comes with a Job

Authoring Python Application Programming Interface(API) [15] that allows artist and developers

to create and customize jobs files submitted to a Tractor-Engine. Here is an example of the contents

of a job file:

Job -title {Environment Job} -subtasks {Task -title {Environment Task} -cmds

{RemoteCmd {{printenv}} -service {pixarRender}}}.

This command prints the environment variables that are set on the Tractor-Blade after the

task is completed. Connecting Maya with Tractor required using the Job Authoring API to create

custom task commands to run on the computers. To make the job submission easier for the artist,

a graphical user interface was developed for artist. Since the render settings in Maya determines

the results of a render, the interface fields are pre-populated when the application is launched from

settings made in Maya. Figure 5.2 shows the Tractor submit application.

52

Figure 5.2: Tractor Render Queue Submission tool

In the image above, the submission tool is placed on the left of Maya’s Render settings

window to show the settings queried from the scene. The different fields on the graphical user

interface(GUI) repesent the important details about the render. The “Renderer” tab shows the

current renderer used in the scene. This tab also determines the supported export type of the

application. “Frame Range” is the number of animated key frames from the scene to render. This

tab is non-editable and requires the artist to make changes in the render settings. If there are no

animated key frames, this tab will show the current selected key in Maya’s timeline as the render

key frame. The “Resolution” tab shows the target resolution for the key frame image. “Output

directory” shows the directory rendered images would be saved. This tab also allows the artists to

change the final image location after the scene has been rendered. The last two options, “Export

Type” and “Queue Location”, determine how the final render is processed. Export type has several

options determined by the renderer. Arnold exports either an Arnold Scene Source(ASS) file or a

MayaBatch file. Renderman exports a Renderman Interface Bytestream(RIB) and a MayaBatch

scene file. MayaBatch is a duplicate Maya scene export. Currently, Renderman and Arnold are the

only supported renderers by the application and Tractor. When the artist submits a render, the

application determines how to process the scene based on the export type and location. It then

creates a Job file that is sent to the Tractor manager. This process is called “spooling a render

job”. After the job has been spooled, the status of the job can be monitored from a Web browser

by searching the Domain Name Server(DNS) of the Tractor-Engine.

53

Tractor queue submit tool mimics how most batch commands are launched for renders in

Maya. It has not been extended to support special commands such as denoising in most renderers

like Renderman or Arnold. Deniosing is a post process system used to clean up noise done after a

frame is rendered. To support these type of features including Xgen, Mayabatch export type should

be used as the rendering process.

5.3 Toolkit: Ubuntu Linux

Ubuntu is one of many different versions of the Linux operating system. Most motion picture

studios use Linux in their pipelines because of its scalability and cost effectiveness [8]. Software like

Autodesk Maya, Nuke, and Mari have support for Linux. The software are typically Redhat-based

distributions like CentOS and Fedora. Shotgun Desktop is supported on CentOS and Fedora, not

Ubuntu. Shotgun Desktop is the bridge that connects Shotgun and Toolkit projects on operating

systems like Windows and MacOS. Before Shotgun Desktop, Toolkit used a Legacy commandline

activation script to download configuration files that run Toolkit[16]. This activation script was later

re-purposed into a user friendly interface now know as Shotgun Desktop. Although the activation

script is a Legacy tool, its functionality is currently supported by the Shotgun team. During activa-

tion, a master configuration file is downloaded into a directory of the user’s choosing. This directory

contains a file that run commands to launch toolkit. This file, in combination with a custom Linux

commandline script, allows an artist to launch a project on an Ubuntu operating system. Adding

Ubuntu to the suite of operating systems supported by Toolkit, allows artist to use software not

supported on Linux like Zbrush and Adobe Photoshop. This setup creates an effective pipeline for

artist on different operating systems.

Although Toolkit on the back-end is mostly python, there are possible libraries that may

not be available on the Ubuntu distribution and since Toolkit is not officially supported on Ubuntu,

help from the Shotgun Toolkit support team is limited. This could hinder productions using tools

on the Ubuntu operating system that error on launch.

54

Chapter 6

Conclusion

Pipelines account for a large part of the production budget and is fundamental in keeping

projects organized, give artists easier opportunities to share work, and reduce bottlenecks during

production. Clemson University’s Digital Production Arts program has benefited greatly from its

pipeline, DPA-pipe and Shotgun Toolkit. As story ideas become more complex and require more

resources, pipelines need to evolve to suit the needs of the production. They also need to be efficient

and user friendly by giving artists the chance to start and iterate over work easily and quickly. Less

time spent in the details of the pipeline increases the productivity of an artist.

6.1 Analysis

DPA-pipe and Shotgun Toolkit overlap in functionality but differentiate on how those func-

tionalities are presented to the artists. Below is a comparison of both pipelines; their similarities

and differences.

6.1.1 Similarities

• User Interface: DPA-pipe and Toolkit both have simple straight forward user interfaces that

allow artists to quickly and easily use its features. Although different in the user interface and

approach presented to the user, they both perform similar task. An example is the publish

and loader application. DPA-pipe and Toolkit both have a single click feature that scans the

current work scene and parses deliverable types to be passed to the next artist. This gives

55

both the receiving and publishing artists easy and simplified export and loading functionality.

• Application Support: DPA-pipe and Toolkit both support industry standard artist tools

like Nuke, Autodesk Maya, Houdini and Mari. This allows the artist to use the application and

workflow they are most familiar, with the added bonus of easily being able to pass workfiles

and publishes off to the next artist to continue work.

6.1.2 Differences

• Multi-OS Support: Unlike Toolkit, DPA-pipe current only supports the Ubuntu Linux.

Although designed for Unix operating systems, it has not been fully test on other flavors of

Linux or MacOS.

• Project Setup: Toolkit project setup is done through Shotgun. The project manager or

director sets up the assets, shots, sequences, and task on Shotgun. Through a setup process

on Shotgun Web and Shotgun Desktop, a technical director can create the folder structures

and pipeline integration system for the project.

DPA-pipe uses a commandline approach to project setup. The pipeline expects the artist to

know the structure of the pipeline and how files can be arrange to better suit the project before

hand. Then the artist manually goes through a commandline process of creating the directory

structures of the project. Tools and software integration are automatically added during the

setup process.

DPA-pipe Shotgun publisher, gives artists the opportunity to submit results of completed

tasks for review on Shotgun. Artist do not have to open a web browser and upload a rendered

image to the web server. This automated process increases efficiency in the pipeline. The simple

user friendly interface also allows first time users to quickly learn how to use the tool. Following the

same simple user interface, the tractor queue submission tool allows artists to submit render jobs to

a renderfarm with little to no advance knowledge of the farm.

Toolkit is a pipeline widely used in the industry. A multi operating system pipeline, gives

artists and users the ability to use software that are not available on one system. This functionality

makes a production easily scalable and portable. Shotgun and Toolkit integration also allow artists

to quickly create projects and start working within a pipeline.

56

6.2 Future Implementations

• Tractor on Palmetto Cluster: Palmetto Cluster is a High Performance Computing(HPC)

facility used for distributed computing[19] in research at Clemson University. Palmetto cur-

rently boasts a cluster of 2021 computers, totaling 23072 CPU cores. The Tractor Submission

application can be configured to submit jobs to the Portable Batch Scheduler(PBS) on Pal-

metto. Due to modern network security protocols(2 factor authentication) applied to Palmetto

and the current structure of running software on the HPC servers, a modern HPC software

packaging approach should be used to run jobs on the cluster.

On Linux, the Secure Shell Filesystem(SSHFS) protocol can be used to load the project direc-

tory on Palmetto after authentication. This protocol allows file changes made on a local host

computer reflect on the remote host and vise-versa. Using a singularity container with the

rendering software installed, an instance of the rendering job can be started from within the

container with the render job project bound as a system file path. A container is a standard

unit of software, that packages up code and all its dependencies, so an application runs quickly

and reliably from one computing environment to another [11].

A container will allow jobs rendering on the cluster appear local. No software would need to

be directly installed on each computer. Using a container will also allow artist and technical

artist to embed and maintain custom software and actions that can be ran on the cluster with

minimal intervention from system administrators. Clustered computers are optimized to run a

single task very quickly making it sometimes 10x faster than an artist’s workstation. Running

a render on several computers allows artists to get render jobs back in ((number of tasks /

number of nodes) x time per frame) amount of time. See Appendix B for the container

setup recipe.

• File Cache System: Caching is a system that allows data to be stored in memory or on

disks which can later be accessed quickly. Adding a caching system to the publish pipeline,

will allow artists to work from remote locations with good write speeds to files. When the artist

is connected back into the pipeline, the cached file is uploaded to the right project location

on the shared network and version up. This system will reduce the bottle neck in network

connectivity to an off-location shared drive.

57

Appendices

58

Appendix A Statistics Questionniare

• What type of Production have you worked on? Check all that apply

– Animated Short Film

– Animated Feature Film

– Live Action Production

– In Game Cinematic

– Game Production

• Have you used a Production Pipeline before?

– Yes

– No

• Have you used the DPA pipeline before?

– Yes

– No

• Rate your skill level on a scale of 1 to 5

– 1 2 3 4 5

• Have you used Shotgun Web Project Manager before?

– Yes

– No

• Rate your skill level on a scale of 1 to 5

– 1 2 3 4 5

• Have you used Shotgun Toolkit before?

– Yes

– No

• Rate your skill level on a scale of 1 to 5

59

– 1 2 3 4 5

• What software do you use for Modeling? Check all that apply

– Maya

– Blender

– 3DS Max

– ZBrush

• What software do you use for Texturing? Check all that apply

– Photoshop

– Substance Painter and Designer

• What Renderer and software do you use for Look Development and Lighting? Check all that

apply

– Arnold

– Renderman

– Maya

– Katana

– Mental Ray

• What software do you use for animation? Check all that apply

– Maya

– Blender

– Motion Builder

• What software do you use for Compositing? Check all that apply

– Nuke

– Fusion

– Photoshop

– After Effects

60

• Do you have a game development production experience?

– Yes

– No

• What game engine have you used for game productions?

– Unreal Engine

– Unity 3D

– CryEngine

• What Operating System do you mostly work on?

– Windows

– MacOS

– Linux

• Where do you mostly do your work?

– All remote from home

– All from On-Campus workstations

– Campus workstations for big task but mostly work from home

– Mostly on-campus but sometimes work from home when I have time

• Explain in a few words what you think a pipeline is

• What would you like to see in a pipeline?

61

Appendix B Palmetto Singularity Recipe

Bootstrap: docker

From: oraclelinux

Lets install all the files we need in the base setup

%help

This is a palmetto container for DPA pipeline. Use the –app switch to run specific apps in the

container

%label

CREATOR

MAINTAINER

VERSION 1.0

COMPANY DIGITAL PRODUCTION ARTS CLEMSON UNIVERSITY

LICENSE

set some persistent environment variables to use at run time e.g License info

%environment

ADSKFLEX LICENSE FILE=@license.server.clemson.edu

Copy files into the container to be process later

%files

/tmp/singularity/configs/TrEnvHandler.py / # Tractor environment variables parser

/tmp/singularity/configs/pixar.license / # Pixar License file

/tmp/singularity/configs/shared.linux.envkeys / # Custom tractor envkeys

/tmp/singularity/configs/shared.macosx.envkeys /

/tmp/singularity/configs/shared.windows.envkeys /

/tmp/singularity/configs/License.env / # Maya License file

/tmp/singularity/configs/maya.lic /

Ran at build time but after the OS is installed

%post

#######################################

62

Software and custom system setup

######################################

Lets update our system files

yum update -y

Install some useful utilities

yum install -y less which perl lshw csh tcsh vim vi nano sed

change to the tmp directory

cd /tmp/singularity/Installers

################# Install Maya

#cd Maya

#rpm -ivh *.rpm

Install Maya dependencies

#yum install -y libXp libXmu libXpm libXi libGL libGLU libtiff

#libtiff-devel libpng libXinerama fontconfig fam libXrender

#libXcomposite libxslt libpng12 pulseaudio libXrandr tbb tbb-devel

#compat-libtiff3

Link some libraries for the license

#ln -s /opt/Autodesk/Adlm/R14/lib64/libadlmPIT.so /usr/lib64/libadlmPIT.so

#ln -s /opt/Autodesk/Adlm/R14/lib64/libadlmutil.so /usr/lib64/libadlmutil.so

Setup Maya licenses

#cp /License.env /usr/autodesk/maya2018/bin/ # Copy License file to Maya directory

#cp /maya.lic /var/flexlm

#/usr/autodesk/maya2018/bin/licensechooser /usr/autodesk/maya2018 network unlimited maya

#echo “export LD LIBRARY PATH=/opt/Autodesk/Adlm/R14/lib64” >>$SINGULARITY ENVIRONMENT

Register the product to autodesk license server

#/usr/autodesk/maya2018/bin/adlmreg -i N product key product key 2018.0.0 serial number

/var/opt/Autodesk/Adlm/Maya2018/MayaConfig.pit

Fix Maya permissions on folders

#chmod -R u+rx /var/opt/Autodesk/

#chmod -R g+rx /var/opt/Autodesk/

#chmod -R o+rx /var/opt/Autodesk/

63

#chmod -R u+rx /usr/local/share/macrovision/storage/

#chmod -R g+rx /usr/local/share/macrovision/storage/

#chmod -R o+rx /usr/local/share/macrovision/storage/

I know we have more rpm’s so lets install them. (Tractor, RPS, RFM. RFK)

#cd ../

#rpm -ivh *.rpm

################# Setup Tractor

ln /opt/pixar/Tractor-2.2/lib/SystemServices/systemd/tractor-engine /etc/default/

ln /opt/pixar/Tractor-2.2/lib/SystemServices/systemd/tractor-engine.service /etc/systemd/system

ln -s /opt/pixar/Tractor-2.2/lib/SystemServices/tractor-engine /etc/init.d/

ln -s /opt/pixar/Tractor-2.2/lib/SystemServices/tractor-engine

/etc/systemd/system/multi-user.target.wants/

################# Install Arnold

Install Arnold for Maya, might have to manually do this because of license agreemennt, first make

it executable

chmod +x MtoA-3.0.1.1-linux-2018.run # execute it

#./MtoA-3.0.1.1-linux-2018.run

################# Install Katana 3.0

unpack the file into a different directory, might have to install manually because of license agree-

ment

mkdir katana && tar -xvzf Katana3.0v3-linux-x86-release-64.tgz -C katana

cd katana

./install.sh

################# Install Arnold for Katana

mkdir ktoa && tar -xvzf Ktoa-1.0.3-linux.tgz -C ktoa

cd ktoa

################ Setup environment variables

echo “export=ADSKFLEX LICENSE FILE=license.server.clemson.ed” >>$SINGULARITY ENVIRONMENT

####################################

64

Setup specific to pipeline

###################################

Lets setup Tractor to match our custom Setup

mv -f /pixar.license /opt/pixar/pixar.license

mv -f /TrEnvHandler.py /opt/pixar/Tractor-2.2/lib/python2.7/site-packages/tractor/apps/blade/TrEnvHandler.py

mv -f /shared.linux.envkeys /opt/pixar/Tractor-2.2/config/shared.linux.envkeys

mv -f /shared.macosx.envkeys /opt/pixar/Tractor-2.2/config/shared.macosx.envkeys

mv -f /shared.windows.envkeys /opt/pixar/Tractor-2.2/config/shared.windows.envkeys

#######################

App specific setup on run or exec

#######################

################ Tractor

######## ENGINE

%apprun Tractor-engine

echo ”Sourcing config file”

#Source Config

#MAX CONCURRENCY=100

echo ”Running modified configurations....”

echo ””

echo ””

#sed -i ’s‖”MaxConcurrentDispatch” : 0, ‖”MaxConcurrentDispatch” : ${MAX CONCURRENCY }, ‖′

/opt/pixar/Tractor2.2/config/tractor.config

echo”ConfigurationComplete!Startingtractorengine....”

echo””

servicetractor − enginestart

%appenvTractor − engine

%applabelsTractor − engine

TRACTOR Pixar TRACTOR Engine

V ERSION 2.2

%apphelpTractor − engine

65

TractorEngineforrenderQueuemanager

######## BLADE

%apprun Tractor-blade

echo ”Tractor blade is running”

%appenv Tractor-blade

%applabels Tractor-blade

VENDOR Pixar TRACTOR Blade

VERSION 2.2

%apphelp Tractor-blade

Tractor Blade for render Queue manager

################ Katana

%apprun Katana

echo ”Katana is Installed”

%appenv Katana

%applabels Katana

VENDOR THE FOUNDRY

VERSION 3.0

%apphelp Katana

Tractor Engine for render Queue manager

################ Maya

#%apprun Maya

echo ”Maya is starting up..”

printenv

/usr/autodesk/maya2018/bin/maya2018 –prompt

#%appenv Maya

MAYA DISABLE CIP=1

#%applabels Maya

VENDOR Autodesk

66

VERSION 2018

#%apphelp Maya

Maya 2018 installed in the default location

################ Job

%apprun Job

echo ”Spooling to Tractor”

%appenv Job

MAYA DISABLE CIP=1

%applabels Job

JOB Tractor Batch Job

%apphelp Job

This an app to spool an alf file to tractor

67

Bibliography

[1] Pipeline/ptask basics, 2015.

[2] Michael Balog Michael Clausen Gavin Moran Brian J. Pohl, Andrew Harris and Ryan Brucks.
Fortnite: Supercharging cg animation pipelines with game engine technology, 2017.

[3] Josh Tomlinson Nico Van den Bosch Wil Whaley Chris Johnson, Josef Tobiska. Rhythm &
hues - a framework for global visual effects production pipelines - siggraph 2014.

[4] Josh Tomlinson Nico Van den Bosch Wil Whaley Chris Johnson, Josef Tobiska. A framework
for global visual effects production pipelines, 2014.

[5] Timothy Curtis. Efficient control of assets in a modern production pipeline. Master’s thesis,
Clemson University, 2014.

[6] Nicole DeMichelis. Vfx librarianship: designing a global asset library for a visual effects studio,
2016.

[7] Bill Desowitz. ‘spider-man: Into the spider-verse’: Breaking the rules of animation, 2018.

[8] Aaron Estrada. The history of linux in vfx and animation, 2017.

[9] Ian Failes. “if it’s not broke, break it: Sony imageworks’ renegade approach to ’spider-man:
Into the spider-verse”’, 2018.

[10] Sony Pictures Imageworks. ’spider-man: Into the spider-verse’, 2018.

[11] Docker Inc. What is a container, 2019.

[12] Don Parker Josh Tomlinson, Manne Ohrstrom. The shotgun pipeline toolkit: Productizing and
democratizing production pipelines, 2017.

[13] Alasdair Coull J.P. Lewis, Cristian S. Calude. Can we solve the pipeline problem?, 2014.

[14] Erik Smitt Mahyar Abousaeed and Leif Pedersen. Incredible cinematography, 2019.

[15] Pixar. Job author python api, 2018.

[16] Autodesk Shotgun. Activating toolkit via the command line, 2018.

[17] Autodesk Shotgun. Shotgun, 2019.

[18] Autodesk Shotgun. Shotgun python api3, 2019.

[19] Clemson University. Clemson university palmetto cluster, 2019.

[20] Wikipedia. Project management, 2019.

68

[21] Wikipedia. Shot(filmmaking), 2019.

[22] YourDictionary. Renderer, 2019.

[23] Jordan Zakarin. Spider-man: Into the spider-verse required inventing a new kind of animation
technology, 2018.

69

	Clemson University
	TigerPrints
	5-2019

	Analyzing and Developing Aspects of the Artist Pipeline for Clemson University Art
	Kunta Kwaku Lowe
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	List of Figures
	Introduction
	Asset Management
	Project Management
	Art and Pipeline

	Background
	Industry Production Pipelines
	DPA Pipeline
	Shotgun Toolkit

	Case Studies
	``The Boy Who Cried''
	``Brave Player''
	``Disconnect''
	``For A Rainy Day''
	Statistics

	Design
	Workflow
	DPA-pipe Proposal
	Toolkit Proposal

	Implementation
	DPA-pipe Shotgun Publisher
	Tractor Queue Submit
	Toolkit: Ubuntu Linux

	Conclusion
	Analysis
	Future Implementations

	Appendices
	Statistics Questionniare
	Palmetto Singularity Recipe

	Bibliography

