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ABSTRACT 

 

 This thesis describes the development of a high-resolution storm-surge hazard 

database, which can be used for estimating the long-term storm surge hazard at any given 

site along the eastern coast of the United States (US). A stochastic hurricane track model 

is used to generate a set of one hundred thousand years of synthetic hurricane tracks. The 

SLOSH (Sea, Lake and Overland Surges from Hurricanes) model is used to simulate the 

storm surge in the Atlantic basin caused by selected synthetic hurricane tracks. The study 

domain covers a region of about 20 miles from the coastline containing more than 220,000 

grid points (or observation points) for recording the peak storm surges of each synthetic 

hurricane track. A uniform grid of resolution of 1.1 km is proposed for this study.  

Hind cast simulation of a set of 16 hurricanes was performed to quantify the 

modeling error of SLOSH model in terms of its ability to predict the surge height that 

occurred along the US coastline. The SLOSH predicted surges for the 16 historical 

hurricanes were validated against historical storm surge data obtained from various tide 

stations and post-hurricane high watermarks along the eastern coast of the US. These 

modeling errors were then quantified for each SLOSH study region (basin). The simulated 

surge heights for each basin were then adjusted for systematic error (bias) to assist in the 

development of more robust, reliable and accurate hazard maps. The biased adjusted surge 

heights were used to generate (1) storm surge hazard curves (surge height versus return 

period) for the 220,000 grid points, and (2) storm surge hazard maps for different return 

periods. 
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A hazard visualization tool was developed to view the surge hazard footprint. The 

availability of this information of long-term hazard for more than 220,000 locations along 

the US coast can be a useful tool for coastal city developers and planners, decision makers, 

risk analysts and engineering firms responsible for designing structures for hurricane 

induced storm surge hazards. Also, such a database and the visualization tools (maps, 

hazard curves) can improve the risk communication in the community and help in 

mitigating the losses (monetary and life) due to the storm surge by creating storm surge 

risk awareness in the society. 
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CHAPTER ONE 

INTRODUCTION 

 
Motivation 

 
 The total loss caused by tropical storms contributes about 55% of losses due to all 

disasters (NCEI, 2018). On average since 1971, damages due to hurricanes and cyclones 

cost $700 billion per year globally. This is equivalent to wiping out the GDP of Argentina 

every single year, which is the eighth largest country in the world. For communities in the 

United States, recent storms like Hurricane Michael (2018), Florence (2018) and Harvey 

(2017) are reminders of how vulnerable the eastern and gulf coasts are to storms. Storms 

are uncertain in their path and can shift at a moment’s notice. Consider Hurricane Florence, 

which was expected to make landfall as a category 4 storm in North Carolina but instead 

slowed down and made landfall as a category 2 storm. Hurricane Michael, which was 

expected to make landfall as a category 2 storm, suddenly strengthened within 24 hours 

giving little or no time for evacuation planning and made landfall as a category 4 storm 

with wind speeds of 155 miles/hour. Hurricane Harvey hit Texas as a category 4 storm in 

the last week of August 2017 causing a damage of more than $125 billion, making it the 

second costliest storm in the US history. The 2017 Hurricane Harvey was followed by 

another hurricane Irma that brought waves of about 20 feet higher than normal tides 

whereas Harvey was a rain-dominated storm with more than 50 inches of rain. Three of the 

costliest tropical storms, namely Katrina 2005, Harvey 2017, Sandy 2012, resulted in a 

total of $360 (USD) billion loss (NCEI, 2018). 
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 Much of the United States' densely populated Atlantic and Gulf Coast coastlines lie 

less than 15 feet above the mean sea level (National Hurricane Center). The historical storm 

surge data alone is not enough to assess the risk from catastrophic events since a weak 

storm has diverse stochastic aspects as compared to a strong storm, which has a lower 

frequency and longer return period. As a result of increase in sea surface temperature, an 

increase in the frequency of such events is expected (Rego and Li, 2009). A storm surge 

hazard database needs to be developed to capture probable potential losses due to such 

events along with the randomness associated with such meteorological events and better 

map out locations of critical infrastructure such as hospitals, airports, etc.  

 This storm surge geo-spatial database will help improve understanding the risk of 

property damage due to flood at any location in the United States. With more accurate data, 

stakeholders including developers, city planners, and insurance providers can modify their 

planning to reflect more accurate property damage risk.  

 
Background 

 
 During a hurricane event, when the water is pushed towards the shore by the wind 

forces it causes storm surge and the water level rises above the normal tide resulting in a 

storm tide. The total storm tide depends on the interaction of tidal stage, inverted barometer 

effects, wind stress, coastal topography, bathymetry and geology. The height of storm 

surge is a function of maximum winds’ radius, intensity, translational speed, and direction. 

Being one of the major forces in a hurricane, storm surge can pose a potential hazard in the 

form of severe coastal flooding and devastation inland. Coastal geomorphology, vegetation 
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(or lack of it), levees and sea-walls also affect storm surge. Within an embayment, surge 

may be further concentrated, whereas at a cape, it is spilled away. Steep slope results in 

breaking waves whereas gentle slopes can result in long wave run-ups, waves can cause 

significant damage to lower elevation buildings near the coast and in open bays, even 

without flooding. 

 The first component is the tidal stage; this can profoundly affect the storm tide 

during the time of hurricane landfall. However, ignoring the tidal stage does not bias storm 

surge results positively or negatively as tidal variation occurs with the same frequency and 

magnitude. Instead, they merely present an envelope of best and worst case scenarios (Phan 

et al., Slinn et al., 2010). In the United States, the Gulf Coast sees mixed or semidiurnal 

micro tidal (< 2 m magnitude) events, while the Atlantic coast has diurnal mesotidal (2–4 

m magnitude) events (Pinet, 1998). The storm tides are highly correlated with the tidal 

effect during a hurricane's landfall. A hurricane making a landfall at the time of high tides 

will cause more flooding and damage as compared to a hurricane making a landfall at the 

time of low tides. 

  The second component is the response of sea surface to the pressure drop near the 

eye of the storm creating a vacuum, pushing the water into the hurricane’s eye, which 

results in the rise of the sea surface. It is one of the least contributing component to storm 

surge when compared to the other components. Ambient atmospheric pressure fluctuates 

around 1012 millibars. Every millibar drop in pressure causes a centimeter rise in the local 

sea level in deep water (Anthes, 1982). It contributes about 5% of the total storm surge. 
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 Another component is the wind stress tide, caused by wind forces acting on the 

water surface. The high-speed winds from the hurricane push the water to the shore as it 

makes landfall (Ingargiola et al., 2013), Interaction between the sea and atmosphere 

boundary causes energy to be transferred from a hurricane's winds to the water column, 

causing a build-up near the shoreline. SLOSH (Sea Lake and Overland Surges from 

Hurricanes) uses an empirically derived constant drag coefficient. Approximate wind stress 

per unit mass is given by equation 1.1 

 

𝜏𝜏 = 𝑐𝑐𝑑𝑑
𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎
𝜌𝜌𝑠𝑠𝑠𝑠

 | 𝑊𝑊|𝑊𝑊         (1.1) 

Where: 

τ = Surface wind stress per unit mass  

cd = Dimensionless drag coefficient  

ρair = Density of air 

ρsw = Density of sea water  

W = Wind velocity vector at 10 meters above sea surface 

 The variation in local bathymetry near the coast is one of the major factors affecting 

the storm surge. The US coast has a varying bathymetry with as low as 25 meters in Gulf 

of Mexico making it prone to storm surge. Figure 1 and 2 shows the variation in the 

bathymetry along the US coastline. The resulting storm surge varies by ±10% for amplitude 

with variations less than ±40% of the initial bathymetry. Fluctuations up to ±60% in 

bathymetry would generate a difference at the coast of at  most ±20% (Weaver and Slinn, 

2010). 
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Figure 1: Gulf coast bathymetry in meters (adopted from ArcGIS online) 
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Figure 2: Chesapeake basin bathymetry 
Objectives 

 
 The present study has three primary objectives: (i) Develop a uniform and fine 

resolution storm surge hazard database by coupling a synthetic hurricane model with a 

hydrodynamic model (SLOSH) to capture the randomness of such future events and 

estimate the long term storm surge hazard for the eastern coast of the US. (ii) Validate the 

model by simulating surges from historical storms and compare the results of the simulated 

storm surges with that of the observed water levels at different locations along the coastline 

to quantify modeling errors. These errors were then used to adjust the Mean Return Interval 
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(MRI) curves for systematic modeling errors and quantify the uncertainty in return periods 

and respective surge heights. (iii)  Create a tool to visualize the surge footprints and prepare 

risk maps for an example coastal location (Miami, FL). This storm surge geo-spatial 

database will help improve understanding of the risk of property damage due to flood at 

any location along the United States coast. The visualization tool can be a valuable asset 

to improve the risk awareness in the community. 

 
Overview of Analysis Approach 

 
 A stochastic hurricane track model (Liu, 2014) was used to generate synthetic 

storms which varied in their intensity and direction. The simulated hurricane database by 

Liu (2014) contains 100,000 years of simulated hurricanes with more than 1 million tracks. 

Since storm surge simulation using a finite element or finite difference model is 

computationally intensive and not all hurricanes cause significant surges to the coastal 

regions, a methodology to select candidate hurricanes that may yield appreciable storm 

surge was utilized. Any simulated hurricane with its closest distance between the hurricane 

eye and the coastline dj less than 2Rmax (dj < 2Rmax) where Rmax is the radius of the 

maximum wind of the hurricane, was considered as a candidate hurricane based on a prior 

sensitivity study by Pei (2015). Figure 6 presents the criteria of selection of candidate 

hurricane tracks. Numerical model SLOSH was used to calculate the storm surge for the 

Atlantic and Gulf of Mexico coasts of the United States using selected candidate hurricane 

tracks. The model divides the US coast into a set of 33 domains called as basins. For each 

candidate hurricane, the storm surge from SLOSH was interpolated in the study area using 

the uniform and high-resolution 0.01°x0.01° grid representing the study region. The grid 
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extends up to 20 miles inland to capture surge inundation as well as inland flooding due to 

storms. A high-resolution storm surge database was developed for the entire eastern 

coastline of the United State coast.  

 
Study Area 

 
 SLOSH has been applied to the entire Atlantic and Gulf of Mexico coasts of the 

United States. The model subdivides the US coast into different regions referred as basins 

as shown in Figure 3. This subdivision of the coastal areas into different basins has been 

performed based on the population density at the coast and topography of these coastal 

areas. These basins are continuously expanding polar grids in the areas of interest along 

the coastline and implement simple boundary conditions (Jelesnianski et. al.1992) with 

coarse mesh in deep waters. These grids were later refined to a uniform size with a high 

resolution of 0.01°x0.01.  
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Figure 3: SLOSH basins for the U.S. coasts 
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CHAPTER TWO 

HURRICANE AND STORM SURGE SIMULATIONS 

Stochastic Hurricane Simulation Methodology 
 

 A statistical (stochastic) hurricane model was used in this study to generate 

synthetic tropical cyclones under given large-scale atmospheric and ocean environments, 

which may be estimated from observations or climate modelling. This method overcomes 

the limitation of having limited historical track database by generating synthetic storms 

using Monte Carlo simulation method such that they are in statistical agreement with 

observations, and it agrees well with various other methods used to simulate hurricanes 

(Vickery et al.,2000; Huang et al.,2001; Emanuel et al., 2006; Vickery et al., 2009).  

In this study, the stochastic simulation program by Liu (2014) was used. An overview 

of the simulation methodology is provided in Figure 5. The simulation process begins with 

the genesis model where the number of events per simulation year are determined and 

hurricane parameters are randomly selected for the first time step using the historical 

database (HURDAT). After generating the initial location of the hurricane, the tracking 

model generates the position of the storm based on the heading direction and the forward 

speed in the next time step. This is followed by calculation of the storm intensity based on 

the location of the hurricane track and other environmental parameters such as the sea 

surface temperature. If the hurricane made landfall, a decay model is used to simulate the 

hurricane intensity for the next time step. However, if the hurricane is still on the ocean, 

the hurricane intensity is calculated using a relative intensity model. Once the location of 

the storm and the value of the storm intensity based on the location of the track is 
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determined, the radius to maximum winds (Rmax) and the Holland B parameter are 

determined at every 6-hour time step as a function of the latitude and central pressure and 

are then interpolated linearly to 1-hour increment. If the value of the central pressure 

exceeds the atmospheric pressure the track simulation is terminated. This process is 

repeated for every event in the total number of simulation years. The Figure 4 below shows 

a hurricane track with various parameters. 

 

 

Figure 4: Sample synthetic hurricane track (Pei 2015) 
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Figure 5: Flowchart illustrating the stochastic simulation procedure to generate 

synthetic hurricane catalog (Liu, 2014) 
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Storm Surge Simulation Methodology 

 
 Storm surge was simulated using the SLOSH (Sea Lake and Overland Surges from 

Hurricanes) model. Model validation was performed for 16 historical hurricanes. The 

results of validation can be found in chapter 4. The basic process for simulation of storm 

surge during a synthetic hurricane is as described below: 

 First for each simulated hurricane, the Radius of maximum wind (Rmax) was 

calculated and closest distance (Dj) from the eye of the hurricane to the coastline. For any 

synthetic hurricane track to be a candidate of a given domain, a threshold was set to be as 

twice of the radius to maximum winds (2Rmax,j) at every time step j (1-h interval). Any 

simulated hurricane at time step j with Dj < 2Rmax is considered as a candidate hurricane 

and is selected for storm surge calculation. This approach was adopted based on a 

sensitivity study, which verified that 2Rmax threshold is adequate to capture the hurricanes 

that can produce significant surge(Pei et al., 2014). The 100,000-year hurricane simulations 

resulted in 1,038,322 simulated hurricanes originated from the North Atlantic Ocean out 

of which 504,826 events were considered to be as candidate hurricanes. For these selected 

candidate hurricanes, track parameters like the position of hurricane eye, translational 

speed, heading angle, central pressure deficit, and radius to maximum wind were calculated 

with a 1-h time interval. These parameters are used as an input for the SLOSH model to 

calculate maximum surge levels. For the SLOSH simulations, the wind and pressure are 

calculated using a semi parametric wind field model within the SLOSH model. The 

differences between the wind field computed by SLOSH’s parametric wind field model 
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and surface wind field observations were within a range of 6% or less (Lin et al., 2010). 

The Surge heights predicted by the model has a reported accuracy of ±20% (Jelesnianski 

et al., 1992). 

 
Figure 6: Selection of candidate hurricane events 

 
Storm Surge Models: A Review 

 
In addition to the two leading storm surge models in the US (SLOSH and 

ADCIRC), there are many other models that have been developed and applied all around 

the world by government agencies as well as the academic world. A brief overview of the 

predominant models is described in order to show improvements in storm surge modeling 

and illustrate how various problems in storm surge modeling are being addressed.  

 

ADCIRC 
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ADCIRC – 2DDI (2-Dimensional, Depth Integrated) is a shallow water, 

hydrodynamic, finite element model with variable unstructured grids capable of simulating 

the hurricane wind field and calculating the storm surge. ADCIRC is useful for simulating 

the hydrodynamics in the deep ocean, continental shelves, coastal seas, and estuarine 

systems(Turan et al., 2018). In 1991, Luettich and Westerink developed the ADCIRC 

model. ADCIRC can be used to model tides and wind driven circulation; analyse the 

hurricane storm surge and inland flooding; dredging and material disposal feasibility; larval 

transport analysis and nearshore marine works(Adcirc Guide; Luettich et. al.. ADCIRC’s 

Finite Element based solution strategy helps in creating a very large, variable resolution, 

unstructured, flexible model domain as big as the entire ocean basin or more localized, 

such as estuaries or bays. ADCIRC requires boundary conditions, including forcing 

boundaries and land boundaries. We can also specify the tidal constituents, normal flow, 

wind and/or wave radiation stresses, atmospheric pressure and outward radiation of waves 

(meteorological forcing). It is capable of full wetting/drying elements (Luettich, 2004). 

Nodes of the elements are designated as “dry nodes”, “interface nodes”, and “wet nodes”. 

A node which is connected to dry elements which have barriers in place making sure that 

the flow through the element to be zero is called as “dry node”. A node which is connected 

to all wet elements is a wet node and is included in the full flow domain. Interface nodes 

connect the wet and dry element. Boundaries connecting interface nodes are considered as 

standard land boundaries. ADCIRC uses the Holland model to calculate the hurricane wind 

field. When combined with wave models like SWAN (Simulating WAves Nearshore), 

ADCIRC can provide hurricane storm surge elevations including wind-wave impacts. 
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ADCIRC solves shallow water circulation assuming that horizontal scales of motion are 

greater than the vertical scales(Blain, no date). In ADCIRC-2DDI, water velocities are 

obtained from the solutions of the momentum balance equations, and water elevations are 

obtained by solving the depth-integrated continuity equation in Generalized Wave 

Continuity Equation (GWCE) form (Scheffner et al., 1994).  

 

SURGE 
 

 SURGE is a 3-D hydrodynamic model of ocean circulation for coastal areas based 

on the Princeton Ocean Model (POM) developed in 1987. SURGE helps in simulating 

storm surges and flooding as well as horizontal currents. It uses NOAA/NOS bathymetry 

data and high-resolution LIDAR survey data. The advantage of using SURGE model is it 

has a fine resolution with three-dimensionality. The absence of radiation stress, wave-

enhanced surface stress and wave-induced bottom friction makes it inaccurate. 

 

POM 
 

 One of the widely used Finite Difference coastal ocean models is the Princeton 

Ocean Model (POM; (Blumberg and Mellor, 1987)). POM is a 3-D and fully nonlinear 

hydrodynamic model that has been in development and used by a wide range of users over 

the past three decades. It has been applied for use in tropical storm surge modeling in North 

Carolina (Xie et al.,2003; Peng et al., 2004; Pietrafesa et al., 2007). In this application 

storm surge has been coupled various models such as meteorological (wind, pressure, and 
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precipitation), wave, and river discharge models to estimate the impact and damage due to 

storm surge more accurately and more close to reality. 

 

CH3D 
 

 Another well-developed Finite Difference model that has been applied to predict 

the storm surge is the “Curvilinear grid Hydrolidynamics model in 3D”. CH3D is capable 

of handling large-scale simulations as it can run on MPI and high performance computers 

(Sheng and Alymov, 2002). CH3D uses a structured curvilinear grid and has been applied 

on domains with the resolution reaching less than 20 meters. It is a fully nonlinear model 

that has been coupled with wave models and with larger scale circulation models. Various 

wind models have been used to provide input.  

 

FVCOM 
 

The fully nonlinear 3-D model FVCOM has been applied to storm surge simulations in 

Florida (Weisberg and Zheng, 2006). This modeling application demonstrates a mass-

conserving 3-D simulation on an unstructured grid extending past the continental shelf 

(Dube et al., 2010). Several projects have focused on approaches that leverage models 

available in the community. Finally, commercial hydrodynamic modeling systems by the 

Danish Hydraulic Institute (DHI) and Deltares (Delft Hydraulics) are widely used in storm 

surge risk assessment. 
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MIKE 
 

The hydrodynamic model MIKE calculates the storm surge elevations based on the 

set of differential equations called the Navier Stokes equations (DHI, 2017b). MIKE uses 

finite volume method (FVM) to solve the Navier Stokes equations. MIKE 21 FM has two 

types of numerical schemes for the solution: the Low Order (LO) and the Higher Order 

(HO) schemes (DHI, 2017b).  

The selection of the numerical scheme depends upon the number of cores available to 

perform the task as the later can be computationally demanding. The LO scheme takes less 

simulation time with a limitation of giving a lower quality result as compared to the later 

one(DHI, 2017a). The MIKE 21 FM model demonstrated a good capacity to simulate the 

astronomical tide. The results obtained with only the astronomical forcing applied showed 

a close correlation with the data from the tidal gauges. However, it has been reported that 

during the storm surge simulations the model tend to underestimate the surge elevation 

values (Rita B Fonseca). 

 
SLOSH 

 

 SLOSH model is an efficient two-dimensional finite difference hydrodynamic 

model formulated by the National Weather Service [NWS] used for numerical simulations 

of the storm surge prediction. It plays a significant role in providing storm surge guidance 

for hazard analysis to the Federal Emergency Management Agency [FEMA], the U.S. 

Army Corps of Engineers [USACE] and local emergency managers (Glahn et al., 2009). 

In the SLOSH model, the governing equations of motion for the Cartesian coordinate were 
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first developed by (Platzman, 1963) and later modified by (Jelesnianski, 1967) with a 

bottom slip coefficient. 

 SLOSH uses a curvilinear grid system to allow higher resolutions inland and a 

coarser resolution in deep waters. It computes surges over bays and estuaries and includes 

sub-grid features such as channels and barriers. For storm surge heights of individual 

hurricanes, SLOSH has been reported with an accuracy of +-20% (NWS, 2011). Figure 7 

shows the SLOSH basins coverage for east and gulf coastlines of the US. 

 

Figure 7: SLOSH model basins for East and Gulf coastlines of the U.S. (Glahn et al., 

2009) 
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SLOSH Methodology 
 

The transport equations of motion are given as  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  −𝑔𝑔(𝐷𝐷 + ℎ) �𝐵𝐵𝑟𝑟
𝜕𝜕(ℎ−ℎ𝑜𝑜)

𝜕𝜕𝜕𝜕
− 𝐵𝐵𝑖𝑖

 𝜕𝜕(ℎ−ℎ𝑜𝑜)
𝜕𝜕𝜕𝜕

 � + 𝑓𝑓(𝐴𝐴𝑟𝑟𝑣𝑣 + 𝐴𝐴𝑖𝑖𝑢𝑢) + 𝐶𝐶𝑟𝑟𝑥𝑥𝜏𝜏 − 𝐶𝐶𝑖𝑖𝑦𝑦𝜏𝜏  (1.2) 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  −𝑔𝑔(𝐷𝐷 + ℎ) �𝐵𝐵𝑟𝑟
𝜕𝜕(ℎ−ℎ𝑜𝑜)

𝜕𝜕𝜕𝜕
− 𝐵𝐵𝑖𝑖

 𝜕𝜕(ℎ−ℎ𝑜𝑜)
𝜕𝜕𝜕𝜕

 � + 𝑓𝑓(𝐴𝐴𝑟𝑟𝑣𝑣 + 𝐴𝐴𝑖𝑖𝑢𝑢) + 𝐶𝐶𝑟𝑟𝑦𝑦𝜏𝜏 − 𝐶𝐶𝑖𝑖𝑥𝑥𝜏𝜏  (1.3) 

 

where, u and v are the components of transport;  

g is the acceleration due to gravity;  

D is the depth of still water relative to a common datum;  

h is the water height above the datum;  

h0 is the hydrostatic water level;  

f is the Coriolis parameter;  

𝑥𝑥𝜏𝜏 and 𝑦𝑦𝜏𝜏are the components of surface stresses; and  

Ar, Ai, Br, Bi, Cr, Ci are the bottom stress terms. 

 

The model applies the law of conservation for mass relating the horizontal transports (u, v) 

to the sea level rise. eq. 1.4 shows the continuity equation with Boussinesq's approximation 

for incompressible flow. Vertical velocity is assumed to be negligible and SLOSH's form 

of the continuity eq. 1.5 is obtained, note that x and y in this equation are the real and 

imaginary components of the complex plane, respectively. 
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                       𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0               (1.4) 

  

                      𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
−  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕                        (1.5) 

 

For each time step, u and v are solved, leading to a new surge level, h, at every grid location 

predefined in SLOSH. The model uses a simplified wind model based on pressure and 

radius of the maximum winds to calculate the storm surge for each grid point. 

complete derivation of the SLOSH equations of motion can be found in (Jelesnianski, 

1967) and Appendix A of the SLOSH Technical Report (Jelesnianski, Chen and Shaffer, 

1992). 

 

SLOSH Computational Grid 
 

 SLOSH has been applied to the entire U.S. Atlantic and Gulf of Mexico coasts of 

the U.S. The model is subdivided into different regions referred as basins. This subdivision 

of the coastal areas into different basins us done depending upon population density at the 

coast, topography of the areas. These basins have a finer resolution particularly near 

susceptible features such as inlets and channels. The polar grid helps in implementation of 

simple boundary conditions. These basins are a continuously expanding polar grids to 

allow for both finer resolution in the areas of interest along the coastline, and 

implementation of simple boundary conditions (Jelesnianski et al.,1992) and stretching to 

coarse mesh in deep waters or areas of lesser interest. The shape of the grids helps the 

SLOSH model to be computationally efficient. A typical simulation of a storm using 
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SLOSH takes about 3 minutes which is about 50 times faster when compared with other 

storm surge models when ran on a typical desktop. This made SLOSH an ideal choice for 

simulation of a 100000-year event catalog. 

 An example of a SLOSH basin is the New York (NY3) Basin. It consists of 188 

arcs and 164 radials with a resolution of about 500 m around New York. Another example 

of SLOSH basin is the Hyperbolic Miami (HMI3) Basin, it consists of a hyperbolic grid of 

23,750 points and covers the area between Lake Okeechobee and the Bahamas. This basin 

has a fine resolution mesh of around 2 km near the coast and much coarser resolution mesh 

of about 4 km in deeper waters of the Atlantic. Figure 8shows the variation in the grid 

resolution for the two basins. 

 It should be noted that all of the inputs and output values of SLOSH are based on 

real space (longitudinal and latitudinal coordinates for the polar grid points). A grid 

interpolation was performed for all computations to transform the storm surge data from 

polar grid to rectangular grid of a uniform and finer resolution about 1 km near the coastline 

and about 5 km coarser resolution after 20 miles inland, to keep the model computationally 

efficient. Figure 9 represents the coverage of uniform surge grid for the US. 

SLOSH implements four boundary conditions for this computational grid (Phan et al; Slinn 

et al.,2010)  

• Surface gradients are replaced by the nearest interior, contiguous point in shallow 

water. 

• Surface gradients are replaced by the storm's hydrostatic gradient in intermediate 

depths. 
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• Hydrostatic height of the storm is set at height points of boundary squares in deep 

water. 

• Zero transport over dry land. 

 

 

Figure 8: SLOSH computational grids: Figure on the left represents the New York 
Basin (NY3) and Figure on the right is the Hyperbolic Miami Basin (HMI3) (Taken from 
SLOSH Display Program) 
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Figure 9: Surge Grid for the US coast 

 

SLOSH Input Parameters 
 

SLOSH requires the position of the storm, radius of maximum wind and intensity 

as input for generating a track file. These values are saved in a SLOSH TRK file, which 

contains up to 100 track points of data. The location of the storm’s center, central pressure, 

radius of maximum wind and direction was calculated at every point. Each point is an 

hourly progression of the hurricane. An example of a TRK file used in our study can be 

found in Appendix A. At the storm's center and far away from the hurricane, wind speed 

tapers off to zero. A vector correction for the storm's motion is added to the stationary wind 

speed to arrive at the wind vector used in surface shear stress computations (Jelesnianski, 

1967) 
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SLOSH Output 

SLOSH gives the output in the form of a REX file which is SLOSH specific 

animation file containing the storm surge results for each time step respectively. These files 

contains information about the surge elevation, wind speed and wind direction at every 10 

minutes of simulation. 

SLOSH refers the results of storm surge heights relative to the vertical datum, 

NAVD88. For estimating the losses, one might want to determine the flood depth of surge 

flooding at a location, this can be done by subtracting the ground elevation (relative to 

NAVD88) at that location from the potential surge height. Within the SLOSH model, an 

average elevation is assumed within each grid square.  

As mentioned before, all of the inputs and output values of SLOSH are based on 

real space (longitudinal and latitudinal coordinates for the polar grid points). Interpolation 

was performed for the SLOSH output to transform the Surge depth corresponding to a polar 

grid into rectangular grid of a uniform and finer resolution about 1 km near the coastline 

and about 5 km coarser resolution after 20 miles inland from the coastline to keep the model 

computationally efficient.  

SLOSH Model was not used to calculate the flood depth as it uses an average grid 

elevation. Whereas, a true terrain height may vary significantly within a SLOSH grid 

square. The depth of surge flooding above terrain at a specific site in the grid square can 

be calculated more precisely by subtracting the DEM data from the model-generated storm 

surge height at that site. Figure 10 shows the schematic workflow of SLOSH model with 

required inputs and the resulting outputs. 
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Figure 10: SLOSH schematic flowchart 
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CHAPTER THREE 

DEVELOPMENT OF STORM SURGE HAZARD DATABASE 

 
Significance of the Hazard Database 

 
 The major advantage of creating the hazard database is that it can help in reducing 

the uncertainties in the storm surge levels by simulating a large number of synthetic storms. 

The variations in the storm track parameters can significantly affect the surge levels. For 

instance, the storm size can have a major contribution in the rise of water levels above 

predicted levels of normal tide than intensity of the storm(Irish et al., 2008) and storms 

moving faster will produce high surges as compared with storms moving slowly(Irish et 

al., 2008; Rego and Li, 2009). These uncertainties are taken into account by the large 

number of simulations of the synthetic storms and developing a more robust hazard 

database. 

 
Methodology 

 
 For the current study, Figure 11 outlines the framework of the approach applied 

for the development of Storm Surge Hazard Database. 
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Figure 11: Framework for creating hazard database 
 

Synthetic Storm Simulation 
 
A limitation of using historical data is that the number of events in the historical database 

is scarce and a very low number of hurricanes make landfall in a selected study region 

making it unsuitable for long-term probable hazard estimation. In addition, it is difficult to 

make meaningful extrapolation for such spatially variable and large size of the domain 

from a small set of historical data. A statistical hurricane model was used in this study to 

generate synthetic tropical cyclones under given large-scale atmospheric and ocean 

environments. The stochastic simulation comprised of 4 modules, namely (i) Genesis 
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module (ii) Tracking module (iii) Central pressure module and lastly (iv) decay module. 

The full database contains a set of 100,000 years of simulated tracks which were created 

using empirical track method with 7 key variable parameters. The tracks varied in the 

Location of the eye (latitude and longitude) of hurricane, radius of maximum winds, 

forward speed of the storm, central pressure, heading angle and Holland B parameter which 

were calculated on 6-hour basis These parameters were linearly interpolated to an hourly 

increment. 

Candidate Hurricanes 
 

Any simulated hurricane which is physically realistic and that came within a 

distance Dj less than 2Rmax from the coastline (Dj < 2Rmax) where Rmax is the radius of the 

maximum wind of the hurricane, was considered as a candidate hurricane. A sensitivity 

study conducted by Pei(2015) showed that the 2Rmax was an adequate threshold for the 

purpose of selecting the candidate hurricanes. The 100,000-year hurricane simulations 

resulted in 1,038,322 simulated hurricanes originated from the North Atlantic Ocean out 

of which 504,826 events were considered to be as candidate hurricanes. Figure 12 shows a 

set of 500 such candidate hurricanes in the Atlantic basin. 
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Figure 12: Set of 500 synthetic hurricane tracks 

 

Storm Surge Modeling 
 

SLOSH (Sea, Lake and Overland Surges from Hurricanes) model developed by 

Jelesnianski(Jelesnianski et al., 1992) was used to simulate the surge heights associated 

with each candidate hurricane event respectively. First, the surface wind stresses are 

computed. Second, these wind stresses are used as an input to the SLOSH model for 

computing the time histories of storm surge heights. However, some modeling limitations 

do exist. Out of three main contributors to overall storm surge namely pressure setup, wind 

setup and wave setup (Zachry et al., 2015). The storm surge has been modeled considering 

first two. The wave effect was not included in the study. However, it has been reported that 
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waves can significantly result in a water level rise in the range of 10 - 50%(Dean and 

Walton, 2009). Dynamic variations in tide are ignored in the model. The initial water level 

was set to zero in this analysis and the surge heights were calculated with respect to 

NAVD88. With these known limitations, the data can still be used appropriately for various 

applications. Figure 10 shows the schematic workflow of the SLOSH model with required 

inputs and the resulting outputs. 

 

Fine Resolution Hazard Database Development 
 
 Lin et al. studied the long term storm surge risk in NYC using synthetic hurricanes 

and compared the surge spatial pattern of ADCIRC and SLOSH. Their study showed that 

the surge spatial pattern agrees well between the two models in most simulations. However, 

it was concluded that SLOSH was unable to capture some local features due to its coarser 

resolution and ADCIRC simulations were inefficient in terms of computation time (Lin et 

al., 2012).  Therefore, surge was calculated using SLOSH to make the simulations efficient 

and opted for a uniform fine resolution grid to overcome these drawbacks. SLOSH has 

predefined structured grids (polar, elliptical or hyperbolic) with variable resolution having 

fine resolution close to shoreline and coarser offshore resolution. There exist a considerable 

overlap between the SLOSH basins to cover the complete coast for storm surge 

calculations. For each candidate hurricane, the surge depth was computed in the given 

study area. If a hurricane was passing through the overlapping region of two basins and 

produces significant surge then the larger value of the two simulated basins was selected 

as the water depth resulted from the storm for that region. The results from the SLOSH 
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model were interpolated to obtain a uniform and high-resolution database for a 0.01°x0.01° 

grid representing the study region, which extends 20 miles inland to capture inland 

flooding, and surge inundation.  

 The details of the hazard database size for each SLOSH basin are summarized in 

the table below. Simulation of tens of thousands of storms over the study domain is 

computationally intensive. A high performance computer was used to simulate the storm 

surge, which supported in parallel run of multiple storms at the same instance. Making it 

possible to run 100,000 simulations and handle a big database efficiently. 

 
Table 1: An outlook of the surge database size and time requirements for storm surge 

simulation 

SLOSH 
Basin 

Number of 
Candidate 

Storms 

Selecting 
Candidate 

Storms 

Simulating 
Storm Surge  

Extracting and 
Interpolating  

Surge  

Total 
Simulation 

time ( hours) 

File 
Size  
(gb) 

    Time Required for Simulation (hours)     
acy 47,952 3 36 36 75 45 
ap3 112,581 5 48 48 100 21 
cd2 115,165 5 48 48 100 23 
co2 78,952 4 36 36 78 4.1 
cp2 105,895 5 48 48 100 29 
cr3 55,390 3 36 36 78 9.8 
de3 117,385 5 48 48 100 33 
ebr3 76,120 4 36 36 78 14 
efm2 78,021 4 36 36 78 18 
egl3 34,986 4 36 36 78 9.2 
ejx3 100,596 5 48 48 100 12 
eke2 69,054 5 36 36 78 18 
emo2 127,741 5 48 48 100 53 
epn3 72,584 4 48 48 100 7.8 
esv4 129,590 8 72 72 154 42 
etp3 63,900 4 36 36 76 4.8 
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hbix 84,376 4 36 36 80 24 
hch2 102,155 5 48 48 100 18 
hmi3 59,365 5 48 48 100 4.1 
hor3 137,160 8 72 72 148 63 
hpa2 56,173 3 24 24 52 4.9 
ht3 120,156 8 72 72 156 39 
il3 98,554 4 72 72 148 14 
lf2 88,358 4 72 72 148 19 

ms7 142,726 8 72 72 148 36 
ny3 104,386 5 48 48 100 35 
oce 43,860 4 24 24 52 1.6 
pb3 81,148 5 48 48 100 4.1 
pn2 105,565 5 48 48 100 45 
ps2 39,400 4 24 24 52 7 
pv2 79,852 4 72 72 148 60      

Total 
Database 

Size 

718.4      
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CHAPTER FOUR 

STORM SURGE MODEL VALIDATION 

 
Methodology 

 
 Validation of SLOSH model has been carried out by different researchers to 

evaluate the performance of the model (Jelesnianski et al.,1992; Jarvinen, 1999; Glahn et 

al., 2009; Forbes and Rhome, 2012; Kerr et al., 2013; Forbes et al., 2014). For an individual 

hurricane simulation, SLOSH has been reported to be within +/-20% range (NWS, 2011). 

79% of the time, for best track data the storm surge model errors can be less than 2 

feet(Jarvinen, 1999). High errors were found for low surge levels and can show significant 

dispersion (Glahn et al., 2009).  Modeled surge tends to scatter significantly at low levels 

of increase in water heights. Jelesnianski studied a total of 16 historical storms and 

simulated storm surge using best track data at 9 locations and reported that SLOSH model 

can have +/-20% error range (Jelesnianski et al., 1992). A validation study was performed 

using best track data for hurricane Sandy for New York basin and it was reported that root 

mean squares of errors of storm surge was less than 1.4 feet at 13 water stations and the 

correlation between modeled  and observations was more than 0.8. (Forbes et al., 2014). 

 In this chapter, a brief discussion on the validation and performance of the storm 

surge modeling system is presented. The main criterion for validation of the storm surge 

model was to find the error between the measured and modeled data by comparing the 

simulated surge with measured water levels for different SLOSH basins at NOAA tide 

gauge stations, USGS storm surge sensors and high water marks. To test the accuracy of 

the modeled surge heights, a set of 16 historical storms were considered and the track 
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details for each storm were obtained using the HURDAT and IBTrACK database and each 

historical hurricane track was then converted into a format required by SLOSH. The 

numerically simulated storm surge using SLOSH basins was obtained. Water levels from 

these historical hurricane simulations were then compared to a set of NOAA water stations, 

high water marks, and storm surge sensors. A database with 508 observations was 

developed. 

 The aim of these simulations was to analyze the performance of the model and 

quantify the error in the model for each basin. It was observed that simulated surge matches 

well with the measured data. However, there are some modeling errors in storm surge, 

which needs to be adjusted. Modeling errors need to be quantified, as it is important for an 

accurate estimation of long-term storm surge probability using stochastic simulation. 

Figure 13 shows a comparison of modeled and observed data for each individual hurricane. 
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Figure 13: SLOSH model-simulated surge height vs. Observed data. 

 
Case Study: Hurricane Sandy 

 
 Hind cast simulation of Hurricane Sandy was done to quantify the SLOSH model 

in terms of its ability to predict the surge height that occurred along the US coastline. The 

historical data used to run the simulation was obtained from The Hurricane Database 

(HURDAT), managed by the National Hurricane Center, which contains information of all 

the hurricanes that have occurred within the Atlantic Ocean since 1851. A quantitative 
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comparison was made between the simulated and the observed water level data obtained 

from NOAA reports. 

 Hurricane Sandy formed in the western Caribbean, south of the island of Jamaica 

in a region of low wind shear, warm water and a broad area of low pressure on 22 October 

2012 making its first landfall near Kingston, Jamaica as a category 1 storm (Forbes et al., 

2014). It made second landfall in Cuba on 25 October 2012 with wind speeds ranging 

between 110 to 115 as a category 3 storm. 110 mph wind gusts were reported in Cuba. The 

storm started to weaken up and the radius of maximum wind reached larger than 185 km 

over Bahamas. The storm started to curve slightly towards west due to a baroclinic trough, 

which steered the storm northwest. It began its transition into an extra tropical storm near 

Atlantic City, NJ. However, 2.5 h prior to its final landfall. It approached the coast as a 

category 1 hurricane and made landfall at 23:30 UTC. 

 As Hurricane Sandy made a turn towards the mid-Atlantic coast and continued to 

grow in size, storm affected major parts of the US coast starting from North Carolina to 

New England, higher storm effects were observed across New Jersey, New York and 

Connecticut. The maximum observed storm surge was measured at Kings Point, NY 3.856 

m above normal predicted tide levels, which was 30 minutes prior to landfall (Blake et al., 

2013; Fanelli, Fanelli and Wolcott, 2013). The storm resulted in a surge of 2.87 m at 

battery, NY and destroyed over 100,000 homes. Figure 14 represents the path of hurricane 

Sandy. The black line represents the SLOSH NY3 basin boundary. 
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Figure 14: Hurricane Sandy track 

 

 Tidal and total water elevations were obtained from NOAA tidal gauge stations 

located in the SLOSH New York basin. The observed data was used to compare modeled 

water levels. Figure 15 shows the modeled surge height versus the observed surge height 

at NOAA water stations, High Water Marks and USGS temporary placed Storm Surge 

Sensors. A total of 99 observation points were obtained from which included 26 High water 

marks(HWM) and 60 Storm Surge Sensors(SSS). The model tends to underestimate the 

surge heights in case of the SSS data as it often includes the impact of waves, which were 

not considered in these hindcast simulations. The Root Mean Square Error for the highest 

observed and modeled surge was 0.45 m.  
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Figure 15: SLOSH modeled surge Versus Observed data 
 

Table 2 summarizes the model performance in terms of relative error of the NOAA, HWM 

and SSS vs SLOSH respectively. More than 85% of the observations had errors of less than 

or equal to 30%.  Nearly half of the time, SLOSH was able to capture the surge effectively 

with an error less than 10%. The mean error in modeled observations as compared to 

NOAA observation data was 0.1 m.  
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Table 2: Summary of Mean Error and Partition of relative error between observed and 

SLOSH simulated surge for all measurements: NOAA tide gauges, USGS SSS and  HWM. 

Sample Size 99 

Mean Error NOAA (m) 0.10 

Mean Error HWM (m) 0.18 

Mean Error SSS (m) 0.26 

  

Relative Error Number of Observations 

< 10% 40 

10 to 20% 32 

20 to 30% 16 

>30% 11 

 

A comparison of water levels at 13 different observation stations lying inside the 

SLOSH’s New York basin is shown in the Figure 17. 

 

Figure 16: Hurricane Sandy modeled vs observed water levels at NOAA stations 
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Bias Correction Approach for SLOSH Basins 

 
 Figure 18 and Figure 22 represents the tracks of selected candidate historical 

hurricanes for validation study for the Mobile basin and New York basin respectively. 

Mapping of NOAA tide station locations has been displayed in Figure 19 and Figure 23. 

Hind-cast simulations were driven for the candidate hurricanes for analysis and 

verification. The results of the analysis were then compared to the observed values. Figure 

20 and Figure 24 portrays the scatter plots and relationship between the observed and the 

modeled data in mobile (emo2) and New York (ny3) basin respectively. It can be noted 

that the simulated surge values fall within a range of 10%-30% error. It is evident that the 

observed surge and the modeled surge do not have a linear 1:1 relationship indicating 

existence of modeling errors. Also, It is apparent that SLOSH seems to exhibit under 

prediction of the surge in New York basin, these aleatory and random uncertainties in the 

SLOSH model surge depths needs to be quantified and bias corrected. The quantification 

of errors is addressed by adjusting the model for systematic and random errors. The 

systematic errors may arise due to limitations in modeling physics using model parameters 

and inability to replicate the actual meteorological conditions. For instance, bottom friction 

calculation, Coriolis effect, numerical representation, and wind speed calculations, which 

may indirectly/directly influence the storm surge calculations. The random errors may 

occur due to the randomness in the hurricane track in terms of speed, size, heading angle 

and severity. By accounting these errors, we can make the model more representative of 

the real world conditions. 
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 In order to remedy the systematic bias in the storm surge heights least squares 

regression can be used (power model) (Pei et al., 2013). After adjusting the model for 

systematic errors using 𝐶𝐶0(𝑆𝑆𝑠𝑠)𝐶𝐶1, the random errors (𝜀𝜀)  can be taken into account by 

dividing the measured surge height by systematic error adjusted surge height. The random 

errors (𝜀𝜀) represents the scattermess around the fitted power curve and are independent of 

𝑆𝑆𝑠𝑠 . The adjustment of systematic errors using non-linear regression will result in two basin 

specific constants namely  𝐶𝐶0 and𝐶𝐶1. The power equation is given by: 

𝑆𝑆𝑚𝑚 =  𝐶𝐶0(𝑆𝑆𝑠𝑠)𝐶𝐶1 ∗ 𝜀𝜀         (4.1) 

 Taking natural log on both sides of the equation, we have the following equivalent 

equation. This equation has the form of linear regression model. 

ln (𝑆𝑆𝑚𝑚) =  ln (𝐶𝐶0) + 𝐶𝐶1 ∗ 𝑙𝑙𝑙𝑙(𝑆𝑆𝑠𝑠) + ln (𝜀𝜀)      (4.2) 

 The random errors are assumed to follow lognormal distribution and to find the 

parameter of the distribution; the random error is fitted to lognormal distribution. The total 

number of observation points for each basin, the adjusted power regression constants 𝐶𝐶0 

and 𝐶𝐶1 along with location and scale parameters of the lognormal distribution of random 

errors and are listed in table 2. It can be noted from table 2 that the mean of the random 

error is always equal to zero, supporting the assumption that random errors follow 

lognormal distribution. That is, the power equation can be used to remove the modeling 

biases and the resulting systematic-error-adjusted surge simulations only suffer the random 

errors. The PDF and CDF of lognormal distribution is given in equation 4.3 and 4.4. Table 
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3 lists details of estimated parameters for both systematic and random errors for each 

SLOSH basin. 

Probability density function (PDF): 

   (4.3) 
Cumulative distribution function (CDF): 

   (4.4) 
Where μ is the location parameter, σ is the scale parameter and λ is the threshold 
parameter. 
 
Figure 21 and Figure 25 shows the lognormal distribution fit of random errors for two 
different basins. 
 
Table 3: Systematic Adjusted Surge Height coefficients and Lognormal distributed Error 
Parameters 

 
 

Basin Names 

 
# 

Points 

Adjusted 
Surge 

Coefficients  

Random Error Parameters  
( Lognormal) 

C0 C1 µ σ ε05 ε95 
emo2 Mobile bay  

144 
0.97 1.001 0.00001 0.182 0.78 1.24 

ny3 New York 79 1.14 0.891 -0.028 0.223 0.751 1.17 

egl3 Galveston 
bay 

92 1.114 0.937 -0.009 0.129 0.83 1.21 

ms7 New Orleans 49 1.019 0.99 -0.008 0.245 0.736 1.513 

lf2 Vermilion 
bay 

36 1.075 0.934 -0.004 0.264 0.621 1.55 

de3 Delaware 
bay 

24 1.005 1.015 -0.017 0.35 0.61 1.7 

cp2 Chesapeake 
bay 

19 0.889 0..94 -0.013 0.395 0.648 1.72 

hmi3 Biscayne 
Bay 

17 0.93 1.0872 -0.006 0.313 0.65 1.27 

ht3 Hatteras 16 0.91 1.023 -0.006 0.523 0.507 1.61 
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pv2 Providence/ 
Boston 

13 1.024 0.891 -0.007 0.307 0.65 1.284 

etp3 Tampa bay 12 0.971 0.835 -0.028 0.411 0.514 1.3 

ap3 Apalachicola 
bay 

12 1.047 1.136 -0.105 0.416 0.652 1.68 

ebr3 Laguna 
Madre 

12 0.974 0.614 -0.012 0.28 0.754 1.251 

 

  
Figure 17: Selected historical hurricanes for ‘emo2’ basin 
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Figure 18 : Location of water stations for ‘emo2’ basin 

 

 

Figure 19 : Measured versus Simulated storm surge heights for ‘emo2’ Basin 
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Figure 20: Lognormal distribution fit of random errors for ‘emo2’ basin 

 

 

Figure 21: Selected historical hurricanes for ‘ny3’ basin 
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Figure 22 : Location of water stations for ‘ny3’ basin 

 

 
Figure 23 : Measured versus simulated storm surge heights for ‘ny3’ Basin 
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Figure 24: Lognormal distribution fit of random errors for ‘ny3’ basin 
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CHAPTER FIVE 

ESTIMATION OF LONG-TERM PROBABILISTIC STORM SURGE AND 

ASSOCIATED UNCERTAINTY 

 Several studies have been performed in the last decade to estimate the long-term 

surge probabilities and return intervals. (Walton, 2000; Keim, Muller and Stone, 2007; 

Legg et al., 2010; Lin et al., 2010, 2012, 2014; Apivatanagul et al., 2011; Needham and 

Keim, 2012; Shrestha et al., 2014; Sota and Mori, 2014). A comprehensive historical storm 

surge database was developed consisting of 195 surges along US coast since 1880 

(Needham and Keim, 2012). This database was limited as it represented surge return 

periods based on a particular location rather than the extent of storm surge inundation. This 

limited observation data can be fitted using extremal fitted probability distributions. 

However, it may result in under prediction in case of large extremes of the data (Walton, 

2000). This makes it difficult to accurately assess the risk from extreme events with long 

return periods and may lead to incorrect portrayal of the variability in surge hazard for a 

large spatially variable extent. Also, the historical data is unreliable due to its limited size 

and can be bias in predicting the risk of extremes for any coastal areas (Lin et al., 2014). 

Another approach to estimate the long-term surge probability is empirical simulation 

technique (EST) using a non-parametric analysis of historical data (Borgman, 1992). 

However, it was reported that EST overestimates the expected values (Agbley and Basco, 

2008). In the current study, synthetic hurricanes are generated where the genesis point of 

the storm is sampled from the known spawn locations of historical hurricanes recorded in 

HURDAT(Liu, 2014; Pei et al., 2014). The main goal is to derive a hazard curve that may 
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assist in best estimate the frequency and captures uncertainty of certain storm surge. A two-

step approach is proposed to better capture the extreme event frequency. Firstly, derive the 

surge hazard curve by using stochastic hurricane simulation and SLOSH model that 

represents a good understanding of the risk. Secondly, consider the effect of modeling 

errors during the storm surge simulation and adjust the hazard curve for these errors. As 

previous studies suggest that SLOSH might under predict or over predict surge (Lin et al., 

2012; Kerr et al., 2013; Forbes et al., 2014). 

 
Methodology 

 
 The return period / recurrence interval of storm surge is defined as the estimated 

likelihood of having that surge again over a given time period. Return period estimates of 

a hazard at a given site can be a useful tool during the development, planning and mapping 

phases of critical infrastructures to ensure their safety and resistance to such extreme 

events. 

Error Adjustment and Application of Hazard Curve in Historical Storm-surge Return 
Interval Estimation 

 
Error Adjustment of Hazard Curve 

 

1. Parametric Approach: 

The following steps were used to estimate the long-term probability of surge at a specific 

site. First, for a given study domain, a set of candidate hurricanes were selected based on 

the criteria (Dj <2Rmax) from the stochastic hurricane track database containing one hundred 

thousand year of simulated tracks. Second, the SLOSH model was used to run storm surge 
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simulations for the selected set of selected candidate hurricanes and a hazard database was 

developed at every 0.01-degree uniform distance in the study domain extending from Texas 

to Maine.  Third, at any given location of interest, the maximum storm surge for each 

candidate track was recorded. Fourth, the recorded maximum surge from each candidate 

hurricane was sorted and ranked in the order of lowest to highest. Fifth, a histogram of 

peak surge at any given site of interest was created. Sixth, the probability of exceedance 

and the mean recurrence interval were calculated using equations 5.3 and 5.4. Finally, 

hazard curve was adjusted for systematic modeling errors using the coefficients provided 

in table 3 and generate the confidence bounds for return periods.  

The probability of surge height (si) greater than certain surge threshold value(S) can be 

described as: 

𝑃𝑃𝑡𝑡(𝑠𝑠𝑖𝑖 > 𝑆𝑆) = 1 −  ∑ 𝑃𝑃(𝑠𝑠𝑖𝑖 ≤ 𝑆𝑆 |𝑥𝑥)∞
𝑥𝑥=0 𝑝𝑝𝑡𝑡(𝑥𝑥)       (5.1) 

Where 𝑃𝑃(𝑠𝑠𝑖𝑖 ≤ 𝑆𝑆 |𝑥𝑥) is the occurrence probability for surge (𝑠𝑠𝑖𝑖 ≤ 𝑆𝑆) for given number of 

candidate events(x) and  𝑝𝑝𝑡𝑡(𝑥𝑥) is the probability of x events that occur over a period of 

time (t). 

Assuming 𝑝𝑝𝑡𝑡(𝑥𝑥) follows a Poisson distribution the 𝑃𝑃𝑡𝑡 can be expressed as: 

𝑃𝑃𝑡𝑡(𝑠𝑠𝑖𝑖 > 𝑆𝑆) = 𝐻𝐻𝑡𝑡(𝑆𝑆) =  1 − exp �− 𝑛𝑛
𝑌𝑌
𝑡𝑡�       (5.2) 

where, Ht is the hazard value from the distribution for t-year probability of 

exceedance, where n is the total number of hurricanes meeting the condition (𝑠𝑠𝑖𝑖 > 𝑆𝑆) and 

Y is the total number of years.  If 𝑛𝑛
𝑌𝑌
 is very small then the occurrence probability is given 

by:  
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𝑃𝑃(𝑠𝑠𝑖𝑖 > 𝑆𝑆) =  𝑛𝑛
𝑌𝑌
          (5.3) 

The site-specific long-term probabilistic surge heights and respective return periods can be 

calculated using the following equation  

𝑀𝑀𝑀𝑀𝑀𝑀 (𝑠𝑠𝑖𝑖 > 𝑆𝑆) =  1
𝜆𝜆𝜆𝜆(𝑠𝑠𝑖𝑖>𝑆𝑆) = 𝑌𝑌

𝑛𝑛
        (5.4) 

where 𝜆𝜆 is the mean annual occurrence rate 

The hazard curve was then adjusted for the systematic modeling errors. The adjusted surge 

for a given return period can be determined using the following equation: 

𝑆𝑆𝑠𝑠= 𝐶𝐶0(𝑆𝑆𝑠𝑠)𝐶𝐶1          (5.5) 

where 𝑆𝑆𝑠𝑠 is the systematic adjusted surge height 

𝐶𝐶0, 𝐶𝐶1 are the power regression constants listed in table 3 for each basin. 

 

 

Figure 25:  Return level plot for storm surge in Battery Park, NY (Non-Parametric)  
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2. Non-Parametric Approach: 

 As a case study for non-parametric approach, I considered long-term risk 

assessment of storm surge at the Battery Park, NY.   

 Hurricane simulation model was made to run and storm surge was simulated for resulted 

candidate hurricanes. A total of 9880 simulated storms caused a significant amount of 

surge. Only 99 simulated storms had surge height higher than 3 meter, with a scarce dataset 

of 19 storms causing an extreme surge of greater than 4 meter. The largest simulated surge 

caused by a hurricane was observed to be 5.77 meter. Figure 26 (a) shows the distribution 

of storm surge into different bins. As it can be seen that this site has low number of 

recurrences of high intensity surge showing that the data is heavily tailed. For the heavy 

tailed extreme surge heights, probability of exceedance and return intervals were calculated 

using 5.6, 5.7 and 5.8.  The hazard curve can then be adjusted for systematic modeling 

errors using the coefficients provided in table 3 and generate the confidence bounds for 

return periods. 

 The quantile-quantile (Q-Q) shows that surge distribution has a heaver tail than 

exponential as expected in case of extreme surges. However, this tail is important to 

determine the risk of extreme storm surges in any storm surge prone areas. Figure 26 (b) 

shows the exponential Q-Q plot for simulated storm surge. This should be a 1:1 line if the 

data follows an exponential distribution. A best fit was found to estimate this heavy upper 

tail of the simulated storm surge. Generalized Pareto distribution with peaks over threshold 

(POT) was used to estimate this upper tail. 
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The Peaks over threshold (POT) approach generates a subset of data points from a 

simulated surge data by only considering those events above a defined threshold in this 

case we set 95th percentile of the surge data as the threshold (1.77 m). Simulated surge is 

more likely to be from a same distribution when we consider set of the data above a certain 

threshold. In addition to this, data peaks can also be considered statistically independent, 

the distribution of the peak events is indeed following a Generalized Pareto distribution. 

Figure 26 (c) shows the Q-Q plot for the GPD quantiles showing that the data shows good 

agreement with the GPD model and strengthens the evidence that belongs to GPD. 

 

 

Figure 26: (a) Histogram of SLOSH simulated storm surge at Battery Park, NY 
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26(b) QQ plot of simulated storm surge at Battery Park, NY 

 

26(c) QQ plot of simulated storm surge at Battery Park, NY above a threshold of 1.77 m 
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The probability of storm surge exceeding a threshold is given as: 

𝐹𝐹𝑢𝑢(𝑠𝑠) = 𝑃𝑃(𝑋𝑋 − 𝑢𝑢 ≤ 𝑠𝑠 | 𝑋𝑋 > 𝑢𝑢)      (5.6) 

For large u, GPD is given as  

𝐹𝐹𝑢𝑢(𝑠𝑠) = 1 − (1 + 𝜉𝜉 𝑠𝑠
𝜎𝜎

 )
−1
𝜉𝜉 ; 𝑠𝑠 ≥ 0      (5.7) 

where 𝜉𝜉 is the shape parameter and 𝜎𝜎 is the scale parameter. 

The threshold is selected based on 90th percentile of the simulated surge dataset. 

The scale, shape and location parameters were estimated using maximum likelihood 

estimation (MLE) method and the cumulative probability distribution of surge data is 

shown in figure 26 (d).  

 

 26(d) Cumulative Distribution and estimated parameters of the GPD fit 
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 The Annual exceedance frequency of a given storm surge is calculated using the 

method described by Lin (Lin et al., 2010). And is given as the product of the surge height 

exceedance probability and the annual frequency of the storm and can be written as: 

𝑃𝑃{𝑋𝑋 > 𝑙𝑙} = [1 − 𝐹𝐹𝑢𝑢(𝑙𝑙 − 𝑢𝑢)] ∗ 𝑃𝑃{𝑋𝑋 > 𝑢𝑢};  𝑙𝑙 > 𝑢𝑢    (5.8) 

where 𝑃𝑃{𝑋𝑋 > 𝑢𝑢} is the chance that the storm surge will exceed the threshold (1.77 m) and 

is calculated to be 0.0328 for the present scenario. Annual storm frequency is given as ratio 

of total storms occurring at the site to the total length of simulation years. Annual frequency 

of the storm is calculated to be 0.9882.  

The mean return period of the storm surge is estimated using equation (5.4) which 

is the reciprocal of the annual exceedance frequency. The obtained hazard curve was then 

adjusted for the systematic modeling errors due in the storm surge using equation (5.5) and 

a new adjusted hazard curve was estimated. From Figure 27, it can be noted that the 

adjustment in the storm surge hazard for modeling errors has increased the surge estimates 

for longer return intervals. It can be interpreted that developing the surge hazard using the 

raw data from SLOSH can under predict the long-term risk at Battery Park, NY. Also, for 

a given return period, the storm surge estimates can still be improved and made more 

accurate by adding wave run up and consider climate change. Figure 27 shows the storm 

surge return level plot at Battery Park, NY. 



 58 

 

Figure 27: Return level plot for storm surge in Battery Park, NY  

 The dashed black line is the storm surge without adjustments and the red line is the 

surge after adjustment. This strengthens the hypothesis that the modeling errors does have 

an impact on long term estimates of storm surge and must be considered in estimation of 

long term return periods of extreme events. The 90% confidence bounds were estimated 

by using 5th and 95th percentile of the shape and scale parameter estimates of the GPD fit 

shown in Figure 28. 

Historical Storm Surge Return Period Estimation 
 

 After generating a hazard database, one of its important application can be 

prediction of surge return periods for historical storms. We considered Battery Park, NY 

as our candidate site to estimate the return period of hurricane Sandy. Sandy produced a 
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Surge of 3.5 meters (circled in Figure 28) causing a catastrophic flooding. The total damage 

from Hurricane Sandy was over $70 billion USD (NCEI, 2018). 

 We tried to estimate the frequency of Hurricane Sandy storm-surge using our 

hazard curve to assess the risk of such storm hitting the NY coast and the return period of 

a particular storm surge intensity at Battery Park, NY. 

 A number of studies exist discussing about the assignment of a return period to 

hurricane Sandy (Lin et al., 2010, 2012; Jay and Talke, 2013; Sweet et al., 2013; Forbes et 

al., 2014; Shrestha et al., 2014). Lin used numerical simulation technique and fitted the 

extreme event surge using Generalized Pareto Distribution to assess the risk of storm surge 

at Battery Park, NY. The hazard curve developed by Lin indicates that the Hurricane Sandy 

was having a return period of about 650 years. Soon after, Lin performed another study to 

predict the surge using a high resolution storm-surge model and developed a current 

scenario and future sea level rise scenarios showing that Sandy have a return period of 

about 550 years and an event of that intensity can happen more frequently in future. A 

study performed based on the annual extremes indicated the storm tide of Sandy to be 1570 

years (Sweet et al., 2013).  A study was performed GPD analysis using bootstrapping 

technique to infill unknown data between 1821 and 1843 and considering 53 events with 

storm tide greater than 1.25 m(Jay and Talke, 2013). They reported the Hurricane Sandy 

return level to be approximately 300 Years (in a range of 200-400 years). 

 We estimated the return period of sandy and found it to be in strong agreement with 

the study done by Jay and Talke indicating surge return interval of Sandy to be in a range 

of 240 to 360 years. 
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 To assess the risk of long term surge, we estimated a range for a 100 year storm 

surge and 500 year storm surge. The 100 year storm surge can possible be anywhere 

between 2.65 m to 2.9 m. A once in 500 year storm surge can be in between 3.74 to 4 m. 

These estimates appear to closely match the values of long term hazard reported as 2.62 m 

for 100-year return interval and slightly on a higher side as compared with 3.26 m for 500 

year return interval (Rosenzweig and Solecki, 2010).  

 This risk assessment methodology can be adopted for all other historical storms and 

all other coastal regions as well. 

 

Figure 29: Estimating return period for storm surge of hurricane Sandy in Battery Park 
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Development of high-resolution hazard risk maps  
 

 It is important to be able to translate the accurate hazard risk information to 

nonprofessionals and to common people effectively and with least effort. Hazard maps can 

be a useful tool for interpretation of the hazard information (Kockelman, 1980) and helps 

understand how vulnerable an area is to a particular hazard. When used correctly, hazard 

maps can contribute to improving the risk communication in the community and help in 

mitigating the losses (monetary and life) due to storm surge and also help in focusing on 

the hazard prone areas during the early planning stages for appropriate mapping locations 

for critical infrastructures. 

To develop these maps, we calculate the surge height exceedance at each grid point. 

At each grid point, we derive an empirical CDF representing the probability of surge 

exceeding a certain threshold in any given year. The CDF can then be inverted in order to 

get the 10-year, 100-year, 300-year, 1000-year surge exceedances which are the surge with 

a probability of occurring once in 10-year, 100-year, 300-year, 1000-year or in other words 

the surge with probability of occurrence in a given year exceeding 0.1, 0.01, 0.003, 0.001 

respectively. Next, we integrate this information to create a seamless raster layer for each 

return period using ArcGIS. Each of the resulting raster represents the different hazard 

layer for the United States. The following figure 29(a-d) shows the extent and variation in 

the surge inundation areas for different return periods. These maps can play an important 

role in identification of the areas for safe placement of critical infrastructure such as nuclear 

power plants, oil refineries, and electricity generating facilities. These maps can also help 

in assessing the exposure of population along the coast to storm surge inundation at 
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different probable surge return intervals and can be a useful tool for decision making and 

future planning. 
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Figure 30 (a - d): Storm Surge map layers for different return periods 
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 Another application of the hazard database can be visualizing the risk of certain 

surge height at a location. Figure 30 shows a map with varying return periods of 5 feet 

surge for Miami, FL. It can be noticed that as we get away from the coast the return period 

of 5 feet surge keeps getting lower as the locations away from the coast has a lower risk of 

storm surge as compared to the locations right on the coast. From the map, it can be read 

that the Miami beach can see a surge of 5 feet once in every 500 years. Also, it can be noted 

that Carol City which is 8 miles from the coast has a higher return interval of 2000 years 

for the surge of 5 feet which means that it has a lower risk of having a high surge. In other 

words, the probability of having a surge of 5 feet in carol city is as low as 0.0002 whereas 

the Miami beach has a probability of 0.002 for the same surge height. Miami beach has ten 

times higher chance of having surge exceeding 5 feet as compared with Carol city. This 

information is useful for identification of surge hazard vulnerable areas and also guide in 

selection of appropriate locations for critical infrastructures, future siting, and improve 

future investment decisions. 

 



 67 

Figure 31: Return period map for 5 feet storm surge at Miami, FL 
 

Error Adjustment  
 
 To illustrate the potential effect of the error quantification on the surge inundation 

area. A case study is explored in Miami region which focus on assessing the change in the 

surge inundation area for a 1000-year return period surge hazard before and after 

quantifying the model for systematic errors. Figure 31 shows the region in Miami, FL 

selected for this case study. A selected region has a coverage area of 316.25 square 

kilometers. 
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 Figure 32 shows a hazard risk map for 1000-year mean recurrence interval before 

adjusting model error for Miami, FL. From Figure 33 it can be concluded that the error 

adjustment does have an impact on the flooding area. The total inundation area increases 

by 0.07%. Figure 30 shows the variation in surge heights for a return period of 1000 years 

in Miami, FL. It can be noticed that, after error adjustment the surge height between 10 to 

12 feet can increase by more than 500 percent while the areas with lower surge heights 

seem to be in decreasing order. Again, emphasizing on the importance of including the 

model errors in long term estimation of the storm surge hazard. 

 

 

Figure 32:  The study region selected in Miami 
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Figure 33 : Hazard map for 1000-year mean recurrence interval before adjusting model 
error for Miami, FL 
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Figure 34 : Hazard map for 1000-year mean recurrence interval after adjusting model 
error for Miami, FL 
 

 
 
Figure 35: Comparison between inundation areas before and after error adjustments 
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CHAPTER SIX 

SUMMARY AND CONCLUSIONS 

 

 A high-resolution storm-surge hazard database was developed which can be useful 

for estimating the long-term storm surge hazard at any given site in the Atlantic basin 

region. An empirical track model was used to generate a set of one hundred thousand 

synthetic hurricane tracks. SLOSH (Sea, Lake and Overland Surges from Hurricanes) 

model was used to simulate the storm surge. A methodology of hazard database 

development is presented. Hind cast simulation of a set of 16 hurricanes was performed to 

quantify the SLOSH model in terms of its ability to predict the surge height that occurred 

along the US coastline. The resulting surge was recorded and validated against historical 

storm surge data obtained from various tide stations across the US coast. These errors were 

then quantified for each SLOSH study region (basin). A case study of error quantification 

of hurricane Sandy is presented. Site specific hazard curves were developed and were then 

adjusted for errors to assist in the development of more robust, reliable and accurate hazard 

maps.  

 The bias in SLOSH model is undermining our ability to capture the long-term 

variability in the return periods and accurately estimate the storm surge risk. This new 

approach, based upon quantification of model errors can possibly be a more accurate way 

to assess the uncertainty in long-term risk and generate more robust risk maps. Assignment 

of a region based error coefficient makes it possible to correct the bias in the SLOSH model 
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over a spatially variable large extent. This method being flexible can easily be modified 

and applied to any region given it has enough historical data to quantify the model errors. 
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CHAPTER SEVEN 

FUTUTRE WORK 

 
 It is to be noted that no dynamic tide signals were used, also wave-induced setup 

was not included into the present study. Further work can be carried out to account for the 

climate change and combine the present study with sea level rise, tide and wave effects. 

SLOSH model can be downscaled to capture the surge variation to a higher accuracy. A 

high-resolution dynamic storm surge model can be used to simulate the surge. Currently 

used hurricane simulation model generates storms randomly but spawns from known 

historical locations, which limits its robustness when the historical data is insufficient. New 

methods for storm population generation such as Joint probability method (optimal 

sampling) can be investigated. A detailed data analysis on category wise inundation and 

find the maximum envelopes of water for each category can be performed. This work can 

be extended to calculate the losses due to hazard consistent hurricanes using the surge 

hazard for a specific return period and calculate the losses using HAZUS. Effect of the 

hurricane parameters on losses for a set of hazard consistent hurricanes can be studied and 

a sensitivity analysis of losses to these parameters can be performed. 
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Appendix A 

Saffir Simpson Scale  

 Saffir-Simpson scale was developed in 1971 by Herbert Saffir and Bob Simpson, 

who classified hurricanes into 5 different categories based on the wind intensity. It was 

later adopted by National Hurricane Center in 1973. The main objective of the scale was 

to estimate the probable damage and potential flooding when a hurricane makes landfall. 

Previously, the scale considered the effect of flooding and wind intensity of a hurricane. 

Beginning the 2010 hurricane season, the National Hurricane Center  categorized storms 

using an updated version of the Saffir-Simpson scale. The updated Saffir-Simpson 

Hurricane Wind Scale kept the same wind speed ranges as the original Saffir-Simpson 

Scale for each of the five hurricane categories, but removed the relationship between 

category and specific storm surge and flooding effects to each category. This modification 

to the previous scale comes as realizations were made that storm surge values and 

associated flooding are difficult to be taken into account and tied in with a category as the 

flooding and surge are dependent on a combination of the storm’s intensity, radius, 

direction and barometric pressure, as well as the bathymetric and topographical features. 

Minor modification was made to the Saffir-Simpson Hurricane Wind Scale during 2012 

hurricane season. The upper limit of wind speed of category IV was increased by 1 mph 

while broadening the range of category IV wind speeds by 2 mph. The main aim of this 

modification was to solve the rounding issues of the wind speed so that the wind intensity 

can be converted correctly from one unit to another and keep storms in the correct category 

regardless of the units used. 

http://www.nhc.noaa.gov/
http://www.noaanews.noaa.gov/stories2010/20100217_hurricane.html
http://www.noaanews.noaa.gov/stories2010/20100217_hurricane.html
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Table A- 1:  Categories of hurricane and respective expected damage and wind speed range 

Category of Hurricane Wind speed 
(mph) 

Damage Examples 

I 74 – 95 Minimal Sandy 2012 
II 96 -110 Moderate Dolly 2008 
III 111-130 Extreme Katrina 2005 
IV 131-155 Extensive Irma 2017 
V > 155 Catastrophic Andrew 1992 

 

Table A- 2: Revised Saffir-Simpson Hurricane Wind Scale  

Category of 
Hurricane 

Previous Wind Speed range 
(mph) 

Updated Wind Speed range  
(mph) 

I 74 – 95 74 – 95 
II 96 -110 96 -110 
III 111-130 111-129 
IV 131-155 130-156 
V > 155 > 157 

 
 

Appendix B 

Matlab Codes  

1. Create SLOSH Historical Tracks Input Data 
 
function[Storm] = SLOSH_track_hist(storm_data,basin,root) 
  
%This Function reads an excel file with all hurricane parameters and 
%outputs the MAT file which is in readable format for SLOSH track file  
  
%********** INPUT ********** 
%File = Name of the excel file with all the historical data 
%Storm_data = Name of the storm file 
%basin = Nameof the basin in which you to create the SLOSH Track for 
%Root = Directory where all basin are available 
%********** EXAMPLE ********** 
%%Read_Historical_Track_data_from_excel('Historical_Tracks','Charley_04',2004,3) 
  
%********** OUTPUT ********** 
% A .MAT file with all attributes of a single storm 
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if nargin < 3 || isempty(root) 
root 
='C:\Users\samiudm.CAMPUS\Desktop\Historical_storms_SLOSH_EBTRACKS\Basins
'; 
if nargin < 2 || isempty(basin) 
basin ='emo2'; 
if nargin < 1 || isempty(storm_data) 
storm_data = 'Michael.mat'; 
end 
end 
end 
        
% This will take the storm.mat file data and use it to generate the trk file 
  
% SCRIPT USED TO CREATE TRACK FILES FOR SLOSH MODEL 
% HISTORICAL HURRICANES 
  
load(storm_data); % load EBTRACKS database 
load(fullfile(root,basin,basin,'coastline.mat')); % load coastline file (Long Lat) 
load(fullfile(root,basin,basin,'boundary.mat')); % load boundry file (Long Lat) 
  
%% This calculated the parameters for the central pressure if the field is not existant 
for j=1:length(Hur.Pc) 
if isnan(Hur.Pc(j)) % if Pc is NaN 
% use empirical equation to estimate Pc 
%Vt=0.868976242*Hur.Vt_mps(j)*2.23694; % m/s -> mph 
Vt=Hur.Vt_mph(j); %mph 
Vm=Hur.Vmax_mph(j); %mph 
Vg=Vm-1.5*Vt^0.63; 
Hur.Pc(j)=1013-((Vg-5.843+0.558*Hur.Lat(j))/14.118)^2; 
end 
end 
% it is possible that Pc(1) is still NaN because Vt(1) can be NaN 
if isnan(Hur.Pc(1)) 
st=3; 
else 
st=2; 
end 
% interpolate from 6h interval to 1h increment 
LAT=Hur.Lat(st); LON=Hur.Lon(st); VT_MPH=Hur.Vt_mph(st); 
HEADDIR=Hur.HeadDir(st); PC=Hur.Pc(st); RMAX = Hur.Rmax(st); 
t=3; 
for j=st:length(Hur.Lat) % loop through selected hurricane track 
Lat=linspace(Hur.Lat(j-1),Hur.Lat(j),t+1); 
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LAT=[LAT,Lat(2:t+1)]; 
Lon=linspace(Hur.Lon(j-1),Hur.Lon(j),t+1); 
LON=[LON,Lon(2:t+1)]; 
Vt_mph=ones(1,t+1)*Hur.Vt_mph(j); 
VT_MPH=[VT_MPH,Vt_mph(2:t+1)]; 
HeadDir=ones(1,t+1)*Hur.HeadDir(j); 
HEADDIR=[HEADDIR,HeadDir(2:t+1)]; 
Pc=linspace(Hur.Pc(j-1),Hur.Pc(j),t+1); 
PC=[PC,Pc(2:t+1)]; 
Rmax=linspace(Hur.Rmax(j-1),Hur.Rmax(j),t+1); 
RMAX=[RMAX,Rmax(2:t+1)]; 
end 
VT_MPS = VT_MPH * 0.44704; 
HUR=[LAT',LON',VT_MPS',HEADDIR',PC',RMAX']; 
% polyxpoly 
% find the closest point from hurricane track to coastline 
% intersection 
PP =InterX([LON';LAT'],[coastline(:,1);coastline(:,2)]); 
loni = PP(1,:);lati = PP(2,:); 
if ~isempty(loni) % having intersection with coastline 
for j=1:length(LAT)-1 % find first intersection 
[lonj,latj]=InterX(LON(j:j+1),LAT(j:j+1),coastline(:,1),coastline(:,2)); 
if ~isempty(lonj) % find closest point 
dist1=distance2(LAT(j),LON(j),latj,lonj); 
dist2=distance2(LAT(j+1),LON(j+1),latj,lonj); 
if dist1>dist2 
idx=j+1; 
else 
idx=j; 
end 
break 
end 
end 
else % no intersection with coastline 
distmin=[]; 
for j=1:length(LAT) % find minimum distance2 
disti=distance2(LAT(j),LON(j),coastline(:,2),coastline(:,1)); 
distmin(j)=min(disti); 
end 
idx=find(distmin==min(distmin)); 
end 
% data modification 
hur=ones(100,6); 
if length(LAT)<100 % modify short tracks 



 79 

gap=100-length(LAT); 
bgn=round(gap/2); 
nd=gap-bgn; 
for k=1:bgn 
hur(k,:)=HUR(1,:); 
end 
for k=101-nd:100 
hur(k,:)=HUR(end,:); 
end 
hur(bgn+1:100-nd,:)=HUR; 
lf_step=idx+bgn; 
elseif idx<70 % control landfall step to the nearest 70th 
hur=HUR(1:100,:); 
lf_step=idx; 
elseif length(LAT)-idx<30 
hur=HUR(length(LAT)-99:length(LAT),:); 
lf_step=idx-length(LAT)+100; 
else 
hur=HUR(idx-69:idx+30,:); 
lf_step=70; 
end 
% find steps within slosh domain boundary 
idxin=find(inpolygon(hur(:,1),hur(:,2),boundary(:,1),boundary(:,2))); 
% calculate Longitude(+), Vt, Delta_P and Rmax 
hur(:,2)=-hur(:,2); 
hur(:,3)=hur(:,3)/0.44704; % Vt_mps -> mph 
hur(:,5)=1013-hur(:,5); % dp 
hur(:,6)=hur(:,6); %  mi 
% create track file 
mkdir([num2str(Hur.Year),'_',num2str(Hur.StormNoOfYear)]); 
cd([num2str(Hur.Year),'_',num2str(Hur.StormNoOfYear)]); 
fid=fopen(string(basin)+'_'+string(storm_data(1:end-7))+'.trk','w'); 
fprintf(fid,'\n'); fprintf(fid,'\n'); 
for j=1:100 
if j==lf_step 
fprintf(fid,'%17s%3d%8.4f%8.3f%8.2f%8.2f%8.2f%8.2f%5d %s\n',... 
'NAP-----  ',j,hur(j,:),j,'---NAP'); 
else 
fprintf(fid,'%17s%3d%8.4f%8.3f%8.2f%8.2f%8.2f%8.2f%5d\n',... 
' ',j,hur(j,:),j); 
end 
end 
% determine start and end step 
if ~isempty(idxin) 
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stp=min(idxin)-6; 
enp=max(idxin)+6; 
else 
stp=lf_step-12; 
enp=lf_step+6; 
end 
if stp<1 
stp=1; 
end 
if enp>100 
enp=100; 
end 
fprintf(fid,'%3d%3d%3d%16sIBGNT ITEND JHR\n',stp,enp,lf_step,' '); 
% not used 
fprintf(fid,'HR0000 12 SEP 2018       NEAREST APPROACH, OR LANDFALL, 
TIME\n'); 
% no initial water height 
fprintf(fid,'  0.0  0.0               SEA AND LAKE DATUM'); 
disp(num2str(lf_step)); 
fclose(fid); 
Year = Hur.Year; 
StormNoOfYear = Hur.StormNoOfYear; 
cd .. 
end 
  
%LATLON=[LAT',LON']; 
%save('LATLON.mat','LATLON') 
% 
%geoshow(hur(:,1),hur(:,2), 'DisplayType', 'point', 'Color', 'b', 'MarkerEdgeColor', 'auto') 
%plot_google_map('maptype','roadmap') 
 
2. Pick Maximum Wind and Surge 
 
function [] = lpalmettomaxsurge(text_file,storm_year,basin_name,opfolder) 
  
% Written by Sami Mohammed  
 
% This is a .m file that reads in data from a txt in the form of a rex file 
% The Max Wind and Surge data is slected and saved to a mat file which can 
% further be interpolated and plotted 
  
  
if nargin < 4 || isempty(opfolder) 
    opfolder ='surgemax'; 
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    if nargin < 3 || isempty(basin_name) 
        basin_name ='acy'; 
        if nargin < 2 || isempty(storm_year) 
            storm_year ='2004_3'; 
            if nargin < 1 || isempty(text_file) 
                text_file = 'acy_Charley.txt'; 
            end 
        end 
    end 
end    
tic 
cd(string(storm_year)+'/'+string(basin_name)+'/'+string(basin_name)) 
load('latlondpth.mat') 
Y=max(latlondpth(:,2)); 
X=length(latlondpth)/Y; 
  
  
vcells = zeros(Y,1); 
wind = zeros(Y,1); 
%    for I = 0 : X-1 
%        for J = 1 : Y 
% 
%       vcells(J+(I*313),1)=I+1; 
%       vcells(J+(I*313),2)=J; 
% 
%        end 
%    end 
  
%% 
% calls the function that reads the data data lines 
cd .. 
cd .. 
cd .. 
fid1 = fopen(string(pwd)+'\'+string(storm_year)+'\'+string(text_file), 'r');             % Opens 
file and defines as fid 
fopen(fid1);                             % Opens file fid 
  
z= fgetl(fid1);                          % skips the first 4 values because they will all be 0 for the 
null set 
fgetl(fid1); 
fgetl(fid1); 
fgetl(fid1); 
it=0; 
L=1;                                        % L is preallocated 
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while  L ~= 0 
     
    a = fscanf( fid1, '%f'); 
    fgetl(fid1); 
    L = logical(a); 
    it = it + 1; 
     
end 
dataPts = it; 
fclose(fid1);            %closes the file 
% latd=zeros(dataPts); 
% lond=zeros(dataPts); 
if exist('vcells.mat', 'file') 
    load('vcells.mat') 
    load('stormnum.mat') 
     
    [size1,size2]=size(vcells); 
else 
    size2 = 0; 
end 
  
%% reading the file ------------------------------------------------------ 
fid=fopen(string(pwd)+'\'+string(storm_year)+'\'+string(text_file), 'r'); 
% open the file 
fopen(fid); 
a = zeros(70000,1); 
b = zeros(70000,1); 
it = 1; 
  
%make sure the file is not empty 
finfo = dir(string(storm_year)+'/'+string(text_file)); 
fsize = finfo.bytes; 
if fsize < 20 
    Max(1) = (-55); 
else 
    tic 
    z=fgetl(fid);                                    % opens and skips first line 
    while ~feof(fid)                                % runs while the file is open 
        fseek(fid, 1, 'cof'); 
        grid = fscanf( fid, '%d'); 
         
        a(it) = grid(1,1);    %I 
        b(it) = grid (2,1);   %J 
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        fseek(fid, 7, 'cof'); 
        latd(it)=fscanf( fid, '%f'); 
         
        fseek(fid, 6, 'cof'); 
        lond(it)=fscanf( fid, '%f'); 
         
        fgetl(fid); 
        fgetl(fid); 
        FormatString=repmat('%f',1,5); 
        Data = textscan(fid,FormatString,'delimiter',','); % Read data block 
        Data=cell2mat(Data); 
         
        for remove = 1:length (Data(:,4)) 
            if (Data(remove,4)) > 50 
                Data(remove,4)=0; 
            else 
                ; 
            end 
        end 
        vcells(b(it)+(a(it)*Y) ,1+size2 ) = max(Data(:,4)); 
        it = it + 1; 
    end 
     
    %% select only the cells we want to validate for our experiment 
    stormnum{size2+1}=z; 
    latlon(:,1)=latd; 
    latlon(:,2)=lond; 
    
save(string(storm_year)+'/'+string(basin_name)+'/'+string(basin_name)+'/'+string(opfolde
r)+'/'+string(text_file(5:end-4))+'vcells.mat','vcells') 
    
save(string(storm_year)+'/'+string(basin_name)+'/'+string(basin_name)+'/'+string(opfolde
r)+'/'+string(text_file(5:end-4))+'stormnum.mat','stormnum') 
    %  save('latlon.mat','latlon') 
end 
toc 
fclose('all');          %closes the file 



 84 

Appendix C 

Best Tracks data for Selected Storms 

 The following tables show the best tracks for selected hurricanes. The track details were 

obtained from HURDAT 2 (HURricane DATabase) and IBTrACS (International Best 

Track Archive for Climate Stewardship). The Track data has information about location of 

the hurricane, translation speed, size, central pressure, time and heading angle of the 

hurricane. 

Table C- 1: Best Track for Hurricane Frances 2004 
Latitude 

(Degrees) 
Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

25.7 -77.2 9.56 85 32.67 103.5 961 
25.9 -77.5 3.87 90 33.48 103.5 959 
25.9 -77.5 3.87 95 35.07 94.18 960 
26.1 -77.8 7.88 95 46.66 93.15 960 
26.4 -78 6.53 95 49.01 94.18 961 
26.6 -78.1 5.82 105 45.1 93.15 960 
26.7 -78.4 8.02 105 42.56 94.18 960 
26.9 -78.8 6.78 115 43.8 93.15 961 
26.9 -79 5.16 115 46.2 94.18 962 
26.9 -79.3 4.63 130 29.89 93.15 962 
27 -79.4 4.84 130 24.99 94.18 951 

27.1 -79.7 10.28 150 33.82 93.15 960 
27.2 -80.2 10.99 150 33.82 93.15 960 
27.2 -80.4 4.63 155 35.3 93.15 960 
27.2 -80.5 5.07 155 36.98 93.15 963 
27.3 -80.7 8.14 155 35.21 93.15 963 
27.7 -81.2 11.33 195 31.42 92.84 975 
27.9 -81.7 10.85 195 30.01 77.37 980 
28 -82.2 6.77 250 6.21 71.42 975 

28.1 -82.3 6.21 250 7.79 66.65 975 
28.3 -82.7 11.69 240 35.81 65.46 976 
28.6 -83.3 9.34 240 89.66 57.96 981 
28.7 -83.5 7.01 55 63.97 56.92 981 
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29.1 -83.6 10.78 55 89.75 57.96 980 
29.5 -84 13.01 55 14.4 56.92 980 
30.1 -84.1 12.95 55 12.14 57.96 980 
30.6 -84.3 12.06 55 39.75 47.61 982 

 
Table C- 2: Best Track for Hurricane Lili 2002 

Latitude 
(Degrees) 

Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

24 -87.9 15.68 104 10.11 98.32 955 
24.4 -88.4 13.95 104 11.81 98.32 955 
24.8 -88.9 14.73 105 12.06 108.67 953 
25.3 -89.4 17.05 105 8.38 119.02 941 
25.9 -90 17.89 99 8.46 124.2 938 
26.6 -90.3 16.13 99 8.46 124.2 938 
27.2 -90.6 19.32 99 11.44 129.38 942 
27.8 -91.1 24.12 99 9.63 129.38 942 
28.4 -91.4 18.15 99 11.44 129.38 942 
28.7 -91.7 12.86 99 17.04 108.67 957 
29 -91.9 14.2 99 17.04 108.67 957 

29.4 -92.2 15.06 99 17.04 108.67 957 
29.8 -92.2 13.84 99 25.62 95.22 965 
30.2 -92.3 15.66 99 24.17 95.22 965 
30.7 -92.4 19.32 99 38.94 71.42 965 
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Table C- 3: Best Track for Hurricane Isabel 2003 
Latitude 

(Degrees) 
Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

27.8 -71.4 8.27 330 79.57 93.15 959 
28.2 -71.5 8.67 330 75.72 94.18 956 
28.5 -71.7 10.46 330 62.89 98.32 957 
29 -72 11.47 330 59.09 99.36 957 

29.4 -72.2 8.97 330 63.78 98.32 958 
29.7 -72.4 7.94 330 62.55 99.36 957 
30 -72.6 11.89 330 43.77 98.32 957 

30.6 -73 14.35 330 45.23 94.18 956 
31.1 -73.3 11.87 330 45.32 93.15 955 
31.5 -73.6 11 330 45.92 94.18 955 
31.9 -73.9 13.29 330 45.91 93.15 956 
32.5 -74.3 15.71 320 44.23 94.18 957 
33.1 -74.7 16.2 320 45.13 93.15 957 
33.7 -75.2 17.63 320 48 90.04 957 
34.4 -75.7 19.31 320 50.29 87.97 956 
34.9 -76.1 21.35 320 46.31 90.04 957 
35.4 -76.6 26.33 320 46.80 90.04 959 
36.2 -77.1 24.05 320 37.24 90.04 960 
36.6 -77.5 17.61 320 28.96 83.32 965 
37 -77.9 20.53 330 38.48 72.61 968 

37.7 -78 18.55 330 79.18 65.46 972 
38.3 -78.4 17.94 330 89.92 61.89 978 
39.2 -78.7 24.46 330 88.49 53.56 987 
40.3 -79.5 28.32 330 89.45 40 996 

 

Table C- 4: Best Track for Hurricane Charley 2004 
Latitude 

(Degrees) 
Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

13.7 -68.3 28.21 280 26.82 41.4 1005 
14.5 -69.7 32.95 280 19.27 40.36 1005 
15.2 -70.8 27.27 35 19.89 46.57 999 
15.7 -71.8 24.25 35 29.44 46.57 999 
16 -72.8 23.73 55 29.16 56.92 999 

16.4 -73.8 23.55 55 9.14 57.96 999 
16.9 -74.7 19.28 105 39.03 56.92 999 
16.9 -75.4 16.78 105 11.1 57.96 999 
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16.5 -76.1 16.88 280 22.11 62.1 996 
16.6 -76.8 16.88 280 17.05 67.28 993 
17 -77.5 17.09 115 17.05 67.28 993 

17.2 -78.2 16.88 115 17.05 67.28 993 
17.8 -78.7 14.76 115 19.06 67.28 993 
18 -79.2 16.26 115 17.77 76.59 989 

18.6 -79.9 19.8 135 12.37 77.63 986 
19.2 -80.5 19.03 135 12.96 76.59 986 
19.7 -81.2 18.18 125 10.39 82.8 983 
20.4 -81.5 18.78 125 8.59 94.18 980 
21.2 -81.9 17.29 130 11.11 93.15 980 
21.7 -82.3 12.99 130 11.01 94.18 976 
22.2 -82.4 15.25 115 10.88 93.15 975 
23 -82.6 20.22 115 7.31 94.18 973 

23.9 -82.9 18.46 170 8.72 98.32 970 
24.3 -82.9 13.76 170 9.07 99.36 969 
24.7 -82.9 15.62 180 9.21 99.36 970 
25.2 -82.8 18.53 180 7.19 98.32 965 
25.7 -82.5 20.24 180 7.08 112.81 964 
26 -82.4 21.16 30 6.26 129.38 954 

26.9 -82.2 24.66 10 6.21 129.38 941 
27.7 -81.8 28.53 10 6.21 119.03 950 
28.4 -81.4 26.31 20 6.21 92.84 965 
29.1 -81.1 24.42 20 6.21 89.27 975 
30.1 -80.8 24.66 20 13.31 76.59 993 
31.2 -80.5 27.66 20 40.19 77.63 994 
32.3 -79.7 27.09 20 41.33 76.59 993 
33.2 -79 33.27 20 36.39 67.28 990 
34.8 -77.9 36.97 20 34.51 67.28 995 
36 -77 30.54 30 23.23 67.28 1000 

36.9 -75.9 29.15 30 13.81 44.51 1008 
37.9 -74.9 32.28 40 13.1 40 1012 
39.2 -73.8 36.68 40 6.92 40 1013 
40.8 -73 41.53 40 9.3 40 1012 
42 -71 45.05 0 6.21 40 1013 
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Table C- 5: Best Track for Hurricane Ivan 2004 
Latitude 

(Degrees) 
Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

22.6 -86 10.67 60 23.84 144.9 924 
23.1 -86.1 9.43 60 23.97 139.72 925 
23.4 -86.2 8.28 55 24.54 124.2 932 
23.7 -86.5 10.51 60 24.55 126.27 931 
24.2 -86.6 12.94 60 23.37 124.2 929 
24.7 -87 12.15 60 23.65 126.27 929 
25.1 -87.2 11.14 60 26.66 124.2 932 
25.6 -87.4 13.18 60 25.47 126.27 934 
26.1 -87.8 14.03 70 26.99 124.2 938 
26.7 -87.9 13.89 70 27.74 126.27 939 
27.3 -88 13.02 55 26.63 119.02 939 
27.8 -88.2 13.01 55 26.95 121.1 939 
28.4 -88.3 13.94 55 24.19 119.02 933 
28.8 -88.2 10.44 55 25.95 121.1 931 
29 -88.2 8.78 40 25.95 121.1 931 

29.3 -88.1 12.84 20 24.19 119.02 933 
29.7 -87.9 16.16 20 23.08 121.1 936 
30.2 -87.8 20.72 20 22.37 116.95 943 
30.9 -87.7 19.17 20 27.76 116.95 947 
31.6 -87.7 12.9 20 33.43 83.32 965 
32 -87.5 12.81 10 40.68 77.37 970 

32.6 -87.1 13.6 10 49.7 72.61 975 
33.1 -87 3.03 15 21.52 59.51 980 
33 -86.99 3.02 10 21.5 59.5 984 

 

Table C- 6: Best Track for Hurricane Jeanne 2004 
Latitude 

(Degrees) 
Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

26.1 -71.2 8.3 50 18.71 90.04 969 
26.1 -71.6 8.3 60 19.19 87.97 969 
26.1 -72 8.45 60 18.71 90.04 969 
26.2 -72.4 9.61 70 19.19 87.97 969 
26.3 -72.9 11.62 70 17.47 90.04 969 
26.4 -73.5 14.67 75 16.62 87.97 965 
26.5 -74.3 14.56 75 15.53 90.04 964 
26.5 -74.9 13.45 80 28.02 87.97 964 
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26.5 -75.6 13.45 95 24.5 94.18 962 
26.5 -76.2 14.48 95 23.18 93.15 958 
26.5 -77 14.58 95 22.45 94.18 957 
26.6 -77.6 12.19 105 20.8 103.5 955 
26.8 -77.9 14.24 105 20.8 103.5 955 
27 -78.4 14.88 105 20.01 103.5 953 

27.1 -78.8 11.05 125 20.37 103.5 950 
27.1 -79.1 11.04 125 20.37 103.5 950 
27.2 -79.5 14.13 140 19.19 103.5 951 
27.2 -80 13.89 140 19.19 103.5 951 
27.2 -80.4 11.93 205 20.01 103.5 953 
27.7 -81.4 13.07 205 22.82 103.5 960 
27.9 -82 9.69 240 32.3 77.37 970 
28.3 -82.2 12.02 240 33.79 72.61 972 
28.8 -82.6 13.94 250 23.94 65.46 973 
29.4 -82.7 12.71 250 48.81 57.13 978 
29.9 -82.8 11.31 175 59.23 53.56 978 
30.1 -83.3 10.99 175 70.33 51.18 981 
30.5 -83.6 11.49 135 85.28 51.18 982 
31 -83.8 12.91 135 85.52 46.42 985 

31.6 -83.9 13.77 135 87.3 40 988 
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Table C- 7: Best Track for Hurricane Dennis 2005 
Latitude 

(Degrees) 
Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

12.5 -64.2 19.95 286.97 46.03 34.52 1008 
13 -65.9 17.16 293.93 34.52 40.27 1007 

13.6 -67.3 15.66 301.15 34.52 46.03 1005 
14.3 -68.5 14.16 289.15 23.02 51.78 1000 
14.7 -69.7 14.14 289.18 23.02 57.53 995 
15.1 -70.9 12.50 297.54 23.02 63.29 991 
15.6 -71.9 14.00 299.71 23.02 69.04 989 
16.2 -73 13.44 295.51 23.02 80.55 982 
16.7 -74.1 13.60 319.77 23.02 92.06 972 
17.6 -74.9 16.73 308.45 17.26 103.5 967 
18.5 -76.1 15.03 313.74 17.26 115.07 957 
19.4 -77.1 17.49 306.57 11.51 138.09 951 
20.3 -78.4 13.73 300.42 11.51 126.58 953 
20.9 -79.5 17.31 317.25 11.51 149.6 938 
22 -80.6 13.35 307.31 11.51 138.09 941 

22.7 -81.6 12.48 310.38 11.51 115.0 960 
23.4 -82.5 14.05 317.73 11.51 86.30 973 
24.3 -83.4 13.33 321.25 11.51 92.06 967 
25.2 -84.2 13.29 321.47 11.51 103.57 962 
26.1 -85 15.12 327.15 5.75 126.58 942 
27.2 -85.8 15.82 341.33 5.75 143.84 935 
28.5 -86.3 17.22 339.63 11.51 138.09 930 
29.9 -86.9 20.07 336.94 11.51 126.58 942 
31.5 -87.7 14.90 328.56 23.02 51.78 970 
32.6 -88.5 15.26 349.16 28.77 34.52 991 

 

Table C- 8: Best Track for Hurricane Rita 2005 
Latitude 

(Degrees) 
Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

21.9 -71.5 9.22 292.18 51.79 34.52 1007 
22.2 -72.3 7.81 287.29 51.79 40.28 1005 
22.4 -73 8.81 285.29 34.52 51.79 1002 
22.6 -73.8 9.84 283.72 34.52 57.54 999 
22.8 -74.7 13.20 285.42 34.52 63.29 997 
23.1 -75.9 13.96 279.76 28.77 69.05 994 
23.3 -77.2 17.07 278.07 28.77 69.05 992 
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23.5 -78.8 15.99 278.58 40.28 69.05 990 
23.7 -80.3 13.89 279.81 40.28 80.55 985 
23.9 -81.6 11.81 281.48 40.28 97.82 975 
24.1 -82.7 13.71 275.08 23.02 109.32 967 
24.2 -84 12.62 270.25 17.26 126.59 955 
24.2 -85.2 10.56 276.46 17.26 138.09 941 
24.3 -86.2 7.70 287.56 23.02 166.86 920 
24.5 -86.9 8.10 295.39 28.77 172.62 897 
24.8 -87.6 8.63 302.38 11.51 178.37 897 
25.2 -88.3 9.51 299.14 11.51 161.11 908 
25.6 -89.1 9.48 299.22 11.51 143.85 913 
26 -89.9 10.07 305.05 17.26 138.09 915 

26.5 -90.7 10.74 310.22 23.02 132.34 924 
27.1 -91.5 11.48 314.78 23.02 132.34 927 
27.8 -92.3 11.63 322.53 23.02 126.59 930 
28.6 -93 11.03 326.88 23.02 120.83 931 
29.4 -93.6 13.62 338.63 23.02 115.08 935 
30.5 -94.1 12.68 0 23.02 74.80 949 
31.6 -94.1 12.71 4.37 23.02 51.79 974 
32.7 -94 12.15 18.4 34.52 40.28 982 

 
Table C- 9: Best Track for Hurricane Katrina 2005 

Latitude 
(Degrees) 

Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

24.6 -85.6 6.28 270 12.11 103.5 945 
24.8 -85.9 7.78 270 10.76 103.5 944 
25 -86.2 10.27 290 16.73 103.5 939 

25.1 -86.8 13.52 290 16.23 129.38 935 
25.4 -87.4 11.79 290 21.21 129.38 935 
25.7 -87.7 10.04 300 17.64 144.9 908 
26 -88.1 13.12 300 21 155.25 907 

26.5 -88.6 13.89 300 20.99 157.32 906 
26.9 -89 9.75 310 21.07 150.07 902 
27.2 -89.1 9.1 310 20.91 143.87 904 
27.6 -89.4 10.92 330 21.1 144.9 904 
27.9 -89.5 10.74 330 21.79 143.87 908 
28.8 -89.6 15.42 360 20.27 134.55 915 
29.1 -89.6 15.4 360 20.61 130.41 918 
29.7 -89.6 18.81 360 19.56 130.41 923 
30.2 -89.6 18.78 360 27.96 130.41 927 
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30.8 -89.6 20.46 360 29.4 108.31 940 
31.4 -89.6 18.73 360 45.57 98.79 955 
31.9 -89.6 22.73 360 18.65 77.37 960 

 

Table C- 10: Best Track for Hurricane Wilma 2005 
Latitude 

(Degrees) 
Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

23.9 -84.4 16.33 40 27.58 99.36 958 
24.4 -83.7 17.72 50 26.78 103.5 958 
24.7 -83.3 18.58 50 24.47 103.5 954 
25.1 -82.8 19.74 50 24.33 107.64 954 
25.5 -82.4 28 50 18.14 113.85 950 
26.1 -81.4 30.11 50 14.22 113.85 950 
26.3 -80.7 26.38 50 19.19 113.85 952 
26.9 -80 29.1 40 27.51 93.15 956 
27.3 -79.2 38.9 40 33.02 94.18 956 
28.1 -78.8 41.4 40 20.79 103.5 955 
29 -77.4 37.25 40 16.53 108.67 954 

30.2 -76 42.96 40 11.37 112.81 955 
31.6 -74.3 52.58 40 14.33 113.85 959 
34.8 -70 55.89 50 27.2 103.5 965 

 

Table C- 11: Best Track for Hurricane Dolly 2008 
Latitude 

(Degrees) 
Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

19.8 -85.8 19.73 310.21 86.31 51.79 1007 
20.9 -87.2 20.07 301.42 86.31 51.79 1007 
21.8 -88.8 20.58 304.34 86.31 51.79 1005 
22.8 -90.4 17.13 278.04 51.79 51.79 1005 
23 -92 13.96 279.75 51.79 51.79 1000 

23.2 -93.3 10.22 304.42 51.79 51.79 999 
23.7 -94.1 10.89 309.55 51.79 63.29 993 
24.3 -94.9 10.87 309.68 17.26 69.05 990 
24.9 -95.7 7.76 317.95 23.02 74.80 982 
25.4 -96.2 7.76 318.07 23.02 80.55 982 
25.9 -96.7 7.74 318.2 23.02 97.82 967 
26.4 -97.2 6.29 280.68 23.02 86.31 967 
26.5 -97.8 5.64 294.21 17.26 74.80 976 
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26.7 -98.3 8.43 313.21 17.26 63.29 986 
27.2 -98.9 13.82 305.92 17.26 51.79 992 
27.9 -100 14.97 288.28 17.26 40.28 995 

 

Table C- 122: Best Track for Hurricane Ike 2008 
Latitude 

(Degrees) 
Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

25.5 -88.4 10.16 290 45.71 87.97 945 
25.8 -88.8 12.04 290 45.91 90.04 952 
26 -89.4 12.31 290 47.6 87.97 950 

26.2 -89.9 10.98 290 47.85 90.04 954 
26.3 -90.4 12.65 290 50.48 87.97 956 
26.4 -91.1 13.55 290 48.49 90.04 957 
26.7 -91.6 12.81 290 46.9 93.15 953 
26.9 -92.2 11.97 290 47.98 94.18 956 
27.2 -92.6 10.99 300 48.55 93.15 954 
27.4 -93.1 10.98 300 50.19 94.18 957 
27.7 -93.5 14.21 300 48.07 93.15 955 
28.2 -93.8 18.12 300 41.64 99.36 954 
28.6 -94.4 9.11 310 48.57 98.32 952 
28.9 -94.5 11.33 310 45.6 99.36 952 
29.7 -95 16.69 320 44.58 99.36 954 
30.1 -95.1 14.47 320 48.24 99.36 956 
30.5 -95.3 15.99 360 54.78 92.84 962 
31 -95.3 15.08 360 17.62 83.32 964 

 
Table C- 13: Best Track for Hurricane Gustav 2008 

Latitude 
(Degrees) 

Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

16.4 -71.2 7.99 316.3 17.26 69.05 991 
16.9 -71.7 8.19 327.57 11.51 86.31 986 
17.5 -72.1 10.33 312.1 11.51 92.06 981 
18.1 -72.8 4.76 316.52 11.51 80.55 992 
18.4 -73.1 4.00 305.15 11.51 57.54 995 
18.6 -73.4 3.47 289.43 23.02 51.79 999 
18.7 -73.7 4.00 305.2 11.51 51.79 998 
18.9 -74 12.06 264.69 11.51 51.79 999 
18.8 -75.1 8.70 202.17 11.51 46.03 999 
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18.1 -75.4 4.00 235.02 34.52 51.79 995 
17.9 -75.7 5.59 281.95 28.77 69.05 984 
18 -76.2 9.06 255.4 17.26 69.05 984 

17.8 -77 8.01 286.82 11.51 69.05 987 
18 -77.7 8.41 294.38 23.02 63.29 990 

18.3 -78.4 10.47 303.52 28.77 57.54 989 
18.8 -79.2 9.86 298 28.77 74.80 984 
19.2 -80 10.42 303.67 23.02 86.31 975 
19.7 -80.8 14.41 323.24 23.02 97.82 968 
20.7 -81.6 14.18 317.16 23.02 126.59 955 
21.6 -82.5 16.58 320.09 17.26 143.85 943 
22.7 -83.5 14.09 317.58 17.26 138.09 950 
23.6 -84.4 18.03 320.32 17.26 120.83 960 
24.8 -85.5 17.81 315.66 17.26 115.08 961 
25.9 -86.7 15.46 318.37 17.26 109.32 960 
26.9 -87.7 17.60 311.2 23.02 109.32 953 
27.9 -89 16.78 308.5 28.77 109.32 954 
28.8 -90.3 15.97 316.46 28.77 109.32 955 
29.8 -91.4 13.71 319.4 28.77 97.82 958 
30.7 -92.3 11.30 315.81 23.02 69.05 971 

 
Table C- 13: Best Track for Hurricane Irene 2011 

Latitude 
(Degrees) 

Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

17.5 -63.7 14.99 288.1 57.54 57.54 999 
17.9 -65 10.45 289.46 34.52 69.05 993 
18.2 -65.9 14.47 304.04 17.26 74.80 990 
18.9 -67 11.81 293.11 17.26 80.55 989 
19.3 -68 9.84 298.08 17.26 86.31 988 
19.7 -68.8 10.78 295.45 17.26 92.06 981 
20.1 -69.7 10.33 289.72 17.26 92.06 978 
20.4 -70.6 7.34 298.21 17.26 92.06 978 
20.7 -71.2 8.30 294.76 23.02 92.06 977 
21 -71.9 7.31 298.3 23.02 92.06 969 

21.3 -72.5 11.01 309.04 23.02 109.32 965 
21.9 -73.3 14.09 311.04 17.26 120.83 957 
22.7 -74.3 12.53 317.55 17.26 115.08 954 
23.5 -75.1 10.89 309.5 34.52 109.32 952 
24.1 -75.9 16.67 334.09 34.52 109.32 950 
25.4 -76.6 14.12 334 34.52 103.57 950 
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26.5 -77.2 13.87 355.78 34.52 103.57 950 
27.7 -77.3 12.68 0 34.52 103.57 946 
28.8 -77.3 13.87 355.87 11.51 103.57 942 
30 -77.4 12.71 355.55 46.03 97.82 947 

31.1 -77.5 12.17 18.71 46.03 92.06 950 
32.1 -77.1 15.26 10.9 69.05 86.31 952 
33.4 -76.8 15.10 7.21 69.05 86.31 952 
34.7 -76.6 9.64 16.97 51.79 86.31 952 
35.5 -76.3 14.92 21.82 51.79 74.80 950 
36.7 -75.7 17.36 21.45 51.79 74.80 951 
38.1 -75 26.60 17.31 115.08 74.80 958 
40.3 -74.1 26.78 18.5 115.08 63.29 963 
42.5 -73.1 21.30 22.82 115.08 57.54 970 

 

Table C- 14: Best Track for Hurricane Isaac 2012 
Latitude 

(Degrees) 
Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

15.20 -53.10 19.04 277.18 28.77 40.28 1005.00 
15.40 -54.80 20.27 280.06 28.77 46.03 1004.00 
15.70 -56.60 22.28 276.20 28.77 51.79 1003.00 
15.90 -58.60 20.07 276.84 34.52 51.79 1004.00 
16.10 -60.40 18.32 255.65 80.55 51.79 1004.00 
15.70 -62.00 17.52 242.78 80.55 51.79 1004.00 
15.00 -63.40 17.83 273.91 80.55 51.79 1004.00 
15.10 -65.00 16.58 290.51 80.55 51.79 1003.00 
15.60 -66.40 15.57 274.43 80.55 51.79 1003.00 
15.70 -67.80 14.83 256.70 80.55 51.79 1002.00 
15.40 -69.10 14.83 283.64 80.55 51.79 998.00 
15.70 -70.40 13.62 319.62 69.05 57.54 995.00 
16.60 -71.20 10.42 320.74 69.05 63.29 993.00 
17.30 -71.80 15.17 319.54 63.29 63.29 992.00 
18.30 -72.70 19.89 319.07 51.79 63.29 991.00 
19.60 -73.90 19.71 314.75 69.05 57.54 997.00 
20.80 -75.20 19.80 305.86 69.05 57.54 997.00 
21.80 -76.70 19.95 301.59 69.05 57.54 997.00 
22.70 -78.30 19.75 294.44 69.05 63.29 995.00 
23.40 -80.00 15.19 283.44 69.05 63.29 995.00 
23.70 -81.40 13.89 294.75 57.54 57.54 992.00 
24.20 -82.60 13.96 311.55 57.54 57.54 990.00 
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25.00 -83.60 14.00 305.39 46.03 57.54 989.00 
25.70 -84.70 12.46 303.94 46.03 63.29 987.00 
26.30 -85.70 11.81 299.43 34.52 69.05 982.00 
26.80 -86.70 11.54 307.03 34.52 69.05 979.00 
27.40 -87.60 9.93 314.23 34.52 69.05 978.00 
28.00 -88.30 8.57 323.85 34.52 74.80 975.00 
28.60 -88.80 6.98 299.84 57.54 80.55 972.00 
28.90 -89.40 6.46 291.01 46.03 80.55 967.00 
29.10 -90.00 6.11 304.64 46.03 80.55 966.00 
29.40 -90.50 4.59 319.05 40.28 74.80 968.00 
29.70 -90.80 5.50 327.04 51.79 69.05 973.00 
30.10 -91.10 7.00 325.48 46.03 63.29 977.00 
30.60 -91.50 8.97 333.99 46.03 63.29 982.00 

 

Table C- 15: Best Track for Hurricane Sandy 2012 
Latitude 

(Degrees) 
Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

31.9 -73.3 9.04 40 70.73 67.28 960 
32.1 -73.1 9.72 40 67.1 67.28 951 
32.5 -72.6 14.4 40 88.31 67.28 951 
32.8 -71.9 16.68 40 87.04 67.28 951 
33.4 -71.3 16.8 50 87.52 67.28 952 
34 -70.9 14.66 50 88.03 67.28 950 

34.5 -70.5 14.7 30 88.03 67.28 950 
35.2 -70.5 15.69 30 87.77 67.28 950 
35.9 -70.5 19.4 360 90.55 77.63 946 
36.8 -71.1 20.22 360 80.81 76.59 946 
37.5 -71.5 26.2 330 85.64 82.8 943 
38.3 -73.1 30.96 330 92.84 80.73 940 
38.8 -74.4 18.56 330 83.57 82.8 940 
39.8 -75.4 15.57 300 38.13 77.37 952 
40.5 -77 15.06 0 6.21 66.65 960 
40.2 -78.4 11.64 0 15.46 46.42 983 
40.8 -79.2 7.81 0 16.84 46.42 988 
41.3 -79.4 6.62 0 27.81 40 992 
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Table C- 16: Best Track for Hurricane Harvey 2017 
Latitude 

(Degrees) 
Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

25 -94.3 9.3 320 11.99 76.59 974 
25.2 -94.6 10.83 320 11.26 77.63 973 
25.6 -95.1 11.59 320 7.16 94.18 967 
25.9 -95.4 10.83 320 7.9 93.15 967 
26.3 -95.8 11.21 320 6.21 99.36 950 
26.7 -96 10.55 320 7.99 98.32 947 
27.1 -96.3 10.54 320 7.65 99.36 945 
27.5 -96.5 9.63 320 7.74 113.85 941 
27.8 -96.8 7.68 320 7.87 116.95 941 
28 -97 5.35 320 9.8 119.02 938 

28.2 -97 6.27 320 10.34 119.02 942 
28.5 -97.2 6.27 320 11.34 101.17 963 
28.7 -97.2 4.78 340 15.73 83.32 975 
28.9 -97.3 6.3 350 19.77 77.37 984 
29.1 -97.6 3.81 340 21.8 72.61 987 
29.1 -97.6 2.33 360 35.87 65.46 990 
29.2 -97.4 3.85 60 38.93 61.89 992 
29.3 -97.3 2.54 60 44.8 53.56 994 
29.3 -97.4 4.26 0 58.61 46.42 998 
29.2 -97.7 5.74 200 25.87 46.42 998 
29 -97.6 4.53 160 25.87 46.42 998 
29 -97.4 4.06 160 75.14 40 1000 
29 -97.2 4.06 140 75.14 40 1000 
29 -97 4.36 140 92.62 40 1000 

28.9 -96.8 4.66 130 92.62 40 1000 
28.8 -96.6 4.66 120 92.62 40 1000 
28.7 -96.4 3.86 120 92.62 40 999 
28.6 -96.3 3.57 130 72.91 40 998 
28.6 -96.1 3.57 130 71.82 40 997 
28.5 -96 3.87 120 71.82 40 997 
28.6 -95.8 3.87 120 72.91 40 998 
28.5 -95.7 5.52 110 93.19 41.4 997 
28.2 -95.5 6.03 120 93.07 40.36 997 
28.2 -95.3 5.87 120 93.19 41.4 997 
28 -95 6.17 100 93.07 40.36 997 

28.1 -94.8 4.68 90 93.19 41.4 997 
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28.2 -94.6 6.16 60 93.07 40.36 997 
28.4 -94.3 8.39 20 90.22 41.4 997 
28.8 -94.3 9.13 20 92.2 40.36 997 
29.2 -94.3 11.57 30 83.18 46.57 994 
28.7 -93.9 11.59 90 89.21 44.51 994 
29 -93.6 7.08 40 84.87 46.57 994 

29.2 -93.5 9.41 40 91.09 40.36 995 
29.8 -93.4 11.9 30 39.69 40.36 990 
30.2 -93.6 9.54 360 51.92 40.36 992 

 

Table C- 17: Best Track for Hurricane Irma 2017 

Latitude 
(Degrees) 

Longitude 
(Degrees) 

Translation 
Speed (mph) Heading Angle 

Radius to Max 
Winds (miles) 

Wind Speed 
(mph @ 10m) 

Central Pressure 
(mBar) 

22.1 -76.5 13.03 280 14.77 139.72 925 
22.2 -77.2 13.03 280 14.62 139.72 924 
22.1 -77.7 11.27 280 14.82 144.9 924 
22.3 -78.2 12.61 280 15.98 143.87 930 
22.5 -78.8 15.4 280 15.59 139.72 930 
22.6 -79.6 11.73 280 14.98 116.95 937 
22.8 -79.8 8.6 280 17.88 113.85 941 
23.1 -80.2 10.15 280 17.82 112.81 941 
23.4 -80.5 8.06 300 15.7 113.85 933 
23.3 -80.8 6.5 300 16.68 107.64 932 
23.5 -81 7.04 300 15.27 108.67 933 
23.7 -81.3 8.96 310 15.32 116.95 931 
24.1 -81.5 9.64 320 17.88 119.02 928 
24.5 -81.5 10.32 330 18.03 116.95 929 
25 -81.5 13.29 350 17.33 119.02 933 

25.6 -81.8 14.43 350 17.3 107.64 936 
26.2 -81.8 12.69 350 18.02 107.64 938 
26.7 -81.7 15.2 360 19.53 107.64 942 
27.5 -81.9 17.96 350 21.36 101.17 952 
28.2 -82.2 17.55 350 30.51 88.08 960 
28.9 -82.6 16.46 340 39.67 77.37 965 
29.5 -82.9 16.82 340 52.54 72.61 970 
30.3 -83.1 16.92 340 90.35 65.46 975 
30.8 -83.6 16.48 340 91.93 61.89 980 
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Appendix D 

Measured Versus Modeled Storm Surge Heights for All Other Basins 

 

 

Figure D- 1: Measured versus Simulated storm surge heights for ‘ap3’ Basin 
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Figure D- 2: Measured versus Simulated storm surge heights for ‘acy’ Basin 
 

 

Figure D- 3: Measured versus Simulated storm surge heights for ‘pv2’ Basin 
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Figure D- 4: Measured versus Simulated storm surge heights for ‘cd2’ Basin 
 

 

Figure D- 5: Measured versus Simulated storm surge heights for ‘cr3’ Basin 
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Figure D- 6: Measured versus Simulated storm surge heights for ‘cp2’ Basin 

 

 

Figure D- 7: Measured versus Simulated storm surge heights for ‘de3’ Basin  
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Figure D- 8: Measured versus Simulated storm surge heights for ‘ebr3’ Basin 

 

Figure D- 9: Measured versus Simulated storm surge heights for ‘efm2’ Basin 
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Figure D- 10: Measured versus Simulated storm surge heights for ‘eke2’ Basin 

 

 

Figure D- 11: Measured versus Simulated storm surge heights for ‘epn3’ Basin 
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Figure D- 12: Measured versus Simulated storm surge heights for ‘esv4’ Basin 

 

 Figure D- 13: Measured versus Simulated storm surge heights for ‘hch2’ Basin 
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Figure D- 14: Measured versus Simulated storm surge heights for ‘hor3’ Basin 
 
 

  

Figure D- 15: Measured versus Simulated storm surge heights for ‘ht3’ Basin 
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Figure D- 16: Measured versus Simulated storm surge heights for ‘lf2’ Basin 
 

  

Figure D- 17: Measured versus Simulated storm surge heights for ‘ms7’ Basin 
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Figure D- 18: Measured versus Simulated storm surge heights for ‘il3’ Basin 

  

  

Figure D- 19: Measured versus Simulated storm surge heights for ‘ps2’ Basin 
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Figure D- 20:  Measured versus Simulated storm surge heights for ‘oce’ Basin 
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Appendix E 

Comparisons between Measured, Simulated and Adjusted Surge Heights for All Other 

Basins 

 

Figure E- 1: Comparison between measured, simulated and adjusted surge height for ‘de3’ 
basin 
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Figure E- 2: Comparison between measured, simulated and adjusted surge height for ebr3 
basin 
 

 

Figure E- 3: Comparison between measured, simulated and adjusted surge height for efm2 
basin 
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Figure E- 4: Comparison between measured, simulated and adjusted surge height for eke2 
basin 

 

Figure E- 5: Comparison between measured, simulated and adjusted surge height for pv2 
basin 
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Figure E- 6: Comparison between measured, simulated and adjusted surge height for etp3 
basin 
 

 
Figure E- 7: Comparison between measured, simulated and adjusted surge height for esv4 
basin 
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Figure E- 8: Comparison between measured, simulated and adjusted surge height for epn3 
basin 

 
Figure E- 9: Comparison between measured, simulated and adjusted surge height for ms7 
basin 
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Figure E- 10: Comparison between measured, simulated and adjusted surge height for lf2 
basin 

 

Figure E- 11: Comparison between measured, simulated and adjusted surge height for 
ny3 basin 
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Figure E- 12: Comparison between measured, simulated and adjusted surge height for egl3 
basin 
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Appendix F 

Lognormal Distribution Fits of Random Errors for All Other Basins 

  

Figure F- 1: Lognormal distribution fit of random errors for ‘acy’ basin 
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Figure F- 2: Lognormal distribution fit of random errors for ‘emo2’ basin 

 

Figure F- 3: Lognormal distribution fit of random errors for ‘egl3’ basin 
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Figure F- 4: Lognormal distribution fit of random errors for ‘efm2’ basin  

 

Figure F- 5: Lognormal distribution fit of random errors for ‘ny3’ basin  
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Figure F- 6: Lognormal distribution fit of random errors for ‘ms7’ basin 

 

Figure F- 7: Lognormal distribution fit of random errors for ‘cr3’ basin 
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Figure F- 8: Lognormal distribution fit of random errors for ‘lf2’ basin  

 

Figure F- 9: Lognormal distribution fit of random errors for ‘epn3’ basin  
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Figure F- 10: Lognormal distribution fit of random errors for ‘ebr3’ basin 

  

Figure F- 11: Lognormal distribution fit of random errors for ‘esv4’ basin 
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Figure F- 12: Lognormal distribution fit of random errors for ‘il3’ basin 

 

Figure F- 13: Lognormal distribution fit of random errors for ‘de3’ basin 
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Figure F- 14: Lognormal distribution fit of random errors for ‘pv2’ basin 

 

Figure F- 15: Lognormal distribution fit of random errors for ‘cp2’ basin 
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Figure F- 16: Lognormal distribution fit of random errors for ‘eke2’ basin  

  

Figure F- 17: Lognormal distribution fit of random errors for ‘ap3’ basin 
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Figure F- 18: Lognormal distribution fit of random errors for ‘etp3’ basin 

 

Figure F- 19: Lognormal distribution fit of random errors for ‘ht3’ basin  
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Figure F- 20: Lognormal distribution fit of random errors for ‘ps2’ basin 

 

Figure F- 21: Lognormal distribution fit of random errors for ‘cd2’ basin  
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Figure F- 22: Lognormal distribution fit of random errors for ‘hor3’ basin  

 

Figure F- 23: Lognormal distribution fit of random errors for ‘hch2’ basin 
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Appendix G 

Visualization Toolbox Code 

1. Tool to Create Surge and Wind footprints 
 

# --------------------------------------------------------------------------- 
# create_surge_footprints.py 
# Created on: 2019-01-15 
#Last Updated on: 2019-02-08 
  
# Written by Sami Mohammed 
  
    # Tool Description: 
#This tool plot the surge footprints to a fine resolution by using IDW method of 
interpolation 
#The aim of the tool is to help visualise the extent of the storm surge with respect to 
NAVD88 for individual events 
  
    ## Typical Inputs: 
# An event file in csv format (Event_1.csv) 
# Preprocessed polygon shape file for the same event (combination of 4 files- 
Event_1.dbf, .prj, .shx, .shp) 
  
    ## Expected outputs: 
# Folders called as  sfinal(Event_ID) 
# A GeoDatabase with the Rasters of surge footprints 
  
    ## Requirements: 
# ArcGIS Desktop 10.3 or Higher alongwith Spatial Analyst tool Licensed and enabled 
# --------------------------------------------------------------------------- 
  
from tkinter import Tk, Label, Button, StringVar 
  
class Viz_tool_gui: 
    LABEL_TEXT = [" Starting the Visualization tool "] 
    def __init__(self, master): 
        self.master = master 
        master.title("Viz Tool") 
         
  
        self.label_index = 0 
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        self.label_text = StringVar() 
        self.label_text.set(self.LABEL_TEXT[self.label_index]) 
        self.label = Label(master, textvariable=self.label_text) 
        self.label.pack() 
  
        self.surge_button = Button(master, text="Make Surge Footprint", 
command=self.surge) 
        self.surge_button.pack() 
  
        self.wind_button = Button(master, text="Make Wind Footprint", 
command=self.wind) 
        self.wind_button.pack() 
  
        self.combined_button = Button(master, text="Make Combined Footprints", 
command=self.combined) 
        self.combined_button.pack() 
  
        self.close_button = Button(master, text="Quit", command=master.quit) 
        self.close_button.pack() 
  
    def surge(self): 
        # Import arcpy and other required modules 
        import time 
        import arcpy 
        import os 
        from glob import glob 
        import shutil 
        print("-------- Starting the Surge Visualization Tool ------------") 
  
        def validate_input(inp): 
            try: 
                inp = int(inp) 
            except ValueError: 
                print("Could not convert input to integer, try again") 
                inp = None 
            return inp 
  
        start = time.time() 
  
        # Overwiriting existing files if any 
        arcpy.env.overwriteOutput = True 
  
        # Setting up Working directory and Local variables: 
        work_dir = os.getcwd() 
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        arcpy.env.workspace = work_dir 
  
        number = None 
        while number is None: 
            number = raw_input("Enter Event ID") 
            number = validate_input(number) 
             
        if number == '': 
            inp = glob('*.csv') 
        else: 
            inp = ["Event_"+str(number)+".csv"] 
             
        print(inp) 
  
        # Looping over all the events and performing same tasks for each of them  
        for i in inp: 
            eve = i.split('_')[1] 
            print("-------- Event_ID ------------") 
            print(eve) 
            event_id = eve.split('.')[0] 
            Extension = i.split('.')[1]  
  
            arcpy.CheckOutExtension("spatial") 
            Layer_1 = "Layer_1" 
             
        # Making XY Event Layer 
            arcpy.MakeXYEventLayer_management("Event_"+event_id + ".csv", "lon", 
"lat", 
Layer_1,GEOGCS['GCS_WGS_1984',DATUM['D_WGS_1984',SPHEROID['WGS_198
4',6378137.0,298.257223563]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925
199433]];-400 -400 1000000000;-100000 10000;-100000 10000;8.98315284119522E-
09;0.001;0.001;IsHighPrecision", "") 
 
           # Converting Feature Class to Feature Class 
 
            arcpy.FeatureClassToFeatureClass_conversion(Layer_1, work_dir, 
"eveid"+event_id, "", "event_id \"event_id\" true true false 4 Long 0 0 
,First,#,Layer_13,event_id,-1,-1;lon \"lon\" true true false 8 Double 0 0 
,First,#,Layer_13,lon,-1,-1;lat \"lat\" true true false 8 Double 0 0 ,First,#,Layer_13,lat,-1,-
1;wind_speed \"wind_speed\" true true false 4 Long 0 0 ,First,#,Layer_13,wind_speed,-
1,-1;storm_surge \"storm_surge\" true true false 8 Double 0 0 
,First,#,Layer_13,storm_surge,-1,-1", "") 
  
        # Interpolation of surge data to a surface using IDW ----- 
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            arcpy.gp.Idw_sa( "eveid"+event_id+".shp", "storm_surg", "s_int"+event_id, 
"0.001548", "2", "VARIABLE 12", "") 
  
            idw_time = time.time() 
            print("----------- Surge Interpolation time --------------") 
            print(str(idw_time - start)+" "+"seconds") 
  
            elevRaster_s = arcpy.sa.Raster('s_int'+event_id) 
            extent_s = elevRaster_s.extent 
            Envelope_s = "%f %f %f %f" %(extent_s.XMin, extent_s.YMin, extent_s.XMax, 
extent_s.YMax) 
  
        # Clip Surge to exact extent of the footprint 
 
            arcpy.Clip_management("s_int"+event_id, "%f %f %f %f" %(extent_s.XMin, 
extent_s.YMin, extent_s.XMax, extent_s.YMax), "sfinal"+event_id, 
"Event_"+event_id+".shp", "0", "ClippingGeometry", "NO_MAINTAIN_EXTENT") 
  
        # Returning the License back to the ArcGIS to be used for next time 
            arcpy.CheckInExtension("spatial") 
  
        # Creating a layer with the same color classifcation and scale 
  
            arcpy.MakeRasterLayer_management(in_raster="sfinal"+event_id, 
out_rasterlayer="MakeRas_sfinal"+event_id, where_clause="", envelope=Envelope_s, 
band_index="") 
            arcpy.SaveToLayerFile_management(in_layer="MakeRas_sfinal"+event_id, 
out_layer="slayer"+event_id+".lyr", is_relative_path="RELATIVE", 
version="CURRENT") 
            
arcpy.ApplySymbologyFromLayer_management(in_layer="slayer"+event_id+".lyr", 
in_symbology_layer="color_s.lyr") 
  
            layer_time = time.time() 
            print("----------- Layer creation time --------------") 
            print(str(layer_time - idw_time)+" "+"seconds") 
  
        ## Creating a KML file to view it in google earth  
            arcpy.LayerToKML_conversion(layer="slayer"+event_id+".lyr", 
out_kmz_file="s"+ event_id+"GE.kmz", layer_output_scale="0", 
is_composite="NO_COMPOSITE", boundary_box_extent="DEFAULT", \ 
                                        image_size="1024", dpi_of_client="96", 
ignore_zvalue="ABSOLUTE") 
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            googleearthfile_time = time.time() 
            print("----------- Google earth File creation time --------------") 
            print(str(googleearthfile_time - layer_time)+" "+"seconds") 
             
            for f in glob("eveid"+event_id+".*"): 
                os.remove(f) 
                         
            for j in glob("s_int"+event_id+".*"): 
                os.remove(j) 
             
        process_time = time.time() 
        print("------------------ Processing time -------------------") 
        print(str(process_time - start)+"seconds") 
  
        # Creating a Geodatabase to store the surge footprints 
        OutGDB = arcpy.CreateFileGDB_management(work_dir, "surge_footprints.gdb") 
  
        mySurgeList = arcpy.ListRasters("sfinal*", "") 
  
        newList = [] 
        for x in mySurgeList: 
             z1 = os.path.join(work_dir, x) 
             newList.append(z1) 
  
        inList = (";".join([i for i in newList])) 
        arcpy.RasterToGeodatabase_conversion(inList, OutGDB)  
  
        try: 
            os.mkdir("Google_Earth_files_surge") 
            os.mkdir("ArcGIS_Layer_files_surge") 
        except OSError: 
            # The directory already existed, nothing to do 
            pass 
  
        src_fldr = work_dir  
        kmz_dst_fldr = work_dir+"\\Google_Earth_files_surge" 
        lyr_dst_fldr = work_dir+"\\ArcGIS_Layer_files_surge"  
  
  
        for kmz_file in glob(src_fldr+"\\*.kmz"): 
            shutil.copy2(kmz_file, kmz_dst_fldr); 
  
        for lyr_file in glob(src_fldr+"\\s*.lyr"): 
            shutil.copy2(lyr_file, lyr_dst_fldr) 
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        # Removing the intermediate files 
                     
        for j in glob("s*.lyr"): 
            os.remove(j) 
                         
        for m in glob("s_int*"): 
            shutil.rmtree(m, ignore_errors=True) 
  
        for o in glob("info"): 
            shutil.rmtree(o, ignore_errors=True) 
             
        for p in glob("s*ge.kmz*"): 
            os.remove(p) 
            # Removing the intermediate files 
        for g in glob("s*.lyr"): 
            os.remove(g) 
  
        gdb_time = time.time() 
        print("--------------- Surge gdb creation time -------------") 
        print(str(gdb_time - process_time)+" "+"seconds") 
             
        end = time.time() 
        print("--------------------- Final_time --------------------") 
        print(str(end - start)+" "+"seconds") 
        print("--------------------- Footprint is ready  --------------------") 
  
  
  
    def wind(self): 
        # Import arcpy and other required modules 
        import time 
        import arcpy 
        import os 
        from glob import glob 
        import shutil 
        print("-------- Starting the Wind Footprint Visualization tool ------------") 
  
  
        def validate_input(inp): 
            try: 
                inp = int(inp) 
            except ValueError: 
                print("Could not convert input to integer, try again") 
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                inp = None 
            return inp 
  
        start = time.time() 
  
        # Overwiriting existing files if any 
        arcpy.env.overwriteOutput = True 
  
        # Setting up Working directory and Local variables: 
        work_dir = os.getcwd() 
        arcpy.env.workspace = work_dir 
  
        number = None 
        while number is None: 
            number = raw_input("Enter Event ID") 
            number = validate_input(number) 
             
        if number == '': 
            inp = glob('*.csv') 
        else: 
            inp = ["Event_"+str(number)+".csv"] 
             
        print(inp) 
  
        # Looping over all the events and performing same tasks for each of them  
        for i in inp: 
            eve = i.split('_')[1] 
            print("-------- Event_ID ------------") 
            print(eve) 
            event_id = eve.split('.')[0] 
            Extension = i.split('.')[1]  
  
            arcpy.CheckOutExtension("spatial") 
            Layer_1 = "Layer_1" 
             
        # Making XY Event Layer 
            arcpy.MakeXYEventLayer_management("Event_"+event_id + ".csv", "lon", 
"lat", 
Layer_1,"GEOGCS['GCS_WGS_1984',DATUM['D_WGS_1984',SPHEROID['WGS_19
84',6378137.0,298.257223563]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.017453292
5199433]];-400 -400 1000000000;-100000 10000;-100000 10000;8.98315284119522E-
09;0.001;0.001;IsHighPrecision", "") 
 
        # Converting Feature Class to Feature Class 
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            arcpy.FeatureClassToFeatureClass_conversion(Layer_1, work_dir, 
"eveid"+event_id, "", "event_id \"event_id\" true true false 4 Long 0 0 
,First,#,Layer_13,event_id,-1,-1;lon \"lon\" true true false 8 Double 0 0 
,First,#,Layer_13,lon,-1,-1;lat \"lat\" true true false 8 Double 0 0 ,First,#,Layer_13,lat,-1,-
1;wind_speed \"wind_speed\" true true false 4 Long 0 0 ,First,#,Layer_13,wind_speed,-
1,-1;storm_surge \"storm_surge\" true true false 8 Double 0 0 
,First,#,Layer_13,storm_surge,-1,-1", "") 
  
        # Interpolation of surge data to a surface using IDW ----- 
            arcpy.gp.Idw_sa( "eveid"+event_id+".shp", "wind_speed", 
"w_int"+event_id,"0.001548", "2", "VARIABLE 12", "") 
  
            idw_time = time.time() 
            print("----------- Wind Interpolation time --------------") 
            print(str(idw_time - start)+" "+"seconds") 
  
            elevRaster_w = arcpy.sa.Raster('w_int'+event_id) 
            extent_w = elevRaster_w.extent 
            Envelope_w = "%f %f %f %f" %(extent_w.XMin, extent_w.YMin, 
extent_w.XMax, extent_w.YMax) 
  
        # Clip Surge to exact extent of the footprint 
            arcpy.Clip_management("w_int"+event_id, "%f %f %f %f" %(extent_w.XMin, 
extent_w.YMin, extent_w.XMax, extent_w.YMax), "wfinal"+event_id, 
"Event_"+event_id+".shp", "0", "ClippingGeometry", "NO_MAINTAIN_EXTENT") 
  
        # Returning the License back to the ArcGIS to be used for next time 
            arcpy.CheckInExtension("spatial") 
  
        # Creating a layer with the same color classifcation and scale 
  
            arcpy.MakeRasterLayer_management(in_raster="wfinal"+event_id, 
out_rasterlayer="MakeRas_wfinal"+event_id, where_clause="", envelope=Envelope_w, 
band_index="") 
            arcpy.SaveToLayerFile_management(in_layer="MakeRas_wfinal"+event_id, 
out_layer="wlayer"+event_id+".lyr", is_relative_path="RELATIVE", 
version="CURRENT") 
            
arcpy.ApplySymbologyFromLayer_management(in_layer="wlayer"+event_id+".lyr", 
in_symbology_layer="color_w.lyr") 
  
            layer_time = time.time() 
            print("----------- Layer creation time --------------") 
            print(str(layer_time - idw_time)+" "+"seconds") 
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        ## Creating a KML file to view it in google earth  
            arcpy.LayerToKML_conversion(layer="wlayer"+event_id+".lyr", 
out_kmz_file="w"+ event_id+"GE.kmz", layer_output_scale="0", 
is_composite="NO_COMPOSITE", boundary_box_extent="DEFAULT", 
image_size="1024", dpi_of_client="96", ignore_zvalue="ABSOLUTE") 
  
            googleearthfile_time = time.time() 
            print("----------- Google earth File creation time --------------") 
            print(str(googleearthfile_time - layer_time)+" "+"seconds") 
             
            for f in glob("eveid"+event_id+".*"): 
                os.remove(f) 
                         
            for j in glob("w_int"+event_id+".*"): 
                os.remove(j) 
             
        process_time = time.time() 
        print("------------------ Processing time -------------------") 
        print(str(process_time - start)+"seconds") 
  
        # Creating a Geodatabase to store the surge footprints 
        OutGDB = arcpy.CreateFileGDB_management(work_dir, "wind_footprints.gdb") 
  
        myWindList = arcpy.ListRasters("wfinal*", "") 
  
        newList = [] 
        for x in myWindList: 
             z1 = os.path.join(work_dir, x) 
             newList.append(z1) 
  
        inList = (";".join([i for i in newList])) 
        arcpy.RasterToGeodatabase_conversion(inList, OutGDB)  
  
        try: 
            os.mkdir("Google_Earth_files_wind") 
            os.mkdir("ArcGIS_Layer_files_wind") 
        except OSError: 
            # The directory already existed, nothing to do 
            pass 
  
        src_fldr = work_dir  
        kmz_dst_fldr = work_dir+"\\Google_Earth_files_wind" 
        lyr_dst_fldr = work_dir+"\\ArcGIS_Layer_files_wind"  
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        for kmz_file in glob(src_fldr+"\\*.kmz"): 
            shutil.copy2(kmz_file, kmz_dst_fldr); 
  
        for lyr_file in glob(src_fldr+"\\w*.lyr"): 
            shutil.copy2(lyr_file, lyr_dst_fldr) 
  
        # Removing the intermediate files 
                     
        for j in glob("w*.lyr"): 
            os.remove(j) 
                         
        for m in glob("w_int*"): 
            shutil.rmtree(m, ignore_errors=True) 
  
        for o in glob("info"): 
            shutil.rmtree(o, ignore_errors=True) 
             
        for p in glob("w*ge.kmz*"): 
            os.remove(p) 
            # Removing the intermediate files 
        for g in glob("w*.lyr"): 
            os.remove(g) 
  
        gdb_time = time.time() 
        print("--------------- Wind gdb creation time -------------") 
        print(str(gdb_time - process_time)+" "+"seconds") 
             
        end = time.time() 
        print("--------------------- Final_time --------------------") 
        print(str(end - start)+" "+"seconds") 
        print("--------------------- Footprint is ready  --------------------") 
  
  
    def combined(self): 
        # Import arcpy and other required modules 
        import time 
        import arcpy 
        import os 
        from glob import glob 
        import shutil 
        print("-------- Starting the Combined Footprint Visualization tool ------------") 
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        def validate_input(inp): 
            try: 
                inp = int(inp) 
            except ValueError: 
                print("Could not convert input to integer, try again") 
                inp = None 
            return inp 
  
        start = time.time() 
  
        # Overwiriting existing files if any 
        arcpy.env.overwriteOutput = True 
  
        # Setting up Working directory and Local variables: 
        work_dir = os.getcwd() 
        arcpy.env.workspace = work_dir 
  
        number = None 
        while number is None: 
            number = raw_input("Enter Event ID") 
            number = validate_input(number) 
             
        if number == '': 
            inp = glob('*.csv') 
        else: 
            inp = ["Event_"+str(number)+".csv"] 
             
        print(inp) 
  
        # Looping over all the events and performing same tasks for each of them  
        for i in inp: 
            eve = i.split('_')[1] 
            print("-------- Event_ID ------------") 
            print(eve) 
            event_id = eve.split('.')[0] 
            Extension = i.split('.')[1]  
  
            arcpy.CheckOutExtension("spatial") 
            Layer_1 = "Layer_1" 
             
        # Making XY Event Layer 
            arcpy.MakeXYEventLayer_management("Event_"+event_id + ".csv", "lon", 
"lat", Layer_1, 
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"GEOGCS['GCS_WGS_1984',DATUM['D_WGS_1984',SPHEROID['WGS_1984',6378
137.0,298.257223563]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.0174532925199433
]];-400 -400 1000000000;-100000 10000;-100000 10000;8.98315284119522E-
09;0.001;0.001;IsHighPrecision", "") 
        # Converting Feature Class to Feature Class 
            arcpy.FeatureClassToFeatureClass_conversion(Layer_1, work_dir, 
"eveid"+event_id, "", "event_id \"event_id\" true true false 4 Long 0 0 
,First,#,Layer_13,event_id,-1,-1;lon \"lon\" true true false 8 Double 0 0 
,First,#,Layer_13,lon,-1,-1;lat \"lat\" true true false 8 Double 0 0 ,First,#,Layer_13,lat,-1,-
1;wind_speed \"wind_speed\" true true false 4 Long 0 0 ,First,#,Layer_13,wind_speed,-
1,-1;storm_surge \"storm_surge\" true true false 8 Double 0 0 
,First,#,Layer_13,storm_surge,-1,-1", "") 
         
        # Interpolation of wind data to a surface using IDW ----- You can read more about 
methods of interpolation on arcgis blog and choose a different one too. 
            arcpy.gp.Idw_sa( "eveid"+event_id+".shp", "wind_speed", "w_int"+event_id, 
"0.001548", "2", "VARIABLE 12", "") 
             
            idw_time_wind = time.time() 
            print("----------- Wind Interpolation time --------------") 
            print(str(idw_time_wind - start)+" "+"seconds") 
  
        # Interpolation of surge data to a surface using IDW ----- 
            arcpy.gp.Idw_sa( "eveid"+event_id+".shp", "storm_surg", "s_int"+event_id, 
"0.001548", "2", "VARIABLE 12", "") 
            idw_time_surge = time.time() 
            print("----------- Surge Interpolation time in seconds --------------") 
            print(str(idw_time_surge - idw_time_wind)+" "+"seconds") 
  
        # Reading in raster file to get the extent/bounds of the Wind and Surge   
            elevRaster_w = arcpy.sa.Raster('w_int'+event_id) 
            extent_w = elevRaster_w.extent 
            Envelope_w = "%f %f %f %f" %(extent_w.XMin, extent_w.YMin, 
extent_w.XMax, extent_w.YMax) 
  
            elevRaster_s = arcpy.sa.Raster('s_int'+event_id) 
            extent_s = elevRaster_s.extent 
            Envelope_s = "%f %f %f %f" %(extent_s.XMin, extent_s.YMin, extent_s.XMax, 
extent_s.YMax) 
  
        # Clip Wind to exact extent of the footprint 
            arcpy.Clip_management("w_int"+event_id, Envelope_w, "wfinal"+event_id, 
"Event_"+event_id+".shp", "0", "ClippingGeometry", "NO_MAINTAIN_EXTENT") 
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        # Clip Surge to exact extent of the footprint 
            arcpy.Clip_management("s_int"+event_id, Envelope_s, "sfinal"+event_id, 
"Event_"+event_id+".shp", "0", "ClippingGeometry", "NO_MAINTAIN_EXTENT") 
  
        # Creating a layer with the same color classifcation and scale 
  
            arcpy.MakeRasterLayer_management(in_raster="wfinal"+event_id, 
out_rasterlayer="MakeRas_wfinal"+event_id, where_clause="", envelope=Envelope_w, 
band_index="") 
            arcpy.SaveToLayerFile_management(in_layer="MakeRas_wfinal"+event_id, 
out_layer="wlayer"+event_id+".lyr", is_relative_path="RELATIVE", 
version="CURRENT") 
            
arcpy.ApplySymbologyFromLayer_management(in_layer="wlayer"+event_id+".lyr", 
in_symbology_layer="color_w.lyr") 
  
            wind_layer_time = time.time() 
            print("-----------Wind Layer creation time --------------") 
            print(str(wind_layer_time - idw_time_surge)+" "+"seconds") 
  
        # Creating a layer with the same color classifcation and scale 
  
            arcpy.MakeRasterLayer_management(in_raster="sfinal"+event_id, 
out_rasterlayer="MakeRas_sfinal"+event_id, where_clause="", envelope=Envelope_s, 
band_index="") 
            arcpy.SaveToLayerFile_management(in_layer="MakeRas_sfinal"+event_id, 
out_layer="slayer"+event_id+".lyr", is_relative_path="RELATIVE", 
version="CURRENT") 
            
arcpy.ApplySymbologyFromLayer_management(in_layer="slayer"+event_id+".lyr", 
in_symbology_layer="color_s.lyr") 
  
            surge_layer_time = time.time() 
            print("----------- Surge Layer creation time --------------") 
            print(str(surge_layer_time - wind_layer_time)+" "+"seconds") 
  
        ## Creating a KML file to view it in google earth  
            arcpy.LayerToKML_conversion(layer="wlayer"+event_id+".lyr", 
out_kmz_file="w"+ event_id+"GE.kmz", layer_output_scale="0", 
is_composite="NO_COMPOSITE", 
boundary_box_extent="DEFAULT",image_size="1024", dpi_of_client="96", 
ignore_zvalue="ABSOLUTE") 
  
            googleearthfile_w_time = time.time() 
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            print("----------- Google earth files for wind --------------") 
            print(str(googleearthfile_w_time - surge_layer_time)+" "+"seconds") 
          
        ## Creating a KML file to view it in google earth  
            arcpy.LayerToKML_conversion(layer="slayer"+event_id+".lyr", 
out_kmz_file="s"+ event_id+"GE.kmz", layer_output_scale="0", 
is_composite="NO_COMPOSITE", boundary_box_extent="DEFAULT", 
image_size="1024", dpi_of_client="96", ignore_zvalue="ABSOLUTE") 
  
            googleearthfile_s_time = time.time() 
            print("----------- Google earth files for surge --------------") 
            print(str(googleearthfile_s_time - googleearthfile_w_time)+" "+"seconds") 
  
  
        # Removing the intermediate files 
            for f in glob("eveid"+event_id+".*"): 
                os.remove(f) 
                 
            for g in glob("w_int"+event_id+".*"): 
                os.remove(g) 
                 
            for j in glob("s_int"+event_id+".*"): 
                os.remove(j) 
  
        # Returning the License back to the ArcGIS to be used for next time 
        arcpy.CheckInExtension("spatial") 
  
                
        process_time = time.time() 
        print("------------------ Processing time -------------------") 
        print(str(process_time - start)+" "+"seconds") 
  
        OutGDB = arcpy.CreateFileGDB_management(work_dir, "footprints.gdb") 
  
        mySurgeList = arcpy.ListRasters("sfinal*", "") 
        myWindList = arcpy.ListRasters("wfinal*", "") 
  
        newList = [] 
        for x in mySurgeList: 
             z1 = os.path.join(work_dir, x) 
             newList.append(z1) 
  
        for y in myWindList: 
             z2 = os.path.join(work_dir, y) 
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             newList.append(z2) 
  
        inList = (";".join([i for i in newList])) 
        arcpy.RasterToGeodatabase_conversion(inList, OutGDB)  
  
        # ---------------------------------------------------------------------------------- 
  
        try: 
            os.mkdir("Google_Earth_files_wind") 
            os.mkdir("ArcGIS_Layer_files_wind") 
            os.mkdir("Google_Earth_files_surge") 
            os.mkdir("ArcGIS_Layer_files_surge") 
        except OSError: 
            # The directory already existed, nothing to do 
            pass 
  
        src_fldr = work_dir  
        wkmz_dst_fldr = work_dir+"\\Google_Earth_files_wind" 
        wlyr_dst_fldr = work_dir+"\\ArcGIS_Layer_files_wind"  
        skmz_dst_fldr = work_dir+"\\Google_Earth_files_surge" 
        slyr_dst_fldr = work_dir+"\\ArcGIS_Layer_files_surge" 
  
  
        for wkmz_file in glob(src_fldr+"\\w*.kmz"): 
            shutil.copy2(wkmz_file, wkmz_dst_fldr); 
  
        for wlyr_file in glob(src_fldr+"\\w*.lyr"): 
            shutil.copy2(wlyr_file, wlyr_dst_fldr) 
  
        for skmz_file in glob(src_fldr+"\\s*.kmz"): 
            shutil.copy2(skmz_file, skmz_dst_fldr); 
  
        for slyr_file in glob(src_fldr+"\\s*.lyr"): 
            shutil.copy2(slyr_file, slyr_dst_fldr) 
  
  
        # Removing the intermediate files 
        for h in glob("w*.lyr"): 
            os.remove(h) 
                         
        for i in glob("w*ge.kmz*"): 
            os.remove(i) 
  
        for j in glob("s*.lyr"): 
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            os.remove(j) 
                         
        for k in glob("wfinal*"): 
            shutil.rmtree(k, ignore_errors=True) 
  
        for l in glob("sfinal*"): 
            shutil.rmtree(l, ignore_errors=True) 
  
        for m in glob("s_int*"): 
            shutil.rmtree(m, ignore_errors=True) 
  
        for n in glob("w_int*"): 
            shutil.rmtree(n, ignore_errors=True) 
  
        for o in glob("info"): 
            shutil.rmtree(o, ignore_errors=True) 
             
        for p in glob("s*ge.kmz*"): 
            os.remove(p) 
  
        gdb_time = time.time() 
        print("--------------- Combined gdb creation time -------------") 
        print(str(gdb_time - process_time)+" "+"seconds") 
  
        end = time.time() 
        print("--------------------- Final_time --------------------") 
        print(str(end - start)+" "+"seconds") 
  
        print("---------------------Wind and Surge Footprints Are Ready  --------------------") 
  
root = Tk() 
my_gui = Viz_tool_gui(root) 
root.mainloop() 
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