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Abstract

Meta-materials are a class of artificial materials with a wide range of bulk properties,

completely different from the base material they are made of. Some notable examples

include negative Poisson’s ratio materials, materials designed for specific electromagnetic,

acoustic, or thermal properties. The term meta-material in the context of this research refers

to a continuous, heterogeneous structure with prescribed elastic properties. Such meta-

materials are designed using Topology Optimization (TO). Tools like SIMP interpolation,

mesh filtering and continuation methods are used to address the numerical issues with

Topology Optimization.

The most popular tool to design such materials is Asymptotic Homogenization.

However, it has its limitations. Homogenization requires the meta-material to obey peri-

odicity and scaling requirements. Dr. Chris Czech in his Ph.D. dissertation proposes a

way to design meta-materials that may, due to manufacturing limitations, break the scaling

requirements. Using Volume Averaging, he designs thin-layered meta-materials for use in

the shear beam of a non-pneumatic wheel. By offsetting the said meta-material layers by a

half-width of the Unit Cell, auxetic honeycomb-like geometry was obtained. This was the

first time such a shape was observed as the result of Topology Optimization targeting the

effective shear modulus.

This research will further study the offset periodicity by considering offsets other

than just zero or half-widths. The same shear beam of a non-pneumatic wheel is designed

using such offsets.

The optimization formulations in literature and the ones proposed by Dr. Czech
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have been extensively studied and used for single-criteria design problems. This research

demonstrates the use of those formulations for the design of meta-materials with multi-

ple prescribed elastic properties, such as prescribed behaviors in shear and in tension or

compression.

This research also identifies a possible physical limitation in the combinations of

elastic properties that can be achieved for meta-materials when designed using Topology

Optimization.
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Chapter 1

Introduction

1.1 Meta-Material Design using Topology Optimization

Topology Optimization (TO) is a structural optimization tool used to find the op-

timal distribution of material in a design space subjected to certain stimuli (such as struc-

tural loading, heat input, electromagnetic field etc.). Topology Optimization helps to solve

a broad set of design problems from different engineering disciplines.

The most common problems are minimum compliance and minimum weight prob-

lems. Other problems include maximum heat transfer rate, maximum porosity, etc. Fig-

ures 1.1 and 1.2 show compliant design of some structures using topology optimization [2].

Figure 1.1: Compliant design of a beam using Topology Optimization [2]
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Figure 1.2: Topology Optimization of a Cantilever Beam in a 3D domain [3]

Meta-material design is one such problem that can be solved using topology opti-

mization. Meta-materials are a class of artificial materials which are designed to achieve a

set of properties which are very different from the base material they are made of. Such

meta-materials can also achieve properties which are not found in any traditional, homo-

geneous material. The term “Meta-Material” was first used by Rodger M. Walser in 2001

to describe the design of materials with electromagnetic properties beyond those of natural

or conventional composite materials [4]. In the context of this research, meta-materials

are heterogeneous, periodic structures, designed to achieve a specific elastic behavior. For

example, meta-materials can be designed to mimic the elastic behavior of elastomers such

as rubber, without their hysteretic loss effect [5].

Meta-material design is a two-step optimization problem with the overall objective

of optimizing the material distribution in a design space to achieve a global objective such

as minimum compliance or minimum weight, while subjected to the loads and constraints

of the system.

The first step optimizes the system in which the meta-material is to be used. The

system optimization problem is typically a standard minimum compliance or minimum

weight problem, where a homogeneous material with properties E∗ij , is used in place of the

meta-material. The properties E∗ij are optimized to achieve the objectives and constraints

of the system optimization problem.

The second step uses topology optimization to find the optimal material distribution

with E∗ij as its effective elastic behavior. This research primarily focuses on the second step

of the meta-material design process.
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Figure 1.3: Meta-Material Design Process [6]

Meta-material design typically uses the mathematical Asymptotic Homogenization

theory to evaluate the effective elastic property (EMij ) of a given meta-material. The as-

sumptions of the mathematical tool require the meta-material to be Y-periodic, where the

domain Y, is far smaller in size than the global design space. This limits the applicability

of asymptotic homogenization in the design of meta-material components.

Field homogenization, also called Volume Averaging is another analytical tool that

can be used to evaluate the elastic properties of a material distribution. Volume averaging

was originally developed to evaluate the global properties of composite materials. It was

previously demonstrated by Chris Czech that this tool can be used to solve meta-material

design problems where asymptotic homogenization could not be used [6], such as when

the domain is not Y-periodic (non-simple or offset geometry), and when designing a meta-

material outside the scaling limit of asymptotic homogenization.

The design domain Y is said to be Y-periodic if some physical property of the domain

follows the periodicity equation within the domain:

f(x+ nY1 +mY2) = f(x)

Where,

x is the position of any given point in the design domain,

n,m are arbitrary integers, and
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Y is the domain bound by the vectors Y1 and Y 2

For meta-materials, the periodic function is the material tensors Cijkl(x) at a given

point x. This means Cijkl at any point in the UC is equivalent to Cijkl at the corresponding

point in any other cell in the global design domain.

Figure 1.4: Periodicity conditions require functions to be identical at each point P in the
domain [7].

To satisfy the Y-periodic conditions, the global design domain is discretized into

smaller, periodic unit cells with the same material distribution. This discretization is known

as the meso-structure of the design domain. The topological connectivity of the meso-

structure can have a significant impact on the final optimized meta-material bulk behavior.

Each cell in the meso-structure is further discretized into a number of finite elements

(referred as elements in this thesis). This discretization serves two purposes: firstly, this

discretization will be used for any finite element analysis required for the evaluation of the

meta-material, and lastly to approximate the density function.

A density function, ρ(x), is used to quantify the material distribution. For simplicity,

the density function is approximated as being constant within each element e. i.e. ρ(x) = ρe.

The constant densities ρe are then chosen as the design variables for topology optimization.

A material model is required to translate these densities to a real physical quan-

tity such as the elastic modulus. The three commonly used models are micro-cells with

rectangular holes, layered materials, and artificial materials.
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The micro-structure for the rectangular hole model consists of infinitesimal holes.

The variables a(x) and b(x) define the size of the hole at point x. The densities ρe are then

interpreted as a function of the size of the microscopic holes, ρ(a, b) [8].

Figure 1.5: Micro-cells with rectangular holes [8].

The layered material model is made of infinitesimal layers of material and void,

similar to the layers of a composite material. The variable γ defines the width of the

material layer, and θ defines the orientation of the layer. The densities ρe are interpreted

as a function of the width and orientation of the material layer, ρ(γ, θ) [8].

Figure 1.6: Micro-cells with layered materials [8].

For an artificial material model, ρe ranges from 0(void) to 1(material). ρe can be

a discrete (black or white) or a continuous (gray) variable. A discrete design variable will

require a discrete optimization such as integer programming, which is computationally costly

and is NP-complete (no guaranteed convergence). Unlike in micro-cell models, intermediate
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values of design variables lack any physical interpretation. Hence this model is called an

”artificial” material model. A material interpolation scheme is required to translate the

”artificial” variables to a real material property. In the context of this research, the densities

ρe are translated into the elastic tensor Ce using Solid Isotropic Material with Penalization

(SIMP) interpolation [9].

The elastic tensor of element e, is given by:

Ce = ρse.C0

Where,

Ce is the material tensor for the element e.

ρe is the artificial density for the element e.

C0 is the material tensor for the base material.

s is the penalty exponent applied.

The penalty, s, is an arbitrary constant that penalizes intermediate densities to make

them tend to a black or white (1-0) solution. It is usually chosen between 2 and 4. Penalties

less than 2 do not provide enough penalization, while those larger than 4 have a lower

convergence rate. After optimization, elements with densities larger than a certain value

(usually, ρi > 0.3) are interpreted as elements with material, and the remaining as elements

without material. The solution is called SIMP-convergent if the interpreted topology has a

behavior close to the optimized artificial topology [10]. The ratio of elements with densities

close to 0 or 1, to the total elements is used as a degree of SIMP-convergence.

Figure 1.7: Solutions of minimum compliant cantilever beam problem for different penalties
[9].
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There are other artificial density interpolation schemes, such as Hashin-Shtrikman

interpolation, and Reuss-Voigt interpolation [9]. SIMP is the most commonly used artificial

material model, as it is simple and efficient. All topology optimizations performed in this

research uses the SIMP interpolation.

There are two physical quantities dependent on the material distribution that are

targeted by topology optimization. The first is the ratio of material volume to total volume,

also called its volume fraction, V (x). For constant elemental densities, the volume fraction

is equal to the average of all the densities.

V (x) =
1

Ω

∫
Ω
ρidΩ

The second is the effective elastic property of the meta-material, EMij . It is evaluated

either by asymptotic homogenization (homogenization), or field homogenization (volume

averaging). The goal of topology optimization is to optimize the material distribution to

make EMij equal to the target E∗ij .

The optimum micro-structure is the one which has the least volume while having an

elastic behavior equal to the desired target. Hence, the optimization problem is formulated

as:

Minimize V (x)

Subject to:

EMij − E∗ij = 0

0 ≤ ρe ≤ 1

This formulation can be modified by changing the linear constraint on EMij to a

quadratic constraint. The square of the linear constraint is constrained to be less than or

equal to an engineering tolerance δ. This problem would be:

Minimize V (x)

Subject to:

(EMij − E∗ij)2 ≤ δ
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0 ≤ ρe ≤ 1

Lastly, another variation of the problem would be to make the target on EMij the

objective of the formulation, while bounding the volume between target values.

Minimize (EMij − E∗ij)2

Subject to:

V1 ≤ V (x) ≤ V2

0 ≤ ρe ≤ 1

These problems were formulated, and studied extensively by Dr. Czech. It was

concluded that Formulations 1 and 2 both are able to converge to numerical and SIMP-

convergent designs. Whereas, formulation 3 did not converge, both numerically and physi-

cally (SIMP-convergence).

1.2 Numerical Issues with Topology Optimization

Despite its advantages and broad applications, Topology optimization has several

issues. These issues arise from its inherent numerical instability. Sigmund et. Al [11]

identify three important numerical issues with TO.

1.2.1 Checker-boarding

Topology Optimization sometimes converges on results with alternating 1-0 den-

sities, resulting in a checkerboard pattern. A check-boarding pattern is one where two

elements with material are connected only by one node, surrounded by void elements, as

observed in Figure 1.8b.
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Figure 1.8: Numerical Issues with Topology Optimization. b) Checker-boarding. c-e) Mesh
Dependence. [11]

Checker-boarding is an issue which is purely numerical in nature. Some suggest
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ignoring the issue altogether, using image-processing algorithms to smooth out the output

densities. This should be avoided as it ignores the underlying problem. The checkerboard

numeric model is artificially stiffer than the corresponding post-processed numeric model

[12].

To ensure non-checkerboard solutions, higher-order finite elements can be used. 8-

node and 9-node elements have been proven to avoid checker-boarding. [12]. However,

when using SIMP, 8-node and 9-node elements prevent checker-boarding only for small

penalization [12]. Also, 8-node and 9-node elements unnecessarily make computation more

expensive.

One can avoid 1-node hinges, by using element shapes where only 2-node connections

are possible, such as hexagonal elements. Such elements have been proven to be feasible by

Gibert et. al. [13]

The most popular and reliable way to avoid checker-boarding is to use image-

processing filters, either on the densities themselves or on their sensitivities, during each

iteration of the optimization algorithm. This method modifies the densities or the sensitiv-

ities using a weighted average of the original densities within a defined neighborhood.

Figure 1.9: Defined neighborhood around element j for mesh-filtering. [11]
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For the density filter, the new densities, ρ̃j are calculated as follows [14] [15]:

ρ̃j =

∑
i∈Sj

ρiwi∑
i∈Sj

wi

Where,

ρ̃j is the filtered density of element j.

ρi is the density of element i.

wi is the value of the weighting function for element i.

Sj is set of all elements inside the defined neighborhood around element i.

For the sensitivity filter, the new sensitivities, ∂̃E
M

∂ρj
are calculated as follows [16] [11]:

∂̃EM

∂ρj
=

∑
i∈Sj

∂EM

∂ρi
ρiwi

ρj
∑

i∈Sj
wi

Where,

∂̃EM

∂ρj
is the filtered derivative of modulus EM wrt the density of element j.

∂EM

∂ρj
is the original derivative of modulus EM wrt the density of element j.

ρi is the density of element i.

wi is the value of the weighting function for element i.

Sj is set of all elements inside the defined neighborhood around element j.

There are multiple weighing functions which can be used [17]. The most commonly

used one is a linear weighing function, where the weights are defined by wj = rmin − rj

Where, rmin is the radius of the defined neighborhood, and rj is the distance between the

center of the neighborhood and the center of element j [17]. Non-linear weighting functions

can be used to push the solutions to a more 1-0 solution [17].

It is important to note that Topology Optimization will not obtain topologies with

feature sizes less than the size of the defined neighborhood (2rmin) [11] [18]. Hence, the
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minimum achievable length scale in topology optimization can be controlled by the param-

eter rmin. This also means, that rmin has a lower limit imposed on it, which is equal to the

minimum feature length achievable by the manufacturing process to be used for the meta-

material. Also, for mesh-filtering to be effective, more than 1 element must be included in

the neighborhood. For 4-node rectangular elements, this imposes the following constraint

on rmin: rmin > h, where h is the element size.

1.2.2 Mesh Dependence

Mesh dependence of the solutions is another critical numerical issue with TO. The

mesh-dependence issue is highlighted by Figures 1.8c-1.8e, where it can be observed that a

finer mesh leads to a finer structure. This issue occurs due to the non-uniqueness of the TO

solution. An example of a problem with non-unique solutions is a bar in uni-axial tension. A

single thick bar is structurally equivalent to multiple finer bars. Mesh-dependence is usually

not an issue when topology optimization is used for material optimization with tools like

homogenization [11]. Hence, this issue does not need to be addressed for this research.

1.2.3 Local Minimums

Topology Optimization can converge to different solutions for the same discretization

when different parameters are used. The two most commonly demonstrated TO problems

in the literature are the cantilever beam and MBB beam minimum compliance problems. It

can be observed in the literature, that many different solutions exist for the same problem,

using the same discretization. i.e. TO converges to a local optimum. The TO process is

highly sensitive to small changes in parameters, which include but are not limited to: the

initial guess, the type of filtering, the value of rmin, the weighing function, the penalization

parameter. [11]

A global optimization algorithm, such as genetic or evolutionary algorithms can

be used, but they may not be able to handle the size of a typical topology optimization

problem. There are various methods suggested in the literature to ensure a global solution.
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The most common ones are continuation methods, which gradually change a particular TO

parameter during optimization.

One such continuation method was suggested by Allaire and Francfort [19], which

initially solves the TO optimization with no penalization, and after convergence, gradually

increases the penalization to obtain a 1-0 solution.

Another continuation approach is to initially solve the TO problem with a large value

of rmin and upon convergence gradually decrease it, until a near 1-0 solution is obtained. [11]

1.3 Asymptotic Homogenization (Homogenization)

Asymptotic Homogenization is an approach to calculate effective properties of a

periodic, heterogeneous, structure. It converts a periodic, heterogeneous material model

into a homogeneous material model. The approach is based on the mathematical theory of

homogenization. It can be applied to various disciplines of engineering for example, heat

transfer, fluid flow through a porous medium, electromagnetism, or elasticity.

Figure 1.10: Local Design Domain for Homogenization [8].

The Y-periodicity conditions on displacements incur the following boundary condi-
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tions on the base cell of the periodic micro-structure (Unit Cell).

χ(y1, y2) = χ(y1 + Y1, y2) = χ(y1, y2 + Y2) = χ(y1 + Y1, y2 + Y2)

Where, χ(y1, y2) are the displacements at points (y1, y2), on the boundary of the Unit Cell.

The local domain Y with the periodic conditions enforced is called the Repeated

Unit Cell (RUC). The mathematical requirements of asymptotic homogenization require

the widths Y1 and Y2 of the RUC to be very small compared to the global design domain.

Symmetric boundary conditions are applied on the boundary based on the direction

of evaluation. For evaluating any normal moduli the normal displacements on the boundary

of the RUC are restricted, χn(y1, y2) = 0. For evaluating the shear modulus the tangential

displacements on the boundary of the RUC are restricted, χt(y1, y2) = 0.

A force Fe is applied to each element such that there is unit initial strain induced

in the jth direction.

Fe =

∫
Ω
BdjdΩ

Where B is the strain-displacement matrix.

Using the finite element stiffness matrix, K, for solid 2-D, linear, isotropic elasticity,

the displacement field u(y1, y2) (induced due to the global force, F ), is calculated as the

solution for the linear system:

[K]{u} = {F}

The effective moduli of the periodic structure are calculated using the homogenization

equation.

CHij (ρ) =
1

Ω

∫
Ω

(Cij − dTi ε(u))dΩ

Where,

Cij are the elastic moduli at any given point

dTi are the ith columns of elasticity matrix Dij

ε(u) is the strain due to displacement u
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Ω is the domain of the RUC

u are the displacements induced in Ω, due to the force F .

1.4 Field Homogenization (Volume Averaging)

Field Homogenization, also called Volume Averaging is an evaluation tool, originally

developed for calculating the global elastic properties of conventional fiber composites by

Drago et. al. [20]

Unlike asymptotic homogenization, the evaluation is performed on the Representa-

tive Volume Element (RVE) of the global domain, and not the RUC. The RVE is defined as

the volume which accurately represents the properties of the global material. The smallest

RVE which can be analyzed to accurately evaluate the global properties of the material is

called the RVE limit. In the context of meta-materials, RVE limit can either be a single

UC or a collection of UCs. [20] [5]

There are two sets of boundary conditions which can be applied to the design do-

main, homogeneous traction or homogeneous displacements. Homogeneous traction bound-

ary conditions apply a uniform traction force, σ0
ij , on the boundary of the domain. Homo-

geneous displacement boundary conditions enforce a uniform boundary deformation on the

domain. [20] [5]

15



Figure 1.11: Representative Volume Element (RVE) [20]

The different Boundary Conditions that can be applied on the RVE boundaries, S [20] [5]

are:

Traction BCs for Transverse Normal loading - For evaluation of ET22 or ET33

z ∈ S1: σ22(z) = 0 σ33(z) = 0

z ∈ S2: σ22(z) = σ0
22 σ33(z) = 0

z ∈ S3: σ22(z) = 0 σ33(z) = 0

z ∈ S4: σ22(z) = −σ0
22 σ33(z) = 0

Displacement BCs for Transverse Normal loading - For evaluation of EU22 or EU33

z ∈ S: u2(z) = ε0
22z2 u3(z) = −ε0

33z3

The unknown ε0
33 is determined subject to the integral constraint, σ̄33 = 0 on S2 and S3

Traction BCs for Transverse Shear loading - For evaluation of GT23

z ∈ S1: σ23(z) = −σ0
23 σ33(z) = 0

z ∈ S2: σ23(z) = σ0
23 σ22(z) = 0

z ∈ S3: σ23(z) = σ0
23 σ33(z) = 0

z ∈ S4: σ23(z) = −σ0
23 σ22(z) = 0
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Displacement BCs for Transverse Shear loading - For evaluation of GU23

z ∈ S: u2(z) = ε0
23z3 u3(z) = ε0

23z2

Using finite element stiffness matrix, K, for solid 2-D, linear, isotropic elasticity, the

displacement field u(z2, z3) is calculated as the solution for the linear system [20] [5]:

[K]{u} = {F}

Figure 1.12: Single/Multiple Unit Cells deformed in normal loading using displacement(top)
and traction(bottom) BCs [20]
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Figure 1.13: Single/Multiple Unit Cells deformed in shear loading using displacement(top)
and traction(bottom) BCs [20]

The effective modulus of the periodic structure, EMij is then calculated as the solution

to:

σ̄i = EMij ε̄j

Where, ε̄ is the average strain, and σ̄ is the average stress induced the RVE due to

the displacement field u(z2, z3). The average stresses and strains are calculated using the

average stress and strain theorems [20] [5].

ε̄i =
1

V

∫
V
εidV

σ̄i =
1

V

∫
V
σidV

The average strain ε̄i in the RVE is equal to the boundary displacements ε0
i in case

of displacement BCs, and the average stress σ̄i is equal to the boundary traction σ0
i in case

of traction BCs. The RVE limit is reached when the strain energy is equivalent for any
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boundary condition applied. [20] [5]

1

2
σ̄iε̄i =

1

2
σ̄iε

0
i =

1

2
σ0
i ε̄i

The Volume Averaging method evaluates the meta-material using the RVE, rather

than the RUC. This eliminates the sizing constraints on the UC that homogenization theory

requires. This expands the meta-material design process to include problems in which meta-

materials could not be designed by homogenization due to manufacturing constraints. If

the system of the meta-material is small enough in one or more dimensions, a meta-material

with UCs bound by homogenization’s requirements would be too small to be manufactured.

[20] [5]

Figure 1.14: A meta-material which violates the homogenization requirements in the vertical
direction [5]

19



Chapter 2

Motivation and Research Questions

As mentioned in chapter 1, this research focuses on the second step of the meta-

material design process. i.e. using Topology Optimization to design a meta-material with

a target effective material property. In this context, meta-material is a heterogeneous,

periodic structure.

A typical meta-material is a regular periodic structure with square or rectangular

unit cells. In principle, meta-material design using regular meso-structures can obtain the

full spectrum of typologies, as Topology Optimization creates and shapes holes in the meso-

structure as required. However, meta-materials with shapes like honeycombs or auxetic

honeycombs cannot be obtained by the standard Topology Optimization process targeting

elastic or shear modulus, as observed in the literature.

Diaz et al. used a parallelogram unit cell with regular periodicity to design meta-

materials [21]. By using such parallelogram unit cells, with varying angles, they could obtain

honeycomb shapes as the optimal design of the meta-material design process. A change in

the parallelogram angle changes the shape of the global and local design domains. This

requires re-discretization of the finite elements every time the angle changes.
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Figure 2.1: Example meso-structures using parallelogram unit cells [22].

Chris Czech proposed a way to obtain honeycomb or auxetic honeycomb shapes from

the meta-material design process by using square unit cells with irregular periodicity [10].

Square or rectangular unit cells are tessellated in a staggered arrangement as shown in

Figure 2.2. Changes in the staggered arrangement do not change the shape of the global and

local design domains. Hence, such meso-structures have an advantage over parallelogram

meso-structures, as they do not require re-discretization for every change in the topological

connectivity. It was demonstrated that such irregular periodicities can lead to a broader

class of meta-materials such as ones with auxetic honeycomb geometries [10].

Figure 2.2: Left: Regular periodic unit cells; Right: Irregular periodic unit cells [10].

Chris Czech successfully obtained an auxetic honeycomb meta-material by using

square unit cells with layers offset by a half-width of the unit cell. However, no research

exists in the literature that uses arrangements with offsets other than zero and half-width

of the unit cell. This research will investigate the meta-material shapes obtained by us-
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ing tessellations with varying offsets. Such tessellations are expected to generate broader

classes of meta-materials. Tessellations like these break the Y-periodicity requirements for

asymptotic homogenization. Can volume averaging be used for this modified periodicity?

Typically, the meta-material design process aims to achieve one specific elastic prop-

erty, like normal elastic modulus, or shear modulus. However, some design problems can

demand a meta-material to have multiple specific properties simultaneously. For example,

the design of a meta-material with a target shear modulus and a target normal elastic mod-

ulus. It needs to be researched whether the meta-material design using TO, can be used to

design ”extreme” meta-materials, which are extremely stiff in one deformation mode, and

extremely compliant in another.

While the framework to solve multi-criteria problems exists, there have been no

demonstrated meta-materials designed for multiple criteria using Topology Optimization [5].

Hashin et. al. have provided bounds for the bulk and shear moduli that a meta-material can

achieve as a function of volume ratio [23]. There exists a physical bound on the Poisson’s

ratio of any linear homogeneous material (−1 ≤ ν ≤ 0.5). It was proven by Milton et. al. [24]

that any positive-definite elasticity tensor can be obtained for heterogeneous structures, by

using 1-point linkages. Such linkages are not physically practical, and will not be obtained

by Topology Optimization. It needs to be investigated if there are any restrictions in the

range of obtainable moduli.

2.1 Hypothesis and Research Questions

These are the questions this research tries to answer:

1. Will having offsets of unit cells other than none or half-widths lead to a broader

class of meta-materials?

2. Must volume averaging be used to evaluate the effective behavior of offset meta-

materials?

3. Is any combination of shear and elastic moduli achievable when using multi-
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criteria design of meta-materials?

These research questions lead to the following hypothesis to be proposed.

The first hypothesis is that: changing the periodicity of the meta-material will lead to

a broader class of meta-materials as the solution of the design process. It was demonstrated

by Chris Czech that a half-width offset of unit cells lead to a different class of meta-

materials [10]. It is therefore viable that different offsets could lead to broader classes of

meta-materials.

The second hypothesis is that: Volume Averaging must be used to evaluate the

effective properties of meta-materials with offset periodicity. By introducing offset, the

Y-periodicity condition required for homogenization is broken. Volume Averaging was

successfully used to evaluate meta-materials outside the scaling limit of homogenization,

therefore it is feasible that it could be used to evaluate meta-materials which break the

other condition required for homogenization.

The third hypothesis is that: there exists a constraint on the range obtainable com-

binations of the effective properties of a meta-material Hashin et al. have provided bounds

on the bulk and shear moduli as a function of the volume ratio of a meta-material [25]. For

homogeneous, linear isotropic or orthotropic materials, the shear modulus is a function of

the normal moduli and Poisson’s ratios.
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Chapter 3

Meta-materials with Offset

Periodicity

As mentioned before in chapter 1, meta-materials with hexagonal/auxetic-hexagonal

shapes have not been observed as a result of TO (for targeting elastic/shear modulus) on

regularly periodic square/rectangular UCs. One must use irregular UCs to obtain such

shapes. One such irregular UC shape is a parallelogram UC. Such UCs have been demon-

strated to achieve hexagon-shaped meta-materials. [26]

Another irregular UC is a simple rectangular cell tessellated with an offset of half-

width. Chris Czech demonstrated that such offset topological connectivity can be used to

obtain auxetic honeycomb shapes [5] [6] [10]. It needs to be seen how a generalized offset

will affect the TO results.

Figure 3.2: Meta-material designed using square unit cells offset by their half-widths [5]
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Figure 3.1: Meta-materials designed using parallelogram unit cells for different parallelo-
gram angles α [26]

This chapter discusses the modifications to the two meta-material analysis tools,

homogenization and volume averaging. The modifications allow for an offset topological

connectivity.

Further, a fictional meta-material design problem is solved to demonstrate the via-

bility of the method and compare the results for different offsets. This example helps answer

the first research question.

Lastly, the non-pneumatic wheels shear beam, as designed by Dr. Czech [5] is

re-designed using different values of offset.
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3.1 Overview of the Problem

Figure 3.3: Square UC w/ offset tessellation

Consider the UC geometry in Figure 3.3. Layers in y2 are shifted by b relative to

the previous layer. For simplicity and uniformity of the discretization, the offset parameter

b is limited to be an integer multiple of h2 (the element size in y2). If b is continuous instead

of discrete, the finite element discretization will not be uniform. An additional node per

element would be required at the interface of two meta-material layers. This non-uniformity

also means that the domain has to be re-discretized for every change in the offset.

Introducing offset between the layers of UC also results in a change in Y-periodicity

condition. As defined in Chapter 1, the design domain Y is said to be Y-periodic if the

elasticity tensor in the domain follows the periodicity equation Cijkl(x + nY1 + mY2) =

Cijkl(x), where n,m are arbitrary integers and Y1,2 are vectors defining the domain Y. i.e.

for orthogonal Unit Cells, the meta-material has to be orthogonally periodic. Polygonal

Unit Cells must be used for non-orthogonally periodic meta-materials for evaluation by

homogenization [26]. For the Unit Cell in Figure 3.3., Y1 = [L, 0]T and Y2 = [b,W ]T , where

L, W, and b are the lengths, widths and the offsets of the UC respectively.
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3.1.1 Discussion on Homogenization for Offset Periodicity

As discussed previously, homogenization cannot be used for evaluating offset meta-

materials. To demonstrate this, homogenization with modified periodicity will be compared

with Volume Averaging.

The modified periodicity boundary conditions are:

χ(y1, y2) = χ(y1 + L, y2)

χ(y1, y2) = χ(y1 + b, y2 +W )

The standard homogenization analysis (as established in Chapter 1) is then repeated.

Figure 3.4: RUC with modified offset periodicity conditions in the three modes of deforma-
tion: Tension in Y2, Tension in Y1 and Shear

It can be observed in the deformed RUCs in Figure 3.4, that the modified boundary

conditions have no visible effect on the tensile deformation modes. It is therefore hypoth-

esized that changing the periodicity, will not have any effect on the homogenized normal

moduli. This can lead to geometries which are not physically continuous.

3.1.2 Modifications to Volume Averaging for Offset Meta-Materials

Unlike the RUC used in homogenization, the boundary conditions of the RVE used

in Volume Averaging are not dependent on the periodicity of the UCs. Hence, no changes

are required in the FEA for Volume Averaging analysis.

The RVE is generated from a single UC, while offsetting layers. Partial unit cells

are used to ensure a rectangular shape of RVE as seen in Figure 3.5.
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Figure 3.5: Rectangular RVE generated using partial unit cells

Volume Averaging analysis (as established in Chapter 1) is repeated while generating

the RVE w/ offset unit cells.

Figure 3.6: RVE with modified offset periodicity in the three modes of deformation, with
the original shape shown in red
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3.2 Comparison between Volume Averaging and Homoge-

nization for Offset Periodicity

A program is developed on MATLAB to analyze any given geometry with offset-ed

UCs. The development and validation of the program is explained in Appendix A.

Homogenization is compared against Volume Averaging. Volume Averaging for

offset meta-materials is validated as described in Appendix A.

Two geometries are analyzed by volume averaging (RVE: 5x5 unit cells) and homog-

enization for offsets ranging from 0% to 50%. The discretization is 20x20 elements per UC.

A fictional linear isotropic base material w/ E=30GPa and v=0.3 is chosen. The analyzed

moduli are normalized and graphed.

As previously hypothesized, offsetting layers of unit cells has no effect on the Elas-

tic Moduli as calculated by homogenization. For geometry A, which is always physically

connected irrespective of offset, it can be observed that the moduli calculated using homog-

enization nearly match the moduli calculated by volume averaging. However, the normal

moduli E22 becomes more inaccurate as the offset is increased. The normal moduli calcu-

lated by homogenization do not change significantly with a change in offset. This was also

previously hypothesized.

This phenomenon can be more easily observed in the moduli calculated for geometry

B. For offsets greater than 6 elements, the geometry is no longer physically connected. The

moduli calculated by volume averaging agrees with this. After an offset of 6 elements, Ev22

and Ev12 drop to nearly zero. The normal moduli calculated by homogenization do not

change significantly with a change in offset. This was also previously hypothesized and

confirmed by the analysis of geometry A. The deviation between volume averaging and

homogenization before and after offset of 6 elements, can be observed in Figure 3.12.

Based on the analysis of the two geometries, it can be concluded that by offsetting

layers of UC, we break the necessary periodic condition required by homogenization, hence

rendering it unusable.
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Figure 3.7: Geometry A

Figure 3.8: Normalized moduli for geometry A

Figure 3.9: Comparison between homogenization and volume averaging for geometry A
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Figure 3.10: Geometry B

Figure 3.11: Normalized moduli for geometry B

Figure 3.12: Comparison between homogenization and volume averaging for geometry B
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3.3 Example Optimization for Different Offsets

Two meta-material optimizations are solved. One targets the effective normal elastic

modulus, while the other targets the effective shear modulus. The UC is a square, with

20x20 element discretization. The optimization is solved using MATLABs SQP algorithm.

Formulation 1 is used to solve the problem. An early termination parameter of 400 iterations

is used. The base material is a fictional isotropic linear material with a Young’s modulus

of 30 GPa and a Poisson’s ratio of 0.3.

The optimization problem is solved for normal moduli targets 3, 9, 15, and 21 GPa

and Shear Modulus targets 1, 4, 5, and 7 GPa, and for offsets 0% to 50%, in 5% increments.

Two different RVEs are considered. One with 6x2 unit cells and another with 3x3 unit cells.

This example serves as the demonstration for the first and second hypotheses dis-

cussed in Chapter 2. Along with the validation in Appendix A, this answers the first two

research questions.

Table 3.1: Numerical results for Et11 = 3 GPa using volume averaging analysis for RVE
containing 6x2 unit cells

Offset V Iterations Function Evaluations Active Constraints

0 0.1570 63 127 360

1 0.1410 111 229 396

2 0.1410 102 213 391

3 0.1450 111 238 394

4 0.1480 103 209 389

5 0.1540 93 198 384

6 0.1590 114 229 393

7 0.1670 110 221 390

8 0.1760 112 227 392

9 0.2180 124 262 375

10 0.2190 124 259 380
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Table 3.2: Numerical results for Et11 = 9 GPa using volume averaging analysis for RVE
containing 6x2 unit cells

Offset V Iterations Function Evaluations Active Constraints

0 0.3240 106 241 392

1 0.3220 135 287 395

2 0.3280 139 285 389

3 0.3360 132 272 388

4 0.3450 142 293 394

5 0.3580 135 272 390

6 0.4030 172 352 388

7 0.4060 114 240 373

8 0.3920 118 244 390

9 0.3870 82 182 378

10 0.3760 104 211 360
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Table 3.3: Numerical results for Et11 = 15 GPa using volume averaging analysis for RVE
containing 6x2 unit cells

Offset V Iterations Function Evaluations Active Constraints

0 0.4960 72 145 396

1 0.5000 96 227 390

2 0.5130 70 161 375

3 0.5200 78 163 388

4 0.5330 106 219 395

5 0.5610 114 258 389

6 0.5700 128 281 387

7 0.5670 105 260 378

8 0.5620 127 271 389

9 0.5790 76 161 337

10 0.5660 96 193 360
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Table 3.4: Numerical results for Et11 = 21 GPa using volume averaging analysis for RVE
containing 6x2 unit cells

Offset V Iterations Function Evaluations Active Constraints

0 0.8330 5 24 324

1 0.8330 5 25 323

2 0.8330 5 25 325

3 0.8330 5 25 328

4 0.8330 5 25 329

5 0.8330 5 25 328

6 0.8320 5 25 328

7 0.8320 5 25 328

8 0.8310 5 25 328

9 0.8310 5 25 328

10 0.8310 5 25 328
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Table 3.5: Graphical results when targeting normal moduli, using volume averaging analysis
for RVE containing 6x2 unit cells.

Offset 3 GPa 9 GPa 15 GPa 21GPa

0

1

2

3

4

5

6

7

8

9

10
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Table 3.6: Numerical results for Et12 = 1 GPa using volume averaging analysis for RVE
containing 6x2 unit cells

Offset V Iterations Function Evaluations Active Constraints

0 0.3210 91 189 344

1 0.2820 177 355 396

2 0.2830 145 292 392

3 0.2830 170 350 391

4 0.2860 176 365 389

5 0.3170 167 341 389

6 0.2570 262 525 384

7 0.3080 139 285 369

8 0.3020 188 385 369

9 0.3110 176 360 373

10 0.3220 118 247 338
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Table 3.7: Numerical results for Et12 = 4 GPa using volume averaging analysis for RVE
containing 6x2 unit cells

Offset V Iterations Function Evaluations Active Constraints

0 0.5370 114 248 384

1 0.5350 143 312 389

2 0.5390 117 243 382

3 0.5400 110 238 387

4 0.5460 103 214 374

5 0.5520 124 262 380

6 0.5490 173 369 398

7 0.5630 174 379 394

8 0.5900 145 298 376

9 0.5850 151 373 379

10 0.5770 131 274 382
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Table 3.8: Numerical results for Et12 = 5 GPa using volume averaging analysis for RVE
containing 6x2 unit cells

Offset V Iterations Function Evaluations Active Constraints

0 0.8010 5 24 196

1 0.8000 5 24 190

2 0.8000 5 24 189

3 0.7980 5 24 187

4 0.7970 5 24 181

5 0.7950 5 24 179

6 0.7940 5 24 176

7 0.7920 5 24 166

8 0.7920 5 24 167

9 0.7910 5 24 164

10 0.7910 5 24 160
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Table 3.9: Numerical results for Et12 = 7 GPa using volume averaging analysis for RVE
containing 6x2 unit cells

Offset V Iterations Function Evaluations Active Constraints

0 0.8750 4 19 392

1 0.8740 4 19 393

2 0.8740 4 19 392

3 0.8730 4 19 392

4 0.8720 4 19 392

5 0.8710 4 19 392

6 0.8690 4 19 392

7 0.8680 4 19 392

8 0.8680 4 19 392

9 0.8680 4 19 392

10 0.8670 4 18 392
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Table 3.10: Graphical results when targeting shear moduli, using volume averaging analysis
for RVE containing 6x2 unit cells.

1 GPa 4 GPa 5 GPa 7GPa

0

1

2

3

4

5

6

7

8

9

10
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Table 3.11: Numerical results for Et11 = 3 GPa using volume averaging analysis for RVE
containing 3x3 unit cells

Offset V Iterations Function Evaluations Active Constraints

0 0.1570 61 123 360

1 0.1350 105 221 396

2 0.1400 91 191 388

3 0.1460 92 194 388

4 0.1480 116 233 394

5 0.1530 119 239 391

6 0.1600 128 257 395

7 0.1670 119 239 393

8 0.1750 141 283 392

9 0.2210 163 337 388

10 0.2190 96 203 364
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Table 3.12: Numerical results for Et11 = 9 GPa using volume averaging analysis for RVE
containing 3x3 unit cells

Offset V Iterations Function Evaluations Active Constraints

0 0.3250 103 259 392

1 0.3230 120 258 391

2 0.3290 117 239 390

3 0.3370 118 252 388

4 0.3470 145 292 392

5 0.4100 147 296 375

6 0.4040 180 372 384

7 0.4090 100 213 373

8 0.3940 79 173 375

9 0.3770 86 185 378

10 0.3770 77 156 328
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Table 3.13: Numerical results for Et11 = 15 GPa using volume averaging analysis for RVE
containing 3x3 unit cells

Offset V Iterations Function Evaluations Active Constraints

0 0.5130 53 107 372

1 0.5060 69 153 379

2 0.5110 134 275 396

3 0.5240 72 156 387

4 0.5660 76 165 350

5 0.5700 109 230 380

6 0.5760 89 187 369

7 0.5660 126 260 386

8 0.5710 121 254 374

9 0.5700 113 235 370

10 0.5670 97 195 364
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Table 3.14: Numerical results for Et11 = 21 GPa using volume averaging analysis for RVE
containing 3x3 unit cells

Offset V Iterations Function Evaluations Active Constraints

0 0.8330 5 25 328

1 0.8330 5 25 328

2 0.8330 5 25 329

3 0.8320 5 25 324

4 0.8300 5 25 315

5 0.8290 5 25 309

6 0.8300 5 25 315

7 0.8310 5 25 322

8 0.8310 5 25 327

9 0.8310 5 25 326

10 0.8310 5 25 324
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Table 3.15: Graphical results when targeting normal moduli, using volume averaging anal-
ysis for RVE containing 3x3 unit cells.

Offset 3 GPa 9 GPa 15 GPa 21GPa

0

1

2

3

4

5

6

7

8

9

10
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Table 3.16: Numerical results for Et12 = 1 GPa using volume averaging analysis for RVE
containing 3x3 unit cells

Offset V Iterations Function Evaluations Active Constraints

0 0.3210 111 231 328

1 0.2830 131 275 393

2 0.2820 151 319 393

3 0.2830 169 350 393

4 0.2610 137 285 378

5 0.2420 238 489 387

6 0.3030 160 322 367

7 0.2870 164 335 385

8 0.3010 131 271 362

9 0.3190 191 428 373

10 0.3220 100 204 328
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Table 3.17: Numerical results for Et12 = 4 GPa using volume averaging analysis for RVE
containing 3x3 unit cells

Offset V Iterations Function Evaluations Active Constraints

0 0.5560 60 121 320

1 0.5350 150 327 389

2 0.5370 120 249 389

3 0.5460 87 180 365

4 0.5440 115 242 389

5 0.5530 100 209 375

6 0.5570 117 244 378

7 0.5590 191 402 398

8 0.5910 205 426 393

9 0.5940 197 409 394

10 0.5810 123 247 388
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Table 3.18: Numerical results for Et12 = 5 GPa using volume averaging analysis for RVE
containing 3x3 unit cells

Offset V Iterations Function Evaluations Active Constraints

0 0.8000 5 24 204

1 0.7990 5 24 195

2 0.7970 5 24 188

3 0.7940 5 24 179

4 0.7930 5 24 173

5 0.7890 5 24 165

6 0.7870 5 24 152

7 0.6470 186 397 394

8 0.7850 5 24 125

9 0.7850 5 24 111

10 0.7840 5 24 104
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Table 3.19: Numerical results for Et12 = 7 GPa using volume averaging analysis for RVE
containing 3x3 unit cells

Offset V Iterations Function Evaluations Active Constraints

0 0.8740 4 19 392

1 0.8740 4 19 392

2 0.8730 4 19 392

3 0.8700 4 19 392

4 0.8690 4 19 392

5 0.8670 4 19 392

6 0.8650 4 18 392

7 0.8630 4 18 392

8 0.8640 4 18 392

9 0.8640 4 18 392

10 0.8640 4 18 392
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Table 3.20: Graphical results when targeting shear moduli, using volume averaging analysis
for RVE containing 3x3 unit cells.

1 GPa 4 GPa 5 GPa 7GPa

0

1

2

3

4

5

6

7

8

9

10
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3.3.1 Discussion

The visual and numeric solutions to the fictional Topology Optimization problems

are shown in Tables 3.1 to 3.20. One can observe that the optimized volume fraction

generally decreases with offset when target modulus is small compared to the base modulus,

and then increases again near 50% offset.

For a larger target modulus, the volume fraction always increases with volume. It

can be concluded that intermediate offsets can converge to a lower volume fraction than

the extreme offsets (0% and 50%). i.e. It is beneficial to consider meta-materials with an

intermediate offset periodicity.

One can also observe that the formulation used does not converge to practical meta-

materials when targeting a very high modulus.

The optimization problem can be setup with the offset parameter, b, as an optimiz-

able design variable. However, b is a discrete, integer parameter. To solve the modified

problem, a global search meta-heuristic algorithm, such as NSGA-II, must be used. How-

ever, such algorithms are inefficient for the very large number of variables in a typical

topology optimization problem.
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3.4 Optimization of the Shear Beam for a Pon-Pneumatic

Wheel

Figure 3.13: Two-level optimization process used for meta-material design of the shear
beam of the non-pneumatic wheel [27]

The design of the shear beam of a non-pneumatic wheel consists of two steps. The

top-level, or the system-level optimization is solved by Thyagaraja et. al. [27] The goal of

this step is to identify the target moduli of the next step of optimization, aiming to reduce

the hysteresis losses in the beam. Sensitivity analysis on the design variables identified the

shear beam thickness, slThk and shear modulus G23 as the most influential variables for the

system-level optimization. The solution to the optimization problem was found to lie on

the curve:

G23.slThk = 67MPa.mm
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Figure 3.14: Solution to the top-level optimization for design of the shear beam of the
non-pneumatic wheel [27] [5]

3.4.1 Topology Optimization of the Shear Layer

The solution to the top-level optimization establishes the targets of the bottom-level

optimization (i.e. Topology Optimization). The bottom-level optimization was solved by

Dr. Czech, for meta-materials with half-width offset periodicity [5]. The base material

chosen was Poly-carbonate (PC) with E=2.7 GPa and ν=0.42. The physical constraints

on the shear layer require a meta-material outside the homogenization scaling limit, hence

volume averaging analysis was required to calculate the effective meta-material moduli. A

high-resolution mesh of 40x40 was chosen.

The optimization problem was formulated as:

Minimize V (x)

Subject to:

Gv23 −Gt23) = 0

0 ≤ xe ≤ 1

The Topology Optimization is repeated while using unit cells with offset periodicity.

The offsets range from 0%(0 element) to 50%(20 element) in 5%(2 element) increments.
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Figure 3.15: Different initial points used for the Topology Optimization of the shear beam
of the non-pneumatic wheel [5]
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Figure 3.16: Selected solutions to Topology Optimization of the shear beam of the non-
pneumatic wheel as produced by Dr. Czech [5]
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Table 3.21: Optimization results for slThk = 6 mm, initial point A.

Offset V Meta-Material

0 0.1062

2 0.0662

4 0.0660

6 0.0651

8 0.0646

10 0.0644

12 0.1074

14 0.1017

16 0.1021

18 0.1039

20 0.1259

57



Table 3.22: Optimization results for slThk = 7 mm, initial point A.

Offset V Meta-Material

0 0.1000

2 0.0628

4 0.0653

6 0.0617

8 0.0614

10 0.0609

12 0.0611

14 0.1024

16 0.0958

18 0.0993

20 0.1204
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Table 3.23: Optimization results for slThk = 12 mm, initial point A.

Offset V Meta-Material

0 0.0859

2 0.0529

4 0.0521

6 0.0539

8 0.0514

10 0.0509

12 0.0509

14 0.0890

16 0.0881

18 0.0886

20 0.1039
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Table 3.24: Optimization results for slThk = 5 mm, initial point B.

Offset V Meta-Material

0 0.0706

2 0.0710

4 0.0698

6 0.0693

8 0.0683

10 0.0684

12 0.1105

14 0.1075

16 0.1043

18 0.1094

20 0.1160
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Table 3.25: Optimization results for slThk = 7 mm, initial point B.

Offset V Meta-Material

0 0.0941

2 0.0632

4 0.0624

6 0.0616

8 0.0610

10 0.0608

12 0.0604

14 0.1022

16 0.0996

18 0.1002

20 0.1066
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Table 3.26: Optimization results for slThk = 8 mm, initial point B.

Offset V Meta-Material

0 0.0910

2 0.0603

4 0.0599

6 0.0589

8 0.0583

10 0.0580

12 0.0998

14 0.0704

16 0.0970

18 0.0977

20 0.1017
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Table 3.27: Optimization results for slThk = 12 mm, initial point B.

Offset V Meta-Material

0 0.0879

2 0.0527

4 0.0521

6 0.0512

8 0.0508

10 0.0541

12 0.0538

14 0.0886

16 0.0867

18 0.0880

20 0.0912
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Table 3.28: Optimization results for slThk = 5 mm, initial point C.

Offset V Meta-Material

0 0.1078

2 0.0707

4 0.0697

6 0.0694

8 0.0684

10 0.0683

12 0.0687

14 0.0702

16 0.1120

18 0.0997

20 0.1341
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Table 3.29: Optimization results for slThk = 8 mm, initial point C.

Offset V Meta-Material

0 0.0939

2 0.0601

4 0.0594

6 0.0589

8 0.0585

10 0.0581

12 0.0583

14 0.0582

16 0.0589

18 0.0970

20 0.1172
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3.4.2 Discussion on Topology Optimization Results

Selected results to the Topology Optimization problem are shown in Table B.2 to

Table 3.29. Complete results are listed in Appendix B. Numerical results are listed in

Appendix C. It can be observed that for problems with zero offset, the result obtained are

meta-materials with a cross X-like geometry. It is a well known fact that such structures

are the stiffest in shear when minimizing the volume fraction [28].

Another class of meta-material is obtained for intermediate offsets (from>0 elements

to 12 elements). These meta-materials have a bristle /-like geometry. These meta-materials

have the lowest volume among all the different classes of meta-materials obtained, however,

such meta-materials can buckle when loaded in compression.

For offsets >12 elements, the meta-materials have a staggered x-like geometry, which

consists of alternating layers of auxetic hexagons and crosses. These geometries have a lower

volume fraction than pure x-like geometries, without any obvious buckling issue.

Some problems yield a near auxetic honeycomb structure, such as offset 12 problems

with starting point ’D. These meta-materials are quite dose to the auxetic honeycomb

obtained by Dr. Czech [5] as seen in Figure 3.16.

The conclusions from the optimization of the fictional problem earlier in Chapter 3,

are reaffirmed. It is not necessary that extreme offsets of zero or half-width will converge

to lower volume fractions than intermediate ones.

The results obtained by Dr. Czech for an offset of 20 elements are not reproduced.

However, one must note that the volume fractions of the results produced are generally

lower than the volume fractions of the meta-materials produced by Dr. Czech. Also, if

optimization is attempted with the meta-material produced by Dr. Czech as the initial

point, it returns the same meta-material without performing any iterations. These are the

characteristics of a local minimum (Existence of solutions with lower objective function

value, and zero gradient at the point). Such local minimum issues are quite common for a

Topology Optimization problem as discussed in Chapter 1. Local minima for this problem

can be caused by TO parameters like the filter size rmin, and/or the numerical optimization
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algorithm used. It should be noted that the numerical optimization used by Dr. Czech was

the native SQP algorithm of Matlab 2011, while the one used for this thesis is the native

SQP algorithm of Matlab 2017.

To prevent such local minima issues, continuation methods as explained in Chapter

1 can be used. The results shown in Table B.2 to Table 3.29 have been obtained by

using continuation method on the filter size rmin (reduced gradually from 3 elements to 1.5

elements).

3.5 Summary

Modified asymptotic homogenization and volume averaging methods were proposed.

It was concluded that the modified periodicity invalidates the Y-periodicity condition re-

quired for homogenization, and hence invalidates homogenization as a tool to evaluate the

modulus of offset meta-materials.

By optimizing the fictional problem it was established that intermediate offsets

may or may not have the most optimum designs. This conclusion was re-affirmed by the

Topology Optimization results for the design of the shear beam of a non-pneumatic wheel.

The non-pnuematic wheel problem also showed that it is indeed possible to obtain different

classes of meta-materials based on the offset parameter.

This chapter answered the first two research questions and validates the first two

hypotheses.
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Chapter 4

Multi-criteria design of

meta-materials

This chapter demonstrates the formulations discussed in Chapter 1 for multi-criteria

design. It also establishes the restriction on the obtainable range of different moduli, if any

exist. Most meta-material design problems in the literature require targeting of one modulus

[5]. However, there may be design problems which may require design of meta-materials for

multiple moduli simultaneously. Multi-criteria design solutions for homogenization exists

in the literature [28], but none exist for volume averaging. The formulations (developed by

Dr. Czech [5]) discussed in chapter 1, can be used for the multi-criteria design.

4.1 Optimization Formulation Studies

The formulations discussed in chapter 1 are:

Formulation 1:

Minimize V (x)

Subject to:

hk: E
M
k − E∗k = 0

0 ≤ ρe ≤ 1
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Formulation 2:

Minimize V (x)

Subject to:

hk: (EMk − E∗k)2 ≤ δ

0 ≤ ρe ≤ 1

For formulation 3, the objective is to design a meta-material closest to the target moduli.

For multi-criteria design, the objective is changed to the weighted summation of the square

of differences between meta-material moduli and the target moduli. The weights are the

relative importance of the objectives.

Formulation 3:

Minimize
∑

k(wk)(E
M
k − E∗k)2

Subject to:

V1 ≤ V (x) ≤ V2

0 ≤ ρe ≤ 1

For single criteria design, formulation 3 does not converge either numerically or for SIMP

convergence, as observed by Dr. Czech [5]. Hence, it is not considered for multi-criteria

design. To study the other formations, each are used to optimize for different targets on

the elastic modulus and shear modulus. Both homogenization and volume averaging are

used to evaluate the modulus. For Volume Averaging, the RVE is chosen to contain 3x3

unit cells. The UC is a square, with 20x20 discretization. Optimization is solved using

MATLABs SQP algorithm. Early termination parameters of 400 iterations is used. Base

material is a fictional isotropic linear material with Young’s modulus 30 GPa and Poisson’s

ratio 0.3.

The formulations are also compared using the degrees of numerical convergence

and SIMP convergence. The design is said to be numerically converged when it’s effective

modulus is very close to the target modulus. The number of active constraints (e ∈ ρe ≥ 0.9

or ≤ 0.3) are used as the degree of SIMP convergence.

The optimization problem is solved for all pairings of normal moduli targets 3, 9,
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and 15 GPa and Shear Modulus targets 1, 3, and 5 GPa. For formulation 2, optimization

is performed for δ = 0.1, 1 and 10.

Table 4.1: Numerical results for multi-criteria design, formulation 1, using Homogenization

E22 E12 V Iterations Function Evaluations Active Constraints

3.0000 1.0000 0.3288 347 139608 0.9675

3.0000 3.0000 0.5768 73 29675 0.9500

3.0624 4.4848 0.8459 30 12119 0.9500

9.0000 1.0001 0.5076 114 46141 0.9300

9.0000 3.0000 0.5680 124 50125 0.9700

8.9999 4.9999 0.6576 53 21654 0.9100

14.9994 0.9992 0.6368 92 37304 0.8300

15.0009 3.0000 0.6603 104 42115 0.8900

15.0000 5.0000 0.7579 40 16441 0.5800

Table 4.2: Numerical results for multi-criteria design, formulation 2, δ = 0.1, using Homog-
enization

E22 E12 V Iterations Function Evaluations Active Constraints

2.9999 0.9999 0.3607 136 54943 0.8975

3.0001 2.9966 0.5874 35 14044 0.8900

3.0233 4.5439 0.8354 27 10899 1.0000

8.9951 1.0001 0.5682 87 34988 0.6500

9.0002 3.0001 0.7388 5 2013 0.3100

8.9872 4.9855 0.6691 41 16452 0.8800

15.0007 1.0000 0.6815 50 20074 0.6800

14.9990 3.0002 0.7523 32 12910 0.3600

15.0000 4.9999 0.7579 45 18455 0.5800
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Table 4.3: Numerical results for multi-criteria design, formulation 2, δ = 1, using Homoge-
nization

E22 E12 V Iterations Function Evaluations Active Constraints

2.9988 0.9985 0.3592 114 46120 0.8700

3.0010 2.9990 0.5730 70 28472 0.9500

0.0000 0.0000 0.0010 32 12901 1.0000

8.9857 1.0016 0.5815 52 20905 0.5550

8.9990 2.9990 0.5693 137 55353 0.9600

8.9902 4.9896 0.6603 43 17251 0.9000

15.0047 1.0045 0.7431 5 2012 0.5400

15.0008 2.9988 0.7825 5 2011 0.4700

14.9991 4.9990 0.7579 42 17243 0.5800

Table 4.4: Numerical results for multi-criteria design, formulation 2, δ = 10, using Homog-
enization

E22 E12 V Iterations Function Evaluations Active Constraints

2.9895 0.9897 0.3646 114 46127 0.8700

3.0100 2.9900 0.5730 57 23258 0.9500

3.0572 4.9716 0.8814 57 23041 0.9875

8.9900 0.9900 0.5008 111 44918 0.9200

8.9900 2.9900 0.5666 135 54551 0.9900

9.0100 4.9900 0.6575 53 21654 0.9100

14.9900 0.9900 0.5870 163 65764 0.9475

14.9900 2.9900 0.6611 112 45327 0.9000

14.9900 4.9900 0.7576 42 17243 0.5800
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Table 4.5: Graphical results for multi-criteria design, formulation 1, using Homogenization

HHH
HHH

HHH
Et22

Et12
1 GPa 3 GPa 5 GPa

3 GPa

9 GPa

15 GPa

Table 4.6: Graphical results for multi-criteria design, formulation 2, δ = 0.1, using Homog-
enization

HHH
HHH

HHH
Et22

Et12
1 GPa 3 GPa 5 GPa

3 GPa

9 GPa

15 GPa
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Table 4.7: Graphical results for multi-criteria design, formulation 2, δ = 1, using Homoge-
nization

HH
HHHH

HHH
Et22

Et12
1 GPa 3 GPa 5 GPa

3 GPa

9 GPa

15 GPa

Table 4.8: Graphical results for multi-criteria design, formulation 2, δ = 10, using Homog-
enization

HH
HHH

HHHH
Et22

Et12
1 GPa 3 GPa 5 GPa

3 GPa

9 GPa

15 GPa
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Table 4.9: Numerical results for multi-criteria design, formulation 1, using Volume Averag-
ing

E22 E12 V Iterations Function Evaluations Active Constraints

3.0002 0.9998 0.3447 105 108 0.9500

2.9947 2.9888 0.5817 51 64 0.9400

3.0265 4.1661 0.8255 23 69 1.0000

8.9916 1.0001 0.5304 99 104 0.8700

8.9993 2.9997 0.5796 122 123 0.8600

8.9974 4.9993 0.6583 54 66 0.9500

15.0030 0.9996 0.6330 94 95 0.8900

14.9996 2.9989 0.6801 117 208 0.9200

14.9989 4.9997 0.7417 87 88 0.7300

Table 4.10: Numerical results for multi-criteria design, formulation 2, δ = 0.1, using Volume
Averaging

E22 E12 V Iterations Function Evaluations Active Constraints

2.9717 0.9967 0.5771 14 69 0.1600

3.0000 2.9989 0.7010 19 63 0.7100

3.3818 4.3418 0.8326 15 59 0.9775

9.0001 0.9990 0.5308 95 107 0.8200

8.9978 2.9916 0.5812 140 167 0.8500

8.9949 4.9940 0.6788 30 41 0.8800

14.9866 0.9872 0.6278 92 116 0.8900

14.9945 2.9982 0.7742 6 20 0.4700

15.0002 4.9999 0.7498 79 89 0.6700
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Table 4.11: Numerical results for multi-criteria design, formulation 2, δ = 1, using Volume
Averaging

E22 E12 V Iterations Function Evaluations Active Constraints

2.9940 0.9997 0.5677 18 58 0.1500

2.9987 2.9881 0.7012 16 55 0.7100

3.3763 4.1995 0.8482 24 90 0.9550

8.9961 0.9981 0.5352 91 105 0.8000

8.9977 2.9927 0.5819 116 157 0.8200

8.9937 4.9966 0.6713 35 45 0.9100

14.9990 0.9989 0.6306 84 111 0.9000

14.9923 2.9963 0.7739 6 20 0.4700

14.9977 4.9988 0.6925 144 163 0.9700

Table 4.12: Numerical results for multi-criteria design, formulation 2, δ = 10, using Volume
Averaging

E22 E12 V Iterations Function Evaluations Active Constraints

2.9852 0.9999 0.6259 9 29 0.1400

3.0070 2.9865 0.6005 50 73 0.8500

3.4079 4.3535 0.8397 23 85 0.9125

8.9745 0.9885 0.5295 102 132 0.8100

8.9830 2.9860 0.5513 107 117 0.9300

8.9796 4.9729 0.6685 38 45 0.9300

14.9900 0.9888 0.6270 95 107 0.9000

14.9902 2.9900 0.6835 90 103 0.8100

14.9891 4.9897 0.7502 66 71 0.6700
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Table 4.13: Graphical results for multi-criteria design, formulation 1, using Volume Aver-
aging

HH
HHHH

HHH
Et22

Et12
1 GPa 3 GPa 5 GPa

3 GPa

9 GPa

15 GPa

Table 4.14: Graphical results for multi-criteria design, formulation 2, δ = 0.1, using Volume
Averaging

HH
HHH

HHHH
Et22

Et12
1 GPa 3 GPa 5 GPa

3 GPa

9 GPa

15 GPa

76



Table 4.15: Graphical results for multi-criteria design, formulation 2, δ = 1, using Volume
Averaging

HH
HHHH

HHH
Et22

Et12
1 GPa 3 GPa 5 GPa

3 GPa

9 GPa

15 GPa

Table 4.16: Graphical results for multi-criteria design, formulation 2, δ = 10, using Volume
Averaging

HH
HHH

HHHH
Et22

Et12
1 GPa 3 GPa 5 GPa

3 GPa

9 GPa

15 GPa

4.1.1 Discussion on Results

The results for the different optimization problems are listed in Tables 4.9 to 4.8.

Firstly it is observed that the problems do not converge to numerically feasible
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solutions while targeting Et22 = 3 GPa and Et12 = 5 GPa. It is also observed that formulation

1 generally has better numerically and SIMP converged results. It can also be observed that

for high values of both Et22 and Et12, the solutions have numerically converged, but have

not SIMP-converged. Apart from the exception cases, all other problems converge to well

resolved meta-materials.

This study serves as the demonstration of the use of multi-criteria formulations while

designing meta-materials using homogenization and volume averaging. It should be noted

that solutions for multi-criteria problems using homogenization exists in the literature [28].

4.2 Range of Obtainable Moduli

For a two-phase composite material, there exists a rigorous bound on the effective

moduli, as a function of the volume fraction of the constituent phases. Meta-materials can

be seen as a two-phase composite material with one phase being the base material and the

other being void.

The shear modulus is bounded by Hashin-Shtrikman bounds [25], which are:

G+ = G2 +
1− V

(G1 −G2)−1 + 2V (K2+2G2)
5G2(K2+1.3333G2)

G− = G1 +
V

(G2 −G1)−1 + 2(1−V )(K1+2G1)
5G1(K1+1.3333G1)

The elastic modulus is bounded by Voight-Reuss bounds [29], which are:

E+ = (1− V )E1 + V E2

E− = (
1− V
E1

+
V

E2
)
−1

For 1-phase meta-materials, consider a base material with Young’s Modulus E0,

shear modulus G0. The corresponding moduli for void is taken as φ (φ<<E0, G0).
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(a) Bounds on Elastic Modulus (b) Bounds on Shear Modulus

Figure 4.1: Bounds on the Elastic and Shear Moduli

Figure 4.2: Bounds on moduli, plotted against each other

The normalized bounds for the effective moduli of the meta-material are shown in

Figures 4.1a to 4.1b. The bounds are plotted against each other a a parametric function of

the volume fraction, as seen in Figure 4.2. Figure 4.2 shows that there should be no bounds

between the shear and elastic moduli.

It should be noted that these bounds do not consider the fact that the optimization

formulations discussed earlier, will not converge to “un-connected” meta-materials (where a

chunk of material is surrounded completely by void). In experience, as observed during the

formulation studies, optimization does not converge when targeting extreme combinations
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of moduli. (high shear modulus, very small elastic modulus target, or vice versa).

Such extreme meta-materials are possible, as proven by Milton et. al [24]. By

using 1-node connections and origami meta-materials, one can design materials stiff in one

deformation mode, but will collapse in other [24]. For continuum-like meta-materials as

discussed by this thesis, the bounds may or may not be the same.

To find the bounds between obtainable moduli for meta-materials designed using

TO, the following optimization problems are formulated.

Minimize EM22

Subject to:

EM12 − E∗12 = 0

0 ≤ ρe ≤ 1

Minimize EM12

Subject to:

EM22 − E∗22 = 0

0 ≤ ρe ≤ 1

An RVE of 3x3 Unit cells is chosen, with 20x20 mesh for each UC. The two formu-

lations are run for E∗12 = (0, 0.1, 0.2, ...1) ∗D12 and E∗22 = (0, 0.1, 0.2, ...1) ∗D22. Standard

meta-material design parameters as used, as mentioned while performing the fictional ma-

terial optimization in Chapter 3.

The results are shown in Figure 4.3.
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Figure 4.3: Obtained bounds for 20x20 mesh, 3x3 UCs, 0 offset problem

It can be clearly seen in Figure 4.3, that not all combinations of E22 and E12 can

be achieved for meta-materials designed using Topology Optimization.

To further investigate and understand this phenomenon, the formulations are run

for multiple times while changing TO parameters like number of variables, number of unit

cells in the RVE. This is done to study the effects of the parameters on the bounding. The

offset periodicity, as explained in Chapter 3 is introduced, and the formulations are repeated

for different offsets to see how the modified periodicity may affect the bounds.

4.2.1 Effect of number of design variables

The number of design variables are inversely proportional to the size of the finite

elements used. The minimum obtainable feature length is 2rmin, while rmin has to be at-

least 2h for proper mesh filtering [18]. This means at-most the minimum feature length

would be 4 ∗ h. This restricts the number of obtainable meta-materials. By using a finer

mesh, smaller feature lengths can be obtained, which expands the design space. The initial

hypothesis is that, this expanded design space would relax the bounds. i.e. The degree of

restriction of obtainable combinations of shear and elastic modulus is inversely proportional

to the mesh size used, and directly proportional to the square root of the number of design

variables).

81



To test this hypothesis, the optimization formulations are solved for a coarser mesh

size of 20x20 and a finer mesh size of 50x50. The results obtained are shown in Figure 4.4.

Figure 4.4: Obtained bounds for different mesh sizes

As seen in Figure 4.4, the mesh size does not affect the degree of restriction of

obtainable combinations of moduli. The initial hypothesis is rejected. By doing this study,

it is concluded that the bounding phenomenon does not occur due to the smaller design

space of a coarse mesh. An even finer mesh could be used to test this. However, the current

hardware limitations do not allow this. (Each optimization for 50x50 mesh size takes around

45 hours.)

4.2.2 Effect of number of UCs in the RVE

Generally speaking, the smaller the RVE, the stiffer is the meta-material [5]. The

studies on different geometries and different RVEs performed by Dr. Czech corroborates

this [5]. An example of this is shown in Figure 4.5.
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Figure 4.5: Elastic modulus for different RVEs (NxN), as calculated by Dr. Czech [5]

The initial hypothesis is that, because of this “additional” stiffness for meta-materials

with small RVEs, the range of obtainable combinations of the moduli is inversely propor-

tional to the number of UCs in the RVE.

To test this hypothesis, the optimization formulations are solved for RVEs containing

3x3, and 5x5 UCs. The optimization is also solved using asymptotic homogenization, which

is effectively considering a meta-material with nearly ∞ x ∞ UCs.

The formulations are also run for single layer meta-materials with RVE containing

3x1, 5x1, 1x3 and 1x5 UCs. This is to test the effect of RVE size on layered meta-materials

like the ones used for the shear beam of non-pneumatic wheels, in Chapter 3. The results

obtained are shown in Figures 4.6- 4.7.
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Figure 4.6: Obtained bounds for different RVEs (NxN)

(a) 1xN (b) Nx1

Figure 4.7: Obtained bounds for different RVEs

It can be observed from Figure 4.6 that the upper bound on E22 relaxes as the

number of UCs are increased in the RVE. Figures 4.7a- 4.7a, show that the number of UCs

in the jth direction is what contributes to the relaxation on the upper bound on Ejj , for a

certain E12.

Note that the lower bound on E22 for a certain E12, is not affected by the number

of UCs in the RVE.

The initial hypothesis is concluded to be true for upper bound (of E22 for a certain

E12), and false for lower bounds (of E22 for a certain E12).
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4.2.3 Effect of Offset

As observed in chapter 3, The stiffness and offset parameter may or may not have any

direct co-relation. Offset periodicity changes the topological connectivity, which introduces

new classes of materials, but renders other as unobtainable. As seen in chapter 3, different

offsets can lead to different classes of optimum meta-materials. Will this have an effect

on the degree of restriction of the bounds between the moduli? Because there is no direct

co-relation between stiffness and offset, it is difficult to hypothesize any specific effect of

offset on the degree of restriction on the bounds.

To find the effect of offset on the bounds (if any), the original bounding optimization

is performed for offsets 0, quarter-widths and half-widths. The results obtained are shown

in Figure 4.8.

Figure 4.8: Obtained bounds for different offsets

Figure 4.8 shows that offset has a significant impact on the degree of restriction on

the upper bounds (of E22 for a certain E12), while no effect on the lower bound (of E22 for

a certain E12).

4.3 Summary

This chapter established the feasibility of the formulations discussed in chapter 1,

for multi-criteria design of meta-materials using Volume Averaging.
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It was discovered that TO for meta-material design cannot design “extreme” meta-

materials, which are stiff in one mode of deformation, while totally compliant in another.

This will help designers using this method to add constraints to the system-level optimiza-

tion step of meta-material design, to avoid such extreme materials.

Physically, there is no known restriction on the range of obtainable moduli. It is

hypothesized that the restriction in obtainable combinations of moduli are due to the short-

comings of Topology Optimization method for designing meta-materials. Further research

is needed to confirm or reject this.

Effect of different TO parameters on the degree of restriction of bounds was deter-

mined and discussed. This will help designers choose the different parameters as required

for the specific design case.
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Chapter 5

Concluding Remarks

5.1 Answering Research Questions

The research questions posed in Chapter 2 are listed below.

1. Will having offsets of unit cells other than none or half-widths lead to a broader class of

meta-materials?

2. Must volume averaging be used to evaluate the effective behavior of offset meta-materials?

3. Is any combination of shear and elastic moduli achievable when using multi-criteria design

of meta-materials?

Each of these questions are addressed below.

5.1.1 Answering Question 1

The question was posed as an extension to Dr. Czech’s research in half-width offset

meta-materials. That research was the first time an auxetic honeycomb shaped meta-

material was observed as the solution of Topology Optimization targeting effective shear

modulus. It demonstrated that half-width offsets can lead Topology Optimization to output

a different classes of meta-materials.

The same optimization problem (design of the shear beam of a non-pneumatic wheel)

was solved for different offsets in Chapter 3. Based on the optimization results it was
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observed that it is indeed possible to converge on differently shaped meta-materials for

different offsets.

Based on the fictional material optimization in Chapter 3, it was observed that it is

not necessary that either of the offsets can obtain meta-materials with the least volume.

5.1.2 Answering Question 2

It was initially hypothesized that homogenization cannot be used for evaluating

the effective properties of an offset meta-material. This was because of the violation of

Y-periodicity requirement of asymptotic homogenization. Previously, Dr. Czech had de-

veloped and demonstrated that Volume Averaging can be used to design meta-materials

which break the other essential requirement for homogenization (scaling limit).

This question was partially answered by Dr. Czech’s research into half-width offset

meta-materials. In Chapter 3, it was demonstrated that homogenization cannot be used for

offset meta-materials. Also in Chapter 3, by optimizing the fictional material problem and

the shear beam of a non-pneumatic wheel, it was demonstrated that volume averaging can

be used to design offset meta-materials with any value of offset parameters. The validation

study in Appendix A, confirms that the analysis is accurate to within acceptable tolerances.

5.1.3 Answering Question 3

Extreme materials are meta-materials with high stiffness in one deformation mode,

and low stiffness in another. Can such meta-materials be designed using Topology Optimiza-

tion? By running the optimization problems formulated in Chapter 4, it was observed that

such meta-materials could not be obtained as a result of Topology Optimization problem.

The range of obtainable moduli was established in chapter 4, and effects of different

TO parameters were noted.

It was earlier proven in the literature that there are no physical limitations to the

range of moduli for two-phase materials with one sufficiently stiff phase and one sufficiently

compliant phase. It is currently hypothesized that the range of obtainable moduli estab-
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lished in Chapter 4 are a limitation of the Topology Optimization method. Further research

is needed to confirm or deny this.

5.2 Contributions

The contributions of this research to the science and engineering community are

listed below.

• Demonstrated that homogenization cannot be used to design offset meta-materials.

• Demonstrated the use of Volume Averaging for design of meta-materials with offsets

other than zero or half-width.

• Demonstrated for the first time, the use of Topology Optimization with Volume Av-

eraging for multi-criteria design of meta-materials.

• Potentially identified a drawback of Topology Optimization for design of meta-materials:

It cannot be used for the design of extreme meta-materials.

• Established the range of obtainable moduli that can be obtained using the current

Topology Optimization method for the design of meta-materials.

• Established the effect of parameters such as mesh size, number of UCs in RVE, and

offset, on the range of obtainable moduli.

• Discussed the bounds on the shear modulus as a function of elastic modulus, for

1-phase continuous structures (with a minimum feature length) for the first time.

5.3 Future Research

5.3.1 Variable offset parameters

The problems posed in this research were for a constant offset parameter. The goal

of considering offset meta-materials was to find the optimum meta-material across different
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offset values. Optimization of the meat-material for all offsets possible, and then choosing

the design with the least volume, is computationally inefficient.

Instead, the offset parameter b, can be considered a design variable. This complicates

the optimization formulation, because b is a discrete parameter. To avoid re-discretization

of the domain, b is limited to integer multiples of element size h.

For a variable b, one must consider a continuous b, or use optimization algorithms

that can handle integer variables, such as NSGA-II. The feasibility and disadvantages of

each of these directions needs to be looked into.

5.3.2 Further investigation into the range of obtainable effective proper-

ties of meta-materials

This research established the range combinations of shear and elastic moduli that can

be obtained using the current Topology Optimization method for design of meta-materials.

It is hypothesized that this is a drawback of the Topology Optimization method for design

of meta-materials. Further investigation is needed to confirm or deny this.

The effect of more parameters on the range of obtainable moduli, such as filter size

rmin, SIMP penalty s, etc. needs to be investigated.

The range of different obtainable properties needs to be established. This research

only considered shear and elastic moduli. Other elastic properties which can be considered

are the different effective Poisson’s ratio and effective bulk modulus.

5.3.3 Non-linear meta-materials

The meta-materials designed in this thesis have a targeted linear elastic behaviour.

Some design problems may desire meta-materials with a prescribed non-linear behaviour.

A method can be developed to design non-linear meta-materials, using Topology

Optimization with volume averaging. Both homogenization and volume averaging needs to

be modified for geometric non-linearity (large displacements).
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5.3.4 Inclusion of failure properties

All optimization problems in this research deals only with the effective properties of

the meta-materials. The designed meta-materials, especially ones with low volume fractions,

are susceptible to failures due to Von-Mises stresses or buckling stresses. A constraint can

be added to the optimization formulations to prevent such failures.
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Appendix A

Code Development and Validation

All modulus evaulation analysis and optimization in this thesis are developed on

MATLAB 2017b. This appendix deals with the developement and validation of the written

programs.

A.1 Program development

A.1.1 Setting up parameters and optimization

The main program defines and generaates the input files, and set-ups the optimiza-

tion problem. The matlab function used for optimization is fmincon, or the constrained

non-linear optimization fucntion. Variable tolerances and initial point for optimization are

input into the function, along with the volume and analysis functions.

fmincon communicates with the volume and analysis functions. It inputs the current

design variables ρ to the functions, which evalaute the volume, moduli and their gradients

with respect to ρ. fmincon uses these ouputs for its SQP algorithm to calculate the next

design variables. If converged, fmincon returns the optimized design variables.

The analysis fucntion also requires 4 input files. input.mat lists the parameters

required for Topology Optimization. nodes.dat, elements.dat and centroids.dat are the

mesh files, which list all the nodes, and elements. The data flow between fmincon and the
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volume and analysis functions can be visualized in Figure A.1.

Figure A.1: Flow of data between Matlab’s fmincon, volume and analysis functions.

A.1.2 Homogenization program

The homogenization programs requires the input files and densities ρ. First, the

densities are filtered using the simple density filter discussed in Chapter 1. These filtered

densities are used for SIMP, to generate material matrices for each element and then, the

local FEA stiffness matrices for the corresponding element. The densities are also used to

calculate the local FEA Force vectors. Global matricesK and F are assembled. Periodic and

Symmetric boundary conditions, as explained in chapter 1 are enforced using the Lagrange

Multiplier method. Nodal displacements are calculated as the solution to the equation

[K]{u} = {F}. The displacements are used to calculate the strains in each element and

hence the effective meta-material moduli E. Numerical finite differences methods are used

to estimate the gradients of E w.r.t the densities.

A.1.3 Volume Averaging program

Requires the input files and densities ρ. First, the densities are filtered using the

simple density filter discussed in Chapter 1. These filtered densities are used for SIMP, to

generate material matrices for each element and then, the local FEA stiffness matrices for
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the corresponding element. Global stiffness matrix K is assembled. Boundary conditions

are enforced using the direct elimination method. Nodal displacements are calculated as

the solution to the equation [K]u = F . The displacements are used to calculate the strains

and stresses in each element and hence average stresses and strains in the domain. Effec-

tive meta-material moduli are calculated as ratio of average stress to average strain. The

analytical gradients are then calculated as explained in Chapter 1.

A.2 Validation of Modulus for non-offset Meta-Materials.

The homogenization and Volume Averaging codes are validated against the calcu-

lations done by Bendsoe et. al [1]. The design evaluated by Bensdoe et. al. is a square UC

with a rectangular hole in the center, as shown in Figure A.2.

Figure A.2: Geometry evaluated [1]

The base material used has the following properties: E1111 = 30, E2222 = 30, E1122

= 10, E1212 = 10. The effective modulus of the eometry evaluated by Bendsoe et. al. are:

EM1111 = 13.015,

EM1122 = 3.241,

EM2222 = 17.552,

EM1212 = 2.785 [1].

The moduli calculated by homogenization code developed are:

EH1111 = 13.0148,

EH2222 = 17.5523,

EH1212 = 2.7849.
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The moduli calculated by volume averaging (RVE=5x5 unit cells) code developed

are:

EV1111 = 12.6388,

EV2222 = 17.0812,

EV1212 = 2.6550.

Since the calculated moduli are within 5% of the moduli calculated by Bendsoe et.

al [1], the program developed is validated.

The gradient of the modulus w.r.t the design variables is validated against Mat-

lab’s finite difference gradient. The difference between calculated gradient and the finite

differences gradient within 10−5%, the gradient is validated.

A.3 Validation of Modulus for offset Meta-Materials.

It has been established in chapter 3 that only Volume Averaging can be used to

evaluate the effective properties of offset meta-materials. To validate the Volume Averaging

program, two FEA problems are setup, one for tensile loading and one for shear loading.

Figure A.3: Validation analysis for elastic modulus; here dE is the vertical displacement of
the top edge

First, the meta-material is loaded with the boundary conditions shown in Fig-
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Figure A.4: Validation analysis for shear modulus; here dS is the horizontal displacement
of the top edge

ures A.3& A.4, and displacements dMS and dME are calculated.

Then, the effective material matrix DM is calculated using volume averaging. A

homogeneous material with properties DM is loaded with the same boundary conditions,

and the displacements dS and dE are calculated.

The displacements for the meta-material, dMS and dME , are compared with the dis-

placements for the homogeneous material, dS and dE . If they results match within a certain

amount of error, we can conclude that the effective material matrix DM is valid.

The relative error between d and dM for the meta-material shown in Figure A.2 for

different offsets are displayed in Table A.1.

The gradient of the modulus w.r.t the design variables is validated against Mat-

lab’s finite difference gradient. The difference between calculated gradient and the finite

differences gradient within 10−5%, the gradient is validated.
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Table A.1: Relative difference between displacements for meta-material and corresponding
homogeneous material

Offset % error in dE % error in dS

0 0.60 4.47

2 1.91 4.93

4 2.53 4.64

6 3.79 4.16

8 3.09 3.56

10 2.91 2.42
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Appendix B

Geometric Results - Shear Beam of

a Non-Pneumatic Wheel
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Table B.1: Optimization results for slThk = 5 mm, initial point A.

Offset V Meta-Material

0 0.1116

2 0.0706

4 0.0701

6 0.0692

8 0.0688

10 0.0690

12 0.1125

14 0.1086

16 0.1068

18 0.1109

20 0.1324
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Table B.2: Optimization results for slThk = 6 mm, initial point A.

Offset V Meta-Material

0 0.1062

2 0.0662

4 0.0660

6 0.0651

8 0.0646

10 0.0644

12 0.1074

14 0.1017

16 0.1021

18 0.1039

20 0.1259
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Table B.3: Optimization results for slThk = 7 mm, initial point A.

Offset V Meta-Material

0 0.1000

2 0.0628

4 0.0653

6 0.0617

8 0.0614

10 0.0609

12 0.0611

14 0.1024

16 0.0958

18 0.0993

20 0.1204
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Table B.4: Optimization results for slThk = 8 mm, initial point A.

Offset V Meta-Material

0 0.0974

2 0.0603

4 0.0596

6 0.0590

8 0.0591

10 0.0584

12 0.0583

14 0.0987

16 0.0974

18 0.0975

20 0.1165
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Table B.5: Optimization results for slThk = 9 mm, initial point A.

Offset V Meta-Material

0 0.0964

2 0.0577

4 0.0000

6 0.0567

8 0.0563

10 0.0567

12 0.0562

14 0.0974

16 0.0891

18 0.0959

20 0.1123
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Table B.6: Optimization results for slThk = 10 mm, initial point A.

Offset V Meta-Material

0 0.0935

2 0.0558

4 0.0555

6 0.0547

8 0.0543

10 0.0541

12 0.0541

14 0.0945

16 0.0926

18 0.0939

20 0.1095
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Table B.7: Optimization results for slThk = 11 mm, initial point A.

Offset V Meta-Material

0 0.0878

2 0.0540

4 0.0537

6 0.0531

8 0.0526

10 0.0560

12 0.0523

14 0.0912

16 0.0902

18 0.0907

20 0.1068
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Table B.8: Optimization results for slThk = 12 mm, initial point A.

Offset V Meta-Material

0 0.0859

2 0.0529

4 0.0521

6 0.0539

8 0.0514

10 0.0509

12 0.0509

14 0.0890

16 0.0881

18 0.0886

20 0.1039

107



Table B.9: Optimization results for slThk = 5 mm, initial point B.

Offset V Meta-Material

0 0.0706

2 0.0710

4 0.0698

6 0.0693

8 0.0683

10 0.0684

12 0.1105

14 0.1075

16 0.1043

18 0.1094

20 0.1160
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Table B.10: Optimization results for slThk = 6 mm, initial point B.

Offset V Meta-Material

0 0.1019

2 0.0665

4 0.0656

6 0.0650

8 0.0644

10 0.0640

12 0.1069

14 0.1057

16 0.0967

18 0.1036

20 0.1268
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Table B.11: Optimization results for slThk = 7 mm, initial point B.

Offset V Meta-Material

0 0.0941

2 0.0632

4 0.0624

6 0.0616

8 0.0610

10 0.0608

12 0.0604

14 0.1022

16 0.0996

18 0.1002

20 0.1066
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Table B.12: Optimization results for slThk = 8 mm, initial point B.

Offset V Meta-Material

0 0.0910

2 0.0603

4 0.0599

6 0.0589

8 0.0583

10 0.0580

12 0.0998

14 0.0704

16 0.0970

18 0.0977

20 0.1017
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Table B.13: Optimization results for slThk = 9 mm, initial point B.

Offset V Meta-Material

0 0.0883

2 0.0579

4 0.0574

6 0.0565

8 0.0561

10 0.0559

12 0.0558

14 0.0934

16 0.0938

18 0.0953

20 0.0966
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Table B.14: Optimization results for slThk = 10 mm, initial point B.

Offset V Meta-Material

0 0.0919

2 0.0559

4 0.0562

6 0.0546

8 0.0545

10 0.0543

12 0.0539

14 0.0908

16 0.0904

18 0.0932

20 0.0970
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Table B.15: Optimization results for slThk = 11 mm, initial point B.

Offset V Meta-Material

0 0.0857

2 0.0539

4 0.0536

6 0.0529

8 0.0526

10 0.0523

12 0.0523

14 0.0912

16 0.0886

18 0.0904

20 0.0932
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Table B.16: Optimization results for slThk = 12 mm, initial point B.

Offset V Meta-Material

0 0.0879

2 0.0527

4 0.0521

6 0.0512

8 0.0508

10 0.0541

12 0.0538

14 0.0886

16 0.0867

18 0.0880

20 0.0912
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Table B.17: Optimization results for slThk = 5 mm, initial point C.

Offset V Meta-Material

0 0.1078

2 0.0707

4 0.0697

6 0.0694

8 0.0684

10 0.0683

12 0.0687

14 0.0702

16 0.1120

18 0.0997

20 0.1341
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Table B.18: Optimization results for slThk = 6 mm, initial point C.

Offset V Meta-Material

0 0.1004

2 0.0663

4 0.0655

6 0.0649

8 0.0643

10 0.0640

12 0.0645

14 0.0648

16 0.1115

18 0.1036

20 0.1266

117



Table B.19: Optimization results for slThk = 7 mm, initial point C.

Offset V Meta-Material

0 0.0961

2 0.0629

4 0.0621

6 0.0653

8 0.0610

10 0.0607

12 0.0609

14 0.0614

16 0.1058

18 0.0979

20 0.1207
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Table B.20: Optimization results for slThk = 8 mm, initial point C.

Offset V Meta-Material

0 0.0939

2 0.0601

4 0.0594

6 0.0589

8 0.0585

10 0.0581

12 0.0583

14 0.0582

16 0.0589

18 0.0970

20 0.1172
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Table B.21: Optimization results for slThk = 9 mm, initial point C.

Offset V Meta-Material

0 0.0941

2 0.0578

4 0.0578

6 0.0567

8 0.0561

10 0.0563

12 0.0557

14 0.0559

16 0.0566

18 0.0923

20 0.1144
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Table B.22: Optimization results for slThk = 10 mm, initial point C.

Offset V Meta-Material

0 0.0865

2 0.0560

4 0.0553

6 0.0545

8 0.0542

10 0.0537

12 0.0541

14 0.0538

16 0.0972

18 0.1009

20 0.1100
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Table B.23: Optimization results for slThk = 11 mm, initial point C.

Offset V Meta-Material

0 0.0862

2 0.0542

4 0.0535

6 0.0530

8 0.0523

10 0.0523

12 0.0524

14 0.0552

16 0.0936

18 0.0903

20 0.1084
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Table B.24: Optimization results for slThk = 12 mm, initial point C.

Offset V Meta-Material

0 0.0827

2 0.0527

4 0.0518

6 0.0513

8 0.0510

10 0.0505

12 0.0556

14 0.0505

16 0.0924

18 0.0902

20 0.1048
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Table B.25: Optimization results for slThk = 5 mm, initial point D.

Offset V Meta-Material

0 0.1102

2 0.0728

4 0.0700

6 0.0889

8 0.5044

10 0.0791

12 0.0805

14 0.0822

16 0.0000

18 0.1001

20 0.1328
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Table B.26: Optimization results for slThk = 6 mm, initial point D.

Offset V Meta-Material

0 0.1046

2 0.0685

4 0.0658

6 0.0729

8 0.0726

10 0.4971

12 0.0976

14 0.0993

16 0.0794

18 0.0937

20 0.1249
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Table B.27: Optimization results for slThk = 7 mm, initial point D.

Offset V Meta-Material

0 0.1041

2 0.0651

4 0.0624

6 0.4903

8 0.0690

10 0.0000

12 0.0719

14 0.0739

16 0.0751

18 0.0859

20 0.1203
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Table B.28: Optimization results for slThk = 8 mm, initial point D.

Offset V Meta-Material

0 0.0964

2 0.0622

4 0.0592

6 0.0587

8 0.0663

10 0.0673

12 0.0687

14 0.0703

16 0.0718

18 0.0829

20 0.5019
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Table B.29: Optimization results for slThk = 9 mm, initial point D.

Offset V Meta-Material

0 0.0600

2 0.0597

4 0.0575

6 0.0565

8 0.0633

10 0.0646

12 0.0706

14 0.0753

16 0.0789

18 0.0897

20 0.1120
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Table B.30: Optimization results for slThk = 10 mm, initial point D.

Offset V Meta-Material

0 0.0605

2 0.0577

4 0.0552

6 0.0548

8 0.0613

10 0.0624

12 0.0638

14 0.0653

16 0.0884

18 0.0995

20 0.4930
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Table B.31: Optimization results for slThk = 11 mm, initial point D.

Offset V Meta-Material

0 0.0879

2 0.0559

4 0.4686

6 0.0586

8 0.0593

10 0.0607

12 0.0618

14 0.0881

16 0.0739

18 0.0876

20 0.4898
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Table B.32: Optimization results for slThk = 12 mm, initial point D.

Offset V Meta-Material

0 0.0891

2 0.0545

4 0.4651

6 0.0565

8 0.0578

10 0.0591

12 0.0869

14 0.0851

16 0.0857

18 0.0861

20 0.1038
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Appendix C

Numerical Results - Shear Beam of

a Non-Pneumatic Wheel

Table C.1: Numerical results for slThk = 5 mm, initial point A.

Offset G12 V Iterations Function Evaluations Active Constraints

0 12.9373 0.1116 203 408 0.8675

2 13.3927 0.0706 219 439 0.9731

4 13.3953 0.0701 248 504 0.9738

6 13.3983 0.0692 240 483 0.9800

8 13.3962 0.0688 223 452 0.9794

10 13.4001 0.0690 400 801 0.9769

12 13.3239 0.1125 223 448 0.9731

14 13.4007 0.1086 313 638 0.9419

16 13.3129 0.1068 212 428 0.9594

18 13.3240 0.1109 244 493 0.9506

20 13.4019 0.1324 227 454 0.9688
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Table C.2: Numerical results for slThk = 6 mm, initial point A.

Offset G12 V Iterations Function Evaluations Active Constraints

0 10.9263 0.1062 187 375 0.8625

2 11.1699 0.0662 220 441 0.9744

4 11.1703 0.0660 192 385 0.9712

6 11.1744 0.0651 246 504 0.9788

8 11.1652 0.0646 267 551 0.9794

10 11.1791 0.0644 299 610 0.9812

12 11.1061 0.1074 250 513 0.9637

14 11.1519 0.1017 400 801 0.9337

16 11.1453 0.1021 242 490 0.9406

18 11.0935 0.1039 248 500 0.9681

20 11.1238 0.1259 251 503 0.9425

Table C.3: Numerical results for slThk = 7 mm, initial point A.

Offset G12 V Iterations Function Evaluations Active Constraints

0 9.5699 0.1000 180 361 0.9050

2 9.5730 0.0628 204 408 0.9775

4 9.5219 0.0653 193 390 0.9294

6 9.5694 0.0617 202 410 0.9769

8 9.5702 0.0614 233 476 0.9762

10 9.5572 0.0609 257 517 0.9769

12 9.5732 0.0611 400 801 0.9806

14 9.5133 0.1024 214 432 0.9575

16 9.5020 0.0958 346 695 0.9556

18 9.4765 0.0993 290 592 0.9513

20 9.5638 0.1204 228 458 0.9413
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Table C.4: Numerical results for slThk = 8 mm, initial point A.

Offset G12 V Iterations Function Evaluations Active Constraints

0 8.1484 0.0974 180 361 0.8725

2 8.3753 0.0603 223 446 0.9712

4 8.3800 0.0596 192 389 0.9788

6 8.3797 0.0590 206 426 0.9825

8 8.3810 0.0591 237 482 0.9769

10 8.3791 0.0584 225 459 0.9756

12 8.3776 0.0583 400 816 0.9838

14 8.3234 0.0987 215 431 0.9613

16 8.3245 0.0974 286 575 0.9494

18 8.3672 0.0975 231 464 0.9513

20 8.3791 0.1165 195 392 0.9287

Table C.5: Numerical results for slThk = 9 mm, initial point A.

Offset G12 V Iterations Function Evaluations Active Constraints

0 7.4385 0.0964 161 372 0.8600

2 7.4385 0.0577 191 411 0.9769

4 0.0000 0.0000 0 0 0.0000

6 7.4394 0.0567 167 358 0.9781

8 7.4338 0.0563 178 366 0.9850

10 7.4398 0.0567 212 452 0.9719

12 7.4383 0.0562 389 801 0.9769

14 7.4398 0.0974 192 391 0.9444

16 7.3904 0.0891 400 896 0.9650

18 7.3854 0.0959 211 425 0.9425

20 7.4230 0.1123 189 381 0.9350
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Table C.6: Numerical results for slThk = 10 mm, initial point A.

Offset G12 V Iterations Function Evaluations Active Constraints

0 6.6987 0.0935 164 332 0.8600

2 6.7003 0.0558 202 409 0.9800

4 6.6901 0.0555 203 408 0.9781

6 6.6984 0.0547 210 420 0.9819

8 6.6977 0.0543 236 483 0.9862

10 6.6976 0.0541 255 512 0.9881

12 6.6988 0.0541 305 622 0.9856

14 6.6989 0.0945 226 458 0.9469

16 6.6533 0.0926 234 473 0.9475

18 6.6358 0.0939 210 424 0.9325

20 6.6856 0.1095 188 378 0.9400

Table C.7: Numerical results for slThk = 11 mm, initial point A.

Offset G12 V Iterations Function Evaluations Active Constraints

0 6.0906 0.0878 174 349 0.9075

2 6.0582 0.0540 207 416 0.9806

4 6.0892 0.0537 217 435 0.9788

6 6.0908 0.0531 234 469 0.9800

8 6.0890 0.0526 229 466 0.9881

10 6.0668 0.0560 255 515 0.9437

12 6.0558 0.0523 287 582 0.9881

14 6.0523 0.0912 205 416 0.9506

16 6.0567 0.0902 222 451 0.9475

18 6.0558 0.0907 231 467 0.9431

20 6.0761 0.1068 174 352 0.9287
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Table C.8: Numerical results for slThk = 12 mm, initial point A.

Offset G12 V Iterations Function Evaluations Active Constraints

0 5.3373 0.0859 165 336 0.9000

2 5.5693 0.0529 210 420 0.9775

4 5.5701 0.0521 210 421 0.9838

6 5.5428 0.0539 227 464 0.9394

8 5.5789 0.0514 233 477 0.9775

10 5.5787 0.0509 295 599 0.9881

12 5.5791 0.0509 348 702 0.9862

14 5.5472 0.0890 189 383 0.9506

16 5.5668 0.0881 211 425 0.9494

18 5.5710 0.0886 242 495 0.9444

20 5.5491 0.1039 205 412 0.9337

Table C.9: Numerical results for slThk = 5 mm, initial point B.

Offset G12 V Iterations Function Evaluations Active Constraints

0 13.4000 0.0706 207 420 0.9769

2 13.4020 0.0710 244 489 0.9700

4 13.4009 0.0698 259 545 0.9731

6 13.3969 0.0693 294 604 0.9781

8 13.3966 0.0683 252 506 0.9819

10 13.3954 0.0684 400 801 0.9806

12 13.3765 0.1105 244 493 0.9463

14 13.3080 0.1075 348 704 0.9469

16 13.3948 0.1043 302 621 0.9556

18 13.3981 0.1094 262 527 0.9481

20 13.3146 0.1160 314 636 0.9500
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Table C.10: Numerical results for slThk = 6 mm, initial point B.

Offset G12 V Iterations Function Evaluations Active Constraints

0 11.1703 0.1019 189 381 0.9475

2 11.1699 0.0665 206 412 0.9731

4 11.1708 0.0656 218 438 0.9738

6 11.1746 0.0650 244 490 0.9794

8 11.1640 0.0644 269 540 0.9806

10 11.1698 0.0640 315 642 0.9775

12 11.1133 0.1069 381 767 0.9650

14 11.1121 0.1057 221 444 0.9537

16 11.1062 0.0967 299 608 0.9831

18 11.0987 0.1036 272 549 0.9450

20 11.1647 0.1268 269 542 0.9244

Table C.11: Numerical results for slThk = 7 mm, initial point B.

Offset G12 V Iterations Function Evaluations Active Constraints

0 9.5533 0.0941 177 360 0.9888

2 9.5708 0.0632 217 434 0.9731

4 9.5691 0.0624 200 403 0.9738

6 9.5650 0.0616 227 460 0.9806

8 9.5704 0.0610 246 493 0.9781

10 9.5696 0.0608 261 529 0.9794

12 9.5159 0.0604 400 801 0.9900

14 9.5131 0.1022 282 570 0.9531

16 9.5101 0.0996 243 490 0.9500

18 9.4239 0.1002 233 469 0.9306

20 9.5686 0.1066 244 494 0.9688
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Table C.12: Numerical results for slThk = 8 mm, initial point B.

Offset G12 V Iterations Function Evaluations Active Constraints

0 8.3656 0.0910 175 353 0.9750

2 8.3795 0.0603 204 419 0.9731

4 8.3779 0.0599 194 402 0.9706

6 8.3768 0.0589 234 474 0.9812

8 8.3791 0.0583 241 493 0.9788

10 8.3379 0.0580 265 538 0.9850

12 8.3360 0.0998 197 398 0.9487

14 8.3815 0.0704 400 801 0.9806

16 8.3332 0.0970 268 541 0.9531

18 8.3082 0.0977 220 445 0.9500

20 8.3423 0.1017 207 433 0.9625

Table C.13: Numerical results for slThk = 9 mm, initial point B.

Offset G12 V Iterations Function Evaluations Active Constraints

0 7.4378 0.0883 175 353 0.9575

2 7.4329 0.0579 203 408 0.9819

4 7.4375 0.0574 175 365 0.9756

6 7.3978 0.0565 176 392 0.9825

8 7.4396 0.0561 211 466 0.9812

10 7.4399 0.0559 225 459 0.9838

12 7.4435 0.0558 400 829 0.9819

14 7.4389 0.0934 400 801 0.9456

16 7.4078 0.0938 214 431 0.9644

18 7.3987 0.0953 218 438 0.9381

20 7.4004 0.0966 400 811 0.9537
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Table C.14: Numerical results for slThk = 10 mm, initial point B.

Offset G12 V Iterations Function Evaluations Active Constraints

0 6.5055 0.0919 186 378 0.8662

2 6.6976 0.0559 229 459 0.9838

4 6.7004 0.0562 199 398 0.9656

6 6.6997 0.0546 230 463 0.9838

8 6.6999 0.0545 235 492 0.9738

10 6.6972 0.0543 228 463 0.9744

12 6.6949 0.0539 324 651 0.9825

14 6.6664 0.0908 400 801 0.9587

16 6.6479 0.0904 400 817 0.9506

18 6.6607 0.0932 253 508 0.9381

20 6.6671 0.0970 296 596 0.9563

Table C.15: Numerical results for slThk = 11 mm, initial point B.

Offset G12 V Iterations Function Evaluations Active Constraints

0 6.0609 0.0857 175 352 0.9550

2 6.0859 0.0539 237 482 0.9838

4 6.0896 0.0536 204 415 0.9844

6 6.0892 0.0529 202 405 0.9856

8 6.0861 0.0526 250 514 0.9775

10 6.0899 0.0523 267 541 0.9869

12 6.0879 0.0523 302 617 0.9825

14 6.0466 0.0912 251 506 0.9419

16 6.0570 0.0886 265 533 0.9656

18 6.0768 0.0904 196 397 0.9381

20 6.0603 0.0932 264 532 0.9594
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Table C.16: Numerical results for slThk = 12 mm, initial point B.

Offset G12 V Iterations Function Evaluations Active Constraints

0 5.4963 0.0879 170 343 0.8738

2 5.5800 0.0527 227 456 0.9838

4 5.5793 0.0521 199 399 0.9819

6 5.5516 0.0512 208 416 0.9869

8 5.5582 0.0508 213 435 0.9856

10 5.5629 0.0541 275 554 0.9394

12 5.5691 0.0538 394 790 0.9400

14 5.5424 0.0886 205 415 0.9456

16 5.5550 0.0867 218 439 0.9669

18 5.5693 0.0880 226 454 0.9331

20 5.5566 0.0912 245 490 0.9644

Table C.17: Numerical results for slThk = 5 mm, initial point C.

Offset G12 V Iterations Function Evaluations Active Constraints

0 13.3972 0.1078 229 458 0.9487

2 13.4002 0.0707 201 408 0.9750

4 13.3961 0.0697 211 430 0.9762

6 13.3993 0.0694 198 410 0.9719

8 13.3813 0.0684 213 432 0.9819

10 13.3999 0.0683 240 488 0.9869

12 13.4004 0.0687 231 477 0.9812

14 13.4003 0.0702 400 801 0.9744

16 13.3256 0.1120 305 622 0.9637

18 13.2787 0.0997 345 699 0.9556

20 13.3999 0.1341 241 483 0.9375

140



Table C.18: Numerical results for slThk = 6 mm, initial point C.

Offset G12 V Iterations Function Evaluations Active Constraints

0 11.1164 0.1004 211 422 0.9800

2 11.1707 0.0663 201 405 0.9738

4 11.1688 0.0655 201 413 0.9744

6 11.1684 0.0649 182 378 0.9750

8 11.1684 0.0643 209 418 0.9831

10 11.1736 0.0640 242 490 0.9875

12 11.1677 0.0645 178 373 0.9781

14 11.1683 0.0648 279 571 0.9831

16 11.1251 0.1115 285 580 0.9681

18 11.1153 0.1036 260 523 0.9506

20 11.1231 0.1266 259 524 0.9625

Table C.19: Numerical results for slThk = 7 mm, initial point C.

Offset G12 V Iterations Function Evaluations Active Constraints

0 9.5316 0.0961 212 426 0.9712

2 9.5705 0.0629 205 418 0.9744

4 9.5642 0.0621 194 396 0.9750

6 9.5163 0.0653 214 445 0.9350

8 9.5720 0.0610 189 387 0.9775

10 9.5698 0.0607 204 413 0.9819

12 9.5676 0.0609 203 418 0.9812

14 9.5692 0.0614 259 526 0.9812

16 9.5261 0.1058 283 570 0.9644

18 9.5100 0.0979 274 551 0.9469

20 9.5299 0.1207 237 476 0.9600
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Table C.20: Numerical results for slThk = 8 mm, initial point C.

Offset G12 V Iterations Function Evaluations Active Constraints

0 8.3750 0.0939 192 390 0.9463

2 8.3718 0.0601 196 398 0.9775

4 8.3782 0.0594 193 390 0.9794

6 8.3773 0.0589 188 390 0.9756

8 8.3827 0.0585 181 400 0.9719

10 8.3792 0.0581 177 364 0.9781

12 8.3797 0.0583 192 427 0.9750

14 8.3798 0.0582 221 443 0.9844

16 8.3755 0.0589 384 792 0.9869

18 8.3213 0.0970 287 578 0.9544

20 8.3739 0.1172 243 487 0.9313

Table C.21: Numerical results for slThk = 9 mm, initial point C.

Offset G12 V Iterations Function Evaluations Active Constraints

0 7.4211 0.0941 191 407 0.8838

2 7.4334 0.0578 213 470 0.9819

4 7.4397 0.0578 178 364 0.9712

6 7.4397 0.0567 210 425 0.9762

8 7.4370 0.0561 198 401 0.9806

10 7.4399 0.0563 278 569 0.9756

12 7.4404 0.0557 192 385 0.9812

14 7.4390 0.0559 241 490 0.9812

16 7.4405 0.0566 400 801 0.9894

18 7.3797 0.0923 400 834 0.9487

20 7.4377 0.1144 235 472 0.9213
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Table C.22: Numerical results for slThk = 10 mm, initial point C.

Offset G12 V Iterations Function Evaluations Active Constraints

0 6.6942 0.0865 205 429 0.9437

2 6.6984 0.0560 184 369 0.9769

4 6.6976 0.0553 213 426 0.9762

6 6.6990 0.0545 207 426 0.9825

8 6.6999 0.0542 252 514 0.9881

10 6.6997 0.0537 236 496 0.9875

12 6.6998 0.0541 220 442 0.9781

14 6.6984 0.0538 273 554 0.9856

16 6.6702 0.0972 259 520 0.9625

18 6.7008 0.1009 400 801 0.8769

20 6.6707 0.1100 248 497 0.9463

Table C.23: Numerical results for slThk = 11 mm, initial point C.

Offset G12 V Iterations Function Evaluations Active Constraints

0 6.0888 0.0862 175 354 0.8988

2 6.0895 0.0542 199 398 0.9819

4 6.0853 0.0535 198 397 0.9806

6 6.0891 0.0530 137 300 0.9812

8 6.0540 0.0523 207 417 0.9806

10 6.0900 0.0523 237 481 0.9812

12 6.0880 0.0524 256 539 0.9825

14 6.0886 0.0552 310 666 0.9500

16 6.0617 0.0936 280 564 0.9594

18 6.0452 0.0903 232 470 0.9387

20 6.0085 0.1084 245 498 0.8912
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Table C.24: Numerical results for slThk = 12 mm, initial point C.

Offset G12 V Iterations Function Evaluations Active Constraints

0 5.5777 0.0827 176 354 0.9038

2 5.5799 0.0527 196 395 0.9838

4 5.5499 0.0518 213 427 0.9800

6 5.5800 0.0513 237 484 0.9862

8 5.5511 0.0510 234 472 0.9856

10 5.5806 0.0505 244 522 0.9906

12 5.5838 0.0556 256 513 0.9350

14 5.5798 0.0505 242 494 0.9900

16 5.5760 0.0924 252 506 0.9525

18 5.5768 0.0902 234 473 0.9294

20 5.5763 0.1048 200 404 0.9425

Table C.25: Numerical results for slThk = 5 mm, initial point D.

Offset G12 V Iterations Function Evaluations Active Constraints

0 13.3994 0.1102 265 530 0.9050

2 13.3952 0.0728 400 801 0.9744

4 13.3959 0.0700 315 646 0.9781

6 13.3985 0.0889 351 709 0.9781

8 13.2664 0.5044 7 35 0.1656

10 13.4027 0.0791 400 803 0.9725

12 13.3655 0.0805 400 830 0.9762

14 13.3955 0.0822 400 807 0.9819

16 0.0000 0.0000 0 0 0.0000

18 13.4008 0.1001 264 530 0.9594

20 13.3390 0.1328 294 589 0.9575
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Table C.26: Numerical results for slThk = 6 mm, initial point D.

Offset G12 V Iterations Function Evaluations Active Constraints

0 11.1694 0.1046 235 471 0.9050

2 11.1719 0.0685 306 614 0.9762

4 11.1686 0.0658 330 665 0.9725

6 11.1146 0.0729 400 802 0.9788

8 11.1661 0.0726 288 585 0.9744

10 11.0283 0.4971 8 35 0.1756

12 11.1203 0.0976 281 573 0.9738

14 11.1174 0.0993 249 502 0.9825

16 11.1692 0.0794 400 801 0.9706

18 11.0965 0.0937 258 525 0.9525

20 11.1236 0.1249 276 555 0.9631

Table C.27: Numerical results for slThk = 7 mm, initial point D.

Offset G12 V Iterations Function Evaluations Active Constraints

0 9.5759 0.1041 203 409 0.8575

2 9.5644 0.0651 284 573 0.9719

4 9.5686 0.0624 381 773 0.9712

6 9.3156 0.4903 7 37 0.2000

8 9.5684 0.0690 253 522 0.9712

10 0.0000 0.0000 0 0 0.0000

12 9.5696 0.0719 350 711 0.9781

14 9.5679 0.0739 400 804 0.9725

16 9.5643 0.0751 400 801 0.9812

18 9.5706 0.0859 400 813 0.9575

20 9.5262 0.1203 295 594 0.9563
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Table C.28: Numerical results for slThk = 8 mm, initial point D.

Offset G12 V Iterations Function Evaluations Active Constraints

0 8.3787 0.0964 214 429 0.9025

2 8.3760 0.0622 257 515 0.9756

4 8.3790 0.0592 381 767 0.9806

6 8.3819 0.0587 394 794 0.9788

8 8.3757 0.0663 396 810 0.9744

10 8.3776 0.0673 263 534 0.9738

12 8.3782 0.0687 316 642 0.9812

14 8.3805 0.0703 400 804 0.9769

16 8.3800 0.0718 400 817 0.9831

18 8.3234 0.0829 330 663 0.9706

20 8.2493 0.5019 7 35 0.1737

Table C.29: Numerical results for slThk = 9 mm, initial point D.

Offset G12 V Iterations Function Evaluations Active Constraints

0 7.4400 0.0600 316 634 0.9500

2 7.4399 0.0597 250 508 0.9800

4 7.4363 0.0575 393 791 0.9756

6 7.4386 0.0565 211 431 0.9800

8 7.3984 0.0633 227 469 0.9806

10 7.4398 0.0646 258 519 0.9875

12 7.3934 0.0706 276 557 0.9244

14 7.3761 0.0753 378 764 0.9663

16 7.4295 0.0789 300 609 0.9644

18 7.3650 0.0897 236 476 0.9513

20 7.4398 0.1120 197 399 0.9513
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Table C.30: Numerical results for slThk = 10 mm, initial point D.

Offset G12 V Iterations Function Evaluations Active Constraints

0 6.6941 0.0605 310 620 0.9263

2 6.6998 0.0577 282 572 0.9812

4 6.6991 0.0552 347 709 0.9794

6 6.6992 0.0548 400 800 0.9794

8 6.6898 0.0613 249 505 0.9800

10 6.6722 0.0624 330 676 0.9794

12 6.6982 0.0638 365 734 0.9888

14 6.6710 0.0653 400 803 0.9800

16 6.6687 0.0884 266 537 0.9613

18 6.6949 0.0995 267 545 0.9131

20 6.5970 0.4930 7 35 0.1913

Table C.31: Numerical results for slThk = 11 mm, initial point D.

Offset G12 V Iterations Function Evaluations Active Constraints

0 6.0695 0.0879 205 419 0.9125

2 6.0856 0.0559 284 571 0.9812

4 5.8629 0.4686 8 28 0.2369

6 6.0870 0.0586 288 577 0.9731

8 6.0907 0.0593 239 485 0.9812

10 6.0898 0.0607 309 618 0.9756

12 6.0848 0.0618 400 813 0.9888

14 6.0515 0.0881 241 492 0.9469

16 6.0583 0.0739 400 801 0.9725

18 6.0540 0.0876 312 633 0.9606

20 5.9961 0.4898 7 37 0.2037
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Table C.32: Numerical results for slThk = 12 mm, initial point D.

Offset G12 V Iterations Function Evaluations Active Constraints

0 5.5788 0.0891 172 348 0.8600

2 5.5800 0.0545 273 555 0.9800

4 5.3793 0.4651 8 28 0.2462

6 5.5800 0.0565 254 509 0.9838

8 5.5542 0.0578 265 543 0.9812

10 5.5800 0.0591 400 801 0.9744

12 5.4648 0.0869 234 469 0.8906

14 5.5429 0.0851 301 610 0.9456

16 5.5462 0.0857 232 468 0.9631

18 5.5469 0.0861 290 582 0.9606

20 5.5605 0.1038 286 579 0.9450
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