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ABSTRACT 

Endoscopic photoacoustic imaging probe is becoming increasingly important for 

many clinical photoacoustic imaging applications in which the target tissue can only be 

accessed by introducing an endoscopic probe percutaneously or through a natural orifice. 

Miniature fiber optic hydrophone (FOH) has become an attractive choice for endoscopic 

photoacoustic imaging application. Fiber optic hydrophone has many proven advantages, 

including small size, light weight, immunity to electromagnetic interference, low cost for 

single-use application and capability of integration of excitation light source and acoustic 

wave receiver.  

This dissertation demonstrates an open cavity, micro-cantilever based fiber optic 

Fabry-Perot interferometer (FPI) hydrophone. A fused silica micro-cantilever beam as the 

sensing element is directly fabricated by femtosecond (fs) laser micromachining system. 

The theoretical analyses and experimental verifications were all applied for evaluation of 

the proposed cantilever based FOH. 

A rectangular micro-cantilever based FOH is presented, which has a narrow 

bandwidth but high response and high sensitivity around its resonant frequency, and has 

many advantages as a good potential candidate for endoscopic photoacoustic imaging 

application. As a key parameter of the hydrophone, the resonant frequency can be adjusted 

by changing the dimensions and shapes of the micro-cantilever. In order to increase the 

resonant frequency of the rectangular micro-cantilever based FOH, and without loss in 

sensitivity, V-shaped and triangular cantilever based FOHs are investigated and compared 

with the rectangular cantilever based FOH theoretically and experimentally. The resonant 
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frequency of the triangular cantilever based FOH has been doubled without loss in 

sensitivity compared with the rectangular cantilever based FOH. 

Cantilever based 45° angled FOH was proposed for a new choice for sideway 

looking detection except forward looking detection for endoscopic imaging in vessels. It 

consists of a fiber with a 45° angled endface and a fs laser fabricated micro-cantilever. The 

45° angled endface would steer the optical axis by 90° via total internal reflection, and send 

the input light to the sensing part. This configuration could be applied for cross-axial 

sensing application. The proposed FOHs were all theoretically analyzed and experimental 

tested. Experimental results agree well with the simulated frequency responses of the 

proposed FOHs.  
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CHAPTER ONE 

INTRODUCTION 

1.1 HYDROPHONES 

Titanic’s sinking stunned the world, and captured the world’s attention in April, 

1912. Within two months of the disaster, Reginald Fessenden patented a high-frequency 

oscillator, and then he worked out the earliest used hydrophone to detect an iceberg 2 miles 

away. It was an electro-acoustic transducer and a first successful acoustical echo ranging 

device in 1917 [1]. During the World War I, Langevin and his group utilized the dual nature 

of the piezoelectric effect of quartz crystal to realize a piezoelectric hydrophone device for 

defensing the Germen submarines’ attack [2-3]. Piezoelectric hydrophone are the most 

common devices used for acoustic measurements in water. The industrial and military 

applications of ultrasound detection were lead to the development of medical diagnostic 

ultrasound technology.  

Nowadays, hydrophones are used in a variety of applications, such as ocean 

observation, environmental monitoring, pile driving, oil/gas pipeline leak detection and 

biomedical photoacoustic imaging. Researchers proposed the feasibility of ultrasound 

generation by irradiation of a solid with a laser pulse in early 1960s, during next twenty 

years, the elastic wave generated by the interaction of a laser pulse with a solid had been 

published in many literatures [4]. Afterwards, the optical ultrasound detection and imaging 

have made greatly progress. Miniature size, highly sensitive hydrophones are useful for 

endoscopic photoacoustic imaging in which the optically excited broadband and low 

amplitude ultrasonic waves are detected by one or more hydrophones and used to construct 
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the tomography of optically contrasted functions and properties of tissues and organs [5-

9]. 

The earliest fiber optic hydrophone (FOH) was based on phase modulation, applied 

acoustic-optic interaction directly on optical fiber in 1977 [10]. FOHs have attracted much 

attention and been researched for decades. Alternative approaches include intensity 

modulation, frequency or wavelength modulation and phase modulation [11-14]. Fiber 

optic systems have telemetry over long distance without additional power compared with 

other electroacoustic systems [15]. By taking advantage of optical fiber, FOH have the 

unique advantages, including small size, immunity to electromagnetic interference (EMI), 

low cost and the unique capability to integrate the excitation light source with acoustic 

receiver for clinical endoscopic photoacoustic imaging application [16-19]. The most 

common design of FOH is diaphragm based fiber optic Fabry-Perot interferometric (FPI) 

hydrophone.  The FPI structure has a very small sensing area and is particularly attractive 

for endoscopic photoacoustic imaging. Various diaphragm based extrinsic Fabry-Perot 

interferometer (EFPI) FOH have been reported [20-29].  In our previous work, silica 

diaphragm based EFPI acoustic sensor has been proposed as well [30]. 

 

1.1.1 PVDF hydrophone 

Piezoelectric effective is defined as the linear electromechanical interaction 

between the electrical charges and stress distribution in piezoelectric material. Piezoelectric 

transducers have been widely used for ultrasonic medical imaging and photoacoustic 

imaging [31-32]. Piezoelectric hydrophone is an active hydrophone, which is known as 
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pulse-echo mode. It is because piezoelectric hydrophone is based on piezoelectric effect, 

which can be used for exciter and receiver. Flexible piezoelectric polymers, most notably 

Polyvinylidene Fluoride (PVDF), have been commonly used for construction of small size 

acoustic imaging devices. The size of commercial PVDF hydrophone could go down to ten 

millimeters in diameter, however, the element size is difficult below 0.5 mm due to ‘fringe’ 

effects involved with spot poling PVDF films [33]. PVDF has low permittivity, high 

mechanical losses and low piezoelectric constants. PVDF hydrophones usually need 

complex designs and multiple impedance matching layers to reach the performance of the 

piezoelectric ceramic hydrophones [34-35].  

 

1.1.2 Fiber optic hydrophones 

FOHs have also been used for photoacoustic imaging [36-40]. Compared with the 

piezoelectric hydrophones, FOHs have the unique advantages, including small size, 

flexibility and the capability to be integrated with the excitation light source, which make 

them particularly attractive for endoscopic imaging.  In addition, because of their immunity 

to EMI, FOHs can be used in a strong EMI and electric shocking hazardous environment 

such as in an electric transformer [41]. Various fiber sensors have been investigated for 

acoustic wave detection underwater. These sensors operate by detecting the acoustic 

pressure induced different optical parameters such as intensity [42-45], frequency and 

wavelength [46-50], and phase [51-54].  

1.1.2.1 Intensity modulation FOHs. Intensity-based FOHs are easy to fabricate 

and integrate. By monitoring reflection or transmission loss, vibration of the free end of 
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the optical fiber caused by acoustic wave could be detected and analyzed [42-45]. 

However, their sensitivities are found to be inadequate. Arnaud et al. presented an intensity 

based optic probe hydrophone utilizing refractive index changed by cavitation in water that 

results from acoustic wave [42]. 

1.1.2.2 Wavelength modulation FOHs. A fiber Bragg grating (FBG) is that 

reflective elements written into the core of an optical fiber, its specific wavelength, also 

called Bragg wavelength would be reflected and the others would transmit. The Bragg 

wavelength could be changed when grating period changed. The mechanism of FBG 

hydrophone is based on wavelength modulation. Takahashi et al. proposed an underwater 

acoustic sensor using FBG in 1997 [47]. Baiou Guan’s group presented a distributed Bragg 

Reflector Fiber laser used as ultrasonic hydrophone [50]. Shuaiqi Jing et al. applied FBG 

for photoacoustic imaging in 2015 [49]. However, the upper limit of the incident acoustic 

frequency is set by the length of the grating. 

1.1.2.3 Interferometric modulation FOHs. The literature on optical fiber 

interferometric acoustic sensor is extensive. The earliest FOH was realized with fiber optic 

interferometer. Optical fiber interferometers are preferred to construct the hydrophone 

when a detection sensitivity is needed. Mechanism of interferometric hydrophone include 

Mach-Zehnder [52], Fabry-Perot [51], Michelson [55], Sagnac [56] and ring resonator [57-

59]. 

Among the many demonstrated optical fiber interferometer based hydrophones, the 

FPI based structure has a very small sensing area and is particularly attractive for 

endoscopic photoacoustic imaging. A typical fiber optic EFPI hydrophone uses a thin 
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diaphragm as the sensing element, which deflects under the acoustic pressure to produce a 

change in the optical path difference (OPD). The change in OPD is measured by the 

interferometer with a very high sensitivity and at a high speed. The diaphragm can be made 

of various materials, such as metal, polymer, fused silica and etc.  

However, a soft diaphragm will result in a high sensitivity but low frequency 

response. The other considerations in choosing the diaphragm material include temperature 

cross sensitivity, mechanical robustness and acoustic impedance matching. Both sealed and 

open cavity FPI sensors have been reported for acoustic wave measurement [20]. In 

general, a sealed cavity sensor has a wide and relatively flat frequency response (all the 

way from static pressure) while the open cavity sensor has a higher sensitivity but limited 

acoustic detection bandwidth. The sealed cavity sensor will also face the problem of 

operating point drift due to temperature variations of static pressure changes.  

The traditional way of making the fiber optic FPI hydrophone is to assemble the 

diaphragm with the optical fiber to make the FPI structure. However, assembly-based 

sensors have difficulty to precisely control the initial cavity length as well as other issues 

such as operating point drift and weak mechanical robustness. More recently, various 

micromachining techniques have been used to directly fabricate fiber FPI sensors.  These 

assembly-free sensors have shown advantages of high dimensional precision, compactness, 

improved sensitivity and mechanical strength. In this dissertation, we report compact 

cantilever-based open cavity fiber optic FPI hydrophones fabricated by femtosecond laser 

(fs) micromachining. 
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1.1.2.4 Fiber sensor with a 45° angled endface. Fiber optic sensors utilized total 

internal reflection at the 45° angled fiber endface to steer the optical axis by 90 ° to achieve 

more optional sensing application on the sidewall of the optical fiber. There are several 

kinds of angled fiber optic sensors applied for pressure sensing [60] and temperature 

sensing [61-63]. 45 ° angled endface provides a good choice for cross-axial sensing. 

 

1.2 Micromachining methods for micro-cantilever beam 

Micro-machined cantilevers are widely used for atomic force microscopy, 

chemical/biological detection and physical parameters monitoring. These applications are 

all based on measuring the mechanical deformation of the cantilever in response to certain 

external events. Micro-cantilever is small, robust, does not need alignment and can 

potentially operate in harsh environment. Nowadays, several methods have been reported 

to fabricate micro-cantilever structure including MEMS [64], Picosecond (Ps) laser [65], 

Focused Ion Beam (FIB) [66-67], and fs laser [68]. Fs laser micromachining has been a 

promising method for fabrication of micro/Nano-structures in/on optical fiber tips 

attributed to its high precision, flexible design, assembly free, and compatible with other 

methods such as sputter coating, and fusion splicing [69].  

 

1.3 Motivations and objectives 

Motivations: This research was initially motivated by developing a novel micro-

cantilever based FOH with help of fs laser micromachining system for clinical endoscopic 

photoacoustic imaging. The assessment of coronary artery disease, prostate cancer and 
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gastrointestinal pathologies needs high sensitivity, miniature size, flexible and low cost for 

single-use endoscopic imaging probes [16]. Small fiber optic imaging probe could be used 

in photoacoustic imaging system for guiding minimally invasive procedures for visualizing 

tissue structures such as blood vessels, nerves and tumors and needle tracking [70-71], the 

noncontact measurement of the photoacoustic tomography [37], 3D photoacoustic imaging 

of blood vessel phantoms [39], and high resolution vascular tissue imaging [40] in 

ultrasound bandwidth of ~20MHz.  

The micro-cantilever based FOH offers flexibility in configuration for forward 

looking detection and sideway looking detection by changing the sensing part location. It 

still has capability to integrate the transmission of light and acoustic wave receiver. The 

motivation of the research is to meet the requirements of developing an endoscopic 

photoacoustic imaging probe for clinical applications. 

Objectives: From the previous reviews, EFPI is a good choice for fiber optic 

sensing application. A fused silica micro-cantilever could be realized easily by using fs 

laser micromachining system. Integrating EFPI and fs laser fabricated fused silica micro-

cantilever into a micro-cantilever based FOH to achieve a miniature, inexpensive, assembly 

free, sensitive to acoustic wave endoscopic probe. The main objective of the research is 

realizing the concept of the micro-cantilever based FOH, we will be focusing on design, 

model, fabrication and test the proposed micro-cantilever based FOH. The specific 

objectives of this research include: 
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1) Deep understanding the behavior of immersed micro-cantilever beam, model 

and numerical simulation the dynamic response of the sensing micro-cantilever 

beam. 

2) Optimization of the rectangular cantilever based FOH for predesign of the 

resonant frequency of the hydrophone. 

3) Development of the ultrafast laser micromachining system for micro-cantilever 

based FOH fabrication. 

4) Design and implement a measurement system including both optical and RF 

devices to evaluate the dynamic response of the proposed hydrophones. 

5) Characterize the hydrophone with items of dynamic response, sensitivity, 

detection limit experimentally. 

 

1.4 Organizations of the dissertation 

This dissertation is organized into six chapters with its contents summarized below: 

Chapter 1 introduces the history and development of hydrophones. Started with an 

oscillator used for iceberg detection, piezoelectric materials have been used for underwater 

acoustic transducers for nearly a century. Piezoelectric polymers are often used for small 

size hydrophones because of its flexibility and acoustic impedance matching with water, 

especially PVDF. FOH have been researched for decades benefited from unique properties 

of optical fibers. For photoacoustic imaging application, diaphragm based FOHs have 

attracted much attentions. A brief review of FOHs is provided. 
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Chapter 2 describes the principles of EFPI. The theory of the micro cantilever beam 

is derived, not only for rectangular cantilever but also V-shaped and triangular cantilever 

beams. Finite element analysis with COMSOL is described in details. After that, the 

mechanism of the proposed hydrophone is expressed. 

Chapter 3 describes the fabrication of recantangular cantilever based FOH. 

Acoustic wave measurements in air and under water are all presented. 

Chapter 4 introduces V-shaped and triangular cantilever based FOHs. The 

fabrication, optimization and predesign of the different shaped micro-cantilever based 

FOHs. Dynamic responses of the hydrophones were experimentally tested and 

theoretically analyzed. 

Chapter 5 describes sideway looking detection hydrophone that is cantilever based 

45 ° angled FOH. The different fabrication is described in details. This sideways looking 

hydrophone is characterized with its dynamic response, sensitivity. The advantages of the 

hydrophones will be discussed. 

Chapter 6 summarizes the dissertation work and comments the future work. 

 

1.5 Innovations and contributions 

Scientific and technical contributions of the research include the following: 

1. A novel, open cavity, micro-cantilever based FOH was proposed and realized 

with help of fs laser precise micromachining system. Experimental analysis 

demonstrated dynamic response of the hydrophone, and were in good 

agreement with theoretical investigations and numerical simulation results. 
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2. The use of V-shaped and triangular cantilever beams for atomic force 

microscope inspired the sensing structure design. By changing the shapes of the 

sensing part of the hydrophone from rectangular cantilever to V-shaped or 

triangular cantilever, the resonant frequency of the hydrophone could be 

predesigned and doubled without loss in sensitivity. 

3.  Cantilever based 45° angled FOH was realized for cross-axial sensing by 

directing the input light sideways in using total internal reflection on the angled 

endface. The micro-cantilever as sensing structure had much more space in 

design. This hydrophone provided an approach in sideways looking detection, 

which is meaningful for endoscopic application. 
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CHAPTER TWO 

THE MECHANISM OF THE MICRO-CANTILEVER BASED FOH 

This chapter will introduce the operating principles of the micro-cantilever based 

FOH, which is based on EFPI. The principles of EFPI will be described firstly. The sensing 

part of the FOH is a micro-cantilever beam. The properties and behavior of the immersed 

micro-cantilever will be investigated and described. Finite element analysis is conducted 

with COMSOL to explore the dynamic response of the immersed complex geometrical 

structures.    

  

2.1 Principles of EFPI  

The representative diaphragm based EFPI sensor is shown in Fig. 2.1. Light goes 

through the lead-in fiber, and is reflected by the two mirrors, which are the interface 

between the lead-in fiber and the EFPI cavity, and the inner endface of the diaphragm, 

forms a typical interference signal. 

 

 

Fig. 2.1. Schematic of a diaphragm based EFPI sensor. 

This EFPI sensor could be modeled using the classical two-beam interference 

equation 

SMF I1 I2
Input light

Output signal

Diaphragm
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                                       (2.1) 

where I is the intensity of the interference signal, I1 and I2 are reflected signals from those 

two different interfaces, n0 is the refractive index of the medium filled in the cavity of the 

EFPI, L is the cavity length, and φ0 is the initial phase of the interference. 

The intensity of the interference signal reaches its valleys periodically when the 

phase of the cosine term in Eq. (2.1) becomes an odd number of π. The phase difference 

between the adjacent dips is 2π. The adjacent dips are supposed to be at λ1 and λ2, the phase 

difference could be express as 

0 0
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4 4
2

n n
L L

 


 
                                                  (2.2) 

Thus, the cavity length L will be obtained from Eq. (2.3), that is  

 
1 2

0 2 12
L

n

 

 



                                                       (2.3) 

where λ1 and λ2 are the center wavelength of the adjacent dips. 

 

2.2 Theory of immersed micro-cantilever 

2.2.1 Rectangular micro-cantilever 

When the micro-cantilever beam was immersed in water and excited by an acoustic 

wave, the dynamic deflection of the cantilever beam can be modeled and analyzed using 

the general theory given in Ref [72] which described the dynamic response of a cantilever 

beam under a point load for atomic force microscope applications. Here we adopt it to 

study the frequency response of the cantilever under the distributed acoustic load.  
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Fig. 2.2. The structure and dimension of the rectangular cantilever beam with uniform 

cross-section. 

Figure 2.2 shows the schematic of a cantilever for the purpose of analyses. The 

length, width and thickness are L, b and h, respectively. The deflection w(x, t) of the 

cantilever beam is given by 

4 2

4 2

( , ) ( , )
( , )

w x t w x t
EI F x t

x t


 
 

 
                                  (2.4) 

where E is Young’s modulus; I is the moment of inertial of the cross section of the beam; 

µ is the mass per unit length of the beam; F(x, t) is the external force function loaded on 

the cantilever beam; t is the time variable. The spatial variable x varies along the length of 

the cantilever beam. 

For the micro-cantilever structure, the boundary conditions include four parts: (1) 

the fixed end of the beam doesn’t have any deflection; (2) the derivative of the deflection 

at the fixed end is also zero; (3) there is no bending moment at the free end of the cantilever, 

so the second order derivative at the free end is zero; (4) there is no shearing force acting 

at the free end of the beam, thus the third order derivative is still zero. 
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In order to obtain the deflection function in the frequency domain the Fourier 

transform is applied to Eq. (2.4), which produces 

4
2

4 4

ˆ ( , ) ˆ ˆ( , ) ( , )
EI d W x

W x F x
L dx


                                                (2.5) 

Typically, the external force needs to be separated into two components  

 ˆ ˆ ˆ( , ) ( , ) ( , )hydro driveF x F x F x                                                   (2.6) 

where ˆ ( , )driveF x   is the applied driving force. If we assume the acoustic wave has a single 

frequency and uniformly exerts a force onto the beam at the direction perpendicular to the 

beam, ˆ ( , )driveF x A   where A is the amplitude of the driving force. ˆ ( , )hydroF x   is the 

hydrodynamic loading force caused by the motion of the fluid around the beam, given by  

      2 2 (
4

ˆ ˆ( , ) ) ( , )hydro bF x W x

                                             (2.7) 

where ρ is the density of the fluid and  𝛤(𝜔) is defined as the hydrodynamic function per 

Ref [72].  Therefore, Eq. (2.5) can be written as 

  
4 2 4 2 4

4

ˆ ( , ) ˆ1 ( ( , )
4

)
d W x L b AL

W x
dx EI EI

  





 
    

 
                                      (2.8) 

The Green’s function theory is used to solve Eq. (2.8) by applying the boundary 

conditions. The deflection �̂�(𝑥, 𝜔) is found to be  

               
4

0

ˆ ( , ) , ' '

L
AL

W x G x x w dx
EI

                                                        (2.9) 

The expression of the Green’s function can be found in Ref. [25].  

It is well known that the dimensions and physical properties of a micro-cantilever 

strongly affect its dynamic response, and the frequency response of the micro-cantilever is 

also strongly depending on the fluid in which it is immersed [72-73]. So it is highly 
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desirable to involve numerical simulations to figure out the relationship between the 

different dimensions of a micro-cantilever beam and the frequency responses. The 

numerical simulation results are presented and analyzed as follows. 

 

Fig. 2.3. Deflection spectra of the cantilever-based fiber optic sensor immersed in fluid, 

the dashed blue line shows the spectrum in water, and solid red line presents the spectrum 

in air. Inset: Normalized deflection spectra of the cantilever-based fiber optic sensor 

immersed in fluid with respect to their highest response. 

In the simulated frequency response spectra of the cantilever based optical fiber 

acoustic sensor shown in Fig. 2.3. The effective length, width and thickness of the micro-

cantilever part are 80 µm, 50 µm and 15 µm respectively. Due to the material of micro-

cantilever is fused silica, the young’s modulus is 73 GPa, and the Poisson’s ratio is 0.17. 

The viscosity coefficients of water and air are 2.5e-3 and 1e-5 Pa·s, respectively. The 

frequency response spectra in fluid are all calculated by using Eq. (2.9). 
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Fig. 2.4. Normalized deflection spectra of the micro-cantilever immersed in water 

in different dimensions with respect to the highest response. (a) The width of cantilever 

was 45 µm, and the length was 85 µm. (b) The thickness and the length of cantilever 

were 9 µm and 85 µm respectively. (c) The width of cantilever is 30 µm, the thickness 

was 9 µm. 

The fundamental frequency of the micro-cantilever in air is 5.4 MHz as shown in 

the red solid line in Fig. 2.3. The frequency response of the micro-cantilever in water is 

dashed blue line in Fig. 2.3, which is much weaker than the dynamic response in air.  For 

better comparison, we normalized the frequency response spectra with respect to their 
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highest deflection as shown in the inset of Fig. 2.3. The fundamental frequency of the 

micro-cantilever in water is 2.9 MHz, and the fundamental frequency and first harmonic 

frequency are all clear as shown in dashed blue line of the inset of the Fig. 2.3. It is much 

clear that the fundamental frequency in water is much smaller than it in air, and also is 

broadened because the different viscosities of the fluid around the cantilever. 

Length, thickness and width are three main parameters for designing the rectangular 

micro-cantilever beam. By changing one of these three parameters in calculations, we can 

find the relationship between the dimensions and the frequency spectra. The results in Fig. 

2.4(a), demonstrate that for given width and length of the micro-cantilever structure of 45 

µm and 85 µm, respectively, an increase in the thickness of the micro-cantilever over range 

from 3 µm to 15 µm has the effect of weakening and increasing the resonance peak to 

higher frequencies. In Fig. 2.4 (b), we use the conformed thickness and length, 9 µm and 

85 µm, and change width of the micro-cantilever from 10 µm to 50 µm to get the shifting 

resonance frequencies in different response spectra. In Fig. 2.4(c), the thickness and the 

width are given as 9 µm and 30 µm, it is clearly showed that sweeping the length in range 

from 55 µm to 95 µm has improved the deflection of the fundamental frequencies and 

shifted the resonance peak to lower frequencies. The relationship between the size of the 

cantilever and the dynamic response is clear. Increasing thickness will lift the fundamental 

frequency obviously. However, the changes of thickness still bring amounts of changes to 

the deflection. The wider the width of micro-cantilever is, the lower the fundamental 

frequency will be. Improving the length of the cantilever structure will reduce the 
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fundamental frequency and improve the deflection. Among the three dimensions of the 

micro-cantilever, thickness is the dominant parameter to effect the frequency response.  

 

2.2.2 V-shaped and Triangular cantilever 

V-shaped micro-cantilever is currently popular in the applications of the atomic 

force microscope (AFM). The use of V-shaped cantilever is due to its insensitivity to lateral 

twisting and rolling, even it is still in dispute [74]. Theoretical investigation of the spring 

constants of the rectangular and V-shaped cantilevers have been reported in literature [75]. 

The spring constant of the V-shaped cantilever is equivalent to it of the rectangular 

cantilever which has same length and thickness but twice the width of the one arm of the 

V-shaped cantilever [75-76], which make the resonant frequency of the V-shaped 

cantilever can be improved a lot compared with rectangular cantilever but almost no loss 

of sensitivity. Triangular cantilever emphasizes resonant frequency improvement than V-

shaped cantilever, and is easier in micro-fabrication. Fig. 2.5 shows shapes and dimensions 

of the two different cantilever structures. The spring constants could be estimated using 

Eqs. (2.10) and (2.11) based on the dimensions shown in Fig. 2.5. 

The spring constant of an end-loaded rectangular cantilever beam is given by 

3

34

Et w
k

L
                                                    (2.10) 

where w is the width, L is the length, and t is the thickness, E is the elastic modulus. 
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Fig. 2.5. Shape and dimensions of (a) rectangular cantilever (b) V-shaped cantilever. 

Due to the symmetry of the V-shaped cantilever, the parallel beam approximation 

is applied in analytical evaluation of the spring constant of V-shaped cantilever beams, 

which is effective and simple [75]. The zeroth order spring constant solution was obtained  
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                                          (2.11) 

For V-shaped and triangular cantilevers, it is difficult to get the vibration responses 

from formulas in immersion case. However, as a part of the resonant sensor, the resonant 

frequency is an important parameter. The static resonant frequencies of the V-shaped 

cantilever are explored in many literatures [77-79]. The Rayleigh-Ritz method is often used 

in mechanical engineering to estimate the approximate real resonant frequencies of multi 

degree of freedom systems. Thus, the Rayleigh-Ritz method provides the approach to 

calculate the resonant frequencies of V-shaped and triangular cantilevers, which helps the 

researchers in designing and optimization of V-shaped and triangular cantilevers.  
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Fig. 2.6. Shape and dimensions of V-shaped cantilever. 

The resonant frequency of a cantilever with an arbitrary shape but uniform 

thickness can be obtained using Rayleigh-Ritz method as 
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                            (2.12) 

where W(x) is the width function, L is the length of the cantilever, ρ is density of the 

structure. Figure 2.6 shows a typical symmetrical V-shaped cantilever, obviously, the width 

function can be simplified as  
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                          (2.13) 

From Eqs. (2.12) and (2.13), triangular cantilever can reach the maximum resonant 

frequency and highest sensitivity. The frequency is obtained 
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Static resonant frequencies of V-shaped cantilever and triangular cantilevers are all 

presented and discussed, which are very helpful for predesign. However, the dynamic 

responses of the immersion V-shaped and triangle cantilevers need more powerful tool’s 

help. 

 

2.3 Finite element analysis 

Finite element analysis was conducted with commercial software COMSOL, which 

help us to analyze the dynamic response of the immersed complex geometrical structures 

effectively and economically.  

When the cantilever beams are immersed in a fluid, the fluid affects the mode 

shapes of immersed cantilever beams, and damping will reduce their fundamental 

frequencies. However, the phenomenon is difficult to be expressed in formulas. In the 

simulation, a Multiphysics approach is chose to find out fundamental frequencies and mode 

shapes of the immersed cantilever beams. The problem is set up as a coupled acoustic-

structure eigenvalue analysis. Fluid viscosity is added as a viscous loss term for damping. 

Due to the scale of the micro-cantilever, the surrounding fluid geometric block are ten 

times sizes of the cantilever structure. The fluid space has sound hard boundary, and the 

COMSOL automatically defines the interfaces between cantilever structure and the fluid.  

The parameters used in simulation are listed in table 2.1. The bulk viscosity needs 

to be added from viscosity model. The value of bulk viscosity of water is from the Ref. 

[80]. 

Table 2.1 COMSOL simulation parameters 
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Material Properties Values Unit 

Water 

Density 997 kg/m3 

Speed of sound 1450 m/s 

Bulk viscosity 2.5e-3 Pa·s 

Silica glass 

Density 2203 kg/m3 

Young’s modulus 73e9 Pa 

Poisson’s ratio 0.17 _ 

 

Figure 2.7 shows the immersion V-shaped cantilever model, one end of the 

cantilever beam is added fixed constraint, while the tip end is free. Eigen-frequency study 

is applied to explore the first mode frequency of the immersed cantilever beam. 

 

Fig. 2.7. The immersed V-shaped cantilever model. 

The mode shape is shown in Fig. 2.8, from mode shape, the resonant frequency can 

be distinguished easily. Resonant frequencies of the modes of the cantilever beam vibrating 

Water

V-shaped cantilever
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in fluid environment are calculated via Eigen frequency solver. The complex cantilever 

structure is analyzed effectively with the help of COMSOL.  

 

Fig. 2.8. Mode shape of the immersed V-shaped cantilever model. 

To assess the correctness of the model we used and the accuracy of the results, we 

used rectangular cantilever to compare two simulation results, one is from COMSOL 

shown in Fig. 2.9 and the other is numerical simulation from Eq. (2.9).  Those two 

simulations used same dimensions and same properties. The first mode frequency is 0.72 

MHz in numerical simulation, and the COMSOL shows the first mode frequency is 0.84 

MHz.  Two simulation results has a very good agreement. This modeling would help a lot 

in predesigning the resonant frequency of the micro V-shaped and triangle cantilever based 

FOHs. 
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Fig. 2.9. The first Mode shape of the immersed rectangular cantilever model. 

 

2.4 Principles of micro-cantilever based FOH 

 Combine EFPI and micro-cantilever theory, with the help of micromachining 

technology, the micro-cantilever based FOH is proposed. 

Figure 2.10 illustrates the structure and operating principle of the cantilever based 

FOH. The single mode fiber (SMF), glass tube (GT) and the micro-cantilever form an open 

Fabry-Perot (FP) cavity. The outer surface of the micro-cantilever is laser roughened 

during the fabrication process. Thus, the FPI has only two reflections at the fiber endface 

(I1) and the inner surface of the cantilever (I2), respectively. These two reflections 

superimpose to generate an interference signal when excited by a laser source. The 

impinging acoustic waves make the micro-cantilever vibrate and correspondingly change 

the OPD of the FP cavity, resulting in the change in optical intensity around the biasing 

point (also referred to as the operating point). Typically, the operating point is chosen in 
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the center region of the sinusoidal interference signal to achieve a linear response with high 

sensitivity. 

 

Fig. 2.10. Structure and operating principle of the micro-cantilever based FOH.  
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CHAPTER THREE 

 

RECTANGULAR CANTILEVER BASED FOH 

 

 

We report an open cavity, rectangular cantilever based fiber optic FPI hydrophone 

in this chapter. The hydrophone is made of fused silica material, and its micro-cantilever 

beam is directly fabricated by femtosecond (fs) laser micromachining. The theoretical 

analysis and experimental verification of the frequency response of the sensor are 

presented. 

3.1 Hydrophone fabrication 

3.1.1 Sample preparation 

Typically, sensor fabrication consists of the following steps: First, an FP 

interferometer was fabricated at the tip of an SMF. A section of a capillary GT with an 

outer diameter of 170 μm and an inner diameter of 100 μm (TSP100170, Polymicro, Inc.) 

was initially spliced to a standard single-mode fiber. Then, the tube was cleaved at a 

distance (tens of micrometers) from the splice point with the help of a microscope. The 

tube was then spliced to another SMF to form a sealed air cavity sandwiched between two 

fibers. The whole parts could be regarded as a SMF-GT-SMF structure. Precision fiber 

cleaving was applied to cut the fiber so that a thin piece of fiber was left to perform as a 

diaphragm. Finally, the as-cleaved diaphragm was thinned and fabricated to a thin 

diaphragm followed by a cantilever structure by using an fs laser [81]. 

 

3.1.2 Development of fs laser micromachining system 
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 Recent progress in the fs laser three-dimensional (3D) micro- and even Nano-scale 

micromachining technique offers an effective and flexible way for high precision 

fabrication of microdevices and structures in various transparent materials, such as fused 

silica glass [82-85] and crystal sapphire materials [86]. When used for ablation, the fs laser 

shows many unique characteristics including negligible cracks, minimal heat-affected-

zones, low recast, and high precision. The merits of this advanced manufacturing technique 

provide the unique opportunity to fabricate novel microsensors with enriched functionality, 

enhanced intelligence, and unprecedented performance. 

The laser employed in this research was a Ti:Sapphire fs laser system manufactured 

by Coherent Inc. The performance specifications for the laser are summarized in Table 3.1. 

The full ultrafast laser system consists of a diode-pumped solid state laser with high power 

CW output at 532 nm (Verdi V18, Coherent Inc.), a Ti:Sapphire mode-locked laser (Mira 

900, Coherent Inc.) and a Ti: Sapphire regenerative amplifier laser (RegA 9000, Coherent 

Inc.). The schematic of our home-integrated fs laser micromachining system with direct 

writing capability is shown in Fig. 3.1. The central wavelength, pulse width, and repetition 

rate of the fs laser set at 800 nm, 200 fs, and 250 kHz, respectively. The maximum output 

power of the fs laser is 1 W, so the single pulse energy is around 4 μJ [87].  

Table 3.1. Femtosecond laser system specifications 

SPECIFICATIONS* 

Model No. Mira 900 (Oscillator) RegA 9000(Amplifier) 

Pump Power 8 W 10 W 

Pulse Duration 200 fs 200 fs 
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Pulse Energy 2 μJ 2 μJ 

Wavelength Range 700-980 nm 400-1000 nm 

Average Power 1 W 500 mW 

Repetition rate 76 MHz 10 kHz to 300 kHz 

Beam Diameter 0.8 ± 0.1 3 mm 

Beam Divergence 1.7 ± 0.2 mrad 3 mrad 

*Provided by the manufacturer 

 

Fig. 3.1. Schematic of the fs laser micromachining system. 

For the beam delivery optics, a half waveplate in combination with a Glan-

Thompson Calcite polarizer is used to precisely control the actual power used for 

fabrication, while an optional variable neutral density (ND) filter is used to tune the laser 

power more precisely. The laser exposure is switched on or off by an external mechanical 
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shutter (SH05, Thorlabs) or electrically gating the internal clock via laser controller. In 

general case, the laser beam is passed through a commercial microscope objective to create 

a tightly focused spot. The actual laser energy used for processing SMF-GT-SMF structure 

is approximately 0.4 μJ per pulse. 

 

3.1.3 Micro-cantilever fabrication 

During fs laser micromachining, the prepared SMF-GT-SMF structure was vertically 

mounted on a fiber holder shown in Fig. 3.2. Then, the whole parts were mounted on a 

high-precision computer-controlled three-axial translation stage (Newport, Inc.) with a 

resolution of 0.1 μm. The fs laser beam was focused onto the endface of the SMF-GT-SMF 

structure through an objective lens (Zeiss EC Epiplan, 20X) with a numerical aperture 

(NA) of 0.4 shown as Fig. 3.3. The spot size of the focused beam was about 1 μm. An in-

situ monitoring system was used to monitor the performance of the device during the 

micromachining process. The monitoring system consists of an erbium-doped fiber 

amplified (EDFA) spontaneous emission broadband light source (1520–1620 nm), a fiber 

circulator, and an optical spectrum analyzer (OSA, AQ6319), as shown in Fig. 3.4. 

The diaphragm thinning process was performed layer-by-layer with a step size of 2 

μm. The fabrication was completed when the preset depth scan was reached. Then, the 3D 

customized image scanning was also performed layer-by-layer with a step size of 0.5 μm. 

The shape and depth of the fabricating structure could be varied flexibly. The ablation 

process was stopped after the desired thickness of the diaphragm structure was achieved.  
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Fig. 3.2. The holder used in an fs laser micro-machining system. 

 

Fig. 3.3. Schematic diagram of the fs laser micro-machined micro-cantilever and SEM 

image of the top-viewed micro-cantilever. 

It should be noted that the FP cavity can also be formed by fs laser ablation or the 

drilling process followed by fusion splicing to another piece of SMF and the 
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thinning/roughening process of the diaphragm structure, as shown in Ref [30]. Such a 

structure had a uniform diameter in the cross section along the fiber axis, but the cavity 

length might be limited by the Gaussian shape of the laser beam. 

 

 

Fig. 3.4. The schematic of monitoring system. 

In addition, the micro-cantilever beam was ablated based on the diaphragm structure 

using the fs laser ablation process. The shape of the micro-cantilever beam can be well 

controlled by moving the high-precision three-axial translation stage. The ablating process 

was not stopped until the desire shape of the micro-cantilever beam was formed. After the 

cantilever beam fabrication, the interference signal was not as good as we expected due to 

the debris of the fiber generated during the fabrication process. To obtain a high-quality 

interference signal, the structure was then subjected to slight cleaning with ethanol flow. 

Fig. 3.5(b) shows the interference spectrums improved after cleaning. 
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Fig. 3.5. (a) A rectangular cantilever beam fabricated by fs laser micromachining system. 

(b) The reflection spectra before and after cleaning. 

 

3.2 Acoustic sensor test in air [85] 

The micro-cantilever beam was ablated based on the diaphragm structure (as shown 

in Ref [30]) using the fs laser ablation process. Fig. 3.6 shows the side-view of microscopy 

image of the micro-cantilever based optical fiber sensor, and the top-view of microscopy 

image of the rectangular shaped cantilever with the thickness of ~5 μm is shown in the 

inset of Fig. 3.6. The interference spectra (before and after cleaning) are shown in Fig. 

3.5(b). The reflection spectrum of the fabricated structure after cleaning shows a clean 

interference pattern with a large fringe visibility of about 10 dB, which is adequate for most 

sensing applications. We did not see any wavelength shift when external pressure was 

applied to the sensor head, which indicated that the Q-point drift issue could be ignored. 

The acoustic wave interrogation system is shown in Fig. 3.7. The interrogation unit 

includes the following components: a tunable laser (HP8164A, Agilent, Inc.) as the light 

source, an erbium-doped fiber amplifier (EDFA, INO, Inc.) to amplify the optical signal, a 

(a) (b)



 

 33 

photodetector to convert the optical signal to the electrical signal, and an oscilloscope 

(DPO7254,Tektronix) to analyze the signal. The light from the tunable laser was coupled 

into the sensor through a circulator. The reflected signal from the sensor head was collected 

by using the same circulator, transferred by using a photodetector, and analyzed by using 

the oscilloscope. The input acoustic signal was excited by a speaker combined with a 

function generator. The sensor was measured in the frequency range of 100 Hz – 4 kHz by 

using the sinusoidal signal. After getting the interference spectrum, the operating point was 

chosen at 1538.52 nm, as shown in Fig. 3.8. Based on the free spectrum range of the 

interferogram, the cavity length of the sensor is estimated to be 65.9 μm. The sensor 

frequency response curve in the frequency range of 100 Hz – 3.2 kHz is plotted in Fig. 3.9. 

The resonance frequency of the sensor is in the MHz range, and so, the 100 Hz – 3.2 kHz 

frequency range is approximately in the linear response region of the sensor in theory. 

Because the acoustic source cannot guarantee to provide constant intensity at different 

frequencies and there is no reference microphone available, the frequency response cannot 

be normalized as shown in Fig. 3.9. However, it demonstrates that the sensor responses 

well to acoustic signals in the low frequency range. Representative result at 1 kHz is shown 

in Fig. 3.10. The results demonstrate the high response in the low frequency range of the 

sensor. 
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Fig. 3.6. Side-view of the microscopy image of the micro-cantilever based FP acoustic 

sensor (inset: top-view of the rectangular shaped micro-cantilever beam). 

 

Fig. 3.7. Experimental setup of the interrogation system. 
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Fig. 3.8. The interference spectrum of the sensor in air, operating point is chose at 

1538.52 nm. 

 

Fig. 3.9. Frequency response spectrum of the acoustic sensor. 
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Fig. 3.10. The time domain signal of the sensor was applied 1 kHz acoustic wave. 

In summary, the fs laser fabricated pure silica micro-cantilever based optical fiber 

acoustic sensor was investigated for the acoustic wave measurement. The sensor has been 

tested in low frequency acoustic signals in air. Based on the micromachining capability of 

the fs laser, different structures of the optical fiber sensors would be further explored. In 

addition, the sensing performance of this proposed sensor operating in water were also 

investigated. 

 

3.3 Hydrophone test in water [81] 

Figure 3.11 shows the calculated deflection of the micro-cantilever beam as a 

function of the excitation frequency. The deflection is normalized by setting the amplitude 

of the driving force A equal to 1. The length L, width b and thickness h of the micro-
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parameters used in the simulation include the Young’s modulus of 73 GPa, the Poisson’s 

ratio of silica of 0.17, and the viscosity coefficient of water of 2.5e-3 Pa·s.  As shown in 

Fig. 3.11, the fundamental frequency of vibration of the micro-cantilever beam in water is 

0.72 MHz and the second mode frequency is 4.5 MHz. 

A micro-cantilever based FOH is fabricated according to the dimensions used in 

numerical simulation shown in Fig. 3.11. 

Figure 3.12 shows the test setup. The light from the tunable laser (HP8164A, 

Agilent Inc.) was coupled into the sensor through a circulator. The reflected signal from 

the sensor head was collected by the same circulator and detected by a photodetector 

(P6703B, Tektronix), and analyzed by the oscilloscope (DPO7254, Tektronix). The input 

acoustic signal was excited by an ultrasonic immersion transducer (OLYMPUS) driven by 

the function generator (Agilent, 33120A) and the RF amplifier (Amplifier Research, 

75A250A). The ultrasonic signal strength was calibrated using another immersion 

transducer from OLYMPUS at the location where the fiber sensor was to be tested. A three-

dimensional stage was used to hold the transducer and adjusted the position between the 

transducer and the FOH. Both the transducer and the sensor were immersed into the 

deionized water. 

We first used the optical spectrum analyzer (OSA) to record the sensor spectra as 

shown in Fig. 3.13 and set the tunable laser wavelength to be at 1543.3 nm. This 

wavelength was chosen to allow the sensor operating at the quadrature point for maximum 

sensitivity. No obvious operating point drift was found when varying the immersion depth 

of the sensor under the water. 
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Fig. 3.11. Calculated deflection of the micro-cantilever beam immersed in water as a 

function of the acoustic wave frequency. 

 

 

 

Fig. 3.12. Experimental setup to test the sensor response to underwater acoustic waves. 
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Fig. 3.13. Interference spectra in air (dashed line) and water (solid line). 

 

Fig. 3.14. (a) Original frequency response of the sensor in the range of 0.5 – 4 MHz. (b) 

Normalized frequency response of the sensor. Inset: frequency response of the 

OLYMPUS transducer used in the experiment. 
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of 0.1 MHz. Each measurement was repeated 5 times and the average value was taken as 

the result. The original frequency spectrum were normalized by the transducer frequency 

spectrum shown in the inset of Fig. 3.14(b).  

Figure 3.14(a) shows the original frequency response, Fig. 3.14(b) shows the 

normalized frequency response of the micro-cantilever based FOH in range of 0.5 - 4 MHz. 

The highest response occurred at 0.8 MHz. We then used a finer step of 0.01 MHz to scan 

through the range of 0.5 - 0.9 MHz using another transducer with the center frequency of 

0.5 MHz and the normalized frequency response of the fiber optic sensor is shown in Fig. 

3.15. The resonant frequency of the proposed sensor is around 0.74 MHz, which is in a 

good agreement with the simulated of 0.72 MHz. The small difference between the 

measured and calculated resonant frequencies might be caused by the slight differences in 

dimensions of the fabricated and modeled cantilevers. The full width at half maximum 

(FWHM) of the sensor was estimated to be 0.021 MHz. The representative time domain 

signal received by the hydrophone at 0.74 MHz is shown in Fig. 3.16(b). The frequency 

spectrum of the sensor is shown in Fig. 3.16(a) where the signal noise ratio (SNR) is 

estimated to be about 23 dB based on the peak intensity (-28 dBm) and noise level (-51 

dBm). Additionally, Fig. 3.16(a) also indicates that the hydrophone is operating at the 

highest input power. 
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Fig. 3.15. Zoomed-in response spectrum of 3.14(b) in the range of 0.5-0.9 MHz. 

The hydrophone was then measured over a range of acoustic pressures by varying 

the input power to the immersion transducer that was used to generate the acoustic waves. 

The acoustic pressure was calculated based on the input power of the immersion transducer 

[88]. The amount of deflection of the cantilever beam was calculated based on the intensity 

variation of the hydrophone. According to interference spectrum shown in Fig. 3.13, the 

intensity variation can be further used to calculate the corresponding cavity length change 

of the FPI. The amount of beam deflections are plotted as a function of the applied acoustic 

pressure as shown in Fig. 3.17, where the sensitivity is estimated, based on the slope of the 

linear-fit of the calculated data, to be about 9.75 µm/MPa at the resonant frequency of 0.74 

MHz. If we assume that the sensor can resolve a signal that is equal to the noise, the 

detection limit (SNR=1) of the sensor operating at the highest input power is estimated to 

be about 491.2 Pa at the resonant frequency of 0.74 MHz. 
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Fig. 3.16. (a) Frequency and (b) time responses of the sensor at the resonant frequency 

0.74 MHz. 

 

Fig. 3.17. Deflection of the micro-cantilever as a function of the applied acoustic 

pressure. 
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analyzed and experimentally tested to investigate its frequency response when immersed 

in fluid. The device has a miniaturization level, large response near the resonant frequency 

and no operating point drift when the immersion depth varies. The resonant frequency of 

the proposed device can be predicted and fine-tuned by changing the dimension of the 

micro-cantilever. The simulated dynamic responses of the sensor agree well with the 

experimental results. It is believed that cantilever-based FOH may find potentially useful 

for endoscopic photoacoustic imaging. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 44 

CHAPTER FOUR 

 

V-SHAPED AND TRIANGULAR CANTILEVER BASED FOHs 

 

 

4.1 Introduction 

 

Fs laser micromachining system provide a great opportunity to precisely realize 

various shapes and dimensions of micro-cantilever fabrication. For the sake of effective 

fabrication, the resonant frequencies and dimensions of the micro cantilever need to be 

predesigned and pre-calculated. 

Figure 4.1 shows structures of three different shapes of cantilevers with same length 

L and same thickness h. The width of rectangular cantilever are two times of one arm of 

V-shaped cantilever. The resonant behavior of a cantilever with an arbitrary shape can be 

obtained based on Rayleigh-Ritz method [77]. For immersion application, the finite 

element analysis with COMSOL was done to predict the resonant response of the structure. 

 

Fig. 4.1.  Shape and dimensions of (a) rectangular cantilever (b) V-shaped 

cantilever and (c) triangular cantilever. 

The parameters required in the simulation include Young’s modulus E = 73 GPa, 

Poison’s ratio ν = 0.17 and density ρ = 2300 kg/m3 of fused silica. The dimensions of the 

structures include length L = 70 μm, thickness h = 10 μm. The width of one arm of the V-
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shaped cantilever w = 25 μm. The resonant frequencies in vacuum were calculated from 

equations. For immersion case, the fluid affects the mode shapes and the resonant behavior 

of the cantilever structures. COMSOL can help us in modelling and to find out the resonant 

frequencies of the immersed cantilever beams under viscous effects. Numerical simulated 

and finite element simulated with COMSOL results are all shown in table 4.1, which 

indicate the frequency increased after changing the shape from rectangular cantilever to V-

shaped or triangular cantilevers. Triangular cantilever has the biggest resonant frequency 

compared the other two shapes of cantilevers. Immersing in water would reduce the 

resonant frequencies. The first mode shapes of immersed V-shaped and triangular 

cantilever beams are shown in Fig 4.2 and 4.3 respectively. 

Table 4.1 Comparison of resonant frequencies of different cantilevers in fluid got from different 

methods 

Shape of 

cantilever 

Resonant 

frequency in 

vacuum  

calculated  

(MHz) 

Resonant frequency 

in water (COMSOL) 

(MHz) 

Rectangular 1.32 0.84 

V-shaped 2.45 1.50 

Triangle 2.7 1.75 
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Fig. 4.2. The first mode shape of immersed V-shaped micro-cantilever. 

 

Fig. 4.3. The first mode shape of immersed triangular micro-cantilever. 
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4.2 Fabrication of the V-shaped and triangular cantilever based FOH 

An EFPI was first fabricated at the tip of a SMF following the procedure outlined 

by Ref. [81].  In Chapter three, the fabrication of the rectangular cantilever based FOH has 

been described clearly. With the help of fs laser, V-shaped and triangular cantilever 

hydrophones were finished and shown in Fig. 4.4(a) and (b), dimensions and shapes of two 

different cantilevers were precisely controlled. The effective length of those two structure 

was about 70 μm. Each arm of the V-shaped cantilever was 25 μm width, and it had a 60° 

angled tip, so as the triangular cantilever. The thickness of these two micro-cantilever was 

about 10 μm. 

 

Fig 4.4. SEM images of (a) V-shaped cantilever and (b) triangular cantilever. 

 

4.3 Hydrophones test in water 

In order to experimental investigate the properties of optic fiber hydrophones, 

frequency response testing was conducted using the setup system as shown in Fig. 3.12.   

100 μm 100 μm

(a) (b)
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4.3.1 V-shaped cantilever based FOH test in water 

The reflection spectrum of the V-shaped cantilever based FOH was recorded by the 

OSA and is shown in Fig. 4.5. The operating point was chose at 1537.7 nm for maximum 

sensitivity. The cavity length calculated from the interference spectrum was about 46 μm. 

 

Fig. 4.5. Reflection spectrum of V-shaped cantilever based FOH in water. 

From the finite element analysis result shown in table 4.1, the resonant frequency 

of the hydrophone is near to 1.5 MHz, so the center frequency of 2.25 MHz immersion 

transducer was chose to test the hydrophone. The frequency response evaluated was from 

0.5 MHz to 4 MHz with step of 0.1MHz. Due to the performance of the immersion 

transducer is not consistent under all the frequency range, the frequency responses of the 

sensors gained in experiments need to be normalized by the frequency spectrum of the 

immersion transducer used as acoustic signal source, which are shown in the inset of the 

Fig. 3.14(b). The original frequency response and normalized spectrum are shown in Fig. 
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4.6. It is obviously that the resonant frequency of the hydrophone is around 1.3 MHz. In 

order to find out much more accurate value of the highest response of the hydrophone, 

dynamic response of the hydrophone was subtly tested with step of 0.01 MHz in range of 

1-2 MHz. Figure 4.7(a) shows zoomed in response spectrum of Fig. 4.6(a) in range of 1-2 

MHz, the normalized spectrum is shown in Fig. 4.7(b). The resonant frequency is around 

1.36 MHz, which is in agreement with the simulated result of 1.5 MHz shown in table 4.1. 

The full width at half maximum of the hydrophone is about 0.29 MHz shown in Fig. 4.8. 

The representative time domain signal and frequency domain signal at resonant frequency 

of 1.36 MHz are shown in Fig 4.9(a) and (b). The SNR approaches 27 dB based on the 

peak intensity of -28 dBm and noise level of -55 dBm.  

 

Fig. 4.6. (a) Original frequency response of the hydrophone in the range of 0.5-4 MHz. 

(b) Normalized frequency response of the sensor. 
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Fig. 4.7. (a) Original frequency response of the hydrophone in the range of 1-2 MHz. (b) 

Normalized frequency response of the sensor. 

 

Fig. 4.8. Zoomed-in response spectrum of 4.6(b) in the range of 1-2 MHz. 
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Fig. 4.9. (a) Time domain signal and (b) frequency spectrum of the hydrophone at the 

resonant frequency of 1.36 MHz. 

The sensitivity of the hydrophone was measured by changing input power of the 

immersed acoustic transducer used as acoustic source. Applied acoustic pressures are 

calculated from input power of the acoustic source. The output signals of the hydrophone 

could be used to work out maximum deflections of the sensing part under different acoustic 

pressures according to the slop of 4.12e-6 μW/nm around the operating point shown in Fig 

4.10(a). The amount of beam deflections are plotted as a function of the applied acoustic 

pressure as shown in Fig. 4.10(b), where the sensitivity is estimated to be about 105 

nm/MPa according to the slope of the linear fitting of the calculated results. The detection 

limit of the hydrophone is about 410 Pa at the resonant frequency of 1.36 MHz. 
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Fig. 4.10. (a) Interference spectrum of the hydrophone around the operating point, (b) 

Deflection of the V-shaped micro-cantilever as a function of the applied acoustic 

pressure.  

 

4.3.2 Triangular cantilever based FOH test in water 

The interference spectrum of the triangular cantilever based FOH is shown in Fig. 

4.11, the operating point is chose in the largest slope section of spectrum as 1530.6 nm.  

 

Fig. 4.11. Interference spectrum of triangular cantilever based FOH in water. 
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The EFPI cavity length of the hydrophone is estimated from the interference 

spectrum to be 65 μm. The resonant frequency of the triangular cantilever is bigger than it 

of the V-shaped cantilever based on finite element analysis results with COMOSL shown 

in table 4.1. The triangular cantilever would be much easier in fabrication and has much 

better reflection compared with V-shaped cantilever beam, because the triangular shape 

has larger reflection area. 

 

Fig. 4.12. (a) Original frequency response of the hydrophone in the range of 0.5-4 MHz. 

(b) Normalized frequency response of the sensor. 
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triangular cantilever based FOH is 1.39 MHz, which is near to the simulated result of 1.75 

MHz shown in table 4.1. 

 

Fig. 4.13. (a) Original frequency response of the hydrophone in the range of 1.1-1.8 

MHz. (b) Normalized frequency response of the hydrophone. 

 

Fig. 4.14. Zoomed-in response spectrum of 4.12(b) in range of 1.1-1.8 MHz. 
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Fig. 4.15. (a) Time domain signal and (b) frequency spectrum of the hydrophone at the 

resonant frequency of 1.39 MHz. 

 

Fig. 4.16. Deflection of the triangular cantilever as a function of the applied acoustic 

pressure. 
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in Fig. 4.16 as 582.7 nm/MPa based on linear fitting. The detection limit of the hydrophone 

is calculated to be 102 Pa at the resonant frequency of 1.39 MHz. 

 

4.4 Conclusion 

V-shaped and triangular cantilever based FOHs with the almost same length and 

same thickness would have 1.3 MHz and 1.4 MHz resonant responses respectively. 

Changing shapes of cantilever would be much more effective method to improve the 

frequency response of the cantilever based FOH. 

Cantilever based FOH is a high-Q sensor, which means it has a narrow bandwidth. 

Sensitivities of the hydrophones are shown as Fig. 3.17, Fig. 4.10(b) and Fig. 4.16, which 

are almost in the same level. Sensitivity of the sensor mainly depends on the dimensions 

and material of the sensing element, the three different cantilever based FOHs have same 

material and same scale sensing micro cantilever structure, which make the sensitivity 

wouldn’t change a lot.   

Micro-cantilever structure are optimized from rectangular to V-shaped and 

triangular cantilevers for increasing resonant frequency, which should be an effective 

method to realize the resonant response improvement. Theoretical and experimental results 

are in a well agreement. The resonant frequency can be lifted two times by using triangular 

cantilever. The fs laser presents its distinguished ability in precise micro-fabrication. 
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CHAPTER FIVE 

 

CANTILEVER BASED 45° ANGLED FOH 

 

 

5.1 The principle of the hydrophone 

 

 

The schematic imaging of a Cantilever based 45° angled FOH is shown in Fig. 5.1. 

The 45° angled tip was polished precisely from the cleaved endface of a SMF, and the 

micro-cantilever was fabricated by using fs laser micromachining system to form an open 

FP cavity on sidewall of the optical fiber. The hydrophone utilized the total internal 

reflection at 45° angled endface to change the transmission direction of the input light. 

Sputter coating was applied to do gold coating on the angled endface to improve reflection. 

The input light would be reflected three times by three interfaces between fused silica and 

air. Two of the three reflections would cover the gap between a micro-cantilever and the 

main fiber, and generate interference signal that could be affected by vibration of the micro-

cantilever. This sideway looking hydrophone provides a new choice except forward 

looking detection for endoscopic imaging in vessels. 

 

Fig. 5.1. The schematic of side view of a cantilever based 45° angled FOH. 

 

In-put light
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5.2 Sensor fabrication 

5.2.1 Sample preparation 

 

Figure 5.2. (a) Polishing setup for 45° angled fiber, (b) Polishing process in monitoring, 

(c) Imaging of the polished endface of 45° angled SMF. 

The detailed sample preparation process of the 45° angled fiber is shown as follows. 

A piece of SMF with the length of 1 m was chosen for the experiment. One of the endfaces 

of the SMF was precisely polished to form a 45° angled end face shown in Fig. 5.3 with 

using fiber polishing system shown in Fig. 5.2. The fiber was mounted on a home-made 

fiber holder. The polishing process was performed by a wheel polisher (Ultrapol-1200, 

Ultra Tec) using diamond lapping films. The rotation speed of polishing plate was set to 

(a)

(b) (c)

Fiber coreFiber cladding

Buffer
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be 100 rpm (rounds per minute). Two types of diamond lapping films were used: a lapping 

film with 3 μm grain size was first used to form an angled fiber endface, and then a lapping 

film of 0.1 µm grain size was used for fine polishing. Calibration of the polished angles 

can be carried out by measuring the reflection from the polished fiber endface. The 

reflection reaches its maximum when a 45° endface is achieved. SEM image of polished 

45° angled fiber is shown in Fig. 5.3, which indicates the good quality of the polished 

angled endface. 

 

Fig. 5.3. SEM image of polished 45° angled fiber with buffer stripped. 

 

5.2.1 Liquid-assisted laser processing technique 

After the angled fiber sample preparation, fs laser was adopted for the fabrication 

of the micro-cantilever beam on the side surface of the fiber. In 2008, D. Iannuzzi et al. 

demonstrated a micro-cantilever beam formed on the tip of an SMF using femtosecond 
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laser irradiation followed by chemical etching (FLICE) technique [89]. In this case, we use 

another micromachining technique, which is liquid-assisted laser processing technique or 

fs laser induced water break down (FLIWD) technique, to precisely control the shape of 

the cantilever beam. Such technique has already been used for the fabrication of 

microchannel embedded in an SMF and the fabricated device can be used for temperature 

and refractive index sensing applications [90-91].  

 

Fig.5.4. Schematic of FLIWD for the fabrication of 3D arbitrary micro-cantilever beam 

on an SMF with 45° angled endface. 

Compared with FLICE technique, FLIWD technique doesn`t have to use any toxic 

or hazard chemical solutions, such as hydrofluoric acid (HF) or KOH. In addition, the 

difference of intrinsic etching rates between the germanium-doped core and the pure fused 

silica cladding [92] can also be ignored. In FLIWD process, the interaction between the 

laser and the liquid (i.e., DI water) can cause the laser induced water breakdown 

phenomenon with laser induced bubbles, shockwaves, and a high speed jet. Meanwhile, 

the water plays a significant role to efficiently remove debris from the ablated regions, 

Water tank
SMF

Fiber holder

Fs laser beam

(20XW)
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resulting in the formation of micro-cantilever beam with desired shapes. The schematic 

diagram of FLIWD for the fabrication of 3D micro-cantilever beam on an SMF with 45° 

angled endface can be found in Fig. 5.4.  

 

5.2.3 Micro-cantilever beam formation 

Fig. 5.5 (a) shows the schematic FLIWD micromachining system. The actual laser 

energy used for fabrication was approximately 0.4 μJ per pulse for low NA lens, which is 

much higher than the threshold of fused silica.  Fig. 5.5 (b) shows the details of FLIWD 

fabrication process. 

The prepared fiber sample with 45° angled endface was cleaned using acetone and 

clamped in a fiber chuck and then inserted into a fiber holders (Newport 561-FH). The 

angled fiber was immersed in distilled water during fabrication. The fiber assembly was 

mounted on a computer-controlled three-axis translation stage (Newport, Inc.) with a 

resolution of 0.1 μm. The fs laser beam was focused inside the optical fiber through a water 

immersion objective lens (Olympus UMPlanFL 20x/60x) with a numerical aperture (NA) 

of 0.4 or 0.9, respectively. The spot size of the focused beam was about 1 μm in fiber for 

20x lens, while for 60x lens, the spot size can be reduced down to 1 μm with the pulse 

energy of 0.4 μJ. The velocities of the stages were set in the range of 50-300 μm/s during 

fabrication. 

A micro-cantilever beam with the dimension of 100×20×20 μm was fabricated 

using FLIWD method and the microscope image is shown in Fig. 5.6. Obviously, the 

roughness of the microchannel surface is not smooth enough, which means the optical 
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insertion loss might be high. If higher NA microscope objective was adopted, the result 

can be significantly improved. However, high NA lens is hard to operate and easy to be 

affected by spherical aberration issue. 

 

 

Fig. 5.5. (a) Block diagram of FLIWD for the fabrication of 3D arbitrary  

micro-cantilever beam on an SMF with 45° angled endface. 

 (b) Figure of details of FLIWD experiment setup. 
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Fig. 5.6. SEM images of (a) top view and (b) side view of the cantilever based 

hydrophone with 45° angled endface fabricated by FLIDW technique. 

After fabrication, the hydrophone would be placed in sputter coating machine in 

vertical position with angled enface to the top. A thin layer of gold was coated onto the 

angled endface of the finished structure to improve the reflection on the 45 ° angled endface. 

It is experimental proved the intensity of signal was improved a lot after coating the angled 

endface. 

 

5.3 Hydrophone test in water 

5.3.1 Predesign of the hydrophones 

For co-axial hydrophone, a sensing micro-cantilever was placed on the tip of optical 

fiber, the dimensions of micro-cantilever could be limited by the size of the diameter of a 

SMF. When micro-cantilever was set on the sidewall of a SMF, it could be designed much 

more freely for sensing application.   

(a) (b)
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Fig. 5.7. Numerical simulation with MatLAB of frequency response of the hydrophone 

with size of 215×25×35 μm. 

 

 

Fig. 5.8. Numerical simulation with MatLAB of frequency response of the hydrophone 

with size of 265×20×30 μm. 
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The micro-cantilever at the 45° angled FOH could be simplified to a uniform cross 

section cantilever. Numerical simulation and predesign could be done using Eq. (2.9). In 

order to compare frequency responses and sensitivities of two different dimensions of 

cantilevers based 45° angled FOH, two frequencies are designed below 1MHz. Two 

frequency responses are shown in Fig. 5.7 and Fig. 5.8 with resonant frequencies of 0.62 

MHz and 0.35 MHz. The dimensions of resonant frequency of 0.62 MHz are length of 215 

μm, width of 25 μm and thickness of 35 μm. Another one is resonant frequency of 0.35 

MHz with size of 265×20×30 μm. 

 

5.3.2 Fabrication of the hydrophones 

Fabrication processes are described in details in Section 5.2. Based on simulated 

two frequency responses of different size cantilevers, the two hydrophones were worked 

out with help of fs laser micromachining system. Fig. 5.9 shows images of top view and 

side view of the hydrophone with size of 215×25×35 μm in water in manufacturing process. 

Another one is shown in Fig. 5.10 in water with size of 265×20×30 μm.  

 

Fig. 5.9. Microscope images of (a) top view and (b) side view of the hydrophone with 

micro-cantilever size of 215×25×35 μm in manufacturing. 

(a) (b)

35 μm
25 μm
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Fig. 5.10. Microscope images of (a) top view and (b) side view of the hydrophone with 

micro-cantilever size of 265×20×30 μm in manufacturing. 

 

5.3.3 Experimental results and discussion 

 Micro-cantilever with size of 215×25×35 μm. The reflection spectrum of the 

hydrophone is demonstrated in Fig. 5.11(a), the operating point is chose at highest response 

when applied acoustic wave at 0.6 MHz. Fourier transform was applied to the interference 

spectrum, and then is shown in Fig. 5.11(b). The first peak at 104.4 μm was formed by 

reflection I2 and I3 show in Fig. 5.1, the thickness of the cantilever could be estimated to 

be 35.5 μm. The second peak at 132 μm was integrated from reflection I1 and I3, which 

cover the gap of 10.4 μm and the micro-cantilever. The dimensions calculated from 5.11(b) 

verified that fs laser could do precisely fabrication. 

The hydrophone was evaluated in range of 0.25-0.7 MHz with step of 0.01 MHz 

by using OLYMPUS immersion transducer with center frequency of 0.5 MHz. The original 

frequency response is shown in Fig. 5.12(a). The spectrum is normalized by the frequency 

response spectrum of the immersion transducer which is shown in the inset of Fig. 5.12(b).  

(a) (b)

20 μm

30 μm
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Fig. 5.11. (a) Reflection spectrum of the hydrophone with micro-cantilever size of 

215×25×35 μm in water, operating point is chose at 1548.7 nm. (b) FFT result of 

reflection spectrum. 

 

Fig. 5.12. (a) Original frequency response of the hydrophone in the range of 0.3-0.7 

MHz. (b) Normalized frequency response of the hydrophone. Inset: frequency response 

of the OLYMPUS transducer with center frequency of 0.5 MHz. 

The normalized spectrum shows that the resonant frequency of the hydrophone is 

near to 0.51 MHz. We then used a finer step of 0.001MHz to scan through the range of 0.5-
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0.6 MHz, the original frequency and normalized frequency are shown in Fig. 5.13(a) and 

(b). The resonant frequency of the hydrophone is 0.526 MHz, which is near to the simulated 

result of 0.615 MHz. The output intensity of the hydrophone versus the applied acoustic 

pressure is plotted in Fig. 5.14, the sensitivity of the cantilever based 45° angled FOH is 

calculated as 1.56e-5 W/MPa at 526.7 kHz. 

 

Fig. 5.13. (a) Zoomed-in response spectrum of 5.11(a) and 5.11(b) in range of 0.5-0.6 

MHz with step of 0.001MHz. 

   

Fig. 5.14. Output intensity of the hydrophone as a function of the applied acoustic sensor.  

0.5 0.52 0.54 0.56 0.58 0.6
0

1

2

3

4

5

Frequency (MHz)

In
te

n
si

ty
 (

u
W

)

(a)

0.5 0.52 0.54 0.56 0.58 0.6
0

1

2

3

4

5

Frequency (MHz)

In
te

n
si

ty
 (

u
W

)

(b)
0.526 MHz

526kHz, slope = 1.56e-5 W/MPa

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.5

1

1.5

2

2.5

3

Acoustic pressure (×105Pa)

In
te

n
si

ty
 (
μ

W
)

@ 526 kHz

slope=15.6 μW/MPa

Optical intensity 

Linear fitting



 

 69 

 

Micro-cantilever with size of 265×20×30 μm. The interference spectrum of the 

hydrophone was recorded as shown in Fig. 5.15(a), the operating point was chose at 1541.7 

nm when the hydrophone responded highly at acoustic wave frequency of 0.35 MHz. FFT 

result is shown in Fig 5.15(b). The first peak at 89.6 μm is from interference signal formed 

by I2 and I3, which indicates that thickness of micro-cantilever is 30.5μm. The second peak 

at 114.2 μm is integrated by reflection I1 and I3, the gap between micro-cantilever and main 

fiber could be calculated is 9.5 μm. 

 

Fig. 5.15. (a) Reflection spectrum of the hydrophone with micro-cantilever size of 

265×20×30 μm in water, operating point is chose at 1541.7 nm. (b) FFT result of 

reflection spectrum. 
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original and normalized spectra are shown in Fig. 5.16(a) and (b). The resonant frequency 

is near to 0.3 MHz.  

 

Fig. 5.16. (a) Original frequency response of the hydrophone in the range of 0.25-0.7 

MHz. (b) Normalized frequency response of the hydrophone. 

 

Fig. 5.17. Zoomed in response spectrum of 5.16(b) in the range of 0.29-0.37 MHz. 
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Fig. 5.18. Output intensity of the hydrophone as a function of the applied acoustic sensor. 

We used the finer step of 0.001 MHz in range of 0.29-0.37 MHz to find out the 

resonant frequency of the hydrophone. The final normalized spectrum is shown in Fig.5.17, 

obviously, the resonant frequency of the hydrophone is at 0.305 MHz, which is in good 

agreement with the simulated result of 0.3451 MHz. The output intensity of the hydrophone 

versus the applied acoustic pressure is plotted in Fig. 5.18, the sensitivity of the cantilever 

based 45° angled FOH is calculated as 1.29e-5 W/MPa at 305 kHz. 

 

5.4 Conclusion 

In this chapter, we proposed cantilever based 45° angled FOH for cross-axial 

sensing applied for endoscopic photoacoustic imaging. Theoretical and experimental 

investigations have done to realize the concept. The main concept is integrating 45° angled 

endface and micro-cantilever sensing together. When sensing structure was applied on the 
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freedoms in design. The hydrophones could easier get down to kilo Hz. The sensitivity of 

the hydrophone is mainly affected by the length of the micro-cantilever, the tradeoff is the 

reduction of resonant frequency. 
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CHAPTER SIX 

 

SUMMARY AND FUTURE WORK 

 

6.1 Briefly summarize the work 

Hydrophones are very useful in industrial, military and clinical applications. FOHs 

have unique advantages of small size, immunity to electromagnetic interferences and 

capability to be integrated with excitation light source. A miniature FOH could also be 

used for endoscopic imaging application, especially in photoacoustic imaging in which the 

target tissue can only be accessed by an endoscopic probe. 

The development of hydrophone is described in Chapter 1, especially the various 

methods of FOHs. For different technologies used in FOHs, EFPI is most common used 

for acoustic wave detection. 

A novel cantilever based FOH was proposed, which comprises an open cavity FPI 

and a micro-cantilever as sensing element. Acoustic wave applied on the micro-cantilever 

will make the FPI cavity length changing along with the vibration of the cantilever beam, 

and then the input single wavelength light would be modulated by acoustic wave, results 

in the change in optical intensity around the operating point.  

Motivated by developing a miniature FOH for endoscopic application in 

photoacoustic imaging, this dissertation mainly focuses on developing a cantilever based 

FOH with high level of miniaturization and low unit cost for single use application. 

Theoretical and experimental investigations were applied for design, model and test 

of the cantilever based FOHs. Fs laser micromachining system has been developed for 

material removal of fused silica in air or in water for the micro-cantilever fabrication.  
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Following are the specific achievements that can be met with this research: 

1. Chapter 2 introduced the principle of EFPI and immersed micro-cantilever 

beam. The behavior of immersed micro-cantilever under a point load was 

studied a lot for atomic force microscope. We adopted it to study the frequency 

response of the uniform cross-section cantilever under the distributed acoustic 

load for predesign of the sensing part. In order to lift the resonant frequency of 

the cantilever beam without loss of sensitivity, V-shaped and triangular 

cantilevers were all investigated using finite element methods with COMSOL. 

The mechanism of the cantilever based FOH was presented  

2. Chapter 3 reported rectangular cantilever based FOH for co-axial sensing in air 

and in water, and the fabrication process. The cantilever based FOH is a narrow 

bandwidth, high response around its resonant frequency and high-Q 

hydrophone. A rectangular cantilever based FOH with size of 75×50×8 μm had 

highest response near to 0.74 MHz with bandwidth of 0.021 MHz. The 

sensitivity of the hydrophone was 0.95 μm/MPa, and the limit of detection is 

about 491.2 Pa at the resonant frequency. 

3. Chapter 4 presented V-shaped and triangular cantilever based FOHs for 

improving resonant frequencies. By changing the shape of sensing structure, 

the resonant frequency of  V-shaped and Triangular cantilever based FOHs 

would be two times it of the rectangular cantilever based FOH. The thickness 

and length of the cantilever beams were all similar, V-shaped cantilever based 

FOH had highest response around 1.36 MHz with relative wide bandwidth of 
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0.29 MHz. The sensitivity of V-shaped hydrophone was 105 nm/MPa. The 

triangular cantilever based FOH responded highly at 1.39 MHz with bandwidth 

of 0.7 MHz. The sensitivity of triangular cantilever based FOH was 582.7 

nm/MPa. Those two complex cantilever beam would be affected by fluid much 

more than rectangular beam that is why these two hydrophones had relative 

wide bandwidth compared with rectangular cantilever FOH. Due to triangular 

cantilever was much easier in fabrication and had larger flection area, the 

triangular cantilever FOH had a little higher sensitivity than the V-shaped 

cantilever based FOH. 

4. Chapter 5 proposed a novel cantilever based 45° angled FOH for cross-axial 

sensing application. Fs laser micro-machined a micro-cantilever beam 

paralleled the main optical fiber without restrictions of the diameter of SMF. 

Experimental results were in good agreement with simulated results. The 

cantilever based 45° angled FOH with size of 215×25×35 μm had best 

performance around  0.526 MHz, and the sensitivity was 1.56 W/MPa. The 

other one with size of 265×20×30 μm had highest response at 0.305 MHz with 

sensitivity of 1.29 W/MPa. 

 

6.2 Innovations and contributions 

Scientific and technical contributions of the research include the following: 

1. A novel, open cavity, micro-cantilever based FOH was proposed and 

realized with help of fs laser precise micromachining system. Experimental 



 

 76 

analysis demonstrated dynamic response of the hydrophone, and were in 

good agreement with theoretical investigation and numerical simulation 

results. 

2. The use of V-shaped and triangular cantilever beams for atomic force 

microscope inspired the sensing structure design. By changing the shapes 

of the sensing part of the hydrophone from rectangular cantilever to V-

shaped or triangular cantilever, the resonant frequency of the hydrophone 

could be predesigned and doubled without loss of sensitivity. 

3. Cantilever based 45° angled FOH was realized for cross-axial sensing by 

directing the input light sideways in using total internal reflection on the 

angled endface. The micro-cantilever as sensing structure had much more 

space in design. This hydrophone provided an approach in sideways looking 

detection, which is meaningful for endoscopic application. 

 

6.3 Future work 

For clinical photoacoustic imaging application, all optical hydrophone would have 

many advantages compared with PVDF hydrophone in miniature size and flexibility. In 

the future, all optical hydrophone must have attractive applications 

 

6.3.1 Improvement of cantilever based FOH 

Fs laser could be used for waveguide fabrication in optical fiber [93]. The 

waveguide fabrication technology could be applied in design of cantilever based FOH, and 



 

 77 

made the FOH fabrication easier. Fig. 6.1 shows the schematic of a new cantilever based 

FOH utilizing waveguide to steer optical axis by 90 ° to the sensing part. The waveguide 

would direct the input light to the sensing EFPI, the reflected signal will be collected by 

the waveguide and sent back to the interrogation system through fiber core. It still makes 

distributed sensing possible by fabricating waveguides and sensing micro-cantilever beams 

along the optical fiber. 

 

Fig. 6.1. Schematic of cantilever based FOH with waveguide. 

 

6.3.2 Photoacoustic imaging application 

As an endoscopic imaging probe, all optical hydrophone could be applied for 

photoacoustic imaging with help of needle shown in Fig. 6.2. A MMF can be used to 

transmit the excitation laser light, the cantilever based FOH is used for acoustic wave 

receiver. 
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Fig. 6.2. All optical endoscopic imaging probes with help of a needle. 
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