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ABSTRACT 

Recently across the US, there has been a push to accommodate and encourage 

the viability of alternative modes of transportation—especially bicycling. Leaders across 

all levels of government, trade groups, advocacy and policy groups, and others are 

promoting different methods to make urban areas more bikeable. Now, as planning 

practice is moving towards implementing a transportation system that serves different 

types of travelers, the US faces challenges involved with retrofitting existing automobile-

oriented streets.  

While implementing bicycle safety initiatives is becoming a popular movement 

among municipalities, there have been differing opinions on the best way to make cities 

more bikable in academic literature (Pucher & Buehler, 2012). There is an ongoing 

debate about what types of improvements will be the most effective at reducing crash 

rates and/or decreasing individual risk for cyclists. Since 2003, one of the key factors in 

this debate has been the phenomenon of “safety in numbers.”   

“Safety in numbers,” or SiN, describes the observed inverse correlation between 

bicycle ridership and cyclist risk (Jacobsen, 2003). As ridership numbers increase, the 

relative risk per cyclist is said to decrease (all else being equal). When examining large-

scale datasets, such as national ridership counts and crash statistics, research suggests 

there is a significant negative, non-linear correlation (exponentially decreasing) between 

ridership and crashes per rider. This means that while the total number of crashes 

increases with ridership, the rate of crashes per rider decreases. 
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While bicycle safety and SiN are well-researched topics, there are still many 

questions about the SiN effect that are still unclear. First, the full character of the SiN 

effect is not explicit in the existing literature. Nearly all studies of the phenomenon have 

been conducted with large units of analysis (cities, countries, etc.). No study to the 

researcher’s knowledge has considered the SiN effect at the individual street level with 

real data. Second, because SiN has not been studied with small units, there has not been 

a way to control for road conditions that also effect bicycle crash rates. And third, it is 

not clear how all of the factors that determine cyclist injury and fatalities—including SiN, 

bicycle infrastructure, speed limit, road design, congestion, etc.—interact with one 

another.  

These gaps in collective understanding about safety in numbers has led to 

disagreements among scholars about its nature and implications for practice. One of the 

major debates surrounding SiN and policy has been its use as an argument to dissuade 

investment in separated bicycle infrastructure. Some think that separated infrastructure 

may undermine some of the safety benefits that may affect cyclists because of SiN; the 

goal of this type of infrastructure is to limit motorists’ conflict points with cyclists, and 

because of this, separated infrastructure may actually endanger other cyclists on the 

road because fewer cyclists are interacting with drivers in mixed traffic, lessening 

drivers’ incentives to adjust their behavior (assuming that behavior modification 

underlies the SiN effect) (Thompson et al., 2017).  
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Despite limited understanding about this topic, SiN is has been used to make 

policy justifications, specifically pitting policy-only solutions against infrastructure 

improvement ones (Bhatia & Wier, 2011; City of Berkeley, 2010). It is crucial, then to 

understand the SiN effect more fully. My research addresses these gaps in the literature 

and provides recommendation for practice. 

My research reports several major findings. First, the safety in numbers effect is 

reflected on the individual road segment level; using a Cragg double hurdle model, I 

showed that numbers are a significant predictor of crashes, even when other control 

variables—infrastructure, congestion measures, speed limit, functional class, median 

household income, and road length—are added to the model. Second, my research 

shows that the SiN effect is best characterized by a non-linear, exponentially decreasing 

mathematical model, even on the segment level. Third, my research created detailed 

predictions that quantify how the SiN effect changes under different conditions. The 

most notable of these findings was twofold. First, there was no significant difference in 

the predicted number of crashes for segments with or without bike lanes as the number 

of trips increased. And second, facilities with separated bike lanes also receive a safety 

benefit from increased exposure, but the benefit is not as strong as on segments 

without separated bike lanes.  

In summary, my research verified existence of SiN on the road segment level as 

well as characterizes the effect mathematically. I also suggest that practicing planners 
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should encourage more biking to improve overall road user safety, but that this should 

be done in tandem with other measures such as bicycle infrastructure. 
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1. LITERATURE REVIEW

1.1 Introduction: Why cycle in cities? 

Recently across the US, there has been a push to accommodate and encourage the 

viability of alternative modes of transportation—especially bicycling. Leaders across all 

levels of government, trade groups like the American Planning Association, advocacy 

and policy groups, and others are promoting different methods to make urban areas 

more bikeable. For example, cities all over the US have been creating or updating active 

transportation plans to implement a systematic approach to policy making and 

infrastructure retrofitting.  Municipal leaders and government agencies have identified 

the benefits of having a transportation system that allows more biking (Guide, 2011). 

Many of the studies on urban transportation’s relationship to quality of life have 

pointed towards similar conclusions: urban spaces that support convenient biking and 

walking can improve the quality of life of their residents in many respects, including 

improved health, increased economic prosperity, and a stronger sense of place  

(Campbell & Wittgens, 2004; Elvik, 2009). 

From an economic perspective, dedicating resources to urban designs and land use 

plans that promote active transportation can bring about lucrative returns on 

investment. It has been shown that through increasing investment in public amenities, 
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communities can boost private investment, tourism, and the surrounding property 

values (Richards, 2014). For example, Lancaster, California turned an arterial with five 

lanes into a “Main Street” of sorts by investing in streetscaping and traffic calming, and 

lowering the speed limit. The total investment cost about $12 million (in 2014 dollars), 

and in return, the city attracted more than $300 million in private investment (Richards, 

2014). Similar investments in other cities may lower the price and increase the appeal of 

alternative modes of transportation  (Sorensen, Wachs, Min, Kofner, & Ecola, 2008) 

In terms of urban design and community, biking can promote a sense of place 

among residents (Richards, 2014). As it becomes more prevalent in the US, biking can 

alleviate congestions issues that are economically wasteful and detract from quality of 

life (Sorensen et al., 2008), and, arguably, happiness  (Montgomery, 2013; Morris & 

Guerra, 2015).  

There are also social benefits from biking and forms other active transportation; 

biking can help combat some of the more urgent public health problems in the US. 

Evidence has shown that desirable individual behaviors must be supported with 

environmental factors—such as places that encourage biking and walking—to lessen risk 

for major health issues, such as diabetes and obesity  (Botchwey, Trowbridge, & Fisher, 

2014; Elvik, 2009; Johan de Hartog, Boogaard, Nijland, & Hoek, 2010). The built 

environment can also support and encourage biking. A study of Dutch cycling habits 

revealed that Dutch people have a half of a year longer life expectancy than comparable 
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countries worldwide, most likely due to cycling (Fishman, Schepers, & Kamphuis, 2015; 

P. Schepers, Twisk, Fishman, Fyhri, & Jensen, 2017).  

Biking also improves quality of life for those who do not have or cannot afford their 

own vehicles. Biking is faster and more efficient than walking and thus can improve 

mobility options for those who cannot drive (Glaeser, Kahn, & Rappaport, 2008; 

Wegman, Zhang, & Dijkstra, 2012). Ownership of a bicycle can also notably increase 

mobility for those living in poverty (Wegman, et. al, 2012).  

 

1.2 Challenges to cycling in the United States 

 

There are many challenges to encouraging more cycling in the US. Road 

infrastructure design practices in the United States over the last 100 years have caused 

many problems that urban planners and municipal officials are still trying to mitigate. 

After the mass production of personal cars, our transportation system became 

increasingly more automobile-centric to the detriment of bicycling safety (Botchwey et 

al., 2014; Wegman et al., 2012) Now, as planning practice is moving towards 

implementing a transportation system that serves different types of travelers, the US 

faces challenges involved with retrofitting existing automobile-oriented streets. One 

study identifies travel characteristics of cyclists that are not catered to by our existing 

road system (Wegman et al., 2012). They include: 
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• Causing vulnerability in a crash due to cyclists’ lack of physical protection and 

speed differentials between cyclists and vehicles; 

• Not accommodating flexibility in behavior, meaning that cyclists cannot adapt their 

riding habits (including trip route, type of facility used, or travel lane on the road) in 

response to other factors like weather, debris or damaged paving, or heavy traffic  

(Twaddle, Schendzielorz, Fakler, & Amini, 2014); 

• Increasing the propensity to fall off of the bicycle due to uneven pavement, poorly 

designed roads, or very narrow travel lanes;  

• Causing inconspicuousness of bicyclists to drivers when in mixed traffic; 

• Not catering to cyclists’ extra energy expenditures that are required to cycle in hilly 

areas or over long distances through providing extra right of way for cyclists in 

topographically challenging situations; 

• And ignoring differential ability among a variety of riders and trip types. 

 

In most cases, our present-day transportation infrastructure system and 

development patterns have been designed to optimize vehicular travel (Wegman et al., 

2012). Up until recent decades, these design practices have not been questioned. Now, 

best practice manuals produced by all levels of government and trade organizations 

have begun to reassess road design standards to be more equitable for all users. Major 

examples include the Federal Highway Administration’s Separated Bike Lane Planning 

and Design Guidelines (2015), the Massachusetts DOT Separated Bike Lane Planning and 
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Design Guide  (Separated Bike Lane Planning and Design Guide, 2015), and the National 

Association of City Transportation Officials (NACTO) Urban Bikeway Design Guide 

(2011). All of these are compilations of bicycle facility and streetscape design guidelines 

at varying levels of detail. They are all driven by a forwarding-thinking combination of 

engineering/human factors research melded with an urban design perspective. Each 

guide recognizes bicycles as not just other vehicles in the stream of mixed traffic, but 

instead as their own distinct travel mode with needs that are different than motor 

vehicles’. NACTO’s guides in particular recognize cyclist (and pedestrian) activity as a 

driving force in creating lively streets and aesthetic spaces. 

Bicycle safety has been a popular topic for municipalities in recent years. Presently, 

cycling is associated with a much higher risk of injury than driving a personal automobile 

or taking transit per kilometer travelled—7.5 times higher, to be exact (Elvik, 2009). One 

of the more innovative ways that cities are trying to combat cycling crashes is through 

“vision-zero” plans. Vision-zero plans outline a series of steps that would theoretically 

eliminate cyclist fatalities by a given year. This is done by using crash statistics from a 

municipality to identify street and intersection characteristics that correlate significantly 

with higher crash risk to identify dangerous intersections. Once those characteristics are 

determined, other roads and intersections with similar characteristics are targeted for 

improvements, sometimes before there are even fatalities. 

The types of challenges facing municipalities as they try to become more bicycle-

friendly vary in differing US regions. In the southern portion of the US, for example, 
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there are unique challenges for biking and other modes of active transportation. Many 

places in the South experienced the post-World War II boom of development consisting 

mostly of lower density residential and commercial developments—or “sprawl.” While 

other places in the US also experienced this type of development, the degree to which 

the Southern states adopted sprawling development was much more intense in terms of 

development density and land use due to rapid periods of growth in the era of the 

automobile (Ewing & Hamidi, 2014). Interestingly, the 9 out of the top 10 states for 

number of bicycle fatalities are all in the southeastern corner of the US (Alabama, 

Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, and 

Tennessee) (Price, 2016).  

Another major issue for biking in the American South is that there has been a 

dearth of funding for improving cycling opportunities. Southern states have spent 

notably less of the federal transportation funding given to them on bicycle 

infrastructure (only 1.7%) compared with the national average (2.1%), and Southern 

states also spend less per capita on bicycle- and pedestrian-only projects (Price, 2016). 

As has been noted, development patterns that discourage bicycling have also been 

prevalent in a majority of Southern states (Price, 2016). As has been noted, 

development patterns that discourage bicycling have also been prevalent in a majority 

of Southern states (Price, 2016). However, in other places in the US, such as the Denver, 

Colorado region (and other Midwestern areas), Portland, Oregon, and many cities across 
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California, bicycling is more common and supported by local governments through 

policies and infrastructure. 

In Southern states and across the US—including the most bicycle-friendly cities— 

bicycle crashes and their resulting injuries and fatalities are a far-reaching and not well 

understood issue. To reduce or even eliminate these fatalities, more measures should 

be taken to ensure that bicycling becomes safer (Bhatia & Wier, 2011).  

While implementing bicycle safety initiatives is becoming a popular movement 

among municipalities, there have been differing opinions on the best way to make cities 

more bikable in academic literature (Pucher & Buehler, 2012). There is an ongoing 

debate about what types of improvements will be the most effective at reducing crash 

rates and/or decreasing individual risk for cyclists. Since 2003, one of the key factors in 

this debate has been the phenomenon of “safety in numbers.”   

 

1.3 History of “safety in numbers” research 

 

“Safety in numbers,” or SiN, describes the observed inverse correlation between 

bicycle ridership and cyclist risk (Jacobsen, 2003). As ridership numbers increase, the 

relative risk per cyclist is said to decrease (all else being equal). When examining large-

scale datasets, such as national ridership counts and crash statistics, research suggests 

there is a significant negative, non-linear correlation (exponentially decreasing) between 
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ridership and crashes per rider. This means that while the total number of crashes 

increases with ridership, the rate of crashes per rider decreases.  

This phenomenon is generally called the non-linearity of risk, and it applies to 

other vulnerable road users as well, including pedestrians and motorcyclists (Elvik, 2009; 

Wegman et al., 2012). The theory can be generally described as follows: as more cyclists 

enter the system, they face lower risks on an individual basis (per capita). The natural 

implication of this phenomenon is to promote policies to encourage more people to 

cycle to improve overall safety for cyclists (Jacobsen, 2003).  

It is important to differentiate between the theory of “safety in numbers” and 

cycling in groups. It is probably true that, when a person rides a bicycle with other 

cyclists for trips, that person’s risk of having a crash with an automobile decreases 

(possibility because of increased visibility of a group of cyclists, more people watching 

for a potential crash, etc.). The SiN theory, however, is different. SiN does not refer to 

singular crash scenario risks. Instead, SiN refers to a system-wide phenomenon; as more 

and more cyclists enter the transportation system, relative risk (risk per rider or risk per 

trip) decreases.  

Jacobsen (2003) published the first study on the relationship between the 

number of cyclists and the number of crashes per capita. He found that the likelihood of 

cyclists being struck by an automobile decreases in a nonlinear, inverse fashion as the 

number of people biking increases. 
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Jacobsen used five ridership and crash data sets in his study. Three of the data 

sets allowed him to measure injuries/capita for walking and biking across several 

scales—across multiple cities within the same state (California), across multiple Danish 

cities, and across multiple European countries. The other data sets were time series, 

meaning that injuries/fatalities were measured annually. To specify the relationship 

between injuries per capita versus the number of reported riders across cross-sectional 

data sets, he used least squares analysis, operationalized as follows: 

 

! = #$% 

	'ℎ)*)		! = +,-.*/	0)#1.*)	(+,-.*+)1	3*	4)#5ℎ1	6)*	7#6+5#), 

	$ = 0)#1.*)	3:	;+<+,=	3*	'#><+,=	(<+>30)5)*1	;+<)4	6)*	7#6+5#	6)*	4#/) 

# = 17#>)*	(53	;)	7#>7.>#5)4)	 

; = 5/6)	3:	*)>#+53,1ℎ+6	(53	;)	7#>7.>#5)4; 5/6+7#>	7ℎ#*#7)*+@#5+3,1	;)>3') 

 

Equation 1: Safety in numbers 
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Graphing Tool Source: https://www.mathpapa.com/calc/tutorial/graphing-equations/	
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Figure 1: Linear increase of risk 

with more exposure 

Figure 2: “Less than linear” increase 

of risk with more exposure 

Figure 4: Exponential growth of risk with 

more exposure 

Figure 3: Decay of risk with more exposure  
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When calculating the injury measure in terms of units of biking (injuries per 

kilometer of biking), modeled as: 

ln	(
!
$
) = ln	(#$%KL)

ln(!) − ln($) = ln(a) +	(; − 1)>,($) 

!
$
= #$%KL, 

Equation 2: Safety in numbers (in terms of units of biking) 

Jacobson found that the injury measure decreased significantly in places where there 

are higher kilometers of biking yearly (Jacobsen, 2003).  His empirically derived values 

for b fell below 0, meaning that the relationship between crash rates and exposure was 

less than linear, or exponentially decreasing (similar to Figure 3). He attributed this 1) to 

changes in driver behavior in response to seeing more cyclists as drivers become more 

attuned to having cyclists on the road, and 2) to drivers in places with many cyclists 

being more likely to bike themselves, thus being more aware of cyclists on the road 

(Jacobsen, 2003). His models have been used to predict the injury rates due to a given 

increase in cycling. 
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Figure 5: Safety in numbers summarized from literature 

Thus there are multiple constructs proposed as to why this phenomenon occurs, 

the most popular of which is that SiN is caused by something similar to the theory from 

the psychology field known as conditioning; humans learn to expect a certain outcome 

in response to the same event. Applied to bicycling and traffic safety, the theory is that 

drivers adjust their behavior as they see and interact with cyclists on the road, 

ultimately becoming safer drivers (Wagner, 1972). In regard to SiN, it is supposed that 

drivers who see cyclists regularly become conditioned to their presence and therefore 

adjust their driving behavior to become safer around cyclists (Jacobsen, 2003). 

Other studies have supported this finding.  Wegman et al. (2012) found a similar 

non-linear relationship when comparing bicycle fatality rates per kilometer in European 
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countries, finding that countries with higher kilometers of bicycle ridership per year 

have a relatively low fatality rate, and countries with very low traffic levels (less than 20 

km per person per year) have relatively high rates (Wegman et al., 2012). However, in 

countries with around 200-300 kilometers per year (which is approximately the median) 

there is a large variance of crash rates. This means that there are likely other factors 

affecting crash rates other than the SiN effect, such as investment mechanisms, bicycle 

facilities and bicycle usage (Wegman et al., 2012). People may bike because it is safe due 

to factors other than “numbers,” like bicycle infrastructure or bike-friendly topography. 

Thus, there may be a spurious relationship between exposure measures and the 

number of crashes; intrinsically safe places may attract large numbers of bicyclists. 

Interestingly, accident rates in very low-income countries are much higher, even though 

the large majority of people walk and bike as their mode of transportation (Elvik, 2009). 

This supports the hypothesis that the number of kilometers travelled on a bicycle is not 

the only factor determining cyclists’ safety. Neither this study nor Jacobsen’s study 

controlled for these factors, such as the presence or absence of bicycle lanes.  

Another way SiN has been researched has been through agent-based models 

(ABMs). In one study, step-based models (Wagner, 1972) were used to simulate drivers 

adapting their behavior over time after interacting with cyclists on the road. Agent-

based models are useful for modeling micro-level “disaggregate populations that give 

rise to macro-level phenomena” (Thompson et al., 2017). Said another way, ABMs 

model individual interactions between cyclists and cars to try to explain the larger-scale 
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phenomena of SiN. In Thompson’s research, the model shows how drivers’ ability to 

adapt their driving habits around cyclists may change in response to physically 

separated infrastructure, like a cycle track or side path (Thompson et al., 2017). Results 

from the Thompson ABM study support the existence the SiN phenomenon and 

somewhat characterize the observed nature of SiN. This research created a simulated 

transportation system with randomly assigned sections of separated bicycle 

infrastructure and bicyclists in mixed traffic conditions. A rendering of the system is 

shown below. Buildings are blue, cars are white, cars interacting with cyclists are red, 

cyclists are black, roads are grey, and separated bicycle infrastructure is green. 

 

 

Figure 6: Simulated transportation system from Thompson et al. (2017) 

 

Driver and cyclist behavior was governed by a step function that modeled 

classical conditioning (Wagner, 1972), as shown below: 
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Figure 7: Step function governing motorists' behavior from Thompson et al. (2017) 

 

This model utilized three variables—(1) the saliency values (the ability for cyclists 

and road segments (S and T), (2) the association value (the ability of drivers to associate 

certain segments of road with cyclists), and (3) the amount of interactions cyclists have 

with vehicles—to study the behavioral adaptation around cyclists which likely underpins 

the SiN effect (Thompson, et al. 2017). The scope of this research was to investigate 

how cyclists’ risk increased/decreased from using physically separated facilities as 
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drivers changed their behavior from interacting with cyclists. The virtual drivers were 

programmed to alter their behavior to drive safer around cyclists incrementally as they 

intermingled with cyclists in the network. When cyclists used separated infrastructure, 

however, they were essentially invisible to drivers, meaning that drivers did not alter 

their behavior incrementally in response to those using separated infrastructure.  

The study found that, as more cyclists began using separated infrastructure, the 

remaining cyclists that were interacting with cars had a higher risk per capita (at high 

driver association values). See results below. Each line indicates relative risk, or “RR,” at 

a given “BA,” or the association level, U.  



 

17 

 

 

Figure 8: Relative risk per cyclist with varying association levels and proportions of separated 

cycling infrastructure from Thompson et al. (2017) 

 

 As more cyclists left the “cycle track”—or segments of road within a system in 

which cyclists do not interact at all with drivers (green segments in Figure 6)—and 

entered into mixed traffic, relative risk per cyclist increased marginally. As previously 

explained, this model built in the assumption that separated infrastructure keeps 

motorists from interacting directly with cyclists, the driver’s ability to expect a cyclist 

(and therefore change their behavior) did not improve unless cyclists shared the street 

with cars. Instead, cyclists using the “cycle track” were essentially invisible to the 

drivers. Results showed that only when the simulated system had greater than 80% 
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separated infrastructure and the drivers had high association strength (U) was there 

significantly higher relative risk of crashes for the cyclists remaining on the street. This 

means that, according to agent-based models, cyclists would only be at increased risk by 

using separated infrastructure if 80% of their travel is on physically separated 

infrastructure with no interaction with vehicles (Thompson et al., 2017). In this scenario, 

the few riders on the non-separated road would be experience much higher risk per 

capita than in a scenario with less separated infrastructure. In the most extreme case 

(where over 70% of the system was separated infrastructure and drivers had the 

maximum association level [the ability for drivers to associate streets with cyclists]) the 

total number of crashes within the system—not just risk per cyclist—also increased. In 

summary, this study proposed that separated bicycle infrastructure could potentially 

cause cyclists higher risk if we assume that they do not benefit from the “numbers” 

effect when using it.  

There are several notable issues with this approach. First, the assumption that 

bicyclists using separated cycling infrastructure are “invisible” to drivers ignores one of 

the major questions in this research area: how does SiN accrue to cyclists? This has not 

been clearly proven in existing literature, but Thompson et. al’s research built the 

assumption into the virtual drivers’ behavior; the invisible infrastructure makes no 

distinction about whether or not drivers must interact with cyclists or just see them on 

the road, but instead just assumes. This major and potentially unfounded assumption 

may inappropriately ascribe SiN effects (or lack thereof) to separated infrastructure. For 
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example, if SiN only affects cyclists who interact with motorists in mixed traffic, then 

assuming bicyclists using separated infrastructure are “invisible” to drivers is logical. 

However, this has yet to be determined in the literature. It may be that motorists only 

have to see cyclists for the effect to take hold, in which case only very limited 

infrastructure (greenways and trails, for example) would be totally out of sight for the 

drivers. Even outside this assumption, the scenario in which cyclists complete 80% of 

miles travelled on separated infrastructure is highly unlikely in the US within the 

foreseeable future due to very few complete networks of bicycle infrastructure 

throughout the country. 

1.4  Arguments within SiN research 

Jacobsen’s (and others’) findings have been challenged in the literature due to 

methodological issues, conceptual validity, and general usefulness. It has been pointed 

out that finding a correlation between ridership and crashes is not necessarily indicative 

of causation; what could be nothing more than a statistical relationship may not be 

borne out in reality (Bhatia & Wier, 2011; Elvik, 2009; Wegman et al., 2012). Making any 

sort of policy recommendations for promoting cycling based on these correlations alone 

could be overstepping and preemptive—and potentially unethical if doing so causes 

more crashes and fatalities due to the lack of supporting infrastructure, law 

enforcement, etc. (Bhatia & Wier, 2011).  
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First, it has been pointed out that Jacobson’s analysis was cross sectional, 

meaning that there could be issues with reverse causation. Most importantly, as has 

been pointed out, “safety may actually cause numbers” (Bhatia & Wier, 2011). It is 

plausible that more people may bike in places where it is safer to do so; if that is the 

case, decrease in relative risk is actually due to safe infrastructure rather than the 

“numbers,” which clearly has major implications for the body of literature on bicycle 

safety and for urban planning practice. Jacobson’s results do not overcome this 

temporal issue—whether the safety or the numbers comes first.  

Second, Jacobson’s research did not account for the built environment 

influencing driver behavior through design speed and traffic volumes, both of which 

have been identified as important and spurious factors in cyclist and pedestrian safety. 

And other factors, such as traffic law enforcement or traffic laws  (Berg, 2006; Lavetti & 

McComb, 2014), topography, and weather (Wegman et al., 2012), may also be 

confounding variables that challenge the validity of SiN as a theory. For example, 

Wegman, et al. (2012) found that, in countries with high levels of ridership and safety, 

there are correlations between the number of cyclists and a higher density of bicycle 

facilities.  

Third, others have pointed out that SiN may be caused by altered driver behavior 

and may also be related to respect. In places where there is not a strong culture of 

bicycling, cyclists may not be given the same level of respect on the road as other mode 

users, which could ultimately contribute to less courteous (and less safe) treatment 
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from other users.  In a study of bicycle-car accidents in Finland it was found that there 

were differences between expected and actual rights (for example, who believes they 

have the right of way in a turning scenario vs. who actually has the right of way) on the 

road (Räsänen & Summala, 1998). 

 It is possible that cyclists may be more respected in cities with higher cycling 

rates because drivers are also more likely to bike for some of their trips, creating in 

them a sense of empathy for cyclists (Wegman et al., 2012). Similarly, an Australian 

study found that drivers who were also cyclists were 1.5 times more likely to self-report 

safe driving behaviors around cyclists than drivers who never cycle themselves 

(Johnson, Oxley, Newstead, & Charlton, 2014). Drivers who also cycle also report more 

positive attitudes and a better knowledge of road rules that pertain to cycling (Johnson 

et al., 2014). This could be a part of what underpins the SiN effect. While this still 

suggests that more cycling may lead to increased safety overall, the existing literature 

(to my knowledge) has not measured this directly in any analysis, so the actual effect on 

user safety is unclear.  

SiN’s usefulness as a theory has also been challenged. Some disagree about 

whether or not it provides useful information for practice, making the argument the 

measure used for safety in SiN studies (relative risk for individual cyclists) is not a valid 

measure of safety. In terms of bicycle safety research, “safety” has been described from 

two somewhat opposed perspectives: (1) in terms of individual risk, and (2) in terms of 

aggregate number of deaths or fatalities.  
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All SiN research has used this first construct of safety, most likely because of the 

available data. SiN has been measured in terms of risk per individual; as the number of 

riders increase, the risk per individual decreases. Said another way, the likelihood of 

serious injury/death per rider decreases as the number of riders in the system and as 

the ratio of cyclists to motorists increases. However, this conceptualization of safety 

says little about the actual number of crashes in the system. 

Bhatia and Weir (2012) point this out in their report. In spite of the decreased 

risk per person with increased exposure to motor vehicles, the actual number of crashes 

has continued to increase as more cyclists enter the system. They argue that because of 

this, there actually is not safety in numbers. If “safety” is defined in terms of crashes 

within a system over a given period of time (Hauer, 1982), there is merit to their 

argument. While pure research is certainly useful for the sake of furthering knowledge, 

they argue that safety research is different in its ethical impetus. Arguably, the point of 

transportation safety research is to reduce the number of preventable crashes, injuries, 

and fatalities in the transportation system (Bhatia & Wier, 2011). If safety is 

conceptualized the way Bhatia and Weir (2011) and Hauer (1982) have defined it, then 

SiN measured in terms of individual risk may not have much value as a topic of research 

as it does not contribute much towards improving “safety” because many people still 

die each year from cycling/vehicle crashes.  

In light of this important distinction, some have argued that SiN as a topic area 

may distract from the overall problem of cyclist fatalities in the US (Bhatia & Wier, 
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2011). When researched under this conceptualization of “safety,” SiN research may just 

shift the blame to victims of a transportation system that is (arguably) not designed for 

their safety  (Bhatia & Wier, 2011). The conversations about SiN shift the cause of death 

and injury to those biking and away from policies and road designs that could protect 

them. Cyclists’ accidents often see more fatalities than automobile accidents due to 

cyclists’ vulnerability on the road and their lack of protection, as well as the disparities in 

speed between cyclists and cars (Wegman et al. 2012). To assign responsibility to 

bicyclists to fix a transportation system by numbers alone may be poor research and 

even unethical (Bhatia & Wier, 2011). As Bhatia and Weir (2011) pointed out: 

 

“Some transportation agencies appear to use higher prevalence of walking as the 

primary explanation of high pedestrian injury frequencies. For example, on a 

website describing pedestrian safety in their community, the City of Berkeley, 

California states: “Compared to other cities, Berkeley has a high number of 

bicycle and pedestrian injuries. The main reason for this is because so many 

people walk and bike in Berkeley, not because it is a dangerous place” (City of 

Berkeley, 2010). Such statements appear to readily discount both the burden of 

injury and the contribution of transportation system design, speed, and other 

environmental factors” (p.238). 
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Bhatia and Wier went as far as to say that this measure of SiN may not be real 

safety research because it is not applicable to the practice of making all road users safer 

because it says nothing about reducing total crashes and therefore, in their opinion, is 

ineffectual. 

 

1.5 Debate around SiN as it applies to practice 

 

Jacobsen’s widely quoted response to the “safety in numbers” phenomenon is 

that “policies that increase walking and biking appear to be an effective route improving 

the SiN of walking and biking” (p. 209, 2003) . However, this statement has been 

controversial among researchers.  

Jacobsen was not specific about the types of policies that would be best for 

promoting cycling. Certain policies could focus on implementing dedicated 

infrastructure to separate bicyclists from auto traffic such as bike lanes. While there has 

been a decades-long debate about protected cycling infrastructure, or infrastructure 

that has some physical barrier between cyclists and motorists, versus mixed-traffic 

cycling, SiN is has been used to make policy justifications, specifically pitting policy-only 

solutions against infrastructure improvement ones (Bhatia & Wier, 2011; City of 

Berkeley, 2010). For example, the City of Berkley has used Jacobsen’s report and 

statistics to encourage more biking and walking in the area (City of Berkeley, 2010). 

Berkeley’s website used his results to justify policies that may encourage biking and 
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walking regardless of the presence of bicycling infrastructure or improved road design 

standards (2019). Also, some countries have begun to measure “cycling success”—as in 

how much better cycling is becoming in a place—in terms of increasing the number of 

bicycle travel miles travelled each year, as opposed to reducing the numbers of crashes 

or another comparable safety measure. It is crucial to remedy the public safety issue of 

high bicycle crash, injury, and fatality rates, but it is debatable what types of policies or 

other improvements will be truly effective. It is unclear whether or not the SiN effect is 

strong enough to actually protect riders.   

One of the major debates surrounding SiN and policy has been its use as an 

argument to dissuade investment in separated bicycle infrastructure. Some think that 

separated infrastructure may undermine some of the safety benefits that may affect 

cyclists because of SiN; the goal of this type of infrastructure is to limit motorists’ 

conflict points with cyclists, and because of this, separated infrastructure may actually 

endanger other cyclists on the road because fewer cyclists are interacting with drivers in 

mixed traffic, lessening drivers’ incentives to adjust their behavior (assuming that 

behavior modification underlies the SiN effect) (Thompson et al., 2017). Some believe 

that the benefit of SIN may only accrue to cyclists who are riding in traffic without any 

exclusive infrastructure (bike lanes, bike paths, etc.) dedicated to them (Thompson et 

al., 2017). 

The counter-argument to that perspective is that protected facilities may attract 

new ridership—will mixed-traffic cycling attract enough cyclists to accrue the benefits of 
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SIN? It may be that some of the deterrents to cycling, such as high crash rates (or 

perceived high crash rates) and lack of confidence in their cycling abilities, may keep 

more road users from switching modes to cycling, meaning that the SiN effect could not 

take (J. Schepers & Heinen, 2013). Mixed-traffic cycling may be too stressful for new 

cyclists; would-be cyclists may not feel comfortable enough with their cycling skills to 

ride alongside automobile traffic, which could deter cyclists and again keep SiN from 

coming to fruition. A health-focused study of bicycling in Portland, Oregon, a city with a 

strong bicycle culture, found that a disproportionately large share of bicycling, both for 

recreation and utilitarian purposes, occurred on streets with existing bicycle 

infrastructure, such as a bike path or bike lane (Dill, 2009). When tested on the micro 

level (at an intersection or on a single strip of separated infrastructure), there is also 

evidence that physically separated infrastructure can reduce the risk for cyclists 

(Wegman et al., 2012). 

 Some research has determined that both drivers and cyclists are more 

comfortable with their travel with physically separated bicycling facilities as opposed to 

mixed-traffic cycling  (R. Sanders & Cooper, 2013; R. L. Sanders, 2014; R. L. Sanders, 

2015). If this is the case, then it is another reason for supporting separated 

infrastructure, and this could be used as another counter-argument against proponents 

of mixed-traffic cycling only.  

As has been shown, the exact nature of SiN is not clear in the existing literature, 

but it is affecting policies. If some cyclists and practitioners believe that cyclists would 
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be safer overall (because of the SIN effect) if they were treated as just another vehicle 

on the road without any special protections, their stances may influence how 

infrastructure—or lack thereof—is implemented in the future. In the US, where there is 

not a strong culture for cycling and cycling infrastructure planning is a newer practice, 

SiN may not be a strong enough force in itself to change cycling culture (or lack thereof) 

(Richards, 2014), or to mitigate copious amounts of cyclist injuries and/or deaths in our 

transportation system. 

SiN may also change the way the future road safety is predicted. Accident 

prevention models can be used to predict the amount of future accidents based on a 

change in the level of bicycle ridership. However, these models will need to account for 

a SiN effect if it can be quantified (Elvik, 2009):  
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Equation 3: Accident prediction model example 
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However, in a review of bicycling habits and infrastructure patterns in the 

Netherlands, Jacobsen’s prediction model did not match changes in cyclist fatality rates 

in response to increased cycling (P. Schepers et al., 2017). This study found that, in a 

given timeframe, the distance of cycling per capita increased by 20% and the fatality 

rate decreased by 80%, where Jacobsen’s model would only predict a decrease of 10% 

(P. Schepers et al., 2017). It is clear that there were other factors influencing crash rates 

in these results, like road safety measures, enforcement (Berg, 2006), or bicycle 

infrastructure.  

Wegman, et al. (2012) also found that, in countries with high levels of ridership 

and low crash rates, there are also correlations present between the number of cyclists 

and a higher density of bicycle facilities. This study pushes back against Jacobsen’s belief 

that policies should encourage more cycling alone to improve cyclists’ safety; instead, 

policies should be wrapped up in a “package” of policy changes, infrastructure 

retrofitting, and increased education (P. Schepers et al., 2017; Wegman et al., 2012). It is 

not evident from existing literature which of those three approaches is the most 

effective in reducing cyclist injuries and fatalities.  

While SiN may not be a conclusive argument for discounting separated 

infrastructure, it should encourage reflection about estimating the safety benefits from 

a given extent of separated infrastructure in the context of its overall connectivity of a 

given bicycle network (Thompson et al., 2017).  To better inform practice, to contribute 

to the overall understanding of bicycling safety in cities, and to further the academic 
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literature on SiN, it is important to more fully understand SIN as it applies to different 

scales of analysis and how the effect varies over space and how the phenomenon 

changes in the presence of bicycle facilities.   

 

1.6  Gaps within SiN and road safety research  

 

It is not clear how all of the factors that determine cyclist injury and fatalities 

(including SiN) interact with one another. In a review of literature, the following factors 

have been identified as potentially influencing bicycle injuries and fatalities (as shown in 

Figure 9 below) (Wegman et al., 2012): 

 

• Travel behavior: This factor consists of several other subcategories: (1) locations of 

attractions, (2) needs, opportunities, and abilities, or NOA, and (3) travel 

resistance. A summary of these points is as follows:  

 

(1) First, the locations of attractions and destinations can be thought of as land 

use patterns. Certain land uses may attract or deter cycling (Richards, 2014). The 

transportation system that supports and influences land use can also cater to or 

endanger cyclists. An example would be that a denser network of roads 

supported by denser land might be more suitable for bicycle travel because this 
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road structure shortens distances between destinations (P. Schepers, 

Hagenzieker, Methorst, Van Wee, & Wegman, 2014).  

 

(2) Second, the needs and opportunities (like the need for utilitarian travel to 

work or the desire to travel for recreation, for example), and abilities of cyclists 

(depending on age, disability, confidence of cyclists, and level of fitness) can 

affect how and where cyclists travel.  

 

(3) Third, and finally, rider discomfort in certain road conditions, incurred cost (in 

time or money), and perceived risk (Aldred & Crosweller, 2015; R. L. Sanders, 

2014; R. L. Sanders, 2015) can influence travel behavior and mode choice.  

 

• Exposure to motor vehicles:  Travel behavior results in varying amounts and types 

of exposure to motor vehicles.  

 

• Risk of crash: As cyclists interact with motor vehicles, they risk crashing and 

experiencing injuries or death. Multiple factors affecting this risk have been 

identified, including (1) infrastructure or road design, (2) road users and their 

behaviors, (3) vehicles and their design properties, which can be more or less 

harmful to cyclists in a crash scenario, and (4) vehicle speed.  
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These factors have been used to create a framework for determining the rate of 

bicycle injuries and fatalities (P. Schepers et al., 2014):  

Figure 9: Conceptual framework of factors that influence cyclists' injuries and fatalities 

(P. Schepers et al., 2014; Wegman et al., 2012) 

In studying the effects of each of the components of this framework, Schepers et 

al., (2012) found the most influential factors in travel behavior and exposure to motor 

vehicles (the top part of the conceptual framework) is what is called “network level 

separation,” or the degree to which cyclists are exposed to high-speed motor vehicles. 

Cyclists may not be able to use high-speed roads, such as highways or divided arterials, 

meaning that they are not exposed to high-speed vehicular traffic. This shifts a notable 
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number of cyclists to roads where vehicular traffic is lower. The other important factors 

were low cycling speed, the use of one-way bicycle paths, and intersection treatments 

that protect cyclists through reducing driver speeds and increasing cyclists’ visibility to 

drivers (Richards, 2014; P. Schepers et al., 2014). This study postulates that this 

nonlinearity of risk could be due funneling drivers on to higher-speed roadways where 

there are less cyclists and less crashes in general (Wegman et al., 2012).   

SiN likely comes into play in this conceptual framework of exposure to motor 

vehicles and risk of crashes. While the reality of the statistical relationship may have 

been verified through meta-analysis (Elvik, 2009; Elvik & Bjørnskau, 2017) the actual 

nature of SiN has been harder to determine. Factors that may strengthen or weaken the 

effect of SiN include (Wegman, et al. 2012; Elvik, 2009; Elvik & Bjørnskau, 2017): 

• The number of pedestrian or cyclists: There may be a stronger effect from more

riders when there are few cyclists than when there are many. This could be for a

number of reasons, including marginal changes in drivers’ behavior being more

obvious when more cyclists are added in places with few cyclists, cyclists’ feeling

less confident riding alone versus riding when ride alongside others, or even better

law enforcement in communities where there are larger numbers of cyclists versus

smaller numbers of cyclists, leading to all mode users obeying traffic laws more

carefully.
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• The number of motor vehicles as compared to the number of cyclists: The total 

number of cyclists on the road may matter less than the ratio of cyclists to 

automobiles.  

 
 

• Skill level of pedestrians or cyclists: Cycling crash rates vary across age groups 

(Wegman et al., 2012). In places where there is a largely elderly population, for 

example, there may be a difference in the effect of SiN compared with a place 

where there are varied ages. Elderly travelers have less crashes in cars than on 

bicycles, so in this scenario there may be more crashes (Wegman, et.al ,2012). 

 

• Nature of the transportation system: Existing conditions of the transportation 

infrastructure system—including bicycle facilities—may also affect the strength of 

SiN.  

 

Outside of understanding how these factors interact with one another, there are 

other notable holes in the literature. As noted previously, the most apparent one is 

addressing the temporal issues in SiN theory. It is still unclear if numbers cause safety or 

if safety causes numbers (Bhatia & Wier, 2011). SiN has also not been closely studied at 

regional levels. Most of the studies consider either municipal-scale or nationwide-scales 

of bicycling and crash rates.  



 

34 

SiN has also not been studied spatially. Factors that may strengthen or weaken 

the effect of SiN—traffic volumes, road designs, prevalence of bicycle infrastructure, 

and general attitudes towards biking—likely vary spatially. For example, one 

municipality may have stronger bicycle and pedestrian programming than its 

neighboring municipality, leading towards more awareness of and respect for cyclists, 

while the neighboring municipality may not. It is unclear how this would affect crash 

rates in relation to SiN when comparing the two municipalities.  

To date, there is not a statistical model that describes the spatial nature of SiN. It 

is conceivable, however, that spatial analyses may help generate hypotheses about the 

nature of SiN over a given area. Further studies may even generate a spatial model that 

would predict how the SiN effect may be used to predict changes in crash counts or 

identify areas of concern. All SiN studies thus far have used linear regression to 

determine correlation. One of the underlying assumptions in a regression analysis, 

however, is that there is no spatial autocorrelation. In determining the spatial 

relationship among ridership and crash data sets, it is important to determine if there 

are real spatial effects that would alter existing assumptions underlying the SiN effect.  

It is likely that road segments that are closer to one another are more similar 

than those that are further apart, but the extent to which they are similar is unknown. 

Multiple factors may contribute to potential spatial autocorrelation, but the most 

obvious and important is the fact that the segments do not exist alone in space but 

rather are a part of an entire network. Bicycle mobility and safety are related to how 



35 

much road network is in a given space. For example, a square mile of a road network 

that has 10 miles of road segments (total) inherently provides less connectivity (and 

ultimately mobility) than a square mile that has 25 total miles of road. This cannot be 

controlled on an individual segment level, but instead must take into to consideration 

spatial units within the entire network.   

Similarly, nearly all SiN analyses in the literature have been conducted at either 

large scales (crashes per country or municipality) or on a theoretical basis (agent-based 

models). Key studies are summarized in the following table. There is little understanding 

of how this relationship would change by studying bicycle ridership data on the segment 

level from cities and corresponding crash rates. Testing SiN in this way can ground-truth 

underlying assumptions, as well as test the assumption that SiN is best characterized by 

exponential relationships.  

Summarized generally, the main gaps in the understanding of safety in numbers 

are three-fold. First, studies have not been disaggregated to smaller units of analysis on 

a large scale (like individual streets within an entire road network). Second, because of 

SiN has not been studied with small units, there has not been a way to control for road 

conditions that also effect bicycle crash rates. And finally, because of the previous two 

gaps in knowledge, it is still unclear how the SiN effect interacts with other important 

factors to affect bicycle safety as a whole. The research presented in this study 

contributes to the literature by addressing these issues. The following section describes 

the research methods and data used to address these major gaps in understanding.  
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Table 1: Summary of key SiN studies 

Title Author(s) Year Units of Analysis Exposure Measure Injury Measure 

“Safety in numbers: 
more walkers and 

bicyclists, safer 
walking and biking” 

P. Jacobsen 2003 

(1) Walking/biking in 68

California cities.

(2) Walking/biking in 47

Danish towns 

(3) Bicycling in 14 European

Countries 

(4) Walking in 8 European

countries 

(5) United Kingdom

(6) Netherlands

(1) Portion journey to

work trips on foot/bike

(2) km walked/biked a day

(3) km biked/capita/day

(4) trips on

foot/capita/day

(5 – (6) billion km biked

annually

(1) – (2) Injuries per capita

(3) – (4) Fatalities per capita 

(5) – (6) Fatalities

“Estimating the 

safety benefit of 
separated cycling 

infrastructure 
adjusted for 

behavioral 
adaptation among 

drivers; an 
application of agent-

based modelling” 

J. Thompson, J.

Wijnands, G.

Savino, B.

Lawrence

2013 

Virtual road network and 

individual streets/bicycle 

facilities 

Virtual cyclists interacting 

with virtual cars 

Collisions of virtual cyclists and 

cars 

"The Dutch road to a 
high level of cycling 

safety" 

P. Schepers, D.

Twisk, E.

Fishman, A.

Fyhri, A. jenson

2015 
(1) Netherlands 

(2) European countries 
(1), (2) Billions of km 

(1) Fatalities per billion bicycle

km, (2) Road Fatalities per

100,000 population
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2. RESEARCH DESIGN AND DATA SOURCES 

 

2.1 Design Overview 

 

To better inform practice, to contribute to the overall understanding of bicycling 

safety in cities, and to further the academic literature on SiN, it is important to more 

fully understand SIN as it applies to different scales of analysis. The following research 

questions have been developed to address some of the gaps in understanding within 

the literature: 

 

Research Questions: 

Is the “safety in numbers” phenomenon reflected in analyses of individual streets within 

a road network? If so: (1) how do crash rates with exposure when other variables are 

controlled, and (2) how does SiN vary under different road conditions? 

  

As previously stated, SiN research has not been conducted with small units of 

analysis, with the exception of a the previously mentioned agent-based models. It is 

therefore unclear whether or not the relationship between the number of crashes and 

the number of cyclists will be the same when investigating individual road segments 

within a given area as it is when considering ridership and crashes when aggregated to a 

city or country level. Conducting a SiN analysis on a segment scale allows for the 
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consideration of other road condition variables that may also affect cyclist safety like 

congestion, speed limits, road functional class, presence of bicycle infrastructure, etc. 

This study attempts to fill this gap in understanding by conducting an analysis on an 

individual road segment level. The following research design has been developed to 

analyze SiN in this way for a subsection of the ten-county Denver-Arora metropolitan 

(governed by the Denver Region Council of Governments, or DRCOG).  

Results from researching bicycle SiN at the unit of analysis of the individual 

street segment will inform existing literature in several ways. First, conducting the 

research on individual streets will identify whether or not the large-scale phenomenon 

of SiN is actually the same across all units of analyses. While studies of this type have 

been done with theoretical models (see Thompson et al., 2017), research of this type 

has not been done with data from an actual municipality. Furthering this understanding 

with data reflecting reality may begin to inform us about what the SiN phenomenon 

actually means for riders’ experiences in different conditions. 

Second, testing the effect of the number of trips in a system on the likelihood of 

a crash while controlling for other factors that are known to affect bicycle safety will 

shed light on how the SiN phenomenon really affects cyclist safety. Specifically, my 

research will help answer the question “Do numbers cause safety, or does safety cause 

numbers?” This new understanding will inform the framework previously discussed by 

prioritizing what may matter most for protecting cyclists. Understanding this component 

of SiN could potentially inform bicycle facility design as well as the existing literature.  
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This research approach also allows us to better understand one of the most 

important issues in the literature—whether “numbers” causes safety or safety causes 

“numbers.” Results from this research shed light on whether lower crash rates are 

predicted by the number of trips even when other factors that are known to affect 

cyclists’ safety are controlled, such as road functional class, presence of bicycle 

infrastructure, speed limit, etc.  

The following design is used in this research: 

• Part 1: Determine if road segments in the Denver Metropolitan Region experience a

SiN effect (a correlation between the number of trips made by cyclists on a given

road segment and bicycle crashes per rider on that segment).

• Part 2: Characterize the SiN effect mathematically, investigating whether linear or

exponential models best describe the phenomenon.

• Part 3: Determine how crash rates vary based on trips when other variables are

controlled

• Part 4: Measure the variation of the SiN effect under different road conditions.

The following sections further explain the proposed design, define the study areas, 

describe the data sources, and outline the limits of the research methods. 
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2.2 Study area summary 

 

The study area selected for research is a 10-county metropolitan area, Denver, 

Colorado. The ten counties included in the study area are Arapahoe, Boulder, 

Broomfield, Clear Creek, Denver, Weld, Adams, Jefferson, Douglas, and Gilpin Counties 

(shown in Figure 10). The following table provides several summary statistics that help 

characterize the area. To summarize the table, the selected study area is large, 

consisting of 3 million people and more than 1.2 million households. This is also a 

wealthier area than the rest of Colorado.   

 

Table 2: Study area summary 
 
 

Denver-Arora Metropolitan Statistical Area Characteristics  

Population Total   3,303,417 

Number of Households 1,262,786 

Average Household Income in MSA $92,956 

Average Household Income in CO 

Average Home Value  

$68,813 

$294,850 

 

Source: US Census Data1 

                                                
1 Obtained from American Fact Finder  
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Figure 10: Denver Region (Counties)  

Source: Birmingham Business Alliance, 2017 1 

 

 Many metro areas across the US have had an increase, albeit a small one, in the 

number of people commuting to work via bicycle in the last decade. This includes 

Denver. In 2014, a little over 2% of commuters in Denver traveled by bicycle, which was 

30% above the national average at the time (Hyer, 2014). This is due in part to very 

bicycle-friendly topography and climate (Denver Region Council of Governments, 2017) 
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and consistent investment in bicycle infrastructure for over a decade (Douglas, 2017). 

Around 1.4 million trips each day are made by foot or bicycle each day in the DRCOG 

jurisdiction, and about 162,000 of them are on a bicycle (Denver Region Council of 

Governments, 2017). Bicycle commuting in Denver has risen 32% over the previous 

decade (Denver Region Council of Governments, 2017).  

Denver is suitable for continued growth in bicycle ridership. However, bicycle 

commuting has been dropping slightly (in Denver and around the US) in more recent 

years, likely due to the decrease in gas prices starting in 2016. Higher levels of driving, 

rising household incomes, and, arguably, declining road safety have been identified as 

other reasons for less biking (Anderson, 2017). Despite these general trends downward, 

parts of the study area, including downtown Denver, have seen some upticks in 

ridership. In 2017, around 35,000 commuted by bike on National Bike to Work day (a 

notable increase from the previous years), which has created momentum for expanding 

the existing bicycle culture to more users (Douglas, 2017).  

In terms of traffic fatalities, from 2005 – 2016 there were 9632 reported bicycle 

crashes (excluding data from 2009, for reasons explained below). A majority of the 

reported crashes resulted in injuries, and nearly three-quarters of these incidents 

happened at intersections (Denver Region Council of Governments, 2017). To combat 

these issues, the DRCOG has taken steps towards implementing safety initiatives, 

including Vision Zero Planning and implementing new bicycle infrastructure (Denver 

Region Council of Governments, 2017). 



43 

This study area was chosen for several reasons. First, data required for these 

analysis is readily available through partnerships with the Toole Design Group, a 

national leader in bicycle and pedestrian planning and engineering, and with the Denver 

Regional Council of Governments. Second, this region has a strong bicycle culture with 

established record keeping practices for ridership counting and crash reporting. The 

Denver Region Council of Governments (DRCOG) has kept detailed crash data that is 

publicly available dating back to 2005. The DRCOG also has a large database of publicly 

available GIS data that has been meticulously catalogued for over a decade. Presently, 

the Denver Metro area, like the rest of the US, would likely fall into the ridership 

category described by Wegman et al. (2012), in which there is a relatively high median 

number of riders (compared to surrounding areas) but still high crash and fatality rates; 

in these scenarios, it is not well understood how more exposure affects bicycle safety. If 

this is the case, this study may help to articulate the nature of SiN in these ambiguous 

cases.  

2.3 Data Sources 

Several types of data are used in this study: 

• Strava Data for the entire DRCOG jurisdiction: Strava is a self-described social

media network for cyclists and runners (“Colorado Strava MetroTraining,” 2017). It
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is available to users through web-based or phone applications. The purpose of 

Strava is to foster community among the running and cycling populations around 

the world. The application allows athletes to log the location of their runs and 

bicycling trips, and it then provides performance data for each activity (such as 

average speed, total distance travelled, and descriptive statistics about other 

athletes who have completed the same route). A part of the Strava mission is 

realized through a department of the company called Strava Metro. The mission of 

Strava Metro is to create high quality spatial data to make active transportation 

more viable in cities across the world. This program provides aggregated, spatially-

referenced datasets of cycling information from users’ data to local planning 

organizations to better inform bicycle and pedestrian planning practices. The 

resulting data set has very detailed ridership counts (including the number of 

unique riders and total trips) per segment of road for the entire transportation 

system (all roads) within a state of city over a given time period. The DRCOG study 

area has purchased Strava datasets for the 2016 calendar year. In the image shown 

below, the lines collectively represent the entire transportation system in a subset 

of my study region. Each line contains many attributes, including number of trips 

per segment, number of unique riders per segment, etc. For my entire study area, 

there are over 536,000 segments.  

o It should be noted that Strava data may not be representative of all cyclists 

because it does not represent all riders for two reasons. First, the data shows 
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number of trips per segment for those who use the app, but this obviously does 

not capture all riders’ trips. Second, it represents routes of riders who may be 

enthusiasts an stronger cyclists than the average rider. This is discussed in 

detail in the limitations section of this document (Section 4.3). 

 

 

Figure 11: Strava data in study area--downtown Denver zoom  

*Note: Lighter segments represent streets with lower numbers of trips, and darker segments 

represent streets with higher numbers of trips 
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• DRCOG Crash Data: DRCOG has collected detailed, geospatially-referenced crash

data since 2005. These datasets are publically available through the DRCOG

Regional Data Catalog, the goal of which is to encourage data-driven community

and municipal planning within its jurisdiction (Denver Region Council of

Governments, 2017). The data used in this study are all bicycle crashes and

fatalities from 2005 to 2015. Data from 2016 is not available as it has not yet been

processed by the DRCOG. Upon in-depth review of the data, crashes from 2009 are

not included in the analysis, as there are many incorrectly georeferenced crashes,

compromising the validity of the entire dataset for that year.

• American Fact Finder: Demographic data from the US Census Bureau has been

obtained at the block group (2,145 groups total) and county (10 counties total)

levels. Specifically, median household income at the block group level has been

added to models for each segment within the study area.

• Other shapefiles and data from DRCOG: Other shapefiles from each of the study

areas were obtained from the DRCOG, including municipal boundaries, functional

classification for each road, volume to capacity ratios on roads, bicycle

infrastructure, and speed limits.
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• 2017 TIGER/Line shapefiles: The US Census Bureau provides shapefiles for GIS 

software that show all legal boundaries. These files are to be paired with 

demographic data from the American Fact Finder to identify block group 

boundaries of the median household income values. 

 

2.4 Geoprocessing Methods 

 

As noted above, multiple different geospatial datasets were in these analyses. In 

order to accurately combine each of these datasets into a single dataset, several 

geoprocessing methods were executed using ESRI ArcMap, a geographical information 

software (GIS) program. The following sections summarize the geoprocessing tools used 

to create the final dataset. 

 

Clipping 

The original Strava Metro dataset contained all road segments for the entire 

state of Colorado. Since the study area only contained the 10 counties under the DRCOG 

jurisdiction, the study area was used to clip the segment dataset down to only the 

segments of interest. Two counties (Clear Creek and Gilpin Counties) were cut from the 

analysis because they did not contain any reported bicycle accidents for the 9 years 

(2009 data is excluded) of crash data.  
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Spatial Joins 

The spatial join functionality in ArcMap creates joins between datasets based on a 

common spatial reference point (as opposed to an attribute field commonality). 

Because most of the datasets were independent of one another entirely (meaning that 

they had no common attribute from which a table join could connect their attributes), 

they had to be joined based on their spatial location. The output of the spatial join 

function is a single dataset and including the road network with the attributes from both 

datasets contained within it. The following datasets were combined using spatial joins: 

• Strava Metro (clipped to the study area) – The Strava dataset was treated as the 

“base” dataset to which the rest of the layers were joined.  

• Functional Class and Volume to Capacity Ratio – The DRCOG and Colorado 

Department of Transportation (CODOT) each provided one shapefile that 

contained functional classification and V/C ratio (the number of cars using each 

segment divided by the traffic capacity of that segment). These files were joined 

spatially to the “base” Strava Metro shapefile.  

• Bicycle infrastructure—The DRCOG also provided shapefiles that contained the 

location of bicycle infrastructure. By joining this file to the “base” Strava dataset, 

each segment with bicycle infrastructure was identified. “Sharrows,” or road 

paint designed to encourage motorists to share roads with cyclists, were not 

included because they do not add notable safety benefit for cyclists compared 
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to other forms of bicycle infrastructure. Standard bike lanes and physically 

separated bicycle facilities were differentiated for analysis.  

• County–The county shapefile was joined spatially to the Strava Metro base file.

The resulting dataset contained each segment categorized by the county in

which it is located. Segments that stretched across county boundaries were split

on the boundary to create two separate segments.

• Median Household Income on the Block Group Level – Median household

income values were assigned to the base dataset on the block group level in the

same way as the county shapefile.

Speed limits were included in the base dataset and therefore did not need to use 

the spatial join function. 

Appending 

Spatial joining is a powerful tool, but it can only operate when there are perfect 

overlaps of datasets spatially. In particular, this did not apply with the geospatially 

referenced crash points and the road segments. Each crash was referenced as a point to 

a specific geospatial coordinate (latitude and longitude points) with reasonable 

accuracy, but they did not always overlap the segments exactly. To deal with this 

discrepancy, the points were overlaid to the correct segment using the append 

mechanism in ESRI ArcMap. The append function triangulated each point to its three 
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closest segments. The crash point was then appended to segment with the minimum 

distance from the crash point. In order to count the number of crashes per segment, a 

variation of the spatial join tool was used in which the resulting shapefile contained a 

sum of all the crash points along each individual segment.  

 

2.5 Research Design Concept—Step 1: Determine if the Denver Metropolitan Region 

experiences a SiN effect 

 

To determine whether or not there is a SiN effect in the study area, this report 

uses the same non-linear characterization used in a majority of the literature (similar to 

the relationship shown in Figure 3).  This analysis is conducted on the individual 

segment scale, utilizing all 536,519 segments. In the literature, the following model has 

been used to investigate SiN: 

 

! = #$% 

 

With the data sets used in this research, the key variables would be 

operationalized as shown in the table below.  

 

 



 

51 

Table 3: Operationalization of Variables 

 
Variable Conceptualization Operationalization 

I = Incident Measure 

Measurement of number 

of incidents between 

cyclists and automobiles 

Number of crashes with a 

bicycle involvement per 

segment 

E = Exposure Measure 
Opportunities for bicycle-

motorist interaction 

Number of trips (via Strava 

Metro Data) per segment  

I/E = Relative Risk 

Relative probability for a 

crash to occur 

Number of crashes with 

bicycle involvement per 

10,000 trips* 

 
*For analyses, the log-linear form of I/E is used. 

 
 

However, these approaches are not appropriate here. Tobit models use a latent 

variable that may cause the resulting crash rate predictions to be below zero. This is not 

easily interpreted for crash rates since they cannot be negative. Poisson distributions 

are also not appropriate here because they consider count data, whereas this research 

considers crash rates, not individual crashes (Ma, Yan, & Weng, 2015). To deal with this 

issue of the highly right-skewed dataset bounded at zero, a two-step exponential hurdle 

model was used to model the relationship between the number of trips per segment 

and the number of crashes on that segment.  

Cragg’s two-part hurdle model considers the “hurdle” between zero and non-

zero outcomes by modeling the zero outcomes and non-zero outcomes separately 

(Cragg, 1971; Ma, Yan, & Weng, 2015). When applied to crash rates in this scenario, it 
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utilizes a probit model to analyze the relationship between the exposure measure and 

whether or not a crash occurs on a segment at all for the given time span. For segments 

that have positive crash rates (n = 5,534), a second, conditional model examines how 

the exposure measure affects the crash rate within the same time frame using an 

exponential non-linear regression analysis. (The log of the dependent variable, 

crashes/10,000 trips, is taken because crash frequency has rightward skew). Thus, the 

results show whether the number of trips increases (or decreases) the likelihood of 

there being at least one crash on the segment, and whether it increases (or decreases) 

the number of crashes per 10,000 trips, conditional on there being a crash on the 

segment. To render the results more interpretable, predictions for unconditional 

crashes per 10,000 trips can be generated using the output from each of the two 

models. This research showed predictions for crashes per 10,000 trips at different levels 

of ridership while holding all control variables at their means.  

2.6 Research Design Concept—Step 2: Characterize mathematical relationship of the 

SiN effect  

The second step of the research design involved determining whether SiN has 

the same exponential relationship with crashes/trip as has been identified in the 

literature. This step in the research process investigates whether a linear model would 

better fit the relationship, as judged by the model’s pseudo r-squared. As has been 



53 

shown in the literature, the prevailing assumption is that SiN is best characterized by a 

non-linear, exponentially decreasing relationship (crashes per rider declines with more 

trips, but at a decelerating rate as the number of trips increases). However, it is crucial 

to verify that this is replicated at a smaller unit of analysis.  

2.7 Research Design Concept —Step 3: Crash rates in response to exposure when 

other variables are controlled 

The ultimate goal of the third portion of the research design is to identify how 

certain independent variables—including the exposure measure— affect crash rates. 

This was done through utilizing a hurdle model as described above while adding other 

independent variables which may be expected to affect bicycle safety and crash rates to 

the analysis. This is done to help identify whether an apparent SiN effect is really due to 

large numbers of trips being attracted to areas where it is safer to bicycle. As identified 

in the literature, the following independent variables were included in the hurdle 

analysis: 

• Number of trips: This dependent variable will be used to determine if the number

of trips per segment is a statistically significant factor in predicting crashes rates.

This will be used as an indicator for the SiN effect; if higher ridership values covary

significantly with lower injury intensity scores, this would support the SiN effect’s
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existence. It should be noted here that Strava Metro data is used to determine the 

number of trips. While Strava data is not representative of the entire cyclist 

population on each street, it is assumed that trips reported through the Strava data 

is a proportional representation of all trips on each segment. I had hypothesized 

that there would be a negative relationship between the number of trips and crash 

rates.  

 

• Presence of bicycle infrastructure: The presence of any type of bicycle 

infrastructure (including bike lanes, greenways, trails, or any physically separated 

infrastructure), except for shared lane markings, or “sharrows,” is included in in this 

analysis. One dummy variable indicates the presence of bike lanes, and another 

indicates bicycle facilities that are physically separated from motorized traffic 

(including trails/greenways, on-street separated bike lanes, and side paths). If the 

presence of bicycle infrastructure is associated with fewer crashes per rider, as I 

had hypothesized, this may inform how infrastructure and the SiN effect relate to 

one another temporally—there may be fewer crashes/rider in inherently safer 

areas not due to SiN but because safer areas attract more riders and more trips. 

The inclusion of this variable, and my other control variables, represent a 

significant step towards more fully understanding safety in numbers as a whole. 
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Again, I predicted that the number of crashes per 10,000 trips decreases in the 

presence of bicycle infrastructure (for both independent variables). 

 

• Volume to capacity (V/C) ratio: More congested areas may be more dangerous for 

cyclists, so this may be a more powerful indicator of crash rates than ridership or 

presence of infrastructure. In this analysis, exact V/C ratios were available for some 

segments, and binary measures of congestion (where “congested” segments have 

V/C ratios greater than 1 and “not congested” segments have V/C ratios less than 

1) were available for the remaining segments. For consistency, segments were all 

reduced to binary variables (“congested” or “not congested”) and coded as a 

dummy variable. It was expected that V/C ratio will be positively associated with 

crash rates; more congested roads may be more dangerous for cyclists. 

 
 

• Speed limits: Speed limits on given roads are likely to influence cycling safety. 

Higher speeds may contribute to crash and fatality rates, so it was assumed that 

there will be a positive relationship between these variables.  

 

• Median household income: Lower income areas typically have higher rates of active 

transportation injuries and fatalities than other areas even when other variables 
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are controlled. This could be due to less suitable road conditions in low income 

areas, or because these areas see more dangers biking/driving habits. It was 

hypothesized that areas with higher median household incomes have lower crash 

rates than comparatively lower incomes areas.  

• County: In order to control for possible cultural differences across cycling

populations (for example, riders in Boulder might ride more safely than riders in

Denver), each of the counties was coded, and dummy variables for the counties

were assigned to each segment. Controlling for counties may also partially control

for other factors. For example, road network density, which is not explicitly

measured here, varies significantly in some counties; Denver County has a very

dense road network and intersection density, but Weld County is much larger

geographically and has a far less dense network of roads throughout.

• Segment length: The Strava Metro dataset breaks up each street into segments,

where a segment is the length between intersections. Segment length is included in

the analysis as a control variable. I expected there would be more crashes on

longer segments. Note that segment length may also be a loose proxy for road

network density; we would expect shorter segments in areas with denser road

networks.
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2.8 Research Design Concept —Step 4: Variation of the SiN effect under different 

road conditions. 

 

The previous step determines if the number of trips is a significant predictor of (1) 

whether or not there will be a positive crash rate and (2) the number of crashes/10,000 

trips, conditional that there is at least a single crash per segment. The final step of this 

research considers the other independent variables’ effects on predicted crash rates. To 

do this, I created predictions (extrapolated from the hurdle model) for each of my 

independent variables (excluding segment length, median household income, and 

county code as they are not considered crash predictors but control variables). I made 

the following prediction for the number of crashes at given the number of trips 

considering: 

• Bike lanes (present or not present) 

• Physically separated bicycle facilities (present or not present) 

• Speed limit (for 25, 35, 50, 60, and 70 mph) 

• Volume to capacity ratio (for congested or not congested) 

• Functional class (for local roads, collectors, minor arterials, major arterials, and 

interstates)  
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Results from this step will quantify how the SiN effect varies under different road 

conditions.   
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3. RESULTS

Results from each step of the research design are shown below. Interpretation 

and discussion of these results is contained in the following sections. 

3.1 Step 1 Results 

A histogram of the number of segments with at least one crash is shown below 

in Figure 12 (n = 5,534). Even without the zero values, the data were highly right-

skewed, as is expected with count data. The figure below shows a histogram of the 

distribution of the number of trips on segments, excluding those with zero trips. It was 

also highly right-skewed; this somewhat fits a typical count distribution, but this 

histogram is extreme in its excess of zeros when zeroes were included (this is over 

500,000 segments). This is clear in the second histogram, which includes those 

segments.  
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Figure 12: Histogram of segments with at least one crash 

 

Table 4 below shows the results of the first step of the research design. The 

exponential hurdle model predicting crash rates per 10,000 trips based on the number 

of trips in the segment had a pseudo r-squared value of 0.0236. Note that this is 

McFadden’s pseudo r-squared (explained in the equation below), which is a measure of 

both variability and of the goodness of fit of the model (UCLA: Statistical Consulting 

Group, 2011). Like r-squared values, pseudo r-squared values range between zero and 

one, and higher values indicate a better fit (UCLA: Statistical Consulting Group, 2011).   
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Equation 4: McFadden's pseudo r-squared 

 

For both the probit/selection model (which considers whether or not there is a 

positive crash rate per segment) and the conditional model (which considers effects on 

crashes per 10,000 trips only on segments with positive crash rates), results showed 

that the number of trips as an independent variable was significant. Interestingly, the 

variables’ magnitude in both models is very high, but in opposite directions. Due to the 

low pseudo r-squared, this model explains very little of the variability seen in the data. 

Figure 13 below shows the predicted marginal effects with a 95% confidence interval. 
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Table 4: Hurdle model for number of trips predicting crashes per 10,000 trips 

Pseudo R2   = 0.0236 

Conditional Model (exponential) 

Dependent variable = crashes/10,00 trips 
Coef. Std. Err. z P>z

Total Trips -3.47E-4 6.57E-6 -52.8 <0.001

Selection (Probit) Model 

Dependent variable = crashes/10,00 trips 

Total Trips 3.51E-5 0.000 25.6 <0.001 

Both the probit and the conditional models showed that the number of trips is a 

highly statically significant at a 95% confidence interval. For the probit model, this 

means that the number of trips can fairly reliably predict whether or not there will be a 

positive crash rate on each segment. This makes sense; it is more likely that there will be 

at least one crash on segments with many trips. Since the conditional model only 

considers crash-rate-positive segments, these results mean that the number of trips is 

also a reliable predictor of crash rates of segments (assuming there is at least one crash 

on that segment). It suggests that crashes/rider decreases with the number of trips, as 

the SiN hypothesis suggests.  

Again, the pseudo r-squared value in this analysis is low (0.0236). This is not 

unexpected. A univariate analysis is not likely to explain much of the variation that we 

see in crash rates. It is both intuitive and proven in previous research that other factors 
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besides “numbers” are strong predictors of crash rates, so it makes sense that only 

considering one factor that may influence crashes is a poor predictor of variability.  

Because hurdle models contain probit analyses, the coefficients cannot be easily 

used for direct interpretation. A more useful approach to understanding the effect size 

of the independent variable in both models is considering the predictions for 

unconditional crash rates generate using marginal effects. In this scenario, the marginal 

effects are generated by multiplying the probability of a crash at specified intervals of 

the independent of interest (number of trips) by the predicted number of crashes/rider 

conditional on there being at least one crash. This generates predictions of how many 

crashes will occur with increasing number of trips. Predictions of crashes per 10,000 

trips as trips increase from 0 to 5,000 are shown below in Figure 13. 
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Figure 13: Safety in numbers marginal effects & predictions for unconditional crashes 

 

The predictions in Figure 13 show that estimated number of crashes decreases 

from approximately five crashes per 10,000 trips to less than two crashes per 10,000 

trips as trips increase from 0 to 5,000. This fits the hypothesized relationship and 

mirrors what the literature has shown in analyses with larger units of analysis.  
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3.2 Step 2 Results 

 
To ensure that an exponential relationship is the best fit to describe the SiN 

effect at this unit of analysis, results from both a normal linear regression analysis and a 

linearized exponential regression analysis (taking the natural log of crashes/rider) are 

shown below in Table 5. 

Table 5: Regression analyses comparisons 

 
Linear Regression Log-Linear Regression 

R-squared = 0.0321 R-squared = 0.407 

Adjusted R-squared = 0.0303 Adjusted R-squared =  0.406 

 

The r-squared value for the linear regression and the exponential regression 

were 0.0321 and 0.4071, respectively. While r-squared values do not paint the entire 

picture for “goodness of fit,” they do provide insight into how much variation in the 

dependent variable is explained by the independent variable. Because the r-squared 

values are markedly different—by nearly an entire order of magnitude—it is easier to 

discern what type of model is the better fit. These results support the selection of a log-

linear approach to the hurdle models, and it also supports that the relationship is best 

characterized by an exponential relationship.    
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3.3 Step 3 Results 

For the second step of the research design, other variables shown to affect 

bicycle crash rates (bike lanes, functional class, median household income, physically 

separated bicycle infrastructure, segment length, and V/C ratio) were considered in 

tandem with number of trips. These datasets’ distributions are shown in the figures 

below.  

Figure 14: Distribution of segments with bike lanes 

 0 = No Bike Lane 

1 = Bike Lane Present 
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Figure 15: Distribution of Functional Classification 

*Note: In analyses functional classes (FC) 2 and 3 were combined and renamed FC 3: Collectors  

 

Functional 
Classification 
1 = Local Roads 
2 = Minor Collectors 
3 = Major Collectors 
4 = Minor Arterials 
5 = Major Arterials 
6 = Interstate 
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Figure 16: Median household income distribution 

Data from American Fact Finder, 
2016, In US Dollars 
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Figure 17: Distribution of segments with physically separated bike lanes (PSBL) 

 0 = No PSBL  

1 = PSBL present 
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Figure 18: Distribution of congested segments 

 

Most of the distributions of the independent variables are not surprising. Figure 

14 shows that a large majority of the segments do not have bike lanes. This is to be 

expected in such a large area in the United States. The distribution of functional class is 

a little surprising, though. It is expected that there would be more “local” roads in the 

dataset, and there are a very small number of roads that are classified as “minor 

collectors.” For the analysis, “minor collectors” and “major collectors” are joined into a 

single functional class, “collectors,” due to the small number of minor collectors.  

 0 = Not congested 
 
1 = Congested 
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The median household income (Figure 16)  is also, not surprisingly, reasonably 

normally distributed but with some rightward skew. Also unsurprisingly, there are even 

fewer separated bicycle facilities than bike lanes. Design standards for these types of 

bicycle facilities are new and, in some ways, only just now being formalized (Urban 

Bicycle Design Guide, 2011; Separated Bike Lane Planning and Design Guide, 2015) and 

the process of building bicycle infrastructure can be slow in the US. The distribution of 

volume to capacity ratio on each segment is also not surprising. Given the aging 

infrastructure crisis in the United States (“Making the Grade,” 2017), it is somewhat 

impressive that only 60% of segments in this study area are considered “congested.” 

Table 6 and Table 7 below show the results of the second step of the research 

design. This two-part analysis showed (1) what factors predict whether or not there will 

be a positive crash rate and (2) what factors are significant predictors of crash rates 

(assuming crash rates are above zero). Factors considered include the number of trips 

(serving as the variable testing the “safety in numbers” effect), functional class of the 

segment, whether or not the segment has a bike lane or a physically protected bicycle 

facility (like a trail or side path), the median household income surrounding the segment 

(on a block group level), speed limit along the segment, and the volume capacity ratio. 

This analysis also controlled for segment length and county. It should be noted that 

while the study area consisted of all 10 counties, there were only crashes in 8 of the 10 

counties. Statistically significant factors at a 95% confidence level are in black text with 

the P>z value in bold.  
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Table 6: Conditional hurdle model for factors affecting crashes per 10,000 trips 

Pseudo R2  = 0.0788 
Conditional 

Model: 
Dependent 
variable = 

crashes/10,00 
trips 

Coef. Std. Err. z P>z 

Number of Trips   -0.0003 
 

6.55 E-5 
 

-49.57 <0.001 

     

3 - Collectors -0.174 0.0720 -2.41 0.0160 
4 - Minor Arterials -0.729 0.0633 -11.5 <0.001 
5 - Major Arterials  -0.480 0.0662 -7.25 <0.001 
6 -  Interstate 0.0213 0.392 0.050 0.957  

    

Bike Lane -0.846 0.0575 -14.7 <0.001 
Physically 
Separated 
Bike Facility 

-0.741 0.182 -4.07 <0.001 

Median 
Household 
Income 

-6.5E-7 6.0E-6 -1.070 0.283 

Speed Limit 0.0044 0.002 2.76 0.005 
Volume/Capacity 
Ratio 0.410 0.048 10.29 <0.001 

Segment Length 0.6797 0.179 3.79 <0.001 
     
County Code (compared with Adams 
County) 

 

Arapahoe (2) -0.0172 0.0857 -0.200 0.841 
Boulder (3) -0.636 0.0902 -7.05 <0.001 
Broomfield (4) -0.391 0.144 -2.71 0.007 
Denver (5) -0.270 0.0802 -3.36 0.001 
Douglas (6) -0.1598 0.0968 -1.65 0.0990 
Jefferson (7) -0.4157 0.0832 -5.00 <0.001 
Weld (8) 0.1579 0.1585 1.00 0.319 
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Table 7: Probit hurdle model for factors affecting crashes per 10,000 trips 

Pseudo R2 =0.0788 
Selection Model 

 Dependent variable 
= crashes/10,00 

trips 

Coef. Std. Err. z P>z

Number of Trips 2.81E-5 1.60E-6 18.02 <0.001 

3 - Collectors 0.175 0.01867 9.39 <0.001 
4 - Minor Arterials 0.07289 0.01612 4.52 <0.001 
5 - Major Arterials 0.00740 0.0166 0.440 0.656 
6 -  Interstate -0.441 0.0882 -5.00 <0.001 

Bike Lane 0.30880 0.01528 20.2 <0.001 
Physically Separated 
Bike Facility 0.13317 0.04729 2.82 0.005 
Median 
Household Income 6.94E-7 1.60E-8 -4.47 <0.001 
Speed Limit 0.01785 0.00028 63.9 <0.001 
Volume/Capacity 
Ratio -0.12375 0.01197 -10.3 <0.001 
Segment Length -0.42436 0.05102 -8.32 <0.001 

County Code (compared with Adams 
County) 
Arapahoe (2) 0.0575 0.0218 2.64 0.0080 
Boulder (3) 0.130 0.0232 5.60 <0.001 
Broomfield (4) 0.0133 0.0361 0.370 0.714 
Denver (5) 0.0119 0.0204 0.580 0.561 
Douglas (6) -0.0489 0.0242 -2.02 0.0430 
Jefferson (7) 0.00321 0.0212 0.150 0.879 
Weld (8) 0.0735 0.0404 1.82 0.0690 
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The probit selection model shows that the number of trips is still a significant 

predictor of whether or not there will be a positive crash rate on a segment even when 

we control for other factors. Similarly, in the conditional model, it is shown that the 

number of trips is a significant predictor of crash rates for crash-rate-positive segments. 

Both results are as expected.  

For this model, the pseudo r-squared value is somewhat higher than the model 

in step 1, which only considered “numbers” as a predictor for crashes. This makes sense 

as including more variables into the model will explain more of the variation seen in the 

dependent variable (crashes per 10,000 trips).  

To understand the effect of trips on the total number of crashes, we generate 

predictions again. To create these predictions using this hurdle model and its 

accompanying control variables, this analysis uses marginal effects at the means 

methods. This method generates predictions of the total number of crashes for a given 

number of trips while all other independent variables in the model were at their mean 

value. Predictions of the number of unconditional crashes for each 10,000 trips were 

generated using both the probit model and the conditional model, multiplying the 

predicted probability of having at least one crash by the predicted number of 

crashes/10,000 trips if there is a crash. The predictions, then, show how many crashes 

(per 10,000 trips) there will be on a segment that is otherwise “average in every way.” 

Prediction results for the multivariate analyses are shown below in Figure 19. 
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Figure 19: Marginal effects considering all covariates 

 

These results continue to uphold the SiN effect and support the mathematic 

characterization made previously in the literature. The predictions show increasing the 

number of trips decreases the number of crashes even when other variables were at 

their “average”; the number of crashes decreases from 2.5 per 10,000 trips to less than 

1 crash per 10,000 trips as the number of trips increases from 0 to 5,000.  
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3.4 Step 4 Results 

These following figures show predictions are based on the hurdle model used in 

previous steps, and they quantify the number of predicted crashes on segments with 

varying road conditions. 

Figure 20: Crash predictions considering exposure and bike lanes 

Figure 20 shows that as exposure increases from 0 to 5,000 trips the number of 

crashes on segments where there are bike lanes versus where there are no bike lanes 
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are very similar. The number of crashes on segments where there is no bike lane is very 

slightly smaller than where there are bike lanes (about 2.4 to 2.35, respectively).  

 

 
 

Figure 21: Crash predictions considering exposure and functional class 
 

 

Results from  

Figure 21 show that as the number of trips increases from 0 to 5,000, the 

number of predicted crashes decreases for all functional classifications, but not in the 

same way. The highest predicted crashes are on segments that are either collectors or 
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local roads, and the lowest are interstates and minor arterials. From these results, 

collectors see the most safety benefit from increased riders, and interstates see the 

least safety benefit from increased ridership.  

 

 
Figure 22: Crash predictions considering speed limit and functional class 

 
 

Figure 22 indicates that the number of crashes decreases for all speed limits as 

more riders use the segments, but that they decrease from different starting points and 

at different rates. The highest speed roads (70 mph) sees the greatest decrease in the 

number of crashes (from 80 to about 20 crashes per 10,000 trips) as the number of trips 
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increases from 0 to 5,000. These results show that higher speed roads benefit from 

more riders per segment than lower speed roads.  

 

 
Figure 23: Crash predictions considering exposure and physically separated bicycle lanes (PSBL) 

 
 

Results from Figure 23 that segments with no facility benefit from more riders 

than segments with physically separated bicycle infrastructure; as trips increase from 0 

to 5,000, the number of predicted crashes decreases from 2.5 to less than one and 1.5 

to less than 0.5 (per 10,000 trips) for segments with no facilities and PSBLs, respectively. 
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Figure 24: Crash predictions considering exposure and congestion 

Figure 24 shows that the number of crashes per 10,000 trips decreases as the 

segments have more trips for both congested and not congested segments. Segments 

that are congested, however, benefit more from higher exposure than not congested 

segment; the number of predicted crashes per 10,000 trips decreases from 2.5 to less 

than one on congested segments, whereas crashes decrease from 2.25 to less than one 

on segments that are not congested.  
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Figure 25: Crash predictions considering exposure and congestion 

Figure 25 shows that the number of crashes decreases across all counties as the 

number of riders increases. The counties that benefit the most from increased exposure 

are Douglas and Weld Counties, which are both more rural, less populated, and lower 

density (in terms of road network) counties. The counties that benefit the least are 

Jefferson County and Broomfield counties.  
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4. DISCUSSION OF RESULTS, LIMITATIONS, AND STEPS FOR FUTURE

RESEARCH 

4.1 Discussion of Results 

The distribution of the number of segments with crashes is, as mentioned 

previously, extremely right-skewed, as is the number of trips per segment. This could be 

because of several reasons. First, under reporting of bicycle accidents (Elvik & Mysen 

1999), which is noted in the literature as a significant issue, could lead to excess 

segments with zero crashes. Second, this could also be because of the nature of the data 

itself; each segment of road (defined in the data as the length between intersections) 

varies in length depending on the road network, but the majority are as short as a block 

in length (100-200 feet), especially in the urban settings. Because nearly every road is 

divided up into smaller segments, there are less crashes per unit than there would be if 

each segment were the entire length of road, leading to excess zeros. Third, and lastly, 

the excess number of zeros could also be due to the nature of bicycling in the study 

area; if most cyclists usually make the same trips on the same segments of road, there 

will be many segments that have no trips and no crashes at all.   

The exponential hurdle model used, however, is able to handle with these 

excessive zeros. The first hurdle model predicting crash rates (per 10,000 trips) based on 

the number of trips alone shows that the number of trips is significant, meaning that it 
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explains variation in the dependent variable beyond simply chance. But when it is used 

exclusively as a predictor of crash rates, it is a poor predictor (based on the very low 

pseudo r-squared value). This is intuitive and fits with the framework of cyclists’ safety 

previously mentioned (see Figure 9); there are other factors that influence cyclists’ 

safety, and SiN alone is neither the only cause of nor the only preventer of crashes. 

The marginal effects shown in Figure 13, however, do point towards the same 

type of effect as seen in previous literature about SiN: as the number of trips increase 

from 0 – 5,000, the number of crashes per 10,000 trips decreases from approximately 5 

to approximately 1. This confirms the SiN theory as it applies to individual road 

segments.   

This is a significant finding, and it informs the literature in several important 

ways. First, this confirms that the SiN effect does apply across all units of analysis. This is 

important because previous research has assumed that the phenomenon “behaves” in 

the same fashion at the national-level (i.e., crashes per year compared against trips 

taken in the same year) as the segment level. These results were the first known 

confirmation of these assumptions. 

While the model shown in step 1 is a very poor explanation of all the variation 

seen in the dependent variable, the model’s ability to explain variation in crash rates 

improves when other factors were considered alongside the number of trips. Results 

from step 3 are summarized again in the following table in terms of positive and 
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significant relationships (+), negative and significant relationships (-), and non-significant 

results (/). 

Table 8: Hurdle model (multiple factors) results summary 

 

Variable 
Sig. in 
Probit 
Model 

Sig. in 
Conditional 

Model 

Trips + - 
Functional Class 
(relative to Local Roads) 

 

Collectors + / 
Minor Arterials + - 
Major Arterials / - 

Interstate - / 
Bike Lane + - 
Physically 
Separated Bicycle 
Facility  

+ - 

Median 
Household Income 

- / 

Speed Limit  + + 
Volume/Capacity  - + 

 

There were several interesting findings from these results. The number of trips is 

a significant predictor of rates in both models but in opposite directions. This means 

that trips predict both whether or not there will be a positive crash rate on a segment 

and what the crash rate will be for crash rate positive segments. More trips make the 

likelihood of a positive crash rate higher, but for segments that have positive crash 

rates, the risk per person decreases with more trips. 
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At first glance, it may seem counter-intuitive that the directionality for trips 

would be opposite between the probit model and the selection model. But it should 

make sense that having more trips is positively associated with having at least one crash 

per trip; for example, if a segment has zero trips it should also have zero crashes, but if a 

segment has 10,000 trips, it will very likely have one crash, and that singular crash would 

create a very small ratio of crashes/trip.  

When considering functional class, some of the results were more surprising, 

especially the differences in significance and direction of the coefficient across the 

outcomes when compared to local roads.  

• Collectors were significant in the probit model but not in the conditional model.

This means that collectors have a higher chance of there being any crash at all

compared to local roads (which follows intuition because there are likely more

cars and more bicycles), but that they do not significantly predict how many

crashes will occur. Predictions from step 4 of the research design also show that

collectors have highest crash rates compared to other roads, even as the number

of trips increases. Similarly, collectors see the one of the largest decreases in

crashes from increased trips than any functional class

• Minor arterials are significant positive predictors of there being any crash at all

(when compared to local roads) and how many crashes would occur if there are
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crashes. However, the opposite directionality of the coefficients is surprising and 

hard to explain. When compared to local roads, minor arterials are more likely to 

have a crash at all, but, by this model, they will have less crashes per trip than 

local roads. This is also reflected in the predictions; compared to local roads, 

they have less crashes at 0 trips and decrease a slower rate as the number of 

trips increases to 5,000. It makes sense that minor arterials are more likely to 

have a single crash than local roads due to their design (typically higher speed 

limits and more lanes than local roads), but this is counter-intuitive in in the 

second regard; it seems that collectors would have more crashes per trip than 

local roads that also have crashes. Perhaps this could be ascribed to the type of 

cyclist that uses each type of road. A cyclist with less experience and confidence 

may choose to only ride on local roads as opposed to minor arterials, but they 

still have more bicycling crashes than those who would choose to rider on 

arterials (Mekuria, Furth, & Nixon, 2012). My research also considered that other 

variables that are being controlled in this context, especially speed limit, may 

cause these unexpected results. However, even when speed limit is left out of 

the analysis, the conditional model still results for minor arterials to be 

significant. This deserves future research that is out of the scope of this report.  

 

• Major arterials are not significant in the probit model, but they are negative and 

significant in the conditional model. These results indicate that, for local roads 
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and major arterials that have positive crash rates, there will be less crashes on 

major arterials as compared with local roads. Similar to minor arterials, this 

seems counter-intuitive, but likely due to other variables in the analysis. 

 
 

• Interstates significantly predict less likelihood for a crash than local roads. This is 

probably because riding a bicycle on the interstate is not legal in most parts of 

the country, including Colorado, so there should be less likelihood for a crash. 

 

Bike lanes and physically separated bicycle facilities were significant in both models 

but with opposite directions in their coefficients. These results indicate that there is a 

higher likelihood of a single crash per 10,000 trips on roads with bike lanes/physically 

separated facilities than those without, but for crash rate positive segments, there will 

be less crashes on facilities with bicycle lanes than those without them. These results 

are expected. Bike lanes provide cyclists with their own right of way in a road, which can 

help the cyclists feel more comfortable and potentially make them safer. However, bike 

lanes offer no sort of physical protection from an oncoming vehicle and therefore may 

not be powerful enough to decrease the overall likelihood of a single crash. But, if there 

are, for example, 10,000 trips on a segment with a bike lane, there is a higher likelihood 

of there being a single crash, but the bike lane may decrease the overall rate of crashes 

on crash rate positive segments by providing, at the very least, increased visibility. The 
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same result is seen with physically protected bike facilities, however, which is harder 

may be harder to explain. Intuition says that physically protected bike facilities would be 

less susceptible to the same effect because they provide more protection for cyclists 

than a regular bike lane. But even separated bike lanes must interact with motorized 

traffic at some point and therefore may still not be powerful enough to decrease the 

likelihood of a single crash with more trips. 

Bike lane and PSBL predictions in step 4 contribute to the argument among scholars 

about the relationship between bicycle safety in numbers and bicycle facilities. There 

was no significant difference in the predicted number of crashes for segments with or 

without bike lanes as the number of trips increased, so it does not seem that bicycle 

lanes significantly reduce the added safety benefit of numbers. PSBLs, however, do see a 

significant difference. My predictions showed segments with PSBLs start off with less 

crashes and “end” (at 5,000 trips) with less crashes, but they benefit less from more 

cyclist exposure as more cyclists use them. Said another way, the rate of decrease in 

crash rates is less for segments with PSBLs, but those segments have less total predicted 

crashes.  

Results from the median household income variable were somewhat surprising as 

well. Typically, most research has found that, all else being constant, people with lower 

incomes are disproportionately affected by accidents involving vulnerable road users 

potentially because of poor quality of road design and/or neglected maintenance (both 

of which are not controlled for in this model). Results from this analysis show the 
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opposite, albeit by a very marginal amount; areas with higher median household income 

were (very) slightly more likely to have a bicycle crash than those in lower areas. 

Speed limits as a predictor of bicycle crashes each segment have expected results. 

Those segments with higher speed limits are more likely to have a crash than those with 

lower speed limits, and they are also more likely to have more crashes if they do have 

crashes. The predictions from step 4 of the research design also showed that higher 

speed roads benefit from increased exposure more than lower speed roads, and that 

the effect of numbers decreases with decreasing speed limit.  

Each segment’s volume-to-capacity ratio also has opposite significant coefficient 

signs between the probit and conditional models. Roads that are more congested are 

less likely to have any crashes at all, but for roads that have crashes, there will be more 

crashes on more congested roads (which is as expected). This was supported in the 

predictions, and the congested roads receive a greater safety benefit from increased 

number of trips than roads that are not congested. It should be noted that the 

conditional model is likely the more reliable source for understanding bicycle safety as a 

result of the number of trips per segment because its results are more quantifiable (as 

opposed to a simpler “crash v. no crashes” segment).  

In previous research that used hurdle models to investigate crash rates, similar 

results for conflicting coefficients have occurred. For example, when using a hurdle 

model for quantifying the effect of various road conditions on the number of vehicular 

crashes, Ma, Yan, & Weng (2015) found that the number of through lanes significantly 
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predicted that roads with more than two lanes were more likely to have crashes than 

roads with less than two lanes, but two lane (or more) roads with positive crash rates 

would have lower overall rates than roads with less than two lanes. As they explained, 

these confusing results likely reflect the variables’ complex relationships with each other 

and with the risk of a crash. 

There are also some interesting results for the county control variable. Boulder 

County is significant in both models; a segment is more likely to have a positive crash 

rate if it is in Boulder County, but more trips in Boulder County segments lead to lower 

crash rates (for crash rate positive segments). Denver and Jefferson Counties are also 

significant and negative in the conditional model. This is somewhat surprising. Boulder, 

Jefferson, and Denver Counties are the more urban of the counties, so in a sense, the 

county variable be capturing some of the urban/non-urban effects. It should also be 

noted that each county is being compared to Adams County, which is also a less urban 

county. The predictions show that the most rural counties benefit the most from SiN 

effects, but that counties that are more suburban benefit the least from SiN.  

When comparing results from linear regression and exponential regression, it is 

clear that the exponential regression is a better fit to the model (r2 = 0.0788 compared 

to r2 = 0.03210). This is an expected result. The exponential relationship seen in many 

risk models predicting bicycle safety outcomes in analyses with larger units is reflected 

in smaller units of analysis and more control variables. 
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The only other known research at this unit of analysis comes from Thompson et 

al.’s theoretical agent-based model (2017). Their research assumed the nature of SiN (by 

only counting bicycles as “exposed” to vehicles if they were not using bicycle 

infrastructure) at this level of analysis and was aimed at characterizing how cyclists’ 

relative risk varied with the use of physically separated infrastructure. While this the 

study was seeking to investigate a different aspect of SiN, the results are somewhat 

comparable. Their research found that cyclists’ relative risk increased with less 

interaction with vehicular traffic. Despite the questionable assumptions built into their 

model, this relationship has been somewhat been supported here. Crash-positive 

segments with more trips saw a decrease in the number of crashes per 10,000 trips.  

 

 

 

4.2 Implications for practice 

In summary, SiN effect was confirmed to hold true at the segment level as well 

as a city- or country-wide unit of analysis. It also holds true when controlling for other 

observable factors that may affect bicycle safety. This has several major implications for 

urban planners as they consider promoting bicycle infrastructure and more bicycle 

ridership in their municipalities or in their consulting work. First, it is important for 

practicing planners to know that safety and numbers do go hand-in-hand. While the 

direction of causation may not be entirely clear from existing research, this study does 
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effectively control for other variables and shows that “numbers” actually do “cause 

safety” as opposed to “safety causing numbers.”  

It is more challenging to assert what these results mean for overall system safety 

because it depends on perspective. These results show that encouraging more people to 

bike can be a good practice for safety if we assume that the best definition of safety is 

reducing crash rates. But if we assume instead that safety means reducing overall 

crashes, perhaps only encouraging more people to bike is not the best solution.  

However, like any planning decision, encouraging a community to cycle more 

should be done with careful consideration, with the ultimate safety and welfare of the 

community having the highest priority. These results show that “numbers” have 

powerful influence on bicycle crash rates, but that the most complete picture of bicycle 

safety includes other factors. This means that programs and policies that encourage 

increased ridership should be done in tandem with the appropriate bicycle 

infrastructure, traffic calming mechanisms, and careful planning of routes to avoid 

congestion/high speed roads to truly ensure cyclist safety.  

These results show that planners should also consider the types of changes they 

can make to their communities that would encourage more people to choose bicycling 

for recreational and utilitarian trips. Are policies alone enough to truly encourage more 

people to bicycle? Unless they are very powerful and far-reaching, it seems unlikely 

that, based on these results, any policy alone would encourage enough additional 

people to bicycle such that a SiN effect would accrue to a particular road. It seems more 
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likely, instead, that policies that promote/reward cycling combined with supportive 

infrastructure that allows cyclists to feel safer and more comfortable during their trips is 

likely the better approach to truly increasing numbers (Mekuria, Furth, & Nixon, 2012).  

The exponential shape of the first prediction curve (tested in step 3) also points 

to another interesting finding that has been posited in previous literature; it is more 

likely that Jacobsen’s construct of the SiN effect is correct than other constructs 

suggested. He stated that SiN is likely caused by drivers changing their behavior in 

response to seeing cyclists on the road. Now verified here at the segment level, the 

shape of the marginal predictions curve seems to suggest that a single exposure unit 

(here measured in trips) is much more powerful than 2 units or 10 units. Intuitively that 

finding makes sense for Jacobsen’s construct. For example, it would seem that a 

motorist seeing one cyclists is not going to drive less safely than if (s)he saw two cyclists. 

Simply seeing the first person (or first few people) on a bicycle would be enough to 

influence driving behavior, and seeing many more would not add a great deal to driver 

safety.  

Finally, the findings presented here also speak somewhat to debate about 

bicycle infrastructure decreasing the effect of cyclist exposure to motor vehicles on 

bicycle safety. The analyses above show that even when the number of cyclists is held 

constant, there will be lower crash rates on segments on segments with bicycle 

infrastructure than on those without it (assuming that the crash rate is positive). The 

predictions in step four show that bike lanes do not make a notable difference in the 
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precicted number of crashes, but that PSBLs do. This speaks to studies that posit that 

bicycle infrastructure can actually reduce how safe cyclists are because they are not 

actually “exposed” to drivers. Instead, this study shows that cyclists can still benefit 

from the added safety from numbers while also receiving safety benefits from bicycle 

infrastructure.  

 

4.3 Assumptions, Validity, and Limitations of Research; Need for Future Research 

 
It is important to recognize potential threats to validity—internal, content, and 

external— and to identify the limits of research arising from each step of the research 

design and from the data sources. Generally, content validity and external validity have 

been addressed through using conceptions and methods that are prevalent in literature 

and that statistically measure the probability of risk. However, there are other threats to 

validity and limitations that should be addressed. 

First, the limitations of the data sources used in this study should be addressed. 

Strava data, while robust in the information it contains about some cyclists, is not a 

comprehensive review of all cyclists and their trips along each segment. It only contains 

geospatial data from those who use the app to record their trips, therefore creating a 

notable sample bias. This means that a portion of the population of all cyclists on each 

segment is not accounted for in the data set and Strava riders are likely more fit and 

experienced than the average population, which is likely reflected in their route choice. 
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There may be ways to compensate for (or at least discern the extent of) this 

shortcoming, including using data from the American Community Survey to determine 

the proportion of trips captured in the Strava data, that are out of the scope of this 

research. In this case, the Strava data is really being used as a measurement of ridership 

within a given segment. It is assumed that the proportion of Strava users compared to 

all trips is similar across all segments and so Strava can be used as a tool for determining 

segments’ relative amount of ridership. 

This report also makes assumptions about the habits of ridership over the last 10 

years. The Strava data used in this research contains data about trips within the 

calendar year of 2016, and the crash reporting is only available for the years 2005 to 

2015. By using the Strava data to define areas of high ridership and lower ridership, this 

research assumes that the general routes most used by cyclists have not changed 

drastically since 2005. If it is assumed that the number of trips has increased somewhat 

proportionally between 2005 and 2016, then the Strava data will generally portray 

accurate representation of the amount of cycling on each segment. I believe that this 

does not compromise my results in any significant way.  

Similar to the Strava data, the crash data obtained from the DRCOG is robust in 

its granularity in that each recorded crashed is geospatially referenced, but the data sets 

also will not contain all crashes in all places. As noted in the literature, bicycle crashes 

are systemically underreported; in most cases, crashes are not reported unless there is a 

major injury or fatality. It is important to recognize that this may skew results in a way 
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that does not completely capture what happens in reality. It is not clear from the 

literature, however, to what extent underreporting would affect my results. For 

example, it is not clear whether or not crashes are underreported in certain types of 

places more than others; urban areas, for example, may suffer equally from 

underreporting as rural areas, or they might not. Future research should focus on 

understanding the extent to which underreporting truly affects overall crash rates. The 

important consideration in light of this reality is whether crashes tend to be more (or 

less) underreported in areas with higher (or lower) ridership.  

There is also another potentially confounding variable that has been mentioned 

in some of the existing literature: attitude towards cyclists. There is no known research 

that categorizes the study areas’ residents’ perspectives on biking, so this factor cannot 

be included in the multiple regression analysis. It should be noted, though, that my 

research compares abutting counties in the same state; while perspectives towards 

cyclists are likely different in each county, it is less of a concern if this data was 

compared against data in different states or countries. Nonetheless, this presents a 

need for future research that characterizes attitudes of both riders and non-riders as it 

affects bicycle safety. 

This research also does not consider the potentially important spatial 

component of SiN. Segments do not exist in space alone, but are rather connected to 

other segments, and, by extension, to an entire network of varying road conditions and 

travel patterns, which would suggest that each segment is likely not spatially 
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independent from other segments. This may be somewhat controlled from using 

counties as an independent variable, but it is likely that these units are too large to fully 

capture all of those effects. 

 This hypothesis for spatial autocorrelation is based on the reality that the 

cyclists and drivers who travel on one segment are likely the same people who travel on 

adjacent segments. Because of this, the exposure measure could be serving as a proxy 

of other variables that are not explicitly measured or understood here and that 

autocorrelates over space.  Results from researching bicycle crash data spatially would 

inform existing literature in several ways. First, understanding the spatial component of 

SiN (if one exists) would inform many of the analyses that use least squares analyses. 

One of the underlying assumptions of these “line of best fit” tests is that the observed 

data are independent of one another. This assumption would be invalidated if spatial 

dependence (which is reflected by spatial autocorrelation) is verified through statistical 

tests.  This could mean that some of the underlying assumptions purposed to underpin 

the SiN effect and potentially some of the assumptions made from that data might not 

be valid. Second, it would help characterize the nature of SiN and how the probability of 

a crash varies over space (if at all). If there is any spatial structure found through 

statistical testing, understanding and empirically modeling that structure could inform 

the literature to further characterize the nature of SiN.  

Despite the imperfections within this research and the opportunities it presents 

for future study, the results here clearly suggest that cyclist exposure to vehicular traffic 
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does cause roads to be to have lower risk of crashes per rider. To further these findings, 

it is crucial that more research on this scale of analysis be conducted. As cities continue 

to collect more and more data about bicycle and traffic safety, better datasets can be 

used to investigate these open questions and improve cycling safety.  
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