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ABSTRACT 

 

The sinoatrial node of the mouse embryo arises from the wall of the right atrium 

near the border of the sinus venosus. Early in development this region expresses the 

transcription factor Tbx5. Because of this, Tbx5 is thought to sit at the apex of a 

transcriptional cascade leading to sinoatrial node (SAN) differentiation. To test this we 

produced a mouse embryonic stem cell line B1 (pTripZ-mTbx5; αMHC::GFP) that 

conditionally overexpresses Tbx5, to determine if this would lead to enhanced SAN 

differentiation. We found that ES cells overexpressing Tbx5 showed enhanced overall 

cardiac differentiation and that cardiac cells showed increased beat rates as compared 

control embryos. Despite this, key genes associated with SAN differentiation including 

HCN4 and Shox2 increased in cells overexpressing Tbx5, while the percent of HCN4 or 

Shox2 positive myocytes did not alter. Faster beating cells showed a decreased expression 

of the chamber specific marker Cx43 and increased expression of Tbx3 and Tbx18. These 

data suggest that Tbx5 overexpression is not sufficient for SAN differentiation, although it 

does activate part of the transcriptional cascade that directs early steps in the SAN. 

Together these data suggest that Tbx5 cannot activate SAN differentiation alone but instead 

must synergize with other factors. 
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CHAPTER ONE 

LITERATURE REVIEW 

 

Abstract 

The heart is a large organ containing many cell types, all of which are necessary for 

normal function. Because of this, cardiac regenerative medicine presents many unique 

challenges. Each of the many types of cells within the heart has unique physiological and 

electrophysiological characteristics. Because of this grafts of donor cells must be well 

matched to the area of the heart into which they are grafted to avoid mechanical dysfunction 

or arrhythmia.  In addition, grafted cells must be functionally integrated into the region of 

the graft to effective repair cardiac function. Because of its size and physiological function, 

the metabolic needs of the heart are considerable. Therefore grafts must contain not only 

cardiomyocytes but also a functional vascular network to meet their needs for oxygen and 

nutrition. Here we review progress on the use of pluripotent stem cells as a source for donor 

cardiomyocytes and highlight current unmet needs in the field. We will also examine recent 

tissue engineering approaches integrating cells with various engineered materials that 

should address some of these unmet needs. 

 

Introduction 

Despite the promise of regenerative medicine, cardiovascular disease remains the 

leading cause of death in the United States [1]. Indeed, cardiovascular regenerative 

medicine presents many unique challenges. First, unlike other muscles in the body, the 
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human myocardium possesses only limited cell division [2] and a very limited ability to 

repair itself after injury. A recent study using apical resection of neonatal mouse hearts 

suggested the murine hearts have significant regenerative capacity for some days shortly 

after birth. However, this capacity was lost within the first week of birth and a recent 

attempt to repeat these studies using a different inbred mouse strain showed only 

incomplete regeneration of heart tissue [3]. Together, this suggests that many as yet 

unknown factors may impact the regenerative capacity of the young mouse heart. To date, 

spontaneous regeneration of human hearts, on the scale that would be required to repair a 

typical myocardial infarction (MI), has not been observed. Indeed, it has been suggested 

that a typical infarct episode in the human heart might damage as many as one billion cells 

[4]; well beyond even the most optimistic estimates of the heart's ability to repair itself. 

Recent carbon dating experiments indicate that under normal conditions, cells within the 

adult human are renewed at a rate of about 1% per year until age 25 and at only 0.45% per 

year by age 70 [2], suggesting that there is minimal turnover of cells in healthy hearts. By 

contrast, the heart may be able to activate a program of renewal after injury. One study 

showed significant cell renewal in mouse hearts following pressure overload or infarct [5]; 

however spontaneous functional recovery of adult human hearts after a major cardiac event 

has not been observed. For these reasons, it has long been suggested that the most feasible 

approach to cardiac regeneration after MI would be the engraftment of cardiomyocytes or 

cardiac progenitors that have been expanded ex vivo from stem cell populations. Here we 

will review recent progress in the use of both transcription factor mediated reprogramming 

within the heart and the isolation of cardiac progenitors from pluripotent cells types such 
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as embryonic stem cells (ESCs) and human induced pluripotent stem cells (iPSCs). We 

will also examine how bioengineers are using tissue-engineering approaches that involve 

both cell grafts and hydrogels to improve the integration, differentiation and survival of 

cells to be grafted. 

 

Characteristics of an ideal population for cardiac grafts 

Cells that are useful as potential donors for cardiac repair should be readily 

available, expandable in culture, show an excellent natural ability for self-renewal and have 

contractile and electrophysiological characteristics consistent with their roles within the 

heart. Cells isolated from unrelated donors raise immunological concerns. In addition, the 

use of human ESCs raises ethical concerns. Because of this, non-cardiac contractile cells 

such as skeletal muscle cells and/or non-pluripotent stem cells derived from adult tissues 

were long considered to be the most desirable sources of potential donor cells for cardiac 

repair. More recently, the development of protocols to differentiate large numbers of bona 

fide cardiac cells from iPSCs, have overcome these ethical and immunological concerns 

while raising the hope that these cells may overcome the problems of functional integration 

and arrhythmias. 

In recent years several protocols have been developed for the efficient production 

of cardiac cells from ESCs and these (or slight modifications of these) have proven to be 

equally effective for the differentiation of both mouse and human iPSCs. Most notably, co-

culture of human ESCs (hESCs) with the visceral endoderm-like cell line (END2) [6] has 

been shown to induce 20-25% cardiac differentiation whereas protocols using either 
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carefully timed addition of growth factors [7] or a combination of growth factor addition 

and flow cytometry-based selection of cardiac progenitors [8] have been shown to activate 

30% and 40-50% cardiac cells, respectively. These protocols are in turn based on a large 

body of work, done in frog, chick and mouse embryos, as well as in ESCs to elucidate the 

embryology and molecular genetics of heart induction.  

 

Studies elucidating the molecular mechanisms of cardiac differentiation  

The mammalian heart is made up of cells from at least three sources. First, multi-

potent cardiac progenitors that form during gastrulation give rise to the original linear heart 

tube and are referred to as the first heart field (FHF). In addition to this, two groups of cells 

that lie outside this initial heart tube also contribute to the adult heart. The so-called second 

heart field (SHF) [9-14] and the neural crest [15]. We have previously reviewed the 

embryology and molecular genetics of primary (FHF) heart induction in detail [16, 17]. 

However, a few features that are particularly relevant to stem cell differentiation of cardiac 

cells should be mentioned here. Heart formation is a multistep process that begins with the 

formation of mesoderm during gastrulation. In all vertebrate embryos and in ESCs, the 

activities of Transforming Growth Factor beta (TGFβ) family members and Wnts are 

required for the formation of mesoderm as cells exit the primitive streak (or dorsal lip in 

amphibian embryos) [18-27] . Once formed, the mesoderm immediately begins to migrate 

away from the streak and toward its final position in the embryo where it will begin to 

differentiate according to its location within the embryonic axis [28, 29]. When Wnt signals 

are depleted for the endoderm of early mouse embryos, multiple beating hearts form all 
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along the embryonic axis [30], suggesting that there is a broad potential for cardiac 

formation within the mesoderm of the early embryo. These studies also suggest that Wnt 

signaling from the endoderm appears to actively repress myocardial formation outside of 

the normal heart field. Thus, the migration of mesoderm away from the primitive streak 

may serve, not only to bring cells into their final positions within the embryo but may serve 

to protect the future heart field from Wnt signals that are present in the primitive streak. 

This finding is consistent with earlier studies in chick, frog, mouse and zebrafish 

demonstrating that the transition from uncommitted mesodermal cell to cardiac progenitor 

involves both cell migration away from the primitive streak (or its embryological 

equivalent) and presence of signals that inhibit Wnt [31-33]. In the embryo (and almost 

certainly also in differentiating ESCs), this signal comes from the adjacent endoderm. Later, 

other growth factors including FGF act on the myocardium to activate cell proliferation 

(reviewed in: [16, 17]. Thus a hallmark of FHF induction across all vertebrates is the 

transient activation of Wnt and TGFβ signaling to activate mesoderm formation from the 

pluripotent epiblast, followed by a period of Wnt inhibition that is necessary for 

mesodermal cells to adopt a cardiac fate (Fig 1.1) [34, 35]. As with mammalian embryos, 

a combination of Wnt and TGFβ signaling can be used to activate a primitive streak-like 

activity from ESCs [36] and timely modulation of TGFβ and Wnt signaling have proven 

to be necessary and sufficient to activate the formation of cardiac progenitors and beating 

cardiomyocytes formation from both mouse and human ES cells [7, 8, 13, 37-43].  
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Fig 1.1 A graphical representation of cardiac differentiation showing the stages of cardiac 

differentiation, including characteristic markers of each stage. Also noted are key 

indicators that differentiate between the first heart field (FHF) and second heart field (SHF). 

Key regulators of each developmental step are indicated. BMP, bone morphogenic protein; 

FGF, fibroblast growth factor; TGF, transforming growth factor. 
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Differentiation of SHF cells toward the myocardial state is delayed as they 

proliferate and move toward the heart tube through a mechanism that is not fully 

understood. At about E8.5, SHF cells begin to contribute to the growing heart by migration 

through the arterial and venous poles of the heart. The right and left atria contain derivatives 

from both the FHF and the SHF. By comparison, the left ventricle develops primarily from 

the FHF and the right ventricle and outflow tract (OFT) primarily from SHF progenitors 

[12, 44, 45]. It is unclear whether there is an equivalent to FHF and SHF differentiation 

during cardiomyocyte differentiation from ESC. However, since the major force generating 

cardiomyocytes of the heart (left ventricular cardiomyocytes) are derived from the FHF, 

understanding the factors that mediate the switch between FHF and SHF development may 

lead to improved protocols for the in vitro differentiation of cardiac cells enriched for the 

left ventricular fate. 

 

Cardiac Progenitors 

When embryonic stem cells are differentiated as embryoid bodies (EBs), they 

readily form cardiac cells but they also produce many other cell types. A major area of 

research over the last decade therefore has been the search for markers that could identify 

a cardiac specific progenitor population (Fig 1.1). This would allow researchers to isolate, 

by flow cytometry, just those cells that had the potential to differentiate as myocardial cells. 

Genetic fate-mapping experiments in the mouse indicate that both the FHF and SHF 

are derived from a progenitor population expressing Mesp1. Mesp1 (+) mesoderm emerges 

from the primitive streak of the mouse early during gastrulation (~E6.5) [46, 47] and 
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migrates around the epiblast cylinder, coalescing across the anterior midline to form the 

cardiac crescent at E7.5. By E8.5 the cardiac crescent has undergone a series of 

morphogenetic movement to form the beating linear heart tube. Mice lacking both Mesp1 

and Mesp2 form axial mesoderm at the streak, as assessed by the expression of the pan-

mesodermal marker Brachyury but these mice do not form the migratory "mesodermal 

wings" [48] and as such are devoid of most mesodermal lineages. When ESCs are 

differentiated as embryoid bodies (EBs), typically 2-3% of the cells develop into cardiac 

lineages. When Mesp1 is transiently overexpressed in EBs, this percentage increases to as 

much as 10%, suggesting that Mesp1 expressing cells encompass a cardiac progenitor 

population. However, since most mesodermal lineages are marked early on by the 

expression of Mesp1, this proved to be too non-specific to be an effective marker of cardiac 

progenitors [49].  

Some of the earliest markers of the cardiac primordium are the transcription factors 

Nkx2.5 and Tbx5. Although there is considerable overlap between the expression patterns 

of these two genes, fate mapping reveals that Nkx2.5 is expressed in derivatives of both 

the FHF and SHF [50] whereas the expression of Tbx5 is biased to (but not exclusive to) 

the SHF[51]. Because of this, Nkx2.5 was also examined as a potentially specific marker 

for cardiac progenitors. Nkx2.5 expressing cells that are isolated either in vivo from mouse 

embryos or in vitro from differentiating ESCs are bi-potential and give rise to both cardiac 

and smooth muscle. In addition, this progenitor population can give rise to multiple cardiac 

lineages (based on cell shape and action potential morphology) including atrial, ventricular 

and conduction system [52].  
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At the cardiac crescent and linear heart tube stages, SHF cells, identified by the 

expression of Isl1 [9, 11, 13, 53] and Fgf10 [12], reside outside of the heart tube [11]. Initial 

genetic fate mapping experiments suggested that cells that have expressed Isl-1 give rise 

to both the coronary vasculature and multiple cardiac lineage including cells in the atrium, 

ventricles, conduction system and outflow tract [11, 54, 55], with the majority of cells 

located in the right atrium and outflow tract and only a small contribution to the left 

ventricle [54, 56]. Similarly Isl-1 expressing cells that are isolated from differentiating 

hESCs give rise to smooth muscle, cardiac and endothelial cells [53]. A recent 

reassessment of the Isl1 fate map suggests that Isl1 is expressed in all cardiac progenitors 

[50]. 

One marker that has proven to be extremely useful for the identification and 

isolation of cardiac progenitors is the fetal liver kinase-1 (Flk-1). Flk-1 is the major receptor 

for vascular endothelial growth factor A (VEGF-A). Because this, it was thought that it 

would primarily mark endothelial and hematopoietic lineages. However, Cre-mediate fate 

mapping in mouse embryos revealed, surprisingly, that Flk-1(+) cells also give rise to 

several mesodermal lineages [57, 58] and Flk-1(+) cells isolated from differentiating 

mESCs gave rise not only to endothelial cells but also to cardiac and smooth muscle cells 

[59-61]. Differentiating ES cells that are FACS sorted based on the simultaneous 

expression of both Flk-1 and the chemokine receptor CXCR4 comprise a cardiopoietic 

lineage that is largely depleted of endodermal cell types [62]. Ultimately, the combination 

selection based on Flk-1 (KDR in humans) with addition of pro-cardiogenic growth factors 

proved to be the basis for the very efficient differentiation of cardiac cells from hESCs [8].  
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Unfortunately of the potential cardiac progenitor markers that have been identified 

to date, no single marker identifies cardiac and only cardiac lineages. Therefore the 

isolation of highly purified cardiac cells may require further steps. For example, sorting 

based on the expression of several markers might produce a population that is more 

enriched for cardiac cells or could be used to isolate specific sub-populations within the 

myocardium. Another potential problem with the protocols currently in use to activate heart 

formation from stem cell sources is that they all have the potential to activate the formation 

of multiple cardiac types, including atrial, ventricular and conduction system [63-65], 

raising the possibility of arrhythmias if cells with inappropriate electrophysiologies 

develop within grafts of cells.  

 

Progress and new challenges for cell-based therapies 

This concern is highlighted in recent work by, Murry and colleagues. Their recent 

work highlights the progress that has been made in generating donor cells from ES cells. 

They demonstrated the feasibility of large-scale production of cardiomyocytes from human 

ES cells that can be frozen in sufficient numbers and with sufficient subsequent viability 

for therapeutic applications in humans (1X109 cells). In addition, when these cells were 

injected directly into the infarct zone of a non-human primate MI model, these cells were 

retained within the heart for at least several weeks (and, in the one case that was assessed, 

for up to 3 months) and showed calcium transients that were synchronized with the rest of 

the myocardium suggesting functional engraftment [66]. During these studies, they made 

two observations that highlight the next major challenges for this field. First, although the 
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group size in this study was small, recovery of ventricular function was not statistically 

significant, which raises the possibility that these cells lacked some of the mechanical 

properties of mature ventricular cells. Indeed, myofibril alignment sarcomere registration 

and cardiomyocyte diameter, suggested that these cells were not fully mature. Advances in 

the field on physiological maturation of cardiomyoctyes were recently reviewed in: [67]. 

Electrophysiological maturation was not assessed in these cells, however grafts resulted in 

arrhythmias not observed in sham-injected animals suggesting either incomplete 

electrophysiological maturation or the presence of non-ventricular cardiac cells within the 

graft.  

One of the great unmet needs in the field of cardiac regeneration is to determine the 

extent to which the characteristics of a cardiomyoctye are determined by its final position 

within the heart and what extent is determined by extrinsic factors. In short, when does a 

cardiomyocyte "know" that it will be part of the atrium, ventricle or conduction system? If 

a cell fated for the atrium is grafted into the ventricle what happens to it? Does it change 

its fate according to its new position? Does it die? Does fail to functionally integrate? Or, 

does it become a potential source of arrhythmias? Early fate maps in the chick embryo 

suggest that atrial and ventricular fates within the myocardium are sorted out before they 

exit the primitive streak [68]. This occurs at midblastula in the zebrafish [69]. Explants of 

the prospective chick heart field that are grown in isolation differentiate according to their 

fate. That is, an atrial specific myosin heavy chain is only expressed in posterior explants 

and not in anterior explants that are fated to become the ventricle [70]. Altogether these 

data suggest that some degree of lineage determination has occurred well before cell 
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differentiation as cardiomyocytes. That much said, there is also evidence that the fate of 

cardiac progenitors remains flexible for some time. For example explants of the future 

ventricle could be induced to express atrial markers by treating them with retinoic acid [71] 

and when cells fated to the atrium were grafted into the ventricle, they changed their rate 

of beating [72]. These studies suggested that plasticity was maintained throughout the 

cardiac progenitor phase and only ended after differentiation as beating cardiomyocytes. 

The implication for regenerative medicine is that it may be more therapeutically beneficial 

to transplant cardiac progenitors rather than beating cardiomyocytes. Although, as 

discussed above, we have not yet identified a progenitor population that gives rise 

exclusively to cardiac cells. 

At present few groups have attempted to differentiate cells of specific cardiac 

lineages. The underlying assumption has been that cardiac progenitors function as generic 

cardiac cells that will develop mature electrophysiologies appropriate to their ultimate 

position within the heart. However this hypothesis has not been directly tested. Recently 

[73-75], it has been shown that a small molecule inhibitor of the canonical Wnt/β-catenin 

signaling pathway appears to direct cells with high preference to the ventricular fate. 

Interestingly other small molecule inhibitors of Wnt and the protein Dkk1 do not have this 

effect [74], suggesting that our understanding of the molecular genetics of this process is 

not yet fully understood. The ability to direct myocardial differentiation to specific cardiac 

cell types may represent an extremely important next step in realizing their full regenerative 

potential. 
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Transcription Factor-Mediated Reprogramming 

Another area currently being explored for cardiac regenerative medicine is use of 

transcription factor mediated reprogramming of cells. The development of iPSCs [76], 

which demonstrated that essentially any differentiated cell could be restored to a 

pluripotent state by the activation of a small number of transcription factors, renewed 

interest in the concept that any cell might be converted to a different cell type by ectopic 

expression of the correct combination of transcription factors in that cell. Previously, work 

on genes such as MyoD and Pax6, had suggested that at least some cell fates might be 

controlled by single master regulatory genes. Indeed overexpression of the drosophila Pax6 

homolog, eyeless, in legs and wings was sufficient to induce ectopic eye formation [77]. 

Before that, MyoD was shown to be capable of converting fibroblasts to a myogenic state 

[78, 79]. However, further research quickly demonstrated that few, if any, cell fates are 

controlled by the activity of a single master regulatory gene. Current work in the field of 

transcription factor mediated reprogramming has focused on identifying minimal sets of 

transcription factors that might control given cell fates. With regard to the cardiac fate, it 

has been shown that overexpression of three transcription factors (Gata4, Mef2C and Tbx5) 

in mouse fibroblasts or directly in mouse hearts can activate many characteristics of 

cardiomyocytes, including beating, in non-cardiac cells [80, 81]. However attempts to 

repeat this work using tail fibroblasts showed only inefficient reprogramming as well as 

the absence of spontaneous action potentials and contractile phenotype [80, 82]. In addition, 

this combination of transcription factors did not induce full reprogramming in human 

fibroblasts [83]. It may be that a different, or expanded set of transcription factors will be 
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required to accomplish full reprogramming in human fibroblasts. In addition to finding the 

reprogramming factors, the efficiency of this approach will also have to be improved, given 

that the average infarct in humans may involve injury to as many as a billion cells [4]. In 

addition, the current route of delivery of these reprogramming factors in vivo has been 

genetic modification of cells with viruses. This approach may therefore present some 

regulatory barriers. 

Until recently, it has been assumed that reprogramming approaches would involve 

the conversion of a generic cell type, such as a fibroblast, to desired cell types, however, it 

may be possible (and more straight forward) to use transcription factors to convert cells 

from one fate to another closely related fate. For example, Kapoor et al. reported that they 

were able to convert neonatal rat ventricular cardiomyocytes to a pacemaker-like fate by 

transfection of the transcription factor Tbx18 [84].  

These early studies are encouraging but await improvements in efficiency as well 

as studies to determine the extent to which reprogrammed cells recapitulate normal cardiac 

mechanics and electrophysiologies.  

 

Engineering cardiovascular tissues 

Although we have made tremendous progress there are still many challenges for 

cardiac regenerative medicine there are still many challenges that must be solved. Bone 

fide cardiac cells grafted into a non-human primate appeared to be functionally linked to 

the host myocardium, as demonstrated by synchronized calcium transient however the 

caused arrhythmias and did not statistically improve overall ventricular contractility [66]. 
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These findings are possibly due to a failure of these cells to mature in place. In addition, 

thinning of the ventricular was after MI often results in remodel that affects overall heart 

function. Although this was not assessed in Chong et al. remodeling could also contribute 

to the poor recovery of contractile function. 

Solutions for the unmet challenges for cardiovascular regenerative medicine may 

involve the use of engineered materials to enhance cardiac differentiation, 

electrophysiological maturation and/or to preserve or replicate the three dimensional (3D) 

structure of the heart following MI. Here we will specifically focus on the potential of 

hydrogels and the combination of hydrogels with cells in the context of 3-Dimensional (3-

D) printing to meet some of these challenges.  

Using bio-inks or other types of scaffolds, bioengineers are attempting to create 

microenvironments conducive to cardiac differentiation or maturation and/or that maintain 

the 3-D structure of cardiac tissue after MI. Hydrogel scaffolds have also been shown to 

facilitate the growth and expansion of vascular tissues within myocardial grafts. In addition 

to this, by varying the mechanical and chemical properties of hydrogel scaffolds, they can 

be designed in ways that allow researchers to test the roles of mechanical stress [85] or 

electrical pacing (reviewed in: [86]). 

A. Hydrogels 

A number of research groups are now exploring the feasibility of using 

hydrogel/cell combinations as patches or injectable/printable bio-inks. Natural hydrogels 

include Matrigel (a commercially available combination of laminin, TypeIV collagen and 

heparin sulfate) [87], collagen [88], fibrin [89] and alginates [90]. Each of these separately 
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been shown to enhance the retention and integration of injected cells and to preserve the 

normal morphology of the ventricular wall after MI [87]. In addition, a number of synthetic 

hydrogels are being explored [91], however the cytotoxic and immune potential of these 

various synthetic compounds is largely unknown but should be explored. For example 

injection of a non-degradable synthetic polyethylene glycol (PEG) hydrogel into the infarct 

zone of a rat MI model resulted in significant infiltration of macrophages suggesting an 

immune response [92].  

The precise physical properties of hydrogels will likely vary somewhat depending 

on the experimental and therapeutic context, however there are some general 

characteristics that may be highly desirable for use in cardiac regenerative therapies. 

1) The ability to vary the viscosity of a hydrogel would be highly desirable. Lower 

viscosity hydrogels could be injected the wall of a damaged heart with lower injection 

pressure so as to not create further damage to the wall of the heart during injection or cause 

damage to the cells being injected. This would include hydrogels that could be injected in 

a liquid or semi-liquid state but which would become more rigid at body temperature. 

Alternatively, slightly more viscose hydrogels would be useful for 3D printing of organs 

or patches. 

2) For hydrogels that would be injected into heart tissue, it would be desirable to 

have gels with sufficient flexibility so as to not interfere with the contractility of cardiac 

cells within or near the site of the graft.  

3) Temporary hydrogels that could degrade over time could be highly desirable. In 

the short run the gel itself could be used to maintain the geometry of the ventricular wall 
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of the heart during repair. This would give cells encapsulated within the gel time to expand 

and integrate into the host myocardium or provide a scaffold for endogenous stem cells to 

migrate into the infarct zone. 

4) Hydrogels that could be linked through ionic or covalent bonds to peptides or 

proteins that enhance growth, differentiation or physiological function would be 

tremendously useful. Similarly attachment of nano-particles could be used for the delivery 

of drugs in a spatially and temporally controlled fashion. For example, Paul et al. recently 

demonstrated the feasibility of using a hydrogel for localized delivery of the angiogenic 

factor Vegf that was complexed with a functionalized graphene oxide nanosheet[93]. 

B. Hydrogels and Cardiac Repair 

Jonathan Butcher and colleagues recently reported the development of bio-inks 

with high viscosity and low stiffness that were practical for 3D printing of structures that 

encapsulated human aortic valvular interstitial cells (HAVICs). This was accomplished by 

manipulating the relative amounts of methacrylated hyaluronic acid and methacrylated 

gelatin. Increased relative methacrylated gelatin resulted in improved cell spreading and 

maintained fibroblastic phenotype. Using 3D bio-printing they produced 3D tri-leaflet 

valve conduits with hybrid hydrogel encapsulating HAVICs.  

After 7-day of culture, the encapsulated HAVICs showed high cell viability, cell-

type appropriate cell morphologies and expressed all target genes that they tested, including 

αSMA, vimentin, periostin and collagen I [94].  

Pathological remodeling of the ventricular wall is a common and deleterious effect 

of MI. Not only is there thinning of the site of the infarct but the intact wall nearby is also 
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susceptible to dilation that can ultimately lead to heart failure (Fig 1.2). Several groups 

have tested the ability of hydrogels to maintain the geometry of the left ventricular wall 

post-MI. Dobner and colleagues injected 100ul PEG hydrogel or saline into infarct areas 

within 2 minutes of coronary artery ligation. At 2 and 4 weeks after MI, PEG-injected 

hearts had less ventricular wall thinning and significant reduction in end-diastolic diameter 

(EDD) increase. However, after 13 weeks, there was no difference of EDD increase 

between PEG-treated groups with saline-treated [92], suggesting that the impact of this 

hydrogel alone was relatively short lived. Alginates [95, 96], fibrin [97] and collagen [97] 

have also been tested for their ability to moderate ventricular remodeling after infarct with 

similarly positive effects. More recently, hydrogels derived, at least in part from 

decellularized ventricular wall ECM have been used either in sheets as patches [98] or as 

fully injectable fillers to infarct zones [99, 100]. Increasing the percentage of native 

ventricular wall ECM in the injected region facilitated the differentiation of encapsulated 

hESCs-derived cardiac progenitors into differentiated cardiomyocytes, as evaluated by the 

expression of cardiac specific transcription factors, such as cTnT, Cx43 and cTnI. The 

addition of growth factors to hydrogels did not further increase cardiac differentiation 

suggesting the ECM was sufficient to support cardiac differentiation from a progenitor 

population [100]. However, in a similar hybrid hydrogel of ventricular ECM and fibrin, the 

addition of a low dose of TGFβ increased the vascular differentiation of mesenchymal 

progenitor cells [98]. A likely next step would be the use of hydrogel that would include 

both cardiac and vascular progenitor cells with or without the addition of growth factors 

(Fig 1.3).  
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Fig 1.2. A graphical representation of a typical infarcted left ventricle (LV), showing wall 

thinning in the damaged area (yellow). Note that while not thinned, the wall adjacent can 

undergo pathological remodeling that can interfere with normal functioning. 

 

Fig 1.3. A comparison of cell-based therapies for heart repair with a hypothetical 

bioengineering approach. In cell-based therapies cells are injected directly into the infarct 

(yellow). Bioengineering approaches involve injecting cells (or progenitors) of both the 

cardiac and vascular lineages that have been encapsulated or coated on hydrogels. 

Hydrogels have been show to effectively preserve the 3-dimensional structure of the 

ventricular wall after myocardial infarction. They have also been shown to facilitate 

engraftment of donor cells and promote the physiological maturation of engrafted cells. 

Finally, hydrogels can be used for localized delivery of growth factors and drugs. 
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Other approaches used specifically to increase vascular formation within cardiac 

grafts include work by Cui and colleagues who used inkjet printer technology for 2-

dimensional printing of a fibrin scaffold that allows for the growth of vascular structures 

with only minor deformation. After 21 days of culture, the proliferated cells formed a 

tubular microvasculature within the fibrin channels suggesting that thermal inkjet printing 

technology could be used for the bio-fabrication of human microvasculature with high 

resolution [101]. 

On the other hand, Vollert and colleagues, hand fabricated 3D structures with 

micro-channels that served as artificial vessels for the perfusion of engineered heart tissues 

(EHT). To accomplish this, thin alginate fibers were embedded in a matrix of cells, fibrin 

and thrombin. After polymerization the fibers were removed using alginate lyase or sodium 

citrate. These artificial vessels improved the oxygen concentration in the center of the EHT 

and were ultimately populated by endothelial cells [102].  

By combining approaches similar to those described above, Vukadinovic-Nikolic 

et al., recently generated a large sample of EHT. This cardiac construct consisted of three 

separate layers. The bottom layer was decellularized porcine small intestinal submucosa. 

The middle layer was a monolayer of rat neonatal cardiomyocytes and the top layer was 

comprised of rat heart endothelial cells. With this approach, the authors were able to 

engineer an artificial tissue about 11cm2 in size and with an average beat rate of 208±78 

beats/minute on day 3, and 154±48 beats/minute on day 10 as compared to 43±27 

beats/minute only in cardiac cells grown without the other tissues, suggesting that this 

approach may improve the physiological or electrophysiological maturation of cardiac 
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cells. Rat endothelial cells seeded in the top layer cells migrated through the cardiac 

compartment within 7 days and co-localized with the vessel bed of the submucosal 

layer[103]. These studies demonstrate that effects seen by cell engraftment alone can be 

greatly enhanced by using engineering approaches.  

The most ambitious projects in cardiac bioengineering are efforts to completely 

rebuild hearts either by 3D printing or by using decellularized hearts as a scaffold for 

repopulation by cardiac progenitor cells. In 2008, Doris Taylor's lab developed a technique 

to efficiently decellularize rat hearts and subsequently used them as a natural platform to 

fabricate a beating bio-artificial heart. At first, they carried out coronary perfusion with 

SDS over 12h to generate a decellularized construct with a perfusable vascular tree, patent 

valves and intact extracellular matrix (ECM). Then, they reseeded the construct with rat 

neonatal cardiac cells. By day 8, these repopulated structures beat and were able to generate 

a constant albeit weak contractile force (about 2% of the adult heart function)[104]. While 

far from clinical usefulness, this study showed proof of principle that scaffolds of ECM 

could be used to create bio-artificial heart tissue. More recently, Lu and colleagues 

reseeded decellularized mouse hearts with human iPSC-derived cardiovascular progenitors. 

After 26 days of culture, including the addition of growth factors to promote the 

differentiation of cardiac tissue and blood vessel formation, the repopulated hearts showed 

a spontaneous beat rate of 40-50 beats per minute. The beating rate was accelerated to 90 

beats per minute by perfusing isoproterenol. Subsequent studies showed that the perfused 

multipotent cardiac progenitors had differentiated into cardiomyocytes, smooth muscle 

cells and endothelial cells. [105].  
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Heart Conduction System 

The heart functions to supply the embryo with oxygen and nutrition as early as 

embryogenesis [106]. From initial heart formation, the heart generates an electrical impulse 

and propagates this impulse to efficiently pump blood with well-coordinated contractions 

throughout the entire body. In the developing heart, the cardiac conduction system (CCS) 

is made up of several components, each performing a specific function related to regulation 

of heart rate. For instance, SAN generates electrical impulses, which propagates through 

the atrium and reaches the atrioventricular node (AVN). At the AVN the electrical impulse 

is forced to slow down. This delay allows the atria to contract and give rise to filling 

ventricles before the ventricles are activated and contract themselves.  Connective tissue 

formed by the annulus fibrosus isolates electrical signals between the atrial and ventricular 

myocardial tissues. The electric impulse passes from the atrium to the ventricle through the 

atrioventricular bundle (AVB/ bundle of His).  The signal runs through the ventricular 

septal crest, later through the left and right bundle branches (BBs) and the Purkinje fibre 

network. Ventricular conduction system (VCS), activating the ventricular myocardium, 

consists of AVB/His bundle, the BBs and the Purkinje fiber network [106].  

 

Developmental Origin of the Sinoatrial Node 

Vincent Christofells’ lab elucidated the transcriptional program involved in 

sinoatrial node (SAN) differentiation from mesodermal precursors in the mouse embryo 

[106, 107] (Fig 1.4). Tbx5 is at the top of a cascade of transcription factors that direct SAN 
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formation. Tbx5 is expressed in the sinus venosus (SV) and atria throughout cardiac 

development and interacts with Nkx2.5 to regulate several downstream transcription factor, 

including Shox2, Isl1 and Tbx3, key regulators of SAN programming [108, 109]. 

Dominant mutations in Nkx2.5 and TBX5 (Holt–Oram syndrome) cause congenital heart 

defects and AV conduction defects (AV block) [110-112]. Shox2, specifically expressed 

in SV, has an expression pattern complementary to that of Nkx2.5, the TF that activates 

cardiac chamber formation [113]. As a repressor of the Nkx2.5 gene, Shox2 prevents the 

formation of contractile myocardium characteristic of the atrium and ventricle, while 

allowing SAN-specific genes, such as Tbx3 and HCN4 to be expressed [114]. Deletion of 

Shox2 leads to a hypoplastic SV, upregulation of Nkx2.5 and, consequently 

downregulation of HCN4 and Tbx3 in both the SAN primordium of mouse hearts, and in 

ESC-derived cardiac cells [114-116]. With the help of transgenic mice and the 

advancement of lineage tracing techniques, the progenitors of the SAN cells have been 

well established [117]. Mommersteeg and colleagues have demonstrated that around E8, 

the SV develops from Tbx18+/Nkx2.5-/Isl1- progenitors, apart from the rest of the cardiac 

mesoderm. At E8.5, some cells begin to express Isl1, and later at E9.5, a subset within the 

SV starts to express Tbx3, a TF that represses chamber development [118]. Genetic lineage 

tracing has demonstrated that Tbx3+ SAN primordium forms along with the SV between 

E9-9.5 and E11.5-12.5 by adding Tbx18+/Nkx.2.5-/Isl1+ cells to venous pole of the heart 

tube [55, 117, 119, 120]. By E10, the SV and SAN has separated from Nppa+ embryonic 

atrial cells and HCN4 has become restricted to this Tbx3+ domain [121]. Tbx3 is 

continuously expressed during cardiac development, forming the mature heart conduction 
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system, from the SAN to the bundle branches of the ventricular conduction system. Tbx3 

also prevents atrialization by actively repressing genes associated with the working 

myocardium, including αMHC, βMHC, Cx40, Cx43, Scn5a and Nppa/b, (Fig 1.4). Ectopic 

Tbx3 expression leads to the formation of bona fide functional pacemaker cells within these 

atria [121, 122]. Thus Tbx3 directs a pacemaker phenotype in SAN, while Nkx2.5, acting 

in adjacent cells represses Tbx3 and HCN4 allowing development of the atrial myocardium. 

HCN4, hyperpolarization-activated cyclic nucleotide-gated cation channel, is initially 

expressed in the first-formed myocytes and immediately activated in Tbx18+/Nkx2.5- SV 

domain and downregulated in Nkx2.5+ myocardium, transferring its expression domain to 

newly-formed SV and the major pacemaker domain [51, 123, 124]. These data suggest that 

pacemaker cells derive from the activation of a particular genetic pathway in cardiac 

progenitors during cardiogenesis. 

Tbx18 is expressed in all SV, including SAN, progenitor cells and in the later-

formed sinus horns and head of the SAN; Tbx18 deficient mice result in a malformed and 

strongly hypoplastic SAN and SV [119, 125]. Tbx18 is required for correct morphogenesis 

and deployment of SV and SAN progenitor cells.  
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Fig 1.4. Proposed model of TF interactions during SAN differentiation. 
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The transcriptional program that directs formation of the AVC and Purkinje system 

The AVC adopts its phenotype through a gene regulatory network, which inhibits 

chamber differentiation, facilitates nodal development, and delimits the strict border 

between the AVC and chamber myocardium [126]. Tbx2 and Tbx3 both play important 

roles in this process. Both Tbx2 and Tbx3 repress the chamber myocardium gene 

regulatory network, such as Nppa, Cx40 and Scn5a. [127-130]. Furthermore, Tbx2 and 

Tbx3 form a positive feedback loop with Bone morphogenetic protein 2 (Bmp2), which 

controls the AVC-restricted expression of Tbx2 and Tbx3 [130]. These T-box factors 

interact with muscle-segment homeobox transcription factor Msx2, suppressing Cx43 

expression directly in the AVC [131, 132]. They also compete with Tbx5 for binding to T-

box elements in target genes including Nppa and Cx40 [133], and for interaction with 

Nkx2.5 to inhibit Nppa in the AVC [134].  

The Purkinje fiber network is found only in mammals and birds, which arises from 

the trabecular myocardium. The embryonic ventricles are mainly composed of trabecular 

myocardium during embryogenesis, acting as both the functional and cellular precursor of 

the Purkinje fiber network [135]. Elegant clonal and lineage analyses showed the 

spatiotemporal expression pattern of Cx40 [136, 137]. When Cx40+ cells were irreversibly 

labeled at E10.5, labeled descendants were observed both in the Purkinje fibers and in the 

Cx40- negative compact wall. However, when Cx40+ cells were labeled at E16.5, the 

Cx40+ trabecular zone had become a relative small population and labeled Cx40 

descendants were only found in Purkinje network, indicating the lineages of Purkinje fibers 

and ventricular myocardium separated between E10.5 and E16.5.  
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Sinoatrial Node arrhythmias 

In the adult human heart, the sinoatrial node (SAN) is crescent-shaped structure 1 

to 2 cm long and 0.5 cm wide, that lies at the junction of the superior vena cava with right 

atrium and locates along the sulcus terminalis. The SAN itself consists of clusters of 

pacemaker cells organized in parallel rows with thin digitations. The SAN arrhythmias is 

referred to a clinical syndrome including SAN dysfunction, frequently depressed escape 

pacemaker, and atrioventricular nodal conduction disturbance. SAN arrhythmias describes 

a series of abnormalities, leading to complicated sinus bradycardia, sinus arrest, sinus 

pauses, SAN exit block, which is defined as inefficient and inappropriate response to 

physiological demands during exercise [138]. 

  

Conclusions 

Work by Chong et al. [66] highlights the advances that have been made in cardiac 

regenerative medicines based on cell-based therapies alone. However these studies also 

highlight the unique challenges presented by this field. Here we highlight several recent 

studies that demonstrate the potential power of combining cells with engineered materials 

(Fig 1.3). These studies suggest that encapsulating cardiac or cardiac progenitor cells 

within hydrogels may greatly enhance their regenerative capacities. This is accomplished 

by providing scaffolds that facilitate migration and differentiation, mechanically protect 

cells and preserve the 3D structure of the damaged heart tissue during repair and recovery. 
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CHAPTER TWO 

SPECIFIC AIMS 

 

Abstract: 

The overall goal of this research is to understand the mechanisms underlying the 

differentiation of the SAN. To study this I have used mouse embryonic stem cells, 

differentiated as EBs.  Vincent Christofells’ lab has identified a number of transcription 

factors that are necessary for differentiation of the SAN in mouse embryos.  It is not yet 

clear if these factors are sufficient for SAN differentiation. To test this I mad lentiviruses 

to conditional overexpress these genes. At the top of this transcriptional cascade is the 

transcription factor Tbx5. Tbx5 has been shown to activate expression of Shox2, Tbx3 and 

Islet1.  I made viruses to express all of these factors and also carried out detailed analysis 

of Tbx5.  In addition to this, the Foley identified TAK1/Map3k7 as an important factor that 

can activate Tbx5 and this entire transcription pathway.  I also made a virus to conditionally 

overexpress TAK1 and analyzed gene expression in a previous isolated TAK1 

overexpressing cell line. Finally, I found that gene expression analysis within a EBs was 

complicated and that overall changes in genes sometimes masked gene changes specifically 

in cardiomyocytes, so I began to develop a technique to examine gene changes specifically 

in cardiac lineages.  To accomplish these goals I carried the following specific aims. 
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Specific Aims: 

 

Specific Aim 1: To study the role of Tbx5 overexpression in mouse embryonic stem 

cells-derived cardiomyocytes and determine if it is sufficient to drive SAN 

differentiation. 

The goal of Specific Aim 1 is to test if overexpression of Tbx5 during EB 

differentiation is sufficient for SAN fate. In chapter 4, we will examine the role of Tbx5 in 

differentiation of the sinoatrial node (SAN) from mouse embryonic stem cells. The SAN 

of the mouse embryo arises from the wall of the right atrium near the border of the sinus 

venosus. Early in development this region expresses the transcription factor Tbx5. Because 

of this, Tbx5 is thought to sit at the apex of a transcriptional cascade leading to SAN 

differentiation. To test this we produced a mouse embryonic stem cell line B1 (pTripZ-

mTbx5; αMHC::GFP) that conditionally overexpresses Tbx5 under the control of a 

Doxycycline inducible promoter. 

We differentiated mESCs into EBs at Day 0 (D0) by using hanging drop method 

(around 300 cells per 20 µL drop) described in [139, 140]. After 24 hours (D1), EBs were 

washed off and plated on gelatin-coated plates for EB differentiation. We treated these EBs 

with 200ng/ml Dox from D4. By D15, D17 and D21, we recorded the 20-seconds-long 

videos with beating area (identified based on the expression of αMHC::GFP) to measure 

beat frequencies. Changes in mean intensity within regions of interests in phase contrast 

image sequences serve to detect motion indicative of cellular contractions, and beat 

frequencies are extracted using a MATLAB algorithm that first performs a non-linear 
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normalization (to account for non-specific large scale movements), followed by a fast 

fourier transformation of the data, which corrects for pausing of beating during imaging. 

Differentiated EBs were treated with 200ng/ml Dox from D4. Then at D19 and D21, 

EBs were dissociated into single cell suspension by trypsin digestion and replated onto 

chamber slides. Immunocytochemistry staining was used to distinguish the cardiac subtype 

among all cardiomyocytes, such as HCN4, Shox2 for pacemaker-like myocytes; Cx43 for 

ventricular-like myocytes; GFP, DsRed and CT3 for marking all cardiomyocytes. The 

percentage of HCN4, Shox2 and Cx43 positive myocytes were measured to display the 

overall subtype characteristic of myocytes. 

Activation of the SAN transcriptional program will be assayed by qRT-PCR. 

Differentiated pacemaker cells are expected to express high levels of genes involved in 

SAN development (Tbx3, Tbx5, Shox2, Isl1, HCN4) and low levels of ventricular genes 

(Cx43, Nkx2.5). At the meantime, MAP3K7/TAK1 mRNA level was measured between 

R1, B1 untreated and B1 Dox-treated EBs. 

 

Specific Aim 2: To determine the effect of MAP3K7/TAK1 overexpression during EB 

differentitation on early lineage differentiation. 

The goal of Specific Aim 2 is to determine how MAP3K7/TAK1 kinase affects 

SAN differentiation but also how it impacts the formation of early endodermal and neural 

markers. In chapter 5, I analyzed MAP3K7/TAK1 overexpressing EBs using qRT-PCR 

analyses and FACS data, comparing wild type EBs to MAP3K7-overexpressing EBs.  I 

analyzed both pacemaker genes and genes expressed in other lineages relevant to heart 
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induction, specifically visceral endoderm (VE), anterior visceral endoderm (AVE) and 

definitive endoderm (DE). In addition I examined expression of genes related to Sonic 

Hedgehog (Shh) signaling and early neural induction.  

 

Specific Aim 3: To develop a protocol for the single cell analysis of gene expression 

during myocardial differentiation 

The goal of Specific Aim 3 is to figure out gene expression by single cell analysis 

during cardiac differentiation. In chapter 6, I will examine the expression of SAN and other 

cardiac markers specifically in cardiomyocytes. In all of these studies we are examining 

gene expression in whole EBs and examining markers that are expressed in the heart and 

endoderm but are also often expressed in other non-cardiac, non-endoderm lineages.  

Therefore it is sometimes difficult to know whether observed changes are due only changes 

in the cardiac (or endodermal lineage). To address this we have begun to develop a 

technique that will allow us to examine gene expression in just the cardiac lineage.  Briefly, 

ES cells harboring the αMHC::GFP promoter reporter are differentiated until day 21 and 

cardiomyocytes isolated by flow cytometry.  From these cells we isolated RNA and then 

carried out real time PCR for genes expected to be expressed in cardiomyocytes.  A number 

of technical challenges remain to be addressed with this protocol. These data represent 

promising preliminary data for a new, more accurate assessment of cardiac differentiation 

in our assay system. 

 

Specific Aim 4: Design and verify cell lines overexpressing SAN genes 
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The goal of Specific Aim 4 is to test the effect of overexpression of SAN specific 

genes other than Tbx5 during EB differentiation. In Chapter 7, I will show data verifying 

gene overexpression in both the Tbx5 and other overexpression cell lines. Vincent 

Christofells has described a transcriptional hierarchy that directs the differentiation if 

sinoatrial node cells in the mouse embryo. The major transcription factors involved are: 

Tbx3, Isl1, Shox2, Tbx18 and MAP3K7/TAK1 [107, 141].  To study their function in 

directing SAN differentiation I made ES cell lines that will allow me to conditionally 

overexpress these factors. One of these lines (B1, which overexpressed Tbx5) is described 

in Chapter 4. Detailed information of each individual mESC that I produced is discussed 

here 
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CHAPTER THREE 

MATERIAL AND METHODS 

 

Cell Culture 

Mouse embryonic stem cells (mESCs) were cultured in 10 cm tissue culture dishes, 

covered with 10 ml high glucose Dulbecco’s Modified Eagles Medium (DMEM) with 10% 

ES-Qualified Fetal Bovine Serum (FBS), 1% penicillin-streptomycin, 1% L-glutamine, 1% 

non-essential amino acids, 1% sodium pyruvate, 0.1 mM 2-mercaptoethanol and 1000 U 

per ml LIF.  

293T cells were culture in 10 cm tissue culture dish, covered with 10ml DMEM 

with 10% FBS, 1% penicillin-streptomycin, 1% L-glutamine and 1% Sodium pyruvate. 

 

Plasmid transfection and Lentivirus production 

Before plasmid transfection, cell medium of 293T (60-80% confluent) were 

removed and replaced with 11 ml standard culture medium supplemented with 20% FBS. 

Virus were produced using the second generation lentiviral system according to the 

protocol [142]. Plasmids were combined as follows: 30 µg (30 µl) transfer vector, 20 µg 

(20µl) p8.74, 10 µg (10µl) pVSV-g and 1290 µl H20 (total volume 1350µl). Note: from 

this point on, consider this to be “live virus” in terms of safety precautions, for example, 

wear double gloves, lab coat and disposable sleeve protectors. Do not aspirate solutions 

but pipet them into bleach so that the final concentration is at least 10%.  All pipets and 

other plastic ware should also be washed in bleach for 10 minutes before discarding.  Hood 
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and all equipment should be “UV” irradiated for 10 minutes after you are done.  Any drops 

of viral-containing solutions should be wiped up immediately. Additional 150 µl CaCl2-

dropwise was added using a 200 µl pipetman very slowly and gently with constant 

vortexing (1800rpm, medium strength), following 1500 µl of Hank's balanced salt solution 

(HBSS) dropwise slowly. The mixed solution will form complexes in about 20 minutes. 

Cultures should not be disturbed at this time. The mix solution was added to the 293T cells 

dropwise using a 2ml pipetman. Try not to disturb the plates when transferring them back 

to the incubator. Next day cell medium were switched to 25 ml Lonza Ultraculture Medium, 

plus 1% penicillin-streptomycin and 2% L-glutamine. Ultraculture medium were collected 

every day for three days. On the last day, these medium were ultracentrifuged in swing 

bucket rotor SW28 at 20,000 rpm for 2 1/2 hours (These would take a total of 4 hours 

almost to complete run). Finally, supernatant was carefully removed and the virus pellets 

were resuspended within 400-600 µl remaining medium. Then the viruses were aliquoted 

and stored at -80C. 

 

Lentivirus Transduction and establishment of clonal cell lines. 

Multiplicity of Infection (MOI): Multiplicity of Infection is the number of 

transducing lentiviral particles per cell. Typically, 5000 cells are used for infection and 

MOI rate are set up at 10, 20, 40; this needs lentivirus package for 50000, 100000 and 

200000, respectively. At first, dissociated mESCs were mixed with lentivirus packages at 

MOI 10, 20 and 40, plus 10 µg/ml polybrene and incubated at 37C for an hour with gentle 

re-suspension every 15 minutes.  Mix solution was replated onto 24 well pre-coated plate.  
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Fresh medium was added after 24 hours and 1 µg/ml puromycin selection media was added 

after 48 hour. After 2-3 days of puromycin selection, cells were trypsinized and replated 

onto 96 well plate for one cell per well. Continuous monitor for a couple of days, potential 

mouse embryonic stem cell colonies grown from single cell clone were expanded and then 

analyzed for doxycycline treatment later. 

 

Embryoid Body (EB) Differentiation 

mESCs were differentiated in standard differentiation medium, which contains 

Iscove’s Modified Dulbecco’s Medium (IMDM) supplemented with 10% differentiation-

tested FBS, 5% protein-free Hybridoma Media (PFHM-II), 1% penicillin-streptomycin, 

0.5 mM L-ascorbic acid, 0.45 mM monothioglycerol and 200 µg/ml apo-Transferrin. 

Embryoid Bodies (EBs) were formed into 20 µl hanging drop, which consists of 300 cells 

and then incubated at 37C for 24 hours. After 24 hours, EBs were gently washed with petri 

dish pre-coated with 0.1% gelation, as marked as “Day 1”. 

 

Construct of pTripZ Vector, doxycycline-inducible-Gene of Interest (GOI)-

overexpression Vector 

The open reading frame of different GOI, including mTbx5, mTbx3, hIsl1, hShox2, 

hTbx18 and mouse MAP3K7 was amplified by PCR and directly cloned into downstream 

of TurboRFP motif into the pTripZ vector (purchased from Add gene), which drives 

expression of TurboRFP and the insert GOI with administration of Doxycycline. 
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Lentiviruses were produced using the second-generation lentiviral expression system 

(Table 3.1). 

 

Construct of pTET-ON Vector, doxycycline-inducible-GOI-overexpression Vector 

The open reading frame of different GOI, including mTbx5, mTbx3, hIsl1, hShox2, 

hTbx18 and mouse MAP3K7 was amplified by PCR and directly cloned into downstream 

of pTight TET-Responnsive promoter into the pTET-ON vector (purchased from Add 

gene), which drives expression of the insert GOI with administration of Doxycycline. 

Transfection of target vector into mESCs was used to generate GOI-overexpression mouse 

ES cell line (Table 3.2). 
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pTripZ  Forward Primer  Reverse Primer 

mTbx5 CCCATCGATATGGCCGAT

ACAGATGAGGGC 

CGACGCGTTTAGCTATTCTCACT

CCACTC 

mTbx3 CCCATCGATATGAGCCTC

TCCATGAGAGAT 

CGACGCGTTTAAGGGGACCCGCT

GCAAG 

hIsl1 CCCATCGATTTACTCCCT

CTTACAGATATG 

CGACGCGTTCATGCCTCAATAGG

ACTGGC 

hShox2 CCCATCGATATGGAAGA

ACTTACGGCGTTC 

CGACGCGTTCACAGACCCAGGGC

TG 

hTbx18 CCATCGATATGGCCGAG

AAGCGAAGG 

CGACGCGTTCAGACCATATGTGC

AGATAC 

MAP3K7 CCCATCGATTCGACAGCC

TCCGCCGCC 

CGACGCGTTCATGAAGTGCCTTG

TCGTTTCTGCT 

Table 3.1. GOI Primer was used to clone into downstream of TurboRFP motif into the 

pTripZ vector. 

pTET-ON  Forward Primer Reverse Primer 

mTbx5 CGACGCGTATGGCCGA

TACAGATGAGGGC 

CCATCGATTTAGCTATTCTCA

CTCCACTC 

mTbx3 CGACGCGTATGAGCCT

CTCCATGAGAGAT 

CCATCGATTTAAGGGGACCCG

CTGCAAGA 

hIsl1 CGACGCGTTTACTCCC

TCTTACAGATATG 

CCATCGATTCATGCCTCAATA

GGACTGGC 

hShox2 CGACGCGTATGGAAGA

ACTTACGGCG 

CCATCGATGTTGGCGTCACAG

ACCCA 

hTbx18 CGACGCGTATGGCCGA

GAAGCGAAGG 

CCATCGATTCAGACCATATGT

GCAGATAC 

MAP3K7 CGACGCGTTCGACAGC

CTCCGCCG 

CCATCGATGGTCATGAAGTGC

CTTGTCGTTTCTGCT 

Table 3.2. GOI Primer was used to clone into downstream of pTight TET-Responnsive 

promoter into the pTET-ON vector. 
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List of vectors and mESCs line made 

Here is the detailed list of all vectors and mESCs made in Foley lab (Table 3.3).  

No Vector Insert Gene mESCs  

1 pTripZ mTbx5 B1, B5, B10, B12 

2 pTripZ mTbx3 X1, X6, X13 

3 pTripZ hIsl1 I4 

4 pTripZ hShox2 S2 

5 pTripZ hTbx18 T2 

6 pTripZ MAP3K7 M8 

7 pTET-ON mTbx5 DB4, DB6 

8 pTET-ON mTbx3 DX5, DX9 

9 pTET-ON hIsl1 DI1, DI2, DI3, DI7 

10 pTET-ON hShox2 DS13, DS14 

11 pTET-ON hTbx18 DT2, DT5 

12 pTET-ON MAP3K7 DM11 

 

Table 3.3 The detailed list of all vectors and mESCs made in Foley lab. 
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Real-time PCR 

EBs were collected on specific days of differentiation, such as D5, D7 and so on. 

Total RNA was extracted with RNeasy Mini Kit (Qiagen, cat#74106), and 1 µg was used 

to synthesize the first strand cDNA using QuantiTect Reverse Transcritption Kit (Qiagen, 

cat#205313). Quantitative PCRs were performed with SybrGreen Master Mix (Roche, cat# 

3752186001), using 40 ng template/reaction on a Roche LightCycler® 480 Real-Time 

PCR Instrument, and analyzed with the LightCycler 480 software package (version 1.5.0 

SP1). Crossing point data were first adjusted to reflect the efficiency of primer pairs by 

comparison to standard curves (based on dilution series over a total dynamic range of 

1:1,000 or 1:10,000 for positive control cDNAs) and subsequently normalized to the 

ubiquitously expressed transcript GAPDH. Data represent averages ± standard error of 3 

independent experiments. Further analyses were using GraphPad Prism (version 7.0). 

Primers used in this study are as follows:  
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Primer Forward  Reverse 

Cx30.2 TGATCATGCTGATCTTCCGCAT

CC 

GCTGCAACGTGTTACACAC

GAACT 

Cx43 
GACTGCGGATCTCCAAAATA 

AAATCAAACGGCTGGGCG

TGG 

GAPDH AATGGATACGGCTACAGC GTGCAGCGAACTTTATTG 

HCN4 
ACC TGA CGA TGC TGT TGC TG 

CTC TGC GGG TCA AGG 

ATG AT 

m/h Isl1 GGTTGTACGGGATCAAAT GAGCGGGCACGCATCACG 

m/h Shox2 ACC AAT TTT ACC CTG GAA 

CAA C 

TCG ATT TTG AAA CCA 

AAC CTG 

m/h Tbx18 
CACAACCGTCACTGCCTATCAG 

CCGTAGTGATGGTCGCCAG

AAT 

MAP3K7 CGTAGATCCATCCAAGACTTGA

C 

GAGGTTGGTCCTGAGGTAG

TGAT 

Tbx3 
GTT TTG TCT GGG AGG GAG CA 

CTT CAG CCC CGA CTT 

CCA TA 

Tbx5 CCA GCT CGG CGA AGG GAT 

GTT T 

CCG ACG CCG TGT ACC 

GAG TGA T 

mCXCR4 CCGCCTTTACCCCGATAGC ACCCCCAAAAGGATGAAG

GAG 

mGPC1 TGGTGCTCATCACTGACAAGTT

C 

GGATGACCTTAGCTGTGAG

TGTGT 

mTm4sf2 CCAGTTGCTGCATGAACGAA CACCAGATCATAACAGCCC

TTCT 

mSox17 
GCTAGGCAAGTCTTGGAAGG 

CTTGTAGTTGGGGTGGTCC

T 

mSox2 GAGGGCTGGACTGCGAACT TTTGCACCCCTCCCAATTC 
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mDkk1 
ATCTGTCTGGCTTGCCGAAAGC 

GAGGAAAATGGCTGTGGT

CAGAG 

mHhex 
CGGTCAAGTGAGGTTCTCCAAC 

CTCGGCGATTCTGAAACCA

GGT 

mCer1 
ATCCTGCCCATCAAAAGCCACG 

CGAATGGAACTGCATTTGC

CAAAG 

Shh 
AATGCCTTGGCCATCTCTGT 

GCTCGACCCTCATAGTGTA

GAGAC 

Gli1 
GGAAGTCCTATTCACGCCTTGA 

CAACCTTCTTGCTCACACA

TGTAAG 

Gli2 
TACCTCAACCCTGTGGATGC 

CTACCAGCGAGTTGGGAG

AG 

Gli3 
ATTCCCGTAGCAGCTCTTCA 

TTGCTGTCGGCTTAGGATC

T 

 

Table 3.4. qRT-PCR primers of Cx30.2, Cx43, GAPDH, HCN4, m/h Isl1, m/h Shox2, m/h 

Tbx18, MAP3K7, Tbx3, Tbx5, mCXCR4, mGPC1, mTm4sf2, mSox17, mSox2, mDkk1, 

mHhex, mCer1, Shh and Gli1-3. 

 

  



 42 

Flow Cytometry 

EBs were treated with 0.25% Trypsin/EDTA at 37C for 30 minutes and then 

neutralized with regular differentiation medium. Cells were centrifuged at 2000 rpm for 5 

minutes and resuspended with fluorescence-activated cell sorter (FACS) buffer (PBS plus 

1% BSA and 10 ng/ml DNAse). Then cells were centrifuged again and resuspended with 

FACS buffer. Cells were filtered through a 100µm sieve and cell numbers were counted 

using a haemocytometer, checking single cell suspension at the same time. Flow cytometry 

was performed with the Beckman Coulter MoFlo Astrios EQ cell sorter and data was 

analyzed using FlowJo VX software.  

 

Immunocytochemistry 

EB dissociation was performed as decribed above for Flow Cytometry. Around 

55000 cells with the property of single cell suspension were replated onto 4 well Lab-Tek 

II chamber slide (Nunc, cat#154526), pre-coated with 0.1% gelation and then incubated 

within standard differentiation medium at 37C overnight to allow dissociated cells to attach 

and spread. Cells were fixed at 4% PFA for 15 minutes and gently washed with PBS 3 

times for 5 minutes. Then cells were block with either cytosol antibody staining buffer 

(CASB) or nuclear antibody staining buffer (NASB) for an hour, depending on subcellular 

location of target protein expression. CASB is consist of PBS, 1% FBS, 0.1% BSA and 

0.1% Triton-X-100; while NASB contains PBS supplemented with 1% FBS, 0.2% BSA 

and 0.25% Triton-X-100 for nuclear membrane penetration. Cells were incubated with 

primary antibody diluted within either CASB or NASB overnight. Cells were washed with 
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PBS 3 times for 5 minutes and then incubated with Alexa Fluor-labelled secondary 

antibody for an hour. Additional PBS wash was performed and at the last wash DAPI was 

added into PBS buffer for 5 minutes incubation. Finally, chamber slides were mounted 

with special fluorescence mounting media and sealed with clear nail polish. Later, images 

were taken on Zeiss AxioImager microscopy. The primary antibodies were used as follow: 

Cx43 (Sigma, cat#C6219, 1:1000), CT3 (DSHB, cat#CT3, 1:250), DsRed (Clontech, 

cat#632392, 1:500), GFP (Thermo, cat#A11122, 1:500), HCN4 (Sigma, cat#SAB520035, 

1:250), Shox2 (abcam, cat#ab55740, 1:1000), Tbx5 (Thermo, cat#42-6500, 1:500). 

 

Beat Rate data 

During EB differentiation, we will use live cell imaging of beating cardiomyocytes 

(identified based on the expression of αMHC::GFP) to measure beat frequencies. Changes 

in mean intensity within regions of interests (ROI) in phase contrast image sequences serve 

to detect motion indicative of cellular contractions, and beat frequencies are extracted using 

a MATLAB algorithm that first performs a non-linear normalization (to account for non-

specific large scale movements), followed by a fast fourier transformation of the data, 

which corrects for pausing of beating during imaging.[143] 
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CHAPTER FOUR 

TBX5 OVEREXPRESSION ENHANCES CARDIAC DIFFERENTIATION AND 

INCREASES BEAT RATE BUT DOES NOT INCREASE THE FORMATION OF 

FULLY DIFFERENTIATED SINOATRIAL NODE CELLS 

 

Introduction 

The Sinoatrial Node (SAN), as the primary pacemaker of the mammalian heart and 

controls heart rate throughout the life of all mammals. Failure of SAN function leads to 

slow heart rate (bradycardia) and inefficient circulation of blood flow. Bradycardia may be 

due to congenital disease or heart attack. Currently, the sole treatment for bradycardia is 

implantation of electronic pacemakers and there are several complications including, 

surgical complication, battery life issues and lead displacement. That’s the reason why we 

need a biological pacemaker. Producing a biological pacemaker in vitro would result in an 

alternative pacemaker therapy in which replacing the failing SAN with a new biological 

one would become practical through cell transplantation. My project is to determine 

whether a biological pacemaker can be produced by direct reprogramming of cells to the 

SAN fate. Specifically I will address whether forced overexpression of the SAN specific 

gene, Tbx5. can accomplish this. 

 

Four independent clonal lines that conditionally overexpress Tbx5 were established. 

To test the role of Tbx5 in SAN development, mouse embryonic stem cell (mESC) 

lines were generated to conditionally overexpress Tbx5. To do this, the open reading frame 



 45 

of Tbx5 was cloned downstream of the TurboRFP motif into the pTripZ vector.  This was 

used to generate lentivirus in which genes of interest (GOI) can be overexpressed by the 

administration of doxycycline (Fig 4.1A). 

These vectors can be used to conditionally overexpress all of the key transcriptional 

regulators of SAN differentiation.  At the top of this cascade is Tbx5. Genetic studies in 

mouse have revealed an essential role for Tbx5 in establishing the SAN however, it has not 

been shown whether Tbx5 is sufficient for SAN differentiation.  To study its role we 

established four independent, clonal ESC lines (B1, B5, B10 and B12), all of which showed 

stable, inducible, upregulation of Tbx5 transcripts, as confirmed by qRT-PCR at 24, 48 and 

72 hours after addition of 1 µg /mL doxycycline  (Fig 4.1B). 

Immunocytochemistry using the anti-Tbx5 antibody was performed to confirm that 

doxycycline also activated Tbx5 protein formation (Fig 4.1C). We found within colonies 

of ES cells Tbx5 expression in nuclei.  

Together these data confirm that four separate ES cell lines were generated that 

overexpressed Tbx5 in both transcripts and protein level in response to doxycycline. 



 46 

 

Fig 4.1. Verification of B1 pTripZ-mTbx5; αMHC::GFP mouse embryonic stem cell line. 

Fig 4.1A. Schematic design of pTripZ-mTbx5 Vector, doxycycline-inducible-Tbx5-

overexpression backbone. Fig 4.1B. B1, B5, B10, B12 mESCs were treated with 

doxycycline at 1000ng/ml and then collected after 0, 24, 48, 72h. Later qRT-PCR was 

performed to detect relative expression of Tbx5. Fig 4.1C. B1 mESCs were treated with 

doxycyline at 200ng/ml for 48h or untreated, and then immunostained the anti-Tbx5 

antibody to detect nuclear expression of this protein. Scale bar, 20 µm. Data represent 

means ± standard error of 3 independent experiments. Statistical significance was 

determined by unpaired, two-tailed t-test. **p<0.01, ***p<0.001 
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Addition of Doxycycline increased beat rate 

One indication that cardiac cells have adopted the SAN identity, is an increased rate 

of beating.   To determine if our mESCs differentiate as SAN cells in response to increased 

expression of Tbx5, mESCs were differentiated as EBs and doxycycline added from Day 

2 until either day 15 or Day 20 at which point beat rate was assessed. B1, B5 and B10 EBs 

were tested for increased beat rate with working dose curve of doxycycline. Beating areas 

were identified based on visual inspection and confirmed by expression of αMHC::GFP 

which we previously showed was a faithful reporter of cardiac differentiation [141]. Beat 

was manually calculated but visual inspection, counting beats/minute.  

Lines B5 and B10 showed a modest increase in beat rate at 100 ng/ml.  Line B1 

showed significant increase in beat rate at 100ng/ml, 200ng/ml and 500ng/ml. However 

the greatest increase in beat rate was observed at 200ng/mL (Fig 4.2A). For this reason, 

line B1 and a dose of 200 mg/ml doxycycline were used for all subsequent evaluation. 

We previously showed that MAP3K7 overexpressing cells that later adopted a 

sinoatrial node fate began to beat quickly around Day 15 of EB differentiation [141]. To 

test this, beat rate was also collected and analyzed at Day 15.  We found that beat rate was 

also significantly increased at day 15 at 100ng/ml, 200 ng/ml and 500ng/ml.   

Manual counting of beat rates is subject to interpretation and cannot always account 

for pausing of EBs; in addition, beats greater than 100 beats per minute are very difficult 

to count manually with great accuracy. We previously developed a MATLAB automation 

to calculate cardiac beats from movie clips based on changes of pixel density at the edges 

of beating areas [143].  To determine how well this software compares to manual count, 
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beating data were recalculated for the B1 line at Day 15, 17 and 21 using the automation. 

This also allowed us to check all beating areas accurately (Fig 4.2B).  At Day 15, both B1 

and B1 dox showed increasing rate of beating as compared to cardiomyocytes from EBs 

differentiated from the parent cell line R1 αMHC::GFP (R1). However, B1 treated with 

doxycycline did not beat faster than untreated B1 cells until Day 17 in this assay (Fig 4.2C). 

At D21, B1 Dox-treated beat faster than both B1 and R1 cells, while B1 and R1 had no 

significant difference.   

All these beat data confirms that administration of dox to B1 does increase beat rate 

of cardiac cells but also confirms that manual counting may not be as accurate as our 

automation.  
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Fig 4.2. Manual beat data and automatic beat data. Fig 4.2A. Manual beat data counting of 

B1, B5 and B10 EBs at Day 20 with Doxycycline dose of 0ng/ml, 20ng/ml, 40ng/ml, 

100ng/ml, 200ng/ml and 500ng/ml. Fig 4.2B. Manual beat data counting of B1 EBs at Day 

15 with indicated dose of doxycycline treatment. Fig 4.2C. Using MATLAB automation 

to calculate cardiac beats of R1, B1 and B1 Dox-treated EBs at Day 15, Day 17 and Day 

21. Data represent means ± standard error of 3 independent experiments. Statistical 

significance was determined by one-way ANOVA (Fig 3.2A&3.2B) or unpaired, two-

tailed t-test (Fig 3.2C). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 
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Relative Tbx5 RNA Expression during EB differentiation 

Although addition of Dox worked well in B1 mESCs, yet regulation of gene 

expression within differentiating EBs is much more complicated. To test whether addition 

of Dox also upregulated Tbx5 transcripts during EB differentiation, EBs were collected 

from Day 5 to Day 21 and assessed Tbx5 transcription by qRT-PCR (Fig 4.3). Interestingly, 

both B1 and B1 dox showed higher levels of Tbx5 than the parent cell line R1. Doxycycline 

treatment did also result in statistically significant increases of Tbx5 at Day 15 and Day19, 

but not at all days of differentiation. In fact, by Day 21, when we saw increased beat rates, 

dox-treated cells had lower levels of Tbx5 transcripts. This suggests: 1) regulation of 

transcriptions within EBs is highly complex and dox-inducible transcripts may not be able 

to activate sufficiently high levels of expression to overcome normal changes in gene 

expression that occur during EB differentiation; 2) The B1 line either due to leakiness of 

the construct or due to gene insertion effects has naturally higher levels of Tbx5 expression 

as compared to the parent cell line (R1); 3) at Day 21 increased beat rate cannot be due to 

active transcription of Tbx5. Besides B1, B5 and B10 EBs treated with Dox compared to 

untreated EBs were tested for regulation of Tbx5 (Fig 4.4). EBs were treated with Dox 

from Day 2 to Day 11 and collected for later qRT-PCR analysis. As shown in Fig 4.4, both 

B5 and B10 EBs treated with Dox did not increase Tbx5 transcripts.   
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Fig 4.3. Relative Tbx5 expression during EB differetiation. EBs were collected from Day 

5 to Day 21 and assessed Tbx5 transcription by qRT-PCR between B1 and B1 Dox-treated 

EBs (Fig 4.3A), R1 and B1 EBs (Fig 4.3B) or R1 and B1 Dox EBs (Fig 4.3C). Data 

represent means ± standard error of 3 independent experiments. Statistical significance was 

determined by unpaired, two-tailed t-test. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 
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Fig 4.4. Relative Tbx5 expression during B5 and B10 EB differetiation. EBs were collected 

from Day 1 to Day 11 and assessed Tbx5 transcription by qRT-PCR among R1, B5 and B5 

Dox-treated EBs (Fig 4.4A) or among R1, B10 and B10 Dox-treated EBs (Fig 4.4B). Data 

represent means ± standard error of one independent experiment.  
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One possible explanation for increased expression of Tbx5 in the absence of dox 

would be the presence of tetracycline (TET) in the serum (FBS #A87F82H).  To test this, 

one experiment was repeated with EBs grown in TET-free medium (TET-free FBS 

#AC10251184).  Tbx5 expression in B1 EBs was not decreased when cells were grown in 

Tet-free media (Fig 4.5A). Next, another experiment was repeated again with R1 EBs 

grown in TET-free medium versus normal medium. The relative Tbx5 expression of R1 

αMHC::GFP EBs grown in TET-free media only increased at Day 9 compared to normal 

medium (Fig 4.5B). Then two more analysis were done with between R1 and B1 EBs either 

with TET-free medium or normal medium (Fig 4.5C&D). In Fig 4.5D, increased Tbx5 

expression was observed with the same pattern as Fig 4.5A. As concerned, we decided to 

use FBS #A87F82H for all subsequent experiments.  
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Fig 4.5. B1 or R1 EBs were cultured in standard differentiation medium with either FBS 

#A87F82H or TET-free FBS #AC10251184. EBs from D1 to D9 were collected and 

relative Tbx5 level was analyzed by qRT-PCR. Data represent means ± standard error of 3 

independent experiments. Statistical significance was determined by unpaired, two-tailed 

t-test. *p<0.05, **p<0.01. 
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Tbx5 overexpression increases overall cardiac formation 

Tbx5 is a key player in cardiac development. Since B1 naturally expresses higher 

levels of Tbx5, it should also be more active in cardiogenesis. To test this, EBs were 

differentiated with or without the addition of dox from Day 2 to Day 21 (Fig 4.6A) or from 

Day 4 to Day 21 (Fig 4.6B). Cells were isolated at Days 17, 19 and 21. The percentage of 

cardiac differentiation was assessed based on expression of GFP by flow cytometry. In all 

cases, more cardiac cells formed from B1 cells but addition of Dox never enhanced cardiac 

differentiation further. 

In another study, the goal is to figure out whether administration of doxycycline 

increases R1 parent cell line’s cardiac differentiation. EBs were differentiated with or 

without the addition of dox from Day 4 to Day 21 (Fig 4.7). Dissociated EBs were analyzed 

by flow cytometry at Day 19 and Day 21.  Expression of GFP recognized the percentage 

of cardiac differentiation by flow cytometry. At Day 19 and Day 21, addition of 

doxycycline did not increase the cardiac cells formed from R1 αMHC::GFP cells, while 

B1 treated with doxycycline did not also increase cardiogenesis further more. 
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Fig 4.6. Cardiac differentiation analyzed by Flow Cytometry.  EBs were differentiated with 

or without the addition of Doxycycline from Day 2 to Day 21 (Fig 4.6A) and from Day 4 

to Day 21 (Fig 4.6B). The percentage of cardiomyocytes was determined by Flow 

Cytometry Data represent means ± standard error of 3 independent experiments. Statistical 

significance was determined by unpaired, two-tailed t-test. ***p<0.001, ****p<0.0001 
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Fig 4.7. Cardiac differentiation analyzed by Flow Cytometry at Day 19 and Day 21.  EBs 

were differentiated with or without the addition of Doxycycline from Day 21. The 

percentage of cardiomyocytes was determined by Flow Cytometry Data represent means 

± standard error of 3 independent experiments. Statistical significance was determined by 

unpaired, two-tailed t-test. ****p<0.0001 
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Subtype of Differentiated Cardiomyocytes  

Immunocytochemistry (ICC) staining is current standard to figure out cardiac 

subtype based on protein expression, such as HCN4 and Shox2 for pacemaker marker or 

Cx43 for ventricular marker. Here four different EBs including R1, MAP3K7/TAK1-

overexpressing EBs (pgk:MAP3K7/TAK1; αMHC:mCherry) [141], B1 untreated, B1 

Dox-treated were analyzed for HCN4, Shox2 and Cx43 positive cardiomyocytes (Fig 4.8A). 

MAP3K7/TAK1-overexpressing EBs had more HCH4 and Shox2 positive cardiomyocytes 

than R1 EBs, however there was no significant difference either between R1 and B1, or 

between B1 and B1 dox-treated EBs. Meanwhile, MAP3K7/TAK1-overexpressing EBs 

had less Cx43 positive cardiomyocytes than R1, while B1 and B1 dox-treated EBs also had 

less Cx43 positive cardiac cells than R1 EBs. B1 Dox-treated EBs had less Cx43 positive 

cardiomyocytes compared to B1 untreated EBs. 

At the same time, whole EBs from R1, B1 and B1 dox-treated group were collected 

and later assessed by qRT-PCR at Day 21 (Fig 4.8B). All transcripts data were normalized 

to B1 untreated EBs, each trials normalized. MAP3K7/TAK1 transcripts did not change 

among three groups. Tbx5 as previous described, B1 dox-treated EBs and R1 EBs had 

significant less Tbx5 transcripts. Compared to R1 EBs, B1 EBs had more Shox2, Tbx3, 

Tbx18, HCN4 and Isl1, theses downstream pacemaker marker of Vincent Christofells 

models. There was no significant difference between B1 and B1 Dox-treated EBs, while 

B1 Dox-treated showed the similar expression pattern. However, B1 EBs activated Nkx2.5 

expression compared to R1 EBs. 
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In parallel, the same experiments described above were performed again to figure 

out the subtype of cardiomyocytes at Day 19 (Fig 4.9). MAP3K7/TAK1-overexpressing 

EBs had more HCN4 and Shox2 positive cardiomyocytes than R1 EBs, however there was 

no significant difference either between R1 and B1, or between B1 and B1 dox-treated EBs. 

Meanwhile, MAP3K7/TAK1-overexpressing EBs had less Cx43 positive cardiomyocytes 

than R1, while B1 and B1 dox-treated EBs also had the similar level of Cx43 positive 

cardiac cells compared to R1 EBs (Fig 4.9A).  For all markers at Day 19, there was no 

significant difference among R1, B1 and B1 dox-treated EBs (Fig 4.9B). 

Taken together, activation of Tbx5 transcription in B1 EBs did not drive the cardiac 

progenitor cells into pacemaker fate.  
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Fig 4.8. The subtype of cardiomyocytes and relative transcripts of R1, B1, B1 Dox-treated 

EBs at Day 21. Fig 4.8A. The percentage of HCN4, Shox2 and Cx43 positive cells were 

analyzed by ICC. Fig 4.8B. MAP3K7/TAK1, Tbx5, Shox2, Tbx3, Tbx18,  HCN4, Nkx2.5, 

Isl1 and Cx43 transcription were assessed by qRT-PCR. Data represent means ± standard 

error of 6 independent experiments, normalized to B1. Statistical significance was 

determined by unpaired, two-tailed t-test. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Fig 4.9. The subtype of cardiomyocytes and relative transcripts of R1, B1, B1 Dox-treated 

EBs at Day 19. Fig 4.9A. The percentage of HCN4, Shox2 and Cx43 positive cells were 

analyzed by ICC. Fig 4.9B. MAP3K7/TAK1, Tbx5, Shox2, Tbx3, Tbx18,  HCN4, Cx30.2 

and Cx43 transcription were assessed by qRT-PCR. Data represent means ± standard error 

of 3 independent experiments. Statistical significance was determined by unpaired, two-

tailed t-test. *p<0.05, **p<0.01, ***p<0.001. 
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Representative Image of ICC staining 

The golden standard for subtype of cardiomyocytes is to figure out the protein 

expression of cardiac cells: HCN4 and Shox2 for pacemaker marker; Cx43 for ventricular 

marker. Representative images of HCN4 staining of Day 21 (Fig 4.10) and Day 19 (Fig 

4.11) show that HCN4 expressing cells at these time points show morphologies 

charatcteristic of SAN cells. Cardiomyocytes of R1, MAP3K7-Overexpressing, B1, B1 

Dox-treated EBs. At first, GFP positive cardiomyocytes were found under the microscopy 

to confirm its location, and then switch to HCN4 signaling, which expressed in the cell 

cytosol and imaged with DAPI nuclear staining at the same time. Here only GFP and HCN4 

double positive cardiac cells were shown.  

Representative Image of Shox2 staining of Day 21 (Fig 4.12) and Day 19 (Fig 4.13) 

Cardiomyocytes of R1, MAP3K7/TAK1-Overexpressing, B1, B1 Dox-treated EBs. At first, 

GFP positive cardiomyocytes were found under the microscopy to confirm its location, and 

then switch to Shox2 signaling, which expressed in the nuclear sublocation and imaged 

with DAPI nuclear staining at the same time. Here only GFP and Shox2 double positive 

cardiac cells were shown. Surprisingly, in MAP3K7/TAK1-overexpressing EBs at Day 21, 

cardiomyocyte with multiple Shox2 positive nucleus was observed and it was not found in 

other cell type. 

Representative Image of Cx43 staining of Day 21 (Fig 4.14) and Day 19 (Fig 4.15) 

Cardiomyocytes of R1, MAP3K7/TAK1-Overexpressing, B1, B1 Dox-treated EBs. At first, 

GFP positive cardiomyocytes were found under the microscopy to confirm its location, and 

then switch to Cx43 signaling, which expressed in the cell membrane and imaged with 
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DAPI nuclear staining at the same time. Here only GFP and Cx43 double positive cardiac 

cells were shown. At the edge of each cardiomyocyte, Cx43/Gap Junction was lined up as 

dash line to contour the shape of individual cells and most expressed between two cells 

next to each other.   
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Fig 4.10. Representative Image of Immnuocytochemistry (ICC) staining of Day 21 

Cardiomyocytes of R1, MAP3K7/TAK1-overexpressing, B1, B1 Dox-treated EBs. EBs 

were dissociated into single cell suspension and replated onto chamber slide. Then these 

cells were stained with GFP or DsRed antibody to determine cardiomyocytes based on 

expression of αMHC:GFP or αMHC:mCherry, while HCN4 antibody to figure out the 

subtype of cardiac cells. Scale bar, 30 µm. 
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Fig 4.11. Representative Image of Immnuocytochemistry (ICC) staining of Day 19 

Cardiomyocytes of R1, MAP3K7/TAK1-overexpressing, B1, B1 Dox-treated EBs. EBs 

were dissociated into single cell suspension and replated onto chamber slide. Then these 

cells were stained with GFP or DsRed antibody to determine cardiomyocytes based on 

expression of αMHC:GFP or αMHC:mCherry, while HCN4 antibody to figure out the 

subtype of cardiac cells. Scale bar, 30 µm. 
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Fig 4.12. Representative Image of ICC staining of Day 21 Cardiomyocytes of R1, 

MAP3K7/TAK1-overexpressing, B1, B1 Dox-treated EBs. EBs were dissociated into 

single cell suspension and replated onto chamber slide. Then these cells were stained with 

GFP or DsRed antibody to determine cardiomyocytes based on expression of αMHC:GFP 

or αMHC:mCherry, while Shox2 antibody to figure out the subtype of cardiac cells. Scale 

bar, 30 µm. 
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Fig 4.13. Representative Image of ICC staining of Day 19 Cardiomyocytes of R1, 

MAP3K7/TAK1-overexpressing, B1, B1 Dox-treated EBs. EBs were dissociated into 

single cell suspension and replated onto chamber slide. Then these cells were stained with 

GFP or DsRed antibody to determine cardiomyocytes based on expression of αMHC:GFP 

or αMHC:mCherry, while Shox2 antibody to figure out the subtype of cardiac cells. Scale 

bar, 30 µm. 
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Fig 4.14. Representative Image of ICC staining of Day 21 Cardiomyocytes of R1, 

MAP3K7/TAK1-overexpressing, B1, B1 Dox-treated EBs. EBs were dissociated into 

single cell suspension and replated onto chamber slide. Then these cells were stained with 

CT3 antibody to determine cardiomyocytes based on expression of αMHC:GFP or 

αMHC:mCherry, while Cx43 antibody to figure out the subtype of cardiac cells. Scale bar, 

30 µm. 
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Fig 4.15. Representative Image of ICC staining of Day 19 Cardiomyocytes of R1, 

MAP3K7/TAK1-overexpressing, B1, B1 Dox-treated EBs. EBs were dissociated into 

single cell suspension and replated onto chamber slide. Then these cells were stained with 

CT3 antibody to determine cardiomyocytes based on expression of αMHC:GFP or 

αMHC:mCherry, while Cx43 antibody to figure out the subtype of cardiac cells. Scale bar, 

30 µm. 

 

  



 70 

Summary 

Here, we produced a mouse embryonic stem cell line B1 (pTripZ-mTbx5; 

αMHC::GFP) that conditionally overexpresses Tbx5. We found that B1 ES cells 

overexpressing Tbx5 showed enhanced overall cardiac differentiation and that cardiac cells 

showed increased beat rates as compared control embryos. Besides, key genes associated 

with SAN differentiation including HCN4 and Shox2 were increased in cells 

overexpressing Tbx5 while other gene associated with early SAN lineage were impacted. 

Despite this, faster beating cells showed a decreased expression of the chamber specific 

marker Cx43 and did not alert in HCN4 or Shox2 positive cardiac cells. These data suggest 

that Tbx5 overexpression is not sufficient for SAN differentiation, although it does activate 

some of early steps in the SAN cascade. 
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CHAPTER FIVE 

THE ROLE OF MAP3K7/TAK1 OVEREXPRESSION DURING EB 

DIFFERNTIATION 

 

Introduction: 

In this chapter, I analyzed the effect of the MAP3K7/TAK1 overexpression on SAN 

differentiation. Using qRT-PCR analyses and FACS data I analyzed gene expression 

comparing wild type EBs to MAP3K7-Overexpressing EBs.  I analyzed both pacemaker 

genes and genes expressed in other lineages relevant to heart induction, specifically 

visceral endoderm (VE), anterior visceral endoderm (AVE) anddefinitive endoderm (DE). 

In addition I examined expression of genes related to Sonic Hedgehog (Shh) signaling.  

 

Cardiomyocytes derived from MAP3K7/TAK1-overexpressing EBs display molecular 

characteristics of the SAN 

To determine if MAP3K7/TAK1-overexpressing EBs influences the cardiac 

differentiation into the SAN fate, qRT-PCR analyses were performed to examine 

pacemaker-specific markers that are already known to direct SAN fate in vivo (reviewed 

in [107]). MAP3K7-overexpressing ES cells were differentiated as EBs and then assessed 

by qRT-PCR for cardiac marker expression from Day 1 to Day 16. During EB 

differentiation, continuous overexpression of MAP3K7 had a profound impact on the 

transcriptional expression of the cardiac progenitor markers like Nkx2.5 and Tbx5 [141]. 

By Day 5, decreased Nkx2.5 transcription in MAP3K7 cells was observed and two days 
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later, by day 7, dramatic increase of Tbx5 transcripts were found in MAP3K7-

overexpressing EBs. 

Within approximately the same differentiation window, mRNAs encoding the 

SAN-specific transcription factors Shox2 and Tbx3 were upregulated, and meanwhile 

cardiac contractile proteins, αMHC, βMHC, were markedly decreased. Other SAN-specific 

markers were either unchanged as compared to wild-type R1 EBs (HCN2) or upregulated 

(HCN4). HCN1, which is not expressed in the SAN of the mouse embryo was expressed 

at similar levels as compared to wild-type R1 EBs, yet the timing of expression was very 

different. 

Isl1 expression was found in cardiac precursors and went down in most 

differentiated myocardial cells. However, Sinus Node cells continued to express Isl1 during 

later differentiation [55]. In MAP3K7-overexpressing cells, three pulses of Isl1 expression 

were observed, while only one of these pulses was observed in wild type R1 cells, the other 

two missing; however, the overall expression pattern was similar between R1 and 

MAP3K7-overexpressing cells. Due to Isl1’s role, non-specific for the sinus node, another 

marker of SAN precursor, Tbx18, was examined.  In addition, we showed that when TAK1 

cells are co-cultured with wild type cells that the wild type cells respond by increasing 

cardiac differentiation, suggesting that TAK1 overexpression leads to the formation of 

cardiogenic tissues.  The lab had also previously shown that gut endoderm markers are 

upregulated in these cells (Hunter, A; Dai, Y. et al, 2019, in revision).  To address this 

possibility I carried out an extensive marker analysis comparing gene expression in the 

TAK1 over-expressing cells to that in wild type cells. 
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Unlike Isl1, Tbx18 (Fig 5.1) was not significantly different between the two 

populations. This data suggests that MAP3K7 acts on established SAN precursors but does 

not determine the size of the precursor population. 
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Fig 5.1. Relative Tbx18 expression during EB differetiation. EBs were collected from Day 

1 to Day 16 and assessed Tbx18 transcription by qRT-PCR between wild-type R1 and 

MAP3K7-overexpressing. Data represent means ± standard error of 3 independent 

experiments. Statistical significance was determined by unpaired, two-tailed t-test. 
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MAP3K7/TAK1 specifically upregulates the expression of markers for the cardiogenic 

endoderm. 

Transthyretin, α-feto-protein, Hnf4 and Gata4 are all expressed in both the visceral 

endoderm (VE), which surrounds mouse embryos prior to gastrulation, and in the gut 

endoderm which is made up of both VE and streak-derived definitive endoderm (DE) [144, 

145]. We previously published that TAK1 overexpressing cells also upregulate these 

markers. To clarify if this up regulation of endodermal markers is the result of expansion 

of the VE or DE, or both, specific markers for each of these lineages were assessed.  

First, markers for the AVE were assessed, as this is the source of cardiogenic 

signals in the embryo. Both Cerberus and hHex were significantly upregulated suggesting 

that a MAP3K7 overexpressing EBs do show a general expansion of AVE (Fig 5.2A). 

Interestingly, Dkk1 was not upregulated, suggesting that its expression in the AVE may be 

controlled by another pathway (Fig 5.2A). Sox17, a marker for all early endodermal 

lineages, including the VE and DE was also upregulated but only transiently (Fig 5.2A).  

Markers that are specifically expressed in the DE but not in the VE, including mCXCR4, 

mTM4sf2 and GPC, were not changed in these EBs as compared to wild type controls (Fig 

5.2B). Finally, we assessed the early neural marker Sox2. This was also not significantly 

different than in control EBs (Fig 5.2B). From this we conclude that MAP3K7 dramatically 

and consistently causes an increase in markers for the VE and AVE, but does not affect the 

formation of streak-derived DE. To confirm the role MAP3K7 on endoderm formation, we 

differentiated EBs harboring an endoderm specific promoter reporter, Afp::GFP [146].  

These were treated with the MAP3K7/TAK1 specific inhibitor 5z-7-oxozeaenol.  EBs were 
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treated with the inhibitor from Day 1 to Day 4 of EB differentiation and assessed on Day 

10 for expression of the endoderm reporter (Fig 5.3).  Control EBs grown in the presence 

of the carrier DMSO showed robust endoderm differentiation, as assessed by the presence 

of cells expressing the GFP reporter.  By contrast cells grown in the presence the MAP3K7 

inhibitor showed almost no endoderm formation, even 6 days after the inhibitor was 

removed.  

 

MAP3K7/TAK1 Overexpression leads to up regulation of Shh and Gli2 

It has previously been observed that TGFbeta signaling regulates the expression of 

Sonic Hedgehog (Shh) during gastrulation in Hensen’s node of avian embryos [147]. To 

examine whether SMAD-independent TGFbeta signaling might be involved in regulation 

of Shh, we examined the expression of Shh and several Gli genes by qRT_PCR during EB 

differentiation. Shh and Gli2, but not Gli1 or Gli3 showed robust overexpression in EBs 

overexpressing MAP3K7/TAK1 (Fig 5.4). 
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Fig 5.2. Quantitative Real-Time PCR data showing transient up regulation of the AVE 

markers Cerberus and hHex, as well as the pan-endodermal marker Sox17 (Fig 5.2A). By 

contrast the AVE Dkk1, which is regulated by Wnt signaling was not upregulated (Fig 

5.2A).  Markers for the definitive endoderm (CXCR4, mTm4sf2 and GPC1) and the early 

neural marker, mSox2 were unaffected in MAP3K7/TAK1 overexpressing EBs (red) as 

compared to control EBs (green line) (Fig 5.2B). Error bars represent standard error of 

mean. Statistical significance was determined by unpaired, two-tailed t-test. *p<0.05, 

**p<0.01, ****p<0.0001. 
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Fig 5.3. The effect of MAP3K7/TAK1 inhibitro 5z-7-oxozeaenol during EB differentiation. 

EBs harboring an endoderm specific promoter reporter AFP::GFP were grown in the 

presence of the MAP3K7 inhibitor 5z-7-oxozeaenol from Day 1 to Day 4 of EB 

differentiation showed a significant decrease in endoderm formation as assessed by the 

expression of green fluorescent protein, as compared DMSO-treated controls. (hunter,  A.; 

Dai, Y et al 2019, in revision) 

 

Fig 5.4 Quantitative Real-Time PCR data showing a strong, transient up regulation of Shh 

and Gli2.  Gli1 showed a small but statistically significant up regulation in MAP3K7 

overexpressing EBs (red) as compared to control EBs (green line) and Gli3 was not 

affected. Error bars represent standard error of mean from 3 replicates. Statistical 

significance was determined by unpaired, two-tailed t-test. *p<0.05, **p<0.01. 
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MAP3K7/TAK1 Overexpression does not affect early mesoderm formation 

Given that MAP3K7 seems to specifically expand the VE and AVE in the 

endoderm it was hypothesized that MAP3K7 overexpressing EBs might also show an 

expansion of the cardiac mesoderm. We used qRT-PCR on differentiated EBs to determine 

if MAP3K7 impacted early mesoderm formation by assessing expression of the early 

mesoderm markers T/Brachyury and FGF8. There was a small but statistically significant 

difference between MAP3K7 overexpressing EBs and controls, suggesting that mesoderm 

formation in these cells may be slightly increased.  

We also assessed total cardiac formation on Day 17 in these cells by flow cytometry, 

but found that there was no statistically significant difference between the percentages of 

cardiac cells that formed in the MAP3K7/TAK1-overexpressing EBs as compared to the 

parent (R1) cell line (Fig 5.5).  
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Fig 5.5. Summary of flow cytometry data. Flow cytometry data comparing cardiac 

differentiation in two separate expansions of MAP3K7/TAK1-overexpressing cells (red 

bar) and wild type cells (green bar) based on expression of the cardiac specific promoter 

reporter αMHC::GFP. Error bars in qRT-PCR data indicate standard error from three 

technical replicates. A change in gene expression between MAP3K7-overexpressing and 

wild type EBs is considered relevant if the same change was observed in each of a 

minimum of three biological replicates. Error bars in flow cytometry data represent 

standard deviation. Statistical significance was determined by unpaired, two-tailed t-test. 
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Discussion: 

Here, MAP3K7-overexpression EBs did not affect overall cardiac formation. 

Meanwhile, pacemaker marker such as Tbx18, AVE marker (Cerberus, hHex and Dkk1), 

early endoderm marker (Sox17), DE marker (mCXCR4, mTM4sf2 and GPC), early neural 

marker Sox2, Sonic Hedgehog Signaling (Shh and Gli1~3), all these relative transcripts 

were examined during EB differentiation. From all these results, we concluded that 

MAP3K7 dramatically and consistently causes an increase in markers for the VE and AVE, 

but does not affect the formation of streak-derived DE. 
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CHAPTER SIX 

SINGLE CELL ANALYSIS OF GENE EXPRESSION DURING MYOCARDIAL 

DIFFERENTIATION  

 

Introduction:   

In this chapter, I will specifically examine the expression of SAN and other cardiac 

markers in cardiomyocytes. In all of these studies we are examining gene expression in 

whole EBs and examining markers that are expressed in the heart and endoderm but are 

also often expressed in other non-cardiac, non-endoderm lineages.  Therefore it is 

sometimes difficult to know whether observed changes are due only changes in the cardiac 

(or endodermal lineage). To address this we have begun to develop a technique that will 

allow us to examine gene expression in just the cardiac lineage.  Briefly, ES cells harboring 

the αMHC::GFP promoter reporter are differentiated until day 21 and cardiomyocytes 

isolated by flow cytometry.  From these cells we isolated RNA and then carried out real 

time PCR for genes expected to be expressed in cardiomyocytes.  A number of technical 

challenges remain to be addressed with this protocol. These data represent promising 

preliminary data for a new, more accurate assessment of cardiac differentiation in our assay 

system. 

 

FACS Protocol 

EBs were treated with 0.25% Trypsin/EDTA at 37C for 30 minutes and then 

neutralized with regular differentiation medium. Cells were centrifuged at 2000 rpm for 5 
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minutes and resuspended with FACS buffer. Then cells were centrifuged again and 

resuspended with FACS buffer. Cells were filtered through a 100µm sieve and cell 

numbers were counted using a haemocytometer, checking single cell suspension at the 

same time. Flow cytometry was performed with the Beckman Coulter MoFlo Astrios EQ 

cell sorter and data was analyzed using FlowJo VX software (Fig 5.1). Here is the 

representative analysis of R1 FACS control, R1 and B1 cells. Using two different laser, 

GFP (488-513_26) and PE (488-576_21) laser, we are able to figure out the real GFP 

positive cells based on the gate of R1 FACS Control (0.29%), and will figure out R1 

αMHC::GFP for 1.12% cardiomyocytes and B1 pTripZ-mTbx5; αMHC::GFP for 3.51% 

cardiomyocytes. Next, around 20,000 cells were sorted based on this gate.  
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Fig 6.1. Representative Image of FACS analyze data of R1 FACS Control, R1 αMHC::GFP 

and B1 pTripZ-mTbx5; αMHC::GFP at Day 21. 
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RNA Isolation and Reverse Transcription 

After sorting, 20, 000 (20K) cells from FACS-sorted samples were collected as a 

cell pellet. The RNeasy Plus Micro Kit (Qiagen, cat#74034) was used as manufacturer's 

instructions. The RNA concentration and quality was shown in Table 6.1. The ideal RNA 

A260/A280 is 1.7~2.0. The result of RNA quality was from 0.9~1.37, so the RNA was not 

in good quality.  These data suggest that either the FACS protocol or our RNA isolation 

technique is not sufficient to generate high quality RNA. 

Despite poor 260/280 ratios for isolated RNA we decided to perform reverse 

transcription of RNA samples to synthesis cDNA. Typically we use 800ng-1ug of 

RNA/reaction however because of low RNA yields, we decided to input 10 µl of all 8 

samples regardless of RNA concentration and then adjust the concentrations of the all 8 

cDNAs during the PCR reaction as shown in Table 6.2. Finally, 8.1ng cDNA per PCR 

reaction was added. (We typically add, 40ng of cDNA, for each PCR reaction.) As a result, 

the mean Cross Point (CP) and CP Error calculated automatically from PCR Machine were 

shown in Table 6.3. 
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Date No Name 260/280 ng/µl Input Water 

FACS 

SORT 

20K 

RNA 

1 R1-2 D19#3 0.9 33.174 10.0 4.4 

2 R1-2 Dox D19#3 1.37 6.574 10.0 4.4 

3 B1 D19#3 1.02 72.39 10.0 4.4 

4 B1 Dox D19#3 1.1 96.71 10.0 4.4 

5 R1-2 D21#3 1.14 12.654 10.0 4.4 

6 R1-2 Dox D21#3 1.13 4.028 10.0 4.4 

7 B1 D21#3 1.01 105.26 10.0 4.4 

8 B1 Dox D21#3 1.35 -3.496 10.0 4.4 

 

Table 6.1. RNA concentration of FACS-sorted samples. 

 

 No Name 260/280 ng/µL Input Water ng/reaction 

FACS 

SORT 

20K 

cDNA 

1 R1-2 D19#3 1.65 14.51524 13.4 10.6 8.1 

2 R1-2 Dox D19#3 1.77 11.86512 16.4 7.6 8.1 

3 B1 D19#3 1.72 16.54216 11.7 12.3 8.1 

4 B1 Dox D19#3 1.71 20.1818 9.6 14.4 8.1 

5 R1-2 D21#3 1.75 11.64244 16.7 7.3 8.1 

6 R1-2 Dox D21#3 1.68 16.46996 11.8 12.2 8.1 

7 B1 D21#3 1.76 8.58344 22.6 1.4 8.1 

8 B1 Dox D21#3 1.78 8.09096 24.0 0.0 8.1 

 

Table 6.2. cDNA concentration of FACS-sorted samples. 
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No Name Mean CP CP Error 

1 R1-2 D19#3 26.104 0.112361 

2 R1-2 Dox D19#3 25.454 0.149497 

3 B1 D19#3 23.892 0.017546 

4 B1 Dox D19#3 24.219 0.170053 

5 R1-2 D21#3 23.448 0.305958 

6 R1-2 Dox D21#3 22.026 0.109814 

7 B1 D21#3 22.253 0.436087 

8 B1 Dox D21#3 23.896 0.06666 

 

Table 6.3. Mean CP and CP Error collected from PCR machine.  
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To test the relative transcripts of pacemaker marker like HCN4, Shox2, Tbx3, and 

Isl1, or ventricular marker such as Cx43, qRT-PCR experiments were performed to 

analysis the difference between R1 vs R1 Dox-treated cells , or R1 vs B1 cells , or R1 vs 

B1 Dox-treated cells or B1 vs B1 Dox-treated cells. As shown in Fig 6.2A and Fig 6.2B, 

the batch-to-batch variation between these three trials is so huge. From this, we conclude 

that our input cDNA is outside of the dynamic range of the Roche Lightcycler real time 

PCR machine. Each bar (Fig 6.2A and Fig 6.2B) represented a single independent trial 

from PCR data. At the same time, the range of error bars mean the challenges of artificial 

effect. All different markers were compared, however these was no significant difference 

among all five markers. As discussed, we decided to normalize the expression of each gene 

in a given trial to the value in R1 untreated cardiac cells to get an idea of overall changes 

of gene expression (Fig 6.3A and Fig 6.3B). The relative HCN4 expression of R1 cardiac 

cells is much more than B1 group at Day 19 and R1 had much more Isl1 expression than 

both B1 and B1 Dox-treated group. Meanwhile, at Day 21, B1 Dox-treated cardiac cells 

had more Shox2 and Tbx3 relative expression than R1 untreated group. Taken together, it 

is very hard to interpret the transcripts data. 
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Fig 6.2 HCN4, Shox2, Tbx3, Isl1, Cx43 relative transcription were assessed by qRT-PCR 

for Day 19 cardiac cell (Fig 6.2A) and Day 21 cardiac cell (Fig 6.2B). Data represent means 

± standard error of 3 independent experiments. Statistical significance was determined by 

unpaired, two-tailed t-test.  
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Fig 6.3 HCN4, Shox2, Tbx3, Isl1, Cx43 normalized transcription were assessed by qRT-

PCR for Day 19 cardiac cell (Fig 6.3A) and Day 21 cardiac cell (Fig 6.3B). Data represent 

means ± standard error of 3 independent experiments. Each trial is normalized to R1 

untreated cells. Statistical significance was determined by unpaired, two-tailed t-test. 

***p<0.001, ****p<0.0001 
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Discussion 

There are still a few challenges from this protocol, especially RNA quality from 

FACS sorted cells. Here are several improvements we will need: 1) Collect 30,000 cardiac 

cells instead of 20,000 cells; 2) Improve RNA Isolation Protocol to generate fairly well 

good RNA quality; 3) Strengthen the capability of PCR protocol to eliminate standard error 

of each individual trial.  
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CHAPTER SEVEN 

DESIGN AND VERIFICATION OF OVEREXPRESSION LINES 

 

Introduction: 

In this chapter, I will show data verifying gene overexpression in both the Tbx5 and 

other overexpression cell lines. Vincent Christofells has described a transcriptional 

hierarchy that directs the differentiation if sinoatrial node cells in the mouse embryo. The 

major transcription factors involved are: Tbx3, Isl1, Shox2, Tbx18 and MAP3K7/TAK1 

(Fig 7.1) [107, 141].  To study their function in directing SAN differentiation we made ES 

cell lines that will allow us to conditionally overexpress these factors. One of these lines 

(B1, which overexpressed Tbx5) is described in Chapter 4. Detailed information of each 

individual mESC that I produced is discussed here (Table 7.1).  
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Fig 7.1. Proposed model of SAN differentiation in MAP3K7/TAK1 Paper.  

No Vector Insert Gene mESCs  

1 pTripZ mTbx3 X1, X6, X13 

2 pTET-ON mTbx3 DX5, DX9 

3 pTripZ hIsl1 I4 

4 pTET-ON hIsl1 DI1, DI2, DI3, DI7 

5 pTripZ hShox2 S2 

6 pTET-ON hShox2 DS13, DS14 

7 pTripZ hTbx18 T2 

8 pTET-ON hTbx18 DT2, DT5 

9 pTripZ MAP3K7 M8 

10 pTET-ON MAP3K7 DM11 

11 pTET-ON mTbx5 DB4, DB6 

 

Table 7.1. List of cell lines discussed in this chapter. 
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Independent clonal lines that conditionally overexpress Tbx3 were established. 

To test the role of Tbx3 in SAN development, mouse embryonic stem cell (mESC) 

lines were generated to conditionally overexpress it by addition of doxycycline. To do this, 

the open reading frame (ORF) of Tbx3 was cloned downstream of the TurboRFP motif 

into the pTripZ vector.  This was used to generate lentivirus and used to transduce wild 

type ES cells. (Fig 7.2A). Another design is to clone Tbx3 ORF into downstream of pTight 

TET-Responsive promoter into the pTET-ON vector (Fig 7.3A), which drives expression 

of the insert GOI with administration of doxycycline. 

These vectors can be used to conditionally overexpress all of the key transcriptional 

regulators of SAN differentiation. Genetic studies in mouse have revealed an essential role 

for Tbx3 in establishing the SAN [119, 148]. However, it has not been shown whether 

Tbx3 is sufficient for SAN differentiation. To study its role we established six independent, 

clonal ESC lines (X1, X6, X8, X9, X11, X13), three of these, X1, X6, X13, showed stable 

upregulation of Tbx3 transcripts in an inducible fashion, as assessed by qRT-PCR at 24, 

48 and 72 hours after addition of doxycycline (1 µg /mL) (Fig 7.2B). Other clonal mESC 

lines (DX2, DX3, DX4, DX5, DX6, DX7, DX8 and DX9), two of these,DX5, DX9, 

showed stable upregulation of Tbx3 transcripts as described above (Fig 7.3B). To test the 

best GOI-inducible dose, DX5, DX9 mESCs were treated with doxycycline at 200ng/ml, 

400ng/ml and 800ng/ml and then collected after 48 hours (Fig 7.3C). Later qRT-PCR was 

performed to detect relative expression of Tbx3. DX5 showed upregulation of Tbx3 

expression at dose 400ng/ml, while DX9 showed downregulation of Tbx3 expression at 

dose 400ng/ml. DX5 will be used for future study. 
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A. Addition of Doxycycline increased beat rate in X1 X6 EBs 

One indication that cardiac cells have adopted the SAN identity, is an increase rate 

of beating speed. To determine if any of our mESCs could differentiate towards SAN cells 

in response to increased expression of Tbx3. mESCs were differentiated as EBs and 

doxycycline added from Day 2 to Day 16 at which point beat rate data was collected and 

assessed. X1, X6 EBs were tested for increased beat rate with working dose curve of 

doxycycline (Fig 7.2C). Beating areas were identified based on visual inspection and 

confirmed by expression of αMHC::GFP. Beat was manually calculated but visual 

inspection counting beats/minute. Lines X1 showed a modest increase in beat rate at 200 

ng/ml.  Line X6 showed significant increase in beat rate at 100ng/ml, 200ng/ml and 

500ng/ml. For this reason, line X1 and X6 were used for all subsequent evaluation. 

B. Relative Tbx3 RNA Expression during EB differentiation 

Although addition of Dox worked well in X1 and X6 mESCs, regulation of gene 

expression within differentiating EBs is much more complicated. To test whether addition 

of Dox also upregulated Tbx3 transcripts during EB differentiation, EBs were collected 

from Day 1 to Day 11 and assessed Tbx3 transcription by qRT-PCR (Fig 7.4).  

Interestingly, X1 EBs showed a modest increase of Tbx3 transcripts without 

doxycycline compared to parent R1 cell line, while X6 EBs showed the similar level of 

Tbx3 expression. X1 Dox-treated EBs only showed increased Tbx3 expression at Day 3 

and the same for Day 5 to D11 compared to X1 untreated EBs, while X6 Dox-treated EBs 

showed increased Tbx3 expression at Day 5, Day 7 and Day 9. For this reason, line X6 was 

used for future analysis.  
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Fig 7.2. Verification of X1, X6 pTripZ-mTbx3; αMHC::GFP mouse embryonic stem cell 

line. Fig 7.2A. Schematic design of pTripZ-mTbx3 Vector, doxycycline-inducible-Tbx3-

overexpression backbone. Fig 7.2B. X1, X6, X8, X9, X11, X13 mESCs were treated with 

doxycycline at 1 µg /mL and then collected after 0, 24, 48, 72h. Later qRT-PCR was 

performed to detect relative expression of Tbx3. Fig 7.2C. Manual beat data counting of 

X1, X6 EBs at Day 16 with Doxycycline dose of 0ng/ml, 20ng/ml, 40ng/ml, 100ng/ml, 

200ng/ml and 500ng/ml. Data represent means ± standard error of 3 independent 

experiments. Statistical significance was determined by one-way ANOVA. *p<0.05, 

***p<0.001, ****p<0.0001. 
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Fig 7.3. Verification of DX5, DX9 pTET-ON-mTbx3; αMHC::GFP mouse embryonic 

stem cell line. Fig 7.3A. Schematic design of pTET-ON-mTbx3 Vector, doxycycline-

inducible-Tbx3-overexpression backbone. Fig 7.3B. DX2, DX3, DX4, DX5, DX6, DX7, 

DX8 and DX9 mESCs were treated with doxycycline at 1 µg /mL and then collected after 

0, 24, 48, 72h. Later qRT-PCR was performed to detect relative expression of Tbx3. Fig 

7.3C. DX5, DX9 mESCs were treated with doxycycline at 0ng/ml, 200ng/ml, 400ng/ml 

and 800ng/ml and then collected after 48 hours. Later qRT-PCR was performed to detect 

relative expression of Tbx3. Data represent means ± standard error of 3 independent 

experiments. Statistical significance was determined by unpaired, two-tailed t-test. 

**p<0.01. 
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Fig 7.4. Relative Tbx3 expression during EB differetiation. EBs were collected from Day 

1 to Day 11 and assessed Tbx3 transcription by qRT-PCR among X1 Dox-treated or 

untreated EBs and R1 EBs (Fig 7.4A) and among X6 Dox-treated or untreated EBs and R1 

EBs (Fig 7.4B). Data represent means ± standard error of one independent experiment.  
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Independent clonal line that conditionally overexpress hIsl1 was established. 

To test the role of Isl1 in SAN development, mESC lines were generated to 

conditionally overexpress hIsl1. To do this, the open reading frame of hIsl1 was cloned 

downstream of the TurboRFP motif into the pTripZ vector. This was used to generate 

lentivirus in which GOI can be overexpressed by the administration of Doxycycline (Fig 

7.5A). Another design is to clone Isl1 ORF into downstream of pTight TET-Responsive 

promoter into the pTET-ON vector (Fig 7.6A), which drives expression of the insert GOI 

with administration of Doxycycline. 

These vectors can be used to conditionally overexpress all of the key transcriptional 

regulators of SAN differentiation. Downstream of this cascade is Isl1. Genetic studies in 

mouse have revealed an essential role for Isl1 in establishing the SAN [149, 150]. However, 

it has not been shown whether Isl1 is sufficient for SAN differentiation. To study its role 

we established five independent, clonal ESC lines (I2, I3, I4, I5, I6), only I4 showed stable 

upregulation of Isl1 transcripts in an inducible fashion, as assessed by qRT-PCR at 24, 48 

and 72 hours after addition of doxycycline (1 µg /mL) (Fig 7.5B). Other clonal mESC lines 

(DI1, DI2, DI3, DI4, DI6 and DI7), two of all DI1, DI3 showed stable upregulation of Isl1 

transcripts as described above (Fig 7.6B). To test the best GOI-inducible dose, DI1, DI3 

mESCs were treated with doxycycline at 0ng/ml, 50ng/ml, 100ng/ml and 200ng/ml and 

then collected after 48 hours (Fig 7.6C). Later qRT-PCR was performed to detect relative 

expression of Isl1. Both DI1 and DI3 did not show upregulation of Isl1. Other potential 

cell lines (DI2 and DI7) will be tested in the future study.   

A. Addition of Doxycycline increased beat rate in I4 EBs 



 100 

One indication that cardiac cells have adopted the SAN identity, is an increase rate 

of beating speed. To determine if any of our mESCs could differentiate towards SAN cells 

in response to increased expression of Isl1. mESCs were differentiated as EBs and 

doxycycline added from Day 2 to Day 16 at which point beat rate data was collected and 

assessed. I4 EBs were tested for increased beat rate with working dose curve of 

doxycycline (Fig 7.5C). Beating areas were identified based on visual inspection and 

confirmed by expression of αMHC::GFP. Beat was manually calculated but visual 

inspection counting beats/minute. Lines I4 showed a modest increase in beat rate at 500 

ng/ml. For this reason, line I4 was used for all subsequent evaluation. 

B. Relative Isl1, Tbx5, Tbx3, Nkx2.5 RNA Expression during EB differentiation 

Although addition of Dox worked well in I4 mESCs, regulation of gene expression 

within differentiating EBs is much more complicated. To test whether addition of Dox also 

upregulated Isl1 transcripts during EB differentiation, EBs were collected from Day 1 to 

Day 16 and assessed Isl1, Tbx5, Tbx3, Nkx2.5 transcription by qRT-PCR (Fig 7.7). 

Interestingly, I4 Dox-treated EBs showed increase Isl1 expression at Day 2, Day 5, Day 6 

and Day 8 compared to I4 untreated EBs. Then I4 Dox-treated EBs showed four pulses of 

Tbx5 upregulation at Day 6, 8, 10 and 13; one pulse of Tbx3 upregulation at Day 6; two 

pulses of Nkx2.5 upregulation at Day 8 and 13. For this experiment only one trial is 

included, further data will be collected and analyzed. 
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Fig 7.5. Verification of I4 pTripZ-hIsl1; αMHC::GFP mouse embryonic stem cell line. Fig 

7.5A. Schematic design of pTripZ-hIsl1 Vector, doxycycline-inducible-Isl1-

overexpression backbone. Fig 7.5B. I2, I3, I4, I5 and I6 mESCs were treated with 

doxycycline at 1 µg /mL and then collected after 0, 24, 48, 72h. Later qRT-PCR was 

performed to detect relative expression of Isl1. Fig 7.5C. Manual beat data counting of I4 

EBs at Day 15 with Doxycycline dose of 0ng/ml, 20ng/ml, 40ng/ml, 100ng/ml, 200ng/ml 

and 500ng/ml. Data represent means ± standard error of 3 independent experiments. 

Statistical significance was determined by one-way ANOVA. **p<0.01. 
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Fig 7.6. Verification of DI1, DI3 pTET-ON-hIs1; αMHC::GFP mouse embryonic stem cell 

line. Fig 7.6A. Schematic design of pTET-ON- hIs1 Vector, doxycycline-inducible-Is1-

overexpression backbone. Fig 7.6B. DI1, DI2, DI3, DI4, DI6 and DI7 mESCs were treated 

with doxycycline at 1 µg /mL and then collected after 0, 24, 48, 72h. Later qRT-PCR was 

performed to detect relative expression of Is1. Fig 7.6C. DI1, DI3 mESCs were treated 

with doxycycline at 0ng/ml, 50ng/ml, 100ng/ml and 200ng/ml and then collected after 48 

hours. Later qRT-PCR was performed to detect relative expression of Is1. Data represent 

means ± standard error of 3 independent experiments. Statistical significance was 

determined by unpaired, two-tailed t-test. 
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Fig 7.7. Relative Isl1, Tbx5, Tbx3, Nkx2.5 expression during EB differetiation. EBs were 

collected from Day 1 to Day 16 and assessed Tbx3 transcription by qRT-PCR between I4 

Dox-treated or I4 untreated EBs (Fig 7.7). Data represent means ± standard error of one 

independent experiments.  
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Independent clonal line that conditionally overexpress hShox2 was established. 

To test the role of Shox2 in SAN development, mESC lines were generated to 

conditionally overexpress hShox2. To do this, the open reading frame of hShox2 was 

cloned downstream of the TurboRFP motif into the pTripZ vector. This was used to 

generate lentivirus in which GOI can be overexpressed by the administration of 

Doxycycline (Fig 7.8A). Another design is to clone Shox2 ORF into downstream of pTight 

TET-Responnsive promoter into the pTET-ON vector (Fig 7.9A), which drives expression 

of the insert GOI with administration of Doxycycline. 

 Genetic studies in mouse have revealed an essential role for Shox2 in establishing 

the SAN [113, 151, 152]. However, it has not been shown whether Shox2 is sufficient for 

SAN differentiation.  To study its role we established six independent, clonal ESC lines 

(S1, S2, S7, S10, S14 and S16), only S2 showed stable upregulation of Shox2 transcripts 

in an inducible fashion, as assessed by qRT-PCR at 24, 48 and 72 hours after addition of 

doxycycline (1 µg /mL) (Fig 7.8B). Other clonal mESC lines (DS13, DS14), both showed 

stable upregulation of Shox2 transcripts as described above (Fig 7.9B). To test the best 

GOI-inducible dose, DS13 and DS14 mESCs were treated with doxycycline at 0ng/ml, 

50ng/ml, 100ng/ml and 200ng/ml and then collected after 48 hours (Fig 7.9C). Later qRT-

PCR was performed to detect relative expression of Shox2. DS13 showed downregulation 

of Shox2 at dose 200ng/ml, while DS14 showed upregulation of Shox2 at dose 50ng/ml. 

DS14 will be used in the future study.   

A. Addition of Doxycycline did not increase beat rate in S2 EBs 
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One indication that cardiac cells have adopted the SAN identity is an increase rate 

of beating speed. To determine if any of our mESCs could differentiate towards SAN cells 

in response to increased expression of Shox2. mESCs were differentiated as EBs and 

doxycycline added from Day 2 to Day 16 at which point beat rate data was collected and 

assessed. S2 EBs were tested for increased beat rate with working dose curve of 

doxycycline (Fig 7.8C). Beating areas were identified based on visual inspection and 

confirmed by expression of αMHC::GFP. Beat was manually calculated but visual 

inspection counting beats/minute.  Line S2 with administration of Dox did not increase 

beat rate at either Day 15 or Day 16. In our model, S2 may not be the best choice for future 

study.  
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Fig 7.8. Verification of S2 pTripZ-hShox2; αMHC::GFP mouse embryonic stem cell line. 

Fig 7.8A. Schematic design of pTripZ-hShox2 Vector, doxycycline-inducible-Shox2-

overexpression backbone. Fig 7.8B. S1, S2, S7, S10, S14 and S16 mESCs were treated 

with doxycycline at 1 µg /mL and then collected after 0, 24, 48, 72h. Later qRT-PCR was 

performed to detect relative expression of Isl1. Fig 7.8C. Manual beat data counting of S2 

EBs at Day 15 or Day 16 with Doxycycline dose of 0ng/ml, 20ng/ml, 40ng/ml, 100ng/ml, 

200ng/ml and 500ng/ml. Data represent means ± standard error of 3 independent 

experiments. Statistical significance was determined by one-way ANOVA. 
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Fig 7.9. Verification of DS13, DS14 pTET-ON-hShox2; αMHC::GFP mouse embryonic 

stem cell line. Fig 7.9A. Schematic design of pTET-ON-hShox2 Vector, doxycycline-

inducible-Shox2-overexpression backbone. Fig 7.9B. DS13 and DS14 mESCs were treated 

with doxycycline at 1 µg /mL and then collected after 0, 24, 48, 72h. Later qRT-PCR was 

performed to detect relative expression of Is1. Fig 7.9C. DS13 and DS14 mESCs were 

treated with doxycycline at 0ng/ml, 50ng/ml, 100ng/ml and 200ng/ml and then collected 

after 48 hours. Later qRT-PCR was performed to detect relative expression of Shox2. Data 

represent means ± standard error of 3 independent experiments. Statistical significance was 

determined by unpaired, two-tailed t-test. **p<0.01, ***p<0.001. 
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Independent clonal line that conditionally overexpress hTbx18 was established. 

To test the role of Tbx18 in SAN development, mESC lines were generated to 

conditionally overexpress hTbx18. To do this, the open reading frame of hTbx18 was 

cloned downstream of the TurboRFP motif into the pTripZ vector.  This was used to 

generate lentivirus in which GOI can be overexpressed by the administration of 

Doxycycline (Fig 7.10A). Another design is to clone Tbx18 ORF into downstream of 

pTight TET-Responsive promoter into the pTET-ON vector (Fig 7.11A), which drives 

expression of the insert GOI with administration of Doxycycline. 

These vectors can be used to conditionally overexpress all of the key transcriptional 

regulators of SAN differentiation. Downstream of Tbx5 is Tbx18. Genetic studies in mouse 

have revealed an essential role for Tbx18 in establishing the SAN [84, 153-155]. However, 

it has not been shown whether Tbx18 is sufficient for SAN differentiation.  To study its 

role in SAN differentiation, we established one independent, clonal ESC lines (T2), which 

showed stable upregulation of Tbx18 transcripts in an inducible fashion, as assessed by 

qRT-PCR at 24, 48 and 72 hours after addition of doxycycline (1 µg /mL) (Fig 7.10B). 

Other clonal mESC lines (DT2, DT4, DT5, DT7, DT8, DT9 and DT10), DT2 and DT5 

showed stable upregulation of Shox2 transcripts as described above (Fig 7.11B). To test 

the best GOI-inducible dose, DT2 and DT5 mESCs were treated with doxycycline at 

0ng/ml, 200ng/ml, 400ng/ml and 800ng/ml and then collected after 48 hours (Fig 7.11C). 

Later qRT-PCR was performed to detect relative expression of Tbx18. Both DT2 and DT5 

did not show upregulation of Tbx18. Other potential cell lines (DT8, DT9 and DT10) will 

be tested in the future study.   
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A. Addition of Doxycycline did increase beat rate in T2 EBs 

One indication that cardiac cells have adopted the SAN identity, is an increase rate 

of beating speed. To determine if any of our mESCs could differentiate towards SAN cells 

in response to increased expression of Tbx18. mESCs were differentiated as EBs and 

doxycycline added from Day 2 to Day 16 at which point beat rate data was collected and 

assessed. T2 EBs were tested for increased beat rate with working dose curve of 

doxycycline (Fig 7.10C).  Beating areas were identified based on visual inspection and 

confirmed by expression of αMHC::GFP.  Beat was manually calculated but visual 

inspection counting beats/minute.  Line T2 showed significant increase at 200ng/ml at Day 

15. Line T2 will be used for future study. 
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Fig 7.10. Verification of T2 pTripZ-hTbx18; αMHC::GFP mouse embryonic stem cell line. 

Fig 7.10A. Schematic design of pTripZ-hTbx18 Vector, doxycycline-inducible-Tbx18-

overexpression backbone. Fig 7.10B. T2 mESCs were treated with doxycycline at 1 µg 

/mL and then collected after 0, 24, 48, 72h. Later qRT-PCR was performed to detect 

relative expression of Isl1. Fig 7.10C. Manual beat data counting of T2 EBs at Day 15 with 

Doxycycline dose of 0ng/ml, 20ng/ml, 40ng/ml, 100ng/ml, 200ng/ml and 500ng/ml. 
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Fig 7.11. Verification of DT2, DT5 pTET-ON-hTbx18; αMHC::GFP mouse embryonic 

stem cell line. Fig 7.11A. Schematic design of pTET-ON-hTbx18 Vector, doxycycline-

inducible-Tbx18-overexpression backbone. Fig 7.11B. DT2, DT4, DT5, DT7, DT8, DT9 

and DT10 mESCs were treated with doxycycline at 1 µg /mL and then collected after 0, 

24, 48, 72h. Later qRT-PCR was performed to detect relative expression of Tbx18. Fig 

7.11C. DT2 and DT5 mESCs were treated with doxycycline at 0ng/ml, 200ng/ml, 

400ng/ml and 800ng/ml and then collected after 48 hours. Later qRT-PCR was performed 

to detect relative expression of Tbx18. Data represent means ± standard error of 3 

independent experiments. Statistical significance was determined by unpaired, two-tailed 

t-test.  
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Independent clonal lines that conditionally overexpress MAP3K7/TAK1 were 

established. 

To test the role of MAP3K7/TAK1 in SAN development, mESC lines were 

generated to conditionally overexpress MAP3K7. To do this, the open reading frame of 

MAP3K7 was cloned downstream of the TurboRFP motif into the pTripZ vector. This was 

used to generate lentivirus in which GOI can be overexpressed by the administration of 

Doxycycline (Fig 7.12A). Another design is to clone MAP3K7 ORF into downstream of 

pTight TET-Responnsive promoter into the pTET-ON vector (Fig 7.13A), which drives 

expression of the insert GOI with administration of Doxycycline. 

These vectors can be used to conditionally overexpress all of the key transcriptional 

regulators of SAN differentiation. Upstream of Tbx5 is MAP3K7. Genetic studies in mouse 

have revealed an essential role for MAP3K7 in establishing the SAN [141, 156]. 

Continuous expression of MAP3K7 directed ES-derived cardiomyocytes into pacemaker 

fate. However, it has not been shown whether conditional expression of MAP3K7 is 

sufficient for SAN differentiation.  To study its role we established four independent, clonal 

ESC lines (M8, M10, M11, M14), only M8 which showed stable upregulation of MAP3K7 

transcripts in an inducible fashion, as assessed by qRT-PCR at 24, 48 and 72 hours after 

addition of doxycycline (1 µg /mL) (Fig 7.12B). Other clonal mESC lines (DM1, DM2, 

DM3, DM5, DM8, DM9, DM10, DM11, DM12 and DM13), DM11 showed stable 

upregulation of MAP3K7 transcripts as described above (Fig 7.13B). M8 will be used in 

the subsequent experiments.  

A. Addition of Doxycycline did increase beat rate in M8 EBs 
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One indication that cardiac cells have adopted the SAN identity is an increase rate 

of beating speed. To determine if any of our mESCs could differentiate towards SAN cells 

in response to increased expression of MAP3K7. mESCs were differentiated as EBs and 

doxycycline added from Day 2 to Day 16 at which point beat rate data was collected and 

assessed. M8 EBs were tested for increased beat rate with working dose curve of 

doxycycline (Fig 7.12C).  Beating areas were identified based on visual inspection and 

confirmed by expression of αMHC::GFP. Beat was manually calculated but visual 

inspection counting beats/minute.  Line M8 showed significant increase at both 100ng/ml 

and 200ng/ml at Day 16. Line M8 will be used for future study. 

B. Relative MAP3K7 Expression during EB differentiation 

Although addition of Dox worked well in M8 or DM11 mESCs, yet regulation of 

gene expression within differentiating EBs is much more complicated.  To test whether 

addition of Dox also upregulated MAP3K7 transcripts during EB differentiation, EBs were 

treated with Dox dose of 0ng/ml, 200ng/ml, 500ng/ml, 1000ng/ml and 2000ng/ml from 

Day 4 to Day 7 (Fig 7.12D&Fig 7.13C). Then EBs were collected at Day 7 and relative 

MAP3K7 expression was assessed by qRT-PCR. Surprisingly, only M8 EBs treated with 

Dox dose of 200ng/ml, which was consistent with the dose tested for fast beating 

cardiomyocytes. Line M8 associated with Dox Dose 200ng/ml will be used for future study. 

Meanwhile, DM11 EBs treated with 500ng/ml or 2000ng/ml showed significant increase 

of MAP3K7 transcripts compared to untreated controls. Line DM11 and dose 500ng/ml 

will be used in the future study.  

C. MAP3K7 overexpression did not increase overall cardiac formation 
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Our data has shown that MAP3K7-overexpressing EBs did not increase overall 

cardiac differentiation at Day in chapter four. Our next step is to figure out conditional 

expression of MAP3K7 effect on cardiac formation. To test this, EBs were differentiated 

with or without the addition of Dox from Day 4 to Day 19 (Fig 7.13D). Cells were isolated 

at Day 15 and Day 19. The percentage of cardiac differentiation was assessed based on 

expression of GFP by flow cytometry. DM11 Dox-treated EBs had no significant increase 

on overall cardiac formation.  

 



 115 

 

Fig 7.12. Verification of M8 pTripZ-MAP3K7; αMHC::GFP mouse embryonic stem cell 

line. Fig 7.12A. Schematic design of pTripZ- MAP3K7 Vector, doxycycline-inducible- 

MAP3K7-overexpression backbone. Fig 7.12B. M8 mESCs were treated with doxycycline 

at 1 µg /mL and then collected after 0, 24, 48, 72h. Later qRT-PCR was performed to detect 

relative expression of Isl1. Fig 7.12C. Manual beat data counting of M8 EBs at Day 16 

with Doxycycline dose of 0ng/ml, 20ng/ml, 40ng/ml, 100ng/ml, 200ng/ml and 500ng/ml. 

Fig 7.12D. M8 EBs were treated with Dox dose of 0ng/ml, 200ng/ml, 500ng/ml, 1000ng/ml 

and 2000ng/ml from Day 4 to Day 7. Then EBs were collected at Day 7 and relative 

MAP3K7 expression was assessed by qRT-PCR. Data represent means ± standard error of 

3 independent experiments. Statistical significance was determined by unpaired, two-tailed 

t-test. *p<0.05. 
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Fig 7.13. Verification of DM11 pTET-ON-MAP3K7; αMHC::GFP mouse embryonic stem 

cell line. Fig 7.13A. Schematic design of pTET-ON-MAP3K7 Vector, doxycycline-

inducible-MAP3K7-overexpression backbone. Fig 7.13B. DM1, DM2, DM3, DM5, DM8, 

DM9, DM10, DM11, DM12 and DM13 mESCs were treated with doxycycline at 1 µg /mL 

and then collected after 0, 24, 48, 72h. Later qRT-PCR was performed to detect relative 

expression of MAP3K7. Fig 7.13C. M8 EBs were treated with Dox dose of 0ng/ml, 

200ng/ml, 500ng/ml, 1000ng/ml and 2000ng/ml from Day 4 to Day 7. Then EBs were 

collected at Day 7 and relative MAP3K7 expression was assessed by qRT-PCR. Fig 7.13 

D. EBs were differentiated with or without the addition of Doxycycline from Day 4 to Day 

19 and analyzed at Day 15 and Day 19. The percentage of cardiomyocytes was determined 

by Flow Cytometry Data represent means ± standard error of 3 independent experiments. 

Statistical significance was determined by unpaired, two-tailed t-test. 
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Independent clonal lines that conditionally overexpress Tbx5 were established. 

To test the role of Tbx5 in SAN development, mESC lines were generated to 

conditionally overexpress Tbx5. Besides B1, new design is to clone Tbx5 ORF into 

downstream of pTight TET-Responnsive promoter into the pTET-ON vector (Fig 7.14A), 

which drives expression of the insert GOI with administration of Doxycycline. 

These vectors can be used to conditionally overexpress all of the key transcriptional 

regulators of SAN differentiation. At the top of this cascade is Tbx5. Genetic studies in 

mouse have revealed an essential role for Tbx5 in establishing the SAN. However, it has 

not been shown whether conditional expression of Tbx5 is sufficient for SAN 

differentiation. To study its role we established four independent, clonal ESC lines (DB3, 

DB4, DB6, DB7, DB8 and DB10), DB4 and DB6 which showed stable upregulation of 

Tbx5 transcripts in an inducible fashion, as assessed by qRT-PCR at 24, 48 and 72 hours 

after addition of doxycycline (1 µg /mL) (Fig 7.14B). To test the best GOI-inducible dose, 

DB4 and DB6 mESCs were treated with doxycycline at 0ng/ml, 50ng/ml, 100ng/ml and 

200ng/ml and then collected after 48 hours (Fig 7.14C). Later qRT-PCR was performed to 

detect relative expression of Tbx5. Surprisingly, both DB4 and DB6 treated with 100 and 

200ng/ml dose of Dox showed upregulation of Tbx5.  

A. Relative Tbx5 Expression during EB differentiation 

Although addition of Dox worked well in DB4 and DB6 mESCs, yet regulation of 

gene expression within differentiating EBs is much more complicated.  To test whether 

addition of Dox also upregulated Tbx5 transcripts during EB differentiation, EBs were 

treated with Dox dose of 0ng/ml, 200ng/ml, 500ng/ml, 1000ng/ml and 2000ng/ml from 
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Day 4 to Day 7 (Fig 7.14D). Then EBs were collected at Day 7 and relative Tbx5 

expression was assessed by qRT-PCR. Surprisingly, DB4 EBs showed upregulation of 

Tbx5 with dose 500ng/ml and 1000ng/ml, while DB6 showed significant increase of Tbx5 

with dose 1000ng/ml and 2000ng/ml. As a result, DB4 with dose 500ng/ml and DB6 with 

dose 1000ng/ml will be used in the subsequent experiments.  

B. Tbx5 overexpression may increase overall cardiac formation 

Tbx5 is a key player in cardiac development. Since DB4 and DB6 naturally 

expresses higher levels of Tbx5 at Day 7 (Fig 7.15A), it might be more active in 

cardiogenesis. To test this, EBs were differentiated with or without the addition of dox 

from Day 4 to Day 17 (Fig 7.15B) and from Day 4 to Day 19 (Fig 7.15C). Cells were 

isolated at Days 15, 17 and 19. The percentage of cardiac differentiation was assessed based 

on expression of GFP by flow cytometry. Interestingly, at Day 17, both DB4 and DB6 had 

no significant increase compared to R1, while at Day 15 and Day 19, DB6 untreated EBs 

had more cardiac cells. DB6 Dox-treated EBs had no significant change.  

C. Subtype of Differentiated Cardiomyocytes  

Immunocytochemistry (ICC) staining is current standard to figure out cardiac 

subtype based on protein expression, such as HCN4 and Shox2 for pacemaker marker or 

Cx43 for ventricular marker. Here four different EBs including R1, MAP3K7/TAK1-

overexpressing EBs (pgk:MAP3K7/TAK1; αMHC:mCherry) [141], B1 untreated, B1 

Dox-treated were analyzed for HCN4, Shox2 and Cx43 positive cardiomyocytes (Fig 

7.16A). MAP3K7/TAK1-overexpressing EBs had more HCH4 and Shox2 positive 
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cardiomyocytes than R1 EBs, however there was no significant difference either between 

R1 and DB6, or between DB6 and DB6 dox-treated EBs. 

At the same time, whole EBs from R1, DB6 and DB6 Dox-treated group were 

collected and later assessed by qRT-PCR at Day 17 (Fig 7.16B). DB6 EBs had significant 

higher levels of MAP3K7 transcripts than the parent cell line R1, while DB6 Dox-treated 

EBs and DB6 EBs had no significant difference between all these markers.  
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Fig 7.14. Verification of DB4, DB6 pTET-ON-mTbx5; αMHC::GFP mouse embryonic 

stem cell line. Fig 7.14A. Schematic design of pTET-ON-mTbx5 Vector, doxycycline-

inducible-Tbx5-overexpression backbone. Fig 7.14B. DB3, DB4, DB6, DB7, DB8 and 

DB10 mESCs were treated with doxycycline at 1 µg /mL and then collected after 0, 24, 48, 

72h. Later qRT-PCR was performed to detect relative expression of Tbx5. Fig 7.14C. DB4 
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and DB6 mESCs were treated with doxycycline at 0ng/ml, 50ng/ml, 100ng/ml and 

200ng/ml and then collected after 48 hours. Later qRT-PCR was performed to detect 

relative expression of Tbx5. Fig 7.14D. DB4 and DB6 EBs were treated with Dox dose of 

0ng/ml, 200ng/ml, 500ng/ml, 1000ng/ml and 2000ng/ml from Day 4 to Day 7. Then EBs 

were collected at Day 7 and relative Tbx5 expression was assessed by qRT-PCR. Data 

represent means ± standard error of 3 independent experiments. Statistical significance was 

determined by unpaired, two-tailed t-test. *p<0.05, **p<0.01, ****p<0.0001. 

 

Fig 7.15. Cardiac differentiation analyzed by Flow Cytometry. EBs were collected at Day 

7 and assess by qRT-PCR (Fig 7.15A). Fig 7.15B&C. EBs were differentiated with or 

without the addition of Doxycycline from Day 4 to Day 17 (Fig 7.15B) and from Day 4 to 

Day 19 (Fig 7.15C). The percentage of cardiomyocytes was determined by Flow 

Cytometry Data represent means ± standard error of 3 independent experiments. Statistical 

significance was determined by unpaired, two-tailed t-test. *p<0.05, **p<0.01, 

****p<0.0001. 
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Fig 7.16. The subtype of cardiomyocytes of R1, DB6, DB6 Dox-treated EBs at Day 19 and 

relative transcripts at Day 17. The percentage of HCN4 and Shox2 positive cardiomyoctes 

among all cardiomyocytes were analyzed by Immmunocytochemistry and shown in Fig 

7.16A, Tbx5, HCN4, Shox2, MAP3K7 and Cx43 transcription were assessed by qRT-PCR 

and shown in Fig 7.16B. Data represent means ± standard error of 3 independent 

experiments. Statistical significance was determined by unpaired, two-tailed t-test. 

**p<0.01, ****p<0.0001. 
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Summary: 

Here, I list all mESCs that I produce and all characteristics of each individual cell 

line (Table 7.2). For gene Tbx3, pTripZ-mTbx3 X6 and dose of 200ng/ml is the best choice; 

for gene Isl1, pTripZ-hIsl1 I4 and dose of 500ng/ml is the first choice; for gene, Shox2, 

pTET-ON-hShox2 DS14 and dose of 50ng/ml is the first choice; for gene Tbx18, pTripZ-

hTbx18 T2 and dose of 100ng/ml is the best choice; for gene MAP3K7, pTripZ-MAP3K7 

M8 and dose of 200ng/ml is the best choice; for gene Tbx5, pTET-ON-mTbx5 DB6 and 

dose of 1000ng/ml is the first choice. Taken together, we can study these pacemaker-

specific gene in the future project.  
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Vector 

Name 

Clone  Dox-Inducible 

ES 

If Yes, list 

dose 

Dox-

Inducible 

EBs 

Increase Beat 

Rate 

If Yes, list 

dose 

SAN Gene 

pTripZ-

mTbx3 

X1 Yes, 

1000ng/ml 

Not Sure Yes, 

200ng/ml 

NA 

pTripZ-

mTbx3 

X6 Yes, 

1000ng/ml 

Yes,200ng/ml Yes, 

200ng/ml 

NA 

pTET-

ON-

mTbx3 

DX5 Yes, 400ng/ml NA NA NA 

pTET-

ON-

mTbx3 

DX9 Yes, 

1000ng/ml 

NA NA NA 

pTripZ-

hIsl1 

I4 Yes, 

1000ng/ml 

Yes, 

500ng/ml 

Yes, 

500ng/ml 

NA 

pTET-

ON-hIsl1 

DI1,DI3 Yes, 

1000ng/ml 

NA NA NA 

pTET-

ON-hIsl1 

DI2,DI7 Yes, 

1000ng/ml 

NA NA NA 

pTripZ-

hShox2 

S2 Yes, 

1000ng/ml 

NA No NA 

pTET-

ON-

hShox2 

DS13 Yes, 

1000ng/ml 

NA NA NA 

pTET-

ON-

hShox2 

DS14 Yes, 50ng/ml NA NA NA 

pTripZ-

hTbx18 

T2 Yes, 

1000ng/ml 

NA Yes, 

100ng/ml 

NA 
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pTET-

ON-

hTbx18 

DT2,DT5 Yes, 

1000ng/ml 

NA NA NA 

pTripZ-

MAP3K7 

M8 Yes, 

1000ng/ml 

Yes, 

200ng/ml 

Yes, 

200ng/ml 

NA 

pTET-

ON-

MAP3K7 

DM11 Yes, 

1000ng/ml 

Yes, 

500ng/ml 

NA NA 

pTET-

ON-

mTbx5 

DB4 Yes, 100ng/ml Yes, 

500ng/ml 

NA NA 

pTET-

ON-

mTbx5 

DB6 Yes, 200ng/ml Yes, 

1000ng/ml 

NA Yes 

 

Table 7.2 List of all mESCs that I produce and all characteristics. NA, Not Applicable. 
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CHAPTER EIGHT 

DISCUSSION 

 

A transcriptional cascade that mediates SAN differentiation. 

Vincent Christofells elucidated the transcriptional program involved in SAN 

differentiation from mesodermal precursors in the mouse (Fig 8.1). With the help of 

transgenic mice and the advancement of lineage tracing techniques, the progenitors of the 

SAN cells and the transcriptional program directing their differentiation have been well-

established [117]. Mommersteeg and colleagues demonstrated that around E8, the sinus 

venosus develops from Tbx18+/Nkx2.5-/Isl1- progenitors, apart from the rest of the cardiac 

mesoderm. At E8.5, some of these cells begin to express Islet1, and later at E9.5, a subset 

within the sinus venosus starts to express Tbx3, a transcription factor (TF) that represses 

chamber development [118]. Tbx3 is continuously expressed during cardiac development 

in the forming mature conduction system, comprising both the SAN and the bundle 

branches of the ventricular conduction system. Shox2, like Tbx18, has an expression 

pattern complementary to that of Nkx2.5, the TF that activates cardiac chamber formation 

[113]; Shox2 is a repressor of the Nkx2.5 gene, thus preventing chamber myocardium 

formation in the SAN, while allowing SAN-specific gene expression, such as Tbx3 and 

HCN4 [114]. These data suggest that pacemaker cells derive from the activation of a 

particular genetic pathway in progenitors during cardiogenesis of the SAN. 

The Foley lab recently reported that overexpression of MAP3K7/TAK1 in mESC-

derived cardiomyocytes faithfully directed cardiac progenitor cells into the SAN lineage. 
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Most cardiac cells in MAP3K7/TAK1-overexpressing EBs adopted pacemaker markers, 

cellular morphologies and electrophysiological behaviors characteristics of the SAN fate. 

MAP3K7/TAK1 proved, by qRT-PCR analysis, to be an upstream regulator of pacemaker 

specific gene expression (Fig 8.2).  
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Fig 8.1. Proposed model of TF interactions during SAN differentiation. 

 

 

 

 

Fig 8.2. Foley lab model of TF interactions during SAN differentiation.  
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ES cell lines with overexpression of Tbx3, Isl1, Shox2 and Tbx18 

In 2013, the Cho lab genetically transduced the TF, Tbx18, into neonatal rat 

ventricular myocytes (NRVMs), which converted NRVMs into SAN pacemaker-like (SAN) 

cells [84]. In vivo, gene transfer of Tbx18 in the guinea pig heart yielded ectopic pacemaker 

activity, restoring a bradycardic phenotype [84]. One year later, the David lab showed that 

pure populations of physiologically and pharmacologically functional pacemaker cells 

could be obtained by overexpressing the SAN-inducing TF, Tbx3, in mouse embryonic 

stem cells (mESCs); these were differentiated as embryoid bodies (EBs), and 

cardiomyocytes were purified based on an Myh6 promoter-based antibiotic selection [157]. 

In 2015, the Cho lab demonstrated that TF, Shox2, overexpression during EB 

differentiation of mESCs resulted in upregulation of the pacemaker genetic program [151]. 

Similarly, the TF, Isl1 overexpression in mESCs was shown to promote differentiation of 

cardiomyocytes with electrophysiological profiles typical of pacemaker cells [149]. Taken 

together, these data suggest that TFs can activate (or select for) the differentiation of SAN 

cells from ESCs. However, these studies do not completely address all criteria for SAN 

cell differentiation and, in most cases, the efficiency of SAN conversion was low [151, 

157]. Additionally, purported pacemaker cells in some cases expressed the ventricular 

inward rectifier Ik1 [151] suggesting that these had hybrid ventricular/SAN characteristics.  

Also some of these cells did not express physiologically normal levels or the pacemaker-

specific inward funny (If) current suggesting that they were immature SAN-like cells [157]. 

Biological pacing in this model peaked around day 7 and waned by day 14 due to the 
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declining heart rate [84], showing that biological pacing was not successfully maintained 

in the absence of these transgenes.  

These suggest that TFs downstream of Tbx5 were not sufficient for permanent 

conversion of ES cells to the pacemaker fate. To determine whether Tbx5 could activate 

pacemaker fates I made a cell line to conditionally overexpress Tbx5 (B1). 

 

Data Interpretation from Tbx5-Overexpressing B1 EBs 

From beat data at D19 and D21, we observed something different in B1 and B1 

Dox-treated EBs (Fig 8.3A). At the same time, we checked the relative Tbx5 transcripts at 

D19 and D21 (Fig 8.3B). Interesting, B1 Dox-treated EBs had more Tbx5 transcripts at 

D19 and less Tbx5 transcripts at Day 21, compared to B1 untreated EBs, meanwhile, B1 

treated EBs had faster beating cells than B1 untreated EBs only at Day 21, not at Day 19. 

These data suggested that the loss of Tbx5 in B1 Dox-treated EBs might be the reason for 

fast beating cardiomyocytes.  Tbx5 may be lost in adult mature cardiomyocytes.  

Next, to figure out the expression of all downstream marker of Tbx5, such as Shox2, 

Isl1, Tbx3, Tbx18, HCN4 and also ventricular marker Nkx2.5 and Cx43 (Fig 8.4). 

Compared to R1 wild type, the Tbx5 overexpressing cell line B1 had a pattern that activated 

downstream Shox2, Isl1, Tbx3, Tbx18, HCN4, but did not inhibit Nkx2.5 and Cx43 

transcripts. Upstream MAP3K7/TAK1 did not change among R1, B1, B1 Dox-treated EBs. 

In order to figure out the subtype of cardiomyocytes of R1, MAP3K7/TAK1-

overexpressiong, B1, B1 Dox-treated EBs, ICC staining was performed on these four 

groups (Fig 8.5). To our surprise, either B1 Dox-treated EBs or B1 untreated EBs did not 
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adopt HCN4 or Shox2 pacemaker phenotype even with increased HCN4 and Shox2 

transcripts. In other words, cardiac cells derived from B1 or B1 Dox-treated EBs did not 

express transcription factors associated with the SAN fate. Meanwhile, B1 and B1 Dox-

treated EBs had less Cx43 positive population compared to R1 ventricle phenotype, more 

Cx43 cardiac cells compared to MAP3K7/TAK1 pacemaker phenotype. Surprisingly, 

compare to B1 untreated EBs, B1 Dox-treated EBs had less Cx43 positive myocytes, which 

explained why fast beating myocytes in B1 Box-treated EBs were found at Day 21.These 

data suggested that B1 and B1 Dox-treated EBs might acquire atrial cardiac fate.  

Recent study has shown that lentiviral delivery of Cx43 ectopic expression in 

myocardial scar area resulted in increased conduction velocities in the infarct and its border 

zone and during long-time anti-ventricular tachycardia protection [158]. Optical mapping 

of hearts transduced by a Cx43 overexpression lentivirus revealed enhanced conduction 

velocity within the scar, indicating Cx43-mediated electrical coupling between myocytes 

and myofibroblasts. The Cx43 protein expression in myofibroblast surrounding the 

myocytes is unknown. Further experiments need to test this assumption. This is another 

explanation why B1 Dox-treated EBs beats much faster than B1 untreated EBs. 

Furthermore, targeted mutation of Mef2c, downstream of MAP3K7/TAK1, resulted in a 

small left ventricle and complete loss of the right ventricle. Tbx5 was normally expressed 

throughout cardiac crescent but become restricted to sinoatrial region during linear heart 

tube formation. In Mef2c-/- embryos, Tbx5 was ectopically and anteriorly expressed in the 

primitive Mef2c-/- ventricle [159]. 
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Cardiac cells differentiated from Tbx5-overexpression B1 cell line did activated 

enhanced expression of Shox2 and HCN4, however there was no significant difference of 

HCN4 or Shox2 positive population among R1, B1, B1 Dox-treated cardiac cells as 

assessed by ICC. Due to RNA analysis from whole EBs, including cardiomyocytes and 

non-cardiomyocytes, ICC staining only focused on authentic myocytes. This means 

untargeted HCN4 and Shox2 ectopic expression in non-myocytes.  

In summary, Tbx5 is required for cardiac formation generally and is sufficient to  

activate Shox2, Tbx3, Tbx18 and HCN4 transcripts but its expression alone does not 

inhibits Nkx2.5 and Cx43 transcripts. Together these data suggest that Tbx5 cannot activate 

SAN differentiation alone but instead must synergize with other factors (Fig 8.6). 
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Fig 8.3. Beat Data and Tbx5 transcripts at Day 19 and Day 21 and subtype of 

cardiomyocytes at Day 21. Fig 8.3A. Using MATLAB automation to calculate cardiac 

beats of R1, B1 and B1 Dox-treated EBs at Day 19 and Day 21. Fig 8.3B. The relative 

Tbx5 transcripts among R1, B1 and B1 Dox-treated EBs by qRT-PCR. Data represent 

means ± standard error of 6 independent experiments. Statistical significance was 

determined by unpaired, two-tailed t-test. *p<0.05, ***p<0.001, ****p<0.0001. 
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Fig 8.4. The relative transcripts of R1, B1, B1 Dox-treated EBs at Day 21. MAP3K7/TAK1, 

Tbx5, Shox2, Tbx3, Tbx18,  HCN4, Nkx2.5, Isl1 and Cx43 transcription were assessed by 

qRT-PCR. Data represent means ± standard error of 6 independent experiments, 

normalized to B1. Statistical significance was determined by unpaired, two-tailed t-test. 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Fig 8.5. The subtype of cardiomyocytes of R1, MAP3K7/TAK1 overexpressing, B1, B1 

Dox-treated EBs at Day 21. The percentage of HCN4, Shox2 and Cx43 positive 

cardiomyoctes among all cardiomyocytes were analyzed by ICC. Data represent means ± 

standard error of 3 independent experiments. Statistical significance was determined by 

unpaired, two-tailed t-test. *p<0.05, **p<0.01, ***p<0.001. 

 

Fig 8.6. Sufficient expression of Tbx5 activates Shox2, Isl1, Tbx3, Tbx18 and HCN4 

transcripts, but do not inhibits Nkx2.5 and Cx43 transcripts. 
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CHAPTER NINE 

FUTURE RESEARCH 

 

In the field of regenerative medicine, protocols for lineage specific differentiation 

of cardiomyocytes have promising applications. At first, they will provide the tools to find 

out new markers for SAN fate during differentiation. Second, these well-characterized 

cardiac cells could be used as a basis for pharmacological screening on pacemaker cells 

especially derived from patient-specific iPS cells. This will allow us to test the effect of 

new designed drugs on pacemaker cells. Finally, these cells could serve as the basis for 

biological pacemaker development. Unlike skin or skeleton muscle, adult mammal hearts 

have little or no capability to regenerate themselves after myocardial infarction. 

Furthermore, myocardial infarction causes the formation of apoptotic and necrotic 

myocytes that would be replaced by myofibroblasts and scar tissue in the end. The SAN 

dysfunction results in bradycardia, arrhythmia and eventually heart failure.  
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