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Abstract

When a container carrying a magnetized ferrofluid is subjected to external mechanical stim-

uli, the sloshing motion of the magnetized ferrofluid generates a time-varying magnetic flux, which

can be used to induce an electromotive force in a coil placed adjacent to the container. This process

generates an electric current in the coil, and therewith, can be used to transduce external vibrations

into electric energy providing a unique approach for vibration energy harvesting using liquid-state

transduction materials. As compared to traditional vibratory energy harvesters that employ solid

transduction elements, this approach offers several advantages including, but not limited to, con-

formability to different shapes and increased sensitivity to external excitations.

In this dissertation, a bench-top experiment was first constructed to demonstrate the fea-

sibility of the proposed concept for vibratory energy harvesting. A rectangular plastic container

carrying ferrofluid was placed inside a pick-up coil which is wound around a ferrite core. The whole

setup was mounted on an electrodynamic shaker table which provided a controlled acceleration at

the containers base. The external magnetization is applied using permanent magnets with maximum

magnetic field intensity of 92 mT. Series of experiments were carried out to determine the optimal

configuration of coil windings with respect to the sloshing and magnetic field directions. It was

found that the output power of the device increases an order of magnitude when the coil is wound

perpendicular to the sloshing motion and magnetic field lines.

For the optimal configuration determined experimentally, a nonlinear analytical model which

governs the electro-magneto-hydrodynamics of the harvester was developed. An approximate an-

alytical solution of the model was obtained using perturbation methods for two different types of

excitation; namely for a case involving the primary resonance excitation of the first mode and a case

involving the principle parametric resonance of the first two modes.

For the case involving the primary resonance of the first mode, it was observed the approxi-
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mate analytical solution fails to capture the qualitative behavior of the harvesters response for some

ferrofluid height to container width ratios. Upon further inspection, it was observed that for those

critical height-to-width ratios, the sloshing conditions are such that a two-to-one internal resonance

between the first two sloshing modes can be activated. To account for the internal resonance, a mod-

ified version of the perturbation solution was devised and used to obtain a solution of the governing

equations capable of capturing the influence of the internal resonance on the dynamics.

Overall, it was shown that the developed model is capable of capturing the qualitative

behavior of the dynamics of the harvester for both cases of excitation and for various magnetic field

distributions. It was observed that the orthogonality of the magnetic field distribution along the

width the container to the shape of the mode being excited plays a critical role in determining the

output power of the harvester. Specifically, regardless of the input excitation level and the size of the

induced sloshing waves, very little energy can be harnessed from the environment when the magnetic

field distribution is an even (odd) function of the containers width while the mode shape being excited

is an odd (even) function of the width. It was shown that, unlike the primary resonance scenario,

a threshold excitation level must be achieved in the principle parametric resonance case before the

harvester can produce measurable voltage levels. This threshold increases with the strength of the

applied magnetic field.
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Chapter 1

Introduction

1.1 Motivations

Energy harvesting is the process by which ambient energy is captured and transformed

into a useful form. Historically, mankind has relied on this process to fill its basic energy needs

using windmills, sailing ships, and waterwheel. However, our ever increasing energy demands and

changing research trends is pushing these old concepts into newer directions. Today, we continue

to produce smaller and lower-power consumption devices that span different fields of technology.

Wireless sensors, data transmitters, microcontrollers, and implantable medical devices that require

only sub-milliwatts of average power to function are being developed [1, 2, 3, 3]. Unfortunately,

further evolution of such technologies is currently being moderated by the lack of continuous scalable

energy sources that can be used to power and maintain them. Batteries, which remain the most

adequate power choice, have not kept pace with the device’s demands, especially in terms of energy

density [4]. In addition, their finite life span which necessitates regular replacement can be a very

costly and cumbersome process. Consider, for instance, the difficulty of replacing batteries for a

spatially-dense remotely-located wireless sensor network, or the risks involved in changing batteries

for patients with implantable pace makers.
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Figure 1.1: Schematics of piezoelectric energy harvester.
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Figure 1.2: A schematic of a magnetostrictive energy harvester

1.2 Current Approaches: Solid-State Energy Harvesting

The past decade has witnessed a new evolution in energy harvesting technologies whereby the

concept of micro-power generators (MPGs) was introduced [5, 6, 7, 8, 9]. MPGs are compact energy

harvesting devices that can transform the smallest amounts of available wasted ambient energy

into electricity. When embedded with electronic devices, these generators can provide a continuous

power supply permitting an autonomous operation process. Within the vast field of micro-power

generation, vibratory energy harvesting has flourished as a major thrust area. Various devices have

been developed to transform mechanical motions directly into electricity by exploiting the ability of

active materials (piezoelectric, and magnetostrictive) and electromechanical coupling mechanisms

(electrostatic, and electromagnetic) to generate an electric potential in response to mechanical stimuli

and external vibrations [10, 11, 12, 13, 14]. Typically, vibratory energy harvesters incorporate a solid-

state material for energy transduction. For instance, in piezoelectric and magnetostrictive energy
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Figure 1.3: Schematics of (a) Magnetostrictive, and (b) Electromagnetic energy harvesters.

harvesting as shown in Fig. 1.1 and Fig. 1.2, respectively, the strain produced in a piezoelectric beam

or a magnetostrictive rod is transformed into electric charge or magnetic field via the piezoelectric

and Villari effects, respectively [15, 16, 17]. Similarly, as shown in Fig. 1.3, in electromagnetic energy

harvesters, external vibrations set a solid magnet in motion relative to a stationary coil or vise versa

[5, 6, 18, 19, 20]. As per Faraday’s law, the change in magnetic flux produces a current in the coil

which can then be channeled into an electric load.

The solid-state nature of the transduction mechanism in current vibratory energy harvesters

can place limitations on their capabilities especially in terms of conformability to different shapes

and sensitivity to external excitations. This has lead the authors, among a few other researchers, to

explore the use of liquid-state materials to transduce mechanical motions into electricity [21, 22].

1.3 Proposed Approach: Liquid-State Energy Harvester

Motivated by the obvious need for a scalable, sensitive, and conformable energy harvester,

this endeavor proposes the use of liquid-state materials, namely ferrofluids, as the transduction

mechanism in electromagnetic vibratory energy harvesters.

Ferrofluids were invented by NASA in 1962 as a liquid fuel for rocket applications and

have since been used in many critical applications. For instance, ferrofluids have been investigated

as a drug transport medium inside the human body. By using an external magnetic field force

the drug can be transferred and held in the desired location and allowed to act for a period of

time [23]. Furthermore, using the ferrofluid ability to convert electromagnetic energy into thermal

energy, other researchers have also investigated heating the ferrofluid to achieve hyperthermia in
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order to treat tumors [24]. Ferrofluids have also been studied as (i) an enhanced contrast agent

for magnetic resonance imaging MRI [25]; (ii) working fluid in heat exchangers in order to enhance

the heat transfer performance by changing the thermo-physical properties of the ferrofluid using an

external magnetic field [26]; (iii) seals and lubricators because of their ability to provide positive

pressure barrier; (iv) specialty coating systems; and (v) sensors, environmental seals, film bearings,

and nuclear magnetic resonance (NMR) probes [27, 28].

magnet

Figure 1.4: Schematics of ferrofluid particles (a) without external magnetization (b) with external
magnetization (c) with external magnetization and base excitation.

Generally, ferrofluids consist of stable ferrous nanoparticles in colloidal suspension forming

nanoscale permanent magnetic dipoles [29]. Each magnetic dipole is coated with a surfactant such

that, in the absence of an external magnetic field, the magnetic dipoles are randomly oriented in

the carrier fluid as shown in Fig. 1.4(a). However, when an external static magnetic field is applied,

the dipoles rotate and produce a net magnetic moment such that the average direction of the fluid

magnetization is parallel to the external field as shown in Fig. 1.4(b). When the magnetized fluid is

subjected to external excitations with a frequency that matches one of the infinite modal frequencies

of the fluid column (resonance condition), large amplitude surface waves, both horizontal and rota-

tional, are excited, Fig. 1.4(c). The motion of the sloshing liquid creates a time-varying magnetic

flux which can then be used to induce an electromotive force in a coil adjacent to the container.

This process generates an electric current, I(t), and therewith, transduce external vibrations into

electric energy.

As shown in Fig. 1.5, the orientation of the magnetic dipoles relative to the magnetic field

lines depends on the strength of the applied field; in a weak magnetization region, the magnetic field

has a little influence on the direction of the dipoles; whereas, within the highly magnetized regions,

the dipoles are strongly coupled to the applied field, and, are, hence, very hard to rotate.

The key significance of this novel concept for micro-power generation stems from the fol-

lowing advantages:

4



High 

Low

Side ViewSide View

(a) (b) (c)

Top View

Figure 1.5: Magnetization of dipoles as a function of the applied magnetic field.

• Conformability: Since fluids can easily conform to different shapes, it permits the development

and fabrication of energy harvesters with complex shapes, much more complex than the simple

shapes that can be achieved using solid-state magnetic materials. This important quality will

undoubtedly open new, and previously thought impractical applications, for energy harvesting.

• Sensitivity: Liquids are much more sensitive to low-level excitations than solids are; this is

one reason why mammals ears incorporate a fluid called the Perilymph to transform mechanical

vibrations from the middle ear into waves that can be carried to the sensory ducts at the end

of the cochlear. Thus, it is believed that liquid-state materials are capable of responding to the

smallest levels of environmental excitations including, but not limited to, the nature-common

acoustic excitations.

• Tunability: The viscosity, and hence, stiffness of ferrofluids can be changed by applying an

external magnetic field, a phenomena that has been documented and well-studied in the literature

[30]. This occurs due to the action of the magnetic field which hinders the rotation of the individual

dipoles. Thus, the modal frequencies of the fluid column can be tuned to the excitation frequency

to maximize transduction efficiency by applying a static magnetic field. The field can be generated

using a solid magnet, and, hence, does not consume additional power.

• Enhanced Bandwidth: Most linear energy harvesters operate efficiently only within a narrow

frequency bandwidth where the excitation frequency is very close to the fundamental frequency

of the harvester (resonance condition). Small variations in the excitation frequency around the

harvesters fundamental frequency drop its small energy output even further making the energy

harvesting process inefficient [31, 32, 33]. This becomes an even more pressing issue when one
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realizes that most environmental excitations have a broad-band or time-dependent characteristics

in which the energy is distributed over a wide spectrum of frequencies or the dominant frequencies

vary with time. Electromagnetic energy harvesters that incorporate solid-state magnets respond

only at one modal frequency similar to the devices proposed by Mann and Sims [34] or at widely-

spaced modal frequencies similar to the devices discussed in reference [35]. As such, they have

a very narrow response bandwidth. A harvester incorporating liquid-state materials can respond

at infinitely many closely-spaced frequencies, corresponding to the infinite modal frequencies of

the fluid column which excite the large amplitude rotational and horizontal surface waves. The

presence of a large number of closely-spaced modal frequencies can also facilitate the activation

of nonlinear modal interactions between the different vibration modes. Such interactions occur

when two or more modal frequencies of a certain nonlinear system are commensurate or nearly

commensurate [36], i.e. multiple integers of each other. Fig. 1.6 depicts variation of the first flow

modal frequencies of the fluid column with the hight-to-width ration, in a rectangular container.

The figure illustrate that the modal frequencies are closely spaced and can become multiple in-

tegers of each others especially for small heights. This can lead to energy exchange among the

commensurate modes resulting in large-amplitude responses over a wide range of frequencies which
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broadens the voltage-frequency response curves, further enhancing the broadband characteristics

of the ferrofluid-based harvester.

1.4 Dissertation Objectives and Contributions

In this electro-magneto-hydrodynamical device, fluidic, magnetic, and electrical domains

play an interconnected, but yet unknown role, which is essential to characterize the harvester’s per-

formance. For instance, the volume, depth, and material properties of the ferrofluid; the strength

and spatial distribution of the magnetic field; and the electric load, all influence the spatio-temporal

evolution of the surface waves, which, in turn, governs the output power of the device. The avail-

ability of an accurate mathematical model of the system will undoubtedly aid in enhancing its

performance, opening new avenues for energy harvesting. With this understanding, this dissertation

aims to build the fundamentals necessary to evaluate and maximize the transduction efficiency of

liquid-state (ferrofluid based) materials for harvesting vibration energy. To achieve this goal, the

specific objectives of this dissertation are:

• Develop an experimental proof-of-concept of the harvester: The first objective of

this thesis is to demonstrate that the sloshing of ferro-fluids in a base excited container can

be used to harness energy effectively from a vibration source. To achieve this goal, a plastic

rectangular container carrying a ferrofluid is placed inside a pick-up coil which is wound around

a ferrite core and the whole setup is mounted on an electrodynamic shaker table which will

be directly excited from the base as shown in Fig. 1.7. The external magnetization is applied

using permanent magnets and the intensity and spatial distribution of the magnetization are

varied by changing the external permanent magnets placement.

• Determine the optimal configuration of the harvester: In order to maximize the har-

vester’s performance, it is essential to first characterize the optimal design configuration. For

a given number of turns and cross-sectional area of the pick-up coil, the electromechanical cou-

pling, and thereby, the output power changes significantly depending on the following three

configuration parameters:

1. Direction of magnetization with respect to windings.

2. Direction of magnetization with respect to sloshing.
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Figure 1.7: A schematic of the experimental system.

3. Direction of winding with respect to sloshing.

Therefore, the first goal of this experimental study is to investigate the optimal configuration

of the harvester by assessing the relative performance for the aforementioned conditions.

• Utilize nonlinear modal interactions to enhance the performance of the harvester:

Upon determining the optimal configuration, a series of experimental studies will be conducted

to show that nonlinear modal interactions between the different vibration modes can be acti-

vated and used to improve the bandwidth of the harvester. To achieve this goal, we specifically

choose the dimensions of the container and the height of the fluid column such that the modal

frequencies of the sloshing ferrofluid are nearly commensurate. It is shown that this choice

of parameters activates a two-to-one internal energy pump between the commensurate modes

resulting in large-amplitude voltages over a wide range of frequencies, thereby improving the

steady-state bandwidth of the harvester.

• Invoke several assumptions on the fluid dynamics and magnetization of the fer-

rofluid to obtain an analytical model of the harvester: By invoking several justifiable

assumptions on the response behavior, we formulate an analytical model which describes the

electro-magneto-hydrodynamics of the system. The model is able to capture, with reason-

able accuracy, i) the magneto-hydrodynamic behavior which deals with the motion of the

magnetized fluid in the container, and ii) the electromagnetic induction which deals with

characterizing how the fluid motion is induced into electrical energy.
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• Use perturbation theory to obtain an approximate analytical solution of the model

for the primary resonance case: By linearizing the dynamics assuming small surface waves,

we investigate variation of the modal frequencies with the height-to-width ratio of the fluid and

identify the regions where internal resonances can be activated. Using the method of multiple

scales, we obtain an approximate analytical solution of the harvester’s response to a primary

resonance direct base excitation of the first mode. We use the resulting solution to study

the voltage response of the harvester at different fluid heights and for different magnetization

profiles. We construct an experimental set up and use it to validate the resulting model.

Finally, we present our conclusions regarding the validity of the model.

• Assess the performance of the harvester under parametric excitations: In addition to

analyzing the response of the harvester to direct excitations; i.e., harmonic excitations that are

perpendicular to the height of the container, we will also study performance under parametric

excitations; i.e., excitations that are parallel to the height of the container. It is well known

that when exciting a fluid columns parametrically near twice one of the its modal frequencies,

large amplitude waves, also known as Farady’s waves can be excited. To achieve this goal, a

series of experiments will be carried out to assess performance in the parametric resonance case.

An analytical model will also be obtained and solved for the parametric excitation scenario.

1.5 Dissertation Outline

The rest of the manuscript is organized as follows: In Chapter 2, the potential of utilizing a

ferrofluid-based energy harvester to scavenge energy from vibratory base excitations is investigated.

A series of experiments are carried out to investigate the optimal configuration of the harvester.

Using the optimal configuration, a specific set of parameters are chosen to activate a two-to-one

internal resonance between the first two vibration modes and used to illustrate that the internal

resonance serves to improve the bandwidth of the harvester. In Chapter 3, a distributed-parameters

nonlinear model of the harvester subjected to direct base excitation is derived. An approximate

analytical solution of the model under primary resonance excitation is obtained using the method

of multiple scales and compared to experimental findings. In Chapter 4, the performance of the

harvester will be investigated under parametric excitations experimentally. An analytical model will

also be obtained and solved for the parametric excitation scenario. Finally, Chapter 6 presents the
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main conclusions of this research.
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Chapter 2

Experimental Investigation

2.1 Operation Principle of the Harvester

Generally, when a container carrying a magnetized fluid is subjected to an external excita-

tion, the fluid sloshes inside the container creating large surface waves, which, generates a change

in the magnetic flux. According to Faraday’s law of induction, variations in the magnetic field envi-

ronment of a conductor induces a back electromotive force which can be used to generate a current

in a closed-loop conductor. As such, when a coil is wound around the container, the motion of the

fluid can be used to generate an electric current which can be harnessed to power electronic devices.

The magnetic flux, φ, passing through a given area, A, is defined as the dot product of the

magnetic field vector with the unit vector normal to the area, i.e,

φ = B.A = BA cos θ, (2.1)

where θ is the angle between the magnetic field lines and the normal to the area formed by the loop.

According to Lenz’s law, the induced voltage, also known as the back electromotive force (emf), can

be related to the change of flux through

emf = −N ∂φ

∂t
= N

(
−dB
dt
A cos θ −BdA

dt
cos θ +BA sin θθ̇

)
, (2.2)

where N is the number of turns. By inspecting Equation (2.2), it becomes evident that, for a
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Figure 2.1: The effect of sloshing on the dipoles magnetization direction and the dipoles traveling
path for different magnet placements

constant coil area, the back emf can be induced in the coil in one of the following ways:

1. Changing the magnitude of the field B with time; which is achieved by the bulk motion of the

dipoles inside the container.

2. Varying the angle between the dipoles and the area vector A, which can occur when the

sloshing motion of the fluid forces the dipoles to change their orientation.

2.2 Optimal Configuration

Based on this understanding, Fig. 2.1 illustrates three different scenarios for current in-

duction, and hence, energy harvesting. In the first scenario, the sloshing direction is parallel to the

magnetic field lines (parallel sloshing motion) and the change in flux is mainly due to the bulk motion

of the fluid in the container due to the tidal motion of the fluid specially near the side walls. In the

second scenario, the magnetic field lines are normal to the sloshing direction. Here, in addition to

the bulk motion, the sloshing motion forces the dipoles to rotate with respect to the magnetic field

lines. In the third scenario, also known as the cross-sloshing motion, little dipole rotation occurs

and the change in flux is mainly due to the bulk motion of the fluid.

In order to maximize the harvester’s performance, it is essential to first characterize the

optimal design configuration. For a given number of turns and cross-sectional area of the pick-up

coil, the electromechanical coupling, and hence, the output power change significantly depending on
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the following three configuration parameters:

1. Direction of magnetization with respect to windings which determines the strength of the

magnetic flux.

2. Direction of magnetization with respect to sloshing. When the magnetic field is parallel to the

sloshing direction, the dipoles are magnetized parallel to the sloshing direction. This reduces

the fluid’s resistance to motion, which generally increases the relative speed of the moving

dipoles. As a result, the rate of change of the magnetic flux increases.

3. Direction of winding with respect to sloshing. This affects both of the portion of the coil area

experiencing a change of flux and the relative speed of the magnetic dipoles.

Therefore, the first goal of this experimental study is to investigate the optimal configuration

of the harvester. Towards that end, the experimental setup depicted in Fig. 3.6 is constructed. A

plastic cubic ferrofluid container with each side measuring at 10.16 cm is placed inside a pick-up coil

which is wound around a ferrite core and the whole setup is mounted on an electrodynamic shaker

table. The external magnetization is applied using permanent magnets with maximum magnetic

field intensity of 92 mT. The intensity and the spatial distribution of the magnetization are varied

by changing the external permanent magnets placement. A dSpace system is used for the purpose of

controlling the shaker and for data acquisition. The harvested voltage is measured across a resistive

load connected in parallel to the pick-up coil. The physical properties of the ferrofluid and the

harvester are listed in Table 3.1.

Table 2.1: Harvester’s properties and specifications.

Property SI Units
Ferrofluid Flash Point 92◦

Ferrofluid Initial Magnetic Susceptibility 3.52
Ferrofluid Viscosity at 27◦ 12 mPa.s
Ferrofluid Density at 25◦ 1420 kg/m3

Number of Coil Turns 1500
Inductance of Coil Turns 1.55 H
Coil Resistance 254 Ohms

A series of experiments are then conducted to find the optimal configuration which yields

the highest change in magnetic flux. The experiments are performed in the frequency domain at a

constant base acceleration applied directly to the coil-tank assembly. In the first set of experiments,

magnets of opposite polarity are used with different placement directions such that they produce a
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Figure 2.2: (a) Schematic and (b) picture of the setup used in the experiments.

relatively uniform magnetic field-lines. Three winding directions are considered as shown in Figs. 2.3

(a), (b), and (c). In each scenario, the magnetic field lines are either oriented normal to sloshing,

cross-sloshing, or parallel to sloshing, as denoted by the numbers present on each of the figures.

A quick comparison among Figs. 2.3 (a), (b), and (c) illustrates that, when the winding

direction is parallel to the sloshing direction, the output voltage is almost double that obtained in

the other two scenarios regardless of the magnetic field direction. This can be attributed to the fact

that, in this scenario, the magnetized dipoles can cover a larger area as they move at a relatively

higher speed with respect to the coil. This increases the change in magnetic flux which induces a

higher current in the coil.

Additionally, it can be observed that, highest output voltage per unit acceleration is obtained

when the magnetic field lines are parallel to the sloshing direction. This stems from the fact that,

when the magnetic field lines are perpendicular to the sloshing direction, the magnetic dipoles

align themselves perpendicular to the sloshing motion, forming string-like shapes parallel to the

magnetic field lines, i.e., perpendicular to the sloshing direction. This increases the resistance of

the fluid to move, thereby reducing its velocity and increasing its viscosity. This is also evident

by the overdamped voltage response in that scenario. As such, it can be concluded that the best
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performance is realized when the magnetic field lines and the windings are parallel to the direction

of the sloshing motion.
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Figure 2.3: Frequency response curves of the output voltage for different magnetization and winding
directions. Results are obtained at a fixed base acceleration of 0.5 g and an equivalent load of R = 254
Ohms.

2.3 Experimental Analysis

In this section, we study the response of the harvester in its optimal configuration to a

harmonic excitation applied at its base. The magnetic field is adjusted by changing the distance

between the permanent magnet and the center line of the container. Figure 2.4 illustrates variation

of the magnetic field at the center line of the container measured as a function of the distance from

the center of the magnet.

We start by placing the magnets at a distance of 4 cm from the side walls of the container.

The base acceleration is set to ab = 0.3 m/sec2, and the excitation frequency is varied quasi-statically
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Figure 2.4: Variation of the magnetic field with the distance from the center of the magnet.

around the first modal frequency of the fluid column. In the absence of the external magnetic field,

the modal frequencies of the two-dimensional sloshing motion can be approximated via [37]

ω2
n = gkn tanh(

nπh

L
), (2.3)

where h is the fluid height, g is the gravitational acceleration, L is the width of the container, and n

represents the nth sloshing mode. In the presence of the magnetic field, the apparent gravitational

acceleration increases and all modal frequencies increase slightly.

Figure 2.5 depicts the voltage-frequency response curve for a liquid height, h = 20 mm.

There are two peaks in the voltage-response curve. The first peak occurs near 1.8 Hz, while the

second, which produces the higher peak voltage, occurs near 2.05 Hz. When inspecting Fig. 2.6,

it can be correctly surmised that the second peak corresponds to the first modal frequency, ω1.

The first peak, on the other hand, does not correspond to any of the modal frequencies of the fluid

column. In fact this peak occurs near half the second modal frequency, ω2 and appears as a result

of an internal resonance between the first sloshing mode, ω1, and that corresponding to the second

modal frequency, ω2. Such resonances can occur when two or more modal frequencies of a certain

nonlinear system are nearly commensurate, i.e., multiple integers of each other (ω2 ≈ 2ω1), and

lead to nonlinear modal interactions wherein energy is exchanged among the commensurate modes

resulting in large-amplitude responses over a wide range of frequencies [38]. As shown in Fig. 2.5

(a), this has the influence of broadening the steady-state voltage-frequency response curves, further

enhancing the broadband characteristics of this ferrofluid based harvester.
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(a) h=20mm (b) h=34mm
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Figure 2.5: Frequency response of the voltage output for different liquid height. Results are obtained
at a fixed base acceleration of 0.3 g under an equivalent load, R = 254 Ohms.

To further confirm that an internal nonlinear energy pump has infact been activated, the

Fast Fourier Transform (FFT) of the time history is generated for different excitation frequencies.

Typically, unless a nonlinear energy transfer mechanism is activated, most of the response energy

is trapped at the excitation frequency. This can be clearly observed in the FFT shown in Fig.

2.7 which was obtained away from the internal resonance, specifically, for an excitation frequency

of 1.5 Hz. Clearly, the FFT shows a large peak at the excitation frequency. However, when the

excitation frequency is increased towards the internal resonance region, i.e., 1.78 Hz, most of the

energy is pumped to twice the excitation frequency due to a two-to-one internal resonance between
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Figure 2.6: Variation of the modal frequencies of the fluid column with h/L. Asterisks represent
experimental data. Circles for ω1, square for 1

2ω3, and triangles for 1
2ω2

.

the nearly commensurate modes. As such, a large peak now appears in the FFT near 3.56 Hz. As

the excitation frequency is increased further to 2.5 Hz, the efficacy of the energy pump decreases

and only a smaller portion of the energy appears near 5 Hz.

1.5 Hz 1.78 Hz 

2.5 Hz 

Figure 2.7: Fast Fourier Transform of the signal obtained at different excitation frequencies.

As the liquid height is increased to h = 34 mm, the influence of the internal energy pump
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associated with the two nearly-commensurate sloshing modes, i.e. ω2 and ω1 can still be seen and

the two response peaks are now more prevalent. However, on average, the output voltage decreases

when compared to the previous case. This is because each liquid height has its own optimal magnetic

field strength, whereas, in these experimental runs, we used the same magnetic field distribution for

all liquid heights.

As the height is increased further to h = 50 mm, the peak voltage remains almost the same

but a third voltage peak appears in the response. The lowest peak, which occurs near 1
2ω2, results

from the nonlinear energy exchange between ω2 and ω1. The amplitude of this peak is now very

small because ω2 shifted further away from ω1, thereby reducing the effectiveness of the energy

pump. The third peak now corresponds to ω1 while the second peak corresponds to the two-mode

response resulting from the energy exchange between the first mode and that corresponding to the

third mode, ω3.

Next, we study the influence of the magnetic field strength on the output voltage. Figure

2.8 depicts the voltage frequency-response curves for eight different magnet placements. The 0 cm

case represents the magnets being placed right at the container sidewalls while the 10 cm represents

the case where the magnets are placed furthest from the walls. We note the presence of an optimal

magnetic field strength corresponding to the 2 cm distance where, on average, the output voltage is

maximized. Below this distance the magnetic field becomes too strong restricting the bulk motion

of the fluid in the container as well as the individual dipole rotation which, in turn, decreases the

output voltage. Increasing the magnetic field also increases the viscosity of the fluid which serves to

increase the effective damping in the system.

Beyond the 2 cm distance, the magnetic field becomes too weak to magnetize all the sus-

pended dipoles in the fluid. As such, the net flux and its variation become too small to induce

enough current in the coil causing the voltage to drop. It is worth reiterating that the optimal

magnetic field changes depending on the height of the fluid column in the container.

The influence of the base acceleration on the output voltage is depicted in Fig. 2.9 for h =20

mm. Quiet interestingly, the peak resulting from the modal interaction, or the two-mode solution,

starts to vanish as the base acceleration is increased and merges completely with the original peak at

a base acceleration of 1g m/s2. This is not typical of the frequency response of systems undergoing a

two-to-one internal resonance since the peaks usually increase in size and become more prevalent as

the forcing level increases. We theorize that, at higher acceleration levels, the surface waves become
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Figure 2.8: RMS voltage output for different magnetic fields. Results are obtained at a fixed base
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too large and the magneto-hydro-electro-mechanical dynamics becomes more complex and cannot

be captured by the simplified two-mode understanding discussed here.
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Figure 2.9: Variation of the output voltage with the frequency at different base accelerations. Results
are obtained for h = 20 mm and an equivalent load, R = 254 Ohms.

Finally, we investigate the output power and optimal load of the device. To that end, the

power resistance curve is generated for a 2.2 Hz excitation frequency. Similar to other electromag-
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netic energy harvesters, the power increases initially and exhibits a peak at an optimal load of

approximately 210 Ohms at which the device produces 80 mW per g. Typically, when neglecting

the inductance of the coil, the optimal load can be obtained using impedance matching, i.e., when

the resistance of the coil is equal to the resistance of the load. In this study, the resistance of the

coil was measured at 250 Ohms which is quite close to the optimal load.
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Figure 2.10: Variation of the output power with the load resistance. Results are obtained for
h = 20mm, an excitation frequency of 2.2 Hz, and a fixed base acceleration of 0.3g.
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Chapter 3

Response to Direct Primary

Resonance Excitations

This chapter formulates an analytical model which describes the electro-magneto-hydrodynamics

of the system (Section 3.1). The model is able to capture, with reasonable accuracy, i) the magneto-

hydrodynamic behavior which deals with the motion of the magnetized fluid in the container, and

ii) the electromagnetic induction which deals with characterizing how the fluid motion is induced

into electrical energy. The harvester is made of a rectangular container with specific dimensions

and fluid heights that make the modal frequencies of the fluid column nearly commensurate. This

serves to activate a nonlinear energy transfer mechanism between the commensurate modes further

improving the steady-state bandwidth of the harvester. By linearizing the dynamics assuming small

surface waves, we investigate variation of the modal frequencies with the height-to-width ratio and

identify the regions where internal resonances can be activated (Section 3.2). Using the method

of multiple scales, we obtain an approximate analytical solution of the harvester’s response to a

primary resonance excitation of the first mode (Section 3.3). We use the resulting solution to study

the displacement and voltage responses of the harvester at different fluid heights (Section 3.4), and

(Section 3.5), respectively. We construct an experimental set up and use it to validate the resulting

model (Section 3.6).
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Figure 3.1: A schematic of the fluid sloshing in a rectangular container

3.1 Mathematical Modeling

We consider the two-dimensional finite-amplitude sloshing dynamics of an irrotational, in-

compressible ferrofluid in a rectangular container of width L. The ferrofluid whose density is denoted

by ρ is assumed to be of height h. Our goal is to characterize the dependence of the output voltage

of the harvester on the design parameters. To this end, we consider the system shown in Fig. 3.1

with a rotating coordinate (x̄, z̄) located at point O. As the fluid starts to move due to external per-

turbations, surface waves of height, η̄(x̄, t̄), arise. The equations and associated boundary conditions

governing the two-dimensional motion of the ferrofluid can be written as:

u(x̄, z̄, t̄) = ui + vj = ∇φ̄, (3.1a)

∇2φ̄ = 0, −L
2
≤ x̄ ≤ L

2
, −h ≤ z̄ ≤ η̄(x̄, t̄), (3.1b)
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φ̄x̄ = 0 on x̄ = ±L
2
, φ̄z̄ = 0 on z̄ = −h, (3.1c)

η̄t̄ + uη̄x̄ = v, on z̄ = η̄(x̄, t̄), (3.1d)

φ̄t̄ +
u2 + v2

2
+ gη̄ − σ

ρ

η̄x̄x̄
[1 + η̄2

x̄]3/2
− x̄X0ω

2 sin(ωt̄)− µ0

ρ

∫ H̄

0

M̄dH̄ = C̄.

on z̄ = η̄(x̄, t̄),

(3.1e)

Here, the subscripts denote partial derivatives with respect to the independent variables. Equation

(3.1) (a) states the irrationality of the velocity field by expressing the two-dimensional velocity field,

u, as the gradient of a scalar potential, φ̄. Equation (3.1) (b) is a consequence of the incompress-

ibility assumption for which the continuity equation requires the Laplacian of the velocity potential

to vanish. Equation (3.1) (c) states that the velocity normal to the sidewalls and bottom wall van-

ishes. Equation (3.1) (d) is the kinematic boundary condition at the surface which states that the

velocity of a fluid particle on the surface must be equal to the velocity of the surface itself. Finally,

Equation (3.1) (e) represents the dynamic boundary condition at the surface obtained by enforcing

the unsteady Bernoulli equation.

In Equation (3.1)(e), the first term accounts for the unsteadiness in the velocity field; the

second term represents the kinetic energy of the fluid; the third term accounts for the potential

energy; the fourth term represents the force due to surface tension where σ represents the surface

tension coefficient; and the fifth term represents forces exerted on the surface due to a harmonic

base acceleration in the x̄ direction. Here, X0 and ω are the amplitude and frequency of excitation,

respectively. Finally, the sixth term represents the magnetic moment exerted on the surface, where

M̄ and H̄ are the magnetization and magnetic field, respectively; µ0 represents the permeability of

vacuum, and C̄ is a constant.

It is worth mentioning that, since the influence of surface tension on the nonlinear sloshing

waves is considered, a contact angle should be enforced at the sidewalls. However, it has been shown

that, unless the contact angle is significantly different from 90◦, i.e., horizontal surface, the contact

angle has a very little influence on the dynamics of the surface. As such, to facilitate the analytical
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analysis, it is assumed that the contact angle is 90◦ and that the contact line is free to slip on the

container’s surface.

In this study, the applied magnetic field will be static and will vary along the x̄-axis only,

i.e., H̄(x̄, ȳ, z̄, t̄) = H̄(x̄). The magnetic field is assumed to have a linear relationship with the

magnetization, M̄(x̄) = χmH̄(x̄), that is,

∫ H̄

0

M̄(x̄)dH̄ =
χm
2
H̄2(x̄). (3.2)

Equation (4.1) can be further non-dimensionalized by introducing the following dimensionless quan-

tities:

x =
x̄

L
, z =

z̄

L
, η =

η̄

L
t = ω0t̄, φ =

φ̄

L2ω0
, C̄ =

C

L2ω2
0

,

x0 =
X0

L
, Ω =

ω

ω0
, H =

H̄

H0
,

(3.3)

where ω0 =
√

πg
L δ1 is the first modal frequency of the fluid column in the absence of surface tension

and magnetic field, δ1 = tanh(πh/L), and H0 = Lω0

√
2ρ
µ0

. This yields the following non-dimensional

equations:

∇2φ = 0, −1

2
≤ x ≤ 1

2
, −h/L ≤ z ≤ η(x, t), (3.4a)

φx = 0 on x = ±1

2
, φz = 0 on z = −h/L, (3.4b)

ηt + φxηx = φz, on z = η(x, t), (3.4c)

φt +
φ2
x + φ2

z

2
+

1

πδ1
η − β

πδ1

ηxx
[1 + η2

x]3/2
− xx0Ω2 sin Ωt− χmH2 = C

on z = η(x, t),

(3.4d)

where β = σ/(ρgL2), also known as the inverse of the bond number, is the ratio between surface

tension and gravitational forces.
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3.2 Modal Frequencies

Since maximum energy transfer from the base excitation to the fluid occurs near one of

the modal frequencies of the fluid column, it is important to characterize variation of the modal

frequencies with the design parameters. To this end, we obtain the modal frequencies of the response

by solving the linear unforced eigenvalue problem. This is achieved by linearizing Equations (3.4)

(c,d) about η(x, t) = 0 to obtain

φt +
1

πδ1
(η − βηxx) + χmH

2(x) = 0, (3.5a)

ηt − φz = 0, (3.5b)

Differentiating Equation (3.5a) once with respect to time and substituting Equation (3.5b) in the

resulting equation yields

φtt +
1

πδ1
(φz + βφzzz) = 0, (3.6)

Note that influence of the magnetic field disappears since it is time invariant and applied only along

the x-axis. Equation (3.6) in conjunction with Equation (3.4(b) admit a solution of the form

φ(x, y, z, t) =

∞∑
k=1,odd

ak sin kπx
cosh kπ(z + h/L)

cosh kπ(h/L)
eiωkt

+

∞∑
k=2,even

ak cos kπx
cosh kπ(z + h/L)

cosh kπ(h/L)
eiωkt + cc

(3.7a)

η(x, t) =

∞∑
k=1,odd

bk sin kπxeiωkt +

∞∑
k=2,even

bk cos kπxeiωkt + cc, (3.7b)

where ωk =
√

δk
πδ1

(βk3π3 + kπ) are the modal frequencies of the odd (k odd) and even (k even)

sloshing modes, respectively, cc represents the complex conjugates of the preceding terms, and

δk = tanh(kπh/L).

Figure 3.2 depicts variation of the first five modal frequencies with the liquid height-to-width

ratio, h/L. To generate this figure a container of width L = 10 cm is considered assuming a ferrofluid

which has a surface tension coefficient, σ = 0.03N/m, and density ρ = 1420kg/m3. It is evident
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that the modal frequencies are closely-spaced in the parameters space. As such, the bandwidth of

frequencies where the harvester cannot respond to the external excitation is very narrow resulting

in wideband behavior.

In addition to illustrating the loci of the modal frequencies in the h/L space, the figure also

depicts variation of some multiple integers of the lowest three modal frequencies with h/L. Thus,

these diagrams allow us to find the values of h/L for which the modal frequencies are commensurate.

In the vicinity of these points, the sloshing conditions are such that nonlinear interactions among

the modes possessing commensurate frequencies can be activated resulting in energy exchange.

Consequently, when the nth mode is directly excited via a primary resonance and that mode is

in internal resonance with another mode, say the mth, the response will exhibit contributions from

both modes even when the mth mode is not directly excited.

Figure 3.2 illustrates that nonlinear modal interactions are possible at several values of h/L.

For instance, when h/L ≈ 0.02; ω2 = 2ω1, ω3 = 3ω1, and ω4 = 2ω2. Furthermore, when h/L ≈ 0.14,

ω4 = 3ω1, and when h/L ≈ 0.2, ω5 = 3ω1 . It is worth noting however that, such conditions

are necessary but not sufficient; that is, two modes can be commensurate but not interacting. For

instance, we have shown previously in [39] that, internal resonances of the two-to-one type can only

occur when ωm ≈ 2ωn and m = 2n. In other words, even when the condition ω3 = 2ω1 is satisfied

when h/L ≈ 0.32, it does lead to a two-to-one internal resonance between the first and third modes.

3.3 Nonlinear Response

Equation (3.4) (a) subject to the static boundary conditions admits a general solution of

the form:

φ(x, y, z, t) = a0(t) +

∞∑
k=1,odd

ak(t) sin kπx
cosh kπ(z + h/L)

cosh kπ(h/L)

+

∞∑
k=2,even

ak(t) cos kπx
cosh kπ(z + h/L)

cosh kπ(h/L)
,

(3.8a)

η(x, t) =

∞∑
k=1,odd

bk(t) sin kπx+

∞∑
k=2,even

bk(t) cos kπx, (3.8b)
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Figure 3.2: Variation of the sloshing modal frequencies with the height to length ratio, h/L for
β = 2.25× 10−4.

where a0(t), ak(t), bk(t), bm(t), are unknown functions of time that can be determined by enforcing

the kinematic and dynamic boundary conditions at the surface, i.e., Equations (3.4) (c) and (d).

Since Equations (3.4) (c) and (d) are nonlinear due to the advection term φxηx in Equation

(3.4) (d) as well as the kinetic energy and surface tension terms in Equation (3.4) (e), an exact

solution cannot be easily found. To overcome this issue, an approximate analytical solution of the

equations is obtained using the method of multiple scales [40]. To this end, the time dependence in

the equation is expanded into multiple time scales in the form

Tk = εkt, k = 0, 1, 2 . . . (3.9)

where ε is a bookkeeping parameter. Based on the definition of the new time scales, the time

derivatives can be expressed as

d

dt
= D0 + εD1 + ε2D2 +O(ε3), (3.10)

where Dk = ∂
∂Tk

.

The dependent variables φ, and η, as well as the unknown constant, C are also expanded in
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the following forms:

φ(x, z, t, ε) = εφ1(x, z, T0, T1, T2) + ε2φ2(x, z, T0, T1, T2) +O(ε3)

η(x, t, ε) = εη1(x, T0, T1, T2) + ε2η2(x, T0, T1, T2) +O(ε3),

C = ε2C2 +O(ε3).

(3.11)

To implement the method of multiple scales, the base acceleration and magnetization are

scaled to appear at the same order of the perturbation problem such that x0 = ε2x0, and χm =

ε2χm. Furthermore, the frequency of acceleration, Ω, is assumed to be close to the fundamental

frequency Ω = ω1 + εσ1, where σ1 is a small frequency detuning parameter. Since the dynamic

and kinematic boundary conditions are evaluated at the surface η(x, t), which is still unknown,

the dependence of φ on η is expanded in a Taylor series around η = 0. In other words, we let

φ(η) ≈ φ(0) + εφz(0)η+ ε2/2φzz(0)η2 +O(ε3). Note that this assumption is accurate as long as the

surface waves are finite but sufficiently small.

Upon substituting Equations (3.9-3.11) into Equation (3.4) (c) and (d), and collecting terms

of like powers of ε, we obtain the following cascade of linear partial differential equations:

O(ε1) :

D0φ1 +
1

πδ1
(η1 − βη1xx) = 0, (3.12a)

D0η1 − φ1z = 0, (3.12b)

O(ε2) :

D0φ2 +
1

πδ1
(η2 − βη2xx) = −1

2
(φ2

1z + φ2
1x)−D1φ1 + η1D0φ1x

+χmH(x)2C2 + x0Ω2 sin(ΩT0) (3.13a)

D0η2 − φ2z = −D1η1 + η1φ1zz − η1xφ1x, (3.13b)

In this chapter, we investigate the response behavior when that first mode is in a two-to-one internal

resonance with the second mode. According to Fig. 3.2, a wide range of h/L values may lead to
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such a condition. In such a case, the solution of Equation (4.8a) and (4.8b) can be expressed in the

form

φ1 =
1

πδ1

(
A1(T1, T2)eiω1T0S1(x)Ch1(z) +A2(T1, T2)eiω2T0C2(x)Ch2(z)

)
+ cc, (3.14a)

η1 =

∫
φ1z(x, 0, T0, T1, T2)dT0, (3.14b)

where Ck(x) = cos(kπx), Sk(x) = sin(kπx), Chk(z) = cosh kπ(z+h/L)
cosh kπ(h/L) , Ak(T1, T2) is a complex-

valued functions that will be obtained by enforcing the solvability conditions at the second stage

of the perturbation analysis, and Āk(T1, T2) is its complex conjugate. Substituting Equation (3.14)

into Equation (3.13a) yields

D2
0φ2 +

1

πδ1
(D0η2 − βD0η2xx) =

h11D1A1S1(x)eiω1T0 + h12D1A2C2(x)eiω2T0 + (h21 + h31C2(x))A2
1e

2iω1T0

+ (h22 + h32C4(x))A2
2e

2iω2T0 − (h112S1(x) + h212S3(x))A1A2e
i(ω1+ω2)T0

− (h̄112S1(x) + h̄212S3(x))Ā1A2e
i(ω2−ω1)T0 + cc,

(3.15)

where the constants are given as

h11 = i
2ω1

πδ1
, h12 = i

2ω2

πδ1
, h21 = i

ω1(1 + 3δ21)

2δ21
, h22 = i

ω2(2 + 3δ22)

2δ21
,

h31 = i
ω2
2δ1 + (1 − 3δ21)ω2

1δ2
2δ21δ2ω1

h32 = i
−4ω2

4δ2 + ω2
2δ4(−4 + 5δ22)

2δ4δ21ω2
,

h112 = −i2δ2ω
3
1(1 + δ21) + 3δ21δ2ω

2
1ω2 + 2δ1(1 + δ1δ2)ω1ω

2
2 + δ21δ2ω

3
2

2δ31ω1ω2
,

h̄112 = −i2δ2ω
3
1(1 + δ21) − 3δ21δ2ω

2
1ω2 + 2δ1(1 + δ1δ2)ω1ω

2
2 − δ21δ2ω

3
2

2δ31ω1ω2
,

h212 = i
δ3(ω1 + ω2)(δ1δ2(2ω2

1 + ω1ω2 + ω2
2) − 2ω1ω2) − 2(δ2ω1 + δ1ω2)ω2

3

2δ21δ3ω1ω2
,

h̄212 = i
δ3(ω1 − ω2)(δ1δ2(2ω2

1 + ω1ω2 + ω2
2) + 2ω1ω2) − 2(−δ2ω1 + δ1ω2)ω2

3

2δ21δ3ω1ω2
.

To express the nearness of ω2 to twice ω1, we let ω2 = 2ω1 + εσ2, where σ2 is a small

frequency detuning parameter. The secular terms are then eliminated by enforcing the right-hand

side of Equations (3.15) to be orthogonal to the homogeneous solution, i.e., Equation (3.14), which
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yields

D1A1 − ¯rho12Ā1A2e
iσ2T2 = 0, D2A2 − ρ11A

2
1e
−iσ2T2 − x0Ω2δ1

π2
eiσ1T2 = 0. (3.16)

where ρ12 = − h̄112

h11
, and ρ11 = −h31

h12
.

3.3.1 Steady-State Response

To solve Equation (3.16), we express the unknown complex functions in the polar form

Ak = 1/2ake
iβk , Āk = 1/2ake

−iβk and separate the real and imaginary parts to obtain

ȧ1 = −2µ1a1 −
ρ12

2
a1a2 cos γ1 − F0 sin γ2, (3.17a)

a1γ̇1 = σ1a1 +
Γ12

2
a1a2 sin γ1 + F0 cos γ2, (3.17b)

ȧ2 = −2µ2a2 −
ρ11

2
a2

1 cos γ1, (3.17c)

a2(γ̇1 − 2γ̇2) = a2(σ2 − 2σ1) +
Γ11

2
a2

1 sin γ1 (3.17d)

where γ1 = σ2t + β2 − 2β1, γ2 = σ1t − β1, F0 = 2x0δ1Ω2

π2 and µ1, µ2 are modal damping added to

represent viscous damping effects in the fluid. These terms were obtained experimentally by fitting

the linear frequency response to the experimental findings under low excitation levels.

To obtain the steady-state solutions, we set the time derivatives in Equation (4.17a) to zero

and solve the resulting algebraic system of equations analytically for the steady-state amplitude,

(a10, a20) and phase (γ10, γ20) of the two-mode response. The stability of the resulting solutions is

then assessed by finding the eigenvalues associated with the Jacobian of Equation (4.17a) evaluated
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at the steady-state roots. To first order, the steady-state solution can be written as

φ(x, z, t) =
1

πδ1
(a10 cos(Ωt− γ20)S1(x)Ch1(z)

+ a20 cos(2Ωt− 2γ20 + γ20)C2(x)Ch2(z)),

η(x, t) =
1

Ω

(
a10 sin(Ωt− γ20)S1(x) + a20

δ2
δ1

sin(2Ωt− 2γ20 + γ10)C2(x)

)
,

(3.18)

where

ρ2
11ρ

2
12

16
a6

10 +
ρ11ρ12

2
(−2µ1µ2 + σ1(2σ1 − σ2))a4

10 +R(4µ2
1 + σ2

1)a2
10 −RF 2

0 = 0.

a20 = −ρ11

2

a2
10√

4µ2
2 + (σ2 − 2σ1)2

.
(3.19)

and R = 4µ2
2 + (σ2 − 2σ1)2.

3.4 Numerical Results

We use the resulting analytical solution, i.e., Equation (3.18) to study the displacement

frequency response curves for two different height-to-width ratios, namely, h/L = 0.2 and h/L = 0.3.

Figure 3.3 depicts variation of the surface wave amplitude measured at approximately 1 cm from

the wall with the excitation frequency for a base acceleration of 0.3 m/s2. When h/L = 0.2, the

frequency-response curve exhibits two distinct peaks occurring at approximately 1.7 Hz and 2.25 Hz.

The first peak, associated with the lower magnitude, occurs near half the second modal frequency;

whereas the second peak with the higher magnitude occurs near the fundamental frequency. While

the appearance of the second peak is expected and can be attributed to the primary resonance

behavior, the appearance of the first peak near half the second modal frequency of the sloshing fluid

is due to the aforementioned two-to-one internal resonance between the first and second modes. Such

internal resonance occurs because the second mode is nearly twice the first mode when h/L = 0.2.

This results in nonlinear energy exchange between the interacting modes.

The two-to-one internal resonance can also be confirmed by inspecting the velocity stream-

lines and surface profile near 1.7 Hz as depicted in Fig. 3.4. The figure, which depicts the velocity

streamlines and the surface wave height during one complete cycle of oscillation, illustrates that, due

to the contribution of the second mode, there is a large vertical velocity component at the midpoint
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(a) (b) 

Figure 3.3: Frequency response curves under harmonic base acceleration of 0.3 m/s2. Results are
obtained for (a) h/L = 0.2, (b) h/L = 0.3, µ1=0.04, and µ2 = 0.054.

of the surface. In the absence of the second mode contribution, the sloshing wave is such that the

surface has zero velocity at the midpoint of the surface.

As shown in Fig. 3.5, when the excitation frequency is shifted towards 2.57 Hz which is

slightly above the first modal frequency, the velocity streamlines, for the most part, illustrate sym-

metric motions around the midpoint of the surface. This is typical of the first mode response and

indicates that the contribution of the second mode diminishes as the excitation frequency deviates

from half the second modal frequency.

Figure 3.3 (b) depicts the frequency-response curves when h/L = 0.3. For this value of h/L,

the nonlinear interaction is negligible since, as shown earlier in Fig. 3.2, the second modal frequency

deviates significantly from twice the fundamental frequency. As a result, the frequency response

only includes one dominant peak near 2.4 Hz. Due to the diminishing nonlinear interaction between

the first and second modes, a barely noticeable hump can also be seen near 1.9 Hz.

3.5 Output Voltage

To obtain the voltage induced in one coil, Vo, Faraday’s law is applied. For a rectangular

tank, with coils wound in the vertical direction and magnetic field applied along the x̄-axis, the

voltage output per unit width of the harvester can be written

Vo = − d

dt̄

∫∫
Σ(t̄)

B(x̄)dA, (3.20)
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 3.4: Surface wave height and velocity streamlines of the sloshing ferrofluid during one cycle of
steady-state oscillation for h/L = 0.2, a base acceleration of 0.3 m/s2, and an excitation frequency
ω = 1.755 Hz. (a) t̄ = 0.073s, (b) t̄ = 2 × 0.073s, (c) t̄ = 3 × 0.073s, (d) t̄ = 4 × 0.073s, (e)
t̄ = 5× 0.073s, and (f) t̄ = 6× 0.073s.
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 3.5: Surface wave height and velocity streamlines of the sloshing ferrofluid during one cycle of
steady-state oscillation for h/L = 0.2, a base acceleration of 0.3 m/s2, and an excitation frequency
ω = 2.57 Hz. (a) t̄ = 0.073s, (b) t̄ = 2×0.073s, (c) t̄ = 3×0.073s, (d) t̄ = 4×0.073s, (e) t̄ = 5×0.073s,
and (f) t̄ = 6× 0.073s.
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where dA is an element on the moving surface Σ(t̄), and B is the vector of magnetic flux density.

For the problem at hand, and assuming small surface waves, the previous equation can be written

as

Vo = − d

dt̄

∫ b

−b

∫ η̄(t̄)

−h
B(x̄)dȳdz̄, (3.21)

where 2b is the depth of the container.

The magnetic flux density, B, can be further related to the applied field via B(x̄) = µ0(1 +

χm)H̄(x̄), which upon substitution into Equation (3.20) and carrying out the integration yields

Vo = −2bhµo(1 + χm)H̄(x̄)
dη̄

dt̄
. (3.22)

To determine the average output voltage generated in the total number of coils, N , we multiply

Equation (3.22) by the number of coils, N , and average the results over the width of the container,

L. This yields

Vo = αc

∫ L/2

−L/2
H̄(x̄)

dη̄

dt̄
dx̄, (3.23)

where αc = −2Nb hLµo(1 + χm).

To determine the current in the coil, we apply Kirchhoff’s Law and obtain

Lc
dī

dt̄
+ (Rc +Rl)̄i = αc

∫ L/2

−L/2

dH̄(x̄)

dx̄

dφ̄

dx̄
dx̄, (3.24)

where ī is the induced current, Rl is the load resistance, Rc and Lc are, respectively, the resistance

and inductance of the collecting coil.

3.6 Experimental Results

To investigate the validity of the theoretical model and analytical solution, the experimental

setup depicted in Fig. 3.6 is constructed. A plastic cubic container carrying the ferrofluid with each

side measuring at 10.16 cm is placed inside a pick-up coil. The coil is wound around a ferrite core

and the whole setup is mounted on an electrodynamic shaker table. The external magnetization is

applied using permanent magnets with maximum magnetic field intensity of 92 mT. The intensity

and the spatial distribution of the magnetization are varied by changing the external permanent

magnets placement. A dSpace system is used for the purpose of controlling the shaker and for data
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acquisition. The harvested voltage is measured across a resistive load connected in parallel to the

pick-up coil. The physical properties of the ferrofluid and the harvester are listed in Table 3.1.

Table 3.1: Harvester’s properties and specifications.

Property SI Units
Ferrofluid Flash Point 92◦

Ferrofluid Initial Magnetic Susceptibility 3.52
Ferrofluid Viscosity at 27◦ 12 mPa.s
Ferrofluid Density at 25◦ 1420 kg/m3

Number of Coil Turns 1500
Inductance of Coil Turns 1.55 H
Coil Resistance 254 Ohms

(a)

Shaker 

Accelerometer 

Coil 

Magnet 

Container 

(b)

Figure 3.6: (a) Schematic and (b) picture of the setup used in the experiments.

The height of the surface wave is measured at the corner of the container using a laser

vibrometer. Since ferrofluids absorb the laser beam, a thin layer of superhydrophobic coating is

sprayed over the ferrofluid surface. To reflect the laser beam, an additional thin layer of a high

gloss yellow paint is then sprayed over the hydrophobic coating. Two cases are analyzed, namely

h/L = 0.2, and h/L = 0.3. In both cases, the steady-state amplitude of the surface wave at

approximately 1 cm from the wall is measured. The magnitude of the output voltage across an

optimal load of 254 Ohms is also recorded under a base acceleration of 0.3 m/s2 and a frequency
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Figure 3.7: Variation of the magnetic field across the container’s width.

bandwidth around the first modal frequency. In the experiment, the frequency of motion of the

shaker head is varied from a value well below resonance to a value well above resonance and vise

versa. At each frequency step, the steady-state is allowed to develop. The magnetic field H̄(x̄) is

applied using static permanent magnets with opposite polarities placed at a small distance from

the container walls. The resulting field across the container is measured using a Gaussmeter and

recorded then fitted into a quadratic curve as shown in Fig. 3.7.

First, the displacement frequency response curves as obtained experimentally and using the

analytical model are compared in Fig. 3.8 for (a) h/L = 0.2 and (b) h/L = 0.3. A good qualitative

agreement between the model and the experiment is observed. For h/L = 0.2, both of the theory

and experiment predict the presence of two distinct peaks in the response. However, the theoretical

model over predicts the location of the larger peak associated with the first mode. This could be

due to an error in the experimental measurement of the height of the fluid column due to surface

tension effects.

Similarly, when h/L = 0.3, both of the theory and experiment agree qualitatively in pre-

dicting the presence of only one distinct peak in the frequency response. However, the theoretical

results again over predict the response magnitude over most of the frequency range considered.

Next, we compare the voltage response curves in both cases as depicted in Fig. 3.9. Good

qualitative agreement between the theoretical and experimental results is observed. In both cases,

the theoretical results under predict the experimental findings near the first modal frequency and

slightly over-predict them near half the second modal frequency. When h/L = 0.2 larger voltage

output is produced as compared to the case involving h/L = 0.3. Moreover, quite interestingly, even
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(a) (b) 

Figure 3.8: Frequency response curve under harmonic base acceleration of 0.3 m/s2. Results are
obtained for (a) h/L = 0.2, (b) h/L = 0.3, µ1=0.04, and µ2=0.054. Solid lines represent theoretical
results while asterisk represent experimental findings.

(a) (b) 

Figure 3.9: Voltage response curves under a harmonic base acceleration of 0.3 m/s2. Results are
obtained for (a) h/L = 0.2, (b) h/L = 0.3, µ1=0.04, and µ2=0.054. Joined circles represent
theoretical results.

though the displacement response curve did not exhibit a clear peak near half the second modal

frequency when h/L = 0.3, both of the theoretical and experimental voltage responses exhibit clear

response peaks near this frequency. This signifies that the high-frequency small-magnitude motions

occurring at twice the excitation frequency contribute significantly to the output voltage.

For further model verification purposes, we repeated the experiment with h/L = 0.2 using a

different applied field, H̄. This time we inverted one of the magnets such that the two magnets have

similar polarity. This resulted in the magnetic field profile shown in Fig. 3.10 (a). The theoretical

results presented in Fig. 3.10 (b) again show good qualitative agreement with the experimental

findings. Quite interestingly, both of the theory and experiment predict significant amplification in

the output voltage resulting from changing the magnetic field. This highlights the clear influence of
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P = 8µW/g

P = 1.36µW/g

(b) 

Figure 3.10: Voltage response under a harmonic base acceleration of 0.3 m/s2. Results are obtained
for h/L = 0.2, and µ1=0.04, µ2=0.054. Joined circles represent theoretical results.

the magnetic field distribution on the performance of the harvester.
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Chapter 4

Response to Parametric

Excitations

4.1 Motivations

This chapter evaluates the efficiency of harvesting energy from Faraday’s surface waves.

Faraday’s waves can be excited when a fluid-carrying container is subjected to harmonic base ex-

citations in a direction parallel to the container’s height with a frequency close to twice one of the

infinite modal frequencies of the fluid column. The phenomenon was first observed by Faraday in

1861 who noted that the waves developing on the free surface of a liquid resting upon a vertically

vibrating support complete one cycle of vibration for every two cycles of excitation [41]. Twenty

eight years later, the same concept was explored further by Melde using a vertically-excited pendu-

lum and then by the famous paper of Strutt and Lord Rayleigh on the crispation of fluid resting

upon a vibrating support [42].

The development of surface waves in the container follows the same exact principle that

a child on a swing intuitively learns to adapt in order to pump up the amplitude of the swing

oscillation. By lowering the center of gravity of his body when he swings down and raising it when

he swings up, the child is essentially exciting the swing at twice its fundamental frequency in a

phenomenon known as principle parametric resonance.
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4.2 Experimental Setup

To evaluate the proposed idea, we designed and constructed the setup shown in Fig. 4.1.

The setup consists of a plastic rectangular container of height 15.24 cm, width 15.24 cm, and depth

7.62 cm. The container is mounted on the top of an electrodynamic shaker as shown in Fig. 4.1

and filled with the ferrofluid for the purpose of energy generation. To create a net magnetization

in the fluid, two static magnets are mounted at either side of the container. The location of the

magnets can be changed vertically and horizontally to evaluate the influence of the magnetic field

on the harvester’s performance. The electric field generated as a result of the change in magnetic

flux induced by the motion of the fluid is collected using a brass coil (gauge 12) wound around the

container as shown in the figure.

The magnitude and frequency of the parametric base acceleration generated using the elec-

trodynamic shaker are controlled via a closed-loop controller which measures the acceleration using

an accelerometer mounted on the shaker’s base and minimizes the error between the measured and

desired value.

Static Magnet


Container

Wires


Accelerometer


Shaker


Ferrofluid


Base 

acceleration


Figure 4.1: A depiction of the parametric excitation setup used in the experiments.
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4.3 Experimental Investigation

To draw a general picture of the response, the container is first subjected to parametric

excitations with a fixed acceleration magnitude of 2 m/sec2. The frequency is varied linearly using a

chirp signal at a rate of 0.0025 Hz/sec and covers a large frequency bandwidth which spans the region

between 2 and 15 Hz. At each frequency step, the output voltage is recorded across a resistive load

of RL = 137 Ohms which was chosen to match the resistance of the coil. This results in favorable

conditions for power flow. The initial fluid height was fixed at 46 mm and the center of the static

magnets is placed at a distance of 2 cm from the side of the container and at 2 cm above the

fluid surface. The magnets are oriented to have opposite polarities resulting in the magnetic field

distribution, (MFD2) shown in Fig. 4.2.

Figure 4.2: Variation of the magnetic field across the width of the container. MFD stands for the
Magnetic Field Distribution and the number refers to the horizontal distance from the center of the
magnet to the container’s wall.

Figure 4.3 depicts the voltage-frequency sweep which illustrates several pronounced peaks

in the frequency response. These peaks occur near twice one of the modal frequencies of the fluid

column, and, except for the first mode, are more pronounced near twice the modal frequencies of

the even modes. The experimentally-observed peaks occur at frequencies that are slightly lower

than the theoretical values. For instance, as shown in Table 4.1, the first modal frequency obtained

theoretically for a height of 46 mm is 3.89 Hz, while that obtained experimentally is around 3.5
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Hz. This trend in frequency reduction appears for all modal frequencies revealing that the magnetic

field has a softening influence on the dynamics of the surface waves. We believe that, when the

magnets are placed slightly above the container, as in this case, they serve to pull the fluid towards

the walls and reduce the fluid resistance to motion, thereby reducing the effective stiffness of the

fluid. In other words, the magnetic field seems to produce a negative restoring force influence on

the dynamics. Figure 4.4 illustrates how the placement of the magnets along the vertical axis has a

tremendous influence on the static surface shape.
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Figure 4.3: Variation of the output voltage with the frequency as obtained for MFD (MFD2) using
a chirp frequency input.

Table 4.1: Experimental and theoretical modal frequencies for an initial fluid height h = 46 mm, and magnets with
opposite polarity placed at a height of 2 cm above the surface and a distance of 2 cm from the walls.

Modal frequency Theoretical [Hz] Experimental [Hz]
2ω10 3.89 3.50
2ω20 6.26 5.8
2ω30 7.81 7.40
2ω40 9.05 8.42

The influence of the magnetic field on the first modal frequency is further studied by changing

the location of the magnets with respect of the surface. Table 4.2 demonstrates the influence of the
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(b)

(a)

Figure 4.4: Effect of the magnetic field placement on the static surface profile. (a) Experiments,
and (b) schematic

vertical distance on the first modal frequency while keeping the horizontal distance from the walls

constant at 2 cm. It is clear that the softening influence of the magnetic field is increased by placing

the magnets either above or below the surface. The softening influence is larger when the magnets

are placed above the surface.

Table 4.2: Experimental and theoretical values of the first modal frequency for a fluid height h = 46 mm, and
magnets with opposite polarity placed at different height from the surface and a distance of 2 cm from the walls.

z0 [cm] 2ω10,Th [Hz] 2ω10,exp [Hz] error [%]
-2 3.89 3.44 11.5
0 3.89 3.5 10.2
2 3.89 3.28 15.7

Table 4.3 shows the influence of the horizontal distance on the first modal frequency while

keeping the vertical distance constant at 2 cm above the liquid surface. It is shown that the softening

influence of the magnetic field is increased as the magnets placed closer toward the container walls,

as a result of the increase is the magnetic field applied on the ferrofluid.
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Table 4.3: Experimental and theoretical values of the first modal frequency for a fluid height h = 46 mm, and
magnets with opposite polarity placed at different distances from the walls and a height of 2 cm above the surface.

x0 [cm] 2ω10,Th [Hz] 2ω10,exp [Hz] error (%)
1 3.89 3.56 8.5 %
2 3.89 3.66 5.9 %
3 3.89 3.82 1.8 %

4.3.1 Principle Parametric Resonance of the Second Sloshing Mode:

Since, as shown in Fig. 4.3, maximum peak voltage is generated near twice the second

modal frequency, we study the voltage behavior in more details and for different acceleration levels

as depicted in Fig. 4.5. For a base acceleration of 1.5 m/sec2, the response exhibits a softening-type

nonlinear behavior where large-amplitude responses occur at frequencies that are lower than twice

the modal frequency of the response. Due to the hysteretic nature of the nonlinear response, the

harvester exhibits a larger bandwidth in the backward sweep (dots), as compared to the forward

sweep (rectangles). The maximum voltage recorded is 0.0105 Volts across a resistive load of 137

Ohms.

As the base acceleration is increased to 2 m/sec2, the effective bandwidth of the harvester

increases in both directions of the frequency sweep. In the backward sweep, the bandwidth increases

to approximately 0.6 Hz; while in the forward sweep, it increases to approximately 0.5 Hz. The

maximum voltage recorded does not increase appreciably and stays at around 0.011 Volts. The

reason behind the very small increase in the voltage is not very clear. Nonetheless, in the author’s

opinion, it could stem from a saturation in the voltage occurring as the amplitude of the surface

waves increases. This is indicated by the abrupt change in the slope of the voltage-frequency curve

as shown in Fig. 4.5 (b). The abrupt change in slope is even more pronounced in the case involving

the 3 m/sec2 base acceleration as shown in Fig. 4.5 (c). During the experiments, visual inspection

of the response revealed that, at the point when the slope of the voltage-response curve changes, the

surface waves become so large that they almost reach the top of the container.

As the base acceleration is increased further to 3 m/sec2, the effective bandwidth of the

harvester increases in both directions of the frequency sweep. In the backward sweep, the bandwidth

increases to approximately 0.7 Hz; while in the forward sweep, it increases to approximately 0.6 Hz,

which are both almost double the bandwidth at a base acceleration of 1.5 m/sec2. The maximum
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Figure 4.5: Variation of the output voltage across a resistive load RL = 137 Ohms with the
excitation frequency. Results are obtained for the magnetic field distribution MFD2 shown in Fig.
4.2 and a base acceleration magnitude of (a) 1.5 m/sec2, (b) 2 m/sec2, and (c) 3 m/sec2. Dots
represent a backward sweep while rectangles represent a forward sweep.

voltage amplitude increases slightly to reach approximately 0.012 Volts.

Next, the influence of the magnetic field strength on the output voltage is investigated as

depicted in Fig. 4.6. To this end, two magnets of opposite polarity and equal strength were placed

on either side of the container’s walls such that their centers are at a distance of 2 cm above the

surface of the fluid. The horizontal distance between the walls and the center of the magnets was

then changed incrementally. The resulting MFD at the surface of the fluid was measured using a

Gauss meter and recorded as depicted in Fig. 4.2. In the three cases, the MFD exhibits a quadratic

dependence on the distance with the closest magnet producing higher fields over the whole range

considered.

Results shown in Fig. 4.6 demonstrate that the output voltage increase with the strength of

the magnetic field. As such, when the magnets are placed closer to the container walls, larger output

voltages are obtained. It can also be noted that the frequency bandwidth wherein the parametric
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Figure 4.6: Variation of the output voltage with the excitation frequency measured across RL = 137
Ohm for the different magnetic field distributions shown in Fig. 4.2. Results are obtained for a base
acceleration of 2 m/sec2, a fluid height of 46 mm, and (a) MFD1, (b) MFD2, (c) MFD3. Rectangles
represent a backward sweep while dots represent a forward sweep.

resonance can be activated shifts towards lower frequencies when the magnetic field is increased. As

described earlier, this is due to the softening influence of the magnetic field when the magnets are

placed above the surface.

In addition to the frequency response curves, we also investigate the forced response of

the harvester for the three different magnetic field distributions shown in Fig 4.2. In each case,

the base acceleration is increased from 0 to 4 m/s2 and the output voltage is recorded at a single

frequency corresponding to twice the second modal frequency of the fluid column. In the first case

shown in Fig. 4.7 (a), corresponding to the lowest magnetic field strength, MFD3, the output voltage

remains negligible up to a threshold base acceleration of 1.1 m/s2 beyond which the harvester starts

to produce measurable output. Subsequently, the output voltage increases monotonically with the

acceleration level until it saturates near 0.006 Volts. The transition of the voltage from zero to large

values is smooth without hysteresis.
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Figure 4.7: Variation of the output voltage with the excitation magnitude measured acrossRL = 137
Ohm for the different magnetic field distributions shown in Fig. 4.2. Results are obtained for a base
acceleration of 2 m/sec2, a fluid height of 46 mm, and (a) MFD3, (b) MFD2, (c) MFD1. Rectangles
represent a backward sweep while dots represent a forward sweep.

For the case involving the medium magnetic field, MFD2, Fig. 4.7 (b), the threshold base

acceleration required to initiate measurable responses increases to 1.4 m/s2 followed by a sudden

jump to large amplitude voltages. The maximum voltage level achieved in this case is approximately

0.01 Volts which is much larger than that achieved for the lower magnetic field. A clear hysteretic

behavior due to a subcritical bifurcation can also be seen. The hysteresis happens because the jump

to large-amplitude voltages in the forward sweep occurs at a higher value when compared to the

jump from the large amplitude voltages in the backward sweep.

For the case involving the highest magnetic field values, Fig. 4.7 (b), the threshold acceler-

ation level is not very clear since there is no clear transition from zero voltage output to measurable

values. Nonetheless, the harvester can now produce higher acceleration levels around 0.014 Volts

under high base accelerations.

The output power of the harvester as a function of the load resistance is depicted in Fig.
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4.8. Results, which were obtained for a base acceleration of 2 m/sec2, an excitation frequency of

5.84 Hz, demonstrate a typical power-resistance curve with maximum power occurring at an optimal

load resistance that is very close to the coil resistance of 137 Ohm.
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Figure 4.8: Variation of the output power with the load resistance. Results are obtained for a
fluid height of 46 mm, a base acceleration of 2 m/sec2, an excitation frequency of 5.84 Hz, and the
magnetic field distribution MFD2 shown in Fig. 4.2

4.3.2 Principle Parametric Resonance of The First Mode:

Next, we compare the voltage about obtained near the first and second modes for the same

excitation level of 2 m/sec2 and the magnetic field distribution, MFD2. As shown in Fig. 4.9, for the

magnetic field distribution considered, exciting the harvester near twice its second modal frequency

produces four times the voltage level and three times the response bandwidth when compared to

exciting it near twice its first modal frequency. The reason behind the improved output near the

second mode is not very clear. Nonetheless, in the author’s opinion, it must be related to the modal

shapes of the surface waves in conjunction with the magnetic field distribution across the width of

the container.

To further investigate this fact, we reversed the polarity of one of the magnets such that the

MFD is now cubic in nature as shown in Fig. 4.10. The experiment is then repeated while keeping

all other conditions the same. The results associated with the first mode are depicted in Fig. 4.11

where Fig. 4.11 (a) presents the results for opposite polarity; i.e. “even” quadratic MFD (EMFD),

while Fig. 4.11 (b) presents the results for the same polarity which results in an “odd” cubic MFD

(OMFD). It is evident that, the output voltage associated with the OMFD is almost four times that

obtained using the EMFD. This points to a direct relationship between the output voltage and a
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Figure 4.9: Variation of the output voltage with the excitation frequency across RL = 137 Ohm
resistor. Results are obtained for a fluid height of 46 mm, a base acceleration of 2 m/sec2, and the
magnetic field distribution MFD2 shown in Fig. 4.2. Dots represents a forward sweep while squares
represents a backward sweep

weighted orthogonality between the mode shape of the response and the MFD. Note that the first

mode shape is odd in nature while the second mode shape is even.
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Figure 4.10: Variation of the magnetic field across the width of the container. EMFD stands for
the “even” magnetic field distribution and OMFD stands for the “odd” magnetic field distribution.

To further confirm this observation, we repeated the experiment for excitation frequencies

near the second “even” mode as depicted in Fig. 4.12. As predicted, for the same polarity, where

the MFD is odd, the harvester does not produce any measurable voltage levels as shown in Fig. 4.12

(b). On the other hand, when the MFD is even similar to the modal shape of the response, the
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Figure 4.11: Variation of the output voltage with the excitation frequency across RL = 137 Ohm
resistor. Results are obtained for a fluid height of 46 mm, a base acceleration of 2 m/sec2, and (a)
the magnetic field distribution EMFD, (b) the magnetic field distribution OMFD. Dots represents
a forward sweep while squares represents a backward sweep.

harvester produces large voltage outputs.
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Figure 4.12: Variation of the output voltage with the excitation frequency across RL = 137 Ohm
resistor. Results are obtained for a fluid height of 46 mm, a base acceleration of 2 m/sec2, and (a)
the magnetic field distribution EMFD, (b) the magnetic field distribution OMFD. Dots represents
a forward sweep while squares represents a backward sweep.

4.4 Mathematical Model

In this section, we obtain a mathematical model to capture the dynamics of the harvester.

To this end, we consider the two-dimensional finite-amplitude sloshing dynamics of an irrotational,

incompressible fluid in a rectangular container of width L. The fluid whose mass density is denoted

by ρ is assumed to be of height h as shown in Fig. 4.13. As the fluid starts to move due to
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Z0 sin(!t̄)

Figure 4.13: A schematic of the fluid sloshing in a rectangular container as a result of a parametric
excitation.

external perturbations, surface waves of height η̄(x̄, t̄) arise. The equations and associated boundary

conditions governing the two-dimensional motion of the fluid can be written as:

u(x̄, z̄, t̄) = ui + vj = ∇φ̄, (4.1a)

∇2φ̄ = 0, −L
2
≤ x̄ ≤ L

2
, −h ≤ z̄ ≤ η̄(x̄, t̄), (4.1b)

φ̄x̄ = 0 on x̄ = ±L
2
, φ̄z̄ = 0 on z̄ = −h, (4.1c)

η̄t̄ + uη̄x̄ = v, on z̄ = η̄(x̄, t̄), (4.1d)
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φ̄t̄ +
u2 + v2

2
+ gη̄ − η̄Z0ω

2 sin(ωt̄)− µ0

ρ

∫ H̄

0

M̄dH̄ = C̄.

on z̄ = η̄(x̄, t̄),

(4.1e)

Here, the subscripts denote partial derivatives with respect to the independent variables.

Equation (4.1) (a) states the irrationality of the velocity field by expressing the two-dimensional

velocity field, u, as the gradient of a scalar potential, φ̄. Equation (4.1) (b) is a consequence of the

incompressibility assumption for which the continuity equation requires the Laplacian of the velocity

potential to vanish. Equation (4.1) (c) states that the velocity normal to the sidewalls and bottom

wall vanishes. Equation (4.1) (d) is the kinematic boundary condition at the surface which states

that the velocity of a fluid particle on the surface must be equal to the velocity of the surface itself.

Finally, Equation (4.1) (e) represents the dynamic boundary condition at the surface obtained by

enforcing the unsteady Bernoulli equation.

In Equation (4.1)(e), the first term accounts for the unsteadiness in the velocity field; the

second term represents the kinetic energy of the fluid; the third term accounts for the potential

energy; and the fifth term represents forces exerted on the surface due to a harmonic base acceleration

in the x̄ direction. Here, Z0 and ω are the amplitude and frequency of the parametric excitation,

respectively. Finally, the sixth term represents the magnetic moment exerted on the surface, where

M̄ and H̄ are the magnetization and magnetic field, respectively; µ0 represents the permeability of

vacuum, and C̄ is a constant.

In this study, the applied magnetic field will be static and will vary along the x-axis only,

i.e., H̄(x̄, ȳ, z̄, t̄) = H̄(x̄). The magnetic field is assumed to have a linear relationship with the

magnetization, M̄(x̄) = χmH̄(x̄), that is,

∫ H̄

0

M̄(x̄)dH̄ =
χm
2
H̄2(x̄). (4.2)

Equation (4.1) can be further non-dimensionalized by introducing the following dimensionless quan-
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tities:

x =
x̄

L
, z =

z̄

L
, η =

η̄

L
t = ω0t̄, φ =

φ̄

L2ω0
, C̄ =

C

L2ω2
0

,

z0 =
Z0

L
, Ω =

ω

ω0
, H =

H̄

H0
,

(4.3)

where ω0 =
√

πg
L δ1 is the first modal frequency of the fluid column in the absence of surface tension

and magnetic field, δ1 = tanh(πh/L), and H0 = Lω0

√
2ρ
µ0

. This yields the following non-dimensional

equations:

∇2φ = 0, −1

2
≤ x ≤ 1

2
, −h/L ≤ z ≤ η(x, t), (4.4a)

φx = 0 on x = ±1

2
, φz = 0 on z = −h/L, (4.4b)

ηt + φxηx = φz, on z = η(x, t), (4.4c)

φt +
φ2
x + φ2

z

2
+

1

πδ1
η − ηz0Ω2 sin Ωt− χmH2 = C

on z = η(x, t),

(4.4d)

4.5 Single-Mode Response

Away from any internal resonances, a single-mode solution is sufficient to capture the dy-

namics of the sloshing waves. Since Equations (4.4)(c) and (4.4)(d) are nonlinear, an exact solution

cannot be found. To overcome this issue, we obtain an approximate analytical solution of the equa-

tions using the method of multiple scales. To this end, we expand the time dependence in the

equation into multiple time scales in the form:

Tk = εkt, k = 0, 1, 2 . . . (4.5)
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where ε is a bookkeeping parameter. The time derivatives can be further expressed as

d

dt
= D0 + εD1 + ε2D2 +O(ε3), (4.6)

where Dk = ∂
∂Tk

. Furthermore, we expand φ, η, and C in the following forms:

φ(x, z, t, ε) = εφ1(x, z, T0, T1, T2) + ε2φ2(x, z, T0, T1, T2) + ε3φ3(x, z, T0, T1, T2) +O(ε4)

η(x, t, ε) = εη1(x, T0, T1, T2) + ε2η2(x, T0, T1, T2) + ε3η3(x, T0, T1, T2) +O(ε4),

C = ε2C2 + ε3C3 +O(ε4).

(4.7)

To express the nearness of the excitation frequency to twice the modal frequency of a given sloshing

mode, we let Ω = 2ωk + ε2σ, where σ is a small detuning parameter. Furthermore, we treat only

soft excitations for which z0 is very small and can be scaled at order ε2.

Since the dynamic and kinematic boundary conditions are evaluated at the surface η(x, t),

which is still unknown, we expand the dependence of φ on η in a Taylor series around η = 0. In

other words, we let φ(η) ≈ φ(0) + εφz(0)η + ε2/2φzz(0)η2 + O(ε3). Note that this assumption is

accurate as long as the surface waves are finite but sufficiently small.

Upon substituting Equations (4.5-4.7) into Equation (4.4) (d), and (4.4) (e), then collecting

terms of like powers of ε, we obtain the following cascade of linear partial differential equations:

O(ε1) :

D0φ1 +
1

πδ1
(η1) = 0, (4.8a)

D0η1 − φ1z = 0, (4.8b)

O(ε2) :

D0φ2 +
1

πδ1
(η2) = −1

2
(φ2

1z + φ2
1x)−D1φ1 + η1D0φ1z + C2, (4.9a)

D0η2 − φ2z = −D1η1 + η1φ1zz − η1xφ1x, (4.9b)
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O(ε3) :

D0φ3 +
1

πδ1
(η3) =− φ1zφ2z − η1φ1zφ1zz − φ1xφ2x

− η1φ1xφ1xz −D2φ1 −D1φ2 − η2D1φ1z

+ η1D0φ2z −
1

2
η2

1D0φ1zz + 4z0ω
2
kη1 sin(2ωkT0) + C3,

(4.10a)

D0η3 − φ3z =−D2η1 −D1η2 + η2φ1zz + η1φ2zz +
1

2
η2

1φ1zzz

− η2xφ1x − η1xφ2x − η1η1xφ1xz.

(4.10b)

In the absence of internal resonances between the sloshing modes, a single-mode response

is sufficient to describe the dynamics of the system when that mode is being excited parametrically

near twice one of its modal frequencies. As such, the solution of the first-order problem can be

written as:

φe1(x, z, T0, T1, T2) =
1

πδk

(
Ak(T1, T2)eiωkT0 + cc

)
Ck(x)Chk(z),

φo1(x, z, T0, T1, T2) =
1

πδk

(
Ak(T1, T2)eiωkT0 + cc

)
Sk(x)Chk(z),

(4.11a)

ηe1(x, z, T0, T1, T2) = −i k
ωk

(
Ak(T1, T2)eiωkT0 + cc

)
Ck(x),

ηo1(x, z, T0, T1, T2) = −i k
ωk

(
Ak(T1, T2)eiωkT0 + cc

)
Sk(x).

(4.11b)

where ωk =
√
kδk/δ1, Ak(T1, T2) is a complex-valued functions that will be obtained by enforcing

the solvability conditions at a later stage in the analysis and Āk(T1, T2) is its complex conjugate.

Here, the superscripts represent the type of mode (e: even and o: odd), Ck(x) = cos(kπx), Sk(x) =

sin(kπx), Chk(z) = cosh(kπ(z+h/L))
cosh(kπ(h/L)) .

Substituting Equation (4.11) into the second-order problem, Equation (4.9a) and (4.9b),

and enforcing the solvability conditions, wherein the right-hand side of Equation (4.9a) is forced to

be orthogonal to every solution of the adjoint homogeneous problem, i.e., orthogonal to Equation

(4.11), we obtain D1Ak = D1Āk = 0. Upon enforcing the solvability conditions, the particular
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solution can be written as:

φe2(x, z, T0, T1, T2) = i
k2

8δ2
kωk

[
αkS2k(x)Ch2k(z) + (1 + 3δ2

k)
]
A2
k(T2)Ck(x)e2iωkT0 + cc

φo2(x, z, T0, T1, T2) = i
k2

8δ2
kωk

[
− αkC2k(x)Ch2k(z) + (1 + 3δ2

k)
]
A2
k(T2)Ck(x)e2iωkT0 + cc

(4.12)

where C2k(x) = cos(2kπx), S2k(x) = sin(2kπx), Ch2k(z) = cosh(2kπ(z+h/L))
cosh(2kπ(h/L)) ,

αk =
4

(ω2
2k − 4ω2

k)

(
ω2

2k

2
(1 + δ2

k) + (1− 3δ2
k)ω2

k

)
, (4.13)

ω2k =
√

2kδ2k/δ1, and the coefficient C2 is determined by forcing
∫ 1/2

−1/2
η2dx to vanish to preserve

continuity.

Next, we substitute Equation (4.11) and (4.12) into Equation (4.10a) and (4.10b), then

eliminate the secular terms by enforcing the solvability conditions at the third order; this yields:

iD2Ak +NeffA
2
k(T2)Āk(T2) + FkĀk(T2)eiσT2 = 0, (4.14)

and,

Fk = πz0ω
3
kδ1. (4.15)

where Neff is the effective nonlinearity coefficient. This coefficient represents an average nonlinear

stiffness expression which captures the nature of the nonlinear response of the finite-amplitude

sloshing modes, and is given by

Neff =
k4π2p1(δk)

16δ5
k

. (4.16)

The solution of Equation (4.14) is obtained by expressing the unknown complex-valued function Ak

in the polar form Ak = 1/2ake
iβk , Āk = 1/2ake

−iβk . Upon substituting the polar transformation

into Equation (4.14) and separating the real and imaginary parts, we obtain the following equations

which govern the dynamic modulation of the system:

a′k = 2µ1k
ωk
ω1
ak − 2µ2

ω2
k

ω2
1

a2
k − Fkak sin γk, (4.17a)
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akγ
′
k = 2σak −

Neff
4
− Fkak cos γk, (4.17b)

where the prime represents a derivative with respect to T2, γk = σT2 − 2βk, µ1k and µ2k are

respectively, a linear and a nonlinear modal damping coefficients added to capture the damping

influence in the fluid.

Equation (4.17a), also known as the amplitude equation, captures the slow modulation of

the response amplitude; while Equation (4.17b), known as the phase equation, captures the slow

modulation in the response phase.

To obtain the long time behavior of the system, we set the time derivatives in Equation

(4.17a) and Equation (4.17b) to zero, then square and add the outcome to obtain

a2
0k

[(
2µ1k

ωk
ω1

+ 2µ2
ω2
k

ω2
1

a0k

)2

+

(
2σ − Neff

4
a2

0k

)2

− F 2
k

]
= 0, (4.18)

where a0k is the steady-state modal amplitude. Equation (4.18), known as the nonlinear parametric

frequency-response equation, exhibits six different roots, two of which are always zero indicating

that zero steady-state amplitude is always a possible response of the harvester. The fourth other

solutions are non-trivial but can sometimes take negative or complex values which are not physically

realizable.

The stability of the resulting steady-state solutions can be assessed by finding the eigenvalues

of the Jacobian matrix associated with Equations (4.17a) and (4.17b) and evaluating it at the steady-

state roots. If at least one of the eigenvalues of the Jacobian matrix has a positive real part, then

the associated steady-state solution is unstable, and, hence physically unrealizable.

Upon obtaining the steady-state roots a0k, the steady-state velocity field and surface am-

plitude can be written as

φe(x, z, t) =
ak0

πδk

(
cos

(
Ω

2
t− γ0k

2

))
Ck(x)Chk(z),

φo(x, z, t) =
ak0

πδk

(
cos

(
Ω

2
t− γ0k

2

))
Sk(x)Chk(z),

(4.19)
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ηe(x, z, t) = −ikak0

ωk

(
cos

(
Ω

2
t− γ0k

2

))
Ck(x),

ηo(x, z, t) = −ikak0

ωk

(
cos

(
Ω

2
t− γ0k

2

))
Sk(x).

(4.20)

4.6 Basic Understanding

a
0
k

⌦

Figure 4.14: A sample parametric frequency-response curve.

To better understand the parametric resonance and the response behavior near the para-

metric instability, we use Equation (4.18), to generate a typical frequency response curve of a

parametrically-excited system near the principle parametric resonance, i.e. Ω ≈ 2ωk as shown

in Fig. 4.14. The figure can be divided into three regions. In Region I, no energy can be harvested

because a0k = 0 (the trivial solution) is the only real solution of Equation (4.18). As such, the

output voltage is also equal to zero. In Region II, there are two solutions, the first is the trivial

solution (dashed lines) which is unstable, and, hence physically unrealizable. The second is a stable

nontrivial solution (solid line). Since the nontrivial nonzero solution is the only stable solution,

Region II represents a band of frequencies wherein energy can always be harvested regardless of

the initial conditions.

In Region III, there are two stable solutions and one unstable solution. The two stable
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Figure 4.15: Influence of (a) the forcing amplitude, (b) the effective nonlinearity, and (c) the
nonlinear quadratic damping on the parametric resonance curve.

solutions are the trivial solution (zero voltage) and the large-amplitude nontrivial solution. As a

result, depending on the initial conditions and the basin of attraction of the competing solutions,

the harvester can either be scavenging a large amount of energy from the environment or no energy.

For a deeper understanding of the harvesters response, it would be insightful to consider

a case when the excitation frequency is in Region I and is slowly decreasing towards Region II.

At the boundary between the two regions, the trivial solution loses stability through a transcritical

(TC) bifurcation and gives way to a stable nontrivial solution where the harvester starts to scavenge

energy from the environment. When decreasing the excitation frequency further, the amplitude of

the response a0k increases and more energy gets pumped from the source to the load. This trend

continues until the voltage amplitude reaches point A, where a jump to the trivial solution occurs

due to a cyclic-fold (CF) bifurcation. Beyond this point no energy can be harvested.

Approaching from the left by slowly increasing the excitation frequency, no energy can be

harvested until the frequency crosses the boundary between Region III and Region II. At that

point, the amplitude of the output voltage starts to increase due to another TC bifurcation. The

resulting nontrivial solution quickly disappears due to another CF bifurcation causing a sudden

jump to a large-amplitude response. Increasing the excitation frequency further causes the voltage

to decrease until it reaches the boundary between Region II and Region I. Beyond this point no
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energy can be harvested.

By virtue of the preceding discussion, we can conclude the following two critical concepts:

1. To realize effective energy harvesting via parametric excitations, it is essential to guarantee

that the harvester is operating on the stable branch of nontrivial solutions as the frequency

of excitation is varied. This is always guaranteed in Region II, but depends on the initial

conditions in Region III.

2. To enhance the broadband characteristics of the harvester, the region of nontrivial solutions,

i.e. Region II and III, should be extended over a wide range of the excitation frequency.

To demonstrate how the region of nontrivial solutions could be extended, it is necessary to understand

the effect of the design parameters on the frequency-response curve. We will address the effect of

the following four parameters:

1. The amplitude of the base acceleration embedded within, Fk. As the amplitude of

base acceleration is increased, see Fig. 4.15 (a), the branch of nontrivial solutions, and hence,

the region wherein energy could be harvested, extends over a wider range of frequencies.

Moreover, the bandwidth of frequencies wherein the trivial solution is unstable, RegionII,

extends further as the magnitude of excitation is increased. Nonetheless, the magnitude of

external excitation is a factor that cannot be controlled by the designer and is solely controlled

by the energy source.

2. The effective nonlinearity of the harvester, Neff . The effective nonlinearity deter-

mines whether the frequency-response curves bend to the left or to the right and the degree

by which these curves bend. As shown in Fig. 4.15 (b), when Neff = 0, the voltage-frequency

curve is symmetric around Ω = 2ωk. The voltage response curves bend to the left when Neff

is less than zero and to the right when Neff is greater than zero. The degree by which the

curves bend depends on the magnitude of Neff . The effective nonlinearity coefficient is a

function of many system parameters. For instance, the effective nonlinearity of a fluid sloshing

in a container depends on the fluid depth and the mode being excited.

3. The linear viscous damping effect, µ1k. The linear viscous damping has the opposite

influence of the excitation magnitude. When the linear damping increases the bandwidth and

amplitude of the response decrease.
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4. The nonlinear damping effect, µ2k. As the effective quadratic damping decreases, the

stable nontrivial branch of solutions extends over a wider range of the excitation frequency,

Fig. 4.15 (c). On the other hand, the bandwidth of RegionII is not at all affected by the

nonlinear damping.

4.7 Output Voltage

To obtain the voltage induced in one coil, Vo, Faraday’s law is applied. For a rectangular

tank, with coils wound in the vertical direction and magnetic field applied along the x̄-axis, the

voltage output per unit width of the harvester can be written

Vo = − d

dt̄

∫∫
Σ(t̄)

B(x̄)dA, (4.21)

where dA is an element on the moving surface Σ(t̄), and B is the vector of magnetic flux density.

For the problem at hand, the previous equation can be written as

Vo = − d

dt̄

∫ b

−b

∫ η̄(t̄)

−h
B(x̄)dȳdz̄, (4.22)

where 2b is the depth of the container. The magnetic flux density, B, can be further related to the

applied field via B(x̄) = µ0(1+χm)H̄(x̄), which upon substitution into Equation (4.21) and carrying

out the integration yields

Vo = −2bhµo(1 + χm)H̄(x̄)
dη̄

dt̄
. (4.23)

To determine the average output voltage generated in the total number of coils, N , we multiply

Equation (4.23) by the number of coils, N , and average the results over the width of the container,

L. This yields

Vo = αc

∫ L/2

−L/2
H̄(x̄)

dη̄

dt̄
dx̄, (4.24)

where αc = −2Nb hLµo(1 + χm). Note that when H̄(x̄) is orthogonal to dη̄
dt̄ along the x̄-axis, the

voltage Vo approaches zero.
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To determine the current in the induced coil, we apply Kirchhoff’s Law and obtain

Lc
dī

dt̄
+ (Rc +RL)̄i = αc

∫ L/2

−L/2
H̄(x̄)

dη̄

dt̄
dx̄, (4.25)

where ī is the induced current, RL is the load resistance, Rc, and Lc are, respectively, the resistance

and inductance of the collecting coil.

4.8 Model Validation

In this section, we evaluate the ability of the model developed in the previous section to

capture the qualitative behavior of the harvester under different conditions. We start by investigating

the response near the principle parametric resonance of the second mode for the MFD (MFD 2) and

two different acceleration levels as shown in Fig. 4.16.

For the lower acceleration level of 1.5 m/sec2, there is a good quantitative agreement between

the theory and the experiment for most of the frequency sweep. The bandwidth and magnitude of

the voltage are both in good agreement with the experimental data. To match the experimental

modal frequency, we had to use an effective fluid height heff = 31 mm as compared to 46 mm height

in the absence of the magnetic field. As discussed earlier, the effective height was used to capture

the influence of the magnetic field on the modal frequencies.

For the higher acceleration level of 2 m/sec2, there still is good quantitative agreement be-

tween the theory and the experiment especially in terms of the harvester’s bandwidth. However, the

theoretical response over-predicts the theoretical data especially near the higher end of frequencies.

As described earlier, this can be attributed to the saturation of the experimental voltage when the

surface waves become very large.

As shown in Fig. 4.17, when the magnetic field strength is increased to MFD1, the the-

oretical model still predicts the experimental findings in terms of bandwidth and magnitude with

relatively good accuracy.

The theoretical forced response was also compared to experimental findings near the second

mode as depicted in Fig. 4.18. Two cases were considered using the MFD (MFD3) and (MFD2).

For the case involving the lower magnetic field, MFD3, Fig. 4.18 (a), the theoretical model correctly

predicts lower voltage magnitudes and non-hysteretic transition between the trivial and non-trivial
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Figure 4.16: Variation of the voltage with the excitation frequency for the magnetic field distri-
butions MFD2 shown in Fig. 4.2. Results are obtained for a fluid height of 46 mm, and a base
acceleration of (a) 1.5 m/sec2, (b) 2 m/sec2. Theoretical results are obtained using µ12 = 0.013,
µ22 = 0.025, and heff=31 mm. Rectangles represent a backward experimental sweep while dots
represent a forward sweep. Dashed line represent unstable theoretical response.
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Figure 4.17: Variation of the voltage with the excitation frequency for the magnetic field distri-
butions MFD1 shown in Fig. 4.2. Results are obtained for a fluid height of 46 mm, and a base
acceleration of (a) 1.5 m/sec2, (b) 2 m/sec2. Theoretical results are obtained using µ12 = 0.013,
µ22 = 0.025, and heff=31 mm. Rectangles represent a backward experimental sweep while dots
represent a forward sweep. Dashed line represent unstable theoretical response.

solutions.

For the higher MFD (MFD2), the theoretical model also correctly predicts the qualitative

nature of the response. Specifically, it predicts the presence of the CF and TC bifurcations observed

in the experiments. However, due to the saturation effect of the voltage, the theoretical model

over-estimates the experimental results at large base accelerations.

The output power of the harvester is also well-predicted experimentally as shown in Fig.

4.19. Both of the theory and experiment agree in predicting that the peak voltage occurs near a

load resistance, RL = 137 Ohm, which is equal to the measured coil resistance. However, due to

model uncertainties, the theory over-predicts the experimental data over the whole range of electric
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Figure 4.18: Variation of the voltage with the base acceleration. Results are obtained for a fluid
height of 46 mm, and (a) frequency 6.2 Hz, MFD3, (b) 5.84 Hz, MFD1. Theoretical results are
obtained using µ11 = 0.013 and µ21 = 0.025, and (a) heff=44 mm, (b) heff=31 mm. Rectan-
gles represent a backward experimental sweep while dots represent a forward sweep. Dashed line
represent unstable theoretical response.

loads considered. Note that any discrepancies between the theoretical and experimental voltage

measurements propagate significantly in the power calculation since the power is proportional to the

square of the voltage.
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Figure 4.19: Variation of the power with the load resistance. Results are obtained for an initial
fluid height of 46 mm, a base acceleration of 2 m/sec2, and the magnetic field distribution MFD2
shown in Fig. 4.2. Theoretical results are obtained using µ12 = 0.013 and µ22 = 0.025, heff=31
mm.

Finally, we evaluate the ability of the model in predicting the influence of the MFD distri-
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bution on the response near the principle parametric resonance of the first and second modes. As

aforementioned in the experimental section and explained in the theoretical model, the harvester

produces much lower power levels when the modal shape of the surface wave is nearly orthogonal

to the magnetic field distribution; i.e. when
∫ L/2
−L/2 H̄(x̄)dη̄dt̄ dx̄ ≈ 0. The theoretical results shown in

Fig. 4.20 (a) and (b) confirm this finding since they show that the harvester produces much lower

voltages when excited near twice the first “odd” mode while using an “even” magnetic field distribu-

tion (EMFD). Similarly, theoretical results presented in Fig. 4.21 illustrates that the second “even”

mode produces orders of magnitude lower voltages when excited while using an “odd” magnetic field

distribution (OMFD).
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Figure 4.20: Variation of the voltage with the frequency of excitation. Experimental results are
obtained for a fluid height of 46 mm, a load resistance RL = 137 Ohms, and (a) even magnetic field
(EMFD), (b) odd magnetic field (OMFD). Theoretical results are obtained using µ11 = 0.013 and
µ21 = 0.025, and heff=44 mm. Rectangles represent a backward experimental sweep while dots
represent a forward sweep. Dashed line represent unstable theoretical response.

4.9 Direct and Parametric Excitation Comparison

Next, we compare the performance of the harvester for a wide range of frequencies under

both direct and parametric excitations, using different magnetic field polarity and a liquid height

of 46 mm as depicted in Fig. 4.22. The frequency is varied linearly using a chirp signal at a

rate of 0.0025 Hz/sec and covering a large frequency bandwidth which spans the region between

3 and 13 Hz. At each frequency step, the output voltage is recorded across a resistive load of

RL = 137 Ohms and the center of the static magnets is placed at a distance of 2 cm from the side of

the container and at 2 cm above the fluid surface. For both excitation directions, the magnets are
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Figure 4.21: Variation of the voltage with the frequency of excitation. Theoretical results are
obtained using µ21 = 0.013 and µ22 = 0.025, heff=44 mm, and (a) even magnetic field (EMFD),
(b) odd magnetic field (OMFD). Dashed line represent unstable theoretical response.

initially oriented to have opposite polarity, then one magnet was reversed to produce similar polarity.

This results, respectively, in the magnetic field distributions EMFD and OMFD as shown in Fig.

4.10. By inspecting Fig. 4.22(a), it evident that, except near the first mode, when using the EMFD,

the harvester is able to produce higher voltage peaks near the (even) modal frequencies, while it

does not produce any measurable voltage near the (odd) modal frequencies. On the other hand,

as Fig. 4.22(b), for the OMFD, the harvester can only produce a measurable output voltage near

the odd modal frequencies, while the output voltage is negligible near the even modal frequencies.

This further emphasises the relationship between the output voltage and a weighted orthogonality

between the mode shape of the response and the MFD.

When the harvester is excited directly and regardless of the MFD, measurable voltage level

can be produces near the first and third modal frequencies (odd) as shown in Fig. 4.22 (c), and (d).

This is because the excitation is orthogonal to the even mode shapes of the sloshing liquid column

and hence only odd modes can be directly excited regardless of the direction MFD.

In order to fairly compare the performance of the harvester, the variation of the output power

per unit acceleration with the frequency for both direct and parametric excitation is investigated

as depicted in Fig. 4.23. Figure 4.23 (a) shows the output power per unit acceleration for the

harvester under parametric excitation around twice the first modal frequency, while Fig. 4.23 (b),

depict the output power per unit acceleration for the harvester under direct excitation around the

first modal frequency. It is evident that, the output power associated with the parametric excitation

is four times larger than the output power generated under direct excitation. This proves that, as
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long as the threshold for the activation of the parametric resonance is achieved, the harvester under

parametric excitation can deliver a better performance than the direct excitation.

Another key advantage of the parametric excitation is the ability to activate different modes

of the harvester by simply changing the applied MFD, while its restricted only around the first modal

frequency for the direct excitation. On the other hand, direct excitation does not require a threshold

acceleration level to start producing power, and it perform better under small acceleration levels.

! [Hz]
4 5 6 7 8 9 10 11 12 13

V
ol

ta
ge

[V
]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
2 !

10

2 !
20

2 !
30

2 !
40

2 !
50

2 !
60

2 !
70

2 !80

(a)

! [Hz]
4 6 8 10 12

V
ol

ta
ge

[V
]

0

0.005

0.01

0.015

0.02

0.025

2 !
40

2 !
10

2 !
30

2 !
50

2 !
20 2 !

60

2 !
70

2 !
80

(b)

! [Hz]
2 3 4 5 6 7 8 9 10

V
ol

ta
ge

[V
]

#10-3

0

0.5

1

1.5

2

2.5

!3!1

(c)

! [Hz]
2 3 4 5 6 7 8 9 10

V
ol

ta
ge

[V
]

#10-3

0

1

2

3

4

5

6

!1 !3

(d)

Figure 4.22: Variation of the output voltage with the frequency using a chirp frequency input.
Results are obtained for fluid height of 46 mm, a base acceleration of 0.35 m/sec2 (a) EMFD under
parametric excitation, (b) OMFD under parametric excitation, (c) EMFD under direct excitation,
and (d) OMFD under direct excitation
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Figure 4.23: Variation of the output power per unit acceleration with the frequency as obtained
for the MFD (MFD3) shown in Fig. 4.2. (a) Parametric excitation, and (b) direct excitation.
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Chapter 5

Exploratory Component:

Experimental Investigation of

Hybrid Energy Harvesting and

Vibration Absorption Using

Ferrofluids

This chapter explores the idea of utilizing ferrofluids for concurrent vibration absorption and

energy harvesting. To this end, we propose to incorporate a pick-up coil in the design of traditional

tuned magnetic-fluid dampers to allow for simultaneous electric power extraction and vibration

mitigation. The extracted electric energy can be used to power wireless sensors and other low-power

consumption devices for structural health monitoring applications.

5.1 Introduction

Failure caused by excessive vibrations remains one of the major concerns in the industrial

and civil engineering communities. Vibrations can cause severe damage in machinery and structures
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especially those with low damping properties. In machinery, excessive vibrations can result from a

number of conditions, acting alone or in combination, such as imbalances, misalignments, looseness,

and wear. Similarly, structures in general, are subjected to dynamic loads resulting from dynamic

flow fields, earthquakes, traffic loads, etc. For instance, vortex induced vibrations is one of the most

detrimental phenomena which cause large amplitude oscillations in bridges, offshore structures,

smoke stacks, marine cables, towers, pipelines. The infamous Tacoma bridge collapse, Fig. 5.1, is

just one example of how excessive oscillations can result in structural failure. This has motivated

researchers to explore efficient and economical techniques to reduce vibrations in order to increase

comfort, safety, performance, and reliability.

Figure 5.1: Tacoma Narrow Bridge, USA, Washington State, 1940

5.1.1 Current Approaches for Structural Vibration Suppression

Researchers proposed various techniques to mitigate structural vibrations. Some of the

proposed techniques require modifications of the structural design by incorporating base isolation,

structural bracing, viscoelastic dampers, or by adding damping or stiffness devices [43, 44, 45].

Those techniques, however, have there own restrictions such as cost, periodic maintenance, and

tuning difficulty.

Other proposed techniques depend on the design of auxiliary subsystems, also known as

vibration absorbers, which are mounted on the structure of interest to channel energy from the

structure to the auxiliary subsystem where energy is then dissipated. For structural vibration
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mitigation, three types of vibration absorbers are most widely utilized. In what follows, we provide

a brief description of these absorbers.

5.1.2 Tuned-Mass-Damper (TMD) Vibration Absorber

TMD 

Structure 

Auxiliary mass  

Auxiliary  

Spring 

Auxiliary 

 Damper 

Structural mass  

Structural 

Stiffness 
Structural 

Damping 

Figure 5.2: A schematic of a tuned mass damper (TMD) absorber.

TMDs are passive mechanical absorbers that use an auxiliary mass-spring-damper system

to increase the damping capacity of a given structure as shown in Fig. 5.2. When the structure

starts to move due to external excitations, the TMD is excited through the mechanical coupling

between the structure and the absorber. This channels a portion of the input energy from the main

structure to the TMD, where it is dissipated by viscous dampers [46, 47, 48, 49, 50]. In order to

achieve maximum energy transfer from the structure to the TMD, the natural frequency of the TMD

is tuned to be equal to the natural frequency of the structure itself such that linear resonance is

activated.

Figure 5.3(a) depicts the typical response of a tuned TMD system and the associated struc-

ture. The figure demonstrates that the response at the peak frequency of the main system can be

reduced significantly upon mounting the TMD. One major disadvantage of the TMD however, lies

in the fact that it is not always easy to tune its fundamental frequency to that of the main structure.

Any small variations in the fundamental frequency of the TMD around the modal frequency of the

structure can result in significant drop in performance. For instance, if the natural frequency of

the main structure is shifted by 15%, the performance of the TMD drops significantly as shown in
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Figure 5.3: Frequency response of the main structure for (a) perfect tuning, and (b) 15 % shift
between the fundamental frequencies of the main structure and the TMD.

Fig. 5.3(b). In such a scenario, re-tuning the TMD to the fundamental frequency of the structure,

the mass ratio has to be changed from 5% to 3.66%. This means that a typical TMD mass of 300,000

kg should be replaced by a 219,600 kg mass. This difficulty in re-tuning, motivated researchers to

find other effective techniques with a higher retuning flexibility .

5.1.3 Tuned Liquid Damper (TLD) Vibration Absorber

Researchers introduced tuned-liquid dampers TLDs in 1979 [51]. As shown in Fig. 5.4, TLDs

are fluid-filled containers that are mounted on the structure of interest to reduce the amplitude of

its oscillation when subjected to external excitations. The geometric and material properties of

the fluid are specifically chosen such that the frequency of the fundamental sloshing mode of the

TLD is very close to the first modal frequency of the structure. As shown in Fig. 5.5, when the

structure starts to oscillate due to external loads, the motion of the sloshing fluid in the tank acts

as a vibration absorber channelling energy from the structure to the moving fluid and reducing the

amplitude and settling time of the structural oscillations.

Shallow and deep water TLDs as well as single and multiple liquid dampers have been

developed and analyzed to study their damping characteristics [52, 53, 54, 55, 56, 57, 58, 59]. The

key advantage remains that, regardless of its design, the natural frequency of the TLD can be easily
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Figure 5.4: One Rincon Hill building, San Francisco 590 ft skyscraper, CA, USA.
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Figure 5.5: A schematic of tuned-liquid damper and its typical frequency response.

adjusted by changing the height of the fluid in the tank. This can be easily achieved by pumping or

removing fluid from the tank. Figure 5.6 shows variation of the fundamental frequency of the TLD

with respect to the liquid height in a rectangular container of dimensions ??. When compared to

the traditional TMD, the TLD is much easier to re-tune. For instance, as shown in Fig. 5.6, for a

15 % frequency shift in the first modal frequency of the TLD, a change in liquid height from 106.4

mm to 73.76 mm is required.

Due to this desirable characteristic, TLDs have been effectively implemented to reduce

structural vibrations on different types of structures [60, 61, 62, 63, 64, 65]. One Rincon Hill

building in San Francisco, CA represents one infamous example wherein a TLD has been used to

reduce structural oscillations, Fig. 5.4. Additionally, TLDs have also been used to reduce vibrations

in satellite systems, marine vessels, towers, tall buildings, steel structures, and cable bridges [66, 67,
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Figure 5.6: Variation of the first modal frequency of the fluid column with the liquid height for a
rectangular tank.

68, 69, 70, 71, 72].

5.1.4 Tuned Magnetic Fluid Damper (TMFD) Vibration Absorber

While passive TLDs have been effectively utilized to reduce structural vibrations, changing

their natural frequency to match the oscillation frequency of the structure cannot happen in real

time. To overcome this problem, various researchers proposed the use of active tuned-magnetic-

Fluid dampers (TMFDs) which essentially incorporate magnetic fluids or ferrofluids as the sloshing

element as depicted in Fig. 5.7. Such vibration absorbers have the key advantage of allowing real time

variation of their sloshing natural frequency by applying an external magnetic field. Specifically,

since ferrofluids are composed of nanoscale ferromagnetic particles suspended in a carrier fluid;

when an external magnetic field is applied, the average direction of the fluid magnetization becomes

parallel to the external field and the ferrofluid particles become harder to rotate when subjected

to external excitation. This has the influence of increasing the fluid’s viscosity and, with that, its

natural frequency.

Multiple researchers examined the influence of applying a tangential magnetic field on the

modal frequencies of the sloshing magnetic fluid [73, 74, 75, 76, 77, 78, 79]. It was observed that, when

applying an external magnetic field, the modal frequency can be increased in real time providing a

new approach for active vibration absorption.
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Figure 5.7: Tuned-magnetic-fluid damper, TMFD. (a) Schematic, and (b) typical response as com-
pared with the TLD.

Figure 5.7(b) shows the response of a structure after installing a TLD and a TMFD aux-

iliary absorbers. The liquid height inside the TLD, and TMFD containers is chosen such that the

first modal frequency of the sloshing liquid is equal to the fundamental frequency of the structure.

Furthermore, the magnetic intensity, polarity, and the location of the magnets of the TMFD are

tuned such that the TMFD achieves optimal suppression capabilities. As shown in Figure 5.7(b),

vibration suppression can be enhanced significantly upon incorporating a TMFD into the structure

while actively tuning the magnet field.

Based on the previous discussion, it becomes evident that, by employing ferrofluids in the

design of vibration absorbers, significant improvements in the performance is realized via both

internal passive tuning of the liquid height and external active tuning of the magnetic field.

5.2 Experiment Investigation

To investigate the feasibility of the proposed concept, the experimental setup shown in

Fig. 5.8 is constructed. The Aluminum structure represents a prototype of a single story building.

The prototype, which consists of four beams clamped at one end to a base support and on the other

end to the four corners of an end mass, has a length of 30.5 cm and a total mass of 3.54 kg. The
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Figure 5.8: Experiment setup.

total mass also includes the mass of the empty container mounted at the top, the magnets used

for magnetization purposes, and the coil used to harvest energy. The whole structure is mounted

on electrodynamic shaker which exerts harmonic acceleration of 0.07g m/s 2 at the base. Using a

harmonic frequency sweep, the first modal frequency of the structure (without the fluid) is found to

be 2.04 Hz, and the structural damping ratio is obtained at 1.15%.

5.3 Vibration Suppression Using TLD

First, we investigate the effectiveness of using the TLD for vibration suppression. Both water

and ferrofluid with zero magnetization are utilized. The ferrofluid used is a light hydrocarbon-based

15% by volume concentration of ne magnetite particles, Fe3O4. Its density, saturation magnetization,

and magnetic susceptibility are given as ρ =1.21 g/cm3, ms =440 Gauss, and χ= 2.64, respectively.

A rectangular container with a length of 13.7 cm, width 9.7 cm and a height of 6.6 cm, is used

to carry the liquid material. For effective vibration suppression, the first modal frequency of the

sloshing liquid is matched to the natural frequency of the structure. It was found that a liquid height

of approximately 17.55 mm is necessary to produce a sloshing frequency of 2.04 Hz.

Figure 5.9 depicts variation of the deflection’s amplitude, Xs, of the end mass with the

frequency of excitation using an empty container, and with water-based and ferrofluid-based (no

magnetization) TLDs. A maximum deflection amplitude of 1.97 cm is recorded at the resonance
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Figure 5.9: Frequency response of the structure with/without TLD

frequency for the structure with the empty tank. Upon installing the water-based TLD, the ampli-

tude of the displacement dropped by 90 % near the resonant frequency of the structure. Due to the

second degree-of-freedom introduced by the sloshing liquid, two peaks appear on either side of the

resonance frequency of the structure. The larger of the two peaks is still around 55% smaller than

the maximum value obtained at resonance with the empty tank. The ferrofluid-based TLD produces

a similar response behavior to the water-based TLD but with a better suppression capabilities as

clearly shown in Fig. 5.9. This is due to the higher effective mass of the ferrofluid as reported by

Fujino et al. [63]. The two peaks appearing in the frequency response of structure when using the

ferrofluid-based TLD are also closer to each other due to the higher viscosity of the ferrofluid.

5.4 Vibration Suppression Using TMFD

In this section, the influence of the fluid magnetization on the frequency response of the

structure is investigated. To that end, an external magnetic field is generated in the fluid using four

vertically-magnetized permanent magnets that have a magnetic flux of 92 mT at their surface. The

magnetic field in the fluid is altered by changing the distance between the magnets and the lower

and upper surfaces of the container as shown in Table. 5.1.

It is clearly evident in Fig. 5.10 that, when the magnets are far away from the tank as in

configurations 1 and 2, the magnetic field has a very little influence on the sloshing behavior of the
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Table 5.1: Configurations of the permanent magnets of TMFD.

Configuration Top Magnet [cm] Bottom Magnet [cm]
1 1.25 2.5
2 1.25 1.25
3 0 1.25
4 0 2.5
5 0 0

liquid with very little additional energy being absorbed by the sloshing liquid as compared to the no

magnetization case. In such a scenario, the magnetic field is too small to alter the natural frequency of

the sloshing column. However, the magnetic field is still capable of orienting the magnetic dipoles in

its direction, because a net voltage can now be measured across the load resistance as evident in Fig.

5.11. When the magnetic field is increased further as in configuration 3, only one clear peak appears

in the frequency response. In this case, the viscosity of the fluid, and, thereby, its stiffness increases

resulting in the two peaks merging into one which reduces the vibration suppression capabilities

of the TMFD. On the other hand, since the magnetic field is stronger, more magnetic dipoles are

now oriented in the direction of the field which increases the electromechanical coupling and, hence,

the output voltage as can be seen in Fig. 5.11. As shown in Fig. 5.12, when the magnetic field is

increased even further as in configuration 5, the viscosity of the ferrofluid increases significantly to

the extent where it acts like an added mass. As a result, the TMFD loses its suppression capabilities
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Figure 5.11: RMS voltage output at different magnetic fields

producing only a shift in the resonant frequency towards lower values.

The best vibration suppression capabilities of the TMFD around the resonance frequency

occurs when the magnets are placed in configuration 4. This configuration produces a magnetic

field in the fluid that is greater than configuration 2 but less than configuration 3. However, the

increased suppression capabilities are not accompanied by an increase in the output voltage clearly

indicating that the optimal conditions for vibration suppression are different than those necessary

for maximum energy generation.

In terms of settling time, which is an important performance characteristic of structural

vibration absorbers, the energy harvesting TMFD (configuration 4) results in the fastest settling

time as compared to the water-based TLD and all other TMFD configurations, Figs. 5.13(a) and

5.13(b). To calculate the settling time in the experiment, the end mass is subjected to a 2.5 cm

initial displacement and the time required for the mass to settle within 10% of the initial displace-

ment is recorded. Based on these calculations, the settling time of the structure without TLD is

approximately 333 sec. After installing the water-based TLD, the settling time is reduced to 42

sec, and to 24 sec after installing the ferro-fluid based TLD without magnetization. A very small

improvement in the settling time is achieved after using the TMFD (configuration 4) as the settling

time is reduced to 23 sec.

To evaluate the energy harvesting capabilities of the harvester, the root mean square (RMS)
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Figure 5.13: Time response of the structure (a) with, with out TLD, and with TMFD, (b) with
TMFD at different magnetic fields.

power per unit acceleration of the harvester is recorded across different resistances as shown in

Fig. 5.14. The TMFD with the fourth magnet configuration is used for that purpose and the voltage

is recorded at the resonance frequency of the structure (2.04 Hz). It is observed that, in the fourth

configuration, the TMFD can produce a maximum power of 0.6 mW/g at a load resistance close to

190 Ω. This load resistance is above the coil resistance which is measured at 160 Ω.
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Chapter 6

Conclusions

This chapter presents the important conclusions of this dissertation. In general, the research

presented is focused on investigating the potential of harvesting energy from the sloshing motion

of ferrofluids under harmonic base excitations. To achieve the dissertation objectives, two different

types of excitations are considered, namely direct and parametric. The following sections summarize

the important findings.

6.1 Ferrouid-based energy harvester under direct excitation

The design and performance analysis of a vibratory energy harvester which incorporates a

liquid-state transduction element was investigated. The harvester consists of a base excited con-

tainer carrying a magnetized ferrofluid. The sloshing of the ferrofluid column generates a change in

magnetic flux which, in turn, induces a current in an adjacent closed-loop conductor. The height

of the sloshing fluid column and the dimensions of the container are specifically chosen such that

some of the modal frequencies of the sloshing column are nearly commensurate. It is shown that

this choice of parameters activates a two-to-one internal energy pump between the commensurate

modes resulting in two response peaks and large amplitude voltages over a wide range of frequencies,

thereby improving the steady-state bandwidth of the harvester. The influence of the fluid column

height, the magnetic field strength, and the base acceleration on the two-mode voltage response is

investigated. It is shown that, for each liquid height, there exists an optimal magnetic field beyond

which the magnitude of the output voltage starts to drop. It is also illustrated that as the accelera-
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tion level is increased, the two peaks of the response merge into a single peak. For a column height

of 20 mm, and magnetic field of 150 Gauss at the center of the container, the harvester was able to

produce 80 mW per g at the optimal load.

A theoretical nonlinear model which governs the electro-magneto-hydrodynamics of a fer-

rofluid based energy harvester was developed. An approximate analytical solution of the model is

obtained using the method of multiple scales for a case involving a two-to-one internal resonance

between the first two sloshing modes. The results of the theoretical model are compared to ex-

perimental findings for several design parameters. The comparison revealed very good qualitative

agreement between the model and experiment, and also indicated some quantitative deviations. Such

deviations could have resulted from the different assumptions invoked on the analytical model. First,

it was assumed that the angle of contact between surface line and the container is ninety degrees and

that this point is free to slip on the surface. Actual conditions may deviate from this assumption.

Second, it is assumed that the voltage is generated due to the bulk motion of the fluid. However,

voltage can also be generated due to the individual rotation of the magnetic dipoles. Third, only

two-mode nonlinear interactions were considered. However, when inspecting the results, it becomes

evident that other nonlinear interactions are possible in the vicinity of the height-to-width ratios

considered in the experiments. Finally, the model neglected the backward coupling resulting from

the electric damping. This can actually explain why the wave heights obtained analytically over

predict the experimental data.

6.2 Ferrouid-based energy harvester under parametric exci-

tation

A theoretical nonlinear model which governs the electro-magneto-hydrodynamics of a fer-

rofluid based energy harvester under parametric excitations was developed. An approximate an-

alytical single mode solution of the model is obtained away from any internal resonances using

the method of multiple scales. The results of the theoretical model are compared to experimental

findings for several design parameters. The comparison revealed very good qualitative agreement

between the model and experiment. It was observed that the orthogonality of the magnetic field

distribution along the width the container to the shape of the mode being excited plays a critical

role in determining the output power of the harvester. Specifically, regardless of the input excitation
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level and the size of the induced sloshing waves, very little energy can be harnessed from the envi-

ronment when the magnetic field distribution is an even (odd) function of the containers width while

the mode shape being excited is an odd (even) function of the width. It was shown that, unlike the

primary resonance scenario, a threshold excitation level must be achieved in the principle parametric

resonance case before the harvester can produce measurable voltage levels. This threshold increases

with the strength of the applied magnetic field. Overall, one key advantage of the parametric ex-

citation is its ability to activate different modes of the harvester by simply changing the direction

of the applied MFD. In terms of power output, the harvester exhibited better performance under

parametric excitations as long as the base acceleration threshold required to activate the principle

parametric resonance was met.

6.3 Concurrent Vibration Suppression And Energy Harvest-

ing

An experimental study which examines the design parameters affecting the performance

characteristics of a tuned magnetic-fluid damper (TMFD) device designed to concurrently mitigate

structural vibrations and harvest vibratory energy has been presented. The device which is mounted

on a vibrating structure, consists of a rectangular container carrying a magnetized ferrofluid and a

pick-up coil wound around the container to enable energy harvesting. Experiments are performed

to investigate the three-way interaction between the vibrations of the structure, the sloshing of the

fluid, and the harvesting circuit dynamics. The experimental response of the device is compared

against the conventional TMFD at different excitation levels and frequencies. Results demonstrating

the influence of the significant parameters on the relative performance are presented and discussed in

terms of vibration suppression and power generation capabilities. It is shown through an experimen-

tal study that a TMFD employing ferrofluids can be used effectively to reduce structural vibrations

while simultaneously acting as an electromagnetic energy harvester. It was also demonstrated that,

the optimal magnetic field for which vibration suppression is most effective, is different than the

optimal field for which the output power is maximized.
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