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ABSTRACT 

The rapid increase in power system grid has resulted in additional challenges to 

reliable power transfer between interconnected systems of a large power network. Large-

scale penetration of intermittent renewable energy increases uncertainty and variability in 

power systems operation. For secure operation of power systems under conditions of 

variability, it is imperative that power system damping controllers are robust. 

Electromechanical oscillations in the range of 0.2 Hz to 1 Hz are categorized as inter-area 

modes. These modes arise due primarily to the weak interconnections characterized by 

long transmission lines between different operating areas of an interconnected power 

system. One of the main challenges to secure operation of interconnected power systems 

is the damping of these inter-area modes.  

This dissertation introduces two multi-model approaches (loop shaping and 𝐻∞) to 

designing a fixed-order robust supplementary damping controller to damp inter-area 

oscillations.  The designed fixed-order supplementary damping controller adjusts the 

voltage reference set point of the Static Var Compensator (SVC). The two main 

objectives of the controller design are damping low-frequency oscillations and enhancing 

power system stability. The proposed approaches are based on the shaping of the open-

loop transfer function in the Nyquist diagram through minimizing the quadratic error 

between the actual and the desired open-loop transfer functions in the frequency domain. 

The 𝐻∞ constraints are linearized with the help of a desired open-loop transfer function. 

This condition can be achieved by using convex optimization methods. Convexity of the 
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problem formulation ensures global optimality.  One of the advantages of the proposed 

approach is the consideration of multi-model uncertainty. Also, in contrast to the methods 

that have been studied in literature, the proposed approach deals with full-order model 

(i.e., model reduction is not required) with lower controller order. In addition, most of the 

current robust methods are heavily dependent on selecting some weighting filters: such 

filters are not required in the loop-shaping approach. The proposed approaches are 

compared with different existing techniques in order to design a robust controller based 

on 𝐻∞ and H2 under pole placement. With large-scale power systems, it is difficult to 

handle large number of states to obtain the system model. Thus, it becomes necessary to 

use only input/output data measured from the system, and this data can be utilized to 

construct the mathematical model of the plant. In this research, the mentioned approaches 

are offered in order to design a robust controller based only on data by using system 

identification techniques. The mentioned techniques are applied to the two-area four-

machines system and 68 bus system. The effectiveness and robustness of the proposed 

method in damping inter-area oscillations are validated using case studies. 
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 CHAPTER ONE 

1 INTRODUCTION 

1.1 Motivation 

   Over the years, maintaining system stability has been a challenge to power engineers. 

This problem can be categorized as power system modeling and correct assessment of 

power system stability [1, 2]. A power system is modeled on algebraic and differential 

equations. For large-scale power systems, these equations are more difficult to solve. To 

achieve behavior similar to the real system, a detailed model has to be developed. Once a 

mathematical model that is based on algebraic and differential equations is developed, 

then the solution through numerical techniques is obtained.  

Historically, solutions to the stability problem have been attempted since 1920. At that 

time, computations of power systems were based on hand calculations. In 1950, analog 

computers started to be used in power systems to simulate the transient stability problem. 

In 1956, the first computer program on digital computers was created to make simulating 

the transient stability problem easier.  

Over the years, a high response of the excitation system was achieved to improve 

transient stability. However, high response of the excitation system caused poor damping 

in power system oscillations. The problem of poor damping has been coped with by using 

power system stabilizers.  
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A power system has never been in steady state condition all the time; disturbances may 

occur at any time, and the challenge is to keep the system stable during these 

disturbances.   

Power system stability is the ability of a power system at specified operating conditions 

to keep the system stable after being subjected to a disturbance, i.e. maintaining the 

system variables, voltage and frequency within their limit [1]. The disturbance could be 

large or small depending on the severity of the disturbance. Large disturbance includes 

sizable change in generation, significant change in loads, line outages and the different 

types of faults. Small disturbance is characterized by minimal changes in generation or 

load. 

 

Figure 1.1 Classification of power system stability  
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Power system stability generally falls into three categories: rotor angle, voltage, and 

frequency stability. Rotor angle, voltage and frequency stability have been classified as 

large disturbance or small disturbance, short term or long term. These classifications are 

shown in Figure 1.1.  

The model of any system, no matter how detailed and complex, never represents the 

real physical system. Normally, in conventional control design, uncertainty is 

incorporated with the stability margin. The stability margin is a kind of safety factor: if 

any changes occur (such as uncertainties and disturbances), they will not affect the 

stability of the system, and the system will continue to behave in a satisfactory manner. 

However, the uncertainties or perturbations are not quantified, nor has performance been 

taken into account in terms of disturbance, noise, etc. The robust control method came to 

the field to address these problems. The aim of the robust control is to achieve robust 

performance and stability under a limit number of changes, uncertainties and 

disturbances.  

The power system is a nonlinear system, and it can be linearized around an operating 

point. The nonlinearity and time-varying properties of the power system are modeled by 

multi-model uncertainty and have been overcome by a robust design approach. In this 

research, a fixed-order robust controller is designed based on different operating points, 

which include the normal operating point as well as the worst operating point, to 

overcome the uncertainties in the power system. 

Power system grid has been increased rapidly, an achievement that has added more 

challenges to reliable power transfer between interconnected systems of a large power 
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network. Large-scale penetration of intermittent renewable energy increases uncertainty 

and variability in power systems operation. For secure operation of power systems under 

conditions of variability, it is imperative that power system damping controllers are 

robust. Electromechanical oscillations in the range of 0.2 Hz to 1 Hz are categorized as 

inter-area modes [1-5]. These modes arise due primarily to the weak interconnections 

characterized by long transmission lines between different operating areas of an 

interconnected power system. One of the main challenges in secure operation of 

interconnected power systems is the damping of these inter-area modes. System stability 

could be affected without adequate damping of these low-frequency oscillations [6]. 

Events such as the 1996 western interconnection blackout is an example.   

  Recently, Flexible AC Transmission System (FACTS) devices are being widely used 

in power systems. The main purpose of these devices is to increase the capability of 

transferred power between interconnected areas and to enhance the voltage profile as well 

[3, 5, 7-26]. Static Var Compensator (SVC) is a shunt FACTS device that injects reactive 

power to maintain the voltage at a point of connection in a certain range to enhance 

system stability [27]. Controlling SVCs helps to damp inter-area oscillations.  A 

supplementary signal could be added to adjust the voltage reference set point of SVC to 

achieve the desired damping [3, 19, 20, 24, 28, 29]. The location of SVCs for damping 

inter-area oscillations is important; they are usually placed at either end of a tie-line. 

Depending on system configuration, multiple SVCs might be required to improve the 

overall system damping. 
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1.2 Literature Review 

Damping of inter-area oscillations in power systems using H2, 𝐻∞, 𝐻∞ loop-shaping, 

and µ-synthesis methods has been previously studied [3, 10, 11, 24, 30-36]. The results 

show that these methods of designing the controller have the ability to damp out inter-

area oscillations and enhance the stability of the power system. The solution to the 𝐻∞ 

control design problem is based on the Riccati equation approach. Generally, the 

controller design based on this solution suffers from pole-zero cancellations between the 

controller and the plant model. Recently, a linear matrix inequalities (LMIs) method has 

been used to solve the 𝐻∞ control design problem [35-37]. The main concept of the 𝐻∞ 

loop-shaping method introduced is to augment the open-loop model by pre- and post-

compensators to get the desired shape. Then the controller is designed by solving the 𝐻∞ 

optimization problem [38].  

Most of these designs are based on nominal operating point, i.e. the control objectives 

from H2 and 𝐻∞ formulations are guaranteed an operating point [39]. On some occasions, 

the system might not be operating close to a nominal operating point, and the controller 

might not work as expected. The order of the controller is considered a key factor, since 

the controller is implemented in computers and devices that have limited memory and 

computing power. Implementing a high-order controller both in hardware and software is 

a challenging task and leads to numerical problems. Even though there are some methods 

to reduce the order of the controller, they do not guarantee that the reduced controller will 

achieve the requirements of stability and performance.  
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New techniques are presented in [10, 11] for designing a robust controller for multi-

modal uncertainty using H2 and 𝐻∞ under pole placement; however, these techniques 

require reducing the order of the plant model. Also, the designed controller based on 

these techniques leads to high-order controller, compared with the proposed approach. 

Recently, Wide Area Measurements (WAMs) have been used to design the controller 

[2, 4, 14, 15, 23, 40-42]. Phasor Measurements Units (PMUs) are installed in specific 

locations to monitor and control modern power systems and improve their stability and 

security [43-49]. Inter-area oscillations could be damped out using wide area 

measurements. Good results have been achieved by applying WAMs to the damping 

controller as shown in [14, 23].  

The main challenge of using WAMs to design a robust controller to damp the inter-

area oscillations is the issue of the signal transmission delay [43, 46, 48]. The signal 

provided to the controller from PMUs has some delay in communications channels, and 

this delay may affect the performance of the controller. In [48], a summary of 

communication delays is shown among six PMUs installed in different locations at 

Jiangsu, China. The summary shows that the PMU signal could be delayed in the range 

(7 to 81 ms).  Also, the latency of PMU data of the QUEBEC power system is listed in 

[50], which shows the total estimated latency (109 ms).  

Large interconnected power systems have thousands of generators, and it is not 

possible to model each generator in detail. For example, to model one single generator, a 

simple generator can be modeled as a 3rd-order model. The 6th-order model of a 

synchronous machine gives enough information by having a complete detailed model. 
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Each generator has a turbine model, governor model, exciter model, and automatic 

voltage regulator model. Each of these models has a different number of state variables 

that will correspond to the number of state variables of the machine. So, as a whole, one 

generator has to be modeled by at least 12 to 13 states, and if the system has a huge 

number of generators, the number of the state variables will be very high. Thus it 

becomes quite difficult to handle this number of states to obtain the system model. Most 

of the control approaches in literature used to damp inter-area oscillations are based on 

plant models (parametric models).  In such situations, input/output data measured from 

the plant can be used to construct the mathematical model of the plant. This approach is 

called data driven and can be achieved by using system identification techniques.   In this 

approach, the knowledge of the plant is not required. PMUs can be used to provide 

input/output data to the control center.  

To summarize, the challenges of the existing approaches are: 

 

1- The power system is known as a high-order system. These approaches are based 

on reducing the order of the plant model (system). The model reduction is the 

process of reducing the order of a given system to the extent that the response of 

the reduced system is similar to that of the full-order system. Hence, there is loss 

of information. The level of loss of information is dependent on the order to 

which the system is reduced and the method used. On the other hand, the 

proposed method does not require any model order reduction.  In addition, model 
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order reduction is an O(n^3) operation. Hence, computing model order reduction 

for large systems is computationally expensive. 

2- The order of the controller based on existing approaches is comparatively high for 

large systems with the proposed approach, since it is the sum of the orders of the 

reduced plant model plus the order of the weighting filters as mentioned in [2].  

For example, in reference [14] the order of the controller is 10 and it is 7 in 

reference [10].  

3- Most of the existing designs are based on the nominal operating point, i.e. the 

control objectives from H2 and 𝐻∞ formulations are guaranteed an operating 

point. However, a power system is a non-stationary system wherein operating 

points change for every dispatch at the system operator level. Hence, performance 

of such controllers degrades depending on the deviation between current 

operating point and the nominal operating point for which the controller was 

designed.  

4- In literature most of the control approaches that were used to damp inter-area 

oscillations are based on parametric models. 

 

1.3 Objective and Contributions 

   The contribution of this research is introducing a new technique to design a fixed-order 

linearly parameterized controller using the 𝐻∞ approach. The main idea of the proposed 

approach is based on the shaping of the open-loop transfer function under an infinite 
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number of convex constraints on the Nyquist diagram. The control objective is to reduce 

the distance between the designed open-loop transfer function and the desired one by 

minimizing their quadratic error in the frequency. The desired transfer function needs to 

be specified in order to carry out the optimization and design of the controller. The 

proposed technique can handle both stable and unstable plant models. In this work, 

however, only stable plant models are considered. Frequency Domain Robust Control 

(FDRC) Toolbox, which is introduced in  [51], is used in this research to design the 

fixed-order robust controller in both approaches. This technique doesn’t suffer from other 

methods’ drawbacks. 

Thus, the contributions of the dissertation are as outlined below: 

 The proposed techniques do not need model order reduction. The controller 

design techniques presented in this research can be used in full-order systems 

for designing a robust 𝐻∞ controller, since the order of the controller is fixed, 

without sacrificing the computational time required (which is taken care of by 

convexifying the problem). Therefore, the need for using an approximate 

reduced order model is eliminated. The proposed approaches can also use a 

reduced order system. 

 The resulting controller order is less than that of other existing methods. For 

example, the IEEE 68 bus test system used in this research has 190 states, and 

it is considered a large system. To design a robust controller using conventional 

methods, the system has to be reduced, and the order of the controller is equal 

to the order of the reduced system. The IEEE 68 bus system (190 states) is 
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reduced to 7 states. Thus, the order of the controller using, for example 𝐻∞, 

will be the order of the reduced system 7 plus the order of the weighting filters. 

On the other hand, only the 4th-order controller is designed based on the 

proposed approach for the same system, and it demonstrates very good results.  

 The designed controller is fixed order, which means that the user can specify 

the order of the controller; it does not depend on the order of the system. 

 Multi-model uncertainty is considered, which means that the robustness is 

guaranteed in a wide range of changing the operating point. The controller can 

be designed based on different operating points to overcome the uncertainty of 

the power system. 

 The issue of time delay of feedback signals has been addressed using a multi-

model optimization approach.  

 Convex formulation guarantees a global optimal solution while minimizing the 

norm between open-loop transfer function and desired transfer function. 

 The designed controller has been integrated into the Power System Toolbox 

(PST). The results are verified by matching the Eigenvalues of the test systems 

after adding the controller in both the FDRC Toolbox and the PST. 

 In chapter five, a fixed-order robust controller has been designed based only on 

frequency-domain data (obtained using spectral analysis of measured I/O data); 

no parametric model is required.  
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1.4 Organization of the Dissertation 

   The dissertation is divided into six chapters as follows: 

Chapter one: gives an introduction and definition of power system stability and also 

describes the issue of inter-area oscillations. Research review related to the topic of this 

dissertation is summarized in this chapter. The challenges of the existing approaches as 

well as the contributions of this research are also mentioned in this chapter.   

Chapter two: describes the dynamic model of the components of power systems, 

including synchronous machine, excitation system, governor, and power system 

stabilizer. The dynamic equations of wind turbine are also explained in this chapter.  

Introduction to small signal stability and linearization of the power system around an 

equilibrium point are discussed.   

Chapter three: the loop-shaping approach based on shaping the open-loop transfer 

function on the Nyquist diagram through minimizing the distance between the actual and 

the desired open-loop transfer function is introduced in this chapter. The controller design 

procedure is explained in detail. The proposed approach is applied to the two-area four-

machines system and the IEEE 68 bus system. The effectiveness and robustness of the 

proposed method in damping inter-area oscillations are validated through case studies.  

Chapter four: introduces the 𝐻∞ approach to designing a robust fixed-order controller. 

The proposed 𝐻∞ approach is based on shaping the closed-loop sensitivity functions in 

the Nyquist diagram through constraints on their infinity norm. The 𝐻∞ constraints are 
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linearized with the help of a desired open-loop transfer function. In this chapter, a multi-

model optimization method is used to include the effect of time delay. The IEEE 68 bus 

system is cited to verify the designed controller under different operating conditions. 

Chapter five: the method explained in chapter three is extended to design a robust 

controller based on input/output data using system identification techniques. In this 

approach, the knowledge of the plant is not required. Phasor measurement units (PMUs) 

can be used to provide input/output data to the control center.  

Chapter six: summarizes results, conclusions, and future work. 
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CHAPTER TWO 

2 POWER SYSTEM MODELING  

In this chapter, the dynamic model of power system components is explained.  The 

power system contains different dynamic components that are used to maintain system 

stability. These components need to be modeled in order to find the nonlinear dynamic 

model of the power system. The dynamic model of these devices can be modeled by 

several algebraic and differential equations as explained in the following sections [1, 2].  

2.1 Synchronous Machine Model 

 Synchronous generators are the main source of electric energy in power systems. The 

stability of a power system is defined as the ability of interconnected synchronous 

generators in different areas to maintain synchronism after the system becomes subjected 

to a disturbance. Basically, system stability depends on different factors that determine 

the severity of the disturbance: the initial operating condition, and the nature and size of 

the disturbance. Consequently, it becomes important to understand the modeling and 

dynamic behavior of the synchronous generators. The synchronous generator equations 

describe the dynamic behavior of synchronous machines. There are different types of 

models for synchronous machines, and the order of the model depends upon the purpose 

of study [1].  
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Figure 2.1 Synchronous machine schematic 

 

The 6th-order model of a synchronous machine provides enough information by having a 

complete detailed model. In this dissertation, a 6th-order model of a synchronous 

machine, as described herein, has been used.       

  

The dynamic equations of the 6th-order synchronous machine model that is used in this 

thesis are given below in (2.1) – (2.6). 

�̇� = 𝛺𝑏(𝜔 − 𝜔𝑠)                                                                       (2.1) 

�̇� =
1

2𝐻
(𝑇𝑚 − 𝑇𝑒 − 𝐷(𝜔 − 𝜔𝑠))                                                             (2.2) 

θ 

Reference axis 

Direct axis 

Quadrature axis 

a 

a’ 

b’ 

b 

c’ 

c 

q’ 

q 

f 

d 

d’ 

f’ 

ω 
Direction of rotation 



15 
 

qe =
1

𝑇′
𝑑0

(−𝑒′
𝑞 − (𝑥𝑑 − 𝑥′

𝑑 − 𝛾𝑑)𝑖𝑑 + (1 −
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𝑇′
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) 𝐸𝑓𝑑)                    (2.3) 
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1
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(−𝑒′
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The solution of power flow reveals the initial values of active and reactive power as well 

as the voltage and the angle ( ,,, VQP gg ) of the system. The power system variables are 

related to the machine equations by the equations given in (2.7) – (2.9) 

𝐼 =
𝑃𝑔 + 𝑖 ∗ 𝑄𝑔

𝑉
                                                                 (2.8) 

𝛿 = ∠(𝑉 + (𝑟𝑎 + 𝑖 ∗ 𝑥𝑞)𝐼)                                                     (2.9) 

𝑣𝑑 = 𝑉𝑠𝑖𝑛(𝛿 − 𝜃) 

𝑣𝑞 = 𝑉𝑐𝑜𝑠(𝛿 − 𝜃)                                                     (2.10) 
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2.2 Excitation System 

The main purpose of an excitation system is to provide a direct current to the field 

winding of a synchronous machine. An excitation system provides two essential 

functions: control and protection, to satisfy the power system performance. The control 

function includes controlling voltage and reactive power flow to enhance power system 

stability. The protective functions of the excitation system are responsible for monitoring 

the limits of the synchronous machine and the other equipment to avoid exceeding their 

limit. Generally there are three different types of excitation system: DC, AC, and static 

excitation systems [52]. A basic block diagram of the standard excitation system is 

shown in Fig.2.2.  

The excitation system can b represented by the following dynamic equations (2.11) to 

(2.13): 

�̇�𝑟 =
1

𝑇𝑟

(𝐾𝑟𝐸 − 𝐸𝑟)                                                                  (2.11) 

�̇�𝑎 =
1

𝑇𝑏
((1 −

𝑇𝑐

𝑇𝑏
) (𝐸𝑟𝑒𝑓 − 𝐸𝑟) − 𝐸𝑎)                                            (2.12) 

where 𝐸𝑎 is an internal state of the lead-lag compensator. 

�̇�𝑓𝑑 =
1

𝑇𝑎
(𝐾𝑎𝐸𝑎 − 𝐸𝑓𝑑)                                                         (2.13) 

The value of  𝐸𝑓𝑑 is used in the machine equations  



17 
 

r

r

sT

K

1 b

c

sT

sT





1

1

a

a

sT

K

1

Eref
Efd,max

Efd,min

EfdEt

EaEr

 

Figure 2.2 Simplified block diagram of standard excitation system 

 

2.3 Governor 

    The main function of the governor is to control the output power of a synchronous 

machine as the power system changes. The speed of the synchronous machine accelerates 

or de-accelerates depending on the change in loads. The governor increases the speed of 

the synchronous machine by increasing the input of real power until the frequency settles 

at the synchronous speed. The governor control action is relatively slow compared with 

other controllers, so the time constants associated with the governor are small. The block 

diagram of the governor dynamic model is shown in Fig 2.3 [2].  
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Figure 2.3 Block diagram of governor system 

 

The dynamic equations that represent the governor model have been listed in (2.14) – 

(2.16). 
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�̇�𝑔1 =
1

𝑇1
(𝑃𝑖𝑛 − 𝑥𝑔1)                                                        (2.14) 

�̇�𝑔2 =
1

𝑇2
((1 −

𝑇3

𝑇2
) 𝑥𝑔1 − 𝑥𝑔2)                                          (2.15) 

�̇�𝑔3 =
1

𝑇4
((1 −

𝑇5

𝑇4
) (𝑥𝑔2 +

𝑇3

𝑇2
𝑥𝑔1) − 𝑥𝑔3)                                  (2.16) 

 

2.4 Power System Stabilizer (PSS) 

 The power system stabilizer is normally installed in the system to damp out the local 

power system oscillations. PSS is very useful for improving the dynamic stability of the 

power system. It helps the damping of these oscillations by adding a supplementary 

damping signal to the reference of the excitation circuit. PSS has three main blocks: gain, 

phase compensation, and washout circuit or reset block. Fig 2.4 shows the simple block 

diagram of PSS.  
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Figure 2.4 A common structure of PSS 

The dynamic equations related to the PSS are given in (2.17) – (2.19). 
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�̇�1 =
1

𝑇𝑤

(−𝐾𝑠𝑡𝑎𝑏∆𝜔 + 𝑥1)                                                         (2.17) 

�̇�2 =
1

𝑇2
((1 −

𝑇3

𝑇2
) (𝐾𝑠𝑡𝑎𝑏∆𝜔 + 𝑥1) − 𝑥2)                                     (2.18) 

�̇�𝑠𝑠 =
1

𝑇4
((1 −

𝑇5

𝑇4
) (𝑥2 + (

𝑇3

𝑇2

(𝐾𝑠𝑡𝑎𝑏∆𝜔 + 𝑥1))) − 𝑉𝑠𝑠)                    (2.19) 

 

2.5 Wind Energy Conversion Systems 

 Due to an ever increasing penetration of renewable energy sources in the power grid, 

it has become essential to study the impact of these sources on the dynamics and stability 

of the system. A Wind Energy Conversion System (WECS) essentially comprises a wind 

turbine, a generator and power electronic controls. An important assumption for 

modeling WECS in fundamental frequency simulations is that the power electronic 

converters are represented as current sources. This is a routine methodology used for 

modeling of power electronic components in power system dynamic studies. One more 

important assumption in this work is that multiple wind generators are aggregated into a 

single machine for the purpose of dynamic analysis [53]. 
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2.5.1 Wind turbine 

The wind turbine extracts the kinetic energy from the wind and converts it into 

mechanical energy that in turn rotates the rotor of the wind generator and generates 

electricity.  The mechanical power output of the turbine shaft is given as: 

𝑃𝑚 =
𝑛𝑔𝑒𝑛

2
𝜌𝑎𝑖𝑟𝐴𝑏𝑙𝑎𝑑𝑒𝐶𝑝(𝛽, 𝜆)𝑣3

𝑤                                                (2.20)                       

  Tip-speed ratio,                   𝜆 =
𝑅𝑏𝑙𝑎𝑑𝑒𝜔𝑚

𝑣𝑤
               

where 𝑛𝑔𝑒𝑛 is the number of wind generators, 𝜌𝑎𝑖𝑟 is the density of air, 𝐴𝑏𝑙𝑎𝑑𝑒 is the area 

of the blades swept by the rotor [m2], 𝑣𝑤 is the wind speed [m/s], 𝛽 is called the pitch 

angle, 𝜔𝑚 is the angular speed of the blades, and bladeR  is the radius of the rotor blades. 

Pitch angle control is necessary to protect the blades from damage when the wind speeds 

are very high. It curtails the amount of power extracted from wind by pitching the blades 

of the turbine. 𝐶𝑝(𝛽, 𝜆) is called the ‘coefficient of performance,’ and it is a function of 

the tip-speed ratio and the pitch angle. The ),( pC  curve is approximated as given in 

(2.21) using (2.22) [54]. 

𝐶𝑝 = 0.22 (
116

𝜆𝑖
− 0.4𝛽 − 5) 𝑒

−
12.5
𝜆𝑖                                       (2.21) 

1

𝜆𝑖
=

1

𝜆 + 0.08𝛽
−

0.035

𝛽3 + 1
                                              (2.22) 

The dynamic equation representing pitch angle control is given in (2.23). 
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𝛽 =
(𝐾𝑝𝜑(𝜔𝑚 − 𝜔𝑟𝑒𝑓) − 𝛽)

𝑇𝑝
                                             (2.23)
̇

 

where 𝜑 is a function that allows changing the pitch angle only when the difference 

(𝜔𝑚 − 𝜔𝑟𝑒𝑓) is above a certain threshold. Since pitch angle control only operates in 

super-synchronous speeds (speed greater than synchronous speed), an anti-windup limiter 

sets 𝛽 to zero for sub-synchronous speeds. 

The electromechanical equation associated with the shaft of the turbine is given in (2.24). 

�̇�𝑚 =
𝑇𝑚−𝑇𝑒

2𝐻𝑚
                                                             (2.24)                         

where 𝜔𝑚 is the rotor speed, 𝑇𝑚 is the mechanical torque, 𝑇𝑒 is the electrical torque and 

𝐻𝑚 is the inertia of the rotor.   

2.5.2 Doubly-fed induction generator 

 The most commonly used type of generator for wind power generation is a Doubly- 

Fed Induction Generator (DFIG). A grid connected to a DFIG involves a wound rotor 

induction machine and has terminals on both stator and rotor. However, with an induction 

machine, the rotor frequency is dependent on the operating slip of the machine.  So, an 

AC/DC/AC converter is used to connect the rotor terminals to the grid. The AC/DC/AC 

converter enables variable speed operation and also enables the control of output real and 

reactive power. The machine stator and rotor voltages in terms of machine currents and 

rotor speed m  are given in (2.25) – (2.28) [55]. A schematic diagram of DFIG is shown 
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in Fig. 2.5. The bidirectional arrows signify that the power can flow in either direction 

depending on the mode of operation (sub-synchronous or super-synchronous). 

 

Figure 2.5 Schematic of a DFIG 

 

𝑣𝑑𝑠 = −𝑟𝑠𝑖𝑑𝑠 −
𝑑𝜆𝑑𝑠

𝑑𝑡
+ 𝜆𝑞𝑠                                                    (2.25)   

𝑣𝑞𝑠 = −𝑟𝑠𝑖𝑞𝑠 −
𝑑𝜆𝑞𝑠

𝑑𝑡
+ 𝜆𝑞𝑠                                                    (2.26)       

𝑣𝑑𝑟 = −𝑟𝑟𝑖𝑑𝑟 −
𝑑𝜆𝑑𝑟

𝑑𝑡
+ (1 − 𝜔𝑚)𝜆𝑞𝑟                                      (2.27)                                   

𝑣𝑞𝑟 = −𝑟𝑟𝑖𝑞𝑟 −
𝑑𝜆𝑞𝑟

𝑑𝑡
+ (1 − 𝜔𝑚)𝜆𝑑𝑟                                      (2.28)                                  

where 𝑖𝑑𝑠, 𝑖𝑞𝑠, 𝑖𝑑𝑟 , 𝑖𝑞𝑟 are the direct and quadrature axis stator and rotor currents, 

𝑣𝑑𝑠 , 𝑣𝑞𝑠, 𝑣𝑑𝑟 , 𝑣𝑞𝑟 are the direct and quadrature axis stator and rotor voltages, 

𝜆𝑞𝑠, 𝜆𝑞𝑟 , 𝜆𝑑𝑠, 𝜆𝑠𝑟 are the stator and rotor direct and quadrature axis fluxes, 𝑟𝑠 and 𝑟𝑟 are 
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stator and rotor resistances. It has to be noted that the equations (2.25) – (2.28) are shown 

per unit.  

The DFIG is represented as a constant power load for the purpose of dynamic simulation. 

This choice influences the update of bus voltages (algebraic variables) during dynamic 

simulations. For representing DFIG in dynamic studies, the transients associated with 

stator and rotor flux have been neglected. It is normal to neglect stator flux transients 

(even in synchronous machines) in fundamental frequency simulations since they are 

very fast to die out. The rotor flux transients are neglected because the current control 

loops of the voltage source converters counteract them. Therefore, the differential terms 

in equations (2.25) – (2.28) are set to zero. The electrical torque output of the machine in 

terms of stator and rotor currents is given in (2.29) [56]. 

𝜏𝑒 = 𝑥𝑚(𝑖𝑞𝑟𝑖𝑑𝑠 − 𝑖𝑑𝑟𝑖𝑞𝑠)                                                  (2.29) 

where mx  is the magnetizing reactance. 

As mentioned previously, the dynamics associated with the voltage source converters 

(VSC) are quite fast, and thus the converter can be modeled as an ideal current source. 

The rotor direct and quadrature currents 𝑖𝑑𝑟 and 𝑖𝑞𝑟 form the state variables. The current 

𝑖𝑑𝑟 is used to control the bus voltage (in other words reactive power injection), whereas 

𝑖𝑞𝑟 is used for controlling the rotor speed. The dynamic equations associated with the 

VSC are given in (2.30) and (2.31). 
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𝑖̇𝑞𝑟 =

((−
𝑥𝑠 + 𝑥𝑚

𝑥𝑚𝑣𝑏𝑢𝑠
)

𝑃𝑚(𝜔𝑚)
𝜔𝑚

𝑖𝑞𝑟)

𝑇𝜖
                                             (2.30) 

  𝑖̇𝑑𝑟 = 𝐾𝑣(𝑣𝑏𝑢𝑠 − 𝑣𝑟𝑒𝑓) −
𝑣𝑏𝑢𝑠

𝑥𝑚
− 𝑖𝑑𝑟                                        (3.31) 

where 𝑥𝑠 is the stator reactance, 𝑣𝑏𝑢𝑠 is the voltage of the bus where the DFIG is 

connected, 𝐾𝑣 is the voltage control gain, 𝑃𝑚(𝜔𝑚) is the power extracted from the wind 

as a function of the rotor speed, and 𝑇𝜖 is the power control time constant. Since, 𝑖̇𝑞𝑟 and 

𝑖̇𝑑𝑟 cannot exceed certain physical limits, anti-windup limiters are used. 

2.6 Small Signal Stability 

Small signal stability is defined as the ability of the power system to maintain 

synchronism under small perturbations [1]. Small perturbations may occur in any part of 

the power system due to the daily changes in loads and generations. The first step in 

studying the small signal stability of any power system is to linearize it around an 

operating point since small disturbance is considered a small change in the system. Thus, 

a linear model can be made around this operating condition. The effect of small signal 

stability can be studied by applying small disturbances on the resulting model. 

Furthermore, there are different types of control theories that have been used to design a 

controller based on a linear model.  

2.6.1 Linearized state space model of a power system 

 A large-scale power system consists of a large number of machines and each machine 

has its own controller. The components of a power system are represented by Differential 
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and Algebraic Equations (DAE), and some of the differential equations are nonlinear. 

Consequently, the first step in performing small signal analysis is to linearize the 

dynamic model of the interconnected power system. The set of differential and algebraic 

equations that represent the power system can be listed as given in (2.32a-c) [1, 2]. 

�̇� = 𝑓(𝑥, 𝑥𝑎, 𝑢)                                                             (2.32𝑎) 

0 = 𝑔(𝑥, 𝑥𝑎, 𝑢)                                                             (2.32𝑏) 

𝑦 = ℎ(𝑥, 𝑥𝑎, 𝑢)                                                              (2.32𝑐) 

where 𝑥 and 𝑥𝑎 are the vectors of state and algebraic variables respectively, u and y 

represent the variables of input and output vectors, equation (2.32a) represents the power 

system dynamics. The power flow equation is described in (2.32b). Equation (2.32c) 

describes output in terms of state and input variables. 

In small signal stability, the dynamic behavior of a power system is linearized around an 

equilibrium point where 0x . Then, the system can be analyzed around this point. The 

state space matrices (A, B, C and D) can be obtained based on the linearized model of the 

power system around the equilibrium point.  The equilibrium point of a power system is 

obtained from the power flow results. 

Two approaches exist that can determine state space matrices: 

1) Using analytic Jacobian. 

2) Using numerical differentiation for approximating the Jacobian. 
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In this work, the power system toolbox (PST) software package based on MATLAB is 

used. PST employs the second approach to obtain the state space matrices. The 

differential and algebraic equations are solved in PST successively. The modified Euler’s 

method, which is also known as the predictor and corrector method, is used to calculate 

and update the state and algebraic variables. This approach has two steps: the first one 

applies a small change to the variables ( x and u ) and the changes are (∆𝑥 𝑎𝑛𝑑 ∆𝑢). In 

the second step, the change in the nonlinear function f in equation (2.32a) are (
𝜕𝑓

𝜕𝑥
) and 

(
𝜕𝑓

𝜕𝑢
), which produces the matrices A and B. A similar approach is used to calculate matrix 

C. In the transfer function that represents the power system components, the order of the 

numerator is less than or equal to the order of the denominator, so the D matrix is 

composed of zeros. Thus, the power system can be represented by the state space form as 

given in (2.33). 

�̇� = 𝐴𝑥 + 𝐵𝑢            

𝑦 = 𝐶𝑥                                                                        (2.33)  

                                           

For small disturbance resulting in small change in ((∆𝑥 𝑎𝑛𝑑 ∆𝑢), the system equations 

can be written in a linearized form as given in (2.34). 

∆�̇� = 𝐴∆𝑥 + 𝐵∆𝑢  

∆𝑦 = 𝐶∆𝑥                                                                  (2.34) 
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where 

𝐴 = [
𝜕𝑓

𝜕𝑥
], 𝐵 = [

𝜕𝑓

𝜕𝑢
] and C= [

𝜕𝑔

𝜕𝑥
] 

Note that A is the state matrix, B is the input matrix and C is the output matrix. 

The matrix A provides important information about the system behavior. It can be shown 

that the closed loop poles of the system represented by these matrices are the roots of the 

characteristic equation:    

𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0                                                                   (2.35) 

These roots are called Eigenvalues 𝜆(𝜆 = 𝜆1, 𝜆2, … . . , 𝜆𝑛) of the state matrix A. 

Eigenvalues are very important in analyzing power system dynamics; they indicate how 

much the system is close to or far from the stability limit. Eigenvalues can be obtained by 

solving equation (2.35). By looking at the Eigenvalues 𝜆𝑖 = 𝛼𝑖−
+𝑗𝜔𝑖 , in which numbers 

can be real or complex, a full picture of small signal stability can be gained.  

Properties of Eigenvalues 

1- The system is said to be stable if all the real parts of the Eigenvalues have a 

negative sign (𝛼𝑖).  

2- The system is said to be unstable if all the real parts of the Eigenvalues have a 

positive sign. 
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3- The system becomes marginally stable if all the real parts of the Eigenvalues have 

a negative sign except one that has only an imaginary part ( 𝑗𝜔−
+ ), and the system 

in this case will be in oscillatory mode.   

There are two important parameters for analyzing the small signal stability of the 

oscillatory mode: its damping (𝜉𝑖) and frequency (𝑓𝑖), which can be given as: 

𝜉𝑖 =
−𝛼𝑖

√𝛼𝑖
2 + 𝜔𝑖

2

                                                           (2.36) 

𝑓𝑖 =
𝜔𝑖

2𝜋
 

Two Eigenvectors—“Right Eigenvector (REV) and Left Eigenvector (LEV)” —are 

associated with each Eigenvalue, as described in equation (2.37).  

𝐴Ф𝑖 = 𝜆𝑖Ф𝑖 

Ѱ𝑖𝐴 = 𝜆𝑖Ѱ𝑖                                                     (2.37) 

where Ф𝑖 and Ѱ𝑖 are the vectors of the right and left Eigenvectors respectively as shown 

below:  

Ф𝑖 = [Ф1 Ф2 … … . Ф𝑛] 

Ѱ𝑖 = [Ѱ1 Ѱ2 … … . Ѱ𝑛]𝑇 

Ф and Ѱ are orthogonal matrices.  
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The parameters of REV define the existence of the mode in different state variables, 

while LEV indicates the excitation of the mode when it is perturbed. Based on these two 

vectors, the participation factor is defined. The matrix of the participation factor P  is 

shown in (2.38).  

𝑃 = [𝑃1, 𝑃2, … … . , 𝑃𝑛]                                                       (2.38) 

The participation of an 𝑖𝑡ℎ mode in 𝐾𝑡ℎ states can be given in (2.39)  

𝑃𝑘𝑖 = Ф𝑘𝑖Ѱ𝑘𝑖                                                              (2.39) 

2.6.2 Power system oscillations 

The power system is considered a complex system, and it has different modes of 

oscillations. These modes can be classified as: 

 Local modes of oscillation: these occur when a synchronous machine located in 

a power system plant oscillates with respect to the rest of the system, and the 

frequency range of these oscillations lies between (1.0 to 2.0). 

 Inter-area modes of oscillation: this phenomenon involves a group of 

generators in one area swinging against another group of generators in the 

neighboring area connected by a weak tie line. The frequency of these 

oscillations ranges between (0.2 to 1.0). 

 The control modes of oscillation: these oscillations are mainly associated with 

generators and poorly tuned voltage regulators, turbine governors, SVC 

controls and HVDC converters. 
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2.6.3  Inter-area oscillations 

    The work of this dissertation focuses on damping inter-area oscillations. Damping of 

inter-area oscillations is one of the main challenges in maximizing the tie-line power 

transfer in power systems. These oscillations are the outcome of weakly interconnected 

power systems. The inter-area oscillations become worse as the power system becomes 

stressed. Recently, Flexible AC Transmission System (FACTS) devices have been used 

in power systems to control the bus voltages and tie-line power. They can also damp 

power system oscillations and improve system stability by providing a supplementary 

control signal to the reference value of these devices. Large-scale integration of 

renewable resources in a modern power system has added extra uncertainty to the power 

system. As a result of this variability, it becomes necessary for the damping controllers to 

be robust.  

2.7 Static VAR Compensator (SVC) 

The Static VAR Compensator (SVC) is a shunt FACTS device; it is mainly used to 

maintain the bus voltage by varying its injected reactive power. Fig. 2.6 shows a basic 

circuit of SVC, which consists of a fixed series capacitor bank, C, connected in parallel 

with a thyristor-controlled reactor, L. By sensing the bus voltage and providing a firing 

pulse signal to the thyristor, the reactance L can be controlled. Consequently, the whole 

admittance of SVC will vary and provide reactive power support accordingly. 

The injected reactive power (Q) of SVC connected to the bus j in the power system as 

shown in Fig 2.6 can be written as: 

𝑄𝑗 = 𝑉𝑗
2𝐵𝑠𝑣𝑐                                                            (2.40) 
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where 𝐵𝑠𝑣𝑐 = 𝐵𝐶 − 𝐵𝐿 and 𝐵𝐶 is the susceptance of the fixed capacitor and 𝐵𝐿 is the 

susceptance of the thyristor controlled reactor.  

The block diagram of the dynamic model of an SVC is given in Fig 2.7. 

C

L

Bus j

 

 

Figure 2.6 The SVC circuit 
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Figure 2.7 Block diagram of the dynamic model of an SVC 

 

 

The differential equation associated with the SVC can be given as: 

 

�̇�𝑠𝑣𝑐 =
1

𝑇𝑟

(𝐾𝑟𝑉𝑎 − 𝐵𝑠𝑣𝑐)                                                                  (2.41) 

�̇�𝑎 =
1

𝑇𝑏
((1 −

𝑇𝑐

𝑇𝑏
) (𝑉𝑟𝑒𝑓 − 𝑉𝑡) − 𝑉𝑎)                                            (2.42) 
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     CHAPTER THREE 

3 𝑯∞ ROBUST CONTROLLER DESIGN 

This chapter introduces a multi-model approach to designing a robust supplementary 

damping controller.  The designed fixed-order supplementary damping controller adjusts 

the voltage reference set point of SVC. There are two main objectives of the controller 

design, which are: damping low-frequency oscillations and enhancing power system 

stability. The proposed 𝐻∞ approach is based on shaping the closed-loop sensitivity 

functions in the Nyquist diagram through constraints on their infinity norm. The 𝐻∞ 

constraints are linearized with the help of a desired open-loop transfer function. The 

controller is designed using convex optimization techniques in which the difference 

between the open-loop transfer function and the desired transfer function is minimized. 

Convexity of the problem formulation ensures global optimum. One of the advantages of 

the proposed approach is the consideration of multi-model uncertainty. Also, in contrast 

to the methods that have been studied in literature, the proposed approach deals with a 

full-order model (i.e., model reduction is not required) with lower controller order. The 

proposed approach is compared with recent existing techniques to design a robust 

controller that is based on H2 under pole placement. Both techniques are applied to the 68 

bus system to evaluate and validate the robust controller performance under different load 

scenarios and different wind generations. 
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3.1 Class of models and controllers 

    The primary purpose of this chapter is to introduce and design a linearly parameterized 

robust controller. To demonstrate the capability of the proposed method and controller, it 

is used to damp out inter-area oscillations. Consider a linearly parameterized controller of 

the form given in (3.1) [51, 57-60]:  

 

                                                                  𝐾(𝑠) = 𝜌𝑇𝜑(𝑠)                                                  (3.1) 

where                                                     𝜌 = [𝜌1 𝜌2 … . 𝜌𝑛] 

                                                  𝜑(𝑠) = [𝜑0(𝑠) 𝜑1(𝑠)… … 𝜑𝑛−1(𝑠)]𝑇 

 

where n is the number of controller parameters, 𝜌𝑖 is the controller parameters and 𝜑𝑖(𝑠) 

is a basis function.  For example, the controller parameters of the Proportional Integral 

Derivative (PID) controller are [𝜌1 𝜌2 𝜌3] = [𝐾𝑝 𝐾𝑖 𝐾𝑑] and [𝜑1(𝑠) 𝜑2(𝑠) 𝜑3(𝑠)]𝑇 =

[1 
1

𝑠
 

𝑠

1+𝑇𝑠
]
𝑇

. The Laguerre function is a commonly used basis function and is given in 

(3.2) [58]. 

  𝜑0(𝑠) = 1, 𝜑𝑖(𝑠) =
√2휁(𝑠 − 휁)𝑖−1

(𝑠 + 휁)𝑖
  𝑖 ≥ 1, 휁 > 0                                     (3.2) 
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where 휁 > 0 is the Laguerre parameter. It can be shown that for any finite order transfer 

function F(s), arbitrary Laguerre parameter 휁 > 0  and an arbitrary constant 휀 > 0, there 

exists a finite n such that 

     ‖𝐹(𝑠) − 𝜌𝑇𝜑(𝑠)‖𝑝 < 휀      𝑓𝑜𝑟 0 < 𝑝 < 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦                                     (3.3) 

The controller parameterization presented in (3.1) obtains a good approximation of any 

finite order stable transfer function with a desired level of accuracy by varying the 

parameter n. The result of the optimization problem given in (3.3) is dependent on the 

difference between the poles of F(s) and 휁. A better approximation of any finite order 

stable transfer function can be obtained for a given controller order if the choice of 휁 is 

proper. More details for optimal selection of the basis function can be found in [58, 60].  

The reason behind using the linearly parameterized controller is that all points on the 

Nyquist diagram of the open-loop transfer function 𝐿(𝑗𝜔, 𝜌) can be written as a linear 

function of the controller parameters ρ as given in (3.4). This property helps in obtaining 

a convex parameterization of the loop-shaping fixed-order controller. 

𝐿(𝑗𝜔, 𝜌) = 𝐾(𝑗𝜔, 𝜌)𝐺(𝑗𝜔) =  𝜌𝑇𝜑(𝑗𝜔)𝐺(𝑗𝜔) 

                                            =  𝜌𝑇ℛ(𝜔) + 𝑗𝜌𝑇ℐ(𝜔)                                                                   (3.4) 

where ℛ(𝜔) and ℐ(𝜔) are respectively the real and imaginary parts of 𝜑(𝑗𝜔)𝐺(𝑗𝜔). 

In case of a single model, G is a scalar function, whereas for a multi-model controller 

design 𝒢 = {𝐺𝑖(𝑗𝜔), 𝑖 = 1, … . , 𝑚} is defined as 𝐺𝑖(𝑗𝜔) representing the i-th model in the 
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multi-model uncertainty set. In this case, 𝐿𝑖(𝑗𝜔) is the open-loop transfer function for the 

i-th model.  

3.2 𝑯∞ Robust Constraints 

3.2.1 Uncertainty and Robustness Representation 

3.2.1.1 Multiplicative uncertainty 

Multiplicative uncertainty is represented in (3.5). Suppose that 𝐺0(𝑗𝜔) is the normal plant 

frequency response, and the actual plant that describes the normal plant with uncertainty 

is 𝐺(𝑗𝜔), as shown in Fig. 3.1 and (3.5)  [61, 62]. 

𝐺(𝑠) = 𝐺0(𝑠)(1 + 𝑊2(𝑠)∆(𝑠))                                                          (3.5) 

where ∆(𝑠) is an unknown stable transfer function with ‖∆‖∞ < 1. 

 

K(s) G0(s)

  

r

d

y

n
G(s)

e

W2

 

Figure 3.1 Block diagram representing an uncertain feedback system 

3.2.2 Robust Stability and Performance  

The closed-loop system in Fig. 3.1 can be represented by equation (3.6) as:  
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𝑦 =
𝐾(𝑠)𝐺(𝑠)

1 + 𝐾(𝑠)𝐺(𝑠)
(𝑟 − 𝑛) +

1

1 + 𝐾(𝑠)𝐺(𝑠)
𝑑                                         (3.6) 

The open-loop transfer function is 𝐿(𝑗𝜔) =  𝐾(𝑗𝜔)𝐺(𝑗𝜔), the complementary sensitivity 

function is 𝑇(𝑗𝜔) = 𝐿(𝑗𝜔)/[1 + 𝐿(𝑗𝜔)] and the sensitivity function is 𝑆(𝑗𝜔) = 1/[1 +

𝐿(𝑗𝜔)] be defined. It can be seen from (3.6) that 𝑇(𝑗𝜔) defines the relationship between 

the reference and the output signals and 𝑆(𝑗𝜔) defines the relationship between the 

reference and the error. These transfer functions define the main characteristic of the 

closed-loop architecture.  

Re

 𝑊2(𝑗𝜔𝑘)𝐿(𝑗𝜔𝑘 , 𝜌)  

 𝑊1(𝑗𝜔𝑘)  

-1

Uncertainty circle

The critical 

point

Im

 

Figure 3.2 Nyquist plot 

 

The Nyquist diagram has been used to derive the criteria of robust performance as well as 

robust stability. The point (−1 + 𝑗0) on the Nyquist plot as shown in Fig. 3.2 is known 
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as the critical point used to study the closed-loop system stability. The circle centered at 

the critical point (−1 + 𝑗0) with radius 𝑊1(𝑗𝜔) is known as the performance disc.  The 

uncertainty disc is represented by the circle with radius 𝑊2(𝑗𝜔)𝐿(𝑗𝜔, 𝜌).  

Graphically, robust stability is achieved if, and only if, the uncertainty disc centered at 

the original open-loop transfer function with radius 𝑊2(𝑗𝜔)𝐿(𝑗𝜔, 𝜌) does not intersect 

with the other circle centered at the critical point (−1 + 𝑗0) with radius 𝑊1(𝑗𝜔) on the 

Nyquist plot. The absolute value of  1 + 𝐿(𝑗𝜔, 𝜌)  defines the distance between the 

center of the critical point and the center of the uncertainty disc. For robust stability, the 

radius 𝑊2(𝑗𝜔)𝐿(𝑗𝜔, 𝜌) of the uncertainty circle has to be less than the distance  1 +

𝐿(𝑗𝜔, 𝜌)  at all frequencies. In other words,  𝑊2(𝑗𝜔)𝐿(𝑗𝜔) <  1 + 𝐿(𝑗𝜔, 𝜌)  for all 𝜔. 

Dividing both sides of this equation by   1 + 𝐿(𝑗𝜔, 𝜌)  and knowing the fact 𝑇(𝑗𝜔) =

𝐿(𝑗𝜔)/[1 + 𝐿(𝑗𝜔)] results in: 

 𝑊2(𝑗𝜔)𝑇(𝑗𝜔) < 1            ∀𝜔                                                     (3.7) 

The normal performance condition of a stable system can be given in the following 

standard form: 

 𝑊1(𝑗𝜔)𝑆(𝑗𝜔) < 1            ∀𝜔                                                         (3.8) 

To define the condition of the robust performance of the system given in Fig 3.2, 

substitute (3.5) with (3.8), as given in (3.9)  
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 𝑊1𝑆 = |
𝑊1

1 + (1 + ∆)𝐿
| = |

𝑊1𝑆

1 + ∆𝑇
| < |

𝑊1𝑆

1 − 𝑊2𝑇
|                                        (3.9) 

Since  𝑊1𝑆 < 1, then |
𝑊1𝑆

1−𝑊2𝑇
| < 1 from equation (3.9), and this constraint is required for 

the robust performance. By rearranging this constraint, the result is the standard form of 

the robust performance, which is given in (3.10). 

 𝑊1(𝑗𝜔)𝑆(𝑗𝜔) +  𝑊2(𝑗𝜔)𝑇(𝑗𝜔) < 1 ∀𝜔                                           (3.10) 

 

3.3 The proposed approach  

The constraints in (3.10) satisfy the robust stability as well as robust performance. The 

main idea here is to represent these constraints in the Nyquist plot. Then robustness can 

be achieved by a set of convex constraints on the frequency domain.  Now the controller 

can be designed based on convex optimization, and the solution is to reduce the norm of 

the distance between the actual 𝐿𝑖(𝑗𝜔𝑘, 𝜌) and desired 𝐿𝑑(𝑗𝜔𝑘) open-loop transfer 

function as shown in Fig. 3.1.  

Multiplying (3.10) by  1 + 𝐿(𝑗𝜔, 𝜌) , one finds: 

               𝑊1(𝑗𝜔) +  𝑊2(𝑗𝜔)𝐿(𝑗𝜔, 𝜌) <  1 + 𝐿(𝑗𝜔, 𝜌)     ∀𝜔                                  (3.11) 

The constraints in (3.11) are non-convex, and 𝐿𝑑(𝑗𝜔𝑘) is used to linearize these 

constraints. Making the problem convex ensures that global optimality can be achieved. 

Now, line 𝑑 as shown in Fig. 3.3 is introduced, which is tangent to the performance disc 

centered at (−1 + 𝑗0) and orthogonal to the line that links the center of the performance 
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disc to 𝐿𝑑(𝑗𝜔𝑘).  A sufficient condition for constraints in (3.11) is that the circle centered 

at the actual open-loop transfer function 𝐿𝑖(𝑗𝜔𝑘, 𝜌) has to be on the right side of line d 

for all frequencies as shown in Fig 3.3. 

Note that line 𝑑 is a straight line in the complex plane and can be represented by an 

infinite number of points. Each point in the complex plane has a real part x and imaginary 

part y. The equation of the straight line d is a function of 𝐿𝑑(𝑗𝜔𝑘) and 𝑊1 and it can be 

written at each point as: 

                           𝐿𝑖𝑛𝑒 𝑑 ∶   𝑦 = 𝑡𝑎𝑛(𝛼) [𝑥 −
 𝑊1 

sin(𝛼)
+ 1]                                                (3.12) 

-1

Li (jωk , ρ) Ld (jωk )

Re

Im

𝑑( 𝑊1(𝑗𝜔𝑘) , 𝐿𝑑(𝑗𝜔𝑘)) 

 𝑊2(𝑗𝜔𝑘)𝐿(𝑗𝜔𝑘 , 𝜌)  

 𝑊1(𝑗𝜔𝑘)  

 

Figure 3.3 Linear constraints on Nyquist plot 
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where sin(𝛼) and cos(𝛼) are:   

sin(𝛼) =
𝑅𝑒{1 + 𝐿𝑑(𝑗𝜔𝑘)}

 1 + 𝐿𝑑(𝑗𝜔𝑘) 
,    cos(𝛼) = −

𝐼𝑚{1 + 𝐿𝑑(𝑗𝜔𝑘)}

 1 + 𝐿𝑑(𝑗𝜔𝑘) 
 

By substituting sin(𝛼) and cos(𝛼) into the equation (3.12), the result is: 

 𝑊1(𝑗𝜔𝑘)[1 + 𝐿𝑑(𝑗𝜔𝑘)] − 𝐼𝑚{𝐿𝑑(𝑗𝜔𝑘)}𝑦 − [1 + 𝑅𝑒{𝐿𝑑(𝑗𝜔𝑘)}][1 + 𝑥] = 0           (3.13) 

Now, the linear constraints of line d that exclude the performance disc are given in (3.14) 

as: 

 𝑊1(𝑗𝜔𝑘)[1 + 𝐿𝑑(𝑗𝜔𝑘)] − 𝐼𝑚{𝐿𝑑(𝑗𝜔𝑘)}𝐼𝑚{𝐿(𝑗𝜔𝑘, 𝜌)} − [1 + 𝑅𝑒{𝐿𝑑(𝑗𝜔𝑘)}][1 +

𝑅𝑒{𝐿(𝑗𝜔𝑘, 𝜌)}] < 0 ∀𝜔                                                                                                           (3.14)                                                                                                       

 The linear constraints in (3.10) can be simplified using the following facts: 

𝑅𝑒{𝐿𝑑(𝑗𝜔𝑘)} = 1/2[𝐿𝑑(𝑗𝜔𝑘) + 𝐿𝑑
∗ (𝑗𝜔𝑘)] 

                             and   𝐼𝑚{𝐿𝑑(𝑗𝜔𝑘)} = 1/2[𝐿𝑑(𝑗𝜔𝑘) − 𝐿𝑑
∗ (𝑗𝜔𝑘)] 

 

The constraints in (3.14) become: 

  𝑊1(𝑗𝜔𝑘)[1 + 𝐿𝑑(𝑗𝜔𝑘)] − 𝑅𝑒{[1 + 𝐿𝑑
∗ (𝑗𝜔𝑘)][1 + 𝐿(𝑗𝜔𝑘, 𝜌)]} < 0  ∀𝜔              (3.15)                                                                                                                             

where 𝐿𝑑
∗ (𝑗𝜔𝑘) is the complex conjugate of 𝐿𝑑(𝑗𝜔𝑘). 

To satisfy the condition in (3.15) for a set of uncertainty models, the circle centered at 

𝐿𝑖(𝑗𝜔𝑘, 𝜌) should be approximated by a polygon with 𝑣 > 2 vertices. To satisfy the 
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robust uncertainty in (3.10), all the vertices of the polygon located at the uncertainty disc 

have to be on the right side of line 𝑑. This condition can be represented by the linear 

constraints as shown in equation (3.16) [57]: 

         𝑊1(𝑗𝜔𝑘)[1 + 𝐿𝑑(𝑗𝜔𝑘)] − 𝑅𝑒{[1 + 𝐿𝑑
∗ (𝑗𝜔𝑘)][1 + 𝐿𝑖(𝑗𝜔𝑘, 𝜌)]} < 0  ∀𝜔       (3.16)     

where 𝐿𝑖(𝑗𝜔𝑘, 𝜌) = 𝐾(𝑗𝜔𝑘, 𝜌)𝐺𝑖(𝑗𝜔), and  

𝐺𝑖(𝑗𝜔) = 𝐺(𝑗𝜔) [1 +
 𝑊2(𝑗𝜔𝑘) 

cos(𝜋 𝑣⁄ )
𝑒−2𝑗𝜋𝑖 𝑣⁄ ]                                                (3.17)                                                               

It is observed that the number of linear constraints is multiplied by v.  

Another way to satisfy the robust condition in (3.11) is to increase the radius of the circle  

 𝑊2(𝑗𝜔)𝐿(𝑗𝜔, 𝜌) , an increase that leads to the following convex constraints: 

 𝑊1(𝑗𝜔𝑘)[1 + 𝐿𝑑(𝑗𝜔𝑘)] +  𝑊2(𝑗𝜔)𝐿(𝑗𝜔, 𝜌) [1 + 𝐿𝑑(𝑗𝜔𝑘)]

− 𝑅𝑒{[1 + 𝐿𝑑
∗ (𝑗𝜔𝑘)][1 + 𝐿𝑖(𝑗𝜔𝑘, 𝜌)]} < 0  ∀𝜔                                     (3.18) 

Considering all of these examinations, the quadratic optimization problem can be 

expressed as given in (3.19). 

min
𝜌

∑ ∑ 𝐿𝑖(𝑗𝜔𝑘, 𝜌) − 𝐿𝑑(𝑗𝜔𝑘) 2

𝑁𝑖

𝑘=1

𝑚

𝑖=1

                                              (3.19) 

Subject to:  

 𝑊1(𝑗𝜔𝑘)[1 + 𝐿𝑑(𝑗𝜔𝑘)] +  𝑊2(𝑗𝜔)𝐿(𝑗𝜔, 𝜌) [1 + 𝐿𝑑(𝑗𝜔𝑘)]

− 𝑅𝑒{[1 + 𝐿𝑑
∗ (𝑗𝜔𝑘)][1 + 𝐿𝑖(𝑗𝜔𝑘, 𝜌)]} < 0  ∀𝜔      
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 𝑓𝑜𝑟 𝑘 = 1, … … , 𝑁𝑖 (𝑁𝑜. 𝑜𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠), 𝑖 = 1 … , 𝑚. 

where       𝐿𝑖(𝑗𝜔𝑘, 𝜌) = 𝜌𝑇  𝜑(𝑗𝜔𝑘)𝐺𝑖(𝑗𝜔𝑘)                      

For multi-model uncertainty cases, the constraints in (3.18) can be repeated for all the 

plant models 𝐺𝑖(𝑗𝜔) for i = 1...,m. The constraints in (3.18) still can be used if the 

uncertainty weighting filters 𝑊1, 𝑊2 and the desired open-loop tansfer function 𝐿𝑑𝑖 are 

different for each plant model, since these constraints are convex with respect to 

𝐺𝑖(𝑗𝜔) for multi-model uncertainty.  

 

3.4 IEEE 68 Bus Test System and SVC Model 

3.4.1 Test System 

The IEEE 16 machines, 68 bus system is used in this study. This test system is 

particularly suited for small signal stability studies. For instance, reference [2] uses 

the same test system for damping inter-area modes. There are five distinct areas in the 

test system with a total load of 18.23 GW. Areas NETS and NYPS are interconnected 

through two parallel tie-lines. Fig. 3.4 shows the single line diagram of the test system. 

Parameters of the generators, exciters, governors, and transmission lines of the test 

system can be found in [2]. 

Power System Toolbox (PST) is used to simulate the test system, including the SVC 

and doubly-fed induction generator (DFIG) [63]. The controller was implemented in 

MATLAB based on the proposed approach and has been integrated in PST. 



44 
 

In order to include renewable generation, a 500MW wind farm is placed in area 2 at bus 

39 as presented in Fig. 3.4. The wind farm is installed to add more variability to the 

system due to the continuous change of the output power of the wind farm. A 3rd-order 

model of a DFIG is used [64]. The dynamic model of the DFIG contains a set of 

differential algebraic equations that has been integrated in PST. A single model of DFIG 

is used to represent the wind farm. 
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 Figure 3.4 Single line diagram of the 68 bus test system 
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3.4.2 Static Var Compensator  

The block diagram of SVC is shown in Fig. 3.5 (a). The test system has an SVC 

installed at bus 50. The parameters of SVC are given in Table 3.1. The objective of 

designing the controller is to damp tie-line oscillations by providing additional signal to 

the set point of the SVC. The control structure of the proposed approach is represented 

as shown in Fig. 3.5 (b).  

 

 

Table 3.1 SVC Parameters 

𝑩𝒔𝒗𝒄𝒎𝒂𝒙 𝑩𝒔𝒗𝒄𝒎𝒊𝒏 𝑲𝒓 𝑻𝒓 𝑻𝒄 𝑻𝒃 

1𝑝𝑢 1𝑝𝑢 10 0.05𝑠𝑒𝑐 0.6𝑠𝑒𝑐 0.2𝑠𝑒𝑐 

 

 

 

 

 

 

 

(a) 

 

 

 

(b) 

Figure 3.5 Block diagram of (a) SVC and (b) control representation 
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3.5 Controller Design Procedure 

    In this section, the step by step procedure and rationale used in designing the controller 

are described in detail.  

3.5.1 Selecting Inter-Area Modes 

     For the given test system, under nominal operating condition, two Eigenvalue pairs 

have damping of less than 5%. In fact, one of the Eigenvalue pairs has damping very 

close to zero; hence, the system is close to the instability point.  

 

Table 3.2 Eigenvalues, Damping Ratios and Frequencies of the Inter-Area Modes of the 

Test System 

Eigenvalue 

 𝝈 𝒋𝝎−
+  

Damping ratio 

 −
𝝈

√𝝈𝟐+𝝎𝟐
  

Frequency 

(Hz) 

 
𝝎

𝟐𝝅
 

−0.04052 3.410𝑗−
+  

−0.1539 4.948𝑗−
+  

0.01188 

0.03108 

0.5427 

0.7875 

 

Based on the Eigenvalues for nominal operating point, the inter-area modes that need to 

be damped for the case study are listed in Table 3.2. Fig.3.6 shows the damping ratios for 

frequencies of interest corresponding to the nominal operating condition. 
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Figure 3.6 Damping ratios and frequencies of Eigenvalues for OP1, normal operating point 

 

3.5.2 Selecting Input/Output Signal 

Appropriate selection of the input signal for the designed controller is highly 

essential to guarantee that the inter-area Eigenvalues are controllable and observable. To 

this end, controllability metric is used to choose the most effective input signal to damp 

the inter-area modes. Controllability metric is defined as the amount of displacement 

that a pole would undergo due to small change in the feedback gain; this condition is given 

in (3.20) [65]. Using controllability metric as shown in Fig. 3.7, the active power flow of 

the line 42 to 52 is found as the most controllable measurement to damp the inter-area 

modes. Therefore, the input signal that feeds the controller is provided from the tie-line 

(42 to 52), which connects the areas 4 and 5. The controller output is used as an 

additional control signal to the SVC. 
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∆𝜆𝑖 = 𝑢𝑖𝐵∆𝐾𝐶𝑣𝑖 →
‖∆𝜆𝑖‖

‖∆𝐾‖
≤ ‖𝑢𝑖𝐵‖ ∗ ‖𝐶𝑣𝑖‖                                           (3.20) 

 

Figure 3.7 Controllability indices of controllable Eigenvalues based on selecting the line 42 to 52 

 

3.5.3 Choice of Operating Points 

A power system is a non-stationary system in which a set of new dispatches are 

computed every five to fifteen minutes. As a result, the total number of possible 

operating points are innumerable; hence, six different operating points that represent 

several stress levels of the system are used for controller design and validation. Stress 

levels of the system in this context are quantified using Eigen-spectrum. Eigenvalues 

convey two very important attributes: oscillation frequencies and their corresponding 

damping ratio. Damping ratio illustrates how much energy is dissipated during each 

cycle for a given frequency.  

0 2 4 6 8 10 12 14 16

-61.767
-9.2416+11.0716i
-0.040515+3.4097i
-99.6576
-0.15386+4.9479i
-29.0389
-0.35066+2.6351i
-0.24345+0.38706i
-8.22295+14.7815i
-106.5161
-1.401
-11.4367+7.68516i
-2.51221+13.5208i
-77.3224
-1.7578
-1.1761
-0.70339+7.757i
-0.90356
-4.8712+1.0243i
-8.14182+18.6166i
-0.10001+0.02144i
-0.6202+4.5216i
-0.69442
-0.93468+8.8368i
-0.97743+7.755i
-1.75743+11.2224i
-0.72164+9.2998i
-8.00551+20.2282i
-0.7876+7.9522i
-1.1886+8.3398i
-0.12373
-0.10053
-1.68266+10.1199i

Controllability metric

E
ig

en
va

lu
es



49 
 

Thus, six different operating points are created whereby the damping ratio of the 

Eigenvalues that correspond to inter-area modes of the system are progressively made 

worse.  

Table 3.3. Different Operating Points for 68 Bus System 

OP # Gen 

15 

Gen 

16 

Wind 

generation  

1 5 40 5(Normal 

model) 

2 7 38 5  

3 5 43 2 

4* 5 44 1 

5* 5 42 3 

6* 7 40 3 

*It is not used in the control design but is used to validate the controller. 

 

The system has been extensively studied, and these operating points listed in Table 3.3 

are considered for this study as they greatly affect the inter-area modes. The generators 

G15 and G16 are adjusted to obtain different operating points.  In addition, wind 

generation is also varied between different operating points. All the values in Table 3.3 

are in per-unit system.  

3.5.4 Desired Open-Loop Transfer Function (𝑳𝒅  ) 

Selecting 𝐿𝑑 is based on design specifications. 𝐿𝑑 normally has a high amplitude in 

low frequencies for reliable tracking, and that means the system follows the reference 

signal. At high frequencies, 𝐿𝑑 should have small amplitude to provide robustness and 
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noise rejection characteristics. 𝐿𝑑(𝑠) could be chosen as 𝜔𝑐 𝑠⁄  where 𝜔𝑐 is the desired 

closed-loop bandwidth [51, 57]. Typically, the bandwidth is the range of frequencies 

for which the gain is significant. Generally high bandwidth is needed to obtain faster 

response. In the case study, the aim is to damp the inter-area modes in the range of 

frequencies (0.2-1.0 Hz), so a bandwidth of more than 2𝜋𝑓 = 2𝜋 ∗ 1.0 =

6.28 𝑟𝑎𝑑 𝑠𝑒𝑐⁄  is needed. The desired bandwidth 𝜔𝑐 should be more than 

6.28 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ . For the case study, the resonance mode around 𝜔1 and 𝜔2 as shown in 

Fig. 3.8 is a strong one, and these modes should be cancelled by the controller. So 𝜔𝑐 

is selected to be 𝜔𝑐 = 9, which means (𝐿𝑑0 = 9 𝑠⁄ ). 

 

Figure 3.8 Frequency response of the three selected plant models 
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3.5.5 Weighting Filters (𝑾𝟏 and 𝑾𝟐) 

Selection of  𝑊1 and 𝑊2 are essential for the controller design. In this research, 𝑊1 

is designed as a first-order low-pass filter to gain a valid disturbance rejection. 𝑊2 is 

designed as a high-pass filter to guarantee robustness and minimize the controller 

effort in high frequencies [2].  

 

Figure 3.9 Frequency response of the weighting filters 

 

Frequency response of  𝑊1 and 𝑊2 is shown in Fig. 3.9. 

𝑊1(𝑠) =
20

𝑠 + 10
           𝑊2(𝑠) =

20𝑠

𝑠 + 100
                                          (3.21) 
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3.5.6 Solving the Optimization Problem 

The convex quadratic programing problem described by (3.19) is solved to 

obtain 𝐾0(𝑠). Since the problem is convex, global optimality is guaranteed. Using the 

relation 𝐿𝑑𝑖 = 𝐾0𝐺𝑖  , 𝑖 = 1,2,3, the desired open-loop transfer function is computed 

for operating points OP1 to OP3. The three computed 𝐿𝑑 with the three models are 

used to design the final controller 𝐾(𝑠) by solving the optimization problem in 

(3.19). The final controller 𝐾(𝑠) is given in (3.22).  

𝐾(𝑠) =
−43.095(𝑠 + 17.13)(𝑠 + 0.07859)(𝑠2 + 0.7662𝑠 + 6.429)

(𝑠 + 9)4
                       (3.22) 

 

3.6 H2 Controller under Pole Placement  

For comparison, a damping controller is designed using pole placement and H2 

optimization following two steps based on matrices described in [11]. First, a state-

feedback controller is developed that uses the system states to generate a control 

signal. This condition is achieved by solving a set of Linear Matrix Inequalities (LMIs) 

that places the system poles into a cone area in the complex plane, while minimizing 

the amplitude of control signal represented by its H2 norm. Thereafter, a state estimator 

is developed that constructs system states from the output. A similar set of LMIs is 

employed for this purpose. The controller can be obtained by a transfer function 

equivalence of the state-feedback controller and the state estimator combined. This 

approach considers multi-model so the controller is designed based on different load 

conditions. However, this approach still suffers from the drawbacks (1 and 2) listed in 

section 1.  For the case study, the damping ratio is set to be 10% as the boundary of the 
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pole placement region. Also, the weighting filters are selected to be the same as those 

used in the proposed approach. The same operating points listed in Table 3.3 are used 

to design the controller using this approach. The plant/system model needs to be 

reduced based on this approach in such a way that the response of the reduced system 

is similar to that of the original system in the frequency range of interest. The test 

system consists of 190 states, including the DFIG and the SVC. For the frequency 

range of interest, the plant model can be reduced to at least 7th order. In addition, the 

total order of the controller based on [2] is equal to the order of the reduced system 

plus the order of weighting filters. In this case, this sum equates to a controller order of 

7+2, i.e. 9 states. Fig. 3.10 shows the original and the reduced plant model; it can be 

seen that they are identical in the frequency range of interest. However, no model order 

reduction is required for the proposed method. Yet, using the proposed approach, a 

4th-order controller is designed that replicates the frequencies of interest. This 

approach is applied to design a robust controller to compare it with the proposed 

method.  Interested readers are referred to [11] for more details. 
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Figure 3.10 Frequency response of the original and the reduced system, OP1 

 

3.7 Results and Discussion 

In this section, two parts of validation of the proposed approach are presented. 

Comparisons of the proposed method, both numerical and time-domain based, with the 

base case with only SVC are presented. In the first part of validation, Eigenvalue 

spectrums obtained using the different methods are compared. Specifically, comparisons 

for damping ratios are drawn for different modes of interest.  

In the second part, time-domain performance results are presented. Comparing 
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unwise choice of parameters. One way to avoid this situation is to use a standard set of 

values for user defined parameters and utilize the same parameters in both approaches. 

The same parameters approach is used for H2 under pole placement controller, such as 

the damping ratio of the boundary of the pole placement region. Also, the same 

operating points and the weights that the controllers’ design is based on are used in both 

approaches.  Furthermore, the focus of the validation process is not to have a 

quantitative comparison, but rather to show that the proposed controller gives results 

comparable to those of existing methods with the advantages listed in chapter 1. 

3.7.1 Eigenvalue Analysis 

    Eigenvalue comparisons of the proposed controller with the base case, i.e. with only 

the SVC for six different operating points, is given in Table 3.4. Substantial 

improvements in damping ratio are seen with the proposed controller. For instance, 

consider mode 1 of operating point 4: without the controller the damping ratio is 

negative and illustrative of an unstable system.  
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Table 3.4 Damping and Frequencies of the Inter-area Modes under Different Load 

Conditions of the 68 Bus System 

Operating 

point  

No. 

SVC SVC with H ∞ controller  

Mode 1 Mode 2 Mode 1 Mode 2 

ξ f(H) ξ f(Hz) ξ ξ f(Hz) 

1 0.01188 0.5427 0.03108 0.7875 0.1935 0.5085 0.1337 0.7200 

2 0.01659 0.5448 0.03286 0.7903 0.1980 0.5103 0.1337 0.7199 

3 0.00267 0.5266 0.03026 0.7850 0.1880 0.4883 0.1335 0.7159 

4 -0.0008 0.5194 0.03005 0.7838 0.1814 0.4818 0.1326 0.7141 

5 0.00596 0.5327 0.03050 0.7860 0.1921 0.4951 0.1339 0.7175 

6 0.01120 0.5353 0.03222 0.7890 0.1978 0.4965 0.1341 0.7173 

 

With the addition of the proposed controller, the damping ratio is improved to (0.1814) 

from (-0.0008). A similar trend of improved damping ratio is seen across all six 

operating points.  The modes of the test system under different load conditions are shown in 

Fig. 3.11. 
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Figure 3.11 Modes of the test system under three different operating points. 

(a) Modes of the test system, OP1 
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3.7.2 Time Domain Analysis 

3.7.2.1 Robustness under Variability in Load Conditions and Wind Generation 

To investigate the robustness of the proposed controller, three phase fault is placed at 

different areas with different operating points. Application of a fault in power systems 

results in a difference between mechanical and electrical power that produces 

electromechanical oscillations. The tests used for validating controller performance are 

designed in such a way that different disturbances occur under different operating points 

and at different parts of the system. 

In this scenario, a 50ms three phase fault is applied at bus 8 in area 1, and it is applied 

under operating points 1, 3 and 4. The resulting tie-line power flow through line 42-52 

for the three operating points 1, 3 and 4 is shown in Fig. 3.12 (a)-(c). Rotor angle 

separation between generators G16 and G1 for this scenario under different operating 

conditions is shown in Fig. 3.12 (d)-(f). 
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Figure 3.12 Dynamic response of the system under three phase fault at bus 8 (Area 1) 
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Comparisons between the system with and without the proposed controller show that the 

maximum overshoot and damping are considerably improved with the addition of the 

proposed controller under all three operating points tested in this scenario. Of particular 

note are the comparisons for operating point 4. Without the proposed controller, the 

system becomes marginally unstable as shown in Fig. 3.12 (c) and (f). However, the 

addition of the proposed controller not only makes the system stable but also damps out 

oscillations quickly. Both the H2 under pole placement and the proposed controller have 

similar performance; however, in some cases the proposed controller has slightly better 

damping.  

In another scenario, a 50ms fault is applied at bus 49 in area 2. This results in a 

significant drop in tie-line flow through line 42-52 during the fault, as can be seen in Fig. 

3.13 (a)-(c). This scenario captures the performance of the proposed controller as the 

fault is applied relatively close to the SVC. Angular separation between areas 2 and 5, i.e. 

between generators G16 and G10, is shown in Fig. 3.13 (d)-(f).  
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Figure 3.13 Dynamic response of the system under three phase fault at bus 49 (Area 2)  
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The susceptance of the SVC of operating point 1 during different fault locations (bus 8, 

bus 42 and bus 50) is shown in Fig. 3.14. 

 

 

Figure 3.14 Output of the SVC at different fault locations, OP 1 
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3.8 Time Delay 

The major problem in using remote signals is the time delay, and the range of the 

time delay varies depending on different factors such as the distance of the remote signal 

[66]. The remote signals can be delayed up to 100ms [48, 50]. Therefore, it is very 

important to account for an uncertain time delay to ensure the robustness under various 

time delays. In this chapter, a multi-model optimization method is used to include the 

effect of time delay. In the previous section, no time delay is considered since the main 

concern was to show that the method works for different scenarios and it is comparable 

with the existing approach. The time delay in this section has been approximated by the 

second order Pade approximation. To design a robust controller based on a multi-model 

optimization approach for the uncertainty in time delay, the time delay incorporates the 

worst case (OP3) and the operating points (1 and 2) are also chosen to design the 

controller. So the new controller is designed based on three operating points using the 

same procedure in section 3.4. Fig 3.15 shows the block diagram for incorporating the 

time delay with the feedback signal.  

Plant 

model G(s)

Controller

K(s)

se 
yu

 

Figure 3.15 Block diagram of output signal time delay 
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Fig.3.16 shows the dynamic response of the test system with the designed controller for 

different values of time delay. It can be seen that the controller is able to damp the power 

system oscillations under a variety of operating points and time delay values. A 

comparison between the designed controller in section 4 (without incorporating the time 

delay) and the new controller designed based on incorporating the time delay is shown in 

Fig. 3.17. As can be seen, both controllers behave similarly when the feedback signal is 

delayed by 200ms. However, the first controller is not able to damp the inter-area 

oscillations in case of delay of the feedback signal by 300ms as shown in Fig. 3.17 (b) 

and (d). On the other hand, the second controller can maintain system stability and is able 

to damp these oscillations as can be seen in Fig. 3.17 (b) and (d). 

 

 

 

 

 

 

 

 

 



67 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
1.8

2

2.2

2.4

2.6

2.8

3

3.2

Time (s)

P
ti
e
 (

p
u
)

 

 
100ms time delay

200ms time delay

300ms time delay

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

P
ti
e
 (

p
u
)

 

 
100ms time delay

200ms time delay

300ms time delay

(a) Tie-line power, Fault at 50, OP 1 

(c) Tie-line power, Fault at 50, OP 6 

(b) Tie-line power, Fault at 50, OP 3 

0 5 10 15 20 25

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Time (s)

P
tie

 (
pu

)

 

 
100ms time delay

200ms time delay

300ms time delay



68 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 Dynamic response of the test system with different time delay 
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Figure 3.17 Dynamic response of the test system with the two controllers under different time 

delay 
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3.9 Conclusion 

A multi-model approach is used in this chapter to design a robust supplementary 

damping controller.  The designed fixed-order supplementary damping controller 

provides a supplementary signal to the voltage reference set point of SVC. The main 

objectives achieved in this chapter are damping low-frequency oscillations and enhancing 

power system stability. The controller design is based on shaping the closed-loop 

sensitivity functions in the Nyquist diagram through constraints on their infinity norm. 

The IEEE 68 bus system with a wind farm is used to demonstrate the controller 

performance. Test scenarios are designed to emulate real life scenarios seen at system 

operator level, specifically, uncertainties in operating conditions and changes to system 

topology are considered. Several test scenarios are run in which disturbances are applied 

to different areas of the test system under different operating conditions. In all test cases, 

the proposed controller significantly improved the system's dynamic response and 

compared favorably with an existing control technique H2 under pole placement. 

Improved controller performance with a lower order controller and without the need for 

model order reduction are the primary advantages of the proposed method—a claim 

validated using both numerical and time-domain analysis. The issue of delaying the 

feedback signal has been addressed using multi-model optimization, and the result shows 

that the designed controller is able to damp out the inter-area oscillations under different 

values of time delay. 
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CHAPTER FOUR 

4 LOOP-SHAPING CONTROLLER 

    This chapter presents the design of a robust fixed-order loop-shaping controller to 

damp out the inter-area oscillations and to enhance the stability of the power system. The 

proposed loop-shaping method in this chapter is based on the shaping of the open-loop 

transfer function in the Nyquist diagram through minimizing the quadratic error between 

the actual and the desired open-loop transfer functions in the frequency domain.  The 

proposed method is robust with respect to multi-model uncertainty. Despite other robust 

controller design methods, the proposed approach deals with the entire system, i.e. there 

is no need to reduce the system, yet it still leads to a lower order controller.  In addition, 

most of the robust methods are heavily dependent on selecting some weighting filters, 

which is not required in the proposed approach. This method is applied to the two-area 

four-machines system and the IEEE 68 bus system. The effectiveness and robustness of 

the proposed method in damping inter-area oscillations are validated using these case 

studies. 

 

4.1 Class of models and controllers 

A model of a system can be represented as parametric or nonparametric; however, in 

this chapter a parametric model is considered. The class of a controller can be low-order 

such as the proportional-integral-derivative (PID) controller or high-order. The Laguerre 
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function is a commonly used basis function for a high-order controller and is given in 

(3.2) (see chapter three for more details). 

4.2 Robust Loop-Shaping Constraints 

 The main idea of this method is based on minimizing the difference between the 

desired open-loop transfer function 𝐿𝑑(𝑗𝜔𝑘) and the open-loop transfer function 

𝐿𝑖(𝑗𝜔𝑘, 𝜌) shown in Fig. 4.1. As it is well known, (−1 + 𝑗0) is the critical point on the 

Nyquist plot for analyzing the stability of the closed-loop system [51]. Therefore, the 

shortest distance between the Nyquist curve and the critical point is a good indicator of 

the robustness of the system.  This distance has been termed the modulus margin.  In the 

present work, modulus margin has been used as the robustness indicator in the controller 

design. In Fig. 4.1, if the desired modulus margin is M, then the robustness is met if the 

Nyquist plot of 𝐿𝑖(𝑗𝜔𝑘) does not intersect a circle with its radius M centered at (−1 +

𝑗0). This constraint can be achieved if the Nyquist plot is on the right side of a line 

𝑑(𝑀, 𝐿𝑑(𝑗𝜔𝑘)) tangent to the circle and perpendicular to another line 𝑑1. The line 𝑑1 is a 

line that connects the critical point to 𝐿𝑑(𝑗𝜔𝑘). All the points on line 𝑑(𝑀, 𝐿𝑑(𝑗𝜔𝑘)) can 

be defined as a function 𝑓(𝑥 + 𝑖𝑦, 𝑑), whereby (𝑥, 𝑦) are coordinates of the points on the 

line.  The region under this line can be defined as 𝑓(𝑥 + 𝑖𝑦, 𝑑) < 0. So, the optimization 

problem involves achieving 𝐿𝑖 to be as close as possible to 𝐿𝑑 under the constraint that 𝐿𝑖 

should be on the right side of the line 𝑑(𝑀, 𝐿𝑑(𝑗𝜔𝑘)) as shown in Fig. 4.1. The equation 

of 𝑑(𝑀, 𝐿𝑑(𝑗𝜔𝑘)) at each frequency 𝜔𝑘 depends only on 𝑀 and 𝐿𝑑(𝑗𝜔𝑘)  and for the 

situation of Fig. 4.1 can be written as:  
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𝑑(𝑀, 𝐿𝑑(𝑗𝜔𝑘)) ∶         𝑦 = 𝑡𝑎𝑛(𝛼) [𝑥 −
𝑀

sin(𝛼)
+ 1]                                         (4.1) 

Where sin(𝛼) and cos(𝛼) are functions of 𝐿𝑑(𝑗𝜔𝑘),  𝑥 𝑎𝑛𝑑 𝑦 are the real and imaginary 

parts on a point complex plane. 

sin(𝛼) =
𝑅𝑒{1 + 𝐿𝑑(𝑗𝜔𝑘)}

 1 + 𝐿𝑑(𝑗𝜔𝑘) 
  ,        cos(𝛼) = −

𝐼𝑚{1 + 𝐿𝑑(𝑗𝜔𝑘)}

 1 + 𝐿𝑑(𝑗𝜔𝑘) 
 

Thus, equation (4.1) will be written as: 

𝑑(𝑀, 𝐿𝑑(𝑗𝜔𝑘)) ∶       

𝑀 1 + 𝐿𝑑(𝑗𝜔𝑘) − 𝐼𝑚{𝐿𝑑(𝑗𝜔𝑘)}𝑦 − 𝑅𝑒{1 + 𝐿𝑑(𝑗𝜔𝑘)}[1 + 𝑥] = 0              (4.2) 

The side of the line 𝑑(𝑀, 𝐿𝑑(𝑗𝜔𝑘))  that excludes the critical point can be given by the 

following linear constraint: 

        𝑀 1 + 𝐿𝑑(𝑗𝜔𝑘) − 𝐼𝑚{𝐿𝑑(𝑗𝜔𝑘)}ℐ(𝜔)𝜌 − 𝑅𝑒{1 + 𝐿𝑑(𝑗𝜔𝑘)}[1 + ℛ(𝜔)𝜌] < 0  (4.3) 

These linear constraints can be further simplified to: 

𝑀 1 + 𝐿𝑑(𝑗𝜔𝑘) − 𝑅𝑒{[1 + 𝐿𝑑(−𝑗𝜔𝑘)][1 + 𝐿𝑖(𝑗𝜔𝑘, 𝜌)]}                      (4.4) 

Using the following facts: 

                                        𝑅𝑒{1 + 𝐿𝑑(−𝑗𝜔𝑘)} = 𝑅𝑒{1 + 𝐿𝑑(𝑗𝜔𝑘)} ,                                (4.5) 

and 

                  𝑅𝑒{[1 + 𝐿𝑑(−𝑗𝜔𝑘)]𝑗𝐼𝑚{𝐿(𝑗𝜔𝑘 , 𝜌)}} = 𝐼𝑚{𝐿𝑑(𝑗𝜔𝑘)}ℐ(𝜔)𝜌}               (4.6) 
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Using all the above analysis, the quadratic optimization problem can be formulated 

as given in (4.7). The goal is to minimize the distance (the error) between the open-loop 

transfer function of a given system and the desired one under the constraints in (4.4). 

                                            min
𝜌

∑ ∑ 𝐿𝑖(𝑗𝜔𝑘, 𝜌) − 𝐿𝑑(𝑗𝜔𝑘) 2

𝑁𝑖

𝑘=1

𝑚

𝑖=1

                                         (4.7) 

 

Subject to: 

𝑀 1 + 𝐿𝑑(𝑗𝜔𝑘) − 𝑅𝑒{[1 + 𝐿𝑑(−𝑗𝜔𝑘)][1 + 𝐿𝑖(𝑗𝜔𝑘, 𝜌)]}    < 0     

 

 𝑓𝑜𝑟 𝑘 = 1, … … , 𝑁𝑖 (𝑁𝑜. 𝑜𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠), 𝑖 = 1 … , 𝑚. 

where       𝐿𝑖(𝑗𝜔𝑘, 𝜌) = 𝜌𝑇  𝜑(𝑗𝜔𝑘)𝐺𝑖(𝑗𝜔𝑘) 
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Figure 4.1 Loop shaping in Nyquist plot 

 

 

4.3 Test Systems  

Two test systems have been selected to validate the proposed approach introduced in 

section 4.1. 
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4.3.1 Two-Area Four-Machines Test System 

The test power system consists of two areas connected through two parallel tie lines; 

each area consists of two synchronous generators as shown in Fig. 4.2. The four 

generators are equipped with automatic voltage regulators, power system stabilizers, and 

turbine governors [2].  The SVC is installed at bus 8. Table 4.1 shows the Eigenvalue 

pair, the frequency and the damping ratio, which represent the inter-area mode at the 

normal operating point 𝑃𝑡𝑖𝑒 = 400𝑀𝑊 for the two-area system. Controllability metric 

has been used to select the most effective input signal to damp the inter-area mode. The 

measured signal y is the tie-line power through the line 7-8, which is used as an input to 

the controller K(s) as shown in Fig. 4.2. The output signal of the controller u is used to 

provide supplementary signal to the reference of the SVC. 

 

Table 4.1 Eigenvalue, Damping Ratio and the Mode Frequency for Two-Area System 

Eigenvalue 

 𝝈 𝒋𝝎−
+  

Damping ratio 

 −
𝝈

√𝝈𝟐+𝝎𝟐
  

Frequency (Hz) 

 
𝝎

𝟐𝝅
 

−0.1114 4.044𝑗−
+  0.02753 0.6435 
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Figure 4.2 Single line diagram of two-area four-machines test system 

 

4.3.2 16 Machines, 68 Bus System 

The IEEE 68 bus system has already been described in chapter three; however, it has 

been modified slightly in this chapter. Table 4.2 shows the Eigenvalue pairs, the 

frequencies and the damping ratios that represent the inter-area mode at the normal 

operating point of the system.  

Table 4.2 Eigenvalue, Damping Ratio and the Mode Frequency for 68 Bus System 

Eigenvalue 

 𝝈 𝒋𝝎−
+  

Damping ratio 

 −
𝝈

√𝝈𝟐+𝝎𝟐
  

Frequency (Hz) 

 
𝝎

𝟐𝝅
 

−0.03597 3.370𝑗−
+  

−0.1712 5.002𝑗−
+  

0.0107 

0.0342 

0.5364 

0.7961 
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4.4 The Controller Design Procedure 

    The steps in designing the proposed controller using the loop-shaping approach are 

similar to the steps that have been explained in chapter three. However, selection of 

weighting filters (step #5) is not required in this approach, making the approach more 

advantageous. Also, different operating points are chosen as listed in Tables 4.3 and 4.4 

for the two test systems respectively. The desired open-loop transfer function 𝐿𝑑0  has 

been chosen as (𝐿𝑑0 =
𝜔𝑐

𝑠⁄ = 12/s).  

Table 4.3 Different operating points for two-area test system 

Operating point 

No. 

Load of 

Area1  

Load of 

Area2  

Approximate 

Tie-line power  

1 9.76 17.67 4 

2 10.76 16.75 3 

3 11.76 15.77 2 

4* 14.65 12.82 -1 

 

 

The final controller 𝐾(𝑠) for all the plants of the second case study (IEEE 68 bus system) 

is given in (4.8).  

𝐾(𝑠) =
−94.437(𝑠2 + 0.375𝑆 + 10.4)(𝑠2 + 5.013𝑠 + 27.37)

(𝑠 + 7)4
                       (4.8) 
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To confirm robustness and effectiveness, the controller in (4.8) should be investigated 

under the selected operating points (the controller designed based on 1, 2 and 5) and also 

other operating points that are not included in the original design (3* and 4*) as listed in 

Table 4.4.  

Table 4.4 Different operating points for 68 bus system 

Operating point G12 G13 G14 G15 G16 

1 13.5 38.15 17.85 10 40 

2(line8-9 disconnected) 13.5 38.15 17.85 10 40 

3* 15.5 38.15 21.85 6 38 

4* 13.5 38.15 17.85 5 45 

5 15.5 38.15 20.85 5 40 

*Not used in the control design, but used to validate the controller. 

 

4.5 Frequency Response Analysis of the IEEE 68 Bus System 

    The closed-loop transfer function 𝑇𝑖 =
𝐿𝑑𝑖

1+𝐿𝑑𝑖
 defines the relationship between the 

reference and the output signals; it is called the complementary sensitivity function. In 

general the frequency shape of the complementary sensitivity function should resemble a 

low pass filter. Ideally in low frequency, it is designed to have a flat gain of 0 𝑑𝐵. Flat 

0 𝑑𝐵 gain in low frequency means that the output signal very closely follows or tracks 

the desired reference. The sharp drop in  𝑇 in high frequency means that the system will 

have a good high-frequency noise rejection characteristic. The complementary sensitivity 
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function 𝑇  for the second case study is shown in Fig. 4.3 (b). The close-loop transfer 

function from the reference to the error is 𝑆𝑖 =
1

1+𝐿𝑑𝑖
 , and it is called the sensitivity 

function.  

 

(a)  The three models 
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(b) Complementary sensitivity functions 

 
(c) Sensitivity functions 
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(d) Open loop transfer functions 

 

Figure 4.3 Frequency response of the three (a) models, (b) complementary sensitivity functions 

(c) sensitivity functions and (d) open loop TFs for the 68 bus system case study 

The corresponding frequency shape of S, shown in Fig. 4.3 (c), resembles a high pass 

filter. Good attenuation at low frequency range means that any disturbances in that 

frequency range will not significantly affect the output signal.  In other words, the system 

will have good disturbance rejection characteristic. To achieve a solid tracking 
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open-loop transfer function has to attain a high enough gain at low frequency; in other 
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characteristic, the desired open-loop transfer function should have a sharp drop in high 

frequency as shown in Fig. 4.3 (d).  

4.6 Simulation Results for the Two Case Studies 

    The test systems with the SVC and DFIG have been simulated in Power System 

Toolbox (PST). The controller design was implemented in MATLAB, and it is integrated 

in PST.  

4.6.1 Time Domain Results for the Two-Area Test System 

   The two-area system is studied under different operating points (load conditions shown 

in Table 4.3), different wind penetrations and fault conditions with and without the SVC 

supplementary controller 𝐾(𝑠). By following the controller design steps mentioned in 

section 4.4, the operating points 1, 2, and 3 are used to design the controller and the 

operating point 4* is used to validate the controller. The two-area system is selected as a 

sample of small test system. All the values in Tables 4.3 and 4.4 are in per unit system 

based on 100MVA. 

As previously mentioned, one of the advantages of the proposed approach is that the 

system reduction is not required. The number of states of the two-area test system is 75, 

including the SVC and DFIG, and a 3rd-order controller is designed to damp out the 

inter-area oscillations and enhance the system stability, as will be shown in the results. 

For the methods that require system reduction for the same case study, the order of the 
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controller will be the sum of the reduced system order plus the order of the weights.  In 

addition, for these methods, selecting the proper weights is still another challenge. 

The proposed controller, however, is verified under uncertainty in the system caused by 

the operating point change, changes in system topology and different levels of wind 

penetrations.  

4.6.1.1 The controller response to different operation conditions 

To test the robustness of the test system, a three-phase to ground fault is applied at bus 6, 

and it is cleared (self-cleared) after 50ms at different operating points as shown in Table 

4.3. The tie-line power as well as the speed of generator 1 are presented to demonstrate 

the effect of the disturbances on the test system. Fig. 4.4 (a) and (b) show the tie-line 

power under the fault mentioned above with and without the proposed controller for SVC 

at the operating points 1 and 4* (see Table 4.4) respectively. It can be seen that the tie-

line oscillations without the proposed controller have longer settling time; however, in 

the system with the proposed supplementary controller, the oscillations damped out 

faster. The speed of generator 1 is shown in Fig. 4.4 (c) under the mentioned fault, 

showing that the speed of G1 with only SVC oscillates for more than 20 seconds. On the 

other hand, the oscillations of the speed of G1 with the proposed supplementary 

controller are smoother and settle down faster.  
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4.6.1.2 The controller response to changes in system topology 

To test the robustness of the proposed controller, the topology of the test system is 

changed by tripping the line 6-7 due to a three phase fault at bus 7 for 50ms under the 

operating points 1 and 4*. The steady state value of the tie-line power flow changes due 

to tripping. It can be seen from the results shown in Fig 4.4 (d) and (e) that with the 

proposed controller, the oscillations of tie-line power are damped quickly, whereas much 

more time is needed to damp them out without the supplementary controller.  

4.6.2 Two-Area System with different wind penetrations  

   In this section, the output of the wind turbine is varied and two different values (200 

MW and 100MW) are assumed to validate the controller. Fig. 4.4 (f) shows the tie-line 

power of the operating point 1 with three phase fault occurs at bus 6 when the output of 

the wind turbine was 200MW. Then the level of wind penetration is decreased to 

100MW, and in this scenario the system becomes oscillatory without the controller as 

shown in Fig.4.4 (g). The change in the system topology is made by tripping line 6-7 with 

100MW wind as shown in Fig. 4.4 (h) at the operating point 2. In all these cases the 

controller is able to damp out the oscillations within 15 seconds. 
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Figure 4.4 Tie-line power and speed of G1 at different load conditions and changes in system 

topology 
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4.6.3 Eigenvalue Analysis  

   The Eigenvalue study has been undertaken to examine the performance of the 

supplementary controller in terms of improving the damping ratio ξ of the inter-area 

modes. The results are concluded in Table 4.5. It can be seen that the damping ratios at 

different load conditions are improved significantly. Table 4.6 summarizes the damping 

ratios of the inter-area modes under different levels of wind penetrations (𝑃𝑡𝑖𝑒 =

400𝑀𝑊). The results show that the action of the supplementary controller is robust 

against varying the level of wind penetrations.  

Table 4.5 Damping and frequencies of the inter-area modes under different load conditions 

Tie-line 

power (pu) 

SVC SVC with controller 

ξ f(Hz) ξ f(Hz) 

4 0.02753 0.6434 0.2840 0.7421 

3 0.03318 0.6505 0.3582 0.7163 

2 0.03846 0.6550 0.4234 0.6692 

1 0.0432 0.6567 0.4666 0.6210 
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Table 4.6 Damping and frequencies under different wind penetrations 

Level of wind 

penetrations(pu) 

SVC SVC with controller 

ξ f(Hz) ξ f(Hz) 

2 0.01392 0.6425 0.2780 0.7472 

1 0.00252 0.6408 0.2744 0.7486 

0.5 -0.00088 0.6388 0.2746 0.7492 

 

4.7 Time Domain Result for the 68 Bus System  

    This system is selected as a sample of a large test system. The system contains 190 

states including the SVC and DFIG. Since the order of the system is large, an 𝐻∞ 

controller is also designed and implemented to provide a performance comparison with 

the proposed controller.  

4.7.1 𝑯∞ Controller 

   In this study, the proposed method has been compared with 𝐻∞ technique since it is a 

widely used technique in damping power-system oscillations. This technique shows a 

solid performance in damping these oscillations as well as maintaining the stability of the 

power system. The focus of the validation process is not to have a quantitative 

comparison, but rather to show that the proposed controller gives comparable results to 

those of existing methods with the advantages listed in section 1.2. In the 𝐻∞ approach, 
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the order of the system needs to be reduced, so it was reduced to 7. It should be 

mentioned that the frequency response of both the reduced and the original system has to 

be the same in the frequency range of interest. For example, the order of the second test 

system (68 bus system) is 190 and it is reduced to 12. The frequency response of the 

original and reduced system is shown in Fig. 4.5, and it can be seen that the original and 

the reduced system match exactly at the entire range of low and high frequencies. This 

reduced system can be used in the proposed approach and leads to a low-order controller. 

However, if the same reduced system is used to design a robust controller using for 

example 𝐻∞, then the order of the controller definitely will be high since it is based on 

the order of the reduced system, which is 12 in this case.  To reduce the order of the 

controller, the system needs to be reduced even further, and it cannot be reduced to less 

than 7 as shown in Fig. 4.5. It can be seen that when the order of system is reduced to 6, 

the reduced order system no longer represents the actual system. For the 7th model, it is 

clear that the original and reduced system match only in frequency range of interest (0.2 

to 1.0) Hz. The same concept can be applied to large-scale power systems (such as a 

system with 10000 states or more) as well, and the proposed approach will lead to lower 

order controller. 
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Figure 4.5 Frequency response of original system, 12-, 7- and 6-order reduced system 

 

Also, in this approach weighting filters 𝑊1(𝑠) and 𝑊2(𝑠) have to be properly selected.  

For output disturbance rejection, 𝑊1(𝑠) should be selected as a low-pass filter. 𝑊2(𝑠) 

should be selected as a high-pass filter to ensure robustness in the high frequency range 

and to reduce the control effort. The weighting filters are tuned to add more weight to the 

first mode that is close to instability. The robust toolbox in MATLAB is used to design 

the 𝐻∞ controller for the test system. The order of the designed controller based on the 

𝐻∞ approach is 9, which is equal to the order of the reduced system plus the weighting 

filter order (7+2) [2]. 
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4.7.2 The proposed controller 

   The system has been extensively studied, and the operating points listed in Table 4.4 

are considered for this study as they greatly affect the inter-area modes. The wind is 

varied, and no effect is found on the inter-area modes. By following the controller design 

steps in section 4.5, three different operating points—1, 2 and 5—are selected to design 

the controller. Operating points 3*, 4* and 5 are used for validation. The order of the 

controller is considered to be 4 for this case study. 

4.7.2.1 Controller response to different operation conditions 

The robustness is verified by applying three phase fault at buses 41 and 52 at different 

load conditions. Figures 4.6 (a), (b) and (c) show the tie-line power in the line 52-42 

under the fault at bus 41 at the operating points 3*, 4* and 5 as shown in Table 4.4. 

Figures 4.6 (g), (h) and (i) show the same tie-line power of the same operating points 

under the fault at bus 52. 

The angular separation between machines G16 and G10 under the fault at bus 41 at 

different operating points is shown in Figures 4.6 (d), (e) and (f). Figures 4.6 (j), (k) and 

(l) show the same angle under the fault at bus 52. The simulation results illustrate that the 

proposed approach is able to damp out the oscillations faster than the normal H∞ 

approach in most of the scenarios.   
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4.7.2.2 Controller response to changes in system topology 

To test the robustness to changes in the topology, the line 46-49 is assumed to be out of 

service for maintenance, and three phase fault is placed at bus 38 for 50ms at different 

operating scenarios. Figures 4.6 (m) and (n) show the tie-line power at operating points 

3* and 5 under the above fault and the angular separation between machines G16 and 

G10 under the same fault are shown in Figures 4.6 (o) and (p). It can be seen that the H∞ 

controller cannot perform effectively after changing the topology of the system; however, 

the proposed approach is able to damp out the oscillations quickly.  
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 Figure 4.6 Tie-line power and angle difference at varying load conditions, fault locations and 

changes in system topology 

 

4.7.2.3 Eigenvalue Analysis  

Table 4.7 summarized the damping ratios of the inter-area modes under different 

operating points with only SVC, SVC with the normal 𝐻∞ and SVC with the proposed 

approach. The result shows that in all the scenarios the proposed approach is able to 

improve the damping ratio significantly and better than normal 𝐻∞ . 
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Table 4.7 Damping and Frequencies of the Inter-Area Modes under Different Load Conditions  

Operating 

point no. 

Mode 

no. 

SVC SVC with 

controller (𝐻∞) 

SVC with controller 

(proposed approach) 

ξ f(Hz) ξ f(Hz) ξ f(Hz) 

1 Mode 1 0.01068 0.5363 0.10250 0.4819 0.1044 0.5057 

Mode 2 0.03420 0.7960 0.05454 0.8060 0.1863 0.8351 

3 Mode 1 -0.00257 0.5268 0.05089 0.4991 0.1088 0.5147 

Mode 2 0.03111 0.7883 0.04761 0.7967 0.1367 0.7196 

4 Mode 1 0.01188 0.5427 0.10280 0.4546 0.1122 0.4967 

Mode 2 0.03108 0.7875 0.05090 0.7934 0.1362 0.7201 

 

 

 

4.8 Conclusion  

A new method was introduced and implemented in this chapter to design a robust 

fixed-order loop-shaping controller. The controller is used to damp out the inter-area 

oscillations as an example. This approach is based on shaping the open-loop transfer 

function in the Nyquist diagram. The distance between the open-loop transfer function 

and the desired open-loop transfer function was minimized. The proposed controller was 

used to control an SVC on the two-area four- machines test system and 68 bus system. 

The advantages of using the proposed approach are as follows: 

1- It considers the multi-model uncertainty. 
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2- It does not depend on selecting some weighting filters, thus making the controller 

design easier.  

3- It deals with the entire plant model (large number of states) without reducing the 

plant and still leads to a low-order controller. For example, the controller for the 

68 bus system with 190 states is also designed using the normal 𝐻∞ approach and 

the order of the required controller was 9, whereas only the 4th-order controller is 

needed in the proposed approach to achieve better performance.  

Eigenvalue analysis is carried out for the two case studies. The proposed method showed 

promising results for damping the tie-line power oscillations under different operating 

points. In addition, the designed controller can maintain the stability of the system under 

topology changes. These changes make the system unstable without the controller.  
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CHAPTER FIVE 

5 DATA DRIVEN CONTROL 

5.1 Introduction 

   Controller design for a generic system can be broadly divided into two approaches 

based on the requirement of plant model: 

1. The principles approach requires knowledge of the physics behind the system 

through which a mathematical model can be developed. Such a model of a power 

system can be described by a set of differential algebraic equations. 

2. The data driven approach requires measured input/output data. 

Most of the control approaches in literature that are used to damp inter-area oscillations 

are based on plant models (parametric models) [11, 30-35, 40] . However, it is difficult to 

find a parametric model for a large-scale power system based on a mathematical model. 

It becomes necessary to develop some control design techniques whereby the controller 

can be designed based only on input/output data.  

If the physics behind a system is known and if a mathematical model to capture the 

phenomenon of interest exists, then the first approach is used. With respect to power 

systems, the modeling aspect can be divided into two separate subsystems: supply-side 

modeling and demand-side modeling. Supply-side modeling predominantly involves 

models for synchronous machines and their associated controls such as governor-turbine 

system and excitation system. Demand-side modeling, on the other hand, involves 
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modeling of consumer loads. Due to the sustained research efforts of researchers over the 

years, detailed supply-side models that capture phenomenon of different time scales of 

interest are available.  

Demand-side modeling is an area that has captured the attention of researchers relatively 

recently. Nonetheless, significant advances have been made. For instance, the 

development of composite load models represents a step in that direction. The challenge, 

however, is the proper representation of these load models in a dynamic simulation 

model. This challenge is due to the fact that loads are represented as spot loads in a 

dynamic simulation model. Hence, the proportion of different load types that accurately 

captures the dynamic behavior of the system is at best a trial and error method. In 

addition, this proportion tends to change over time, as different types of loads are used at 

different times of day. As a result, matching the observed load behavior with the 

simulation model is a highly challenging task. On the other hand, the data-driven 

approach is a model-free approach that alleviates the requirement for such models.  

The supplementary controller proposed in this work utilizes information from phasor 

measurement units (PMUs) to design a damping controller that sends supervisory signals 

to an installed SVC in the system [3, 19, 20]. This supplementary control signal improves 

the dynamic performance of the system through improved damping—the lack of which 

leads to sustained oscillation and eventually to blackouts. 
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The proposed approach requires remote signals, i.e. signals that are not at the same 

physical location as that of the SVC. Hence, any designed controller should address the 

issue of communication latency.  

In this chapter a data-driven approach using input/output data is employed to design a 

fixed-order robust controller to damp inter-area oscillations and enhance power system 

stability. The proposed approach is based on frequency domain data. Frequency domain 

input/output data are common in several applications. Spectral models, which represent a 

function of frequency 𝜔, can be simply identified from input/out data using Fourier 

Transform or spectral analysis. The proposed approach introduced in chapter four has 

been used in this chapter.  

5.2 Problem Formulation  

 

5.2.1 Class of models and controller 

A model of a system can be represented as parametric or nonparametric; however, in 

this chapter a nonparametric model is considered.  The plant model G in (5.1, see section 

3.2.1.1) can be found from a set of input/output data by using spectral analysis [61, 66-

68]. 

𝐺 = 𝐺𝑖(𝑗𝜔)[1 + 𝑊2𝑖(𝑗𝜔)∆];    𝑖 = 1,2, … . . , 𝑚                                 (5.1) 

Assume a linear system as shown in Fig 5.1; such a system can be written in the discrete 

time as in (5.2).  
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0Gu y

v

 

Figure 5.1 System representation 

 

𝑦(𝑡) = 𝐺0(𝑡)𝑢(𝑡) + 𝑣(𝑡)                                                                     (5.2) 

 

where v is noise disturbance, u is the input signal, y is the output signal and G0 is the 

discrete time transfer function.  

The goal is to obtain frequency response of the test system based on a nonparametric 

model, i.e. time domain (input/output data). If the noise is ignored, the Fourier Transform 

of the system given in (5.1) can be written as: 

𝑌(𝜔) = 𝐺0(𝑒
−𝑗𝜔𝑇)𝑈(𝜔)                                              (5.3) 

thus 

𝐺0(𝑒
−𝑗𝜔𝑇) =

𝑌(𝜔)

𝑈(𝜔)
                                                       (5.4) 

The frequency response of the plane model 𝐺0(𝑒
−𝑗𝜔𝑇) can be estimated with Fourier 

Transform using N measurements input/output data as: 
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𝐺�́�(𝑒−𝑗𝜔𝑇) =
𝑌𝑁(𝜔)

𝑈𝑁(𝜔)
                                              (5.5) 

where  

𝑌𝑁(𝜔) =
1

√𝑁
∑ 𝑦(𝑡)𝑒−𝑗𝜔𝑡

𝑁

𝑡=1

  

and  

𝑈𝑁(𝜔) =
1

√𝑁
∑ 𝑢(𝑡)𝑒−𝑗𝜔𝑡

𝑁

𝑡=1

 

However, in fact the measurement data has some noise, and it has to be considered. The 

estimator, including the disturbance noise, can be written as follows [61, 67]: 

𝐺�́�(𝑒−𝑗𝜔𝑇) = 𝐺0(𝑒−𝑗𝜔𝑇) +
𝑉𝑁(𝜔)

𝑈𝑁(𝜔)
                                (5.6) 

The estimator 𝐺�́�(𝑒−𝑗𝜔𝑇) is unbiased, which means that the expectation of the effect of 

the noise v(t) = 0. The estimator is asymptotically uncorrelated, and the variance of this 

estimator is given by Ф𝑣(𝜔)
1

𝑁
⁄  𝑈𝑁(𝜔) . The noise v(t) in Fig. 5.1 can be estimated from 

(5.1) as �́�(𝑡) = 𝑦(𝑡) − 𝐺0(𝑧)𝑢(𝑡), and the spectrum of the noise Ф𝑣(𝜔)is given by 

Ф̀𝑣(𝜔) = Ф̀𝑦(𝜔) −
|Ф̀𝑦𝑢(𝜔)|

2

Ф̀𝑢(𝜔)
 

This expression can be also written as follows: 
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Ф̀𝑣(𝜔) = Ф̀𝑦(𝜔) − [1 − (�̀�𝑦𝑢(𝜔))
2

]                                (5.7)             

in which                                                  

�̀�𝑦𝑢(𝜔) = √
|Ф̀𝑦𝑢(𝜔)|

2

Ф̀𝑢(𝜔)Ф̀𝑦(𝜔)
 

Now, the model in (5.1) can be represented in the spectral model form by multiplicative 

uncertainty model as 𝐺0(𝑒
−𝑗𝜔𝑇)[1 + 𝑊2((𝑗𝜔))∆], where 

𝑊2(𝑗𝜔) =
1

𝐺�́�(𝑒−𝑗𝜔𝑇)
√

5.99Ф̀𝑣(𝜔)

2 𝑈𝑁(𝜔) 2
 

The class of a controller can be low order such as the proportional-integral-derivative 

(PID) controller or high-order controller. The Laguerre function is a commonly used 

basis function as high-order controller and is shown in section (3.2). 

5.3 Robust controller Constraints 

   The approach represented in chapter three (section 3.2) has been used to design the 

controller based on the identified model. 

5.4 Controller design steps  

   The following steps can be followed to design a robust fixed-order controller: 

1- Selecting inter-area modes that need to be damped, which are listed in Table 3.2 

(see section 3.5). 
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2- Selecting input/output signals that ensure the damping of the inter-area modes. 

Such damping is achieved by using the controllability metric. It is very important 

to select appropriate input/output signals to ensure that the modes to be damped 

have a good controllability index. 

3- Obtaining input/output data. To achieve the input/output data of the test system, 

the SVC has been excited by applying a Pseudo Random Binary Sequence 

(PRBS) signal with a given sampling time (dt = 10ms) on the input of the SVC. 

The output signal, which is the tie-line power, must be monitored. Fig. 5.1 shows 

the input/output identification data that is used to identify the plant model. 
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(a) PRBS signal (input signal). 

 

 (b) Output signal 

 

Figure 5.2 Input/output identification data 
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4- Identifying the plant model using MATLAB Identification Toolbox [69]. The 

identified model is compared with the original model to make sure that the 

identified model represents the original model. Fig. 5.2 (a) shows the frequency 

response of the original and the identified model, and it can be seen that they are 

identical in the range of frequency of interest, which means the identified model 

has the same response as the original one. The Eigenvalues of both models are 

obtained as shown in Fig 5.2 (b), and it is clear that they are matched. This 

identified model is used to design a fixed-order robust controller to damp the 

inter-area oscillations.  
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10
-2

10
-1

10
0

10
1

10
2

-30

-20

-10

0

10

20

30

40
From: u1  To: y1

M
ag

ni
tu

de
 (d

B
)

Bode Diagram

Frequency  (rad/s)



113 
 

 

 (b) Eigenvalue of the original and the identified model 

Figure 5.3 Matching the original model with the identified model 

The rest of the steps have already been explained in section (3.5). 

5.5 Test system 

   The same test system that has been studied in chapter three is used here. Three phase 

fault is applied at different locations in the test system to test the response of the designed 

controller, as will be been shown in the results.  

 

5.6 Simulation Results 

   To investigate the robustness of the proposed controller, three phase fault is placed at 

different areas with different operating points. Figures 5.4 (a) and (b) show the angle 
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difference between G16 and G10 under two different operating points (Op3 and 4) during 

three phase fault at bus 34. It can be see that the robust controller is able to damp the 

inter-area oscillations within a few seconds. The tie-line power at the same operating 

points is shown in Figure 5.4 (c) and (d); it is clear that the inter-area oscillations are 

damped out after adding the signal of the supplementary controller to the set point of the 

SVC. 

Another scenario has been studied to investigate the robustness of the system including 

the controller. Three phase fault is applied at bus 49 and is cleared after 50ms. The results 

show that the controller is able to damp these oscillations under different load conditions 

as well as different locations as shown in Figures 5.5 (a)-(d).   
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(a) Fault at 34-35, angle difference, G16 and G10, OP3  

 
(b) Fault at 34-35, angle difference, G16 and G10, OP4 
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(c) Fault at 34-35, tie-line power, OP 3 

 

(d) Fault at 34, tie-line power, OP 4 

Figure 5.4 Dynamic response of the system under three phase fault at bus 34 (Area 2) 
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(a) Fault at 49-52 op3, Angle difference, G16 and G10, OP3 

 

 

 

(b) Fault at 49-52 op4, Angle difference, G16 and G10, OP4 
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(c) Fault at 49-52 op3 Tie-line power, OP 3 

 

(d) Fault at 49-52 op4 Tie-line power, OP 4 

Figure 5.5 Dynamic response of the system under three phase fault at bus 49 (Area 2) 
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5.7 Conclusion 

In this chapter, the data driven controller approach is used to design a robust 

fixed-order controller to damp inter-area oscillations and maintain system stability. The 

data has been generated using PRBS function by exciting the set point of the SVC and 

monitoring the output signal. These data have been used to identify the spectral model 

using MATLAB Identification Toolbox. The dynamic response of the original model and 

the identified one has been investigated to make sure that they represent the same system 

(matching in the range of frequency of interest). The robust controller is designed based 

on the identified model, and different scenarios have been applied to test the robustness 

of the system with and without the controller. The IEEE 68 bus system is used as a test 

system. The results show that robustness can be achieved by adding a supplementary 

signal to the reference of the SVC.   
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CHAPTER SIX 

6 CONCLUSION AND FUTURE WORK  

6.1 Conclusion 

In this dissertation, two approaches have been presented to design a fixed-order robust 

controller with the aim of damping inter-area oscillations and enhancing system stability. 

The designed fixed-order supplementary damping controller adjusts the voltage reference 

set point of SVC. These approaches are based on shaping the open-loop transfer function 

in the Nyquist diagram. The loop-shaping approach is based on shaping the open-loop 

transfer function by considering the phase and the gain margin on the Nyquist plot. The 

second approach is based on shaping the closed-loop sensitivity functions in the Nyquist 

plot under the H∞ constraints. These constraints can be linearized by choosing a desired 

open-loop transfer function. The robust controller is designed to minimize the error 

between the open-loop transfer functions of the original and the desired plant model. This 

reduction can be achieved by using convex optimization methods. Convexity of the 

problem formulation ensures global optimality. The issue of delaying the feedback signal 

has been addressed using multi-model optimization. 

The proposed approaches are compared with recent different existing techniques to 

design a robust controller; the result shows that the proposed approaches have some 

advantages over existing techniques. 
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The proposed controllers were used to control an SVC on the two-area four-machines 

test system and 68 bus system. The advantages of using the proposed approaches are 

listed below: 

1- The multi-model uncertainty is considered, which means that the controller can be 

designed based on different operating scenarios, and by so doing, robustness is 

achieved for a wide range of operating points. 

2- The loop-shaping approach is not dependent on selecting some weighting filters, 

which means controller design is easier.  

3- The designed controller is fixed order, which means that the user can specify the 

order of the controller; it does not depend on the order of the system. 

4- The entire plant model (large number of states) is dealt with without reducing the 

plant, yet still leads to a low-order controller. For example, the controller for the 

68 bus system with 190 states is also designed using the normal 𝐻∞ approach and 

the order of the required controller is 9, whereas only a 4th-order controller is 

needed when using the proposed approach to achieve better performance.  

5- A fixed-order robust controller can be designed based only on frequency-domain 

data (obtained using spectral analysis of measured I/O data); no parametric model 

is required.  

To investigate the robustness of the proposed controller, two-part validation of the 

proposed approaches is presented. Comparisons of the proposed method, both numerical 

and time-domain based, are made with the base case with only SVC and SVC with the 

controller. In the first part of validation, the Eigenvalue spectrum obtained using the 
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different methods is compared. Specifically, comparisons for damping ratios are drawn 

for different modes of interest. In the second part, time domain performance results are 

presented at different operating conditions and different fault locations. In addition, the 

effect of time delay on the remote signals has been considered, and the results show that 

the controller designed based on time delay improves the system dynamics and damping 

of inter-area oscillations; however, the controller which is designed without considering 

time delay is not able to handle large time delay (300ms).  

The proposed methods showed promising results for damping the tie-line power 

oscillations under different operating points. In addition, the designed controller can 

maintain the stability of the system under topology changes. These changes make the 

system unstable without the controller in some cases.  
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6.2 Future Work 

   Future work focuses on the following: 

1- In chapter five, a nonparametric model is used to design the robust controller 

based on frequency domain input/output data, and the effect of time delay has not 

been considered. A part of the future work will consider the issue of time delay 

signal and its effect on controller response.  

2- Variable time-delay uncertainty as a stochastic variable in the stochastic 

optimization process. The use of variable time delay presents a more realistic case 

as communication channels have variable time delay wherein each data packet 

can have a different latency bounded by some observed lower and upper limit.  
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APPENDIX: IEEE 68 Bus System Data 

Table A. 1 Bus data 

Bus # V (pu) 
Angle 

(degree) 
Pgen(pu) Qgen(pu) Pload(pu) Qload(pu) Gshunt(pu) 

1 1.0634 7.1886 0 0 2.527 1.1856 0 

2 1.0612 8.5706 0 0 0 0 0 

3 1.0479 6.4222 0 0 3.22 0.02 0 

4 1.034 7.5027 0 0 5 0.736 0 

5 1.0338 8.3774 0 0 0 0 0 

6 1.0342 8.9999 0 0 0 0 0 

7 1.0291 6.9114 0 0 2.34 0.84 0 

8 1.0311 6.4639 0 0 5.22 1.77 0 

9 1.0441 3.7966 0 0 1.04 1.25 0 

10 1.0375 11.182 0 0 0 0 0 

11 1.0353 10.4313 0 0 0 0 0 

12 0.9603 10.3784 0 0 0.09 0.88 0 

13 1.0355 10.4512 0 0 0 0 0 

14 1.0345 8.7404 0 0 0 0 0 

15 1.0285 7.1708 0 0 3.2 1.53 0 

16 1.0412 8.1345 0 0 3.29 0.32 0 

17 1.0452 6.9648 0 0 0 0 0 

18 1.0448 6.3019 0 0 1.58 0.3 0 

19 1.054 12.7894 0 0 0 0 0 

20 0.9937 11.5884 0 0 6.8 1.03 0 

21 1.0375 10.5158 0 0 2.74 1.15 0 

22 1.0532 15.0855 0 0 0 0 0 

23 1.0477 14.744 0 0 2.48 0.85 0 

24 1.0461 8.1757 0 0 3.09 -0.92 0 

25 1.0639 9.6436 0 0 2.24 0.47 0 

26 1.0602 7.6868 0 0 1.39 0.17 0 

27 1.049 6.1244 0 0 2.81 0.76 0 

28 1.0534 10.1063 0 0 2.06 0.28 0 

29 1.052 12.6876 0 0 2.84 0.27 0 

30 1.0577 6.8518 0 0 0 0 0 

31 1.06 9.2447 0 0 0 0 0 

32 1.052 11.494 0 0 0 0 0 

33 1.057 7.9358 0 0 1.12 0 0 
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34 1.0657 2.9585 0 0 0 0 0 

35 1.014 2.9166 0 0 0 0 0 

36 1.0434 -0.3978 0 0 1.02 -0.1946 0 

37 1.0294 -6.6793 0 0 60 3 0 

38 1.0574 9.2134 0 0 0 0 0 

39 1.0048 -8.3421 0 0 2.67 0.126 0 

40 1.0657 14.9468 0 0 0.6563 0.2353 0 

41 0.9993 44.8398 0 0 10 2.5 0 

42 0.9991 39.6162 0 0 11.5 2.5 0 

43 1.0142 -7.5187 0 0 0 0 0 

44 1.0136 -7.5503 0 0 2.6755 0.0484 0 

45 1.0168 2.7999 0 0 2.08 0.21 0 

46 1.0322 10.077 0 0 1.507 0.285 0 

47 1.0752 7.2969 0 0 2.0312 0.3259 0 

48 1.0763 8.9727 0 0 2.412 0.022 0 

49 1.0105 13.3573 0 0 1.64 0.29 0 

50 1.0097 19.9016 0 0 1 -1.47 0 

51 1.0207 6.8256 0 0 3.37 -1.22 0 

52 0.9931 39.5554 0 0 24.7 1.23 0 

53 1.045 10.852 2.5 0.6383 0 0 0 

54 0.98 16.2167 5.45 0.9506 0 0 0 

55 0.983 18.0233 6.5 1.1464 0 0 0 

56 0.997 17.3346 6.32 0.9037 0 0 0 

57 1.011 16.6598 5.052 1.4688 0 0 0 

58 1.05 20.1518 7 2.0445 0 0 0 

59 1.063 22.5822 5.6 0.8783 0 0 0 

60 1.03 16.0538 5.4 -0.2074 0 0 0 

61 1.025 19.1731 8 -0.0461 0 0 0 

62 1.01 15.9493 5 -0.0941 0 0 0 

63 1 18.3175 10 -0.3645 0 0 0 

64 1.0156 4.8734 15.5 2.4363 0 0 0 

65 1.011 0 38.1482 9.2781 0 0 0 

66 1 46.3751 20.85 0.6926 0 0 0 

67 1 40.4764 5 0.6617 0 0 0 

68 1 46.4959 40 4.739 0 0 0 

70 1 0 0 0 -5 -0.05 0 
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Bus # 
B shunt 

(pu) 

Bus 

Type 

Qgen_ 

max(pu) 

Q_gen_ 

min(pu) 

Vrated 

(kV) 

Vmax 

pu 

Vmin  

pu 

1 0 3 0 0 345 1.1 0.9 

2 0 3 0 0 345 1.1 0.9 

3 0 3 0 0 345 1.1 0.9 

4 0 3 0 0 345 1.1 0.9 

5 0 3 0 0 345 1.1 0.9 

6 0 3 0 0 345 1.1 0.9 

7 0 3 0 0 345 1.1 0.9 

8 0 3 0 0 345 1.1 0.9 

9 0 3 0 0 345 1.1 0.9 

10 0 3 0 0 345 1.1 0.9 

11 0 3 0 0 345 1.1 0.9 

12 0 3 0 0 345 1.1 0.9 

13 0 3 0 0 345 1.1 0.9 

14 0 3 0 0 345 1.1 0.9 

15 0 3 0 0 345 1.1 0.9 

16 0 3 0 0 345 1.1 0.9 

17 0 3 0 0 345 1.1 0.9 

18 0 3 0 0 345 1.1 0.9 

19 0 3 0 0 345 1.1 0.9 

20 0 3 0 0 345 1.1 0.9 

21 0 3 0 0 345 1.1 0.9 

22 0 3 0 0 345 1.1 0.9 

23 0 3 0 0 345 1.1 0.9 

24 0 3 0 0 345 1.1 0.9 

25 0 3 0 0 345 1.1 0.9 

26 0 3 0 0 345 1.1 0.9 

27 0 3 0 0 345 1.1 0.9 

28 0 3 0 0 345 1.1 0.9 

29 0 3 0 0 345 1.1 0.9 

30 0 3 0 0 345 1.1 0.9 

31 0 3 0 0 345 1.1 0.9 

32 0 3 0 0 345 1.1 0.9 

33 0 3 0 0 345 1.1 0.9 

34 0 3 0 0 345 1.1 0.9 

35 0 3 0 0 345 1.1 0.9 

36 0 3 0 0 345 1.1 0.9 

37 0 3 0 0 345 1.1 0.9 
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38 0 3 0 0 345 1.1 0.9 

39 0 3 0 0 345 1.1 0.9 

40 0 3 0 0 345 1.1 0.9 

41 0 3 0 0 345 1.1 0.9 

42 0 3 0 0 345 1.1 0.9 

43 0 3 0 0 345 1.1 0.9 

44 0 3 0 0 345 1.1 0.9 

45 0 3 0 0 345 1.1 0.9 

46 0 3 0 0 345 1.1 0.9 

47 0 3 0 0 345 1.1 0.9 

48 0 3 0 0 345 1.1 0.9 

49 0 3 0 0 345 1.1 0.9 

50 0 3 0 0 345 1.1 0.9 

51 0 3 0 0 345 1.1 0.9 

52 0 3 0 0 345 1.1 0.9 

53 0 2 999 -999 22 1.1 0.9 

54 0 2 999 -999 22 1.1 0.9 

55 0 2 999 -999 22 1.1 0.9 

56 0 2 999 -999 22 1.1 0.9 

57 0 2 999 -999 22 1.1 0.9 

58 0 2 999 -999 22 1.1 0.9 

59 0 2 999 -999 22 1.1 0.9 

60 0 2 999 -999 22 1.1 0.9 

61 0 2 999 -999 22 1.1 0.9 

62 0 2 999 -999 22 1.1 0.9 

63 0 2 999 -999 22 1.1 0.9 

64 0 2 999 -999 22 1.1 0.9 

65 0 1 0 0 345 1.1 0.9 

66 0 2 999 -999 345 1.1 0.9 

67 0 2 999 -999 345 1.1 0.9 

68 0 2 999 -999 345 1.1 0.9 

70 0 3 0 0 69 1.2 0.8 
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Table A. 2 Line data 

From 

bus 
To bus 

Resistance 

(pu) 

Reactance 

(pu) 

Line 

charging 

(pu) 

Tap 

ratio 

Tap 

phase 

Tap 

max 

Tap 

min 

Tap 

size 

36 37 0.0005 0.0045 0.32 1 0 0 0 0 

49 52 0.0076 0.1141 1.16 1 0 0 0 0 

16 19 0.0016 0.0195 0.304 1 0 0 0 0 

16 21 0.0008 0.0135 0.2548 1 0 0 0 0 

21 22 0.0008 0.014 0.2565 1 0 0 0 0 

22 23 0.0006 0.0096 0.1846 1 0 0 0 0 

23 24 0.0022 0.035 0.361 1 0 0 0 0 

16 24 0.0003 0.0059 0.068 1 0 0 0 0 

2 25 0.007 0.0086 0.146 1 0 0 0 0 

25 26 0.0032 0.0323 0.531 1 0 0 0 0 

17 27 0.0013 0.0173 0.3216 1 0 0 0 0 

26 27 0.0014 0.0147 0.2396 1 0 0 0 0 

26 28 0.0043 0.0474 0.7802 1 0 0 0 0 

26 29 0.0057 0.0625 1.029 1 0 0 0 0 

28 29 0.0014 0.0151 0.249 1 0 0 0 0 

1 30 0.0008 0.0074 0.48 1 0 0 0 0 

9 30 0.0019 0.0183 0.29 1 0 0 0 0 

9 30 0.0019 0.0183 0.29 1 0 0 0 0 

30 31 0.0013 0.0187 0.333 1 0 0 0 0 

1 31 0.0016 0.0163 0.25 1 0 0 0 0 

30 32 0.0024 0.0288 0.488 1 0 0 0 0 

32 33 0.0008 0.0099 0.168 1 0 0 0 0 

33 34 0.0011 0.0157 0.202 1 0 0 0 0 

34 36 0.0033 0.0111 1.45 1 0 0 0 0 

9 36 0.0022 0.0196 0.34 1 0 0 0 0 

9 36 0.0022 0.0196 0.34 1 0 0 0 0 

16 17 0.0007 0.0089 0.1342 1 0 0 0 0 

31 38 0.0011 0.0147 0.247 1 0 0 0 0 

33 38 0.0036 0.0444 0.693 1 0 0 0 0 

41 40 0.006 0.084 3.15 1 0 0 0 0 

48 40 0.002 0.022 1.28 1 0 0 0 0 

42 41 0.004 0.06 2.25 1 0 0 0 0 

52 42 0.004 0.06 2.25 1 0 0 0 0 

37 43 0.0005 0.0276 0 1 0 0 0 0 

39 44 0 0.0411 0 1 0 0 0 0 
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43 44 0.0001 0.0011 0 1 0 0 0 0 

35 45 0.0007 0.0175 1.39 1 0 0 0 0 

39 45 0 0.0839 0 1 0 0 0 0 

44 45 0.0025 0.073 0 1 0 0 0 0 

38 46 0.0022 0.0284 0.43 1 0 0 0 0 

1 47 0.0013 0.0188 1.31 1 0 0 0 0 

47 48 0.0025 0.0268 0.4 1 0 0 0 0 

47 48 0.0025 0.0268 0.4 1 0 0 0 0 

46 49 0.0018 0.0274 0.27 1 0 0 0 0 

45 51 0.0004 0.0105 0.72 1 0 0 0 0 

50 51 0.0009 0.0221 1.62 1 0 0 0 0 

17 18 0.0007 0.0082 0.1319 1 0 0 0 0 

3 18 0.0011 0.0133 0.2138 1 0 0 0 0 

1 2 0.0035 0.0411 0.6987 1 0 0 0 0 

2 3 0.0013 0.0151 0.2572 1 0 0 0 0 

3 4 0.0013 0.0213 0.2214 1 0 0 0 0 

4 5 0.0008 0.0128 0.1342 1 0 0 0 0 

5 6 0.0002 0.0026 0.0434 1 0 0 0 0 

6 7 0.0006 0.0092 0.113 1 0 0 0 0 

5 8 0.0008 0.0112 0.1476 1 0 0 0 0 

7 8 0.0004 0.0046 0.078 1 0 0 0 0 

8 9 0.0023 0.0363 0.3804 1 0 0 0 0 

6 11 0.0007 0.0082 0.1389 1 0 0 0 0 

10 11 0.0004 0.0043 0.0729 1 0 0 0 0 

10 13 0.0004 0.0043 0.0729 1 0 0 0 0 

4 14 0.0008 0.0129 0.1382 1 0 0 0 0 

13 14 0.0009 0.0101 0.1723 1 0 0 0 0 

14 15 0.0018 0.0217 0.366 1 0 0 0 0 

15 16 0.0009 0.0094 0.171 1 0 0 0 0 

1 27 0.032 0.32 0.41 1 0 0 0 0 

50 52 0.0012 0.0288 2.06 1 0 0 0 0 

39 70 0 0.005 0 1 0 1.2 0.8 0.02 

2 53 0 0.0181 0 1.025 0 1.05 0.95 0.0063 

6 54 0 0.025 0 1.07 0 1.08 0.92 0.0063 

10 55 0 0.02 0 1.07 0 1.08 0.92 0.0063 

19 56 0.0007 0.0142 0 1.07 0 1.08 0.92 0.0063 

20 57 0.0009 0.018 0 1.009 0 1.05 0.95 0.0063 

22 58 0 0.0143 0 1.025 0 1.05 0.95 0.0063 

23 59 0.0005 0.0272 0 1 0 1.05 0.95 0.0063 
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25 60 0.0006 0.0232 0 1.025 0 1.05 0.95 0.0063 

29 61 0.0008 0.0156 0 1.025 0 1.05 0.95 0.0063 

31 62 0 0.026 0 1.04 0 1.05 0.95 0.0063 

32 63 0 0.013 0 1.04 0 1.05 0.95 0.0063 

36 64 0 0.0075 0 1.04 0 1.05 0.95 0.0063 

37 65 0 0.0033 0 1.04 0 1.05 0.95 0.0063 

41 66 0 0.0015 0 1 0 1.05 0.95 0.0063 

42 67 0 0.0015 0 1 0 1.05 0.95 0.0063 

52 68 0 0.003 0 1 0 1.05 0.95 0.0063 

19 20 0.0007 0.0138 0 1.06 0 1.08 0.92 0.0063 

35 34 0.0001 0.0074 0 0.946 0 1.06 0.92 0.0063 

12 11 0.0016 0.0435 0 1.06 0 1.06 0.92 0.0063 

12 13 0.0016 0.0435 0 1.06 0 1.08 0.92 0.0063 
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Table A. 3 Machine data 

Mac # Bus# 
Base 

MVA 
xl(pu) ra(pu) xd(pu) x'd(pu) x"d(pu) 

T'do 

(sec) 

1 53 800 0.1 0.002 0.8 0.248 0.2 10.2 

2 54 850 0.298 0.002 2.508 0.592 0.425 6.56 

3 55 1000 0.304 0.002 2.495 0.531 0.45 5.7 

4 56 800 0.236 0.002 2.096 0.349 0.28 5.69 

5 57 750 0.203 0.002 2.475 0.495 0.375 5.4 

6 58 1000 0.224 0.002 2.54 0.5 0.4 7.3 

7 59 750 0.242 0.002 2.213 0.368 0.3 5.66 

8 60 700 0.196 0.002 2.03 0.399 0.315 6.7 

9 61 1000 0.298 0.002 2.106 0.57 0.45 4.79 

10 62 875 0.174 0.002 1.479 0.4 0.35 9.37 

11 63 1300 0.134 0.002 1.664 0.234 0.156 4.1 

12 64 2000 0.44 0.002 2.02 0.62 0.5 7.4 

13 65 10000 0.15 0.002 1.48 0.275 0.2 5.9 

14 66 10000 0.17 0.002 1.8 0.285 0.23 4.1 

15 67 10000 0.17 0.002 1.8 0.285 0.23 4.1 

16 68 10000 0.205 0.002 1.78 0.355 0.275 7.8 

 

 

Mac# 
T"do 

(sec) 

xq 

(pu) 

x'q 

(pu) 

x"q 

(pu) 

T'qo 

(sec) 

T"qo 

(sec) 

H 

(sec) 

do 

(pu) 

d1 

(pu) 

1 0.05 0.552 0.224 0.2 1.5 0.035 5.25 0 0 

2 0.05 2.397 0.51 0.425 1.5 0.035 3.553 0 0 

3 0.05 2.37 0.5 0.45 1.5 0.035 3.58 0 0 

4 0.05 2.064 0.32 0.28 1.5 0.035 3.575 0 0 

5 0.05 2.325 0.45 0.375 0.44 0.035 3.467 0 0 

6 0.05 2.41 0.45 0.4 0.4 0.035 3.48 0 0 

7 0.05 2.19 0.338 0.3 1.5 0.035 3.52 0 0 

8 0.05 1.96 0.35 0.315 0.41 0.035 3.471 0 0 

9 0.05 2.05 0.5 0.45 1.96 0.035 3.45 0 0 

10 0.05 1.006 0.394 0.35 1.5 0.035 3.543 0 0 

11 0.05 1.599 0.195 0.156 1.5 0.035 2.169 0 0 

12 0.05 1.9 0.56 0.5 1.5 0.035 4.615 0 0 

13 0.05 1.43 0.25 0.2 1.5 0.035 4.96 0 0 

14 0.05 1.73 0.25 0.23 1.5 0.035 3 0 0 

15 0.05 1.73 0.25 0.23 1.5 0.035 3 0 0 

16 0.05 1.67 0.3 0.275 1.5 0.035 4.5 0 0 
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Table A. 4 Governor data  

Mac# wf(pu) 1/R(pu) Tmax(pu) Ts(sec) Tc(sec) T3(sec) T4(sec) T5(sec) 

2 1 20 1.1 0.2 0.1 0 2.5 8 

3 1 20 1.1 0.2 0.1 0 2.5 8 

4 1 20 1.1 0.2 0.1 0 2.5 8 

5 1 20 1.1 0.2 0.1 0 2.5 8 

6 1 20 1.1 0.2 0.1 0 2.5 8 

7 1 20 1.1 0.2 0.1 0 2.5 8 

8 1 20 1.1 0.2 0.1 0 2.5 8 

9 1 20 1.1 0.2 0.1 0 2.5 8 

10 1 20 1.1 0.2 0.1 0 2.5 8 

11 1 20 1.1 0.2 0.1 0 2.5 8 

12 1 20 1.1 0.2 0.1 0 2.5 8 

 

 

Table A. 5 PSS data 

Mac# Gain Tw (sec) Tn1 (sec) Td1 (sec) Tn2 (sec) Td2 (sec) Ymax Ymin 

1 80 10 0.1 0.02 0.08 0.02 0.2 -0.05 

2 80 10 0.08 0.02 0.08 0.02 0.2 -0.05 

3 80 10 0.08 0.02 0.08 0.02 0.2 -0.05 

4 80 10 0.08 0.02 0.08 0.02 0.2 -0.05 

5 80 10 0.08 0.02 0.08 0.02 0.2 -0.05 

6 50 10 0.1 0.02 0.1 0.02 0.2 -0.05 

7 80 10 0.08 0.02 0.08 0.02 0.2 -0.05 

8 80 10 0.08 0.02 0.08 0.02 0.2 -0.05 

9 100 10 0.08 0.03 0.05 0.01 0.2 -0.05 

10 80 10 0.1 0.02 0.1 0.02 0.2 -0.05 

11 50 10 0.08 0.03 0.05 0.01 0.2 -0.05 

12 80 10 0.1 0.02 0.1 0.02 0.2 -0.05 
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