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ABSTRACT 
 
 

This study provides the foundation for the development of radiation detection 

technology of slow ions by investigating the fundamental interactions of slow ion beams 

with electronic devices. Silicon samples with a 50 nm oxide layer were irradiated with 

1 keV ArQ+ beams (Q = 4, 8, and 11) at normal incidence in order to investigate the 

relatively unexplored effects of slow highly charged ions (HCIs) on electronic devices. 

After irradiation, an array of metal contacts was deposited onto the oxidized silicon 

samples to create metal oxide semiconductor (MOS) capacitors, which were then 

characterized using high frequency capacitance-voltage (C-V) measurements. The slow 

HCI irradiation was found to result in stretchout and shifting of the C-V curves, 

indicating the presence of dangling Si bond defects at the semiconductor/oxide interface 

and trapped oxide charge, respectively. Near quadratic charge state dependencies were 

also observed for both the stretchout and the shift seen in the C-V curves, in agreement 

with charge state dependent stopping power of HCIs previously reported. 

The interaction of slow singly charged ions with Schottky diodes was also 

investigated, in part to serve as a baseline for experiments with slow HCIs by isolating 

the effects of the kinetic energy of the ions. Diodes with two different Schottky contact 

thicknesses (~26 nm and ~360 nm) were irradiated by Na+ beams at normal incidence 

with energies 0.5 keV, 1.0 keV, 1.5 keV, and 2.0 keV. No instantaneous change in diode 

current was observed while the diodes were under irradiation; however, noticeable 

changes in Schottky barrier height, ideality factor, and reverse leakage current were noted 

after irradiation. The diodes irradiated at 2.0 keV showed signs of degradation consistent 
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with reports from the literature, but at the three lower ion beam energies the diodes 

showed an improvement in the ideality factor accompanied by an increase in Schottky 

barrier height and an initial decrease in reverse leakage current. Although the direct 

mechanism for these diode improvements is not fully understood, it is proposed that the 

changes arise from increased spatial homogeneity of the Schottky barrier height across 

the diode.  
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CHAPTER 1 

INTRODUCTION 
 

The detection and monitoring of radiation are important in several different 

application areas including space operations, nuclear energy production, and medicine [1-

11]. At its core, radiation detection relies on understanding how the incident radiation 

interacts with the devices and device materials that are acting as the radiation detectors. 

Of particular interest is the detection of slow highly charged ions (HCIs), which naturally 

occur in certain space environments [12, 13] and in nuclear reactors [2, 5, 10]. 

Preliminary research has also suggested that slow HCIs could be useful in numerous 

applications ranging from nanofabrication to cancer therapy [11, 14-19]. Due to the 

relatively short time that slow HCIs have been producible in lab settings at a reasonable 

cost, the basic mechanisms of slow HCI interactions with electronic materials and 

electronic devices are still not fully understood. The distinguishing property of HCIs is 

that they carry a potential energy which is equivalent to the ionization energy required to 

create the HCI, and for the case of slow HCIs this potential energy is comparable to or 

even greater than the kinetic energy of the ions, which leads to fundamentally different 

interactions between the HCIs and materials as compared to singly charged ions. 

Therefore, the primary goal of this work is to gain a better understanding of how silicon-

based devices respond to slow HCI irradiation with low kinetic energies (on the order of 

keV). Chapter 2 provides a more detailed background on the principles of radiation 
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detection, and explains several advantages that have led to the predominance of solid-

state detectors based on silicon technology. Based on the operating principles of 

traditional solid-state radiation detectors, the need for new detector technology for 

sensing slow charged-particulate radiation is presented. A more detailed background on 

HCIs, how they are produced using an electron beam ion trap (EBIT), and some 

preliminary work showing how slow HCIs interact with materials is presented in 

Chapter 3. 

 Metal oxide semiconductor (MOS) capacitors were chosen to investigate the 

fundamental interactions of slow HCIs with devices due to their relatively simple 

structure, their sensitivity to charge imbalance in the device, and the ubiquity of the MOS 

structures in modern electronics. Oxidized silicon wafers were exposed to 1 keV ion 

beams of Ar4+, Ar8+, and Ar11+ created in the Clemson University EBIT, and after 

irradiation an array of metal contacts was deposited onto the oxidized silicon wafers to 

create MOS capacitors. The first subsection in Chapter 4 provides background on the 

basic structure and operation of MOS capacitors as well as a description of the 

capacitance-voltage (C-V) measurement techniques that were employed to track changes 

in the MOS capacitors after exposure to slow HCIs. The remaining subsections in 

Chapter 4 describe in detail the experimental procedure and the observed results. 

 The relatively unexplored nature of the interaction of slow HCIs with electronic 

devices and materials makes it an exciting and interesting research topic; however, it is 

important to also consider the detection of slow singly charged ions. Although the 

detection of slow singly charged ions is important in and of itself, experiments aimed at 
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understanding how these ions interact with materials and devices can serve as a baseline 

for similar experiments with slow HCIs by isolating the effects due to the kinetic energy 

of the ions. In order to investigate the interaction mechanisms of slow singly charged ions 

with electronic devices, Schottky diodes with thin (~26 nm) and thick (~360 nm) 

Schottky contacts were exposed to Na+ beams with kinetic energies between 0.5 keV and 

2.0 keV. The primary goal of these experiments was to detect a current arising from the 

hot electrons generated in the Schottky contact by the incident ions. This kine-current is 

analogous to chemi-currents which have been reported to result from hot-electrons 

created by chemical reactions at the rectifying contacts of Schottky diodes [20-23]. The 

basics of Schottky diode operation and structure are presented in the first subsection of 

Chapter 5, and the remaining subsections of Chapter 5 describe the experimental 

procedure and results. 

 Any good research project, particularly one that is foundational such as the 

work described in this dissertation, typically results in more questions than answers. As 

such, Chapter 6 details future work with both MOS capacitors and Schottky diodes that 

should be carried out in order to obtain a better understanding of the fundamental 

interaction mechanisms between slow ions and electronic devices. A basic prototype for a 

slow HCI detector is also proposed, but there is still much work to be done before such a 

sensor can be realized. 
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CHAPTER 2 

RADIATION DETECTION 
 

2.1 INTRODUCTION 

Radiation detectors have a myriad of applications in a variety of diverse fields 

including medical imaging, personal safety, space exploration, and high energy physics. 

In general, radiation sources can be grouped into two broad categories; charged 

particulate radiation and uncharged radiation. The former consists of protons, electrons, 

alpha particles, and heavy ions, whereas the latter consists of neutrons, gamma rays, and 

x-rays. The remaining chapters of this dissertation are concerned with charged particulate 

radiation, particularly heavy ions; therefore, the following discussion will focus primarily 

on the considerations associated with detecting such radiation. For the interested reader, 

references [24-27] contain a much more detailed description of radiation detectors and 

the associated physics. In Section 2.2 we introduce the basic principles of detecting 

charged particulate radiation as well as some of the early types of detectors. In 

Section 2.3 we discuss detectors based on semiconductor materials and devices, and the 

need for new detection technology for slow highly charged ions is discussed in 

Section 2.4. 
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2.2 CHARGE PARTICULATE DETECTORS – PRINCIPLES AND 

EXAMPLES 

The core principle behind radiation detectors, regardless of the type of radiation to 

be detected, is how the incident radiation interacts with the material of the detector. Once 

the interaction mechanisms are understood, a scheme can be developed for quantizing the 

amount and/or energy of the incident radiation. In general, charged particles which are 

incident on any matter will lose energy at a gradual rate, primarily through inelastic 

(electronic interactions) and elastic (nuclear interactions) transfer of energy to the target 

material. This transfer of energy from the incident radiation to the target material is 

known as stopping power and is given by: 

−𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑆𝑆𝑛𝑛 + 𝑆𝑆𝑒𝑒            (2.1) 

where E is energy, x is distance traveled by the radiation into the target material, 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is 

the total stopping power, 𝑆𝑆𝑛𝑛 is the portion of the stopping power due to nuclear 

interactions, and 𝑆𝑆𝑒𝑒 is the portion of the stopping power due to electronic interactions. 

The negative sign in equation (2.1) indicates the energy is being transferred to the target 

material from the incident radiation. A detailed expression for stopping power was first 

derived by Bohr, and then later expanded upon by Bethe and Bloch using quantum 

mechanics [25, 26]. The result is known as the Bethe-Bloch formula for stopping power 

and is given by: 

−𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝑁𝑁𝐴𝐴𝑟𝑟𝑒𝑒2𝑚𝑚𝑒𝑒𝑐𝑐2𝜌𝜌𝜌𝜌𝑄𝑄2

𝐴𝐴𝛽𝛽2
�𝑙𝑙𝑙𝑙 �𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼
� − 𝛽𝛽2 − 𝛿𝛿

2
− 𝐶𝐶

2
�         (2.2) 



6 

where NA is Avogadro’s number, re is the classical radius of the electron, me is the rest 

mass of the electron, c is the speed of light in vacuum, 𝜌𝜌 is the density of the target 

medium, Z is the atomic number of the target material, Q is the charge state of the ion, 

which is an integer value equal to the number of electrons removed to create the ion, A is 

the mass number of the target material, 𝛽𝛽 is a correction factor, Wmax is the maximum 

energy transferred in a single collision, I is the ionization potential of the target material, 

𝛿𝛿 is a density correction factor, and C is a shell correction factor. From equation (2.2) it 

can be seen that the stopping power is dependent on properties of both the detector 

material and the incident radiation, as would be expected. 

 For most practical applications, only the portion of the stopping power related to 

the electronic interactions is considered when developing detectors. This is reasonable 

because the nuclear stopping power only begins to dominate towards the end of the 

charged particle’s path in the material [28]; and furthermore, for typical radiation sources 

with high kinetic energies, the portion of the path where nuclear stopping dominates is 

negligible. The electronic stopping of radiation in matter results in ionization of the target 

atoms or excitation of the target electrons depending on the intrinsic properties of the 

target material and the energy of the incident radiation. Gas-filled detectors such as ion 

chambers, proportional counters, and Geiger tubes are some of the earliest radiation 

detecting devices which operate by collecting ions and free electrons that are created as 

the incident radiation passes through a gas. The same basic principle of collecting the 

charged particles in the target material after the incidence of ionizing radiation has also 

been applied to liquid filled detectors [26]. The operation of scintillation detectors is 
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slightly different in that the target atoms are not ionized, but rather the electrons are 

excited while still being bound to the atoms. In order for the electrons to only be excited 

and to avoid ionization, scintillation detectors are typically constructed from materials 

with higher ionization energies such as oxides. As the electrons return to the ground state, 

photons are emitted that can then be collected and converted into an electrical signal by 

light detection equipment such as photomultiplier tubes or photodiodes. Understanding 

these basic radiation detection principles and detector structures is important, but as will 

be discussed in Section 2.4, these traditional techniques are not suitable for the detection 

of ions with kinetic energy on the order of 1 keV or lower. 

 

2.3 SOLID STATE DETECTORS 

Although there are still application areas where gas-filled detectors and 

scintillation detectors excel, in most applications using a solid-state semiconductor 

detector is preferable. Some of the advantages offered by solid-state detectors are [25, 

27]: 

i. Small ionization energy compared to gas-filled and scintillation detectors (~3 eV 

in common semiconductors, ~30 eV in gas-filled detectors, and ~100 eV for 

scintillation detectors) 

ii. High atomic density which allows for smaller size detectors 

iii. High charge carrier mobility which leads to fast charge collection times 

iv. Excellent mechanical rigidity which allows for self-supporting structures 

v. Ability to change field configurations in the device via doping 
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vi. Mature processing techniques for materials due to extensive use of 

semiconductors in the electronics industry 

Advantages (i.) and (ii.) also indicate that more charge carriers will be produced 

per incident quanta of radiation, which means solid-state detectors have a greater energy 

resolution compared to gas-filled and scintillation detectors. They also have greater 

spatial resolution when used as position sensitive detectors. The high charge carrier 

mobility also means that solid-state detectors are better suited to radiation environments 

with higher fluence (i.e. more radiation arriving per unit time), because the effects of 

each quanta of radiation can be collected at a much faster rate. Detectors based on n-type 

silicon are the most common [25, 26] due to the mature industry surrounding the 

production of silicon-based electronics. Silicon crystals with <111> orientation are 

probably most widely used because they allow for minimal nuclear stopping of the 

incident radiation in the detector for the case of charged particulate radiation. Another 

advantage of using silicon based detectors is the potential to easily incorporate them into 

the same circuits as other electronic devices on a silicon wafer. 

The semiconductor device that is most commonly used for radiation detection is 

the rectifying junction of a diode. Both PN junction diodes and Schottky diodes, referred 

to as surface barrier detectors, are commonly used as radiation detectors. During the 

formation of the diode junction, a space charge region (also called the depletion region) is 

created immediately on either side of the junction in a PN diode, and only in the 

semiconductor region of a Schottky diode. All of the mobile charge carriers have been 

removed from this depletion region, and the remaining fixed charge due to the ionized 
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dopant atoms in the semiconductor lattice lead to an electric field in the depletion region. 

The depletion region for a PN junction and the associated electric field are shown in 

Figure 2.1. As the radiation moves through the depletion region, ionization will occur, 

creating electron-hole pairs which will be swept out of the depletion region by the electric 

field and eventually collected at the electrodes. Only those electron-hole pairs that are 

created in the depletion region are able to contribute to the output signal, because 

electron-hole pairs in other areas of the device quickly recombine. It is also possible for 

some of the electrons and holes created by the radiation to recombine or become trapped 

by impurities in the semiconductor lattice in the depletion region before being collected. 

In order to minimize these detrimental effects that can lead to non-linearity in detector 

response, it is of the utmost importance that the initial semiconductor be as pure and free 

of defects as possible. 
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Figure 2.1: Depletion region in a PN junction diode which is devoid of mobile charge 
carriers. Also shown is the electric field inside of the diode structure (negative valued 

because it is pointing from right to left, in the negative x direction)  
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It is possible to operate diode detectors at zero applied bias in order to improve 

the signal to noise ratio due to the lack of any leakage current. The main downside of 

doing this is that the active volume for detecting radiation, the depletion region, is 

relatively small. Therefore, it is almost always the case that diode detectors are operated 

in reverse bias. Not only does this increase the size of the depletion region, but it also 

reduces the system capacitance which in turn reduces the system noise. The size of the 

depletion region can be increased by increasing the reverse bias voltage, but care must be 

taken to avoid breakdown voltages that will cause irreparable damage to the device. With 

appropriate selection of device geometry, doping, and operation bias, detectors can be 

constructed to operate in a fully depleted mode such that the depletion region extends 

through almost the entire width of the semiconductor wafer. A compensated, intrinsic 

region can also be created between the p-type and n-type regions of a PN junction diode 

to create a PIN diode which has a larger depletion region (effectively the entire intrinsic 

region). 

It is important to also consider the depth into the diode detector that the incident 

radiation must travel before it reaches the depletion region. Any part of the detector that 

the radiation must travel through while not contributing to the output signal is known as 

an entrance window or dead layer. Ideally the dead layer should be kept as small as 

possible in order to maintain accurate detection. For surface barrier detectors this can be 

accomplished by having a Schottky contact that is a very thin layer of metal (on the order 

of tens of nanometers). For PN junction detectors a thin dead layer is achieved by highly 
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doping a narrow region on the surface such that a p+-n or n+-p junction is formed and the 

depletion region is almost entirely in the lower doped region. 

The main drawback of solid-state detectors is their relative susceptibility to 

radiation damage over time. The deleterious effects primarily arise from the displacement 

of atoms from their lattice sites which create point defects or defect clusters depending on 

the type of incident radiation. This type of damage is primarily due to the nuclear 

stopping which occurs near the end of the radiation particle’s path in the detector. The 

overall results of these defects are charge traps which create easier paths for 

recombination and also lead to non-linearity in detector response. The defects will also 

cause an increase in the reverse leakage current which decreases the signal to noise ratio 

of the detector. Fortunately, these effects can be countered by operating the detectors at 

lower temperatures and higher reverse biases. Depending on the specific types of defects 

introduced by radiation, annealing can also be a useful technique for restoring the 

detector quality. 

 

2.4 DETECTING SLOW IONS 

 Slow ions with low kinetic energy (on the order of 1 keV or lower), present a 

challenge when attempting to detect them with the traditional solid-state detectors 

described in the previous section. The primary difficulty associated with using traditional 

solid-state detectors for slow ions is that the penetration depth is often much smaller than 

the dead layer, meaning that the slow ions would not even reach the depletion region in 

many cases. The Bethe-Bloch model for stopping power also begins to break down as the 
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ions speed become comparable to or lower than the velocity of electrons in the Bohr 

model [27]. The slow velocity of the ions also means that the nuclear stopping will 

dominate over the electronic stopping, which is in opposition to the examples discussed 

previously [29]. 

 How to detect slow highly charged ions (HCIs) is an interesting subset of the 

challenge of slow ion detection. This research area is particularly interesting because 

there is very little published work relating to the interaction of slow HCIs with surfaces 

and electronic devices. Not only is the electronic stopping no longer the dominant 

stopping mechanism, but there are also several charge exchange processes that occur as 

the HCI interacts with the target material that need to be considered. Further details 

regarding the physics of slow HCIs and how they interact with materials is presented in 

the next chapter. 

 Whether it be slow HCIs or slow singly charged ions, the main focus of this work 

is not to design a suitable detector structure, but rather the goal is to better understand and 

characterize the effects that result from the interaction of these slow ions with electronic 

materials and devices. This understanding will form the basis for the future design and 

creation of suitable slow ion detectors. 
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CHAPTER 3 

SLOW HIGHLY CHARGED IONS AND THE ELECTRON 
BEAM ION TRAP 
 

3.1 INTRODUCTION 

 Slow highly charged ions (HCIs) have been incorporated into our experiments 

primarily due to the fact that it is a relatively unexplored type of radiation. Our goal is to 

provide a deeper fundamental understanding of how slow HCIs interact with electronic 

materials and devices with the end goal of advancing slow HCI sensing technology. 

There are two application areas where we envision this sensing technology will be most 

relevant; however, the fundamental understanding can be instrumental to a variety of 

application areas.  

Because the universe consists primarily of highly ionized matter [11], space 

applications is one area where HCI sensing is of the utmost importance. Perhaps the most 

practical example is accurately monitoring the HCI component of the solar wind in order 

to avoid costly issues with telecommunications satellites in low earth orbit [30-35]. More 

generally, HCI sensors could be used for exploratory diagnostics as we expand our 

knowledge of the universe. Nuclear fusion generators are another application area where 

HCI sensing is relevant [11, 18, 36, 37]. Obviously having a reliable way to monitor the 

conditions inside a nuclear reactor is critical to safe operation. 

The purpose of this chapter is to provide background information on HCIs so that 

the relevance of the results in the following chapter can be more easily understood. 

Section 3.2 describes basic HCI physics as well as some of the common models used to 
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characterize how slow HCIs interact with surfaces. The electron beam ion trap (EBIT), 

which is the device used to create our slow HCIs, is discussed in Section 3.3. Section 3.4 

presents some results of HCI surface interaction from the literature, and describes several 

possible application areas for HCIs that are being pursued. 

 

3.2 HCI PHYSICS 

 The primary feature that distinguishes HCIs from singly charged ions is the much 

larger potential energy due to charge states Q>>1. There is no hard definition for a Q 

value that must be reached in order for an ion to be considered highly charged, but 

conventionally the ion should at least have a charge state of 3+ or 4+ to be considered 

highly charged. By definition slow HCIs have velocity less than the Bohr velocity 

(νbohr=2.19x106 m/s), which is the velocity of a ground state electron in the Bohr model. 

Because the nuclear motion of the system is much slower than the electron speed the 

nuclear stopping will dominate over electronic stopping when the slow HCIs interact with 

surfaces [38]. The potential energy of an HCI is equal to the sum of the binding energies 

of the electrons that are removed to create the HCI. The potential energy associated with 

slow HCIs is comparable to or even greater than the kinetic energy; therefore, it is the 

potential energy deposition that typically dominates for slow HCI-surface interactions. 

This is opposed to singly charged ions where energy deposition is almost entirely due to 

the ion’s kinetic energy. This difference between potential energy dominating for slow 

HCIs and kinetic energy dominating for singly charged ions means that the two types of 
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radiation will interact with target surfaces in fundamentally different ways. A visual 

representation of this difference is shown in Figure 3.1 [39]. 
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Figure 3.1: Difference in energy deposition methods for ions impacting a solid target. 
Red lines indicate recoil trajectories and blue areas are due to electron induced electronic 

excitation. Adapted from [39].  
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Although slow HCI radiation is not nearly as well understood as singly charged 

ion radiation, there are still several models which can adequately describe the interaction 

process between slow HCIs and surfaces. The classical over-the-barrier model was first 

observed and described in the 1990s [40, 41]. As the HCI approaches the surface it 

creates an image charge in the target which accelerates the HCIs towards the surface and 

sets a lower limit for the impact velocity. When the HCI is at some critical distance from 

the surface, RC, the neutralization process will begin when electrons from the target go 

over the barrier between the potential wells of the target material and the HCI. The 

neutralization process can begin several dozen atomic diameters away from the surface 

[11]. The critical distance in atomic units is given by [40, 42]: 

𝑅𝑅𝐶𝐶 ≈
�2𝑄𝑄
𝜙𝜙

              (3.1) 

where Q is the charge state and 𝜙𝜙 is the material work function. The first electrons that 

are captured by the HCI from the surface do not go to the ground state configuration, but 

rather they are captured in high lying Rydberg orbitals. This forms the so called “hollow 

atom” structure as shown in Figure 3.2. Because this “hollow atom” structure is clearly 

unstable, there are several interactions which occur after the initial start of neutralization: 

electrons can be emitted into the vacuum, electrons from the HCI can be recaptured by 

the surface, electrons in the HCI can undergo standard radiative decay by which x-rays 

are emitted, and Auger de-excitation with multiple electrons can occur. As the HCI 

comes into close contact with the surface, the outer layer of electrons is peeled off and a 

smaller hollow atom is created inside the target [38, 43]. The entire interaction process 

takes place in only a matter of femtoseconds within a nanometer sized region in the 
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topmost layer of the target [11, 38, 14, 44, 45]. Because a vast majority of the HCI’s 

potential energy [38] is deposited in such a small region, there is an immense amount of 

power density being transferred to the surface which reaches as high as 1014 W/cm2 [44, 

45]. Such a large power density causes hundreds of secondary electrons and sputtered 

particles to be detected for each HCI impact [46]. This large yield of secondary electrons 

and sputtered particles can be explained by the Coulomb explosion model for insulating 

and semiconducting materials [38, 39]. The basic premise of this model is that the target 

material is not able to replenish the electrons that are lost to the HCI before the ionized 

target atoms begin to repel one another. Once the force becomes great enough, there is an 

“explosion” which sends a shock wave through the target material and results in atoms 

being sputtered from the surface. The large yield of sputtered particles leads to each HCI 

creating a nano-sized structure on the surface with essentially 100% probability 

[18].Different types of surface structures such as craters, hillocks, and calderas, have 

been observed in separate studies with different beam parameters and target materials 

[29, 39, 47-49]. 

 It is clear that the unique properties of slow HCIs lead to a completely different 

mechanism of interaction with target materials as compared with singly charged ion 

radiation. A better understanding of exactly how slow HCIs interact with electronic 

materials and devices is a crucial step in developing sensing technology that is able to 

accurately measure naturally occurring slow HCI radiation. 
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Figure 3.2: Hollow atom formation and neutralization during interaction between a slow 
HCI and the target surface. Taken from [29].  
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3.3 EBIT OPERATING PRINCIPLES 

 The first EBIT was constructed in 1986 at the University of California Lawrence 

Livermore National Laboratory [50], and since then several EBITs have been constructed 

in various locations around the world including Tokyo, Dresden, and of course Clemson. 

Initially EBITs were very costly to operate due to the cryogenic cooling that was required 

to operate the superconducting magnets; however, new technology was developed that 

only requires water cooling. This significantly decreased operating costs of EBITs 

thereby making them more accessible [46]. In Figure 3.3 we show that the EBIT is 

relatively compact, making it an attractive alternative to large linear accelerator facilities. 

Compared to linear accelerators and electron cyclotron resonance (ECR) sources, EBITs 

are also unique in that they are able to produce HCIs with relatively low kinetic energy 

(at or below keV range). 
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Figure 3.3: Schematic model of the EBIT alongside a photograph of the actual EBIT 
setup in Kinard Hall at Clemson University (photo credit: Dr. Jim Harriss).  
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In Figure 3.4 we illustrate several crucial components of the EBIT, and this will 

serve as a useful reference for understanding the basic principles of operation [15, 46, 

51]. A high energy electron beam is aimed through the chamber containing atoms of the 

desired species, and the atoms become ionized to successively higher charge states via 

impact ionization with the electrons. This process obviously relates to the ‘EB’ in EBIT. 

After the contents of the chamber are ionized there are two challenges that must be 

addressed. First, care must be taken to minimize the probability of ions capturing 

electrons from the electron beam and ions exchanging charge with residual background 

species in the chamber. High electron beam energy and high vacuum are necessary in 

order to mitigate these two undesirable effects which serve to lower the ion charge state 

[36]. The second challenge that needs to be addressed is how to spatially trap the ions 

until they can be extracted (the ‘IT’ in EBIT). The ions are trapped radially by the same 

electron beam that ionized them. Superconducting magnets further increase the electron 

beam density which increases the effectiveness of the electron beam to radially trap the 

ions. Three drift tube segments, with polarities as shown in Figure 3.4, serve to trap the 

ions axially by creating a potential well centered on the middle drift tube. Ions can be 

extracted by operating the EBIT in one of two different modes: leaky mode, or pulse 

mode [52]. In both modes the ions are extracted by lowering the potential on the drift 

tube farthest from the electron gun. In leaky mode the potential is fixed at a level 

somewhere between the potentials of the other two drift tubes so that there is a 

continuous stream of HCIs. In pulse mode the potential is lowered periodically (typical 

pulse frequencies vary from a few milliseconds to several seconds) to produce bursts of 
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HCIs. On the far end of the chamber the electrons are collected, and the extracted ions are 

passed through several optical systems which configure the ion beam. The desired charge 

state is then selected by an analyzing magnet. The ions from the drift tube enter the 

analyzing magnet perpendicular to the magnetic field which creates a force on the ions 

such that they travel along a path with radius of curvature given by, 

𝑟𝑟𝐶𝐶 = 𝑚𝑚𝑚𝑚
𝑄𝑄𝑄𝑄

              (3.2) 

where m is the ion mass, v is the ion velocity, Q is the ion charge state, and B is the 

strength of the magnetic field.  All ions have approximately the same velocity, therefore 

the magnetic field strength can be tuned until ions with the desired mass to charge ratio 

are passed through the 90 degree turn. Ions with undesired mass to charge ratios will 

either turn too sharply or not sharply enough and impact the chamber walls. Because the 

ion beam consists of species with different masses and different charge states, it is 

important to consider degenerate charge states where different ion species with different 

charge states will have the same mass to charge ratio (e.g. C6+ and O8+). Magnetic field 

settings that pass degenerate charge states should be avoided. Finally, there is a 

deceleration lens in front of the target chamber which reduces the kinetic energy of the 

ion beam prior to impacting whatever sample has been placed in its path [53]. The 

deceleration lens is important because it allows us to more nearly match the energy of our 

ion beam to the energy of ions seen in the solar wind and in nuclear reactors. 

  



25 

 

 

 

 

 

 

Figure 3.4: Representation of the key EBIT components which create and trap the HCIs.  
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3.4 HCI SURFACE INTERACTIONS 

 There is very little published work concerning HCI irradiation of electronic 

devices in the literature, but there are numerous studies that investigate the effects of 

slow HCI irradiation on various materials. Several semiconducting materials have been 

tested over the years including more common semiconductors such as Si [47, 54-59] and 

GaAs [60], as well as wide band gap materials SiC [61] and GaN [62, 63]. The standard 

insulating material in electronics, SiO2, has also been exposed to HCIs [64]. Other 

dielectric materials which are more suitable for high-k dielectric devices, SrTiO3 [65] and 

TiO2 [66], have also been studied. Another material that is relevant to electronics 

processing which has been investigated is the common resist material poly(methyl 

methacrylate) (PMMA) [48]. These studies indicate that a good start has been made in 

characterizing HCI interactions with materials, but there is still a significant amount of 

work to be done, particularly in regards to slow HCI interactions with electronic devices. 

Further investigation into this area is important because understanding the specifics of 

slow HCI interactions with electronic devices is fundamental to creating slow HCI 

sensors, avoiding detrimental radiation effects, and realizing the full potential for nano-

processing. 

 When slow HCIs are directed onto most target materials the result is nanometer 

scale defect sites, typically either craters or hillocks, which can be detected via atomic 

force microscopy (AFM) and scanning tunneling microscopy (STM). In Figure 3.5 we 

show two examples of different nano-structures that have been observed after slow HCI 

irradiation. Figure 3.5 (a) illustrates hillocks created on a CaF2 target irradiated with 
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Xe33+ at 64 keV of kinetic energy, and Figure 3.5 (b) shows crater formation in a BaF2 

target irradiated with Xe28+ at 126 keV kinetic energy [39]. The green line in the left part 

of Figure 3.5 (b) indicates the line path used to produce the depth chart shown on the 

right of Figure 3.5(b). In Figure 3.5 the surface structures were detected by AFM 

operating in contact mode, but for Figure 3.5(b) the sample underwent chemical etching 

after HCI irradiation in order to expose the nano-pits. For both the CaF2 and BaF2 targets 

the number of nano-structures was found to correspond to the number of ions incident on 

the target surface, indicating that each HCI is responsible for creating a nano-structure. It 

has also been observed that hillocks and craters are not formed when the potential energy 

of the HCI is below some threshold value which is dependent on the target material. 

Above this threshold value the volume of the nano-structures is reported to increase with 

increasing HCI potential energy, while remaining relatively independent of HCI kinetic 

energy. This precision on such a small scale has caused several groups to promote the use 

of slow HCIs for single ion implantation (SII) for broader applications such as quantum 

computing [11]. 
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Figure 3.5: Example of hillock (a) and crater (b) formation on surfaces from individual 
HCI impacts. Adapted from [39].  
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Several studies have also investigated the ability of slow HCIs to remove various 

adsorbents from silicon surfaces by using time-of-flight (TOF) detection systems [54-57, 

67-69, 70, 71]. By varying the incident angle of the slow HCIs on the target, it was 

determined that the adsorbent (H, H2O, alkyl monolayers, etc.) was primarily removed by 

the potential energy of the slow HCI, whereas the sputtered substrate atoms were 

removed by the kinetic energy of the slow HCI. In most scenarios slow HCIs would be 

preferable for removing undesirable adsorbents because unlike singly charged ions they 

do not cause nearly as much damage to the underlying substrate. This is particularly true 

if the HCIs are incident at a grazing angle such that the kinetic energy of the ion does not 

have as much of an effect as it would at normal incidence. This behavior means that HCIs 

could be very useful in surface cleaning applications. A similar application which has 

also been proposed is a slow HCI based tool that performs precise secondary-ion mass 

spectroscopy (SIMS) measurements to determine material composition [38]. 

Slow HCIs have also successfully been used for ion beam assisted deposition 

(IBAD) of oxide layers [29, 72]. Slow HCI irradiation of H-passivated silicon in very 

high vacuum results in the sputtering of hydrogen with limited to no damage to the 

underlying bulk silicon. The resulting dangling bonds will remain open until oxygen gas 

is introduced into the chamber, at which point a thin oxide layer is formed on the surface. 

With this process there is significant control over the spatial distribution of the oxide 

because each slow HCI only affects a nanometer scale region. For low HCI doses the 

result would be isolated nano-dots of SiO2, but sufficiently high HCI doses would allow 

for the removal of all of the surface hydrogen which would in turn enable the formation 
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of a thin oxide layer across the sample. In Figure 3.6 we show the very thin (9 Å) SiO2 

layer that was deposited on Si with the help of HCIs. Based on their characterization, the 

film showed high density, good adherence and improved optical and mechanical 

properties. 
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Figure 3.6: Transmission electron microscope (TEM) image of a very thin and uniform 
SiO2 layer deposited on Si with HCI assistance in an IBAD process. Adapted from [72].  
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Slow HCIs have the potential to perform many of the steps in traditional 

semiconductor processing and electronic device fabrication [11, 18]. As has been shown, 

slow HCIs are able to efficiently clean semiconductor surfaces, and introduce nanometer 

sized structures with minimal or no damage to the underlying bulk. This is due to the fact 

that the energy transfer from the HCIs to the target material is predominantly due to the 

potential energy of the HCI. As electronic devices structures continue to scale down 

towards atomic sizes, slow HCIs could prove to be useful in implementing single ion 

implantation and depositing high quality thin films. HCIs have also been investigated as a 

potential candidate for creating the radiation used in extreme-ultraviolet (EUV) 

lithography [18], a subset of photolithography that is being pursued for next generation 

electronics. Based on all of these considerations it should come as no surprise that slow 

HCIs have been proposed as an integral part of nanofabrication tools by several groups 

[14-17]. Clearly, there are several interesting avenues of research to pursue with slow 

HCIs apart from the goal of developing sensing technology. 

In the following chapter we discuss the possibility of utilizing MOS capacitors as 

the basis for sensing slow HCI radiation. The aim is to characterize the effects that 

various HCI beams have on MOS structures in order to gain an understanding of the 

physical mechanisms that can be used to detect the presence of slow HCIs. 
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CHAPTER 4 

EFFECTS OF SLOW HCI IRRADIATION ON MOS 
CAPACITORS 
 

4.1 INTRODUCTION 

Metal oxide semiconductor (MOS) capacitors have been investigated as potential 

sensing devices for highly charged ions (HCIs) for several reasons. Perhaps the most 

important motivation for using MOS devices as sensors is that they are intrinsically 

sensitive to radiation since charge imbalances caused by the introduction of trapped 

charge in the oxide, interface traps, and bulk oxide traps lead to changes in device 

characteristics [73]. A second important factor is that MOS technology permeates nearly 

all aspects of modern electronics which would make MOS based HCI sensors relatively 

easy to integrate with most existing systems. The simplicity of the MOS structure and the 

relative ease of fabrication are also beneficial considering that these experiments are 

aimed at understanding the fundamental interactions between HCIs and electronic 

devices. The ultimate goal of this work is to use the observed changes in the electrical 

characterization of the MOS capacitors to quantify the damage done by a particular type 

of HCI irradiation. Once it is better understood how the MOS capacitors are affected by 

the HCI irradiation then work can begin to create HCI sensors. The remainder of 

Section 4.1 provides the theoretical background related to MOS capacitors, including the 

non-ideal effects arising from charge trapped in the system. Section 4.2 provides the 

details our experimental work. Section 4.3 contains a qualitative analysis of the changes 

observed in our samples, and discusses possible mechanisms that lead to these changes. 
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Section 4.4 describes our Gaussian analysis technique, and Section 4.5 presents the 

results of applying this analysis technique to our data. A brief summary and conclusion is 

given in Section 4.6. 

 

4.1.1 MOS Structure and Operation 

 As can be seen in Figure 4.1 the structure of the MOS capacitor is relatively 

simple. The capacitor consists of a semiconductor substrate with an oxide layer and metal 

contact on top which is often referred to as the gate. There is also an Ohmic metal contact 

on the back side of the semiconductor substrate to allow for external electrical 

connections. Depending on the type of dopant used the semiconductor substrate with 

either be p-type or n-type. The following discussion relates only to p-type 

semiconductors which have been doped with acceptor impurities such as Boron; 

however, there are obviously analogous explanations for n-type semiconductor 

capacitors. Only the ideal MOS capacitor structure will be considered initially, but the 

effects of various oxide charges and interface states will be considered once the basics 

have been established. 
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Figure 4.1: Structure of metal oxide semiconductor (MOS) capacitor (layer sizes not to 
scale).  
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Band diagrams such as those shown in Figure 4.2 are very helpful in 

understanding the operation of MOS capacitors. From left to right the band diagrams 

show information regarding the distribution and probability of occupancy of electrons for 

the metal, the oxide, and the semiconductor. EFm is the Fermi level of the metal and 

indicates the energy level at which there is a 50% probability of finding an electron in the 

metal. EC and EV are the energies at the bottom of the conduction band and the top of the 

valence band respectively, and the distance between the two energy levels is the 

semiconductor bandgap, EG, which is full of forbidden electron states. Ei is the intrinsic 

level and is approximately in the middle of the semiconductor bandgap. EF is the Fermi 

level in the semiconductor and has the same meaning as that for the Fermi level in the 

metal. Without doping EF = Ei in the semiconductor. For the band diagrams shown in 

Figure 4.2 EF is closer to EV in the semiconductor bulk (far right) indicating that there are 

less electrons in the conduction band than in the un-doped case, or conversely that there 

are more holes in the valence band. Both statements indicate the material is a p-type 

semiconductor. The bulk potential of the semiconductor ,qΦB, is the difference between 

the intrinsic level and the Fermi level in the bulk of the semiconductor (i.e. not at the 

oxide/semiconductor interface). The bulk potential can be calculated from the intrinsic 

carrier concentration of the semiconductor, ni, and the concentration of the acceptor 

dopants, NA, as shown in equation (4.1): 

𝑞𝑞𝜙𝜙𝑄𝑄 = 𝑘𝑘𝑘𝑘𝑙𝑙𝑙𝑙 �𝑁𝑁𝐴𝐴
𝑛𝑛𝑖𝑖
�             (4.1) 

Where k is the Boltzmann constant, T is the temperature in Kelvin, and q is the 

elementary charge. As the bias on the topside metal contact changes the bands of the 
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semiconductor will bend either up or down at the oxide/semiconductor interface 

depending on the polarity of the applied bias. The amount of band bending in the 

semiconductor bandgap at the oxide/semiconductor interface relative to the 

semiconductor bulk is represented by qΦS. 
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Figure 4.2: Band diagram of the MOS system illustrating the four basic modes: (a) 
accumulation, (b) flatband, (c) depletion, specifically the midgap point where the 

semiconductor is intrinsic at the oxide/semiconductor interface [|qϕS|=|qϕB|], and (d) the 
onset of strong inversion [|qϕS|=2|qϕB|]. qϕS is the total band bending and qϕB is the Fermi 

level in the semiconductor bulk.  
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There are four modes of operation related to the MOS capacitor which are of 

interest: accumulation, flatband, depletion, and inversion. 

Accumulation occurs when a sufficiently large negative voltage is applied to the 

topside metal contact such that an extremely thin layer of holes are accumulated at the 

oxide/semiconductor interface. This accumulation layer of holes compensates for the 

charge applied to the gate contact and causes the bands of the semiconductor to bend 

upward at the oxide/semiconductor interface as shown in Figure 4.2 (a). The 

semiconductor at the oxide/semiconductor interface is effectively more p-type than the 

bulk semiconductor region. The resulting capacitance of the system in this case is simply 

the capacitance of the oxide. The capacitance per unit area is given in equation (4.2): 

𝐶𝐶𝑇𝑇𝑐𝑐𝑐𝑐′ = 𝐶𝐶𝑇𝑇𝑑𝑑′ = 𝜖𝜖0𝜖𝜖𝑜𝑜𝑚𝑚
𝑇𝑇𝑜𝑜𝑚𝑚

             (4.2) 

where 𝜖𝜖0 is the permittivity of free space, 𝜖𝜖𝑂𝑂𝑂𝑂 is the relative permittivity of the oxide, and 

tox is the oxide thickness.  

As the bias applied to the gate becomes more positive the system will eventually 

reach the flatband condition where the Fermi levels of the metal and semiconductor are 

aligned and there is no bending in the semiconductor bands as illustrated in Figure 4.2 

(b). The voltage required to obtain this condition is known as the flatband voltage, VFB. In 

an ideal MOS capacitor with a charge free oxide the flatband voltage is simply the 

difference of the metal work function, ΦM, and the semiconductor work function, ΦS as 

shown in equation (4.3) below.  

𝑉𝑉𝐹𝐹𝑄𝑄,𝑖𝑖𝑑𝑑𝑒𝑒𝑇𝑇𝑇𝑇 = Φ𝑀𝑀 −Φ𝑆𝑆 = Φ𝑀𝑀𝑆𝑆            (4.3) 
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As the applied gate bias continues to become more positive, the mobile charge 

carriers (holes) will be repelled from the oxide/semiconductor interface leaving behind 

the ionized acceptor dopant atoms which are fixed in the semiconductor lattice. This 

mode of operation is known as depletion because the area at the oxide/semiconductor 

interface is depleted of mobile charge carriers. Figure 4.2 (c) shows the band diagram of 

a capacitor operating at a special point in the depletion regime where the corresponding 

gate voltage is known as the midgap voltage, VMG. At the midgap voltage point the 

semiconductor is intrinsic at the oxide/semiconductor interface [|qΦS| = |qΦB|].Assuming 

uniform doping concentration and full ionization of acceptor impurities in the depletion 

region (depletion approximation) the width of the depletion region, wd, as a function of 

surface potential can be calculated as shown in the following equation: 

𝑤𝑤𝑑𝑑 = �2𝜖𝜖0𝜖𝜖𝑠𝑠𝜙𝜙𝑆𝑆
𝑞𝑞𝑁𝑁𝐴𝐴

             (4.4) 

where 𝜖𝜖𝑆𝑆 is the relative permittivity of the semiconductor and all other variables have the 

same definitions as previously mentioned. While operating in the depletion mode the 

depleted region of the semiconductor acts as a parallel plate capacitor with a dielectric 

thickness equal to the depletion width, wd. Therefore, the total capacitance of the system 

in the depletion mode, Ctot, is given by the series combination of the oxide and 

semiconductor capacitances as shown in equation (4.5): 

𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐶𝐶𝑜𝑜𝑚𝑚∗𝐶𝐶𝑆𝑆
𝐶𝐶𝑜𝑜𝑚𝑚+𝐶𝐶𝑆𝑆

              (4.5) 

where CS is the capacitance of the semiconductor depletion width.  
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As the bias applied to the gate continues to become more positive the depletion 

width continues to increase until the device moves into the next operation mode, 

inversion. Once the device is firmly in the inversion mode the depletion width is 

essentially fixed at a maximum value which can be determined by substituting |qΦS| = 2| 

qΦB| into equation (4.4). Inversion mode occurs as the gate bias becomes positive enough 

so that minority carrier electrons are attracted to the oxide/semiconductor interface from 

the bulk of the semiconductor. Figure 4.2 (d) shows the band diagram of the MOS system 

at the onset of strong inversion where the corresponding voltage is known as the 

inversion voltage, VINV.  This voltage is also referred to as the threshold voltage, VT, 

particularly when dealing with MOS field effect transistors. As soon as the concentration 

of electrons at the interface is higher than the concentration of holes at the interface the 

device is said to be in weak inversion (|qΦB| < |qΦS| < 2|qΦB|), and once the concentration 

of electrons at the interface is higher than the concentration of holes in the bulk the 

device is said to be in strong inversion (|qΦS| > 2|qΦB|). The capacitance measured while 

the device is in the inversion mode of operation is dependent on the frequency of the 

measurement as will be discussed in the next subsection. 

 Expressions for the VINV and VMG voltages for the ideal case of no charge in the 

oxide can be derived as follows. In general the voltage charging the MOS system is equal 

to a combination of the voltage dropped across the oxide and the voltage dropped across 

the semiconductor. As shown in equation (4.6) the effective voltage charging the MOS 

system is the difference of the applied gate voltage and the flatband voltage. 

𝑉𝑉𝐺𝐺 − 𝑉𝑉𝐹𝐹𝑄𝑄 = 𝑉𝑉𝑇𝑇𝑑𝑑 + 𝑉𝑉𝑆𝑆             (4.6) 
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In equation (4.6) Vox is the voltage across the oxide and VS is the voltage across the 

semiconductor, which is equal to the band bending at the oxide/semiconductor interface 

(i.e. VS = ΦS). If we assume that the electric field in the oxide, 𝐸𝐸𝑇𝑇𝑑𝑑������⃑ , is constant then it can 

be expressed as follows: 

𝐸𝐸𝑇𝑇𝑑𝑑������⃑ = 𝑉𝑉𝑜𝑜𝑚𝑚
𝑇𝑇𝑜𝑜𝑚𝑚

= 1
𝑇𝑇𝑜𝑜𝑚𝑚

[(𝑉𝑉𝐺𝐺 − 𝑉𝑉𝐹𝐹𝑄𝑄) −Φ𝑠𝑠]           (4.7) 

where equation (4.6) has been used to substitute for Vox in equation (4.7). Because the 

displacement, D, at the oxide/semiconductor interface is constant the relationship shown 

in equation (4.8) below holds true: 

𝜖𝜖0𝜖𝜖𝑠𝑠𝐸𝐸𝑆𝑆����⃑ = 𝜖𝜖0𝜖𝜖𝑇𝑇𝑑𝑑𝐸𝐸𝑇𝑇𝑑𝑑������⃑              (4.8) 

where 𝐸𝐸𝑆𝑆����⃑  is the electric field in the semiconductor. Solving equation (4.8) for 𝐸𝐸𝑇𝑇𝑑𝑑������⃑  and 

substituting into equation (4.7) results in the following: 

𝜖𝜖0𝜖𝜖𝑠𝑠𝐸𝐸𝑆𝑆����⃑ = 𝜖𝜖0𝜖𝜖𝑜𝑜𝑚𝑚
𝑇𝑇𝑜𝑜𝑚𝑚

[(𝑉𝑉𝐺𝐺 − 𝑉𝑉𝐹𝐹𝑄𝑄) −Φ𝑠𝑠] = 𝐶𝐶𝑇𝑇𝑑𝑑′ [(𝑉𝑉𝐺𝐺 − 𝑉𝑉𝐹𝐹𝑄𝑄) −Φ𝑠𝑠]       (4.9) 

where equation (4.2) has been used to simplify the leading expression to the oxide 

capacitance per unit area.  

Assuming that the electric field is uniform inside the semiconductor depletion 

region and that the semiconductor outside of the depletion region is charge neutral, 

Gauss’s law can be used to relate the electric field and permittivity of the semiconductor 

to the charges contained within the depletion region as shown in equation (4.10). 

𝜖𝜖0𝜖𝜖𝑆𝑆𝐸𝐸𝑆𝑆����⃑ = −𝑄𝑄𝑆𝑆′ = −(𝑄𝑄𝑛𝑛′ + 𝑄𝑄𝑑𝑑′ )         (4.10) 

In equation (4.10) 𝑄𝑄𝑆𝑆′  is the total charge in the semiconductor depletion region per unit 

area, which consists of the inversion charge density per unit area, 𝑄𝑄𝑛𝑛′ , and the depletion 
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charge density per unit area, 𝑄𝑄𝑑𝑑′ . Equating equations (4.9) and (4.10) and solving for the 

inversion charge density per unit area results in the following expression: 

𝑄𝑄𝑛𝑛′ = −𝐶𝐶𝑇𝑇𝑑𝑑′ [(𝑉𝑉𝐺𝐺 − 𝑉𝑉𝐹𝐹𝑄𝑄) −Φ𝑠𝑠] − 𝑄𝑄𝑑𝑑′ = −𝐶𝐶𝑇𝑇𝑑𝑑′ [(𝑉𝑉𝐺𝐺 − 𝑉𝑉𝐹𝐹𝑄𝑄) −Φ𝑠𝑠] + �2𝑞𝑞𝜖𝜖0𝜖𝜖𝑆𝑆𝑁𝑁𝐴𝐴Φ𝑆𝑆   (4.11) 

where the depletion approximation and equation (4.4) have been used to express the 

depletion charge density in its constituent terms. Equation (4.11) can now be used to 

derive expressions for the ideal midgap and inversion voltages. 

 First we will derive an expression for VMG which corresponds to the onset of 

weak inversion. At the onset of weak inversion the inversion layer has not yet begun to 

form; therefore, the inversion charge density, 𝑄𝑄𝑛𝑛′ , must be equal to zero. At the onset of 

weak inversion we also know that the band bending at the oxide/semiconductor interface 

is equal to the magnitude of the bulk potential in the semiconductor (i.e. Φ𝑆𝑆 = |Φ𝑄𝑄|). 

Inputting this information into equation (4.11) and solving for the gate voltage results in 

an expression for VMG as shown in equation (4.12). 

𝑉𝑉𝑀𝑀𝐺𝐺 = 𝑉𝑉𝐹𝐹𝑄𝑄 + |Φ𝑄𝑄| + 1
𝐶𝐶𝑂𝑂𝑂𝑂
′ �2𝑞𝑞𝜖𝜖0𝜖𝜖𝑆𝑆𝑁𝑁𝐴𝐴|Φ𝑄𝑄|        (4.12) 

 Now we will consider the case of VINV (also known as threshold voltage) which 

corresponds to the onset of strong inversion. The onset of strong inversion occurs when 

the band bending at the oxide/semiconductor interface is equal to twice the magnitude of 

the bulk potential of the semiconductor (i.e. Φ𝑆𝑆 = 2|Φ𝑄𝑄|). At the onset of strong 

inversion there is some nonzero inversion charge that has already collected at the 

oxide/semiconductor interface, but because it is a relatively small amount of charge 

compared the total inversion charge in strong inversion we will approximate that 𝑄𝑄𝑛𝑛′ = 0 

once again. Although not entirely accurate this will still give a good first order 
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approximation of the ideal VINV. Substituting this information into equation (4.11) results 

in the expression for VINV as shown in equation (4.13). 

𝑉𝑉𝐼𝐼𝑁𝑁𝑉𝑉 = 𝑉𝑉𝐹𝐹𝑄𝑄 + 2|Φ𝑄𝑄| + 1
𝐶𝐶𝑂𝑂𝑂𝑂
′ �4𝑞𝑞𝜖𝜖0𝜖𝜖𝑆𝑆𝑁𝑁𝐴𝐴|Φ𝑄𝑄|        (4.13) 

 Both equations (4.12) and (4.13) contain three terms which represent the various 

components of the applied gate voltage that are required to reach the point of interest (i.e. 

the onset of either weak or strong inversion). The first term represents the flatband 

voltage that must be overcome, the second term represents the amount of band bending at 

the oxide/semiconductor interface that is required, and the third term represents the 

voltage that is dropped across the oxide. 

 

4.1.2 Capacitance-Voltage Curves 

 By sweeping the voltage of the gate through an appropriate range, the capacitance 

of the MOS device can be observed for all operation modes in a single curve know as a 

capacitance-voltage (C-V) curve. A standard set of C-V curves for a p-type MOS 

capacitor is shown in Figure 4.3. The most negative voltages cause the device to be in 

accumulation mode where the device capacitance is equal to the oxide capacitance. As 

the voltage increases the value of the capacitance begins to decrease as the device moves 

into the depletion mode. This is due to the addition of the capacitance of the depletion 

width in the semiconductor in series with the oxide capacitance. The capacitance 

continues to decrease until the depletion width reaches its maximum value. As the device 

transitions into the inversion mode one of two different traces will be observed depending 

on the frequency of the AC signal that is superimposed on the DC voltages that are being 
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swept. The lower trace corresponds to the higher frequency curve (e.g. 1 MHz). In this 

case the electrons needed to create the inversion layer cannot be generated quickly 

enough by thermal generation in the semiconductor bulk to respond to the AC signal. 

Consequently, no inversion layer is formed and the capacitance is still dictated by the 

depletion region with maximum depletion width in series with the oxide capacitance. The 

upper trace corresponds to the low frequency or quasi static curve. In this case the 

minority carrier electrons have enough time to create an inversion layer at the 

oxide/semiconductor interface. The inversion layer behaves very similarly to the 

accumulation layer and the total capacitance of the system returns to the value of the 

oxide capacitance, Cox. 
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Figure 4.3: Capacitance voltage (C-V) curve for a p-type MOS capacitor displaying 
frequency dependence. Curve (a) illustrates low frequency/quasi static curve and curve 

(b) illustrates the high frequency curve. Adapted from [74].  
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4.1.3 Oxide Charge and Interface Traps 

 The discussion in the previous subsections is for the case of an ideal MOS 

capacitor, but of course real devices will have imperfections that affect how the device 

operates. Figure 4.4 shows the various types of charge imbalances in the MOS system 

(Si/SiO2 system illustrated). These defects can arise from contamination during or after 

processing, difference in crystal structure of the oxide and the semiconductor, and stress 

on the device from high currents or radiation damage [74]. Of the four types of charge 

imbalances shown in Figure 4.4, the two that are relevant to our work are the oxide 

trapped charge and interface trapped charge. Both types of defects have a notable and 

distinct effect on the C-V curve of a device as will be detailed in the following 

paragraphs. 
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Figure 4.4: From [74]. Various types of charge imbalances that occur in MOS capacitors.  
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Oxide trapped charge causes the C-V curve to experience a pure translational 

shift. Because oxide trapped charge is generally positive the shift in the C-V curve for a 

p-type MOS capacitor would be towards more negative voltages (towards the left). This 

can be clearly understood by considering that any bias applied to the gate now has to 

overcome the charge in the oxide. As can be seen in equation (4.14) the amount of shift is 

dependent on the amount of charge in the oxide as well as the position of the charge in 

the oxide. In equation (4.14) the ρ(x) term is a general function representing the charge 

distribution per unit volume in the oxide, and the distance x ranges from 0 at the 

metal/oxide interface to tox at the oxide/semiconductor interface. The closer the trapped 

charge is to the oxide/semiconductor interface the more pronounced the effect it has on 

the shift of the C-V curve. Because oxide charge shifts the entire C-V curve, the change 

in voltage from equation (4.14) will affect VFB, VMG, and VINV equally. 

Δ𝑉𝑉 = 1
𝐶𝐶𝑜𝑜𝑚𝑚𝑇𝑇𝑜𝑜𝑚𝑚

∫ 𝑥𝑥𝜌𝜌(𝑥𝑥)𝑑𝑑𝑥𝑥𝑇𝑇𝑜𝑜𝑚𝑚
0           (4.14) 

 Unlike the oxide trapped charge, the interface trap charge is bias dependent. This 

is due to the fact that there is a distribution of interface trap levels with respect to energy 

in the bandgap of the semiconductor at the oxide/semiconductor interface, Dit(E). Also of 

interest is the neutral level, qΦ0, of the interface states which can be set equal to the 

intrinsic level, Ei, in the bandgap as a good first approximation [74]. Above the neutral 

level the interface states are acceptor type (neutral when empty and negatively charged 

when occupied), and below the neutral level the interface states are donor type (neutral 

when occupied and positively charged when empty). As the gate bias varies the 

semiconductor’s Fermi level is effectively moving through the bandgap at the 
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oxide/semiconductor interface, and as the Fermi level changes its relative position, 

interface states change their occupancy. This means that some of the charge on the gate is 

compensated for by populating or depopulating interface states, but in the ideal case the 

gate charge is entirely compensated for by changes in the depletion width. The result is 

that the depletion width, and therefore the total capacitance of the system, does not 

change as quickly with respect to gate voltage as in the ideal case. This has the effect of 

stretching out the C-V curve. The location and intensity of stretchout in the C-V curve 

depends on the location and density of the interface states with respect to energy in the 

semiconductor bandgap; therefore, unlike changes from trapped oxide charge, the 

distortions from interface states do not uniformly affect the C-V curve. 

 

4.2 EXPERIMENTAL PROCEDURE 

4.2.1 Device Fabrication 

 Oxidized silicon wafers were purchased from Si-Tech with a SiO2 top layer of 50 

nm ±5%. The silicon substrate was p-type (ρ=5-10 Ω-cm) with <100> orientation. SiO2 

was removed from the back of the wafer by a backside etch procedure in which the bare 

100 mm wafers were placed face down on supports and a few drops of 49% HF acid were 

placed on the back of the wafers. After the acid had removed the oxide, revealing a 

hydrophobic Si surface, the wafers were flipped vertical and flushed with flowing DI 

water to prevent the acid from reaching the wafers’ front sides. The wafers were then 

rinsed in three successive DI water baths. After being blown dry with nitrogen, the wafers 

were immediately placed in a thermal evaporator where backside aluminum Ohmic 
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contacts of ~1μm thickness were deposited. Following evaporation the wafers were 

sintered in a quartz furnace at 450°C with a nitrogen purge for 35 minutes. The wafers 

were cooled to room temperature, and then the silicon wafers were cleaved into square 

samples of approximately 12 mm x 12 mm. The samples were stored in rough vacuum 

until irradiation.  After irradiation an array of aluminum contacts was deposited on top of 

the SiO2 via thermal evaporation through a shadow mask. The circular topside contacts 

were approximately 0.5 μm thick and 1 mm in diameter with a center-to-center spacing of 

2.5 mm. Ideally, the fabrication of the topside contacts resulted in a 5x5 array of MOS 

capacitors as shown in Figure 4.5; however, due to slight misalignments during thermal 

evaporation some samples had fewer than 25 capacitors. In this experiment there were 

nine samples that were irradiated with HCI beams of various charge states and fluences 

as described below, and one pristine sample that served as the control. 
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Figure 4.5: Si/SiO2 sample containing 25 MOS capacitors arranged in a 5x5 array.  
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4.2.2 HCI Irradiation 

 The highly charged ion irradiation was performed with the Clemson University 

Electron Beam Ion Trap (CUEBIT). The CUEBIT setup and basic operation can be found 

in [75], and are described in Chapter 3 of this dissertation. Some previous results with 

electronic devices irradiated by the CUEBIT can be found in [76-78]. The 12 mm x 

12 mm Si/SiO2 samples were mounted on a stainless steel platen and loaded into the 

CUEBIT target chamber. The base pressure of the target chamber was ~1x10-8 Torr, and 

the pressure in the beamline was in the low 10-9 Torr range. No external bias was applied 

to the samples while they were being irradiated, but the backsides of the samples were 

grounded. In total there were nine samples irradiated with ArQ+ beams at normal 

incidence. Specifically, three samples were irradiated for each of the following charge 

states: Q = 4, 8, and 11, which have potential energies of 138 eV, 567 eV, and 2,004 eV, 

respectively. Beams of the desired charge state were directed onto the sample by means 

of an analyzing magnet between the source and the target chamber. The kinetic energy of 

all ion beams incident on the samples was approximately 1 keV [53]. This was achieved 

with a custom deceleration lens in front of the target chamber. Beam currents were 

measured at various times throughout each irradiation using a Faraday cup in the same 

plane as that of the sample. Based on the measured beam currents, the nominal ion 

fluences were calculated to be in the range of ~3x1013 to ~1x1014 ions/cm2. All ArQ+ 

beams produced by the EBIT were observed to be Gaussian in nature as determined by a 

beam viewer (HRBIS-4000 from Beam Imaging Solutions) and Faraday cup 
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measurements. A typical Ar beam profile is shown in Figure 4.6 for the case of Q = 8. 

The FWHM of the HCI beams was ~3 mm. 
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Figure 4.6: Typical beam profile for ArQ+ irradiation (Q=8 is shown).  
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4.2.3 Device Characterization 

 In order to characterize the effects of the HCI irradiations on our devices, high 

frequency capacitance-voltage (HFCV) curves were measured for each capacitor (up to 

25 per sample) using an HP 4280A 1 MHz C-V meter. All C-V measurements were 

performed in a probe station which shielded the sample from light, vibration, and 

electromagnetic interference. The sample was held in place with a vacuum chuck, and 

micromanipulator controlled probe tips were used to make electrical contact to the 

device. Only post irradiation measurements were possible due to the topside contacts 

being deposited after the irradiation. HFCV measurements were also performed on 

several pristine capacitors that never entered the target chamber and which served as a 

control or proxy for pre-irradiation measurements. The C-V data for the pristine devices 

showed good uniformity across the sample, indicating that any changes observed in other 

samples arises purely from effects of the HCI irradiation. 

 

4.3 HCI RADIATION EFFECTS ON C-V CHARACTERISTICS – 

QUALITATIVE 

4.3.1 Shift and Stretchout 

In order to analyze the effects of the HCI irradiation on the MOS capacitors, we 

extracted information related to three parameters for each C-V curve: the flatband voltage 

(VFB), the midgap voltage (VMG), and the inversion voltage (VINV). The flatband voltage 

corresponds to the point at which the energy bands in the MOS system have no curvature, 

the midgap voltage corresponds to the point where the silicon surface is intrinsic, and the 
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inversion voltage corresponds to the onset of strong inversion at the silicon surface. To 

obtain these key indicators the flatband, midgap, and inversion capacitances (CFB, CMG, 

and CINV) were first calculated by using equation (4.5) with various depletion widths [74, 

79, 80]. For the case of flatband capacitance the depletion width is set equal to the Debye 

length, LD, which is given in equation (4.15) where all variables are the same as 

previously defined. Equation (4.4) is used to calculate the depletion width for both 

midgap and inversion capacitances. For the case of CMG the band bending is set equal to 

the magnitude of the bulk potential (|qΦS| = |qΦB|), and for the case of CINV the band 

bending is set equal to twice the magnitude of the bulk potential (|qΦS| = 2|qΦB|).  

𝐿𝐿𝐷𝐷 = �𝜖𝜖0𝜖𝜖𝑠𝑠𝑘𝑘𝑇𝑇
𝑞𝑞2𝑁𝑁𝐴𝐴

            (4.15) 

The measured C-V data and the calculated capacitance values are then used to 

determine the corresponding voltages VFB, VMG, and VINV. These voltages can track two 

important changes in the C-V curve: shifts and stretchout. Shifts refer to translational 

movement of the entire C-V curve along the applied voltage axis, and stretchout refers to 

changes in the difference between any two of the voltages. The significance of these 

voltages can be better understood with the help of Figure 4.2, which illustrates the band 

diagrams of the MOS system under various bias conditions. As the bias on the topside 

contact is made increasingly more positive relative to the semiconductor, the bands of the 

semiconductor bend down from flatband by an increasing amount. For the band bending 

between the flatband condition, Figure 4.2 (b), and the onset of strong inversion, 

Figure 4.2 (d), it can be seen that the semiconductor Fermi level (EF) at the Si/SiO2 

interface is effectively moving through a significant portion of the semiconductor 
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bandgap. This movement of the Fermi level can be used to qualitatively investigate 

interface traps and their density as a function of energy, Dit(E), in the Si bandgap. 

Now we will consider what can be determined from analyzing these three key 

voltages for the C-V curves shown in Figure 4.7, which were measured on two of our 

samples [77]. The red solid curve is from a capacitor on the pristine sample and serves as 

a control. The blue dashed curve is from a capacitor on a sample that was irradiated with 

Ar8+ and serves as a good representative for devices that experienced significant 

irradiation (i.e. devices that were spatially aligned with the peak of the beam’s Gaussian 

distribution). Upon initial inspection the only difference between the two curves in Figure 

4.7 appears to be that the curve for the irradiated device has experienced a large shift 

towards more negative voltages. Making the reasonable assumption that defect centers at 

the Si/SiO2 interface are acceptor type above the middle of the bandgap and donor type 

below the middle of the bandgap, it can be inferred that changes in the midgap voltage do 

not originate from defects centers at the interface. With no influence from interface traps 

at the midgap point, the increase of |VMG| in our data indicates the presence of some type 

of positive charge trapped in the oxide [74]. Upon closer inspection of the curves in 

Figure 4.7, it is evident that the VINV is approximately the same for both the pristine 

device and the irradiated device. This indicates that a significant amount of stretchout 

between midgap and inversion is occurring for the irradiated devices in addition to the 

translational shift. The combination of stretchout and shift was observed for the 

capacitors that were significantly affected by the HCI irradiation, but it should be noted 
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that some of the capacitors towards the edge of the sample behaved similarly to the 

pristine devices due to the sample size being larger than the FWHM of the HCI beam. 
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Figure 4.7: C-V curves for two different capacitors on separate samples. One sample was 
irradiated and the other one is pristine. Sample was irradiated with Ar8+ to a fluence of 

4.20x1013 ions/cm2. The midgap shift and stretchout between midgap and inversion 
points are also shown.  
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The stretchout in the C-V curves indicates the presence of interface traps at the 

Si/SiO2 interface of the irradiated capacitors [74, 79]. The small rate of increase for the 

measured capacitance between the inversion and midgap points indicates that the 

interface traps are somewhat localized around one energy in the silicon bandgap, and 

therefore are likely predominantly due to one type of defect. This can be understood by 

considering the extreme case of infinite Dit at a specific energy level in the Si bandgap. 

As more charge is applied to the metal gate of the MOS device, the interface traps will 

adjust their occupancy in order to balance the charge applied on the metal. Because there 

are an infinite number of interface traps at that energy level, the effective position of the 

Fermi level at the interface does not need to change in order to balance the charge on the 

metal. No change in the Fermi level position at the interface means no change in the 

depletion width in the Si, and consequently no change in the capacitance. For the case of 

a large (but finite) Dit, the effective Fermi level position at the interface will change more 

slowly with changes in bias past the energy level where interface traps are the most 

dense. The slow change in position of the Fermi level at the interface in the bandgap 

corresponds to a small rate of change for the depletion width as well as the overall 

capacitance. As illustrated in Figure 4.2 (c) and (d), the Fermi level at the interface is in 

the upper half of the band gap for voltages between VMG and VINV. Since almost all of the 

stretchout in the C-V curves occurs between the inversion and midgap points, we know 

that the largest density of interface traps are in the upper half of the band gap. Knowing 

that the bulk potential of the Si substrate is approximately qϕB=0.31 eV (based on the 

average resistivity), we can more precisely say that the distribution of interface states 
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exist somewhere between the middle of the band gap, Ei, and an energy level 0.31 eV 

above Ei. 

 

4.3.2 Process for Defect Creation 

It is likely that defects at the interface of the irradiated devices were created by a 

two stage process involving the interaction of holes with defect centers in the oxide, 

hydrogen, and Pb centers at the interface as described in the literature [81-87]. Holes in 

the oxide can be created by the HCIs in a couple of different ways. As an HCI 

approaches, but before it actually impacts the sample, it begins capturing electrons from 

the surface. As electrons are removed from the surface, an abundance of holes will begin 

accumulating in the SiO2 below the HCI in a nanometer-scale region. When the HCI 

impacts the sample several electron-hole pairs will be created as with singly charged ion 

irradiation [11, 29, 39, 88]. Due to the large disparity of mobilities for electrons and holes 

in SiO2, 20 cm2/V-s and 4x10-9 cm2/V-s, respectively [89], there will be a large portion of 

electrons that move away from the HCI impact site before recombination can occur. 

Since there is no applied bias during irradiation, the dispersion of holes throughout the 

oxide will result primarily from diffusion. Simulations using the stopping and range of 

ions in matter (SRIM) program indicate that the neutralized argon atoms will come to rest 

only a few nanometers into the SiO2 layer and will have a negligible effect on the 

behavior of the MOS devices [90]. It is the created holes and their subsequent diffusion 

towards the interface that result in device damage in the bulk and at the interface.  
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The first stage of the two stage process for interface trap creation involves the 

capture of a hole at a defect site in the oxide. The dominant oxide hole trap in SiO2 is due 

to an oxygen vacancy, which becomes a positively charged E' center after capturing a 

hole [81, 87]. The E' centers which are near the interface are then able to interact with H-

passivated Si dangling bonds at the Si/SiO2 interface. This is the second stage of the 

process. Lenahan and Conley have claimed that hydrogen will be exchanged between E' 

centers in the oxide and Si dangling bonds at the interface via the following equation 

[82]: 

 

𝜆𝜆𝐻𝐻2  +  𝑃𝑃𝑏𝑏𝐻𝐻 +  𝐸𝐸′ ↔  𝜆𝜆𝐻𝐻2  +  𝑃𝑃𝑏𝑏  +  𝐸𝐸′𝐻𝐻       (4.16) 

 

where λ indicates the relative abundance of diatomic hydrogen and is used to balance the 

equation. As hydrogen is exchanged between the oxide traps and the interface traps there 

is no net change in charge for either defect site. The end results of this process are 

positively charged defects in the oxide, which are responsible for the shift seen in VMG, 

and Si dangling bond defects at the Si/SiO2 interface, which are responsible for the 

stretchout. The energy range where our Dit is concentrated agrees well with the energy 

level for the Pb0 silicon dangling bond defect in <100> silicon as reported in [91]. It 

should be mentioned that several groups have also argued that H+ ions created from hole 

trapping in the oxide will react with defect sites at the interface, resulting in molecular 

hydrogen and a dangling Si bond [84-86]. 

 



64 

4.4 DATA ANALYSIS 

4.4.1 Capacitor Array vs. Single Capacitor 

 In an ideal experiment each sample would have had a single capacitor with a 

diameter equal to that of the FWHM of the HCI beam. These ideal samples would have 

been aligned such that the HCI beam and capacitor fully overlapped as shown in 

Figure 4.8 (a). Unfortunately there were two limiting issues with alignment in our 

experimental setup that did not allow us to pursue this ideal scenario. The first is that 

there is no precise way to align the samples in the EBIT target chamber. The second 

factor negatively influencing alignment was the need to remove the sample from the 

EBIT and perform a thermal evaporation for the topside contacts in a separate piece of 

equipment (Edwards Thermal Evaporator). It is possible that the first issue alone could 

have been overcome with some simple restructuring of the sample mount and possibly 

some tweaking of the target chamber; however, the second issue would have made all of 

that effort for nothing. In the future we hope to be able to operate an e-beam evaporator 

attached to the EBIT target chamber which would likely alleviate our alignment issues 

and allow us to obtain more accurate data. 
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Figure 4.8: HCI beam alignment with different sample structures (drawn to scale). 
Dashed circles filled with transparent pink color represents FWHM of HCI beam (3 mm 
diameter). Solid gray circles represent capacitors. (a) FWHM of HCI beam fully overlaps 
with single 3 mm diameter capacitor, (b) FWHM of HCI beam partially incident on four 

capacitors in array structure (1 mm diameter capacitors with 2.5 mm center-to-center 
spacing), and (c) FWHM of HCI beam fully incident on one capacitor in array structure.  
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Instead of irradiating a single capacitor per sample, we have created an array of 

smaller capacitors on each sample as shown previously in Figure 4.5. Due to the 

alignment issues described above we had to take great care when analyzing the data. 

Consider a couple of extreme cases as displayed in Figure 4.8 (b) and (c) which could be 

encountered when irradiating such an array structure. In Figure 4.8 (b) the FWHM of the 

beam is partially incident on several devices, but does not fully encompass any one 

device. Conversely in Figure 4.8 (c) the FWHM of the beam completely envelops only 

one capacitor. It is important to emphasize that we are illustrating the area related to the 

FWHM of the HCI beam, and although the most severe changes will be observed inside 

this area, there will still be some changes to devices that are immediately outside of the 

beam’s FWHM area. In order to accommodate these two extreme cases and everything in 

between we developed a special method of averaging the values across the sample which 

is detailed in the following paragraphs. Even though our averaging technique does not 

necessarily produce data that is as accurate as it would be in the ideal situation shown in 

Figure 4.8 (a), it does produce a precise and repeatable method to compensate for 

unavoidable misalignments. This consistency between samples is of the utmost 

importance as we investigate the charge state dependent changes in our electrical 

characterization. 

 

4.4.2 Gaussian Analysis 

 After each irradiation, we extracted the key parameters (VFB, VMG, VINV, and their 

differences) for each capacitor on a sample. For example, Figure 4.9 shows |VMG – VINV| 
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values for a 5x5 array of capacitors that was irradiated with Ar8+. A linear interpolation is 

performed on the data of interest in MATLAB, and then a 2D Gaussian fit is applied to 

the resulting matrix of values using MATLAB’s cftool application. Figure 4.9 shows such 

a 2D Gaussian fit overlaying the extracted data from the electrical characterization. The 

clear spatial dependence of the voltage data in Figure 4.9 shows a strong correlation to 

the Gaussian shape of the incident HCI beam, and confirms the validity of our analysis 

technique. In order to accommodate the two extreme cases of alignment displayed in 

Figure 4.8 (b) and (c), the data was averaged using the following equation: 

|𝑉𝑉𝑀𝑀𝐺𝐺 − 𝑉𝑉𝐼𝐼𝑁𝑁𝑉𝑉|𝐴𝐴𝑚𝑚𝑒𝑒𝑟𝑟𝑇𝑇𝐴𝐴𝑒𝑒 = ∬ (𝐺𝐺𝑇𝑇𝐺𝐺𝑠𝑠𝑠𝑠𝑖𝑖𝑇𝑇𝑛𝑛 𝐹𝐹𝑖𝑖𝑇𝑇)𝑑𝑑𝐴𝐴𝑂𝑂
𝐴𝐴

∬ 𝑑𝑑𝐴𝐴𝑂𝑂
𝐴𝐴

        (4.17) 

where the integrations are performed across the area of the sample, A. Therefore, the data 

from each sample can be reduced to a single representative average value. 
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Figure 4.9: Numerical representation of the stretchout between midgap and inversion in 
Volts for the 5x5 capacitor array shown in Fig. 4.1 (i.e. the |VMG – VINV| values for the 25 
capacitors) with the 2D Gaussian fit overlaid (R2 = 0.9407). The stretchout values of the 
Gaussian fit range from approximately 0.5 V (dark blue) to a little above 14 V (dark red).  
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4.4.3 Fluence Correction 

 Our analysis technique also adjusts the nominal fluence calculated during the 

irradiation to a more appropriate value which is displayed in the figures contained in this 

chapter. This fluence adjustment is achieved by integrating the Gaussian fit over the area 

of the sample, dividing it by the integration of the Gaussian fit over an area equal to that 

of the Faraday cup (FC) used to measure the beam current, and then multiplying the 

resulting quotient by the nominal fluence. This process is shown in equation (4.18) 

below: 

𝐹𝐹𝑙𝑙𝐹𝐹𝐹𝐹𝑙𝑙𝐹𝐹𝐹𝐹𝐴𝐴𝑑𝑑𝐴𝐴 = 𝐹𝐹𝑙𝑙𝐹𝐹𝐹𝐹𝑙𝑙𝐹𝐹𝐹𝐹𝑁𝑁𝑇𝑇𝑚𝑚 �
∬ (𝐺𝐺𝑇𝑇𝐺𝐺𝑠𝑠𝑠𝑠𝑖𝑖𝑇𝑇𝑛𝑛 𝐹𝐹𝑖𝑖𝑇𝑇)𝑑𝑑𝐴𝐴.
𝑆𝑆𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑒𝑒

∬ (𝐺𝐺𝑇𝑇𝐺𝐺𝑠𝑠𝑠𝑠𝑖𝑖𝑇𝑇𝑛𝑛 𝐹𝐹𝑖𝑖𝑇𝑇)𝑑𝑑𝐴𝐴.
𝐹𝐹𝐹𝐹

�      (4.18) 

 The main source of error in the nominal fluence that is corrected by this 

calculation arises from the difference in the sample size (12 mm x 12 mm) and the 

Faraday cup that is used to measure the beam current (2.54 cm diameter; approximated as 

22.5 mm x 22.5 mm). Equation (4.18) is also able to correct fluence errors arising from 

slight misalignment of the sample during irradiation. This is done by centering the area of 

integration for the integral in the denominator of equation (4.18) on the peak value of the 

Gaussian fit as opposed to the center of the sample. Although the Gaussian fits used for 

this calculation are based on the voltage data, it has been shown to correlate strongly to 

the Gaussian nature of the HCI beam as shown in Figure 4.6. 
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4.5 CHARGE STATE DEPENENCE OF C-V CURVE CHANGES – 

QUANTITATIVE 

4.5.1 |VMG – VINV| Stretchout 

 Figure 4.10 shows the results of the analysis of the midgap to inversion stretchout 

data for all nine samples that were irradiated. The average difference between midgap 

and inversion points for the pristine sample was 0.21 V. The results in Figure 4.10 

indicate that the fluences used in these experiments were such that the effect on the MOS 

devices are approaching saturation, and for the case of the Ar11+ data the effect is 

diminished at the highest fluence. One possible reason for this is a competing annealing 

process that becomes more dominant as irradiation times increase. This type of effect has 

been observed in Schottky diodes exposed to swift heavy ions [92-95]. The higher charge 

state beams produced in the EBIT have lower beam currents; therefore, devices irradiated 

at higher charge states require a longer irradiation time to reach a given fluence compared 

to devices irradiated with lower charge states. So, it is possible that the longer irradiation 

time for the highest fluence point for the Ar11+ data set shows a reduced effect due to an 

increased amount of room temperature annealing. 
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Figure 4.10: Average |VMG – VINV| values for each of the nine irradiated samples. Sample 
averages were obtained by using the 2D Gaussian fit of the voltage data. The fluences in 

this plot have been adjusted from the nominal fluence using equation (4.18) from 
Section 4.4.3.  
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Because our fluences appear to be in the saturation regime, we were unable to 

gain any useful information by investigating the rate of change in |VMG – VINV| with 

respect to fluence as we have done previously with VFB data [76]. As an alternative, we 

have calculated the average effect observed for a given charge state across all fluences. 

Because we are interested in the change in the stretchout, Δ|VMG – VINV|, the value of 

|VMG – VINV| recorded for the capacitors on the pristine sample was subtracted from the 

average |VMG – VINV| for a given charge state. In essence, we are using the pristine 

sample as a proxy for pre irradiation measurements since top contacts were deposited 

after irradiation.  The result of this calculation is Δ|VMG – VINV| as a function of charge 

state as shown in Figure 4.11. A power law fit to the data shows that the stretchout 

between midgap and inversion voltages varies as approximately Q~1.7. 
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Figure 4.11: Average stretchout between midgap and inversion for all samples of a given 
charge state minus the corresponding stretchout seen in the pristine sample. Also shown 
is a power law fit showing that stretchout between midgap and inversion varies as Q~1.7.  
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4.5.2 VMG Shift 

 The results of applying our analysis technique to the VMG data is shown in Figure 

4.12 for all nine samples that were irradiated. The average magnitude of the midgap 

voltage for the pristine sample was 1.24 V. Just as with the |VMG – VINV| data for the 

Ar11+, it is clear that the effects actually begin to lessen for the highest fluence levels for 

all charge states. As mentioned earlier, this is possibly due to an annealing effect which 

becomes more prominent as irradiation times are increased. Because the ion fluences are 

not in a linear regime, the data points for each charge state were averaged such that each 

charge state is represented by a single average VMG value. The average value of VMG for 

the pristine capacitors was then subtracted from these averages in order to track the ΔVMG 

as a function of charge state. The results of this analysis are shown in Figure 4.13. 

Applying a power law fit to this data indicates that the shift in VMG varies as 

approximately Q~1.8. 
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Figure 4.12: Average VMG values for each of the nine irradiated samples. Sample 
averages were obtained by using the 2D Gaussian fit of the voltage data. The fluences in 

this plot have been adjusted from the nominal fluence using equation (4.18) from 
Section 4.4.3.  
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Figure 4.13: Average midgap voltage for all samples of a given charge state minus the 
average midgap voltage seen in the pristine sample. Also shown is a power law fit 

showing that shifts of midgap voltage vary as Q~1.8.  
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4.5.3 Summary of Charge State Dependent Effects 

These results indicate that the creation of both oxide and interface traps have 

approximately the same Q dependency. This Q dependency is also similar to the power 

law that we observed for VFB shifts in thicker oxides after HCI irradiation (~Q2.2) [76].  It 

is also important to note that the energy loss of HCIs in thin carbon membranes has been 

reported to display quadratic dependence on charge state [96]. The commonality between 

the Q-dependent changes in our C-V curves and the Q-dependent energy loss should not 

be dismissed as coincidence, but rather this similarity could be interpreted as indicating 

that there is some intrinsic relationship between the internal mechanisms of energy loss 

for HCIs in solids and the resultant damage that we observe in our electrical 

characterization measurements. Numerical modeling, similar to what has been performed 

for ionizing radiation incident on MOS capacitors [97], could provide additional insight 

into the charge state dependent effects produced in electronic devices and materials; 

however, care would need to be taken to account for the unique properties of slow HCIs 

(i.e., low kinetic energy and relatively high potential energy). 

 

4.6 SUMMARY AND CONCLUSIONS 

 The basic model and operation of MOS capacitors has been described. MOS band 

diagrams were used to help explain the various operating modes of the capacitors, and the 

ideal C-V curve helped illustrate the voltage dependent behavior of the capacitance. 

Expressions for midgap voltage and inversion voltage were derived for the ideal case of a 
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charge free oxide and interface. The effects of oxide trapped charge and interface trapped 

charge on capacitor behavior were also considered. 

We have irradiated Si/SiO2 samples with slow HCIs in an electron beam ion trap 

facility at Clemson University in order to gain a better understanding of how this 

relatively unexplored type of radiation affects electronic devices. The samples consisted 

of an array of top metal contacts evaporated post radiation to form MOS capacitors, and 

HFCV curves showed a translation of VMG and an increase in the stretchout between 

inversion and midgap voltages compared to pristine capacitors. These changes indicate 

the creation of oxide trapped charges and interface traps, respectively.  It was determined 

that the oxide trapped charges were most likely due to E' centers, and the interface traps 

were most likely due to Pb defects. Using a data analysis technique based on a 2D 

Gaussian fit of the voltage data, we found a charge state dependence of Q~1.7 for the 

stretchout of the C-V curves between midgap and inversion, and a charge state 

dependence of Q~1.8 for the shift in VMG. This work provides a good foundation for future 

applications related MOS based HCI sensors in fusion reactors and outer space operations 

by providing a better understanding of how MOS devices are affected by HCI irradiation. 

Future work is planned for MOS irradiations with thin metal contacts (~20nm) deposited 

prior to HCI irradiation, and will focus on varying the fluence, kinetic energy, and 

incidence angle of different ion species. Hopefully the results will provide a deeper 

understanding of HCI effects on electronic materials and devices. 
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CHAPTER 5 

EFFECTS OF SLOW NA+ IRRADIATION ON SCHOTTKY 
DIODES 
 

5.1 INTRODUCTION 

 Schottky diodes have been investigated as potential radiation sensors for low 

kinetic energy ions (≤ 2 keV). Schottky didoes were chosen primarily because of their 

simple device structure, ease of fabrication, and their ubiquity in modern electronic 

devices. These factors mean that Schottky diode sensors could easily be integrated into 

existing systems with minimal variation from previous designs. Initially we intended to 

investigate Schottky diodes as potential sensing devices for slow highly charged ions 

(HCIs) with low kinetic energy; however, the electron beam ion trap (EBIT) facility 

which is used to create the HCIs has been out of operation for a couple of years due to 

unforeseen setbacks. As an alternative, we have chosen to investigate Schottky diodes for 

sensing Na+ ions with low kinetic energy. This decision was made for a couple important 

reasons: (1) Although the singly charged ions obviously do not have the same potential 

energy as HCIs, the results from experimenting with Na+ can be used as a baseline when 

comparing to later HCI experiments since it will help in isolating the effects of the kinetic 

energy. (2) Nienhaus et al. have performed several interesting experiments using 

Schottky diodes as detectors for chemiluminescent reactions at the metal surface. The 

chemical reaction at the metal surface creates hot carriers that are subsequently injected 

into the semiconductor creating a “chemicurrent” [20-23]. This work has inspired us to 

investigate the possibility of using Schottky diodes to detect hot carriers generated in the 
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metal layer of the diode by the kinetic energy of the incident ion beam. In order to be 

detected with traditional solid state detectors the ions must be able penetrate into the 

depletion region of the device, where they generate electron hole pairs that can be 

collected and measured as a current. Because low kinetic energy ions are not able to 

penetrate into the depletion region, detection of the “kine-current” would be useful for the 

detection of low kinetic energy ions. These experiments will also yield valuable insights 

into how slow ions interact with semiconductor devices, and what, if any, lasting changes 

result from the interaction. The remainder of Section 5.1 provides the theoretical 

background related to Schottky diode operation and the extraction of key parameters. The 

details of the experimental procedure are given in Section 5.2. In Sections 5.3 and 5.4, we 

present results related to detection of a kine-current and the radiation tolerance of the 

diodes, respectively. Section 5.5 contains a brief summary and conclusion. 

 

5.1.1 Schottky Diode Structure and Operation 

 There are several different design variations for Schottky diodes, but all Schottky 

diodes are ultimately just a metal semiconductor contact. The most simplistic Schottky 

diode structure consists of a semiconductor substrate with a rectifying/Schottky metal 

contact on one side and a non-rectifying/Ohmic metal contact on the opposite side as 

shown in Figure 5.1. Because Schottky diodes are typically manufactured with n-type 

semiconductors, that is what will be presented here; however, it is also possible to 

fabricate Schottky diodes using p-type semiconductors. Initially, only the ideal structure 
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and operation will be discussed, but in Section 5.1.2 some of the non-ideal, second order 

considerations of diode modeling will be presented. 
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Figure 5.1: Simple Schottky diode structure: (a) cross sectional view and (b) aerial view. 
(layer sizes not shown to scale).  
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In order to better understand the formation and operation of Schottky diodes, the 

band diagrams shown in Figure 5.2 should be considered. In Figure 5.2 (a) the energy 

levels for the metal and semiconductor are shown separately before they are brought into 

close contact with one another. In the band diagram of Figure 5.2, EC is the lower edge of 

the conduction band, EV is the upper edge of the valence band, and EF is the Fermi level 

in the semiconductor; the energy level at which there is a 50% probability of finding an 

electron. The difference between EC and EV is the semiconductor bandgap, EG, which is 

full of forbidden electronic states. The energy difference between the vacuum level and 

the conduction band edge of the semiconductor is known as the electron affinity of the 

semiconductor, and is denoted by 𝑞𝑞𝑞𝑞. The energy difference between the conduction 

band edge and the semiconductor Fermi level in the semiconductor bulk is given by 𝑞𝑞𝜙𝜙𝑛𝑛, 

and the Metal Work function, 𝑞𝑞𝜙𝜙𝑚𝑚, is given by the energy difference between the 

vacuum level and the metal Fermi level. Because the semiconductor Fermi level is closer 

to the conduction band edge than the valance band edge, the semiconductor shown in 

Figure 5.2 is n-type. In addition, there are more electrons at higher energies in the 

semiconductor than the metal because the semiconductor Fermi level is larger than the 

metal Fermi level. Consequently, as the metal and semiconductor are brought together, 

the higher energy electrons in the semiconductor will tend to diffuse to the metal until the 

Fermi levels align and the device reaches thermal equilibrium. As the electrons move 

from the semiconductor to the metal, the surface of the semiconductor becomes devoid of 

mobile charge carriers, creating a positively charged depletion region of ionized donors, 

and therefore becomes less n-type at the interface. The equilibrium condition is shown in 
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Figure 5.2 (b), where the energy bands of the semiconductor are bent at the interface such 

that the Fermi level at the semiconductor interface is further from EC than it is in the 

semiconductor bulk (less n-type at the interface). For the equilibrium condition, any 

electrons moving from the metal to the semiconductor see a barrier height of 𝑞𝑞𝜙𝜙𝑄𝑄0. In the 

ideal case the barrier height is given by the Schottky-Mott limit: 

𝑞𝑞𝜙𝜙𝑄𝑄0 = 𝑞𝑞𝜙𝜙𝑚𝑚 − 𝑞𝑞𝑞𝑞             (5.1) 

From equation (5.1) it can be seen that the barrier height is not a function of the applied 

bias, but rather it is only dependent on the material properties of the metal and the 

semiconductor. In equilibrium, electrons moving from the semiconductor to the metal see 

a built-in potential of 𝑞𝑞𝑞𝑞𝑏𝑏𝑖𝑖 which is given by: 

𝑞𝑞𝑞𝑞𝑏𝑏𝑖𝑖 = 𝑞𝑞𝜙𝜙𝑄𝑄0 − 𝑞𝑞𝜙𝜙𝑛𝑛 = 𝑞𝑞𝜙𝜙𝑄𝑄0 − 𝑘𝑘𝑘𝑘𝑙𝑙𝑙𝑙 �𝑁𝑁𝐹𝐹
𝑁𝑁𝑑𝑑
�          (5.2) 

where k is the Boltzmann constant, T is the temperature in Kelvin, q is the elementary 

charge, NC is the effective density of states at the conduction band edge of the 

semiconductor, and Nd is the dopant concentration in the semiconductor. The built-in 

potential can be decreased by applying a positive bias to the Schottky contact (forward 

bias operation) or increased by applying a negative bias to the gate (reverse bias 

operation). In the forward bias mode the electric field resulting from the applied bias 

opposes the built-in potential and enables the flow of electrons from the semiconductor to 

the metal. In the reverse bias mode the electric field resulting from the applied bias 

enhances the built in potential which makes it more difficult for electrons to move from 
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the semiconductor to the metal. In both modes the Schottky barrier height remains 

constant and serves to minimize the portion of the leakage current arising from electrons 

moving from the metal to the semiconductor. 
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Figure 5.2: Band diagrams of (a) metal and semiconductor separated and (b) after coming 
together to form a Schottky diode. Adapted from [74].  
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For moderately doped diodes operating around room temperature the dominant 

conduction mechanism will be thermionic emission of electrons over the reduced built-in 

potential from the semiconductor to the metal (forward bias) and thermionic emission of 

electrons over the Schottky barrier from the metal to the semiconductor (reverse bias). A 

first order approximation of the current density in a Schottky diode based on the 

thermionic emission model is known as the Richardson-Dushman equation and is given 

by: 

𝐽𝐽 = 𝐴𝐴∗𝑘𝑘2𝐹𝐹𝑥𝑥𝑒𝑒 �−𝑞𝑞𝜙𝜙𝐵𝐵0
𝑘𝑘𝑇𝑇

� �𝐹𝐹𝑥𝑥𝑒𝑒 �𝑞𝑞𝑉𝑉
𝑘𝑘𝑇𝑇
� − 1� = 𝐽𝐽𝑆𝑆 �𝐹𝐹𝑥𝑥𝑒𝑒 �

𝑞𝑞𝑉𝑉
𝑘𝑘𝑇𝑇
� − 1�        (5.3) 

where A* is the Richardson constant, V is the bias applied to the diode, JS is the reverse 

saturation current density, and all other variables have the same meaning as given 

previously. It is assumed that the Schottky barrier height is much larger than kT, such that 

not many electrons in the metal will have sufficient energy to surmount the barrier and 

move in to the semiconductor; however, the “−1” term in equation (5.3) indicates that 

there are some energetic electrons that are able to overcome the barrier and create a small 

reverse current. 

 The electrons that migrate from the semiconductor to the metal during the initial 

contact formation create a uniform charge sheet at the metal surface which has a charge 

equal in magnitude but opposite in sign to the charge of the ionized dopants in the 

semiconductor depletion region. In essence, the Schottky diode can be treated like a one-

sided p-n junction. Using the depletion approximation and assuming uniform doping in 

the semiconductor the depletion width can be written as: 
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𝑊𝑊𝐷𝐷 = �2𝜖𝜖0𝜖𝜖𝑠𝑠(𝜓𝜓𝑏𝑏𝑖𝑖−𝑉𝑉)
𝑞𝑞𝑁𝑁𝑑𝑑

             (5.4) 

where 𝜖𝜖0 is the permittivity of free space, 𝜖𝜖𝑠𝑠 is the relative permittivity of the 

semiconductor, and all other variables have the same meaning as given previously. The 

capacitance per unit area of the depletion region can be calculated by modeling the diode 

as a parallel plate capacitor with a plate spacing equal to the depletion width: 

𝐶𝐶𝐷𝐷′ = 𝜖𝜖0𝜖𝜖𝑠𝑠
𝑊𝑊𝐷𝐷

= �
𝑞𝑞𝜖𝜖0𝜖𝜖𝑠𝑠𝑁𝑁𝑑𝑑
2�𝑞𝑞𝑏𝑏𝑏𝑏−𝑉𝑉�

              (5.5) 

In Section 5.1.3 it will be shown how the current-voltage characteristics [equation (5.3)] 

and the capacitance-voltage characteristics [equation (5.5)] of the Schottky diode can be 

utilized to extract key Schottky diode parameters. 

 

5.1.2 Second Order Considerations 

 There are actually several other conduction mechanisms that are occurring in a 

Schottky diode in addition to thermionic emission, and these mechanisms are illustrated 

in Figure 5.3. As mentioned previously, thermionic emission will dominate for 

moderately doped semiconductors around room temperature, but as the doping level 

increases (on the order of 1018 cm-3 or greater) and/or as the temperature decreases the 

tunneling current will begin to dominate. As can be seen from equation (5.4) the 

depletion width in the semiconductor will decrease as the dopant concentration is 

increased, and a thinner depletion width means a shorter path for electrons to tunnel 

through, which increases the tunneling probability. This principle is used to create non-
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rectifying Ohmic contacts. The tunneling current can actually be decomposed into two 

constituent parts as well: (1) field emission; which is a pure tunneling current near the 

Fermi level where the electrons tunnel through the entire width of the barrier and (2) 

thermionic-field emission; where energetic electrons with insufficient energy to surmount 

the barrier tunnel through a thinner region of the barrier (mechanism (2) in Figure 5.3). In 

addition to the current mechanisms shown in Figure 5.3, there is also an edge leakage 

current which exists around the edge of the contact. Edge leakage can be reduced by 

implementing more complicated Schottky diode structures such as a guard ring. 
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Figure 5.3: Various conduction mechanisms in a Schottky diode: (1) thermionic 
emission, (2) tunneling, (3) recombination in the depletion region, (4) diffusion of 

electrons, and (5) diffusion of holes (recombination in the bulk). From [74].  
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In the ideal case it was assumed that the metal and semiconductor were in direct 

contact with one another, but in practice there will typically be a thin (on the order of 

Angstroms) interfacial oxide layer between the Schottky contact and the semiconductor 

substrate. The interfacial layer is generally thin enough that it is transparent to electrons 

(i.e. the electrons tunnel through it), but the thin layer can have a potential across it. More 

importantly, the interfacial oxide introduces interface traps at the oxide/semiconductor 

interface which allow electrons to exist in the forbidden energy gap of the semiconductor. 

The interface traps can act as recombination centers for electrons and holes, thereby 

introducing another conduction mechanism to those illustrated in Figure 5.3 and 

discussed previously. For a large density of interface traps the Fermi level becomes 

pinned at a set position in the semiconductor bandgap at the interface because any change 

in charge on the metal can be compensated for by populating or depopulating interface 

traps; there is no need for the depletion width to change, and consequently the Fermi 

level at the interface does not move. For the theoretical case of an infinite number of 

interface traps it can be shown that the barrier height is independent of the metal work 

function [74]: 

𝑞𝑞𝜙𝜙𝑄𝑄0 = 𝐸𝐸𝐴𝐴 − 𝑞𝑞𝜙𝜙0             (5.6) 

where Eg is the bandgap of the semiconductor and 𝑞𝑞𝜙𝜙0 is the neutral level, which 

demarcates between acceptor and donor type interface states and is typically one-third of 

the bandgap above the valance band edge [74]. Above the neutral level the interface 

states are acceptor type (neutral when empty and negatively charged when occupied), and 

below the neutral level the interface states are donor type (neutral when occupied and 
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positively charged when empty). Equation (5.6) is referred to as the Bardeen limit. In 

practice the barrier height is highly dependent on the surface cleaning and preparation of 

the semiconductor and will be somewhere between the Schottky-Mott limit and the 

Bardeen limit. 

 In order to account for the generalized effect of the various conduction current 

mechanisms, equation (5.3) can be slightly modified, and is written as: 

𝐽𝐽 = 𝐴𝐴∗𝑘𝑘2𝐹𝐹𝑥𝑥𝑒𝑒 �−𝑞𝑞𝜙𝜙𝐵𝐵0
𝑘𝑘𝑇𝑇

� �𝐹𝐹𝑥𝑥𝑒𝑒 � 𝑞𝑞𝑉𝑉
𝜂𝜂𝑘𝑘𝑇𝑇

� − 1� = 𝐽𝐽𝑆𝑆 �𝐹𝐹𝑥𝑥𝑒𝑒 �
𝑞𝑞𝑉𝑉
𝜂𝜂𝑘𝑘𝑇𝑇

� − 1�       (5.7) 

where 𝜂𝜂 is the ideality factor. In the ideal case of pure thermionic emission and no 

interface states the ideality factor is unity (Schottky-Mott limit), but if the effects 

introduced by interface states dominate then 𝜂𝜂 = 2 (Bardeen limit). As second and third 

order effects begin to become non-negligible it is possible for the ideality factor to 

increase above the value of 2 associated with the Bardeen limit. Good diodes typically 

have values of ideality factor between one and two, but it is possible for the value of 𝜂𝜂 to 

increase up to 5 or higher for poor quality diodes. 

The last non-ideal effect to be considered is Schottky-barrier lowering. As an 

electron is moving from the semiconductor to the metal it will create a positive image 

charge in the metal that will exert an image force on the electron which pulls it towards 

the metal. This effectively lowers the barrier as shown in Figure 5.4. The adjusted barrier 

height after taking into account the Schottky-barrier lowering is given by: 

𝑞𝑞𝜙𝜙𝑄𝑄 = 𝑞𝑞𝜙𝜙𝑄𝑄0 − 𝑞𝑞Δ𝜙𝜙             (5.8) 

where 𝑞𝑞𝜙𝜙𝑄𝑄0 is the ideal barrier height and 𝑞𝑞Δ𝜙𝜙 is the amount of barrier lowering induced 

by the image force, which is given as: 
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𝑞𝑞Δ𝜙𝜙 = �𝑞𝑞3𝑁𝑁𝑑𝑑(𝜓𝜓𝑏𝑏𝑖𝑖−𝑉𝑉)
8𝜋𝜋2𝜖𝜖03𝜖𝜖𝑠𝑠3

4              (5.9) 

where in equation (5.9) all variables have the same meanings as described previously. 

From inspection of equation (5.9) and Figure 5.4 it can be seen that the amount of barrier 

lowering is dependent on the bias applied to the diode. In order to obtain a more accurate 

current-voltage relationship equation (5.8) can be substituted into equation (5.7) which 

results in: 

𝐽𝐽 = 𝐴𝐴∗𝑘𝑘2𝐹𝐹𝑥𝑥𝑒𝑒 �−𝑞𝑞(𝜙𝜙𝐵𝐵0−Δ𝜙𝜙)
𝑘𝑘𝑇𝑇

� �𝐹𝐹𝑥𝑥𝑒𝑒 � 𝑞𝑞𝑉𝑉
𝜂𝜂𝑘𝑘𝑇𝑇

� − 1� = 𝐽𝐽𝑆𝑆 �𝐹𝐹𝑥𝑥𝑒𝑒 �
𝑞𝑞𝑉𝑉
𝜂𝜂𝑘𝑘𝑇𝑇

� − 1�     (5.10) 

 However, because the barrier lowering in most diodes is typically quite small, the effects 

can be neglected without much loss of accuracy. 
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Figure 5.4: Schottky-barrier lowering due to the image force between an electron in the 
semiconductor and a positive image charge in the metal. Also shown is the qualitative 

change in barrier lowering for forward and reverse biases. From [74].  
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5.1.3 Parameter Extraction 

 Schottky Barrier height, ideality factor, and dopant concentration in the depletion 

region are all useful metrics for determining the quality of a Schottky diode, and in 

addition to providing details about initial diode quality, these parameters can also serve as 

useful markers for changes introduced to the devices during and after exposure to 

radiation. As detailed below, the I-V data can be used to extract the barrier height and 

ideality factor, while the C-V data can be used to extract the barrier height and the dopant 

concentration. Typically, the barrier height extracted from the C-V data will give a slight 

overestimation of the value, whereas barrier height extracted from the I-V data will give a 

slight underestimation of the value. This is primarily because the I-V measurements 

cause some lowering of the Schottky barrier as discussed in Section 5.1.2, whereas the 

C-V measurements use the flatband condition where there is no Schottky barrier lowering 

[79]. Therefore, it is common for researchers to take the average of the barrier heights 

extracted with I-V and C-V measurements in order to get a more accurate estimation of 

the Schottky barrier height. 

As can be seen in equation (5.7) there is an exponential relationship between the 

diode current density and the applied bias. Therefore, plotting the current density as a 

function of voltage on a semi-log scale should result in a linear region. 

log(𝐽𝐽) = log �𝐽𝐽𝑆𝑆 �𝐹𝐹𝑥𝑥𝑒𝑒 �
𝑞𝑞𝑉𝑉
𝜂𝜂𝑘𝑘𝑇𝑇

��� = � 𝑞𝑞
𝜂𝜂𝑘𝑘𝑇𝑇

� 𝑉𝑉 + log(𝐽𝐽𝑆𝑆)      (5.11) 

 In equation (5.11) the “−1” term has been omitted, because for standard forward 

biases 𝑉𝑉 ≫ 𝑘𝑘𝑇𝑇
𝑞𝑞

, and the exponential term dominates. Observation of equation (5.11) 

reveals that it is in standard point-slope form. This indicates that the slope of the semi-log 
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plot in the linear region can be used to calculate the ideality factor since q, k, and T are all 

constants. Extrapolating the linear region of the semi-log plot back to the y-axis results in 

the determination of the reverse saturation current density, JS, from which the barrier 

height can be calculated. 

 Equation (5.5), which gives the capacitance of the depletion region, can also be 

adjusted so that it is in point-slope form: 

� 1
𝐶𝐶𝑑𝑑
′�
2

= � 2
𝑞𝑞𝜖𝜖0𝜖𝜖𝑆𝑆𝑁𝑁𝑑𝑑

�𝑉𝑉𝑅𝑅 + � 2𝜓𝜓𝑏𝑏𝑖𝑖
𝑞𝑞𝜖𝜖0𝜖𝜖𝑆𝑆𝑁𝑁𝑑𝑑

�         (5.12) 

where VR is the value of the reverse voltage applied to the diode and all other parameters 

have the same meanings given previously. Inspection of the characteristic equation of 

(5.12) reveals that the measurement of diode capacitance versus voltage can be plotted as 

� 1
𝐶𝐶𝑑𝑑
′�
2
 versus VR to yield a straight line. The slope of this line can be used to determine the 

dopant concentration, which can in turn be used to calculate the resistivity. The built-in 

potential, 𝑞𝑞𝑏𝑏𝑖𝑖, can be found by extrapolating the linear region of the curve to either the x-

axis or the y-axis. A precise expression for the barrier height, therefore, can be written as: 

𝜙𝜙𝑄𝑄0 = 𝑞𝑞𝑏𝑏𝑖𝑖 + 𝜙𝜙𝑛𝑛 + 𝑘𝑘𝑇𝑇
𝑞𝑞
− Δ𝜙𝜙          (5.13) 

where the 𝑘𝑘𝑇𝑇
𝑞𝑞

 term is a correction factor for the high energy electron tail and the Δ𝜙𝜙 

corresponds to the Schottky-barrier lowering effect. The high energy electron tail, or 

Debye tail, is a result of the depletion approximation not being entirely accurate. In 

reality there are some mobile charge carriers just inside the edge of the depletion region, 

and there is an electric field that extends slightly outside of the depletion region. 
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5.2 EXPERIMENTAL PROCEDURE 

5.2.1 Device Fabrication 

 Two phosphorous doped silicon wafers with <111> orientation, 2 inch diameter, 

and resistivity between 3.4 and 4.6 Ω-cm were used in this experiment. The wafers were 

individually cleaned following a standard RCA procedure. First the wafers were 

submerged in an ammonium hydroxide/hydrogen peroxide solution for five minutes to 

remove organic particulates. The wafers were then submerged in two successive 

deionized (DI) water baths before being submerged in a 2% hydrofluoric (HF) acid 

solution for three minutes to remove any oxide on the silicon surface. This was also 

followed by two successive DI water baths. The entire process was repeated a second 

time and followed by one additional DI water bath before the wafers were blown dry with 

nitrogen. The wafers were immediately placed in a thermal evaporator and thick (~1 μm) 

backside aluminum Ohmic contacts were deposited. The backside contact deposition was 

not followed by a thermal annealing step because doing so resulted in the degradation of 

the quality of the Ohmic contacts for these wafers. The wafers were loaded into the 

thermal evaporator once more, and several frontside silver Schottky contacts were 

deposited through a shadow mask. The contacts were circular with a diameter of 

approximately 6 mm. On one wafer the Schottky contacts were thick (~360 nm), and on 

the second wafer the Schottky contacts were thin (~26 nm). The thicknesses were 

measured with a Dektak profilometer. The wafers were then stored in standard wafer 

carriers, and individual Schottky diodes were cleaved from the wafers as needed. After 

cleaving, the size of a sample containing a single diode was approximately 1 cm x 1 cm. 
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5.2.2 Na+ Irradiation 

 The Na+ ion irradiation of the Schottky diodes was performed with the singly 

charged beamline at Clemson University [98]. The Schottky diodes were mounted on a 

stainless steel platen using conductive Ag paint as shown in Figure 5.5 prior to being 

loaded into the ion beam target chamber. The platen had metal posts which were isolated 

from the platen base by insulating layers. These posts allowed for in-situ measurements 

of the diodes. Details of the mounting procedure can be found in appendix D.9.The base 

pressure in the ion beam system during irradiations was on the order of 10-7 Torr. No 

external bias was applied to the samples during irradiation except when in-situ I-V 

sweeps were being performed as described below in Section 5.2.3. In total, eight samples 

were irradiated with the Na+ ion beam. For each of the following energy levels there were 

two Schottky diode samples irradiated, one with a thick Schottky contact and one with a 

thin Schottky contact: 0.5 keV, 1.0 keV, 1.5 keV, and 2.0 keV. The ion beams were 

initially tuned in a Faraday cup in the same plane as the sample. Once the ion beam 

current was maximized, the Schottky diode was translated into the beamline and 

irradiated for a cumulative time of 90 minutes. Every 30 minutes the beam current was 

verified by measuring the instantaneous current seen on the Schottky diode. The exact 

characteristics of the ion beam could not be determined, but it is estimated that the beam 

is Gaussian in nature with a full width at half maximum (FWHM) of approximately 1.5 

cm, such that the beam is wholly incident on the Schottky contact. 
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Figure 5.5: Schottky diode mounted on stainless steel platen using Ag paint.  
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5.2.3 Device Characterization 

Prior to being mounted on the stainless steel platen, I-V measurements using a 

Keithley 4200 semiconductor characterization system and C-V measurements using an 

Agilent E4980A LCR meter were performed on each of the Schottky diodes. For these 

pre-irradiation measurements the diodes were placed in a probe station which shielded 

the sample from light, vibration, and electromagnetic interference. The sample was held 

in place with a vacuum chuck, and micromanipulator controlled probe tips were used to 

make electrical contact to the devices. After the diodes were mounted on the platen and 

loaded into the singly charged beamline, a Keithley 2400 source meter was used to 

perform in-situ I-V sweeps on the diodes at various times during the irradiation 

procedure. A Keithley 617 electrometer was used to monitor the instantaneous currents 

on the Faraday cup and the Schottky diode. After the irradiations were complete, the 

diodes were removed from the stainless steel platen and post-irradiation I-V and C-V 

measurements were performed in the same manner as the pre-irradiation measurements. 

 Pre-irradiation in-situ I-V sweeps were performed prior to turning the ion beam 

on. After turning the ion beam on and maximizing the current in the Faraday cup, the 

Schottky diode was translated into the ion beamline and an instantaneous current reading 

was recorded with the Keithley 617 for the purpose of calculating ion fluence. I-V 

sweeps were immediately performed with the beam incident on the Schottky diode, and 

then the ion beam was turned off and more I-V sweeps were performed. This first set of 

beam on-beam off measurements was performed in order to investigate the kine-current, 

i.e. any instantaneous effect created in the I-V characteristics by the ion beam. The 
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Schottky diode was then irradiated by the ion beam in 10 minute intervals, with the ion 

beam being turned off after each interval so that I-V sweeps could be performed in order 

to track the radiation damage. The instantaneous beam current, as measured by the 

Keithley 617 on the diode, was monitored every 30 minutes in order to ensure stability of 

the ion beam. A detailed process flow for in-situ measurements performed on each diode 

during irradiation is displayed in Figure 5.6. 
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Figure 5.6: Process flow for irradiation of Schottky diodes. Red boxes indicate times 
when the ion beam is incident on the diode and green boxes indicate times when the ion 
beam is off. (617) and (2400) indicate measurements are taken with the Keithley 617 and 
Keithley 2400, respectively. FC = Faraday Cup.  
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5.3 KINE-CURRENT 

 The primary goal of this diode work was the detection of a kine-current arising 

from the hot electrons surmounting the Schottky barrier after being excited by the 

incident Na+ ions. As previously stated, the measurements related to kine-current 

detection were performed at the very beginning of the radiation routine so that radiation 

damage would be at an absolute minimum. Typically, diode radiation detectors are 

operated in the reverse biased region. As mentioned in Chapter 2, this is done in order to 

maximize the size of the depletion region which serves as the active area for radiation 

detection; however, with slow ions that cannot penetrate into the semiconductor, the size 

of the depletion region is irrelevant. For this reason we decided to perform high 

resolution I-V sweeps (0.01 V step) while the diode is under irradiation in order to 

investigate possible effects in all modes of diode operation. First, I-V sweeps were 

performed while the Na+ beam was incident on the diode, and then the Na+ beam was 

turned off and more I-V sweeps were performed. By comparing the I-V sweeps with the 

beam on and the beam off, it is possible to isolate any instantaneous effects arising from 

the Na+ beam. 

 In order to confidently relate any changes observed in the I-V data to a kine-

current, it is crucial to understand the approximate range of the ions and excited electrons 

in the sample. The range and straggle of the Na+ ions for the various beam energies were 

determined using the SRIM simulation software [90] and the results are recorded in Table 

5.1. As can be seen in Table 5.1, the ion ranges are on the order of a couple of 

nanometers for all energies considered in this experiment. 
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Beam 
Energy 
[keV] 

Na+ 
Range 
[nm] 

Na+ 
Straggle 

[nm] 

Max. Electron 
Energy [eV] 

# Electrons 
Created per Ion 

Electron 
Range [nm] 

0.5 1.7 1.0 1.08 463 20.2 
1.0 2.5 1.5 1.55 645 14.1 
1.5 3.1 1.9 1.92 781 11.5 
2.0 3.7 2.2 2.25 889 9.8 

 

Table 5.1: Ion range, standard deviation (straggle) for ion range [90], maximum electron 
energy [99], minimum number of electrons created per ion, and a rough approximation of 

electron range [101] for the Na+ beam energies used. 
 
 

In order to determine the approximate range of the electrons excited by the Na+ 

ions, it is necessary to first calculate the approximate kinetic energy of the electrons. 

Through consideration of the principles of conservation of momentum and conservation 

of energy, the maximum kinetic energy of an electron in a target material excited by a 

slow ion is given by: 

𝐸𝐸𝑚𝑚𝑇𝑇𝑑𝑑 = 2𝑚𝑚𝑒𝑒𝑣𝑣𝑖𝑖𝑇𝑇𝑛𝑛(𝑣𝑣𝑖𝑖𝑇𝑇𝑛𝑛 + 𝑣𝑣𝐹𝐹)          (5.14) 

where me is the rest mass of an electron, vion is the velocity of the incident ion, and vF is 

the Fermi velocity of the target material [99]. The maximum electron energies shown in 

Table 5.1 were calculated using the value of 1.4x108 cm/s for the Fermi velocity in Ag 

[100]. Dividing the energy of the incident ion by the maximum energy of the resultant 

excited electrons gives a minimum number of excited electrons produced per ion as 

reported in Table 5.1. The maximum electron energies were also used with calculation 

methods described by Wilson and Dennison [101] to determine an approximation of the 

electron ranges, which are also shown in Table 5.1. It should be noted that although 

Wilson and Dennison claim their composite electron range function is valid for energies 
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<10eV to >10 MeV, it is possible that the electron energies in our experiments are low 

enough to cause a greater margin of error. Nienhaus et. al have reported that electrons 

with energies between 0.5 eV and 2.5 eV typically have mean free paths on the order of 

10 nm in Ag and Cu [20]. Considering the work of Nienhaus and calculations based on 

the model proposed by Wilson & Dennison, a rough approximation of the range of our 

excited electrons can be expected to be on the order of tens of nanometers in the Ag 

Schottky contact. This analysis of electron and ion ranges in Ag was the driving factor in 

using Schottky diodes with two different contact thicknesses. It was expected that some 

non-negligible portion of the excited electrons created in the thinner contact diodes (~26 

nm contact thickness) would reach the semiconductor where they would be recorded as a 

current. Conversely, essentially all of the electrons excited in the thicker contact diodes 

(~360 nm contact thickness) were expected to recombine long before being able to reach 

the metal/semiconductor interface. Therefore, while the diodes are under irradiation by 

the Na+ beam, any change in the signal of the thin contact devices that is not also 

observed in the thick contact devices can be interpreted as a kine-current. 

 The percent difference between I-V sweeps taken with the ion beam incident on 

the diode and with the ion beam off was calculated at each point along the I-V curve in 

order to investigate the kine-current. Plots of percent difference for devices irradiated 

with a 1.5 keV Na+ beam are shown in Figure 5.7. From Figure 5.7 (a), it can be seen that 

the most significant percent change in the I-V characteristics occurs around zero volts for 

the thin Schottky contact diode; however, it can be seen in Figure 5.7 (b) that the same is 

true for the thick Schottky contact diode. The zero voltage point is most likely the 
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optimal condition for detecting the kine-current due to the reduced noise in the device, 

but the fact that similar changes at zero are occurring in both the thick and thin contact 

devices indicates that the these changes do not indicate the presence of a significant kine-

current. Closer inspection of the curves in Figure 5.7 reveals that there is a larger percent 

change for the thick contact device at zero applied bias compared to the thin contact 

device. Although similar shapes of the percent change curves with peaks around zero 

were seen for other beam energies, the trend of higher percent change for the thick 

contact devices was not consistent. Because of this, and the fact that the current levels 

around zero applied bias are on the order of a few nano-Amps, these changes are most 

likely due to a limitation in the resolution of the measurement equipment. 
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Figure 5.7: Percent differences between diode I-V sweeps with a1.5 keV Na+ beam 
incident on the diodes and with the Na+ beam turned off for (a) a thin Schottky contact 

device and (b) a thick Schottky contact device   
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There are a couple different factors that might have contributed to our inability to 

observe a kine-current in the diodes while they were under irradiation. The first factor to 

consider is that the electrons are being emitted from the surface of the Ag into vacuum 

instead of moving through the Ag towards the Si substrate. From [102] the threshold 

velocity of the incident ion required for the emission of electrons from the surface can be 

calculated as: 

𝑣𝑣𝑇𝑇ℎ = 1
2
𝑣𝑣𝐹𝐹 ��1 + 𝜙𝜙𝑚𝑚

𝑑𝑑𝐹𝐹
�
1
2� − 1�          (5.15) 

where EF is the Fermi energy of the metal contact and all other variables have the same 

meaning described previously. Using values of 1.4x106 m/s, 4.26 eV, and 5.5 eV for the 

Fermi velocity of Ag, metal work function of Ag, and Fermi energy of Ag, respectively 

[74, 100, 103], results in a threshold velocity of approximately 2.3x105 m/s. For a Na+ ion 

beam, this threshold velocity corresponds to a beam energy of approximately 6.5 keV. 

Because our beam energies were well below this threshold value, it can safely be 

assumed that none of the signal electrons excited by the incident ions were lost via 

emission to vacuum. 

 The second factor that might have led to our inability to measure a kine-current is 

an insufficient signal to noise ratio. Because the reverse leakage currents of the diodes 

were relatively high, in the micro-Amp range, this factor seems to be the most likely 

culprit in the lack of kine-current observation. There are several avenues for reducing the 

background noise in the diodes for future experiments in order to have a better chance at 

detecting a kine-current. By performing the experiments at lower temperatures, the 

reverse leakage current can be reduced by suppression of thermally generated charged 
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carriers. More advanced device structures, such as guard rings, can also be implemented 

to reduce the leakage current. Reducing the diode area could possibly lead to reduced 

leakage current density by virtue of having a lower probability of defects in the Si 

substrate being in the active area of the device [1]. These defects in the Si enable leakage 

current through conduction mechanisms other than thermionic emission. Implementing 

any combination of the aforementioned changes in future experiments should serve to 

decrease the reverse leakage current of the diodes and ultimately increase the signal to 

noise ratio. With the processing tools in our lab we could create Schottky diodes with 

smaller area contacts; however, fabricating diodes with more advanced structures would 

not currently be feasible. 

 

5.4 RADIATION TOLERANCE 

 Another goal of our Schottky diode experiments was to investigate the tolerance 

of Schottky diodes to irradiation with slow heavy ions. Knowing what type of device 

degradation occurs in the diodes, and after what level of radiation exposure, is important 

when developing radiation sensing technology. In order to investigate the radiation 

tolerance of our Schottky diodes, they were exposed to Na+ beams with the 

aforementioned energies for approximately 90 minutes. I-V sweeps were performed in 10 

minute intervals, and key parameters were extracted to track changes in the diode 

characteristics. As shown in Table 5.2, the total dose of Na+ ions used in these 

experiments was on the order of 1016 ions/cm2. These ion doses were large enough to 

observe changes in the diode characteristics; however, simulations using the SRIM 
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software [90] indicate that the sputtering of Ag atoms is minimal such that there is no 

significant change to the Schottky contact thickness. This is further confirmed by visual 

inspection of the diodes after irradiation. 

 

 

Table 5.2: Total ion doses for all diodes with both thick (~360 nm) and thin (~26 nm) 
Schottky contacts. 

 
 

A sample of the effects observed during irradiation of the Schottky diodes is 

shown in Figures 5.8 and 5.9. In Figure 5.8 we show the in-situ I-V curves for both a thin 

and a thick contact diode prior to irradiation, after 10 minutes of exposure to a 0.5 keV 

Na+ beam, and after 90 minutes of exposure to a 0.5 keV Na+ beam. In Figure 5.9 we 

show the in-situ I-V curves for both a thin and a thick contact diode prior to irradiation, 

after 10 minutes of exposure to a 2.0 keV Na+ beam, and after 90 minutes of exposure to 

a 2.0 keV Na+ beam. In both figures the most noticeable change to the I-V curves is the 

reverse leakage current. For all samples, with both thick and thin Schottky contacts, 

exposed to beam energies less than 2.0 keV, the peak reverse leakage current (at -3 V) 

showed an initial decrease followed by a near monotonic increase as radiation time 

increased. At the end of the radiation routine, the peak values of the reverse current were 

about the same, or slightly larger than, the initial pre irradiation values. This trend is 

illustrated in Figure 5.8 for both thick and thin Schottky contact devices irradiated at 
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0.5 keV. However, both samples irradiated with 2.0 keV ion beams showed monotonic 

increases in reverse leakage currents throughout the radiation routine as shown in Figure 

5.9.  The initial decrease in leakage current for samples irradiated with energies less than 

2.0 keV can most likely be attributed to the creation of trapping centers that reduce the 

free carrier concentration in the semiconductor, but as the density of interface traps 

increases the net effect is an increase in defect assisted tunneling between the metal and 

semiconductor [5, 26, 92, 104]. 
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Figure 5.8: In-situ I-V curves taken prior to 0.5 keV irradiation, after 10 minutes of 
irradiation, and after 90 minutes of irradiation for (a) a thin Schottky contact device and 

(b) a thick Schottky contact device.  
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Figure 5.9: In-situ I-V curves taken prior to 2.0 keV irradiation, after 10 minutes of 
irradiation, and after 90 minutes of irradiation for (a) a thin Schottky contact device and 

(b) a thick Schottky contact device.  
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Although not nearly as easy to see in Figure 5.8 and Figure 5.9, there were also 

noticeable changes to ideality factor and barrier height for all of the diodes. These 

changes are summarized in Table 5.3, which gives initial values, final values, and percent 

change for ideality factor and barrier height of all samples. The two samples irradiated at 

2.0 keV show an increase in ideality factor and a decrease in barrier height, which is 

typical for radiation effects reported in the literature [4, 105-108]. However, all other 

samples irradiated with energies less than 2.0 keV show an overall increase in barrier 

height and an overall decrease in ideality factor. These trends for the diodes irradiated 

with energies less than 2.0 keV indicate that the diode properties are improving with 

irradiation. It is possible that there is some type of annealing effect caused by the 

irradiation [2, 4]; however, the increase of the peak reverse leakage current seems to 

somewhat contradict the idea that the diode quality is improving. From Table 5.3, it can 

also be seen that percent changes were more severe for the thin contact devices than the 

thick contact devices. This is true for all cases except for the change in barrier height at 

0.5 keV irradiation, where the magnitude of change is approximately equal for both the 

thick and thin Schottky contact diodes. The more severe changes in the thin contact 

diodes are expected due to the fact that more secondary electrons are able to reach the 

metal semiconductor interface. It can also be observed from Table 5.3 that the initial 

value of ideality factor varies between the diodes. Although not ideal, this is not a serious 

issue since we are primarily focused on changes in the diode parameters. 
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Table 5.3: Initial values, final values, and associated percent change for ideality factor 
and barrier height extracted from in-situ I-V curves for both thick (~360 nm) and thin 

(~26 nm) Schottky contact diodes. 
 
 

Considering the Schottky-Mott and Bardeen limits can be useful for trying to 

reconcile the seemingly contradictory trends in barrier height, ideality factor, and peak 

reverse leakage current that are observed in the diodes irradiated with beam energies less 

than 2.0 keV. Using equations (5.1) and (5.6) along with material property values from 

[74], the Schottky-Mott and Bardeen limits for our thick and thin contact Ag-Si Schottky 

diodes are calculated as 0.21 eV and 0.82 eV, respectively. From the initial values of 

barrier height in Table 5.3, it can be seen that the barrier height for the diodes started out 

between the two limits, but closer to the Bardeen limit. As the devices are irradiated, it is 

likely that more interface traps are introduced at the metal/semiconductor interface such 

that the barrier height is trending towards the Bardeen limit due to an increase in the 

effects of Fermi-level pinning. The introduction of interface traps also agrees with the 

observed increase in peak reverse leakage currents due to the increase in defect assisted 

tunneling and defect assisted recombination/generation. The observed decrease in ideality 

factor seems to be at odds with this proposed rise of conduction mechanisms other than 
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thermionic emission; however, it is important to keep in mind that the ideality factor also 

serves as a measure of spatial homogeneity of the Schottky barrier height [8, 79, 109]. 

Larger ideality factors indicate a higher degree of spatial inhomogeneity of Schottky 

barrier height, and lower ideality factors indicate better spatial homogeneity. Therefore, it 

is reasonable to assume that by introducing interface states across the device, the ion 

irradiation is making the barrier height more spatially homogenous, which in turn leads to 

a decrease in the ideality factor. The post radiation measurements that were done ex-situ 

showed the same general trends in all but a couple of instances. 

C-V measurements on the Schottky diodes were also performed to provide 

another independent means of parameter extraction, which is typically presented in the 

literature on diodes. The trends in Schottky barrier height extracted from the C-V data 

agreed well with the trends from the in-situ I-V data, but the barrier heights extracted 

from the C-V data were slightly smaller. The data extracted from the C-V curves also 

indicated there was a negligible change in dopant concentration, which is to be expected 

since the ions are not penetrating into the depletion region where they can cause dopant 

deactivation. Overall, the data from the in-situ measurements gives a better representation 

of the changes occurring in the diodes than the ex-situ measurements for two reasons. 

First, the times between the end of irradiation and ex-situ characterization were varied 

between devices due to scheduling issues and procedural restraints related to cool down 

time of the ion source in the beam line. In the presence of room temperature annealing 

[110, 111], having different times between the end of irradiation and post radiation 

characterization can lead to varying degrees of recovery of the initial changes. Second, 
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the post radiation, ex-situ measurements were performed after removing the sample from 

the stainless steel platen. Removing the sample exposes the diode to mechanical stresses 

that can possibly change device properties. 

 

5.5 SUMMARY AND CONCLUSIONS 

 In this chapter, the general model and operation of a basic Schottky diode was 

described. The barrier formation was discussed and the Richardson-Dushman equation 

for current in the diode arising from thermionic emission was presented. Several second 

order considerations including Fermi-level pinning and Schottky barrier lowering were 

also described. Methods for extracting key parameters from I-V and C-V data were also 

presented. 

 We have irradiated Schottky diodes with Na+ beams with energies of 0.5 keV, 

1.0 keV, 1.5 keV, and 2.0 keV in order to investigate hot electron current detection and 

diode radiation tolerance. Diodes of two different thicknesses (~26 nm and ~360 nm) 

were irradiated at each energy level, for the purpose of verifying a hot electron signal 

based on the expected range in the Ag Schottky contact. Unfortunately, no kine-current 

arising from the hot electrons was detected, but future experiments carried out at lower 

temperatures and with different device structures might lead to improved results. For 

energies less than 2.0 keV, diodes with both thick and thin contacts showed an 

improvement in barrier height and ideality factor while only showing slight degradation 

in reverse leakage current. This was attributed to the spatially homogenous creation of 

interface states in the diode. At 2.0 keV the diodes experience degradation in all key 
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parameters as expected based on previous results in the literature. This work provides a 

good foundation for future work with Schottky diodes in the EBIT. In this work the Na+ 

ions have negligible potential energy, but for the slow highly charged ions produced in 

the EBIT the potential energy is on par with or greater than the kinetic energy. Knowing 

how the Schottky diodes respond to the kinetic energy of the Na+ beams is critical for 

being able to isolate the effects of the potential energy of the slow highly charged ions. 
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CHAPTER 6 

FUTURE WORK 
 

6.1 MOS CAPACITORS 

 Chapter 4 of this dissertation reports on the clear charge state dependence of HCI 

effects observed for irradiated MOS capacitors. Although we are pleased with this initial 

result, we feel that it is the first of many steps in a larger experiment that will lead to 

better understanding of HCI/device interaction and ultimately accurate sensors for slow 

HCIs. Several of the different possible extensions of the work reported in this dissertation 

are outlined and briefly discussed below. 

 Perhaps the most obvious experiment that could be performed next would be an 

irradiation of MOS capacitors with thin metal contacts deposited prior to the irradiation. 

Although sensors could in theory be constructed such that the bare oxide is exposed for 

some amount of time before depositing the capacitor gate metal and then taking a 

reading, such devices would not be practical. Experiments could begin with a very thin 

top metal contact (~20 nm) deposited prior to irradiation, but the thickness could be 

increased in order to see how the effects of the HCI irradiation change as the distance 

between the initial impact and the active region of the capacitor increases. 

 Another important next step that should be pursued is to repeat the experiments 

with varied ion beam parameters. The motivation for investigating the various beam 

parameters at different settings is described in the bullets below. 
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• By irradiating MOS capacitors with a wider range of charge states it would be 

possible to gain a better understanding of the charge state dependence of effects 

observed in the electrical characterization.  

• Varying the HCI fluence by adjusting the irradiation time would also be useful. 

Experimenting in a sample space where the effects of fluence are in a linear 

regime would avoid the averaging that we were required to perform in order to 

obtain meaningful results for the data reported previously. Identifying a linear 

regime without saturation might also lead to more accurate results regarding 

charge state dependence. The fluence can also be adjusted so that the experiments 

represent conditions in the real world where HCIs are present. For example, 

accelerated testing could be performed to investigate what the MOS capacitors 

would see after a year of exposure to the solar wind. 

• Varying the incidence angle of the HCIs on the samples would be useful for 

decomposing the net observed effects into their constituent parts; the effects due 

to the kinetic energy of the HCI and the effects due to the potential energy of the 

HCI. The effects from kinetic energy transfer should vary more drastically as the 

incidence angle is changed, with more substrate damage at an angle normal to the 

target and more surface sputtering at grazing angles. The effects resulting from 

potential energy transfer should not show nearly as much variation with incidence 

angle; therefore, any device properties that change significantly as the incidence 

angle is varied can be attributed to the kinetic energy of the HCI, and any device 

changes that are more or less constant as incidence angle is varied can be 



121 

attributed to the potential energy of the HCI. Figure 6.1 provides an example of 

how different observations can be attributed to the kinetic and potential energies. 

Sputter yields for Si+ ions show a strong dependence on incidence angle, 

consequently this is related to the transfer of the HCI’s kinetic energy. 

Conversely, the proton sputter yields are relatively independent of the incident 

angle meaning that the proton sputtering is primarily due to the HCI’s potential 

energy [54].  

• The kinetic energy of the HCIs could also be varied in order to provide further 

insight into the role that kinetic energy plays in the observed changes in the MOS 

capacitors.  

• A final parameter that should be adjusted is the ion species. It is important to 

understand how the devices are going to respond to different species of HCI, 

because in real world applications the sensors will be operating in environments 

that contain several different HCI species. As will be discussed later, there should 

be some type of selection process for which ions are incident on the sensor, but 

the system should be able to analyze ions of different species and energies as the 

mechanism of the selection process allows different parts of the ambient radiation 

to interact with the sensor. 

Postmortem analysis of the MOS capacitors after performing all electrical tests 

could also prove worthwhile. Using some type of microscopy (AFM, STM, and/or SEM) 

would enable the devices to be inspected for any physical damage on the outermost 
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layers. Investigating the sputtering of the top metal contacts could be important 

considering that metal layers would be very thin (tens of nanometers). 

Deep level transient spectroscopy (DLTS) could also be useful for a more detailed 

investigation of the trap levels that are present in the MOS capacitors after being exposed 

to the HCI irradiation. 
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Figure 6.1: Taken from [54]. Sputter yields from a silicon surface irradiated with 4 keV 
Xe8+ at various incidence angles. It can be seen that the Si+ sputtering was more 

dependent on the kinetic energy of the HCI, whereas the proton sputtering was dependent 
on the potential energy and independent of the kinetic energy.  
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6.2 SCHOTTKY DIODES 

 As mentioned in Chapter 5, there are several experimental changes that could be 

made in order to improve the probability of detecting a kine-current in the Schottky 

diodes exposed to slow, singly charged ion irradiation. The experiments could be carried 

out at lower temperatures in order to decrease the background noise arising from 

thermally generated carriers. Schottky contacts with smaller diameters might lead to 

reduced reverse leakage currents due to a smaller number of defects in the silicon below 

the Schottky contacts [1]. More advanced diode structures, such as guard rings, might 

allow further reduction of the reverse leakage currents. Any combination of these 

approaches should lead to a lower reverse leakage current, and ultimately a higher signal 

to noise ratio. 

Another clear next step for the Schottky diode experiments would be to irradiate 

devices in the EBIT. Some preliminary experiments with Schottky diodes were 

performed in the EBIT, but unfortunately the EBIT has been offline for most of the past 

couple of years due to technical issues. After initial experiments are completed, the 

parameters of the HCI beam (charge state, fluence, incidence angle, kinetic energy, and 

ion species) could be varied for the reasons described in the previous section. 

 The two diodes irradiated as part of the preliminary EBIT experiment were 

fabricated on <111> silicon with a phosphorus dopant (3.4 Ω-cm < ρ < 4.6 Ω-cm). Silver 

frontside contacts were deposited prior to irradiation and had diameters of 6 mm and 

approximate thicknesses of 20 nm. Both diodes were irradiated with a 15 keV C5+ beam 

with a fluence of ~1013 ions/cm2. These beam parameters where chosen to approximate 
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conditions seen in the solar wind [12]. Several sets of I-V measurements were taken prior 

to irradiation, one set of I-V measurements was taken within two hours of the completion 

of the irradiation, and several more sets of I-V measurements were taken over the weeks 

following the irradiation.  

There were notable changes in the characteristics of the two diodes that were 

irradiated in the EBIT as part of the preliminary experiments; however, the initial quality 

of one of the diodes was rather questionable (η=3.8 and reverse leakage on the order of 

100 μA). Accordingly, only the better of the two diodes will be discussed in any detail, 

but it is worth mentioning that the same general trends were also observed for the poorer 

quality diode. As can be seen in Figure 6.2 parts (a) and (b), both the forward and reverse 

current showed an appreciable increase in magnitude after irradiation. Although not 

shown here, the currents did seem to be trending towards the pre-irradiation values as 

subsequent I-V measurements were performed over the weeks following the irradiation. 

The forward I-V curves were used to extract values for the barrier height and the ideality 

factor of the diode via the procedure described in Chapter 5. Figure 6.2 (c) shows that the 

barrier height decreased by nearly 16% following HCI irradiation, and then remained 

somewhat stable at the reduced value. Figure 6.2 (d) shows that the ideality factor 

increased by approximately 150%, and then remained fairly stable. These results seem to 

indicate that the HCI irradiation is creating new methods of conduction between the 

silicon substrate and the Schottky contact. It is likely that defects created at the 

metal/semiconductor interface are leading to defect-assisted tunneling through the 

Schottky barrier. It is also possible that the HCIs create defects in the semiconductor 
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depletion region, subsequently allowing for increased trap-assisted carrier recombination. 

Both of the two aforementioned processes would lead to an increase in observed current 

and a change from the dominance of thermionic emission of electrons over the Schottky 

barrier. 

Once the EBIT is back online, more experiments should be performed in to order 

to better quantify and understand the observed effects. In addition to irradiating single 

Schottky diodes with 6 mm diameter contacts, it might be worthwhile to attempt several 

HCI irradiations on samples with an array of smaller Schottky diodes similar to what was 

used for the MOS experiments described previously in Chapter 4. This could potentially 

help to improve the initial quality of the diodes [1]. 
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Figure 6.2: (a) Pre and post irradiation forward I-V curves shown on a semi-log plot. (b) 
Pre and post irradiation reverse I-V curves. Changes in average barrier height (c) and 

ideality factor (d) of the Schottky diode. For parts (c) and (d) the Day axis can be 
understood as 0 = preirradiation, 1 = post irradiation; day of irradiation, 2 = day after 

irradiation, etc.  
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6.3 PROTOTYPE SLOW HCI SENSOR 

 The MOS capacitors and Schottky diodes discussed up to this point would only 

serve as the final stage in a multi-stage radiation sensing device. In order for a slow HCI 

sensing device to be useful in realistic radiation environments it must be able to isolate 

the various components that are present, and determine the effects due to each component 

of the overall radiation. A possible schematic for a slow HCI sensing apparatus is shown 

below in Figure 6.3, and the purpose of each section of the apparatus will be described 

below. The goal would be for the sensor to be able to isolate components of a radiation 

environment based on the ion species, ion kinetic energy, and ion charge state. The basic 

schematic in Figure 6.3 is able to isolate most components, but there are still some 

challenges that would need to be overcome as discussed below. 
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Figure 6.3: Simple schematic for a prototype slow HCI sensing apparatus.  
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The first stage of the prototype sensor would be an Einzel lens which would 

collimate the ambient radiation into a beam directed towards the sensor. The second stage 

would be a Wien filter which would serve as a velocity filter. The Wien filter would 

consist of an electric field and a magnetic field which are orthogonal to each other and 

orthogonal to the velocity of the incoming ion beam. The force on the ions due to the 

electric field is shown in equation (6.1) and the force on the ions due to the magnetic field 

is shown in equation (6.2). 

�⃑�𝐹𝑑𝑑 = 𝑄𝑄𝐸𝐸�⃑               (6.1) 

�⃑�𝐹𝑄𝑄 = 𝑄𝑄�⃑�𝑣 × 𝐵𝐵�⃑ = 𝑄𝑄�⃑�𝑣𝐵𝐵�⃑ ;      since �⃑�𝑣 and 𝐵𝐵�⃑  are orthogonal        (6.2) 

where Q is the charge on the ion (i.e. the charge state for an HCI), 𝐸𝐸�⃑  is the electric field, 

𝐵𝐵�⃑  is the magnetic field, and �⃑�𝑣 is the ion velocity. When the force of the electric field 

acting on an ion is equal to the magnetic field acting on the same ion the two forces 

essentially cancel out and the ion is able to pass through the Wien filter. Equating the 

forces from equations (6.1) and (6.2) results in the pass velocity shown in equation (6.3). 

�⃑�𝑣 = 𝑑𝑑�⃑

𝑄𝑄�⃑
               (6.3) 

As can be seen in equation (6.3) there is no dependence on the ion charge state. The only 

ion parameter that determines whether or not it passes through the Wien filter is the ion 

velocity. 

 The third state of the slow HCI sensing apparatus would be an electrostatic 

analyzer (ESA). The ESA would consist of an electric field that is applied to the ions that 

are passed through the Wien filter. The geometry of the ESA would allow ions with a 
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desired energy to charge ratio �𝑑𝑑
𝑞𝑞
� to pass through the filter while those ions with 

different energy to charge ratios would collide with the chamber walls. For nonrelativistic 

particles the energy of the ions is given by equation (6.4). 

𝐸𝐸 = 1
2
𝑚𝑚𝑣𝑣2              (6.4) 

After passing through the Wien filter all ions would have the same velocity which means 

that any variation in energy of the ions after the Wien filter are due to differences in 

mass. So for the particular setup proposed in Figure 6.3 the ESA is filtering based on the 

mass to charge ratio �𝑚𝑚
𝑞𝑞
�. This type of filter would work fine for a majority of the 

components in the radiation environment, but an issue arises for degenerate charge states. 

Degenerate charge states occur when two or more different HCI species have the same 

charge to mass ratio such as C6+ and O8+.  

 At the moment there is not a completely satisfactory solution to the inability of 

the apparatus shown in Figure 6.3 to distinguish between different HCIs with the same 

mass to charge ratios. By tuning the ESA to avoid mass to charge ratios corresponding to 

degenerate charge states the issue could be avoided, but obviously this comes with the 

disadvantage of not being able to isolate every component of the radiation environment. 

It might be possible to allow multiple degenerate charge states through the ESA at once 

and then deconvolve the effects in the analysis somehow, but more preliminary work 

performed by varying several of the EBIT beam parameters would be required in order to 

determine the feasibility of this solution. Another potential solution could be employing 

an inhomogeneous magnetic field between the ESA and the final sensor to sort 



132 

degenerate charge states that have different magnetic moments. This most likely would 

not work for all cases however. 

 Another issue that will need to be addressed is the radiation hardness of the final 

sensing component in the apparatus shown in Figure 6.3. Semiconductor materials that 

are more radiation hard, such as SiC and GaN, might be instrumental in extending the 

useful lifetime of the sensor. More sophisticated devices structures like guard rings for 

the Schottky diodes could also be helpful in extending the sensor lifetime. Regardless of 

the materials and device structure used there will eventually be some degradation to 

device characteristics, so using some type of annealing to repair the radiation damage 

between measurements could be key in reducing cost associated with replacing sensors. 

A rapid thermal annealing processing seems more suitable than a traditional bake given 

the relatively small size of the sensor and the various extreme environments in which it 

will operate. 
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Appendix B 

Guides and MATLAB Code for Analysis with MOS Work 

B.1   Procedure for Gaussian Analysis 
 

1. Enter the desired data (e.g. VFB) into an Excel spreadsheet in matrix form so as to 
match the physical distribution of the actual sample. See the file 
“Ar1_4.05E12.xlsx” for an example. 

a. Note: If there were only one or two bad devices in the matrix Dhruva 
‘created’ a value for those bad devices by averaging the values of all 
adjacent devices. 

2. Go to the HOME tab in MATLAB and select Import Data. Navigate to the 
appropriate folder, select the desired file and click ‘open’. Along the top ribbon, 
above IMPORTED DATA, select Matrix. Click the green check mark above 
IMPORT to import the data to the workspace.  

3. Repeat the previous step for all samples that you want to be considered in the 
analysis. 

4. Once all sample data is in the MATLAB Workspace click on Save Workspace in 
the HOME tab. Now the workspace can be easily reloaded at a later time as 
opposed to importing the individual spreadsheets again. 

5. Open the file call_myconvert.m in MATLAB. 
a. Select the desired spacing for interpolation (Dhruva typically used 0.1; 

this means ten points were interpolated between each actual data point 
both horizontally and vertically). 

b. For each sample that you are analyzing there should be a line calling the 
myconvert function. Select filenames for the 3 output files (left side of 
equation), and specify the filename of the input file in the workspace 
(right side of the equation). 

c. For more details on the myconvert.m file see the comments in the 
MATLAB code which explain everything. 

6. Type cftool into the MATLAB command window to open the curve fitting tool 
a. For x data, y data, and z data, select the first, second, and third outputs 

from the myconvert function respectively. 
b. In the top center of the cftool window there is a drop down menu that 

defaults to “Interpolant”. Change this to “Custom Equation” and then in 
the large text box below paste a copy of the Gaussian equation from the 
text file “2dgaussian_function_typed.txt”. 
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c. Click the box that says “Fit Options…”, right below where the Gaussian 
equation was entered. From here you can manually adjust the fit. Dhruva 
adjusted the lower and upper limits for sigx, sigy, and theta as shown in 
column N of the first sheet in “fits_50nm.xlsx”. 

7. Copy the key parameters from the “Results” box of the cftool window into an 
Excel spreadsheet as done in “fits_50nm.xlsx”. (Key parameters include A, sigx, 
sigy, theta, x0, and y0. You might also want to copy some of the parameters 
describing the goodness of fit (i.e. R-square, SSE, etc.) in the “Table of Fits” 
window at the bottom of the cftool window.) 

a. Calculate a, b, and c values from the theta, sigx, and sigy values. (See the 
second sheet of “fits_50nm.xlsx” for conversion equations. 

b. Create a sheet containing the following variables for each sample: A, x0, 
y0, a, b, c, xmin, ymin, xmax, and ymax. Where the min and max for x and 
y correspond to the min and max for the columns and rows respectively of 
the original capacitor matrix. Save this sheet as a .txt file for later steps 
(not entirely sure that transferring this to a text file is necessary… 
spreadsheet should be fine). 

8. Import the data from step 7) b. into MATLAB from either the Excel spreadsheet 
or the text file. Import using the same procedure from step 2, except select 
Column vectors instead of Matrix. 

9. Run the code integration_script.m, and be sure that the name of your fit 
parameters that were imported in the previous step match exactly with variables 
that are the input arguments to the make_elliptical_gaussian function that is 
called within the integration_script.m. 

a. Note: the file make_elliptical_gaussian.m should be in the same directory 
(and possibly open) in order for integration_script.m to work properly. 

10. Use the output arrays average_Vfb (variable name might change if a different 
parameter is being investigated) and adjusted_dose to create a plot of the changes 
vs. fluence/dose (for HCIs there can be several different data sets for different 
charge states). 
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B.2   Code for interpolating data points 
 
call_myconvert_stretchout.m 
 
%run this file to call myconvert  
%[x,y,z]=myconvert(,spacing) 
  
%Changes the 'resolution' of the interpolated points (DC) 
spacing = 0.1 
  
  
[Ar11_F1x,Ar11_F1y,Ar11_F1z]=myconvert_stretchout(Ar11_F1,spacing) 
[Ar11_F2x,Ar11_F2y,Ar11_F2z]=myconvert_stretchout(Ar11_F2,spacing) 
[Ar11_F3x,Ar11_F3y,Ar11_F3z]=myconvert_stretchout(Ar11_F3,spacing) 
  
%[Ar1_573E13x,Ar1_573E13y,Ar1_573E13z]=myconvert_stretchout(Ar1_573E13,
spacing) 
  
[Ar4_F1x,Ar4_F1y,Ar4_F1z]=myconvert_stretchout(Ar4_F1,spacing) 
[Ar4_F2x,Ar4_F2y,Ar4_F2z]=myconvert_stretchout(Ar4_F2,spacing) 
[Ar4_F3x,Ar4_F3y,Ar4_F3z]=myconvert_stretchout(Ar4_F3,spacing) 
  
[Ar8_F1x,Ar8_F1y,Ar8_F1z]=myconvert_stretchout(Ar8_F1,spacing) 
[Ar8_F2x,Ar8_F2y,Ar8_F2z]=myconvert_stretchout(Ar8_F2,spacing) 
[Ar8_F3x,Ar8_F3y,Ar8_F3z]=myconvert_stretchout(Ar8_F3,spacing) 
  
%[Pristinex,Pristiney,Pristinez]=myconvert_stretchout(Pristine,spacing) 
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myconvert_stretchout.m 
 
% This accepts as input a matrix 'a' and 'spacing' 
% a is in grid format, use workspace50nm-grids-imported.mat for 
example. 
% interpolates with interp2 and k  
% then returns variables ax, ay, az as the xyz components of the 
interpol- 
% ated matrix. These xyz columns can then be used for fitting 
% also, in this specific case, we will convert entered negative shifts 
% to positive shifts 
  
%Comments inside the function are by Daniel Cutshall while trying to 
%understand the code. See the comments at the end first for easier 
%interpretation. 
function [ax,ay,az] = myconvert(a,spacing) 
%a=-1.*a       %Makes all of the negative Vfb values positive 
[m,n]=size(a) %[rows,columns] 
len=m*n       %Is this even used? 
  
i=1 
for yi=1:m    %This set of for loops seems to convert the input matrix, 
a, 
    for xi=1:n %to an array, ag, one row at a time 
        ag(i)=a(yi,xi); 
        i=i+1; 
    end 
end 
  
i=1 
for yi=0:m-1  %This set of for loops seems to create two arrays to 
index the values in the previously 
    for xi=0:n-1 %created array, ag, to the original matrix, a. 
        x(i)=xi;  
        y(i)=yi; %i.e. x(1)=1 and y(1)=0 indicates ag(1) is from column 
1 and row 0 of input matrix a 
        i=i+1; 
    end 
end 
x=x';  %Transposes x array 
y=y';  %Transposes y array 
  
i=1 
for yi=0:spacing:m-1 
    for xi=0:spacing:n-1 
        ax(i)=xi; %ax=[0,spacing,2*spacing,3*spacing,...,n-
1,0,spacing,2*spacing,...,n-1,...] 
        ay(i)=yi; 
%ay=[0,0,...,spacing,spacing,...,2*spacing,2*spacing,...,m-1] 
        i=i+1; 
    end 
end 
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ax=ax'; %Transposes ax array 
ay=ay'; %Transposes ay array 
  
az=griddata(x,y,ag,ax,ay); 
%x and y are arrays of sample point coordinates 
%ag is an array of sample values 
%ax and ay are arrays of query points 
%az is an array of interpolated values 
%'griddata' defaults to linear interpolation, but other options are 
%available (nearest, natural, cubic, V4). 
end 
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B.3   Code for creating Gaussian fit and integrating across the surface 
 
make_elliptical_gaussian.m 
function foo = make_elliptical_gaussian(A,x0,y0,a,b,c) 
    disp('In foo!') 
    foo = @elliptical_gaussian; 
    function z=elliptical_gaussian(x,y) 
        z=A*exp(-(a*(x-x0).^2 + 2*b*(x-x0).*(y-y0) + c*(y-y0).^2)) 
        %z=x./x; 
    end 
end 
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integration_script_stretchout.m 
 
%load workspace 'integration_workspace.mat' 
  
%Note that 'integration_workspace.mat' is created by importing 
%'fit_parameters_for_integration_script.txt' (Daniel C) 
  
fullrangexmin=-22.5/(2*2.5); %Border values for an Area corresponding 
to the 
fullrangexmax=+22.5/(2*2.5); %1" diameter Faraday cup (22.5mm x 22.5mm 
square). 
fullrangeymin=-22.5/(2*2.5); %Converted to 'Capacitor Coordinate 
Points', e.g. for a  
fullrangeymax=+22.5/(2*2.5); %5x5 matrix the top left capacitor is at 
x=0 y=0 and the  
                             %bottom right capacitor is at x=4 and y=4. 
                             %The 2.5 factor comes from the 2.5mm  
                             %center-to-center distance between 
capacitors 
  
%Zeroing arrays initially (Daniel C) 
integral_vals_on_sample_range=zeros([length(a),1]); 
integral_vals_on_full_range=zeros([length(a),1]); 
integral_vals_on_full_range_2=zeros([length(a),1]); 
  
%Following lines added by Daniel C (updated manually if samples are 
changed) 
nominal_dose=[3.34E13,5.97E13,1.13E14,3.07E13,5.83E13,1.11E14,2.89E13,5
.50E13,1.04E14]; 
charge_state=[4,4,4,8,8,8,11,11,11]; 
charge_dose=nominal_dose.*charge_state; 
  
for i=1:length(a) %'a' is the length of each imported fit parameter 
array (DC) 
    foo=make_elliptical_gaussian(A(i),x0(i),y0(i),a(i),b(i),c(i)); 
%Make elliptical Gaussian for each sample (DC) 
     
    %Integrate the Gaussian curve for each sample over the sample area 
    %(arbitrary units). Divide this by the number of samples (i.e. 
area) 
    %for average Vfb (DC) 
    
integral_vals_on_sample_range(i)=integral2(foo,xmin(i),xmax(i),ymin(i),
ymax(i)); 
     
    %This integral is not useful... use shifted version, full_range_2 
    %instead 
    
integral_vals_on_full_range(i)=integral2(foo,fullrangexmin,fullrangexma
x,fullrangeymin,fullrangeymax); 
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    %Integrating across an area equal to that of the Faraday cup 
(fullrange values 
    %above) but centered on the peak of the Gaussian fit function. 
    integral_vals_on_full_range_2(i)=integral2(foo,x0(i)-
fullrangexmin,x0(i)-fullrangexmax,y0(i)-fullrangeymin,y0(i)-
fullrangeymax); 
     
    %Lines below here are written by Daniel C. 
    Dhruva_average_Vfb(i)=integral_vals_on_sample_range(i)/((xmax(i)-
xmin(i))*(ymax(i)-ymin(i))); %confirmed to be incorrect 
    
Dhruva_adjusted_dose(i)=integral_vals_on_sample_range(i)/integral_vals_
on_full_range(i)*nominal_dose(i); %better to use full_range_2 
    
    %Average Vfb calculation 
    average_Vfb(i)=integral_vals_on_sample_range(i)/((xmax(i)-
xmin(i)+1)*(ymax(i)-ymin(i)+1)); 
    %Adjusted dose calculation 
    
adjusted_dose(i)=integral_vals_on_sample_range(i)/integral_vals_on_full
_range_2(i)*nominal_dose(i); 
    adjusted_charge_dose(i)=adjusted_dose(i)*charge_state(i); 
     
    %Assumes that sample is centered on Faraday cup of 22.5mm x 22.5 
mm; 
    %full_range_2 might be a better approximation 
    integral_vals_on_fc(i)=integral2(foo,-2.5,6.5,-2.5,6.5); 
    
adjusted_dose_fc(i)=integral_vals_on_sample_range(i)/integral_vals_on_f
c(i)*nominal_dose(i); 
     
end 
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Appendix C 

MATLAB Code for Analysis with Schottky Diode Work 

C.1   Code for plotting curves in various scenarios 
 
Plotting_IV.m 
%Daniel Cutshall 
%August 2018 
%Code to quickly plot I-V data for diodes vs. a reference 
  
%USER INPUT - Filename 
%If importing from .xlsx file put headers in the first row of each 
column 
%so that data isn't omitted. 
tableA=readtable('G27NA#16_PreRad_IV.xls'); 
A=table2array(tableA); 
  
%USER INPUT - Filename of reference data (e.g. discrete diode) 
ref='IN4004.xls'; 
tableB=readtable(ref); 
B=table2array(tableB); 
  
%Get dimensions of table for creating data arrays 
rowsA=height(tableA); 
rowsB=height(tableB); 
  
%Set up zeroed arrays for current, voltage, and |current| 
refI=zeros(rowsB,1); 
refV=zeros(rowsB,1); 
absrefI=zeros(rowsB,1); 
I1=zeros(rowsA,1); 
V=zeros(rowsA,1); 
absI1=zeros(rowsA,1); 
  
%Arrange data into individual arrays. 
%Change indices in A matrix to match how the data is arranged in the  
%spreadsheet or text file. 
for j=1:1:rowsA 
    I1(j,1)=A(j,1); 
    absI1(j,1)=abs(I1(j,1)); 
    V(j,1)=A(j,2); 
end 
  
%Change indices in B matrix to match how the data is arranged in the  
%spreadsheet or text file. 
for j=1:1:rowsB 
    refI(j,1)=B(j,1); 
    absrefI(j,1)=abs(refI(j,1)); 
    refV(j,1)=B(j,2); 
end 
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%Output plots. The figure() funtion allows multiple figures to display 
from 
%the same script. The "hold on" command plots the curve on the previous 
%graph with any existing data. 
figure() 
plot(V,I1,'Linewidth',1.5) 
xlabel('Voltage [V]') 
ylabel('Current [A]') 
grid on        %Turn on major gridlines 
axis([-3 3 -1E-6 12E-3]) 
  
hold on 
plot(refV,refI,'Linewidth',1.5) 
xlabel('Voltage [V]') 
ylabel('Current [A]') 
grid on        %Turn on major gridlines 
axis([-3 3 -1E-6 12E-3]) 
legend('25nm D16',ref) 
  
figure() 
semilogy(V,absI1,'Linewidth',1.5) 
xlabel('Voltage [V]') 
ylabel('Current [A]') 
grid on 
axis([-3 3 1E-10 10E-3]) 
  
hold on 
semilogy(refV,absrefI,'Linewidth',1.5) 
xlabel('Voltage [V]') 
ylabel('|Current| [A]') 
grid on 
axis([-3 3 1E-10 10E-3]) 
legend('25nm D16',ref) 
  
%The following code added after plotting will allow a fixed window size 
for 
%all plots for easier visual comparison if desired: 
% 
%axis([xlow xhigh ylow yhigh]) 
%  
%where 'low' and 'high' indicate lower and upper limits of the display 
for 
%the corresponding axis, respectively. 
  
%To add a legend to either of the plots include the following code 
after 
%the command that generates the plot: 
% 
%legend('run1','run2','run3') 
% 
%where 'run1', 'run2', and 'run3' are the labels of the data sets. 
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%Could also use the following to generate the legend from the filenames 
of 
%the inputs: 
% 
%legend(file1,file2,file3) 
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Plotting_IV_1run.m 
%Daniel Cutshall 
%July 2018 
%Code to import Schottky diode I-V data from txt file and create plots 
  
%USER INPUT - Filename 
tableA=readtable('SiSD15_0.50keV_Max_PostRad2.txt'); 
A=table2array(tableA); 
  
%Get dimensions of table for creating data arrays 
rows=height(tableA); 
  
%Set up zeroed arrays for current, voltage, and |current| 
I1=zeros(rows,1); 
V=zeros(rows,1); 
absI1=zeros(rows,1); 
  
%Arrange data into individual arrays. 
%Change indices in A matrix to match how the data is arranged in the  
%spreadsheet or text file. 
for j=1:1:rows 
    I1(j,1)=A(j,2); 
    absI1(j,1)=abs(I1(j,1)); 
    V(j,1)=A(j,1); 
end 
  
%Output plots. The figure() funtion allows multiple figures to display 
from 
%the same script 
figure() 
plot(V,I1,'Linewidth',1.5) 
xlabel('Voltage [V]') 
ylabel('Current [A]') 
grid on        %Turn on major gridlines 
  
figure() 
semilogy(V,absI1,'Linewidth',1.5) 
xlabel('Voltage [V]') 
ylabel('Current [A]') 
grid on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%The following code added after plotting will allow a fixed window size 
for 
%all plots for easier visual comparison if desired: 
% 
%axis([xlow xhigh ylow yhigh]) 
% 
%where 'low' and 'high' indicate lower and upper limits of the display 
for 
%the corresponding axis, respectively. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%To add a legend to either of the plots include the following code 
after 
%the command that generates the plot: 
% 
%legend('run1','run2','run3') 
% 
%where 'run1', 'run2', and 'run3' are the labels of the data sets. 
%Could also use the following to generate the legend from the filenames 
of 
%the inputs: 
% 
%legend(file1,file2,file3) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
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Plotting_IV_3runs.m 
 
%Daniel Cutshall 
%July 2018 
%Code to import Schottky diode I-V data from txt files and create plots 
  
%USER INPUT - 1st Filename 
tableA=readtable('SiSD15_0.50keV_Max_Rad2.txt'); 
A=table2array(tableA); 
  
%USER INPUT - 2nd Filename 
tableB=readtable('SiSD15_0.50keV_Max_PostRad2.txt'); 
B=table2array(tableB); 
  
%USER INPUT - 3rd Filename 
tableC=readtable('SiSD15_0.50keV_25_Max_Rad1.txt'); 
C=table2array(tableC); 
  
%Get dimensions of table for creating data arrays 
rows=height(tableA); 
  
%Set up zeroed arrays for current, voltage, and |current| 
I1=zeros(rows,1); 
I2=zeros(rows,1); 
I3=zeros(rows,1); 
V=zeros(rows,1); 
absI1=zeros(rows,1); 
absI2=zeros(rows,1); 
absI3=zeros(rows,1); 
  
%Arrange data into individual arrays. 
%Change indices in A matrix to match how the data is arranged in the  
%spreadsheet or text file. 
for j=1:1:rows 
    I1(j,1)=A(j,2); 
    I2(j,1)=B(j,2); 
    I3(j,1)=C(j,2); 
    absI1(j,1)=abs(I1(j,1)); 
    absI2(j,1)=abs(I2(j,1)); 
    absI3(j,1)=abs(I3(j,1)); 
    V(j,1)=A(j,1); 
end 
  
%Output plots. The figure() funtion allows multiple figures to display 
from 
%the same script 
figure() 
plot(V,I1,'Linewidth',1.5) 
xlabel('Voltage [V]') 
ylabel('Current [A]') 
grid on        %Turn on major gridlines 
hold on        %Allows following data to be plotted on the same graph 
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plot(V,I2,'Linewidth',1.5) 
xlabel('Voltage [V]') 
ylabel('Current [A]') 
grid on 
hold on 
  
plot(V,I3,'Linewidth',1.5) 
xlabel('Voltage [V]') 
ylabel('Current [A]') 
grid on 
  
figure() 
semilogy(V,absI1,'Linewidth',1.5) 
xlabel('Voltage [V]') 
ylabel('Current [A]') 
grid on 
hold on 
  
semilogy(V,absI2,'Linewidth',1.5) 
xlabel('Voltage [V]') 
ylabel('Current [A]') 
grid on 
hold on 
  
semilogy(V,absI3,'Linewidth',1.5) 
xlabel('Voltage [V]') 
ylabel('Current [A]') 
grid on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%The following code added after plotting will allow a fixed window size 
for 
%all plots for easier visual comparison if desired: 
% 
%axis([xlow xhigh ylow yhigh]) 
% 
%where 'low' and 'high' indicate lower and upper limits of the display 
for 
%the corresponding axis, respectively. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%To add a legend to either of the plots include the following code 
after 
%the command that generates the plot: 
% 
%legend('run1','run2','run3') 
% 
%where 'run1', 'run2', and 'run3' are the labels of the data sets. 
%Could also use the following to generate the legend from the filenames 
of 
%the inputs: 
% 
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%legend(file1,file2,file3) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
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Plotting_PercentDiff.m 
 
%Daniel Cutshall 
%July 2018 
%Code to calculate and plot both difference and percent difference 
between 
%pre-rad and post-rad Schottky diode I-V curves 
  
%USER INPUT - Filename for 'reference' run 
tableA=readtable('G26NA#1_PreRad_IV.xls'); 
A=table2array(tableA); 
  
%USER INPUT - Filename for second run to be compared to the reference 
run 
tableB=readtable('G26NA#3_PreRad_IV.xls'); 
B=table2array(tableB); 
  
%Get dimensions of table for creating data arrays 
rows=height(tableA); 
  
%Set up zeroed arrays for currents, voltage,difference, and percent 
%difference 
I1=zeros(rows,1); 
I2=zeros(rows,1); 
V=zeros(rows,1); 
diff=zeros(rows,1); 
percdiff=zeros(rows,1); 
  
%Arrange data into individual arrays and calculate percent difference. 
%Change indices in A matrix to match how the data is arranged in the  
%spreadsheet or text file. 
for j=1:1:rows 
    I1(j,1)=A(j,1); 
    I2(j,1)=B(j,1); 
    V(j,1)=A(j,2); 
     
    diff(j,1)=I2(j,1)-I1(j,1); 
    percdiff(j,1)=(diff(j,1)/I1(j,1))*100; 
end 
  
%Output plots. The figure() funtion allows multiple figures to display 
from 
%the same script 
figure() 
plot(V,diff,'Linewidth',1.5) 
xlabel('Voltage [V]') 
ylabel('Difference') 
grid on 
  
figure() 
plot(V,percdiff,'Linewidth',1.5) 
xlabel('Voltage [V]') 
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ylabel('Percent Difference') 
grid on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%The following code added after plotting will allow a fixed window size 
for 
%all plots for easier visual comparison if desired: 
% 
%axis([xlow xhigh ylow yhigh]) 
% 
%where 'low' and 'high' indicate lower and upper limits of the display 
for 
%the corresponding axis, respectively. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%To add a legend to either of the plots include the following code 
after 
%the command that generates the plot: 
% 
%legend('run1','run2','run3') 
% 
%where 'run1', 'run2', and 'run3' are the labels of the data sets. 
%Could also use the following to generate the legend from the filenames 
of 
%the inputs: 
% 
%legend(file1,file2,file3) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
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C.2   Code for extracting diode parameters from I-V data 
 
IV_Parameter_Extraction.m 
 
%Daniel Cutshall 
%July 2018 
%Code to extract Barrier Height and Ideality Factor from I-V data. 
  
%USER INPUT - Filename 
%If importing from .xlsx file put headers in the first row of each 
column 
%so that data isn't omitted. The first sheet in the workbook is the 
only 
%thing that will be imported; can alter code to change this if desired. 
tableA=readtable('G26NA#1_PreRad_IV.xls'); 
A=table2array(tableA); 
  
%USER INPUT - Step size [V] 
step=0.01; 
n=log10(step); 
  
%USER INPUT - Diode diameter [cm] 
d=0.6; 
Area=pi*(d/2)^2; 
  
%Get dimensions of table for creating data arrays 
rows=height(tableA); 
  
%Set up zeroed arrays for current, voltage, and current density 
I=zeros(rows,1); 
roundedV=zeros(rows,1); 
currDens=zeros(rows,1); 
  
%Arrange data into individual arrays 
%Change indices in A matrix to match how the data is arranged in the  
%spreadsheet or text file. 
%Voltage data is rounded because sometimes when measuring I record 
measured 
%voltage instead of programmed voltage. 
for j=1:1:rows 
    I(j,1)=A(j,1); 
    currDens(j,1)=I(j,1)/Area; 
    roundedV(j,1)=round(A(j,2),-n); 
end 
  
%Display semilog plot of J-V data to the user for determination of 
linear 
%region start and end points 
semilogy(roundedV,currDens) 
grid on 
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%Prompt User for starting and ending points of the linear region 
prompt='Enter the voltage corresponding to the start of the linear 
region in volts.\n'; 
stLinear=input(prompt); 
prompt='Enter the voltage corresponding to the end of the linear region 
in volts.\n'; 
endLinear=input(prompt); 
  
%Create zero arrays for voltage and current density in the linear 
region 
LinearLength=int64((endLinear-stLinear)/step+1); 
linearV=zeros(LinearLength,1); 
linearJ=zeros(LinearLength,1); 
  
%Create modified versions of the inital I-V arryas that only include 
data 
%for the linear region. 
j=roundedV(1,1); 
i=1; 
transfer=1; 
while transfer==1   
    if j<(stLinear-step/10)  %Added '-step/10' to fix what I assume was 
just rounding issues with comparing 'j' and 'stLinear' 
        j=j+step; 
    elseif j>=(stLinear-step/10) && j<=(endLinear+step/10) 
        x=int64((j-roundedV(1,1))/step+1); 
        linearV(i,1)=roundedV(x,1); 
        linearJ(i,1)=currDens(x,1); 
        i=i+1; 
        j=j+step; 
    elseif j>(endLinear+step/10) %Added '+step/10' to fix what I assume 
was just rounding issues with comparing 'j' and 'endLinear' in some 
cases 
        transfer=0; 
    end 
end 
  
%Create exponential fit on region that is linear in the semi-log plot 
and 
%display the plot to the user 
f=fit(linearV,linearJ,'exp1'); 
yintercept=f.a;  
slope=f.b;     
plot(f,linearV,linearJ)  %not sure how to plot fit on semi-log right 
now other than manually in plot editor. 
grid on 
  
%Constants for calculating barrier height and ideality factor 
k=1.38*10^-23;          %Boltzmann constant [J/K] 
T=300;                  %Temperature [K] 
q=1.6*10^-19;           %Electronic charge [C] 
R=129.6;                %Richardson constant [A/(K^2-m^2)] 
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%Calculate and report the barrier height and ideality factor 
phib=-k*T/q*log(yintercept/(R*T^2)); 
n=q/(slope*k*T); 
fprintf('\n-----------------------------------------------\n') 
fprintf('The Schottky barrier height is phib=%0.3f',phib) 
fprintf('\nThe ideality factor is n=%0.3f\n',n) 
fprintf('-----------------------------------------------\n'); 
  
%A couple final notes to the user 
fprintf('\nPlease verify that linearV and linearJ arrays look 
appropriate.\n\n') 
fprintf('To determine R-squared value and other fit parameters type 
"cftool" into the \ncommand window and do an exponential fit on 
"linearV" and "linearJ".\n') 
  
 
 
 
 
 
 
 
Note: The following code can be substituted for the code on the previous page in order to 
create the arrays that only have the linear data. The code here is actually more robust as it 
does not create errors when compliance is hit in the reverse bias region. 
(Data that hit compliance in the reverse region caused errors in the original code on the 
previous page and that is what caused me to make the new code here. It actually turned 
out to be much simpler too.) 
 
%Create modified versions of the inital I-V arryas that only include 
data 
%for the linear region. 
StIdx=find(roundedV==stLinear); 
i=1; 
for j=stLinear:step:endLinear 
    linearV(i,1)=roundedV(StIdx,1); 
    linearJ(i,1)=currDens(StIdx,1); 
    StIdx=StIdx+1; 
    i=i+1; 
end 
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C.3   Code for extracting diode parameters from C-V data 
 
CV_Parameter_Extraction.m 
 
%Daniel Cutshall 
%August 2018 
%Code to extract Barrier Height and Ideality Factor from C-V data. 
  
%USER INPUT - filename 
%If importing from .xlsx file put headers in the first row of each 
column 
%so that data isn't omitted. The first sheet in the workbook is the 
only 
%thing that will be imported; can alter code to change this if desired. 
tableA=readtable('G26NA#1_PreRad_CV.xls'); 
A=table2array(tableA); 
  
%USER INPUT - absolute value of step size [V] (since absolute value of 
%voltage is taken below). 
step=0.01; 
n=log10(step); 
  
%USER INPUT - diode diameter [cm] 
d=0.6; 
Area=pi*(d/2)^2; 
  
%Get dimensions of table for creating data arrays 
rows=height(tableA); 
  
%Set up zeroed arrays for capacitance, reverse voltage, and 1/(C'^2) 
cap=zeros(rows,1); 
RevV=zeros(rows,1); 
InvCapSq=zeros(rows,1); 
  
%Arrange data into individual arrays 
%Change indices in A matrix to match how the data is arranged in the  
%spreadsheet or text file. 
%Voltage data is rounded because sometimes when measuring I record 
measured 
%voltage instead of programmed voltage. 
for j=1:1:rows 
    cap(j,1)=A(j,2); 
    InvCapSq(j,1)=(1/(cap(j,1)/Area))^2; 
    RevV(j,1)=abs(round(A(j,3),-n)); 
end 
  
%Display plot of reverse voltage vs. 1/(C'^2) data to the user for  
%determination of linear region start and end points 
plot(RevV,InvCapSq) 
grid on 
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%Prompt User for starting and ending points of the linear region 
prompt='Enter the voltage corresponding to the start of the linear 
region in volts.\n'; 
stLinear=input(prompt); 
prompt='Enter the voltage corresponding to the end of the linear region 
in volts.\n'; 
endLinear=input(prompt); 
  
%Create zero arrays for voltage and current density in the linear 
region 
LinearLength=int64((endLinear-stLinear)/step+1); 
linearV=zeros(LinearLength,1); 
linearCSq=zeros(LinearLength,1); 
  
%Create modified versions of the inital revV and InvCapSq arryas that 
only  
%include data for the linear region. 
j=RevV(1,1); 
i=1; 
transfer=1; 
while transfer==1   
    if j<(stLinear-step/10)  %Added '-step/10' to fix what I assume was 
just rounding issues with comparing 'j' and 'stLinear' 
        j=j+step; 
    elseif j>=(stLinear-step/10) && j<=(endLinear+step/10) 
        x=int64((j-RevV(1,1))/step+1); 
        linearV(i,1)=RevV(x,1); 
        linearCSq(i,1)=InvCapSq(x,1); 
        i=i+1; 
        j=j+step; 
    elseif j>(endLinear+step/10) %Added '+step/10' to fix what I assume 
was just rounding issues with comparing 'j' and 'endLinear' in some 
cases 
        transfer=0; 
    end 
end 
  
%Create exponential fit on region that is linear and display the plot 
f=fit(linearV,linearCSq,'poly1'); 
yintercept=f.p2;  
slope=f.p1;     
plot(f,linearV,linearCSq) 
grid on 
  
%Constants for calculating barrier height and ideality factor 
k=1.38*10^-23;          %Boltzmann constant [J/K] 
T=300;                  %Temperature [K] 
q=1.6*10^-19;           %Electronic charge [C] 
epsR=11.7;              %Relative permittivity of Si 
eps=8.85*10^-14;        %Vacuum permittivity [F/cm] 
mu_e=1350;              %Electron mobility in Si 
Nc=2.8*10^19;           %Effective density of states in Si conduction 
band 
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                        %[cm^-3] 
  
%Calculate and report the barrier height and dopant concentration 
Na=2/(q*epsR*eps*slope); 
Vbi=(q*epsR*eps*Na*yintercept)/2; 
phin=(k*T/q)*log(Nc/Na); 
phib=Vbi+phin+(k*T/q); 
fprintf('\n-----------------------------------------------\n') 
fprintf('The Schottky barrier height is phib=%0.3f',phib) 
fprintf('\nThe dopant concentration is n=%0.2e\n',Na) 
fprintf('-----------------------------------------------\n'); 
  
%A couple final notes to the user 
fprintf('\nPlease verify that linearV and linearCsq arrays look 
appropriate.\n\n') 
fprintf('To determine R-squared value and other fit parameters type 
"cftool" into the \ncommand window and do an exponential fit on 
"linearV" and "linearJ".\n') 
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C.4   Code for determining the peak reverse current magnitude and the 
voltage point at which compliance is reached 

 
PeakReverse_Compliance_Mult.m 
 
%Daniel Cutshall 
%February 2019 
%Code to use the I-V data to determine peak reverse leakage current and  
%voltage at which compliance is reached for multiple data sets and then 
%plot the results. 
%NOTE - Code assumes that all files have the same number of entries; if 
%this is not true there will be issues with running. 
  
clear 
clc 
  
%USER INPUT - Compliance Used for I-V Measurement 
compl=10*10^-3; 
percent=1; 
tol=compl*percent*10^-2;  %Min. value that is accepted as compliance 
  
%USER INPUT - Number of input files; used to create arrays to store 
data 
%for peak reverse current and voltage corresponding to compliance 
NumIn=10;  %# of input files 
PRM=zeros(NumIn,1);  %Array for preak reverse current magnitudes 
idx=zeros(NumIn,1);  %Array for the indices of compliance voltages 
VC=zeros(NumIn,1);   %Array for the voltages where compliance is 
reached 
xstep=10;            %Step size for x-axis (plotting purposes) 
x=0:xstep:xstep*NumIn-xstep; %Array for x-axis values (plotting 
purposes) 
  
%USER INPUT - Input Files (add or delete lines depending on number of 
input 
%files) 
tableA=readtable('PreRad_2019-01-31 10_01_49.txt'); 
A=table2array(tableA); 
rows=height(tableA); 
  
tableB=readtable('PostRad2_2019-01-31 11_11_50.txt'); 
B=table2array(tableB); 
  
tableC=readtable('PostRad3_2019-01-31 11_24_57.txt'); 
C=table2array(tableC); 
  
tableD=readtable('PostRad4_2019-01-31 11_37_56.txt'); 
D=table2array(tableD); 
  
tableE=readtable('PostRad5_2019-01-31 11_51_33.txt'); 
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E=table2array(tableE); 
  
tableF=readtable('PostRad6_2019-01-31 12_04_29.txt'); 
F=table2array(tableF); 
  
tableG=readtable('PostRad7_2019-01-31 12_17_21.txt'); 
G=table2array(tableG); 
  
tableH=readtable('PostRad8_2019-01-31 12_31_09.txt'); 
H=table2array(tableH); 
  
tableY=readtable('PostRad9_2019-01-31 12_44_02.txt'); 
Y=table2array(tableY); 
  
tableZ=readtable('PostRad10_2019-01-31 12_56_54.txt'); 
Z=table2array(tableZ); 
  
%Zeroed arrays for current and voltage 
I=zeros(rows,NumIn); 
V=zeros(rows,NumIn); 
  
%Create matrix for all current and voltage data (add or delete lines 
%depending on number of input files) 
for j=1:1:rows 
    I(j,1)=A(j,2); 
    V(j,1)=A(j,1); 
     
    I(j,2)=B(j,2); 
    V(j,2)=B(j,1); 
     
    I(j,3)=C(j,2); 
    V(j,3)=C(j,1); 
     
    I(j,4)=D(j,2); 
    V(j,4)=D(j,1); 
     
    I(j,5)=E(j,2); 
    V(j,5)=E(j,1); 
     
    I(j,6)=F(j,2); 
    V(j,6)=F(j,1); 
     
    I(j,7)=G(j,2); 
    V(j,7)=G(j,1); 
     
    I(j,8)=H(j,2); 
    V(j,8)=H(j,1); 
     
    I(j,9)=Y(j,2); 
    V(j,9)=Y(j,1); 
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    I(j,10)=Z(j,2); 
    V(j,10)=Z(j,1); 
end 
  
%Find peak reverse current magnitude and compliance for each of the 
files 
for k=1:NumIn 
    PRM(k,1)=abs(min(I(:,k)))*10^6; 
    idx(k,1)=find(abs(I(:,k)-compl)<tol,1,'first'); 
    VC(k,1)=V(idx(k,1),k); 
end 
  
%Calculate and display percent change for peak reverse current 
magnitude 
%and compliance voltage 
PC_PRM=(PRM(NumIn,1)-PRM(1,1))/PRM(1,1)*100; 
PC_VC=(VC(NumIn,1)-VC(1,1))/VC(1,1)*100; 
fprintf('Percent change in peak reverse current magnitude is %0.2f 
%%.\n',PC_PRM); 
fprintf('Percent change in compliance voltage is %0.2f %%.\n',PC_VC); 
  
%Create scatter plots for the peak reverse current and the compliance 
%voltage as a function of irradiation time. 
%The figure() funtion allows multiple figures to display from the same 
%script. 
figure() 
scatter(x,PRM,'filled','blue','o'); 
title('Sample G26NA#1 - Thick - 0.50 keV') 
xlabel('Irradiation Time [minutes]') 
ylabel('Peak Reverse Current Magnitude [\muA]') 
xlim([-10 100]) 
grid on 
  
figure() 
scatter(x,VC,'filled','blue','o'); 
title('Sample G26NA#1 - Thick - 0.50 keV') 
xlabel('Irradiation Time [minutes]') 
ylabel('Voltage @ Compliance Point [V]') 
xlim([-10 100]) 

grid on 
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Appendix D 

Miscellaneous Procedural Guides and Manuals 

D.1   Guide for operating the Edwards thermal evaporator 
 

1. Plug in the power cord 
2. Flip the switch on the power strip (Instrument power) 

a. Gauge #1  Active Inverted Magnetron (AIM) gauge; 10-3 to 10-8 torr (9 
in diagram: pressure in vacuum chamber) 

b. Gauge #2  Pirani gauge; 760 to 10-4  torr (9 in diagram: pressure in 
vacuum chamber) 

c. Gauge #3  Pirani gauge; 760 to 10-4  torr (8 in diagram: rotary pump 
line) 

3. Turn the rotary pump on by moving the pump knob to the 3 o’clock position 
a. Note: If pressure on gauge #3 is high and not going down, then slightly 

open the ballast valve on the rotary pump 
4. Once the pressure on gauge #3 is below 3x10-2 torr, open the backing valve. 

a. Note: Make sure the backing valve and rouging valve are not open at the 
same time 

5. Turn the diffusion pump on by moving the pump knob to the 6 o’clock position 
(“diff/rot pump”). Note the time! 

6. Turn on the water chiller 
a. Make sure water level is o.k.  
b. Temperature should settle around 19 °C 

7. Insert the shorting plug into the appropriate socket based on what metal is being 
evaporated. Once inserted, give the shorting plug a twist to ensure a good contact. 

8. Gather the required materials before opening the chamber (sample, metal, shadow 
mask, gloves, etc.). Put gloves on! 

a. Note: Want the chamber to be open for the shortest amount of time 
possible 

9. Make sure that the high vacuum valve and the roughing valve are both closed 
10. Open the “air admittance” valve to bring the vacuum chamber to 760 torr 
11. Remove the implosion guard (protective plastic cover) 
12. Gently lean on the bell to get it off 

a. If it does not move then wait a while and try again 
13. Lift the bell jar straight off and place it on its side in the appropriate place on the 

work bench 
14. Remove the metal shields (take note of their position and orientation as you do so) 



163 

a. Note: if there is too much debris in the chamber the vacuum seal might be 
affected and/or the diffusion pump might be contaminated. Contact Dr. 
Harriss to clean debris. 

15. Make sure the Ta shield between the two filaments is not touching either of the 
powered electrodes 

16. To determine the appropriate amount of metal needed, consult the Excel 
spreadsheet (amount of metal depends on height of sample and thickness of 
desired deposition) 

17. Place the desired amount of metal in the center of the W filament (coil) 
a. Note: You can temporarily remove the support plate to make this easier. 

When replacing the support plate, make sure that it is flat and firmly 
secured. 

18. Place the shutter in position #1 (marked on the table) 
19. Place a shadow mask and your sample on the support plate 
20. Insert a glass slide on the side of the chamber if a viewing window is desired 
21. Lower the top cap/dome to minimize the evaporation onto the bell jar 
22. Place the metal shields around the chamber in the same position that they were 

removed from (making small changes to accommodate the viewing window) 
23. Line up the bell jar before placing it. Once it is down it cannot be rotated easily 

(doing this will move the metal shields). Make sure the jar is approximately 
centered 

24. Place the implosion guard over the bell jar such that the two weak spots face the 
wall 

25. Close the “air admittance” valve snuggly (but not too tight) 
26. Check to make sure it has been 28 to 30 minutes since turning on the diffusion 

pump 
a. If it has been around 23 to 28 minutes since turning on the diffusion pump 

then consult step 26 b. below; otherwise proceed to step 27 
b. Gas builds up in diffusion pump from 23 to 28 mins after starting  need 

to have backing valve opened at least intermittently during this time 
frame, but you want to “rough” the vacuum chamber (via the roughing 
valve) ASAP after putting the bell jar on. If you put the bell jar on during 
this time range then close the vacking valve and open the roughing valve. 
After 2 or 3 minutes close the roughing valve and open the backing valve 
for 5 – 10 seconds. Repeat until it has been ~28 mins since turning on the 
diffusion pump. 

27. Close the backing valve 
28. Open the roughing valve 
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29. Wait until gauge #2 is less than 5x10-2 torr. Once this pressure is reached proceed 
to the next step 

30. Close the roughing valve and pause for a few seconds 
31. Open the backing valve 
32. Start to open the high vacuum valve  

a. Move slowly after the first 20° 
b. Stop when you feel a bump and/or when you see gauge #3 pressure 

increase 
c. Note: Keep the pressure on gauge #3 below 10-2 torr. If it gets above this, 

then close the high vacuum valve. Do not expose hot diffusion pump oil to 
high pressures of oxygen (air). 

d. Let the pressure stabilize, and then continue to open the high vacuum 
valve the rest of the way. Once the handle is vertical you can quickly open 
it the rest of the way. 

33. Pump down to a base pressure of 5x10-6 torr. Once this pressure is reached 
proceed to the next step 

a. Note: This usually takes approximately 45 minutes 
34. Verify that the shutter is ‘closed’ (in position 1 as marked on the table) 
35. Make sure variac is initially off with the knob pointing at 0 
36. Turn on the power and adjust to 5 for about 5 to 10 seconds 

a. Note: this step is to warm up the filament 
37. Turn power to 10 and let it sit there. The filament will begin to glow; wait for the 

glow to stabilize before proceeding to the next step (usually takes 10 – 15 
seconds). For Al proceed to the next step 

38. Turn power to 15 (or 17) and wait for the filament to get darker in the center (the 
point when the metal begins to melt). Immediately proceed to the next step! 

39. Open the shutter by pulling the lever all the way towards you. 
40. After the glow has recovered (usually takes 15 – 30 seconds), turn power to 20 

and leave it for 30 seconds to 1 minute 
41. Turn power to 25 for 30 seconds to 1 minute 
42. Turn power to 30 for ~30 seconds 
43. Turn power to 40 for ~15 seconds 

a. Note: This step is to remove the Al from the filament 
b. Note: as the heat increases, the pressure in the chamber will also increase 

44. Turn power to 0 and turn of the variac 
a. Note: You can close the shutter at this point, but it is not crucial 

45. Wait for pressure to return to where it was before turning on the power (5x10-6) 
a. Usually wait about 3 – 5 minutes 
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46. Close the high vacuum valve  
a. Do not have to do this slowly 

47. Open the “air admittance” valve until pressure in the chamber is 760 torr 
48. Remove the implosion guard, bell jar, and metal shields as described in steps 11 – 

14 
49. Lift the top cap/dome 
50. Remove your sample and replace the shadow mask from where you got it 
51. Getting the chamber in vacuum for storage 

a. Replace the metal shields, bell jar, and implosion guard 
b. Close the “air admittance” valve 
c. Close the backing valve 
d. Open the roughing valve 
e. Wait until the pressure is below 5x10-2 torr (gauge #2) 
f. Close the roughing valve 
g. Open the backing valve (do this quickly after step 51 f.) 
h. Immediately start opening the high vacuum valve as described in step 32 
i. Pump down to 5x10-5 torr (gauge #1) 

52. Quick Shutdown 
a. Close high vacuum valve (pressure will increase due to outgassing) 
b. Turn the diffusion pump off (move pump knob to 3 o’clock position) 
c. Close the backing valve 
d. Turn the rotary pump off (move pump knob to 12 o’clock position) 
e. Turn off the water chiller 
f. Turn off the power strip 
g. Unplug the cord and place it under the evaporator base 
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D.2   Guide for performing high frequency C-V measurements with the 
HP4280A 

 
1. Turn on HP 4280A 1 hour prior to taking measurements by pushing the Line On/Off 

button so that the lights come on. (Note: the 1 hour prior to taking measurements is a 
warm up time) 

2. Make sure the HP 4280A is appropriately grounded (on the lower left corner of the front 
panel). 

3. Connect a 1 meter  test lead (BNC, grey color) between the ‘High’ input (‘Unknown’ 
terminals) on the HP 4280A and ‘probe 1’ of the probe station via simple coax 
connectors on the left side of the probe station. (Note: ‘probe 1’ is an arbitrarily 
selected probe in the probe station) 

4. Connect a 1 meter test lead (BNC, grey color) between the ‘Low’ input (‘Unknown’ 
terminals) on the HP 4280A and ‘probe 2’ of the probe station via simple coax 
connectors on the left side of the probe station. (Note: ‘probe 2’ is an arbitrarily 
selected probe in the probe station) 

5. If making measurements with voltage magnitudes greater than 42 V, do the following:  
a. Connect the inner conductor of the ‘Remote ON/OFF’ BNC to ground by using a 

BNC to alligator clip converter. (Note: ground is to the left of the ‘Unknown’ 
terminals. This ground terminal should also be connected to a common system 
ground…place where all other equipment is grounded, see Step 2) (see p. 3-38 
in the manual) 

b. Switch the ‘Int Bias’ switch to ‘±100 V Max’.  
6. Select ‘Floating’ in the ‘Connection Mode’ box. 
7. In ‘Function’ select the parameter(s) that you want to measure (normally we select ‘C’). 
8. In ‘C-G Range’ select ‘Auto’ for preliminary test. You can select ‘Manual’ to manually 

choose between the three options listed to the right if the desired range is known. 
9. Set ‘Meas Speed’ to ‘Slow’. 
10. Set ‘Sig Level’ to ‘30’ (mV rms). 
11. Make sure ‘C-High Resoln’ is disabled (LED off) 
12. Make sure all three ‘Math’ buttons are disabled (LEDs off) 
13. Make sure the ‘Store Digit Shift’ buttons are disabled (LEDs off for the two buttons with 

LEDs, not concerned with the button without a LED) 
14. Not concerned with the three ‘X-Y Recorder’ buttons 
15. For C-V sweep, select the ‘Single’ button above ‘Sweep Mode’. (Note: This button has 

two purposes depending on the test being run; i.e. ‘Trigger’ vs. ‘Sweep Mode’ functions, 
see p. 3-7 in the manual).  

16. Hit the ‘Internal Bias’ button until the diagram depicting a single staircase sweep is 
selected (2).  
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17. Set the ‘Start V’ by doing the following: 
a. Hit the up and down arrow keys in the ‘Parameter’ box until the light next to 

‘Start V’ is lit. 
b. Hit the blue key; the key directly below the ‘Enter’ key (note: keys will now 

perform the function denoted by the blue ink below the respective keys). 
c. Use the keypad (blue ink in the 3 columns of buttons under ‘Math’) to select the 

values. 
d. Hit the ‘Enter’ key to confirm the value (the value should appear in the ‘V-t’ 

display screen). 
18. Set ‘Stop V’, ‘Step V’, ‘Hold Time’, and ‘Step Delay Time’ in the same manner described 

in the previous step (Step 17). Typical values of ‘Hold Time’ and ‘Step Delay Time’ are 60 
s and 1 s respectively. (Values can be changed to milliseconds by hitting the down arrow 
in ‘Parameter’ after selecting the desired value). 

19. Internal Error Correction (see p. 3-35 in the manual) (Note: both ‘probe 1’ and ‘probe 2’ 
should NOT be touching anything at this point) 

a. Make sure ‘Enable’ key in the ‘Correction’ box is disabled (LED off) 
b. Hit the down arrow in the ‘Correction’ box until ‘1’ (m) is selected (the LED next 

to ‘1’ is on) 
c. Press the small black ‘Open’ button under ‘Zero’ (to the right of the ‘Int Bias’) 
d. Push the ‘Enable’ key in the ‘Correction’ box (so that the LED is lit) 
e. OPTIONAL: Push the ‘Repeat’ button above ‘Sweep Mode’ (LED lit) and change 

the ‘Internal Bias’ to DC Level (1). The displayed capacitance should be near 0 if 
the internal error correction was done correctly. 

f. If Step (19-E) was performed: Select ‘Single’ above ‘Sweep Mode’ (LED lit) and 
change the ‘Internal Bias’ to single staircase sweep (2). 

20. Place the sample to be tested on the chuck and turn the vacuum pump on. Connect the 
outer conductors of ‘probe 1’ and ‘probe 2’ with a small cable as close as possible to the 
DUT to remove the parasitic capacitance (see Figure 3.10 on p. 3-33 in the manual; also, 
see Figure 1 below). Place ‘probe 1’ on the top metal contact of the capacitor to be 
tested. Place ‘probe 2’ on the chuck near the capacitor being tested.  
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Figure 1: Image showing how to connect the outer conductors of ‘probe 1’ and ‘probe 2’ 

(color version on computer). 
 

21. Connecting a computer and configuring the settings (note: this is just one of several 
possible methods): 

a. Connect a HPIB-USB controller between the HP 4280A and a laptop 
b. Adjust the HPIB settings on the HP 4280A to address ‘51: Talk Only Comma’ (see 

Figure 2 for clarification).  
c. On the HP 4280A, select ‘Repeat’ above ‘Sweep Mode’ and change the ‘Internal 

Bias’ to DC Level (1) 
d. Boot laptop into Ubuntu (or some type of LINUX system) 
e. Open a terminal and type “dmesg | grep –i USB” to identify the USB port where 

the connecter in part (a) is attached. (Note: you are looking for something in the 
output like: “FTDI USB Serial Device converter now attached to ttyUSB0”) 

f. In the terminal type “sudo minicom -s” for serial port setup 
g. Scroll down to “Serial port setup” and hit enter 
h. Hit the ‘A’ key and change the serial device address to what was found in part 

(e). Hit enter. 
i. Hit the ‘E’ key to set ‘Bps/Par/Bits’ by doing the following: 

i. Hit the ‘C’ key to select 9600 as the speed 
ii. Hit the ‘N’ key to select odd parity 

iii. Hit the ‘V’ key to select 8 bit data 
iv. Hit the ‘W’ key to select 1 stop bit. Hit enter and verify that the values 

edited for options ‘A’ and ‘E’ are correct. If values are correct, hit enter 
again.   

j. Scroll down to “Save setup as dfl” and hit enter to save the setup as the default 
setup if desired. 
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k. Scroll down to “Exit” and hit enter. Data should be displayed in the terminal; if 
data is not displayed, consult Step (21-C). (Note: if you exit minicom entirely, 
type “sudo minicom” in the terminal to start dumping data to the terminal) 

l. At any point while minicom is running, hit ‘ctrl’ + ‘A’ and then ‘Z’ for the 
minicom command summary. 

m. On the HP 4280A, select ‘Single’ above ‘Sweep Mode’ and change the ‘Internal 
Bias’ to single staircase sweep (2). (Note: the data can be cleared from the 
terminal by hitting ‘ctrl’ + ‘A’ and then ‘C’ if desired) 

n. Hit ‘ctrl’ + ‘A’ and then ‘L’ and type a file name where the data will be captured 
and then hit enter (Example filename: C-V_Data.txt) 

 
Figure 2: HPIB settings for the HP 4280A (located on the back). The dials should be 
adjusted to address ’51: Talk Only Comma’. (Note: The address shown in the image 

above is 17). 
22. Hit the orange ‘Start/Stop’ button to begin the C-V sweep (sweep will stop automatically 

as long as ‘Single’ is selected). 
23. After the sweep is completed go to the terminal and hit ‘ctrl’ + ‘A’ and then ‘L’. In the 

‘Capture file’ box that comes up select ‘Close’ and hit enter. The file with the captured 
data will be in the Home Folder. (see p. 3-102 in the manual for a description of data) 

Note: Exit minicom before disconnecting the USB from the computer. This is done by 
hitting ‘ctrl’ + ‘A’ and then ‘X’. 
 

Getting the Data from the txt File to Excel 
(Note: These directions are for Excel 2010; the procedure might vary slightly for other 

versions.) 
1. Open Excel and click on the “Data” tab 
2. In the “Get External Data” section select the option “From Text” and choose the desired 

file in the window that pops up 
3. Choose the appropriate delimiters (typical delimiters are comma, other – “A”, other – 

“C”, etc.). Note: you might not be able to separate the data entirely in one attempt; see 
the next step 
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4. If further delimiting is required: 
a. Highlight the data that requires delimiting 
b. In the “Data Tools” section select the option “Text to Columns” 
c. Select appropriate delimiters  
d. Repeat until data is in the desired form 
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D.3   Guide for performing quasi static C-V measurements with the 
HP4140B 

 
1. Turn on the HP 4140B 1 hour prior to taking measurements by pushing the Line On/Off 

button so that the lights come on. (Note: the 1 hour prior to taking measurements is a 
warm up time) 

2. Make sure the 16054A Connection Selector is attached to the front of the 4140B. 
3. Make sure the “Low Lead Connection” switch of the 16054A is set to ‘VA’. 
4. Make sure the HP 4140B is appropriately grounded (on the lower left corner of the front 

panel behind the 16054A connection selector). 
5. Connect a triaxial cable between ‘I’ on the 16054A (which is connected to ‘I Input’ on 

the 4140B) and ‘probe 1’ via a triaxial to BNC converter connection on the left side of 
the probe station. (Note: ‘probe 1’ is an arbitrarily selected probe in the probe station)  

6. Connect a short BNC cable between ‘VA’ on the 16054A and ‘probe 2’ via the following 
steps (Note: ‘probe 2’ is an arbitrarily selected probe in the probe station): 

a. Connect ‘VA’ to a BNC connection outside of the probe station 
b. For the same connector in part (a), connect a BNC to banana (female) converter 

on the inside of the probe station 
c. Connect ONLY the non-‘GND’ side of a banana (male) to BNC converter to the 

female banana labeled ‘GND’. The effect is to connect the outer conductor of 
the initial coax to the inner conductor of the final coax (the probe tip). See 
Figure 1 for clarification. 

d. Connect the BNC output from part (c) to ‘probe 2’. See Figures 2 and 3 for more 
detail on the circuit created by the connections described in Steps 5 and 6. The 
connection is also shown on page 3-40 of the manual. 
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Figure 1: Image showing the details of the connection between ‘VA’ on the 16054A and 
‘probe 2’ (color version on computer). 

 
Figure 2: Cross sectional view of cables. Assigning variables to the different conductors 

of the triaxial cable (left) and the coaxial cable (right).  
 

 
Figure 3: Connection diagram from the manual for ‘Grounded DUT Measurement’, p. 3-

43 (left), and a simplified circuit (right) using the variables defined in Figure 2 (color 
version on computer). Note: the dashed purple line in the figure on the right may not be 

relevant. 
 

7. Place the sample to be tested on the chuck and turn the vacuum pump on. Place ‘probe 
1’ on the top metal contact of the capacitor to be tested. Place ‘probe 2’ on the chuck 
near the capacitor being tested. 

8. Setting the appropriate ‘I Range’: 
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a. Select ‘I-V’ as the ‘Function’  
b. Set ‘I Range’ to ‘Auto’ 
c. In the ‘Function’ block for VA and VB, make sure the single sided staircase (3) is 

selected for ‘VA’ and ‘OFF’ (2) is selected for ‘VB’. (Note: These should be the 
default settings after selecting ‘I-V’ as the ‘Function’ as described in part (a)).  

d. Set up a voltage sweep by selecting appropriate values for ‘Start V’, ‘Stop V’, 
‘Step V’, ‘Hold Time’, ‘Step Delay Time’, and ‘dV/dt’ (see Step 13 below). (Note: 
These values must be the same values that you will use for your C-V sweep). 

e. Hit the ‘Auto Start’ button under ‘V Sweep’ (note: if the Red LED near ‘V Output’ 
is solid, then a test is running. If the LED is blinking, then there is an error.) 

f. Take note of the highest current magnitude shown in the range display. Range 
display is between the ‘E’ and ‘A’ (Example: -11 is a higher current magnitude 
than -12). 

g. After the test is complete (‘V Output’ LED is off), use the up and down arrow 
keys in ‘Manual’ under ‘I Range’ to select the highest current magnitude 
observed, as noted in part (f). (Note: Make sure that ‘Auto’ under ‘I Range’ is 
NOT selected; LED off) 

9. Select ‘C-V’ as the ‘Function’ 
10. Select ‘Long’ for ‘Integ Time’ 
11. Make sure the ‘Filter’ button is on (LED lit) 
12. In the ‘Function’ block for VA and VB, select  the smooth, single sided ramp (1) for ‘VA’ 

and select ‘OFF’ (2) for ‘VB’ by using the appropriate down arrow keys 
13. Setting the appropriate parameters for VA: 

a. Push the ‘VA’ button in the ‘Parameter’ box 
b. Push the ‘Start V’ button and use the keypad to the right to select the desired 

value. Press ‘Enter’ to store the value 
c. Set ‘Stop V’, ‘Step V’, ‘Hold Time’, ‘dV/dt’, and ‘Step Delay Time’ in the same 

manner described in part (b). Typical values of ‘Hold Time’, ‘dV/dt’ and ‘Step 
Delay Time’ are 60 s, 0.01 V/s and 1 s respectively 

14. Offsetting the effect of the cables (zero offset) 
a. Remove ‘probe 1’ from the capacitor, and remove ‘probe 2’ from the chuck 

(neither of the probes should be touching anything at this point) 
b. Push the ‘Auto Start’ switch under ‘V Sweep’ 
c. Wait for the value in the display under ‘I . C’ to stabilize 
d. After the value described in part (c) has stabilized, push the ‘Zero’ button to the 

left of the ‘I . C’ display. (The effect is that the displayed capacitance is stored in 
ROM and it will be subtracted from subsequent capacitance measurements; 
therefore, the open circuit value should be approximately zero.)  

e. Hit the ‘Abort’ button 
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15. Place ‘probe 1’ on the top metal contact of the capacitor to be tested. Place ‘probe 2’ on 
the chuck near the capacitor being tested. 

16. Use the arrows keys in the ‘Current Limit (A)’ box (pointing to the right) to select 10-4 (1) 
for both VA and VB. (Note: the value corresponding to VB is not really relevant since we 
are using VA) 

17. Connecting a  computer and configuring the settings (Note: this is just one of several 
possible methods): 

a. Connect a HPIB-USB controller between the HP 4140B and a laptop 
b. Adjust the HPIB settings on the HP 4140B to ‘Talk Only’ (see Figure 4 for 

clarification).  
c. On the HP 4140B, hit the ‘Local’ button so that only the LED below ‘Talk’ is lit 

(LED under ‘Remote’ should be off).  
d. Then hit the ‘I’ button under ‘Function’ and make sure that ‘Int’ is selected 

under ‘I Trig’. (The purpose of this step is to configure the HP 4140B so that it 
can display values in the terminal in a later step; step (17-L). This is to verify the 
connection). 

e. Boot laptop into Ubuntu (or some type of LINUX system) 
f. Open a terminal and type “dmesg | grep –i USB” to identify the USB port where 

the connecter in part (a) is attached. (Note: you are looking for something in the 
output like: “FTDI USB Serial Device converter now attached to ttyUSB0”) 

g. In the terminal type “sudo minicom -s” for serial port setup 
h. Scroll down to “Serial port setup” and hit enter 
i. Hit the ‘A’ key and change the serial device address to what was found in part 

(f). Hit enter. 
j. Hit the ‘E’ key to set ‘Bps/Par/Bits’ by doing the following: 

i. Hit the ‘C’ key to select 9600 as the speed 
ii. Hit the ‘N’ key to select odd parity 

iii. Hit the ‘V’ key to select 8 bit data 
iv. Hit the ‘W’ key to select 1 stop bit. Hit enter and verify that the values 

edited for options ‘A’ and ‘E’ are correct. If values are correct, hit enter 
again.   

k. Scroll down to “Save setup as dfl” and hit enter to save the setup as the default 
setup if desired. 

l. Scroll down to “Exit” and hit enter. Data should be displayed in the terminal; if 
data is not displayed, consult steps (17-C) and (17-D). (Note: if you exit minicom 
entirely, type “sudo minicom” in the terminal to start dumping data to the 
terminal) 

m. At any point while minicom is running, hit ‘ctrl’ + ‘A’ and then ‘Z’ for the 
minicom command summary. 
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n. On the HP 4140B, select ‘C-V’ under ‘Function’; all sweep parameters previously 
set should be saved. (Note: the data can be cleared from the terminal by hitting 
‘ctrl’ + ‘A’ and then ‘C’ if desired) 

o. Hit ‘ctrl’ + ‘A’ and then ‘L’ and type a file name where the data will be captured 
and then hit enter (Example filename: C-V_Data.txt) 

 
Figure 4: HPIB setting for the HP 4140B (located on the back). The switch circled in red 

should be positioned to the left; ‘talk only’ (color version on computer). 
18. Push the ‘Auto Start’ button under ‘V Sweep’ to begin the C-V sweep 
19. After the sweep is completed go to the terminal and hit ‘ctrl’ + ‘A’ and then ‘L’. In the 

‘Capture file’ box that comes up select ‘Close’ and hit enter. The file with the captured 
data will be in the Home Folder. (see p. 3-57 in the manual for a description of data) 

Note: Exit minicom before disconnecting the USB from the computer. This is done by 
hitting ‘ctrl’ + ‘A’ and then ‘X’. 

Note: If the buttons on the HP 4140B become unresponsive while the computer is 
connected, make sure that the LED under ‘Remote’ is off; see Step 17-C. 

Location of Useful Information in the Manual 
p. 1-6…………..Ranges and resolution for several of the operating parameters (Start 

voltage, stop voltage, step voltage, hold time, step delay time, ramp rate 
[dV/dt]) 

p. 3-3……………Details on the integration times and their relation to the current range 
being used; the same information is given on p. 3-10 

p. 3-29…………General considerations for performing a CV measurement 
p. 3-31…………Plots showing the relationship between the following 3 things: 

capacitance being measured, current range, dV/dt 
p. 3-38…………CV function operation instructions (i.e. procedure for performing a CV 

test) 
p. 3-47…………Error codes (“annunciations”) 
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p. 3-52…………HP-IB interface  
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D.4   Guide for performing manual C-V sweeps with the Agilent 
E4980A LCR meter 

 
 (Procedure transcribed from p. 41 of Daniel Cutshall’s #1 lab notebook and elaborated 
on by Daniel Cutshall on June 7, 2016. Initial procedure was described by Githin Alapatt 
on July 30, 2013). 
 

1. Hit the “Meas Setup” button and adjust the values as desired. Values usually 
controlled via Keithley and their typical values are shown below (see p. 91 in the 
Agilent user’s guide for a brief description of each variable name): 

a. FUNC  series or parallel (see p. 195 of the Agilent user’s guide for 
some guidelines about what mode to choose for a particular measurement) 

b. FREQ 
c. LEVEL  typically 50 mV 
d. RANGE  typically 100 Ω 
e. MEAS TIME  typically long 
f. TRIG  set to “MAN” to allow for manual triggering 

2. In the measurement setup window select the “List Setup” soft key. 
3. Under the “Seq” column select the variable to be swept 

a. Freq [Hz]  frequency sweep 
b. Bias [V]  voltage sweep 
c. Etc. 

4. In the first entry of the sweep variable place the desired start point (e.g. 50 Hz) 
5. Use the arrow keys and the “Next Page”, “Prev Page” soft keys to go to the 

position of the last entry of the sweep variable and enter the desired stop value for 
the sweep variable. 

a. This position is determined from the desired start, stop, and step values of 
the sweep variable. For instance if we want to sweep from 0 V to 5 V in 
steps of 0.1 V then the last entry will be in position 51. 

6. Select the “fill linear” soft key to fill in all values between the start point and the 
end point. 

a. Note: You can also choose to “fill log” 
b. Note: The table can be cleared at any point by going to “No.” in the top 

left of the table and selecting the “Clear Table” soft key. 
7. Insert a flash drive into the USB port of the LCR meter and hit the “Save/Recall” 

button 
8. Hit the “Save Data” soft key 
9. Hit the “Start Log” soft key 
10. Hit the “Display Format” button 
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11. Hit the “List Sweep” soft key 
12. Hit the “DC Bias” button (The LED below DC Bias on the upper right of the 

front panel should turn on.) 
13. Hit the “Trigger” button to manually trigger the sweep to begin. Measurements 

should begin to populate the list as the desired variable is swept. 
14. After the measurement is complete hit the “Save/Recall” button 
15. Hit the “Save Data” soft key 
16. Hit the “Save & Stop” soft key  
17. Note the filename at the bottom of the screen; it will be of the form E498x037.csv 

(If an error message is displayed or no file name is displayed then repeat the 
measurement.) 

18. Hit the “DC Bias” button to turn off the DC bias (the LED mentioned in step 12 
should be off now.) 

19. Remove the flash drive (safe to remove if the LED below USB on the upper right 
of the front panel is off). 
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D.5   Basic operational guide for the HP4156B precision semiconductor 
parameter analyzer 

 
Note: Many of the steps here are mentioned in equal or greater detail in the quick start 

guide (a hard copy should be located somewhere near the HP 4156B). 
 

1. Hit the “Chan” button and select the measurement mode (either “Sweep” or 
“Sampling”) using the soft keys on the right hand side of the display. 

2. In the same screen use the arrow keys to navigate and assign the channels 
appropriately with the soft keys on the right hand side of the display. 

a. Consider the example of a two terminal voltage sweep; we would have the 
following: SMU1  mode: V, FCTN: VAR1 and SMU2  mode: 
COMMON, FCTN: CONST 

3. Hit the “Meas” button to select the parameters for the measurement. 
4. Use the arrow keys to navigate to the desired parameter, input the desired value 

using the number pad, and then hit the “Enter” button to confirm the value. 
5. The window for the plotted data can be selected manually prior to the run by 

hitting the “Display” button and inputting the desired values with the number pad 
and the “Enter” button. 

6. Hit the “Graph/List” button prior to starting the measurement to see the data 
being plotted in real time (Note: hitting the “Graph/List” button multiple times in 
succession with toggle between the graph of the data and the list of the data). 

7. Select the integration time by hitting one of the following three buttons in the 
Integ Time section of the front panel: “Short”, “Medium”, “Long” (Note: the 
integration time can be changed mid run if desired). 

8. Hit the “Single” button to start the measurement (Note: while the measurement is 
taking place the LED by MEASUREMENT in the top right corner of the front 
panel will be on). 

9. After the measurement is done the plot can be auto scaled by doing the following: 
select the “Scaling” soft key on the bottom of the display and then select the 
“Auto Scaling” soft key on the right hand side of the display. 

10. To perform a second measurement while preserving the data from the first 
measurement hit the “Append” button. 

11. To save the data as a .DAT file (can be assessed later in the HP 4156B) hit the 
“System” key followed by the “Save” soft key. Enter a file name and then select 
the “Execute” soft key at the bottom of the display. 
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12. To save the data as a .TXT file hit the “Graph/List” button until the list is 
displayed, and then select the “Spreadsheet” soft key. Enter a file name and then 
select the “Execute” soft key at the bottom of the display. 
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D.6   Operation manual for the singly charged ion beamline in 
Kinard 13 
 
Pumping Down 

• Load sample and completely shut vacuum port door 
• First hand tighten ‘Gold-Seal Valve’ and then tighten to 8 ft-lb (96 in-lb) with 

appropriate torque wrench 
• Open the gate valve (below Floating High Voltage Supply rack) 

o Hit red button under plastic guard. Button should be flush with the panel 
after pushing. 

o Hit small red push button (reset switch) and listen for sound of gate valve 
opening. 

• Turn on the mechanical/backing pump by switching on the power strip. 
• Within ~30 seconds of turning on the mechanical/backing pump, hit the “start” 

button on the orange box that controls the TMP 
• After the TMP reaches “normal” operation, turn on the pressure gauge for channel 

1. 
• Wait for appropriate pressure before starting up ion beam 

o 10-8 Torr  ideal 
o 10-7 Torr  o.k. 
o 10-6 Torr  something wrong! 

 
Starting Ion Beam 
SAFETY NOTE: Once acceleration voltage is turned up everything in the acrylic box is 
potentially at “beam potential”. Be cautious of HIGH VOLTAGES! 

• Connect the Arduino to the 9V battery until the three series 6 volt batteries are 
connected to the ion source, and then remove the 9V battery from the Arduino. 

o Note: Do not leave these batteries connected to the source for extended 
periods of time while not running the beam to avoid draining the batteries. 

• Turn on the Floating High Voltage Supply (switch on the far left) 
• Turn on the beam deflectors 

o Leftmost switch under “Initial” in Beam Deflectors (vertical deflection) 
o Leftmost switch under “El. Field” in Velocity Filter (horizontal deflection) 

• Turn on “Filament” switch on the right side of the MIT Ion Source rack (be 
careful since switch is not seated properly). 

o Make a note of pressure on channel 1 (active gauge in front of the source) 
• Bringing up source current (MIT Ion Source): 
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o For each step below note the time, initial current setting (i.e. before 
relaxation), and count number on knob. Also keep an eye on the 
pressure! In the event of a pressure spike let everything sit for a while 
before incrementing the source current. 

o Turn dial clockwise until current is ~0.5 A. Wait about 10 minutes for 
stabilization (waiting longer is not detrimental). 

o Turn dial clockwise until current is ~0.5 A higher than the final stabilized 
current from the previous step. Wait another 10+ minutes for stabilization. 

o Continue incrementing the current in this manner until desired current is 
reached (~2.0 A for Schottky diode experiments) 

 
Troubleshooting – common issues: 

• Use high voltage probe and DMM to measure voltage on the isolated part of the 
source in the acrylic box. (The display for “V-Accel” shows the programmed 
voltage and not a measured voltage.) 

• Use DMM to measure the voltage across the three series 6V batteries (should be 
around 19V). 

 
Tuning Ion Beam 

• Move the Faraday cup so that is in the beam path and connected to the Keithley 
617 programmable electrometer for instantaneous current readings.  

• Turn the rightmost knob of Floating High Voltage Supply so that “V-Accel” is 
selected. Then use the “V-Accel” knob (top left) to adjust to the desired voltage 
(Note: this will determine the beam energy, e.g. V-Accel = 1,000 V  1 keV ion 
beam) 

• Turn the rightmost knob of Floating High Voltage Supply so that “VF 1” is 
selected. Then use the “VF 1” knob (top right) to tune the beam in order to 
maximize beam current. Rule of thumb: VF 1 ≈ 0.75*V-Accel to maximize beam 
current, e.g. for V-Accel = 1,000 V, VF 1 will probably be around 750 V. 

• Use course and fine adjustment knobs (typically fine adjustment only) under “El. 
Field” in Velocity Filter to adjust the horizontal deflection and maximize the 
current. 

• Use course and fine adjustment knobs (typically fine adjustment only) under 
“Initial” in Beam Deflectors to adjust the vertical deflection and maximize the 
current. 

o Note: Can flip the switch beside the power switch to change the polarity 
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• Repeat steps to readjust “VF 1”, horizontal deflection, and vertical deflection until 
there is essentially no further increase in beam current 

Note: Reference previous experiments with the same source to see if beam currents are 
appropriate, but keep in mind that beam current will continually decrease over the life of 
the source. 
Note: Decreasing the beam current (at a given energy) to various percentages of the 
maximum after completing tuning (as done in Schottky diode experiments) can most 
easily be achieved by adjusting “VF 1”. 
 
Shutting Down Ion Beam 
Note: No time limitations when reducing currents and voltages for shutdown. 

• Turn dial for source current (MIT Ion Source) back to zero. 
• Turn down “V-Accel” (Floating High Voltage Supply) to zero for safety. 
• Connect 9V battery to the Arduino until the three series 6V batteries are 

disconnected from the source, and then disconnect the 9V battery from the 
Arduino. 

Stop here if planning to do more experiments the next day otherwise continue. 
• Turn down “VF 1” (Floating High Voltage Supply) to zero. 
• Turn down horizontal deflectors (under “El. Field” in Velocity Filter). 
• Turn down vertical deflectors (under “Initial” in Beam Deflectors). 
• Turn off horizontal deflectors 
• Turn off vertical deflectors 
• Turn off Floating High Voltage Supply 
• Turn off “Filament” switch of the MIT Ion Source (be careful since switch is not 

seated properly). 

Leave system like this if you plan to do more experiments on the currently loaded sample 
in the next week or two, otherwise turn off pumps and vent chamber (see relevant 
instructions). 
 
Venting Chamber 
Note: Source will be warm after running, so wait at least 2 hours for things to cool 
down before proceeding with venting! 

• Turn off pressure gauge for channel 1 
• Hit the “stop” button on the orange box below the beamline to stop driving the 

TMP. 
• Close the gate valve (below Floating High Voltage Supply rack) 

o Hit red button under plastic guard. Button should be popped out. Should 
hear gate valve close 
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• Turn off the power strip on the floor next to the large white box to turn off the 
mechanical/backing pump. 

• Open the ‘Gold-Seal Valve’ (near 8 ft-lb label): 
o At first use the appropriate torque wrench 
o Continue to loosen by hand as much as desired 

• Open vacuum port door and remove sample 

Note: If vacuum port door will not open, then briefly open the green Nupro valve and 
then close it again (near ‘Gold-Seal Valve’). Try again to open the vacuum port door. 
 
Data Collection in LabVIEW for Schottky Diode Experiments 
Note: Password is tiger5 (taped to top of center monitor) 

• Open the LabVIEW script from the desktop (Keithley 24XX Sweep and Acquire 
File Out  - Shortcut). 

• Under “VISA Resource Name” select GPIB 26 
• For “Source Mode” select voltage 
• Select desired values for compliance, min, max, and # points. 
• Click white arrow in the toolbar to run the IV sweep 
• Save data with desired name in the box that pops up 

Note: Zero check electrometer before switching connections around throughout the 
experiment. 
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D.7   Guide for performing 4-pt probe measurements 
 

1. Turn on the relevant equipment (Keithley 6221 DC and AC Current Source and 
Keithley 2182A nanovoltmeter) at least 30 minutes prior to taking 
measurements to allow the equipment to warm up. 

2. Place the sample to be measured on the Teflon disk and center it below the probe 
tips 

• Note: Larger sample sizes are preferable since they will reduce 
measurement error. 

• For rectangular samples place the sample such that the larger dimension is 
parallel to the probe tips. 

3. Rotate the lever clockwise as far as it will go in order to lower the probes onto the 
sample. 

• The height of the probe arm can be adjusted if needed, or glass slides can 
be used in addition to or in the place of the Teflon plate in order to adjust 
the sample height. 

4. On the nanovoltmeter, select the DCV1 channel and select AUTO for the range. 
5. On the current source push the EDIT/LOCAL button until the number displayed 

next to Compliance: is flashing. Use the wheel to adjust the compliance to its 
maximum value of 105 V, and then push the wheel to set the value. 

• Adjust compliance to a lower value if there are concerns about the device 
breaking down. 

6. Set the desired output current on the current source via the following steps: 
• Push the EDIT/LOCAL button until the numbers for the current are 

flashing. 
• Use the wheel and the left and right arrows on either side of CURSOR to 

adjust the current to the desired value. Push the wheel to set the value. 
• Typically a few mA’s is a good starting point. Readings obtained using 

currents smaller than 100 μA might not be very reliable. 
7. Apply the current to the sample by pressing the OUTPUT   ON/OFF button on 

the current source. 
• If the blue LED to the right of the button is solid then everything is 

working as intended. 
• If the blue LED to the right of the button is blinking then the voltage is 

over the limit. Reduce the current and try again. 
8. Read the voltage shown on the nanovoltmeter. 
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9. Stop applying current by pressing the OUTPUT   ON/OFF button on the current 
source. 

10. Tern the lever counterclockwise to lift the probe head, and then remove the 
sample.  
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Calculating Sheet Resistance 
 

Relevant Variable Names and Fixed Values: 
s ≡ probe tip spacing = 0.0625 inches = 0.15875 cm 
ρ ≡ sheet resistivity 
t ≡ thickness of the sample 
d ≡ wafer diameter (for rectangular samples the smaller dimension is used as d) 
V ≡ measured voltage 
I ≡ measured current 
 
Resistivity is given by the following equation: 
 

𝝆𝝆 = �
𝑽𝑽
𝑰𝑰�

∗ 𝒕𝒕 ∗ 𝑪𝑪𝑪𝑪𝟏𝟏 ∗ 𝑪𝑪𝑪𝑪𝟐𝟐 
 
where CF1 and CF2 are correction factors as determined by the tables below. If the d/s or 
t/s values are between two entries in the table, then a simple linear interpolation should be 
sufficient for a first order approximation of the correction factor. For a more detailed 
value there are plots for correction factor that can be researched. 
Note: The above equation and correction factor values are only valid for junctions 
diffused on one side of the sample. Different factors must be used for samples diffused on 
both sides. 
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  CF1 

d/s Circle Square Rectangle 
L/W=2 

Rectangle 
L/W=3 

Rectangle 
L/W=4 

1.0 - - - 0.9988 0.9994 
1.25 - - - 1.2467 1.2248 
1.5 - - 1.4788 1.4893 1.4893 
1.75 - - 1.7196 1.7238 1.7238 
2.0 - - 1.9475 1.9475 1.9475 
2.5 - - 2.3532 2.3541 2.3541 
3.0 2.2662 2.4575 2.7000 2.7005 2.7005 
4.0 2.9289 3.1127 3.2246 3.2248 3.2248 
5.0 3.3625 3.5098 3.5749 3.5750 3.5750 
7.5 3.9273 4.0095 4.0361 4.0362 4.0362 
10.0 4.1716 4.2209 4.2357 4.2357 4.2357 
15.0 4.3646 4.3882 4.3947 4.3947 4.3947 
20.0 4.4364 4.4516 4.4553 4.4553 4.4553 
32.0 4.4791 4.4878 4.4899 4.4899 4.4899 
40.0 4.5076 4.5120 4.5129 4.5129 4.5129 

infinity 4.5324 4.5324 4.5325 4.5325 4.5324 
 

 

t/s CF2 
<0.4 1.000 
0.400 0.9995 
0.500 0.9974 
0.555 0.9948 
0.625 0.9896 
0.714 0.9798 
0.833 0.9600 
1.000 0.9214 
1.111 0.8907 
1.250 0.8490 
1.429 0.7938 
1.667 0.7225 
2.000 0.6336 
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D.8   Guide for performing bias temperature stress (BTS) 
Measurements 

 
The following diagram was adapted from p. 23 of Daniel Cutshall’s #1 lab notebook. The 
diagram describes how to perform bias temperature stress measurements for samples 
placed on the chuck in Riggs 11.  In the diagram ‘X’ is a variable representing the desired 
time (in minutes) of the BTS procedure, and ‘Y’ is a variable representing the temperature 
(in degrees centigrade) at which the BTS is performed. The procedure was initially 
described by Radhey Shyam in the summer of 2013.  
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D.9   Guide for mounting Schottky diode on platen 
 
The platen used for mounting the Schottky diodes was stainless steel and had three posts 
that were electrically isolated from the platen base by individual insulating rings. 

1. Clean the platen with acetone and place two small pieces of 0.25 mm diameter Al 
wire on the platen as shown in Figure D.9 (a) 

2. Secure the two Al wires with double sided Cu tape as shown in Figure D.9 (b) 
3. Apply Ag paste/paint to the platen between the Cu tape strips as shown in 

Figure D.9 (c) 
4. Place the Schottky diode on the platen as shown in Figure D.9 (d) and hold in 

place for ~60 seconds. Allow ~10 minutes to cure before proceeding to the next 
step 

5. Bend a piece of 0.25 mm diameter Al wire such that one end loops around the left 
most post (ideally the wire sits about half way up the post by itself) and the other 
end rests on the edge of the Schottky contact. This facilitates contact with the 
Schottky contact. 

6. Apply Ag paste/paint to both ends of the Al wire from the previous step as shown 
in Figure D.9 (e). Allow ~10 minutes to cure before moving platen and diode 

a. Note: Minimal overlap with the Schottky contact is preferred to reduce 
shielding from ion beam 

b. Note: Typically I attached the post side of the Al wire first, but attaching 
either end first should work fine 

7. Apply Ag paste/paint between the right most post and the platen itself in order to 
facilitate contact to the backside Ohmic contact as shown in Figure D.9 (f) 

a. Note: This can be done earlier in the process if desired, and the Ag 
paste/paint that connects the post to the platen can be left for several 
samples without needing to clean it off and reapply for each new sample 

8. After allowing sufficient time for everything to cure, perform continuity checks 
for the following: 

a. Schottky contact connected to left most post 
b. Right most post connected to platen 
c. Left most post NOT connected to platen 

 
Note: The Ag paste/paint should be shaken by hand (or somehow mechanically agitated 
to promote mixing) for a minute or more prior to each application. This ensures good 
electrical properties. 
Note: At various times over the years two different products from Ted Pella Inc. were 
successfully used to mount the diodes: (1) Colloidal Silver Paste, Cat. No. 16032, and (2) 
Leitsilber 200 Silver Paint, Cat. No. 16035  
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Figure D.9: Various stages of the Schottky diode mounting procedure. 
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