Clemson University
 TigerPrints

Graduate Research and Discovery Symposium Student Works
(GRADS)

4-1-2019

Geospatial analysis of flooding from hurricane Florence in the coastal South Carolina using Google Earth Engine

H. A. Zurqani
Clemson University
C. J. Post
Clemson University
E. A. Mikhailova
Clemson University
K. Ozalas
Clemson University
J. S. Allen
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/grads_symposium

Recommended Citation

Zurqani, H. A.; Post, C. J.; Mikhailova, E. A.; Ozalas, K.; and Allen, J. S., "Geospatial analysis of flooding from hurricane Florence in the coastal South Carolina using Google Earth Engine" (2019). Graduate Research and Discovery Symposium (GRADS). 230.
https://tigerprints.clemson.edu/grads_symposium/230

Geospatial analysis of flooding from hurricane Florence in the coastal South Carolina using Google Earth Engine

كامعة University of Tripoli

H.A Zurqani¹,3, C.J Post ${ }^{1}$, E.A Mikhailova ${ }^{1}$, K. Ozalas ${ }^{1}$, and J.S. Allen ${ }^{2}$

${ }^{1}$ Department of Forestry and Environmental Conservation, Clemson University, SC 29634
${ }^{2}$ South Carolina Water Resources Center, Clemson University, Pendleton, SC 29670
${ }^{3}$ Department of Soil and Water, University of Tripoli, Tripoli 13538, Libya

U	N	I	V	E	R	S	I	T

ABSTRACT

Flooding impacts from hurricanes and other natural hazards are an important concern in many areas of the
world. The objectives of this study were to: (1) develop a world. The objectives of this study were to: (1) develop a
framework to identify flood-affected areas after storm impact; (2) map the flooded areas caused by the hurricane Florence; and (3) assess the major effect of the hurricane on the land cover and agricultural crops in the coastal South Carolina during the flood period. The coastal South Carolina regions are recognized as the most important
agricultural area in the state. The developed framework identified and mapped the affected areas during the hurricane season. Based on the results the hurricaneflooded areas were approximately $681 \mathrm{~km}^{2}$, and the major affected counties in both analysis flood frequency and flooded areas are Charleston, Georgetown, Berkeley, Florence, Marlboro, Marion, Horry, Chesterfield, Sumter,
Clarendon, and Darlington. These results not only indicate flood risk on the land cover but also demonstrate the advantage of utilizing Google Earth Engine and the public archive database in its platform to track and monitor the natural hazards over time.

INTRODUCTION
Flooding is one of the main natural disasters that can cause loss of human life, damage to property, destruction of vegetation and animals (Samuael., 2019). Figure 1 shows rapid water levels rise as a result o Hurricane Florence.
here are various techniques used in analyzing flood isk on the land cover. Remotely sensed data holds an avantage in monitoring and observing the change on ainh surface because of the large spatial coverage, high temporal resolution, and wide availability (Zurqani et al., 2018).

ure 1. Water levels for the Waccamaw River near Conway, SC in the aftermath
Adapted from the National Weather Service, 2018).

OBJECTIVES
Develop a framework to identify flood-affected areas after storm impact;
Map the flooded areas caused by the hurricane Florence;

Assess the major effect of the hurricane on the land cover and agricultural crops in the

MATERIALS AND METHODS Study Site
The study area is situated in the coastal South Carolina between $81^{\circ} 02^{\prime} 57.05^{\prime \prime}-78^{\circ} 34^{\prime} 52.41^{\prime \prime} \mathrm{W}$ and $32^{\circ} 30^{\prime}$ important agricultural area in the state.

Figure 1. Location of study area ($30408 \mathrm{~km}^{2}$) in in the coastal sC

Data Processing

Data (Table 1) processing used the cloud-computing echnology in the Google Earth Engine platform (https://earthengine.google.org/).
In the flood occurrence analysis, the Joint Research Centre (JRC) monthly water history v1.0 data were used that acquired from 1985 until 2015.
The flooded areas were mapped based on Sentinel-1 data (28 Aug - 10 Sep, 2018) were used as a reference "before flooding,' and from $12-25$ Sep, 2018 were used and the analysis steps carried out in this study.

Table 1. Data sources and description.

Figure 3.A flow diagram for data processing and the analysis steps.

RESULTS AND DISCUSSION
Flooding before and after hurricane Florence
Counties with highest flood frequency and flooded area in 2018 are: Charleston, Georgetown, Berkeley, Florence, and Darlington (Fig 4, and Table 2).

Figure 4. Flood-prone areas: (1) Flood frequency, and (2) Flooded areas per
county in the coastal SC . Flooded areas (using Sentinel--).

Countrame		Foocede
Malboro	${ }^{1576}$	${ }_{\text {a }}^{\text {43, }}$
$\underbrace{\text { and }}_{\substack{\text { pilion } \\ \text { maion }}}$	$\underbrace{\substack{3.6 \\ 1.63}}_{163}$	${ }_{\substack{8.60 \\ 3325}}$
Hory	${ }^{17.65}$	${ }_{\text {and }} \times 208$
Comeserefed	,	4880
Lenasaser	5.6	${ }^{1174}$
$\substack{\text { Kerstau } \\ \text { Lee }}$	(1985	(19,
O.aringon	${ }_{7}^{7} 178$	${ }_{\substack{3335 \\ \\ \text { 2022 }}}$
Clamen	$\underset{\substack{1326 \\ \\ \\ \hline 168}}{ }$	$\substack{2022 \\ 128}$
$\substack{\text { Simer } \\ \text { forene }}$		-
$\underbrace{}_{\substack{\text { berteley } \\ \text { wilumburg }}}$		
	¢	

Most of flooded areas identified with Sentinel-1 data were matched with the flood occurrence results using the Joint Research Centre (JRC) data (Fig. 5).

RESULTS AND DISCUSSION
Effect of the hurricane Florence on the land cover
The affected land cover/agricultural crops areas per county in coastal South Carolina based on the cropland county in coastal South Carolina
layer 2017 (USDA, 2017) (Fig. 6).

Figure 6. Heatmap of flooding impact (scale gradient: grey=no impact, Sige=low impact, and dark bue=high impact) by land cover agricultura crops

CONLCUSIONS

he results show that the major affected land cover/ gricultural crops areas were soybeans, shrubland, other hay/non-alfalfa, evergreen forest, cotton, corn, herbaceous, grassland/pasture, fallow/idle cropland, woody wetlands, pen water, barren and developed areas

ACKNOWLEDGEMENTS

Financial support for this project was provided by Libyan overnment (Ministry of Higher Education and Scientificity Research) University of Tripoli, and the Clemson University.

REFERENCES

Samuael, S.J.,, Arul, J.S. and Padua, J.C., 2019. Geospatial Flood Risk Mapping and Analysis Tool. In Proceedings of International Conference on Remote Sensing for Disaste Management (pp. 337-345). Springer, Cham

Zurqani, H.A., Post, C.J., Mikhailova, E.A., Schlautman, M.A. and Sharp, J.L., 2018. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. Intermational Journal Bf Applied Earth Observatio

United States. National Weather Service. 2018. Welcome to the National Weather Service. Silver Spring, MD :The Service.

