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Quantum Local Search CLEMSON
for Graph Community Detection

Community Detection

Modularity maximization

Challenge

quality qubits

Computers

to hundreds of gates

Near-term Quantum Computers (QC) are expected to have small number of noisy, low-

These computers are commonly called NISQ - Noisy Intermediate-Scale Quantum -

They have or are expected to have 50-200 qubits, noise levels low enough on only run tens

How can we take advantage of near-term quantum computers?

Typically, algorithms (both quantum and classical) look at a problem “as a whole”. The whole

problem (e.g. a social network) is too large to fit on a NISQ device!

Quantum Local Search

Solution: decompose the problem

Our approach

* Local search

« Start with some initial solution

* Search its neighborhood on a NISQ device

* If a better solution is found, update the current solution

* Neighborhood search (subproblem) can be encapsulated, making the framework

architecture-agnostic and extendable to new architectures as they become available

* We implement subproblem solvers using IBM Q and D-Wave backends

* Provides a path to integrating heterogenous NISQ devices into HPC environments

Classical machine stores the global problem

and orchestrates local search by sending
small subproblems to quantum solvers

Quantum computers
solve small
subproblems

Quantum Approximate Optimization Algorithm
(QAOA)

Local (subproblem) solver

* A heuristic that can be run on any gate-model (universal) quantum computer

* The problem is encoded as an objective Hamiltonian and solved by performing a quantum

evolution

* Evolution is parametrized by variational parameters

* Classical optimizer finds optimal variational parameters

« Can be run on a NISQ computer (only requires small number of gates)

» Provides a path to quantum advantage [1]

* Allow COBYLA 100 iterations

to train (optimize variational parameters)

Classical optimizer Quantum state

(COBYLA) evolution (RYRZ ansatz)

using simulator, after that run on quantum device

Motivation

[1] E.Farhi, A. Harrow “Quantum Supremacy through the Quantum Approximate Optimization Algorithm” arXiv:1602.07674

Why do we need quantum?
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* We project the performance of QLS by using a classical optimization solver (Gurobi)
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lterations to Convergence

* State-of-the-art classical optimization solvers (Gurobi / CPLEX) cannot provide the

solution of desired quality quickly enough even for subproblems small enough to

potentially fit on NISQ-era quantum devices
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* Also known as graph clustering

* Modularity is “the quality” of detected community structure in the network

Bad solution
Modularity:

Good solution
Modularity:

* Mathematically, modularity is “the number of edges falling within groups minus the

expected number in an equivalent network with edges placed at random”

Actual number of edges
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A is an adjacency matrix of G

Quantum Local Search: in Detalil

Algorithm 1 Community Detection

solution = initial_guess(G)
while not converged do
X = populate_subset(G)
// using IBM UQC or D-Wave QA
candidate = solve_subproblem (G, X)
if candidate > solution then
solution = candidate

Subset selection

* Modularity (global problem):

1 ki k.
max:lsmize M 7Zj(Aij — 2—mj)sisj = ZZjBijsiSj

* Gain from moving a vertex from one community to another can be easily computed

and depends only on neighbors

* Approach: at each step take highest gain vertices

Subproblem (neighborhood search)

* Local subproblem: fix assignment of vertices not in the subset and encode as

boundary condition\
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where X 1is the subset we are optimizing

Quantum Annealing (QA)

Local (subproblem) solver

* A heuristic

Solves an optimization problem by encoding it as an Ising model Hamiltonian, with the
ground state of that Hamiltonian corresponding to the global solution of the optimization

problem
Qs = Z 2B;;5;5; + Z C;s; < already in Ising form!
i>jli,j€X i€X

QA finds the ground state of the objective Hamiltonian by performing a quantum

evolution
H(t) = (1-%)Hp+ %Qs
Hpr - transverse field Hamiltonian
Qs - problem Hamiltonian
0< t <T

We used D-Wave 2000Q (~2000 qubits) provided through Los Alamos National Lab

Results

Implemented QLS in Python, available on GitHub at http://bit.ly/OLSCommunity

Use IBM 16 Q Rueschlikon and D-Wave 2000Q as subproblem solvers

Classical subproblem solver (Gurobi) used for quality comparison

Fix subproblem size at 16

Used real-world networks from The Koblenz Network Collection with up to 400 nodes

Dataset available online http://bit.ly/QLSdata

QLS solves practically important problems of up to 400 nodes using only 16 qubits

All three methods demonstrate similar performance

Quantum algorithms achieve results close to state-of-the-art

Full paper: arXiv:1810.12484

llya Safro, Clemson University

Susan Mniszewski, Los Alamos National Lab
Yuri Alexeev, Argonne National Lab
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