Clemson University TigerPrints

Graduate Research and Discovery Symposium (GRADS)

Student Works

4-1-2019

Engineering Fast Multilevel Support Vector Machines

Ehsan Sadrfaridpour *Clemson University*

Talayeh Razzaghi *Clemson University*

Ilya Safro Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/grads_symposium

Recommended Citation

Sadrfaridpour, Ehsan; Razzaghi, Talayeh; and Safro, Ilya, "Engineering Fast Multilevel Support Vector Machines" (2019). *Graduate Research and Discovery Symposium (GRADS)*. 223. https://tigerprints.clemson.edu/grads_symposium/223

This Poster is brought to you for free and open access by the Student Works at TigerPrints. It has been accepted for inclusion in Graduate Research and Discovery Symposium (GRADS) by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

ENGINEERING FAST MULTILEVEL SUPPORT VECTOR MACHINES

Ehsan Sadrfaridpour¹, TALAYEH RAZZAGHI², ILYA SAFRO¹

1:School of Computing, Clemson University, 2: Department of Industrial Engineering, New Mexico State University, Las Cruces, NM

MOTIVATION

MULTILEVEL SUPPORT VECTOR MACHINES

We propose a new class of multilevel (W)SVM algorithms that is based on the Algebraic Multigrid framework (AMG).

- Coarse Problem. The classification problem is reformulated as (Weighted) Support Vector classification problem for a non-uniform AMG coarsening, i.e., the C^+/C^- classes are separated.
- **AMG Coarsening**. We construct aggregates of fractions of data points using the Galerkin-like operator from AMG applied on the Laplacian of approximated *k*-NN graph.
- **Coarse Aggregates.** The construction of the set of aggregates is guided by the principle that each fine point should be "strongly coupled" to the chosen aggregates.

Data P	Data N	Graph P	Graph N

- Find a function to separate data points
- Accurately predict the unseen data
- Advance techniques are perform better for complex data points

MULTILEVEL SVM

- The problem:
 Solving large, hard, imbalanced data set takes
 long time
- Our solution:
 Very fast solver with high quality

• Source code: https://github.com/esadr/mlsvm

GENERAL (W)SVM

- Data points $\{(x_i, y_i)\}_{i=1}^l$
- Class labels (y_i) are -1, +1
- Weighted SVM: The WSVM is an extension of the SVM for imbalanced classes:

 $\min \frac{1}{2} \|w\|^2 + C^+ \sum_{i \in \mathbf{C}^+}^{n_+} \xi_i + C^- \sum_{j \in \mathbf{C}^-}^{n_-} \xi_j \qquad (1a)$ s.t. $y_i(w^T \phi(x_i) + b) \ge 1 - \xi_i \qquad i = 1, \dots, l$ (1b) $\xi_i \ge 0 \qquad \qquad i = 1, \dots, l$ (1c)

where the importance factors C^+ , and $C^$ are associated with the positive, and negative classes respectively.

• The WSVM can be transformed into the Lagrangian dual and solved using the Kuhn-Tucker conditions. (a) Overall Multilevel framework

(b) Adding SV's neighbors in a finer level

• **Refienment.** Add SVs and their neighbors in a finer level. In case of large training data, partition and choose closest pairwise partitions

RESULTS

- Our multilevel WSVM are evaluated on binary classification benchmark data sets.
- Performance measure (G-mean) and Time are reported for comparison between classical WSVM and MLSVM for small data sets and between LibLinear and MLSVM for large data sets r_{imb} is imbalance ratio, time in seconds
- Main achievement: Fast computational time and improved quality on complex data sets

Data set				Time (sec.)		G-mean	
Name	r_{imb}	f	Size	WSVM	MLSVM	WSVM	MLSVM
Advertisement	0.86	1558	3279	231	213	0.67	0.91
Buzz	0.80	77	140707	26026	31	0.89	0.95
Clean	0.85	166	6598	82	5	0.99	0.99
Cod-rna	0.67	8	59535	1857	13	0.96	0.94
Forest	0.98	54	581012	353210	948	0.92	0.88
Letter	0.96	16	20000	139	30	0.99	0.99
Nursery	0.67	8	12960	192	2	1.00	1.00
Ringnorm	0.50	20	7400	26	2	0.98	0.98
Twonorm	0.50	20	7400	28	1	0.98	0.98

REFERENCES

[1] Sadrfaridpour, E., Jeereddy, S., Kennedy, K., Luckow, A., Raz-

zaghi, T., Safro, I. "Algebraic multigrid support vector machines", ESANN 2017 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges (Belgium), 26-28 April 2017, i6doc.com publ., ISBN 978-287587039-

[2] Sadrfaridpour, E., Razzaghi, T., Safro, I. (2017). Engineering fast multilevel support vector machines. arXiv preprint arXiv:1707.07657.
[3] Razzaghi, T., Safro, I., Ewing, J., Sadrfaridpour, E., and Scott, J., D. (2019). "Predictive Models for Bariatric Surgery Risks with Imbalanced Medical Datasets." Annals of Operations Research, https://doi.org/10.1007/s10479-019-03156-8.

	Data set			Time (sec.)		G-mean	
Name	r_{imb}	f	Size	LibLinear	MLSVM	LibLinear	MLSVM
SUSY	0.54	18	5M	1300	1116	0.68	0.74
MNIST	0.90	784	4M	2626	17581	0.60	0.84
HIGGS	0.53	28	11 M	4406	3283	0.54	0.62

ONGOING RESEARCH

• Develop the parallel version using MPI and OpenMP