View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by Clemson University: TigerPrints

Clemson University

TigerPrints

All Dissertations Dissertations

5-2016

Design of a Wide Area Controller Using

Eigenstructure Assignment in Power Systems

Parimal Saraf
Clemson University, psaraf@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all _dissertations

b Part of the Computer Engineering Commons, and the Electrical and Computer Engineering

Commons

Recommended Citation

Saraf, Parimal, "Design of a Wide Area Controller Using Eigenstructure Assignment in Power Systems" (2016). All Dissertations. 2304.
https://tigerprints.clemson.edu/all_dissertations/2304

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by

an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.


https://core.ac.uk/display/268677764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2304&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2304&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2304&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2304?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2304&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

DESIGN OF A WIDE AREA CONTROLLER USING
EIGENSTRUCTURE ASSIGNMENT IN POWER SYSTEMS

A Dissertation
Presented to
the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy
Electrical and Computer Engineering

by
Parimal Saraf
May 2016

Accepted by:
Dr. Elham B. Makram, Committee Chair
Dr. Richard Groff
Dr. Taufigar Khan
Dr. Anthony Martin
Dr. Ramtin Hadidi



ABSTRACT

Small signal stability has become a major concern for power system operators around
the world. This has resulted from constantly evolving changes in the power sys-
tem ranging from increased number of interconnections to ever increasing demand of
power. In highly stressed operating conditions, even a small disturbance such as a
load change can make the system unstable resulting in small signal instability. The
main reason for small signal instability in power systems is an inter-area mode/s be-
coming unstable. Inter-area modes involve a group of generators oscillating against
each other. Traditionally, power system stabilizers installed on the synchrous ma-
chines were used to damp the inter-area modes. However, they may not be very
suitable to perform the job since they use local I/O signals which do not have a
good controllability /observability of the inter-area modes. Recent advancements in
phasor measurement technology has resulted in fast acquisition of time-synchronized
measurements throughout the system. Thus, instead of using local controllers, an
idea of a wide area controller (WAC) was proposed by the power systems community
that would use global signals. This dissertation demonstrates the design of a WAC
using eigenstructure assignment technique. This technique provides the freedom to
assign a few eigenvalues and corresponding left or right eigenvectors for Multi-Input-
Multi-Output (MIMO) systems. This technique forms a good match for designing a
WAC since a WAC usually uses multiple I/O signals and a power system only has
a few inter-area modes that might lead to instability. The last chapter of this dis-
sertation addresses an important aspect of controller design, i.e., robustness of the
controller to uncertainties in operating point and time delay of feedback signals. The

operating point of a power system is highly variable in nature and thus the designed

i



WAC should be able to damp the inter-area modes under these variations. Also, a
transmission delay is associated due to routing of remote signals. This time delay is
known to deteriorate the performance of the controller. A single controller will be

shown to achieve robustness against both these uncertainties.
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1.Introduction

Deregulation and evolution of power markets has led to increased interconnections in
the power system leading to complex power flows. The aim of these interconnections
is primarily to increase the reliability of operation of the system and allow trading of
power between the interconnected areas. Certain operating conditions involve large
amounts of power are transferred over these interconnections which results in the
system being operated very close to instability. Moreover, the load in the system is
continuously increasing without installation of new infrastructure. Thus it is very
important to utilize the existing resources efficiently to ensure reliable and stable
operation of the grid.

An interconnected power system is composed of multiple dynamic components
such a rotating machines, flexible A.C transmission systems (FACTS) devices, dy-
namic loads etc. Similar to any dynamic system, the response of a power system to
disturbances is governed by the modes present in the system. These modes can be
categorized into the following four types:

a) Local modes: These modes involve a machine swinging against the rest of the
system. The oscillations associated with these modes are localized to one machine or
a small portion of the system.

b) Inter-area modes: These modes involve a group of machines oscillating against
another group of machines connected through a weak transmission system. These
modes are more complex to study and control as they involve multiple machines
participating in these modes.

¢) Control modes: These modes are associated with poorly tuned controllers in the

system such as exciters, governors etc.



d) Torsional modes: These modes are associated with turbine-generator shaft sys-
tem rotational components.

When a disturbance happens in a system, these modes are excited. These dis-
turbances can be either small changes in the system such as a load change or large
changes such a fault. In order for a system to be small-signal stable, all these modes
have to be well-damped. If any of the modes is poorly damped, appropriate con-
trol action has to be taken. The challenges involved in damping inter-area modes as
opposed to the other modes are that multiple synchronous machines participate in
them and under stressed conditions even a small disturbance can make them unsta-
ble. Some major systems across the world known to have low frequency inter-area
oscillations are: Hydro-Quebec (0.6 Hz) [1], Western Interconnected System (0.4 - 1
Hz) [2], Brazilian system (0.15-0.25 Hz) [3], UCTE interconnection in Europe (0.19
- 0.36 Hz) [4]. An important aspect associated with inter-area modes is that they
are sensitive to operating conditions. As a result, they have been a major reason
for blackouts across the world. The 1996 WECC blackout was a result of a 0.22
Hz inter-area mode becoming unstable due a fault in an already stressed system |5].
The recent 2003 Eastern Interconnect blackout also had an unstable 0.6 Hz inter-area
mode after a set of contingencies in the system [6]. Due to the implications of these
low frequency modes on the stability of the system, they also limit the amount of

power that can be transmitted from one region to another.

1.1. Damping of Inter-area oscillations

Traditionally, Power system stabilizers (PSS), installed on top of the excitation system
of the synchronous generators were used for damping electromechanical oscillations in

a power system. PSSs were tuned to ensure the damping of local modes. The damp-



ing of these modes is achieved by providing damping torque in phase with speed of
the synchronous machines at the natural frequency of the mode through utilization of
their excitation systems. The feedback signals used for PSSs were local speed, accel-
eration or power output signals [7]. In a lot of systems, the I/O signals to the PSS do
not have a good controllability /observability of the inter-area modes. Therefore, mul-
tiple PSSs need to be coordinated to enhance the damping of these modes. In [8], the
impact of parameters and locations of a PSS on the local as well as inter-area modes
has been presented. It is invariably the case that a few chosen PSSs are required to
participate in the damping of poorly damped inter-area modes. In [9], residue anal-
ysis of the stabilizing control loop has been used to select the most effective PSSs in
the system and then a Newton Raphson algorithm has been implemented to achieve
partial pole assignment for assigning poorly damped modes at better locations. One
issue with using PSSs for damping these low frequency oscillations is that they tradi-
tionally use local signals that may not have good observability of these modes. Also,
it is predicted that with the advent of new technologies, the local modes in the system
are expected to be in the range of 4 Hz [10|. Thus, utilizing a PSS for damping local
as well as inter-area modes would require them to operate in a wider bandwidth.
The advent of high speed FACTS devices has enabled better control of these oscil-
lations as they are installed close to the tie lines. Series FACTS devices are used to
regulate the power flows on tie lines whereas shunt devices regulate bus voltages by
injecting reactive power at a bus. A previous work has compared the performance
of Static VAr Compensator (SVC), Static Synchronous Compensator (STATCOM)
and PSS for damping power system oscillations [11]. In [12,13], the integration of
the dynamic models of FACTS into the power system and the tuning of the parame-
ters of FACTS devices to achieve damping of oscillations has been shown. In [11], a

non-linear control technique applied on a Unified Power Flow Controller (UPFC) has



been used to damp the inter-area oscillations. In [15], a unified model of a system
comprising of three different types of FACTS devices is developed and their effective-
ness in suppressing oscillations is studied using the damping torque analysis. In [16],
a supplementary power oscillation damping (POD) loop, comprising of set of lead-
lag blocks, on a Thyristor Controlled Switched Capacitor (TCSC) has been tuned to
damp the inter-area oscillations in a power system.

Similar to PSSs, POD control loop on FACTS devices can be coordinated with other
local controllers in the system. In [17], a nonlinear optimization based framework for
simultaneous coordination of supplementary power oscillation damping (POD) con-
trol loop on FACTS devices and PSSs has been detailed. The objective function
consists of minimizing a cumulative damping index with the constraint that the op-
timizing variables are within minimum and maximum limits. Another work uses a
Quasi-Newton algorithm to minimize a quadratic performance index over a period
of time [18]. The method again involves coordination of PSSs and POD loops on
FACTS devices to minimize the deviations in tie-line powers as well as generator
power outputs. The objective function used is a non-explicit function and thus the
algorithm is integrated to a simulation platform to optimize the parameters of the
controllable devices. Reference [19]| presents an iterative optimization technique that
coordinates PSSs and FACTS devices in the system to iteratively relocate the poorly
damped eigenvalues to better locations.

Based on the references presented, it is clear that local controllers are not very
effective in damping inter-area oscillations. They have a positive impact on damp-
ing only when coordinated with other local controllers in the system which might
not be the best available option. Further, reference [20] presents a concept of nearly
decentralized fixed modes (NDFM) that are inter-area modes that cannot be appre-

ciably shifted using any sort of local controllers in the system. This is because as



mentioned earlier inter-area modes are not very controllable/observable using local
signals. In [21], it has been shown that a detrimental interaction is possible between
various local controllers such as PSSs, FACTS POD due to lack of knowledge of the

global state variables.

1.2. Wide Area Measurement and Control

In order to address the issues faced by local controllers in damping inter-area oscilla-
tions, a WAC that utilizes global signals and operates on top of the local controllers
has been proposed in |22|. The advantage of using this approach is that it gives
the freedom to select the I/O signals of the controller such that inter-area modes
have a good controllability /observability metric. In [22], it has been mentioned that
under certain scenarios an inter-area mode might be controllable from one area and
observable from another. In [23], it has been shown that remote signals rather than
local signals give better controllability of the inter-area modes. A majority of previ-
ous works use methods based on residuals or/and geometric measures to select I/0
signals for the WAC [24-26]. Other available techniques for selecting I/O signals are
based on Hankel singular values (HSV) and relative gain array (RGA) [27].

New measurement technology utilizing Phasor Measurement Units (PMU) has
made it possible to get fast measurements of various system variables such as volt-
ages, currents, frequencies etc. at sampling rates ranging between 30 samples/sec
to 120 samples/sec [28]. The unique feature of this technology is that the measure-
ments throughout the network are time synchronized which enables obtaining a wider
picture of the system. Due to a constraint on the number of PMUs that can be in-
stalled in the system, they are only deployed at certain strategic locations. These

time synchronized measurements from different parts of the system can be fed as



remote signals for designing WACs. In [29], a PSS utilizing local as well as a re-
mote signal obtained from a PMU is tuned to damp inter-area oscillations. In [30],
a decentralized /hierarchical MIMO WAC to damp oscillations is designed using an
optimization framework utilizing a modal performance measure over a period of time.
In [31], a multi-agent based framework is used where a supervisory PSS having an H-
infinity control loop is coordinated with local PSSs in each area to damp oscillations
in an effective way. A fuzzy logic based rule is used to switch the supervisory PSS
robust control loop. In [32], an optimal controller design with structural constraints
is proposed with a two-level control structure. However, model order reduction is
required to achieve faster convergence of the algorithm presented. Also, one of the
important factors considered in this paper is signal transmission delay when using
remote signals. In [33], a mixed-objective, output feedback H2/H-infinity synthesis
with regional pole placement is presented for designing a WAC for damping inter-area
oscillations. The work adopts a hierarchical control structure where the WAC oper-
ates on top of the local controllers such as PSSs. A model order reduction technique
is employed when using frequency domain robust control techniques in order to save

time on computation.

1.3. Eigenstructure Assignment

A WAC designed for a realistic sized power system typically involves selecting multi-
ple I/O signals to make the inter-area modes controllable/observable. Reference [30]
has presented a very detailed description of a procedure for designing a MIMO WAC
for a large power system. The paper starts with a detailed discussion on selecting the
feedback signals and the local controllers that participate in the global control scheme.

The parameters of the centralized controller are obtained as a solution to a nonlin-



ear optimization problem that minimizes a modal performance index over time. The
paper also presents a comparison of using a decentralized or a global hierarchical con-
trol scheme. Even though the work is based on using a modal performance measure,
it does not exploit the design freedom available for MIMO systems to modify spe-
cific eigenvectors along with the corresponding eigenvalues for improving the dynamic
performance of the system. In [31], it was identified that state feedback for MIMO
systems provides additional design freedom on top of assigning closed-loop eigenval-
ues. This controller design method that exploits the degrees of freedom provided
by both eigenvalues and eigenvectors for MIMO systems is known as eigenstructure
assignment and has been extensively used in aerospace applications [35]. According
to [36], all the closed-loop eigenvalues of a MIMO dynamic system can be assigned
using output feedback if the sum of the number of inputs and outputs is more than
the number of state variables in the system. However, in a realistic power system,
this condition will never be satisfied. Furthermore, it would be a worthless activity
to assign all the eigenvalues in a power system since only a few of them dominate the
dynamic behavior.

There are only a few existent applications of eigenstructure assignment technique
for designing controllers in power systems. In [37], a framework for implementing a
decentralized control scheme (proportional output feedback based PSSs on machines)
based on eigenstructure assignment has been successfully used to damp inter-area os-
cillations as well as reduce the participation of these modes in certain machine speeds.
However, power systems throughout the world have lead-lag type PSSs installed on
them. Therefore, replacing them with proportional feedback type PSSs is not a vi-
able option. In [38], a partial left eigenstructure assignment has been presented to
design a controller for a doubly fed induction generator (DFIG) in order to reduce

the excitation of an inter-area mode and a shaft mode. A dynamic compensator



has been employed to increase the degrees of freedom available for eigenstructure
assignment. A multi-objective optimization problem with parametric vectors associ-
ated with selected left eigenvectors as the optimizing variables is formulated. In [39)],
partial right eigenstructure assignment technique has been used to design a robust
power system stabilizer. Similar to [38], parametric vectors associated with certain
right eigenvectors are used as optimizing variables. The optimization algorithm in-
corporates multiple operating points in order to attain robustness against operating
point changes. Both of these references deal with the design of a local controller on
a machine.

The main focus of this dissertation is to study the application of eigenstructure
assignment for designing a hierarchical WAC for enhancing the damping of poorly
located inter-area modes. The core objectives of this thesis can be sub-divided into
two parts:

1) The controller should be capable of assigning the poorly damped inter-area
modes to user-specified locations while also assigning the corresponding closed-loop
right eigenvectors. The number of I/O signals utilized for achieving the assignment
should be less but at the same time should have sufficient controllability /observability
of the poorly damped inter-area modes. Since a WAC uses remote /0 signals, the
issue of time delay of feedback signals should be addressed in the controller design
algorithm. The controller should not only perform for a fixed time delay but should
also be robust to uncertainty in time-delay of feedback signals.

2) The operating conditions of a power system constantly vary throughout the day.
Therefore, it is very important that the controller should be robust to changes in
operating conditions. In other words, the controller should be capable of improving
the damping of inter-area modes of interest under varying operating conditions. This

performance requirement should be satisfied in addition to the controller being robust



to uncertainty in time-delay of feedback signals.

1.4. Dissertation Contents

Chapter 2 provides a basic background of modeling various dynamic components in
a power system and describes the small-signal analysis of a linearized power sys-
tem model around an operating point. Chapter 3 presents a detailed description of
eigenstructure assignment technique applied to the design of a WAC. A quadratic pro-
gramming based approach has been used to obtain the dynamic compensator based
controller. Two projection techniques have been presented and compared for assign-
ing the closed-loop right eigenvectors corresponding to the poorly damped inter-area
modes. A multi-model optimization scheme has been presented in the later part of
the chapter that makes the designed controller robust to uncertainty in time delays of
feedback signals. The algorithm has been applied on the IEEE 68 bus system and the
performance of the controller in improving the damping of poorly located inter-area
modes has been validated.

Chapter 4 addresses the issue of robustness of the controller to changing operating
conditions. A multi-model optimization approach, different from the one presented
in chapter 3, has been used to tune a WAC obtained from chapter 3 in order to
make it robust. Two different approaches have been presented to select the models
to be included in the multi-model optimization. The first approach uses models that
are known to be stressed operating conditions of the system. The second approach
presents a method to select models such that the designed controller is robust to
changes in a specific parameter of the system. The second approach also accounts
for variability in time delay of feedback signals. Two different methods based on

eigenstructure assignment and first order eigenvalue sensitivity have been used to



formulate the optimization problem. At the end of chapter 4, a controller that is
robust to operating point changes as well as uncertainty in time-delay of feedback
signals is obtained. Similar to chapter 3, this controller has been designed, tested and
validated for the IEEE 68 bus system.

Chapter 5 provides the conclusions of this dissertation and presents the avenues for
future research in this area. There is an appendix that aids in understanding some

of the material presented in this dissertation.

10



2.Power System Modeling and

Small Signal Stability

The main focus of this chapter is to provide a background on modeling and stability
of interconnected power systems. Since the essence of this dissertation is the analysis
and control of inter-area oscillations, more focus is placed on small-signal stability of
the system.

An interconnected power system comprises of a number of dynamic devices that
need to be modeled and combined together to obtain a unified non-linear dynamic
model of the system. This non-linear model is linearized around an operating point
to obtain the state space model of the system and an eigen-analysis is performed on
this model to determine the eigenvalues and eigenvectors of the dynamic system. The
relationship of eigenvalues and eigenvectors with the dynamic response of the system

will form the foundation for the future chapters.

2.1. Dynamic Modeling

Synchronous Machine

Synchronous machines form the primary source of electric energy in the system. They
form the basis of power system stability since they govern the dynamics of the system.
Power system stability is the ability of keeping the interconnected synchronous ma-
chines in synchronism. Therefore, the understanding of their modeling and dynamic
behavior is of utmost importance. The number of dynamic equations (dynamic or-

der) describing the behavior of the synchronous machine can be chosen by the user
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\Direction ofrotation

Reference axis

Direct axis
Quadrature axis a’

Figure 2.1.: Schematic of a synchronous machine with two poles

depending upon the purpose of study. In this work, a sixth order model has been

used [10].

The dynamic equations of the sixth order model used in this work are given below

in (2.1) - (2.6).

5= Qp(w — ws)
o= %(Pm — P — D(w — w))
é; = (—e, — (xa — 2y — Ya)ia + (1 — 7Y%A)eJ‘fl)/TcllO
do
ey = (—¢) + (g — 7 — 70)ia) / Tho
e‘g = (—eg + e; — (2l — 2] + va)ia + %efd)/j%

e = (=i + e+ (), — 7 +7)ig) /T

The stator side electric equations are given by:

12



0= Taid+77/)q+vd (27)

0 =140 — Ya + v, (2.8)

where:

T 2 T z!!
— 2d0Zd / __ 290 %g /
Va = chwg(fd —Ty); Vg = mg(% — )

0 is the machine rotor angle

w is the machine angular speed

el is the transient quadrature axis voltage

e;; is the transient direct axis voltage

e is the sub-transient quarature axis voltage

el is the sub-transient direct axis voltage

H, D are the machine inertia and damping respectively

erqis the field voltage

x4, Ty, vl are the direct axis synchronous, transient and sub-transient reactances re-
spectively

T4, T, x, are the quadrature axis synchronous, transient and sub-transient reactances
respectively

T}, Thy are the direct axis transient and sub-transient field winding time constants
respectively

T/

400 Lo are the quadrature axis transient and sub-transient field winding time con-

stants respectively
T'44 is the d-axis additional leakage time constant
P,,, P, are the input mechanical power and output electrical power respectively

The initial values of v4 and v, are obtained using the power flow solution that yields

13
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1+s57, | v 1+57,

e
fdmin

Figure 2.2.: Block diagram of a simple excitation system

P,,Qg, VZ0 at the generator bus.

I Py+ixQ,\"
Vv
=LV + (ro+ixzy)l)
vg = Vsin(d —0)

vy = Veos(6 —0)

Era

(2.9)

(2.10)
(2.11)

(2.12)

The voltages v4 and v, are obtained by converting the bus voltage V' from network

reference frame to machine reference frame. The current [ is also rotated by an angle

(5 — d) to convert it to the machine reference frame.

Excitation Systems

The basic function of the excitation system is to provide direct current to the field

winding of the synchronous machine. The excitation system controls the voltage and

reactive power and aids in enhancing system stability. Excitation system can be D.C,

A.C or static [11]. A block diagram of a simple excitation system has been shown in

fig. 2.2. The dynamic equations representing the system have been given in (2.13) -

14



(2.15).

V, = (K”‘;_ V) (2.13)
‘./as = ((1 - %) (V;”ef - V;‘) - Vas) /Tb (214)
éra = (Kvi}—_efd) (2.15)

where V,, is the internal state variable associated with the lead-lag block.

Governor

The governor has the responsibility to control the power output of the synchronous
machine and thus the frequency. The droop controls the amount of change in power
with change in frequency. The purpose of droop is to enable parallel operation of
multiple generators. The time constants associated with governor controls are small
and are slow acting. Governor is used for relatively slower control actions such as
automatic generation control (AGC). The block diagram of a simple governor has
been shown in fig. 2.3. The dynamic equations associated with the governor have

been given in (2.16) — (2.18).

(Pin — xgl)
T,

. ((1 _ %) vy — xgz) /T (2.17)

. T: T
Tg3 = ((1 — ?i) (xgg + szgl) - $g3) /Ty (2.18)

where z,41, 740 and xgzare the internal state variables of the governor control blocks.

g = (2.16)
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Figure 2.3.: Block diagram of a simple governor-turbine system
sT,, 1+ 575 L+ 5T y
5

20— Kpss 5T,

1+SI;V 1+ST2

Figure 2.4.: Block diagram of a PSS

Power System Stabilizer (PSS)

The main purpose of PSS is to add a supplementary damping signal to the excitation
system. PSS uses feedback signals such as generator speed, generator power or gen-
erator acceleration to produce the supplementary signal. PSS produces a damping
torque in phase with the rotor speed deviations in order to aid in oscillation damping.
The basic block diagram of PSS has been shown in fig. 2.4.

The dynamic equations associated with the PSS are given in (2.19) - (2.21)

(Pin — Tg1)
T

i — ( <1 - %) (KpssAw + 1) — vg) /T (2.20)

e () (o0 (Bt o)) ) im e

(2.19)

v =
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Figure 2.5.: Block diagram of a SVC

Static VAR Compensator (SVC)

A SVC is a shunt FACTS device that injects reactive power at the point of connection.
It is mainly used to support voltages in the system. It can also be utilized for damping
inter-area oscillations by providing a supplementary signal to the voltage reference
through a supplementary control loop. The basic block diagram of PSS has been

shown in fig. 2.5.

. T,
Beon = ((1 - T) (V;ef + A‘/sup B V) o BCOH) /Tb (222)
b
. K,B., — B

where B,,,is the internal state variable of the lead-lag block. AVj,, is the signal that
comes from a supplementary control loop to enable SVC to participate in damping

of oscillations.

2.2. Small Signal Stability and Linearized Model of
a Power System

As mentioned earlier, a power system is a highly interconnected dynamic system.

In order to analyze the stability of this system as a whole, a non-linear differential
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algebraic model is obtained by combining the differential equations of various com-
ponents enlisted in the previous section and the algebraic equations associated with
the network [11]. The differential algebraic equations of the power system have been

given in (2.24) - (2.26) [10].

&= f(z,2q4,u) (2.24)
0=g(z,z,,u) (2.25)
y = h(x,x,,u) (2.26)

where = are the state variables of the system, z, is the vector of algebraic variables,
u is a vector of input variables, f is a vector of differential equations, g is a vector of
algebraic equations, h is a vector of output equations and y is the output vector of
the system. Small signal stability deals with the analysis of equilibrium points where
2 = 0. The primary step towards small signal analysis is to determine the state space
matrices of the power system around an equilibrium point. The equilibrium point is
obtained by running a load flow of the system. Following load flow, there are two
methods to obtain the state space matrices of the system around an equilibrium point:

1) Using analytic jacobian.

2) Numerical approximation.
The modeling and control implementation presented in this dissertation have been
carried out in a MATLAB based toolbox called power system toolbox (PST) [12]. PST
uses the numerical perturbation approach for obtaining the state space matrices. A
partitioned explicit approach is used where the differential and algebraic variables are
updated separately |13]. The method involves perturbing the variable  and u and

Af Af Ah  Ah

obtaining the matrices X7, X5, X, A, Lhus the state space representation of the

system is given as:
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&= Az + Bu (2.27)

y=Cz+ Du (2.28)

where A € R"™", BER™™ (C € R™™ and D € R"™™ is the output vector. The
matrix D is always a zero matrix since the transfer functions associated with different
dynamic components of a power system are proper. Once the linearized model of the
power system is obtained, its stability and response around that operating point is
governed by the eigenvalues. The n eigenvalues of the system can be determined by

finding the roots of the characteristic equation given in (2.29).

det(A —\I) =0 (2.29)

where [™*™

is an identity matrix. The eigenvalues can be represented as o; + jk;
where k; = 0 for purely real ones and o; = 0 for purely imaginary ones. The system
is stable iff all o; < 0. Two important parameters associated with any eigenvalue are

the damping, (; and frequency, f; of that eigenvalue. These are given as:

f= ;—W (2.31)

The right and left eigenvectors, v; and w;, are determined using (2.32) and (2.33)

respectively.
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The significance of right eigenvector is that its elements indicate the relative activity
of a state variable in a mode whereas the elements of left eigenvector indicate the
contribution of a state variable to a mode. In order to normalize the relationship
between state variables and modes, a matrix called as participation matriz P is defined

[41]. The " column of P has been shown in (2.34).

DP1i V1;Wi1
D2i V2; Wi2
Di = . = . (2-34)
L DPni | | UniWin |

Electromechanical modes are the system modes associated with machine rotor state
variables (angle and speed). As mentioned in chapter 1, electromechanical modes
normally lie in the low frequency range ranging from 0.2 Hz to 2.5 Hz. The elec-
tromechanical modes that have a high participation in a specific machine’s rotor
state variables (angle and speed) are the local modes associated with that machine.
On the other hand, an inter-area mode involves multiple machine rotor state vari-
ables participating in it. Participation factor analysis aids in choosing the location of
installing a controller in case an electromechanical mode is poorly damped.

The poorly damped electromechanical modes in the system are known as the critical

modes. This dissertation specifically involves the study and control of critical inter-
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area modes. Using the analysis presented till now, the main challenges associated
with the damping of inter-area modes are that:

1) In a large power system, since multiple machines participate in inter-area modes,
usually there is no one location where a local controller can alleviate the problem.

2) In a stressed operating condition, even a small disturbance can make them
migrate into the right half plane or in other words make the system unstable.
Therefore, a centralized WAC has been proposed in the literature and implemented
in this work for enhancing the damping of critical inter-area modes. The rapid de-
velopment in phasor measurement technology has made possible the use of remote
feedback signals for control. A generic schematic of a WAC has been shown in fig.
2.6. It is worth noting that the WAC can be either designed as a state feedback or an
output feedback controller. However, since the number of state variables in a realistic
power system is large, state feedback controller is not a feasible choice. Therefore,
this dissertation studies and implements an output feedback WAC and that is what
has been shown in fig. 2.6.

The first step towards designing the WAC involves selecting appropriate I /O signals
such that inter-area modes are controllable/observable. The participation factor does
not link the system modes to system input and outputs (only depends on the state
matrix). Therefore, the residue method has been used in this work [21]. Residue
provides a combined metric of controllability and observability of a mode using the
chosen 1/0 signals. The transfer function G(s) of the power system can be written

in terms of the residues as:

3

y(s) R;
G(s) = == 2.35
Gt = 2 (2.35)

where,



WAC

1, sup

1,ref

=
n
"
HE [ i
=
o<

+
c
=

G(s)

m,sup

m,ref

=)

Figure 2.6.: Schematic of a WAC

R; = ||Cvul B|| (2.36)

The residue R; for the i mode is also the sensitivity of that mode to a general
feedback gain K or in other words, the impact that a small change in a proportional
feedback gain K will have on the eigenvalue ;.

Therefore, in fig. 2.6, the signals u; syp,...,Um, sup are supplementary signals provided
by the WAC. The user selects the dimension m and r by choosing the signals that
enable control of the critical inter-area mode. Once, the appropriate I/0 signals are
selected, the next step is to design the controller that improves the damping of the
critical inter-area mode /s without impacting the rest of the modes in a negative way.

The rest of the dissertation targets the design of a WAC for enhancing the damping

of critical inter-area modes using eigenstructure assignment.
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3.Design of a Wide Area Controller

This chapter demonstrates the application of partial right eigenstructure assignment
for designing an output-feedback based WAC in a power system. The unique feature
of the controller is that it utilizes the additional design freedom provided by right
eigenvectors along with eigenvalue placement to improve the dynamic behavior of the
system. The fact that multi-input-multi-output (MIMO) systems provide more design
freedom than just manipulating the eigenvalues of the system has been exploited for
controller design. Supplementary loops on two static VAR compensators (SVC) have
been utilized to achieve the damping of oscillations. The advantage of using SVC
(or any other FACTS devices) is that it is better suited for damping of inter-area
oscillations since it is installed directly on the tie-line and it ensures low interaction
with the local electromechanical modes of the system. A very important aspect of
designing a WAC is its robustness against time delay of feedback signals. This chapter
also presents a multi-model optimization strategy to deal with uncertainty in time
delays.

A number of existing techniques involve coordinating the decentralized controllers
(PSSs, FACTS PODs) in the system using optimization techniques such that all the
eigenvalues of the system follow the minimum damping criterion (normally set to be
5%) 9], [11], [15] - These methods are based on moving poorly damped poles to well
damped locations. However, it is a well-known fact that the transient response of a
system is governed by not only the eigenvalues but also the eigenvectors. In [34], it
was first shown that MIMO systems provide more design freedom than assignment of
eigenvalues for the case of state feedback. In [36], the necessary and sufficient condi-

tions for exploiting additional degrees of freedom on top of assigning the eigenvalues
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was presented for the case of output feedback. Depending upon the number of inputs
and outputs of the MIMO systems, a limited number of eigenvalues and associated
right or left eigenvector can be appropriately assigned. In a typical power system,
there are only a few inter-area modes that are of concern. Therefore, eigenstructure
assignment forms a suitable technique to assign these critical inter-area modes along
with the corresponding right eigenvectors. Feedback signal selection plays an impor-
tant role to ensure that the critical inter-area modes are controllable (have a good 1/O
controllability metric/residue) while the local modes have a low I/O controllability
metric.

This chapter presents the design of a hierarchical, WAC that operates on top of
local controllers in order to damp inter-area oscillations. The unique feature of the
algorithm is that it formulates the controller design problem as a quadratic optimiza-
tion problem which can be solved in a single step (being a convex problem) [46,47].
Unlike [38], a transfer function representation of the dynamic compensator has been
used where the numerator coefficients of the elements of the compensator form the
optimizing variables. The denominator poles as well as closed-loop right eigenvectors
corresponding to the inter-area modes have to be pre-assigned in order to formulate
the controller design problem as a quadratic optimization problem. For this purpose,
a SVD based technique is used to determine the basis vectors for each achievable
(or assignable) closed-loop right eigenvector [16]. This is followed by determining
the weights to be used with these basis vectors to obtain the closed-loop right eigen-
vectors using projection techniques [18,19] . Two projection techniques utilizing
open-loop right eigenvector projection and weighted open-loop eigenvector projection
using participation factors of the state variables in the inter-area modes have been
employed and compared. Reference [19] has shown that utilization of open-loop right

eigenvector projection to obtain the closed-loop right eigenvector results in a robust
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closed-loop system (small condition number of the closed loop modal matrix). It has
to be noted that although the system under study already consists of local controllers,
it is still considered as an open-loop for the purpose of eigenvector projection since a
hierarchical control structure has been adopted.

An important aspect involved in the design of a WAC is the time delay of feedback
signals. In [50,51], it has been shown that communication latency or time delay of
feedback signals degrades the performance of the controller. Design of a WAC con-
sidering time delays has been addressed using robust control techniques [52], incor-
poration of time delay into system model using Pade approximation [32| and using
delay-dependent stability analysis [53]. In [54], a mu synthesis approach has been
used to design a robust controller with time delay as an uncertain parameter. In this
chapter, a multi-model optimization problem based on partial right eigenstructure
assignment has been formulated to design a WAC robust to uncertain time delays.
Pade approximation has been used to approximate the time delay as a rational trans-

fer function [32].

3.1. Controller Design Using Quadratic

Programming

Partial Right Eigenstructure Assignment

Consider the linearized model of a power system around an operating point as:

& = Ax + Bu (3.1)

y=Cx+ Du (3.2)
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where z€ R™*! is the state vector, uc R™*! and y € R™ ! is the output vector. The

free response of the system from an initial state without any inputs is given as:
n
i) = ) vjic;e! (3-3)
i=1

cj = Z w;irrk(0) (3.4)

where v;, w; are the right and left eigenvectors of eigenvalue \; respectively and z(0)
is the initial state vector. Therefore, the eigenvalues control the rate of decay whereas
the right eigenvector determines the shape of response.

The elements of right eigenvector determine the relationship between the state
variables and the associated mode. For a MIMO system, a few selected eigenvalues
and eigenvectors can be appropriately manipulated in order to improve the dynamic
performance of the system. In the case of proportional feedback, partial right eigen-
structure assignment technique is capable of assigning r eigenvalues and corresponding
r eigenvectors [38|. Let a proportional output feedback controller, u = Ky, be con-
nected to the system in (3.1) and (3.2). This results in the closed-loop state matrix
being (A + BKC'). Assume ¢ = 1...¢ < r controllable eigenvalues are to be assigned

to locations A; . Then, the closed loop system has to satisfy (3.5).

where v; € C™*1 is the corresponding closed-loop right eigenvector. The problem of
eigenstructure assignment can be presented as the determination of controller K that
achieves the assignment of \; and v;. Once the location of ); is selected, the next step
is to determine v; that can be assigned. Unlike a SISO system, a MIIMO system

can have multiple options for selecting a right eigenvector associated to an
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eigenvalue. The equation (3.5) can be restructured into equations (3.6) and (3.7)

shown below.

[A—M B] R - (3.6)
i

where, KCv; = f; (3.7)

The vector f; € C™*! is known as the input-direction. It should be noted that the
eigenvector, v;, to be assigned cannot be chosen arbitrarily. It can be inferred from

T
(5) that the achievable vector [ v fi } can only belong to the null-space of the

matrix [ A—)\NI B } In other words, the achievable [ v fi }T corresponding
to an eigenvalue is some linear combination of the basis vectors of the null space of
matrix [ A— NI B } . The rank of this null-space is the same as the dimension of B.
Therefore, higher the dimension of B, the more is the degree of freedom available for
eigenvector assignment. Singular value decomposition (SVD) is used to determine the
null space of [ A—-\NI B } and obtain the basis vectors for the achievable closed-
loop right eigenvector. The right singular matrix can be split into sub-matrices as

given in (3.8).

le ZlQ
Z = (3.8)

Zyr Ly
The columns of Z1,€C™ "™ form the basis vectors for achievable v; and columns of
Zy€C™ ™ form the basis vectors for the achievable f;. Let n;€ C™*! be the weights
T
to be used with the basis vectors to obtain the achievable { v fi } . The vector »;

can be determined by projecting a desired eigenvector vy onto the subspace spanned

by the columns of as shown in (3.9) [55].
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-1
m = (Z3713) " Ziyva (3.9)
Then the achievable v; and f; are obtained as shown in (3.10).
Vg = Ziati, fi = Zaati, (3.10)

Traditionally in power systems, vy is selected such that the participation of certain
machine speeds in inter-area modes is reduced [37,38]. Here two options of obtaining
1; have been compared:

1) n = (ZlTQZn)_1 ZLvi o where v; o is the open-loop right eigenvector.

2) m; = (ZSPZlg)fl 7L, Pv; o where P is a diagonal matrix consisting of the par-
ticipation factors of mode i.

The elements of the right eigenvector determine the impact on respective system
state variables if the corresponding mode is excited. Thus, the aim of using open loop
right eigenvector projection is to avoid a drastic change in the dynamic behavior of
system when closing the feedback loop. This projection technique is also known to
result in robust design and small control gains [19]. The second projection technique
scales the open-loop right eigenvector by the participation factor. The logic behind
this approach is that all the state variables do not participate equally in a mode.
Therefore, weights are introduced in the projection problem of (3.9) by utilizing the
participation factor of the respective mode. Results using both the options will be
presented and compared.

Once v; and f; are determined, the feedback gain required for assignment of eigen-

value/eigenvector pairs can be obtained using (3.7) and is given in (3.11):
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K:{fl fq}(LTL)lLT (3.11)
WhereL:C[U1 Uq].

Dynamic Compensator

Previous section dealt with partial right eigenstructure assignment for the case of
proportional feedback. However, since this work uses a dynamic compensator, new
necessary and sufficient conditions have to be enlisted. The dynamic extension causes
the state space of the closed-loop system to belong to R™"t"«)*1 where x, € R"*! are
the state variables added by the compensator. Therefore, the closed-loop right eigen-
vector can be expressed as { Vi Vei ] where v; represents the right sub-eigenvector
belonging to C" and v.; represents the right sub-eigenvector belonging to C™. The
main reason for utilizing a dynamic compensator is that it increases the number of
eigenvalues and eigenvectors that can be assigned to r + n, [38].

An important result used in this paper is that even though the dynamic order of the
closed-loop system increases to r + n,, the assignment problem still depends on the
right sub-eigenvector v; [17]. Let’s assume that the compensator in the state space
form is represented by matrices (A, B., C., D.). The controller transfer function is

shown in (3.12).

K(s) = C.(sI — A.)"'B.+ D, (3.12)

The closed-loop state space matrix obtained by applying (A., B, C., D.) on the sys-

tem given in (3.1) and (3.2) is given in (3.13).
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A+ BD.C BC,
Ay = (3.13)

B.C A,

where A, € R"*" B, € R"*" C, € R™" D.e& R™". Let’s assume that the

closed-loop eigenvalues are represented by \; 4. Then A, has to satisfy (3.14).

A + BDCO BCC Vi Vi
- >\i,cl (314)

BCC Ac Vei Vei
This matrix representation can be split into two equations given in (3.15) and (3.16).

(A + BDCC)Vi + BCCVCi = /\i,clvi (315)

(BCC)Vi + Acvci = /\i,clvci = Vei = (/\i,cl] - Ac)_chOVi (316)

Substitution of v; obtained in (3.16) into (3.15) results in the relationship shown in

(3.17).
(A + BDCC + BCC(A’L,CII — Ac)_chC)Vi = )\i,clvi (317)

Utilization of (3.12) in (3.17) results in (3.18).

(A + BK()\i,C]_)C)Vi = /\i,clvi (318)

The above relationship proves that even though the compensator adds some state
variables to the system, the assignment still depends on the first n elements (v;) of the
closed-loop right eigenvector. In other words, (3.7) still holds with the exception that

K is replaced by K (i ¢1) . This is an important result that is used in the formulation
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of the eigenstructure assignment problem in later sections. An eigenvalue/eigenvector

pair (Ai,c1, Vi) can be assigned by dynamic feedback K(s) iff (3.19) is satisfied.

K()\i,cl)C'vi = fi (319)

If A\; 1 is a complex eigenvalue (as will be in the case of an inter-area mode), a similar

constraint corresponding to complex conjugates (\; c1,V;, ;) has to be satisfied.

Quadratic Programming

The design objectives of partial right eigenstructure assignment comprise of assign-
ing some critical eigenvalues and corresponding closed-loop right eigenvectors using
(3.6) - (3.10). Then (3.19) and its conjugate equivalent are the constraints that the
gain has to satisfy in order to assign the complex eigenvalue/eigenvector pair. Fur-
thermore, bounds can be imposed on the numerator coefficients. Thus a quadratic
programming based optimization is formulated utilizing the dynamic compensator.
This paper uses a transfer function representation of the dynamic compensator. The
quadratic programming formulation is made possible by specifying the denominator
coefficients of the compensator a priori. Thus, the optimization variables are the
numerator coefficients. The degree of the numerator determines the number of op-
timizing variables in the system. If the algorithm does not converge with a specific
order of the numerator, the order can be increased with the constraint that the degree
of numerator cannot be greater than the denominator. A general k*" order dynamic

compensator matrix is given in (3.20).
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b1115k+ ----- +b(k+1)11 bllrsk"r ----- +b(k+1)1,,.
sktarrrsh—1+....4ar1 sktarirsh—1+. Fagi,
(3.20)
blmlsk-i- ..... +b(k+1)m1 blmrsk_l—l- ..... +b(k+1)mr
L Sk+a1m15k71+ ----- +agmi T 5k+almrsk71+ ----- +akpmr

where byyp.....b(k41)m, represent the numerator coefficients and aypy.....agm, Tepresent
the denominator coefficients of the element (m, r) of the compensator. The constraint
(3.19) is made linear by pre-assigning the pair (v;,f;) using projection methods al-

, 56).

Quadratic cost function: The cost function consists of minimizing the sum of Frobe-

ready presented. The optimization problem can be stated as shown below |

nius norm of the compensator at [ different frequencies typically around the eigenval-
ues to be shifted as shown in (3.21). This norm of the controller at a given frequency
signifies the amount of energy required for the control action at that particular fre-
quency [44,57]. Therefore, minimizing J ensures reduction in average control energy
over frequencies ¢ = 1....[ and it can be expressed as a quadratic function in terms of
the optimizing variables (numerator coefficients).
!
Minimize J = ||K (jw;)|[3 (3.21)
i=1

FEquality constraints: For i = 1....q complex eigenvalue/eigenvector assignments, the

2¢ equality constraints are given in (3.22) and (3.23).

K()\i,cl)CVi - fi (322)

K()\i,cl)cvi - fi (323)

Numerator coefficient bounds: The supplementary control signals from the controller
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are dependent on the magnitude of the feedback. Therefore, it is necessary to put
a bound on the elements of the feedback matrix in order to limit the control effort.
The optimization variables, i.e., numerator coefficients can be bounded as shown in
(3.24).

<b

bmin

ijk S bma:p (324)

Once the cost function and the equality constraints are obtained in terms of the nu-
merator coefficients, quadratic programming is used in MATLAB to solve the prob-
lem. The formation of all the matrices that are required to be fed to quadprog can be
found out in detail in [58]. A flowchart explaining the algorithm for controller design

using partial right eigenstructure assignment has been shown in fig. 3.1.

3.2. 1/0O Signal Selection and Time Delay of
Feedback Signals

Selection of appropriate 1/O signals for the controller is important to ensure that all
the poorly damped modes to be relocated are controllable and observable. Poor choice
of signals might result in unreasonably high gains and thus an infeasible controller.
In this work, the locations of SVCs have been pre-assigned. The SVCs are installed
close to the tie lines which is the followed practice in an actual power system. The
challenge here is to select the appropriate feedback signals given the locations of SVCs
are fixed. The residual method explained briefly in chapter 2 is used for selecting the
feedback signals for the WAC. As was mentioned earlier, the residual method also
represents the first order sensitivity of an open-loop eigenvalue \; ,; with respect to a
controller K. The metric based on the first order perturbation of an eigenvalue has

been used and given in (3.25) [59,60].
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Figure 3.1.: A flowchart explaining the controller design algorithm
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The primary reason for using SVCs is to ensure that the local modes in the system
are minimally affected. On the other hand if PSS/s were chosen to be a part of the
WAC scheme, the control interaction might result in a local mode becoming unstable
or moving towards the right half plane as the inter-area modes are moved to better
locations. As will be shown in the results, utilizing SVCs and the selected feedback
signals results in the local modes being non-controllable. Also, the modes other than
the inter-area modes that are controllable using the chosen 1/0 signals are well into
the left half plane. This is the reason that no constraint is put on the other eigenvalues
(other than the assigned ones) in the optimization process to ensure that none of them
becomes unstable.

An important factor while using remote feedback signals is to account for the time
delay. Time delay has been approximated by utilizing the second order Pade approx-
imation as given in (3.26) [32].

7252 — 675 + 12
T = 3.26
¢ 7252 + 675 + 12 ( )

The state space representation of the dynamics of delay can be written as shown in
(3.27) and (3.28). The time delay block connected to the plant has been shown in

fig. 3.2.

Zq = Agrq + Baug (327)

Y1d = Cyzg + Dauy (328)

where 14 is one of the delayed outputs of the plant. A similar representation can

be used for other inputs. The input uy to the time delay block is one of the outputs
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Figure 3.2.: time delay in one of the output signals

from the plant. Thus u4 can be substituted with y; using (3.2). The final state space

representation of the system including the time delay can be written as given in (3.29)

and (3.30).
Tig = Ara%iq + Bialiea (3.29)
Yta = Cra%iqg + Diqg (3.30)
€T yld A O B
where 2,y =  Yd = , Ay = , Bia = )
T4 Y2 B,Ch Ag BiD,y
D.Cr Cy DyD,4
Cig = , Dyg = . Cy1, Cha, D, and D,o represent the
Cr2 0 DT?

respective rows of C' and D matrices.

The impact of time delay on the performance of a WAC employing remote signals
has been presented in numerous works [29,50]. Local control typically experiences
time delay of the order of 10ms. However, in a wide area control scheme, the remote
signals might have a delay of the order of 100ms. If a larger number of signals are to
be routed, a delay of more than 100ms is expected. Moreover, transmitting multiple

signals introduces variability in the amount of time delay. Therefore, accounting for

36



an uncertain time delay is very important to ensure that the controller is robust to
uncertainty in time delay. A multi-model optimization approach has been followed

to incorporate the impact of time delay and has been presented in the next section.

3.3. Multi-model Optimization for Controller
Design

As mentioned in the previous section, time delays of feedback signals degrade the
performance of a WAC. A constant time delay can be accounted into controller design
by using a lead-lag compensation block [53]. However, the challenge is the uncertainty
in time delay. In a recent work, a mu-synthesis based approach has been used where
the time delay has been considered as an uncertain parameter for determining the
linear fractional transformation of the system [54]. This work proposes to use a
modal multi-model method for incorporating the uncertainty in time delay into the
controller design. A quadratic optimization problem utilizing the system model with
and without the time delay is setup. The time delay is included in the system model
by using (3.26) - (3.30). A specific value of time delay, 7, is chosen and the design
algorithm results in a controller that is robust to multiple values of time delays up to
7. Let’s assume that the system model with and without the delay is termed as the
delayed model and the nominal model respectively. The multi-model optimization
problem formulation will be presented below.

Let the controller designed for the nominal model be termed as K,,,(s). The
aim is to design a controller, K, pus(s), that ensures the damping of the inter-area
modes for the varying values of time delay of feedback signals. Let \;; . be the

il eigenvalues that were assigned by K, (s) for the nominal model. Also, assume
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that the nominal and delayed system models are represented as (A;, By, C1,0) and

(Asg, B, Cy,0) respectively. The steps for robust controller design are listed below:

e Apply the controller, K,,,(s) on the delayed system model. Determine the

eigenvalues that violate the minimum damping criteria (5% damping).

e The design objective for K,opst(s) is to assign the eigenvalues obtained from
the previous step to better locations, Aj; ., while preserving the eigenvalues,
Ai1,c1, assigned by K,on(s) for the nominal model. The optimization problem
involving the assignment of (Aiq c1, Vi1, £31) and (Aig,c1, Vi2, £12) for the nominal

and the delayed system model respectively is shown in (3.31) - (3.34) [61].

l

Minimize J = Z | K nom (i) = Kropust (jwi) |7 (3.31)
i=1
such that,
Krobust()\il,cl)olvil =1fi (3-32)
Kobust(Ai2,c1)Cavia = fig (3.33)
bmin S bijk S bmaw (334)

where \jj = L..qt < 7+ ng, Mg = 1...ga < 7+ n,. The objective function in (27)
ensures that the controller Ky, (s) is as close as possible to Ko (s) [58]. Also, the
objective function can be expressed as a quadratic function in terms of the numer-
ator coefficients of K,opusi(s). Therefore, the optimization is solved using quadratic
programming in MATLAB. The matrices required for quadratic programming for-

mulation have been given. There are two important factors to be considered while
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incorporating multiple models for controller design using eigenstructure assignment:

1. Similar to sub-section 3.1.3, the constraints of (3.32) and (3.33) can be linearized
iff (viy,f5q) and (vig, fi5) are pre-assigned. The equations (3.9) and (3.10) are
used to determine the vectors (v, fi;) and (via, fi2). The matrices required
for determination of these vectors are Zi5 and v; 4. Z12 for the two state space
models is obtained using null({ A =\l B ]) and null([ Ay — N\iol By ])
The next important step is to select v; ,;. The eigenvalues being treated in this
subsection are the ones obtained by the application of K, (s) on the nominal
and the delayed model. Therefore, the eigenvector v; ,; corresponding to these
eigenvalues belong to the space C™+)*1(application of K, (s) increases the
dynamic order). This would result in the matrices Z5 and v; ,; needed in (3.9)
being dimensionally incompatible (Z;2 € C™*™ whereas v;, € (C("Jr"“)“) )
This problem is solved by exploiting the concept presented in (3.12) - (3.18).

Therefore only the first n elements of v; ,; are used for projection.

2. Tt is possible to have constraints treating the same type of mode in two different
models. This would result in high sensitivity of that eigenvalue and thus lower
robustness [61]. Care should be taken to remove a constraint for the nominal
model if a similar constraint is being added for the delayed model. This point

will also be demonstrated in the results section more clearly.

It has to be noted that the dynamic order of K,,,,,(s) and K,pus(s) has been selected

to be the same in this work. However, the orders can be chosen to be different.
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3.4. Results and Discussion

The algorithm presented in this chapter has been applied to the IEEE 68 bus system.
The system has been built and simulated in matlab based power system toolbox
(PST) [12]. A modified version of the system presented in [62] has been used. The
details of the system have been provided in appendix A. A schematic showing the
system with the WAC has been shown in fig. 3.3. The system has two SVCs rated
200 MVA located at buses 40 and 50. The damping has been achieved by providing
a supplementary signal to the SVC reference voltage signals. The reason for using
two SVCs is to provide enough degrees of freedom for eigenvector assignment as
explained in section 3.1. The dynamic model of the system in PST consists of 186
state variables. Sixth order model has been used for synchronous machines and the
loads have been modeled as constant impedance loads. PSSs and governors have been
installed only on machines 1 — 12 considering the fact that the generators 13-16 are

equivalent areas.

Controller Design for the Nominal Model

The initial step consists of performing a small signal stability analysis on the nominal
model to determine the inter-area modes in the system. The next step involves
selecting the I/0 signals that have a good controllability metric for the poorly damped
eigenvalues (damping ratio less than 5%). Since the output signal of the controller is
fixed to be the SVC supplementary voltage control signal, the aim is just to find the
appropriate input signals. The feedback signals based on the controllability metric
were chosen to be the real power flows in the lines 49-52 and 52-42. The selection
of these feedback signals also ensured that none of the local modes were controllable.

The other possible options for tie lines (42-41, 50-52) were also successfully used for
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controller design but the results have not been presented here due to limited space.
The I/O controllability of the top ten controllable modes using the selected I/0 signals
has been presented in table I. It can be observed that except the inter-area modes,
majority of the other controllable modes have a high, negative real part. The next
step is to choose the locations to be assigned to the poorly damped eigenvalues. The
approach followed here is to keep the imaginary part the same and change the real part
such that the damping ratio becomes 10%. It has been noted that the damping ratio
of the eigenvalue —0.308 4 2.392¢ is already above the minimum damping criterion.
Therefore, it is assigned at the same location. The open-loop and assigned eigenvalues

have been shown in table II.

Figure 3.3.: IEEE 68 bus system with the WAC
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Table 3.1.: Residues of top 10 controllable eigenvalues using the selected I/O signals
‘ Open-loop eigenvalues ‘ Residues ‘

-61.66 21.8
-68.73 6.63
-67.77 2.78
-0.117-+3.3291 2.2
-0.178-+4.8891 1.19
-0.308+-2.3921 1.17
-9.05+11.611 1.14
-28.67 0.64
-7.59+19.731 0.53
-7.95+-14.861 0.43

Table 3.2.: Assigned eigenvalues and their damping ratios

Open-loop eigenvalues | Closed-loop eigenvalues | Open-loop Closed-
damping loop
ratio damping
ratio
-0.308+-2.3921 -0.308+-2.392i 12.8% 12.8%
-0.1174-3.3291 -0.334+4-3.3291 3.54% 10%
-0.178+4-4.8891 -0.491+-4.8891 3.65% 10%

The achievable closed-loop right eigenvectors corresponding to each eigenvalue are
determined using (3.9) and (3.10) using either of the eigenvector projection techniques
mentioned in section 3.1. Once, the closed-loop right eigenvectors are determined,
the optimization problem utilizing equations (3.21) - (3.24) is setup. The order of the
dynamic compensator is chosen to be three and the compensator poles are chosen to
be (—4,—5,—6). It has to be noted that the controllability metric defined in (3.25)
is based on a proportional output feedback. However, using a dynamic compensator
adds new poles into the system. The location of these poles will have a marginal
effect on some of the system eigenvalues. Therefore, the closed-loop system eigenvalue
plot will have a few other eigenvalues displaced marginally than expected from the

controllability metric of table I. Choice of complex compensator poles has the least
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impact on other system eigenvalues and is the best choice. It has to be noted that
these system eigenvalues being marginally displaced are the ones that lie into the far
left half plane. The local modes were not affected at all in any of the cases that
were studied. The degree of numerator has been chosen to be equal to that of the
denominator. The cost function is formulated to minimize the sum of the Frobenius
norm of the compensator at frequencies ranging from 0 to 7 rad/s in increments of
1 rad/s. The numerator coefficients in the optimization problem are bounded to
be within -120 and 120. In this paper, both the projection techniques presented in
section 3.1 have been used for designing the controller. The controllers designed using
open-loop eigenvector projection and weighted open-loop eigenvector projection are
termed as K,om1(s) and Kpma(s) respectively. The performance of K, m2(s) is found
out to be superior to K,om1(s). Thus, K,oma(s) is used for the design of K, opust(s)

presented in the next subsection. The controllers K,5m1(s) and Kome(s) are found

to be [63]:
—0.3275%4-2.8475%—11.4545—36.123  1.181554-6.82524-12.2754-59.956
$34+15524745+120 $34+15524-7454+120
Kpom1(s) = , (3.35)
0.1185%—1.4175%42.7235+14.5 0.4415%—0.245%42.3715—12.85
$3+15524+745+120 $3+1552+74s5+120
0.081853+0.890s2—1.2655s—36.44  0.215s5%—0.21152—1.6715s—33.98
$3+15524+T745+120 $3+15524T45+120
Kpoma(s) = (3.36)
0.4205%+3.8435%43.19354+-37.41 1.0755+9.169524-10.7754+62.62
$34+15524+7454+120 534-15524-745+120

The eigenvalues of the system with and without the output feedback controller have
been shown in fig. 3.4. Fig. 3.4 shows that the controller selectively assigns the
poorly damped modes to better locations while preserving the well damped inter-area
mode at the same location. Furthermore, the rest of the eigenvalues are minimally

impacted. The time domain results have been shown for three different operating

43



conditions to justify the inherent robustness of the controller as shown in table III.
The operating condition, OP1, is the base-case condition. The operating condition,
OP2, involves increasing the output of generator 15 by 10 per unit (on 100 MW base)
while reducing the output of generator 14 by the same amount. This operating point
stresses the tie line 42 — 41 and worsens the damping of the eigenvalue of the nominal
system. The operating point, OP3, consists of the line 46 — 49 being disconnected. A
ten cycle, three phase fault at bus 49 has been used to demonstrate the performance

of the controller under different operating conditions.

! 10% dam‘ping Iin\E\ ! o ‘ . ‘
12+ ® ' ', 8% damping ine\ ) Without controller |
e @ . + WithK__(s)
10+ \ B
)
> 8 I
©
£
g 6 1
E
4 modes of interest
2r i
0 X ‘
-3 -2.5 -2 -15 -1 -0.5 0.5 1

Real

Figure 3.4.: IEEE 68 bus system with the WAC

Table 3.3.: Operating points used for validating the robustness of the controller

Operating Operating Condition
Point
OP1 base-case
OP2 increase the output of generator 15 by 10
p-u while reduce the output of generator 14
by 10 p.u
OP3 line 46-49 disconnected
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The plot showing the rotor angle difference between generators 15 and 16 for different
faults and operating conditions have been shown in fig. 3.5. The results clearly
indicate the significance of eigenvector assignment in the design of the controller.
As seen from the results, K, ,m2(s) is more robust to operating point changes in the
system as compared to Kom1(s). Fig. 3.6 shows the susceptance of the SVCs during
fault for all the three operating conditions when using K,,,m2(s). This figure validates

that control objective is achieved with bounded control effort.

Multi-model optimization for controller design

Once the controller for the nominal system model, K, ,,2(s) is obtained, the next
step is to determine, the next step is to determine K, pust(s) robust to time delay
uncertainty of the feedback signals. The delayed system model is obtained by using a
value of 7 = 400ms. The controller, K,,,2(s), is applied to the delayed system. Two
eigenvalues, (—0.1073 + 3.555¢) and (—0.0436 4 5.172¢) are found to violate the min-
imum damping criterion. A multi-model optimization problem is formulated using
equations (3.31) - (3.34) to improve the damping of these eigenvalues while preserving
the performance of K,,,,2(s) for the nominal model. Ideally, the eigenvalues assigned
in the previous subsection are re-assigned at the same location to form the constraints
associated with the nominal model. Similarly, the eigenvalues (—0.1073 +3.555¢) and
(—0.0436 £ 5.172i) associated with the delayed model are assigned to better locations
to form the constraints relative to the delayed system model. However, it has to be
noted that two eigenvalues associated with the delayed model are similar in nature to
the ones assigned for the nominal model. Therefore, the constraints associated with
the re-assignment of (—0.334 +3.3297) and (—0.491 +4.889:) at the same location are

removed for the nominal model. The utilization of the idea of eigenvector projection
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ensures that the removal of these constraints does not affect these eigenvalues drasti-
cally while improving the damping of (—0.1073 & 3.555¢) and (—0.0436 £ 5.172i) for
the delayed model. The two poorly damped eigenvalues associated with the delayed
model are assigned to have a damping ratio of 7%. Similar to previous subsection,
this is achieved by keeping the imaginary part constant and varying the real part.
The assigned locations are found to be (—0.249 + 3.555¢) and (—0.362 £ 5.172¢). The
eigenvalue plot showing the comparison of K, pm2(s) and K,pus(s) on the nominal
and delayed system models has been shown in fig. 3.7. Similar to previous subsection,
the numerator coefficients in the optimization problem are bounded to be within -120

and 120. The controller K,qpys¢(s) is given to be [63]:

—1.4115%410.03952—21.755+118.63 2.2745%—2.475%422.57s—37.52

$3+15524+745+120 $3+15524+745+120
Krobust(s) = (337)
—3.3465%—2.1952 —56.55—61.72 4.43653413.51152444.375498.53
$34+1552474s5+120 $34+1552474s5+120

The eigenvalue plots presented in fig. 3.7 show that the controller, K, p,s(s) is able
to meet the minimum damping criterion for the nominal as well the delayed system
model. Two controller induced poles also come into the picture as shown in fig.
3.7(b). However, they do not pose any problem as they are well into the left half

plane. Moreover, the local modes in both the eigenvalue plots are not affected at all.
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Figure 3.6.: Susceptance of the SVCs during fault for all three operating conditions when using Kpom2(s)

The Time domain results showing the rotor angle differences between generators 15
and 16 for different values of time delay of feedback signals have been shown in figs.
3.8 - 3.10. The disturbance applied in the system is a ten cycle, three phase fault
at bus 49. It has to be noted that the results shown incorporate delay in both the
feedback signals. The results show the robustness of the controller, K, pusi($), to

varying values of time delays under different operating conditions.
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3.5. Discussion

There are certain aspects of the method that can be improved and have been addressed

in the next chapter. These are:

1. The method uses projection techniques to assign the closed-loop right eigenvec-
tors. However, the weights 7; to be used with the basis vectors can be used as
optimizing variables along with the eigenvalue locations since they are degrees
of freedom. This idea will be demonstrated in the next chapter to formulate

the controller design problem.

2. The controller was designed based on a linearized model around an operating
point. However, a power system experiences variability in operation throughout
the day. Therefore, robustness of the controller forms an important aspect.
In order to address this issue, a multi-model optimization formulation will be
presented in the next chapter. The multi-model optimization strategy presented
in this chapter is not particularly suited for scenarios where more than two

models are involved.

3. In the next chapter, a constraint on the damping of rest of the eigenvalues of

the system, other than the critical eigenvalues, will be incorporated.
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4 .Robustification of a Wide Area

Controller

One of the primary objectives of this thesis is to design a WAC that is robust to oper-
ating point changes in the system as well as time-delay uncertainties of the feedback
signals. As mentioned earlier, power systems experience varying operating conditions
throughout the day. Thus, robustness forms a very important aspect of designing a
WAC.

In control systems terminology, robustness can be subdivided into frequency domain
and real parametric uncertainties. There has been extensive research and literature
on addressing the issue of frequency domain uncertainty (mainly model uncertain-
ties) in power system using H-infinity optimization technique [6]. The conventional
H-infinity optimization technique involves selection of weighting filters to define the
frequency range of interest for optimization which is not a very straightforward proce-
dure. A better method of finding the H-infinity norm involves solving a linear matrix
inequality (LMI) where the eigenvalue constraints can be specified more easily [65].
On the other hand, the approach for addressing robustness against real parametric
uncertainties is totally different. Two different approaches have been used previ-
ously in power systems to design a controller robust to real parametric uncertainties
namely: p synthesis (frequency domain) [66] and pole placement involving multiple
models of the system (time-domain) [15]. As the name suggests, robustness against
real parametric uncertainty involves studying the robustness of the system to any
variable parameter/s in the system. The u-synthesis technique is a frequency domain

technique that uses a metric known as structured singular value (SSV) to analyze the
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robust stability of the system. In [15], a pole placement technique has been presented
that uses a multi-model optimization approach with the tunable parameters of various
local controllers (PSSs) being the optimizing variables |15]. The control objective is to
ensure that eigenvalues across all the selected models satisfy the minimum damping
criterion.

This chapter presents formulation of multi-model optimization problems using two
different methods such that eigenvalues across all the selected models satisfy the
minimum damping criterion. This is achieved by tuning the initial controller K (s)
obtained using the technique presented in section 3.1. However, It should be noted
that K (s) can be any generic WAC. The uniqueness of the tuning procedure lies in the
way the multi-model optimization problem is formulated. Two different approaches

have been used to select the models to be incorporated in the optimization problem:

1. Approach I - This approach involves selecting stressed operating points based
on system information. In power systems, these operating points are usually
known to the operator. A lot of existing literature follows this approach to

address the issue of robustness against operating point changes [39,15,67].

2. Approach IT - The first approach cannot address the issue of robustness of the
designed controller to the variation of a specific parameter of the system as well
as uncertain time delay of feedback signals. Approach II presents a method
to appropriately select models such that the resulting controller is robust to

uncertainties in operating points as well as time delays.

Two different methods have been used to setup the multi-model optimization problem

used in both the approaches:

1. Method 1 : This method is based on eigenstructure assignment technique. The

essence of the technique was explained in detail in the last chapter. However in
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this chapter, the optimization problem is setup in a totally different way utilizing

a different set of optimizing variables as well as the optimization algorithm.

2. Method 2: This method makes use of the first order sensitivity of an eigenvalue
with respect to a proportional feedback controller to slowly move the critical
eigenvalues associated with each of the selected models inside the 5% damping

line.

Both these methods will be explained in detail in the following sections.
The first step towards tuning K (s) is to transform the uncompensated system/s
connected to K (s) into a form that can be incorporated into the multi-model opti-

mization algorithms. This has been shown in the next section.

4.1. Obtaining the Extended Dynamic System

The initial closed-loop system available is given as:

r = Ax + Bu (4.1)
y=Cx (4.2)
u=K(s)y (4.3)

where (4.1) and (4.2) represent the base-case system model. The controller K(s) is

given in state-space form as:

.= Acx.+ By (4.4)

u=Cux.+ D.y (4.5)

where z.€R™*!. The transformation of the uncompensated system connected to
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dynamic compensator into an extended dynamic system connected to proportional

feedback is given in (4.6) - (4.8) [39].

Ty = Auxy + Baug (4.6)
Yo = Caxa (47)
Uq = Kaya (48)
where x, = e R(”Jr”a)“, Uy = c R(m+na)xl, Yo = e R(r+na)x1
Le j;c T
A 0 B 0
Aa — Ba =
0 0 0 lngxng
¢ 0 Dc C’c
O [naxna BC AC

Once, this extended dynamic system has been obtained, the proportional feedback
controller, K,, can be tuned using the multi-model optimization techniques to meet
the control objectives. As the optimization terminates, the extended dynamic system
connected to proportional feedback is converted back to the original form (uncompen-
sated system connected to tuned dynamic compensator). Let the extended dynamic

models associated with the chosen models be referred to as mod, e, modg, 1m,.....M0dg .

4.2. Setting the Optimization Problem
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Method 1

The feedback gain K, connected to mody 1p,.....modg nym (more stressed operating con-
ditions) will result in certain eigenvalues being outside the 5% damping line. However,
since K, was designed for mod, . , the closed loop system mod, . — K, will have all
the eigenvalues on or to the left of the 5% damping line. The control objective using
the eigenstructure assignment technique is to re-assign selected inter-area modes (al-
ready well-damped) of the closed-loop system, mod, p. — Ka, t0 (Aai; Vasis fai) Dy tun-
ing K, such that the closed-loop eigenvalues associated with all the models (mod, pc,
modg, 1m.....MOdg nm connected to the tuned controller) satisfy the minimum damping
criterion. A nested optimization strategy has been adopted where the objective of
the outer loop is to minimize the distance of the critical eigenvalues from the 5%
damping line and the objective of the inner loop is to minimize the deviation of the
designed controller from K,. The outer and inner loops have been described below:
1) Outer loop:

The connection of the proportional feedback controller to the extended dynamic sys-
tem results in the closed loop state matrix to be (A, + B,K,C,). Let A.;, where
i = 1...qs < (r+ na), be the eigenvalues of the closed-loop system given in (4.6)
- (4.8) that are selected to be re-assigned. Similar to (3.6) - (3.7), the closed-loop

eigenvalue-eigenvector relationship can be restructured as:

Ua,i

|: Aa - /\a,i] Ba :| = O (49)
fa,z'

where, K,Cova; = fai (4.10)
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T
The basis vectors for each assignable [ Vai  [fai } span the null-space of the matrix

({ A, — il B, } ) . The rank of this nullspace is the same as the column space of
B, € Rmtna)x(mina) Tt ig evident that the degrees of freedom available for assigning
the closed-loop right eigenvector can be increased by either increasing the number of
inputs (m) or increasing the order of the compensator (n,). It has to be noted that
only relationship in (4.9) is used for the outer loop and the relationship in
(4.10) is utilized in the inner-loop.

In section 3.1, the location of closed-loop eigenvalue was selected by the user.
However, in this formulation, the location of the closed-loop eigenvalue is treated as

an independent variable. The location A, ; can be given as:

)\ai = >\ci - A>\c,i (411)

) )

where, A\, ; is the change in location of A.;. Similar to section 3.2, once A, is known,
the matrices Z, 12 and Z, 2o are determined using svd([ Ay — Mail B, ]) [16]. The

right singular matrix, Z, is given in (4.12).

Zotr Za
Z, = | Tt fer (4.12)

Za,21 Za,22

The columns of Za,lge(C("Jr”“')X(m*”“) form the basis vectors for v,; and columns
of Z,90€CmHna)x(mina) form the basis vectors for f,; . Let 1,,€Cm+m)*1 he the
weights to be used with the basis vectors. Then the v,; and f,; can be obtained

using (4.13).
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)

Va i Za,121 Za

712(7n+na)

— 77(177;1 + ....... + na7i(m+na) (413)

fa,i Za,221 Za,22<m+na)
where, 75, ....., Nasitmsng) DL€ the elements of the vector 7,, and Z; 19, ....... Za,lg(ern .
24,99, e Za,QQ(mM() are the columns of matrices Z, 1o and Z, 29 respectively. The

vector of optimizing variables 6 is given as:

0 = (re(AAi), im(ANes), 7€(Maiy)s 1M (Nasiy)os T€(Nasisnny)s T (Nasiining))

In each iteration, a different 6 results in a new (A, ;, Vo, fai) which is fed as an input

to the inner loop. The objective function for the outer loop comprises of minimizing

J1(0) given in (4.14).

nm—+1 qq

Ji(0) = > ) (0.05 = & mo) (4.14)

mo=1 i=1

where 6 refers to the optimizing variables, mo refers to the specific model out of all
the models, g; refers to the eigenvalues of the mo'* model that violate the minimum
damping criterion and &; ,,, refers to the damping of i*" eigenvalue, where i = 1...qq
for the mo™ model. A derivative-free, direct search optimization algorithm known

as mesh adaptive direct search (MADS) method has been used in MATLAB to solve

the unconstrained optimization problem. The bounds on the optimizing variables are
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given below in (4.15) - (4.18).

0 <re(AX.:) < ax, max (4.15)
Bimin < iM(AX;) < Brimaz (4.16)
s min < 7€(11a) < gy s (4.17)
Boimin < im(Nagi) < By mas (4.18)

In the first iteration K, is connected to all the selected models and the value of .J;(0)
is computed. If J;(#) is more than zero or a certain threshold selected by the user,
(Aayis Vayis fai) are initialized from zero and passed as input to the inner loop.

2) Inner loop: The purpose of the inner loop is to determine a AK, such that K, +
AK, achieves the assignment (A, ;, Va, f2.;) While minimizing the deviation from K.
A quadratic optimization problem with AK, as the optimizing variable is formulated
with the objective of minimizing ||AK,||% . The constraint for the problem is setup
using (4.10). As new (A, Vas, fas) is Obtained as input every iteration, the objective
is to determine AK, such that K, + AK, satisfies (4.10) [68,069]. This relationship

is given in (4.19).

(Ka + AKa)CaUa,i = fa,i = (AKa)CaUa,i = fa,i - KaCava,i (419)

The matrix equality of (4.19) can be split into (m+n,) linear equations. Lets assume
that the product of matrix C, with the vector v,; (elements all complex) in (4.19)
results in a vector M; € C"+7)x1 Then, the linear constraints can be written as

below:
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(AK,)re(M;) =re(fa:) — Ka(re(M,;)) (4.20)

(AKa)Zm<Mz) = Z‘Tn(fa,i) - Ka(zm(Mz)) (421)

The next step is to represent the constraints in (4.20) and (4.21) in HfB = ¢ form
where the elements of the matrix AK, (optimizing variables) form the vector 5. This
has been shown using an example below:

Ezxzample: Assume:

1
AKH AK12 AKlg 4
AK, = cre(M;) = | 2 |, re(foi) — Ku(re(M;)) =
AKQl AKQQ AKgg 5
3
Then (4.20) can be written as:
1
AKH AKlg AKlg 4
2 =
AKQl AKQQ AK23 5
3

This can be represented in Hf = ¢ form as follows:

62



AKyy
AKiy
123000 AKq3 4
000123 A Ko )
AKy
AKo3

This has been achieved in the actual implementation using the trace operator [68,69].

Once the optimization converges to give AK,, the controller is updated to K, +
AK, and provided as input to the outer loop where the objective function in (26) is
calculated. This procedure is repeated iteratively till the value of .J;(6) reaches zero
(all the closed-loop eigenvalues associated with each of the three system models move
to the left of the minimum damping line) or below a certain threshold specified by the
user. The final obtained K, is converted back into its dynamic form and is termed
as Konethod1 (S)-

A flowchart showing the various steps of the algorithm has been presented in fig.

4.1.

Method 2

As mentioned in previous sub-section, K, connected to mod, im.....m0dg py (more
stressed operating conditions) will have certain eigenvalues outside the 5% damp-
ing line. The aim here is to use first order eigenvalue sensitivity to tune K, such
that the critical eigenvalues of all the selected models move inside the 5% damping

line [68,70]. Lets assume Ay, ...y Acin,, b€ the critical eigenvalues associated with
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modg, 1m,--...MO0dg nm respectively. The first order eigenvalue sensitivity of \.;,,, with

respect to K, is given as:

A)\c,ilm - (uc,ilmBa,l'm)AKa(Oa,lmvc,ilm) (422)

where Bg 1, Co1m are the input and output matrices of model mody, 11, Uc;,,, and
Ue,iy,, are left and right eigenvectors associated with A.; . respectively. Equation
(4.22) can be written for all the critical eigenvalues of models modg om.....M0dg .-
The control objective is achieved by using an iterative procedure where each it-
eration solves a quadratic optimization problem. The objective function consists of
minimizing a quadratic cost function, [|AK,||%. In order to setup the constraints for
the problem, a trapezoid has to be defined by the user. Formulation of constraints

for the optimization problem has been explained in detail as follows:

[ Start ]
Apply K, to all selected end
models and compute J,(0) If J,(0)=0

If 1,(6)>0

Update A, ; and n,; to obtain (A,;
, Vai, f.i) and pass as input to Outer loop
the inner loop

Find AK, that achieves the
assignment (A,;, v, fa)

— Inner loop

Update K=K, +AK,

Figure 4.1.: Algorithm showing the steps to be followed in Method 1
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In order to have a clear understanding of this part, an appropriate starting point
is to understand the conditions that a point in a Cartesian plane should satisfy to
be on the left or right of a line. Lets consider a line connected by points (ay,b;) and
(ag,by). Also, consider two points, (ag, bs) to the left-side and (a4, by) to the right-side

of the line. This has been shown in fig. 4.2.

Y-axis
(ayb))

* (a,b,)

(asbs)

(azby)

X-axis

Figure 4.2.: A line to connected by two points to one point each to the left and right of the line

The equation of the line connecting (a1, b1) and (ag, by) is given by:

(bg — b1>ZE - (CLQ - al)y -+ a,gbl - albg =0 (423)

The point (a4, by) to the right of the line will satisfy:

(bg — bl)a4 — (a2 — al)b4 + agby — ajby > 0 (424)

while point (as, b3) to the left of the line will satisfy:

(bg — bl)ag — (CLQ — Cbl)bg + agbl — albg <0 (425)

In order to formulate the constraints for the optimization problem, a trapezoid is
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defined by the user such that the rightmost side forms the 5% damping line (or
any damping percentage based on user requirements). Then, each critical eigenvalue
associated with each of the models is connected to the vertices forming the rightmost
side as shown in fig. 4.3. The objective of defining this trapezoid is to limit the
movement of the critical eigenvalue within the triangle defined by vertices (0,0),
(x1,91) and (z2,y2). This enables faster movement of critical eigenvalues into the
trapezoid [70]. The point (z1,y;1) represents the location of the critical eigenvalue
Acirn, (Will be different for A, .....; Acin,, ) - Since the user defines the trapezoid, it

is easy to determine the equations of the lines connecting points (0,0) to (x1,y;) and

(z1,91) to (72, y2)-

5% damping line %)

Imaginary

Figure 4.3.: A line to connected by two points to one point each to the left and right of the line

A perturbation AK, will result in a small change A\ In terms of coordinates,

Clim*
let this small change be represented as (Axy, Ay). If the point, (z1 + Azq,y1 + Ayy)
has to lie to the left of the line connected by points (z1,y1) and (x2,9), it has to

satisfy:
(y2 — 1) (x1 + Axy) — (2 — 1) (11 + Ayr) + oy — 21y2 < 0 (4.26)

Simplifying (4.26) results in (4.27). This represents constraint 1 shown in fig. 4.3.
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(Y2—y1) Az — (22 —21)Ayr < 0= (2—1)(re(Alcsy,,)) — (T2 —21) (IM(ANc4,,)) <O
(4.27)

Similarly, constraint 2 can be represented as:

(y1 —0)Azy — (21 — 0)Ay; < 0= (y1)(re(AX.sy,,)) — (1) (im(AXcsy,,)) <0 (4.28)

Constraint 3 enables movement of the critical eigenvalue towards the trapezoid and
is represented as:

L.B <re(AXeiy,,) <U.B (4.29)

where L.B and U.B are negative numbers representing the lower and upper bounds
respectively for the real part of A).;,, . In order to represent the constraints (4.27)
- (4.29) in terms of the optimizing variable AK,, equation (4.22) is utilized |68, (9.
The objective function used for the optimization results in AK, being small which
ensures that the first order eigenvalue sensitivity holds true. The method is repeated
iteratively and K, is updated in each iteration till all the critical inter-area modes
move into the trapezoid. The final obtained K, is converted back into its dynamic
form and is termed as K,eimoa2(s). A flowchart explaining the algorithm has been

shown in fig. 4.4.
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=)

Define the trapezium by
selecting it’s vertices

No critical

Apply K, to all selected models eigenvalues 5| end ]

Next iteration Form the constraints of (4.27) —
(4.29) for each critical
eigenvalue associated with each
of the models and determine
AK, by solving the quadratic
optimization problem

Update K,=K,+AK,,

Figure 4.4.: Algorithm showing the steps to be followed in Method 2

4.3. Approach I

The multi-model optimization methods described in the previous section are applied
on the IEEE 68 bus system described in detail in the previous chapter. However,
the feedback signals have been selected to be the tie-line power flow in lines (52 —
42) and (42 — 41) unlike chapter 3. The base-case operating point is identical to
the one presented in chapter 3 (also provided in appendix A). Initially, the user
has knowledge about the controller K(s) and a few, selected models of the system
corresponding to different operating points. It should be noted that K(s) used in
this chapter was designed for 5% damping assignment of the critical eigenvalues of
the base-case system. The models selected to participate in the optimization problem

have been shown in table 4.1. These operating points are not selected randomly but
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Table 4.1.: Different operating points for ensuring robustness

‘ Operating point ‘ Operating condition ‘
OP1 base-case model
OP2 increase the output of

generator 16 by 10 p.u
(base 100 MW) and
increase the load at bus 42
by 10p.u

OP3 increase the output of
generator 15 by 15 p.u and
reduce the output of
generator 14 by 15 p.u

are chosen based on the fact that they negatively impact the damping of critical inter-
area modes. The first step is to obtain the “extended dynamic system connected to
proportional feedback” representation of all the selected models connected to K(s).
Then, methods 1 and 2 are implemented to obtain the controllers K, cnoa1(s) and

K nethoaz (8) respectively.

e Method 1: The initial controller K(s) assigned the poorly damped eigenvalues
of the base-case model to (—0.166 +3.329) and (—0.244 +4.889i) (5% damping
assignment). These are the eigenvalues that are chosen to be re-assigned such
that critical eigenvalues across all the models satisfy the 5% damping criterion.
The bounds {ax, mazs Ba;mins Basmazs Cngmins s mazs Bysmins Bniymaz  re selected
to be {1, —1.5,1.5, —5,5, —5,5} and are the same for both the selected inter-area

modes. The controller designed using this method is known as K,,etnoa1($)-

e Method 2: 'This method requires the user to define the vertices of the trape-
zoid in order to run the optimization procedure presented in fig. 4.4. In order
to attain the objective of minimum 5% damping, the vertices of the trapezoid
are chosen to be (0,0), (—200,0), (—200 + 2007) and (—10.01+ 200¢) (clockwise

with respect to fig. 4.3). These vertices are selected such that only the critical
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inter-area modes lie outside the trapezoid. If not, then the optimization will try
to move an eigenvalue that might not be controllable and hence there would be
no convergence of the optimization algorithm. The bounds L.B and U.B have
been chosen to be -0.1 and -0.05 respectively which signifies the limits of the
movement, of a critical inter-area mode towards the left. The controller designed

using this method is known as K,,etnoa2(S)-

Once the relevant inputs are provided to both the methods, algorithms presented in
figs. 4.1 and 4.4 are run to obtain controllers, Ketnoa1(s) and Kiethoan(s) respec-
tively. The closed-loop eigenvalues of the selected system models connected to K (s),
Kethoa1 (8) and Ketnoaz(s) have been shown in fig. 4.5-4.7. Tt is clearly evident that
Kpnethoa1 (8) and Keinoaz(S) are capable of moving all the critical inter-area modes
to the left of the 5% damping line. The eigenvalue plots have been corroborated by
providing time domain plots showing the angular difference between generators 15
and 16 for a ten-cycle, three-phase fault at bus 52. These results have been presented

in figs. 4.8-4.10 for all the selected operating points (OP1, OP2, OP3).
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Figure 4.5.: Closed-loop eigenvalues with K(s),

Koethod1(s) and Kpethogz(s) connected in feedback to system
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Figure 4.6.: Closed-loop eigenvalues with K (s), Kpethod1(s) and Kpethodz(s) connected in feedback to system

model OP2
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Figure 4.7.: Closed-loop eigenvalues with K (s), Kpethod1(s) and Kpethogz(s) connected in feedback to system
model OP3
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Figure 4.8.: Angle difference between machines 15 and 16 for a ten-cycle, three-phase fault at bus 52, OP1
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Figure 4.9.: Angle difference between machines 15 and 16 for a ten-cycle, three-phase fault at bus 52, OP2
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Figure 4.10.: Angle difference between machines 15 and 16 for a ten-cycle, three-phase fault at bus 52, OP3
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4.4. Approach II

Approach I successfully demonstrated the design of two controllers obtained using
multi-model optimization techniques. It was shown how different operating points of
the system can be utilized to design controllers that are better than the one designed
for the base-case model. Using approach II , the aim is to focus on two objectives

that were not addressed using approach I:
e Robustness of the controller to variation of a specific parameter in the system.
e Robustness of the controller to uncertainty in time delays of feedback signals.

It should be noted that a single controller should be able to achieve both the goals.
There are two important steps to be followed in approach II that differentiate it

from approach I:

1. Selecting a parameter of the system that has a high impact on the damping of

critical inter-area modes.

2. Selecting the models to be incorporated in the multi-model optimization such

that the controller becomes robust to variations in the chosen system parameter.

Selecting the parameter is simple and can be selected either based on the knowledge
of the system or by performing sensitivity analysis. Selection of models is the harder
part and requires the linear fractional transform (LFT) representation of the uncertain
system. This LFT representation of the system is provided as an input to a technique
that uses first order eigenvalue sensitivity to determine the value of the uncertain
parameter that causes one of the critical inter-area modes to reach the imaginary
axis. This system model will be called the worst-case model. In order to achieve

robustness against time delays, a delay 7 is incorporated into the worst-case model to
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obtain the worst-case + time-delay model. The “extended dynamic system connected
to proportional feedback” representation of these three models connected to K (s) are
then provided as inputs to methods 1 and 2 to obtain controllers K,.gp.si1(s) and

K obust2(s) respectively.

Linear Fractional Transform

The essence of this procedure is to separate an uncertain system into certain and
uncertain part so that the system can be used to perform robust stability and perfor-
mance studies. An aspect of power systems that plays an important role in forming
the LFT representation is that an uncertain operating parameter cannot be directly
associated with the elements of the state matrix. Usually in control systems, real
parametric uncertainty analysis involves an uncertain parameter in the state matrix.
Obtaining the LFT in such a scenario is a straightforward procedure as opposed
to power systems. Therefore, a numerical technique has been used to obtain the
LET [71,72].

An uncertain state space representation of a system is given in (4.30) [72].

T = A(p)x (4.30)

where p is the uncertain parameter that varies in the range p,.in < P < Pmaz. Assum-
ing that the parameter p has a nominal value p,,,, the parametric uncertainty can

be represented as a parametric set as given in (4.31).

P = Pnom(1 +T0) (4.31)
where p,om = M,F = % and 0 is a real scalar lying between -1 and
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1. Similar to the approach followed in p synthesis, the initial objective is to obtain
the "M — A’ form to separate out the fixed part and uncertainties. In the case of
operating point uncertainty, the elements of the uncertain state space matrix cannot
be explicitly expressed as functions of the parameter ’p’. Therefore, a numerical
technique is used to approximate the relationship [71,72|. The parameter p is varied
over a range of possible values [p;......p,] and the state matrix is obtained for each
operating condition. A generalized variation of the element a;; € A; can be expressed
as a;f" € Fjj(p) where Fj; is the function to be determined. According to [71,72], a
second order polynomial function is appropriate for approximating a single parameter

uncertainty.

var

aii" = ajjo + aijap + aijop’ (4.32)

For [p;......ps], an over-determined set of equations is obtained as shown in (4.33).

2 ~
I p1 pj a;j0 Q5. A,
aij | = . (4.33)
2 N
I pn p; ;52 Qi A,

where a;j 0, aij 1, a;j2 are the elements of the matrix Ay, A;, Ay and can be determined

using least squares method. The Substitution of (4.31) into (4.32) results in (4.34)
[71].
A(0) = Ag + LT[AL(0]) + Ay(8* DR (4.34)

where Ay, A; and A, are dependent on Ao, Al, Ag, Pmaz and ppi,. The L and R
matrices are made up of 0’s and 1’s which signify the change of matrix rows and

columns with change in operating conditions. The next step is to transform (4.34)
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into a LFT representation shown in (4.35) - (4.37).

T = THQ? —+ me (435)
zZ = Tle + TQQ’UJ (436)
w= Az (4.37)
where w = | w, wy | and z = | 2; 2, | are the inputs and outputs to the un-
_ _ - 0
certainties respectively, T, = Aqg, Tio = [ LTA, LTA, }, T = , Thy =
R
I 0 o6 0
, A\ = . Fig. 4.11 depicts the LF'T representation of the system
0 0 0 62

for robust stability analysis. For robustness analysis, the ’%’ loop shown in fig. 4.11

is closed to obtain the 'M — A’ structure.

1/s
X X
— Tia Ta2
wW z
—— To1 Too

Figure 4.11.: LFT representation of the system
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Destabilizing Perturbation

An algorithm presented in [73] is used to find the largest perturbation of the un-
certain parameter from base-case value that destabilizes the system. The M — A
structure obtained in the previous sub-section can be thought of as a dynamic system
M connected to a feedback A. Assume the state space representation of M to be
(A", B',C",0). Then the closed-loop state matrix can be expressed as A" + B'AC".
The idea is to vary the perturbation A such that one of the poles of the closed loop
system reaches the imaginary axis. However, the poles that are to be moved are
unknown initially. To resolve this issue, a power algorithm used for the regularization
of the real mu problem is used for finding the initial perturbation [73,71|. Power
algorithm results in an initial perturbation Af that has moved one of the eigenvalues
Ao very close to the imaginary axis. Using this initial value, an optimization algo-
rithm is used to find an additional model perturbation A that moves one of the poles
(Ao ) of A"+ B' (AR + A)C’ to the imaginary axis [73]. The eigenvalue ), is moved
incrementally towards the imaginary axis using first order eigenvalue sensitivity as

given in (4.38) and (4.39).

a,; = (U()Bl)(cll)[)) (438)
A)\O = Z;:l O./i(i' (439)
where A = [5~1, o, 5:«] are perturbations along different dimensions of hypercube A

and ug, vy are the left and right eigenvectors associated with eigenvalue \y. Skew-mu
toolbox in matlab has been used to find the destabilizing perturbation or the worst-

case model [75]. Tt is worth mentioning that the algorithm is polynomial time. The
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Figure 4.12.: Eigenvalues of the base-case and worst-case models

eigenvalues of a sample base-case and worst-case models have been shown in fig. 4.12.

Results

The controllers, K, opust1($) and Ky opusi2(s), designed using the techniques presented
in section 4.4 will be applied on the IEEE 68 bus system. The base-case system is
identical to the one used in chapter 3 and section 4.3. Initially, the user has knowledge
of K(s) and the base-case system model. The poorly damped inter-area modes in the
base-case model are known to be sensitive to the real power flow in tie-line (52 — 42)
and thus the real power flow in tie-line (52 —42) is chosen as the uncertain parameter
for the designing the robust controllers. In order to generate the LF'T representation
of the uncertain system, the power flow in tie-line (52 — 42) is varied by varying the
load at bus 42 as well as the output of generator 16. Three different operating points
corresponding to Pogga2 = | 150 MW 350MW 550MW | (150MW is the base
case load) are used for the purpose. Once obtained, the M — A representation of the

uncertain system is provided as an input to the algorithm, mu_Ib_with_freq.m’, in
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the skew-mu toolbox to determine the worst-case model. The worst-case operating
point is found to be the scenario where Pjyuq42 = 1611MW. A time delay e™ ™ with
7 = 400ms is incorporated into the worst-case model (using Pade approximation)
to obtain the worst-case+time-delay model [32]. These models along with K (s) are
provided as inputs to methods 1 and 2. Once all the three models are known, the
next step is to obtain mod, b, M0dg e, MOdg 1pea (extended dynamic systems associ-
ated with the base-case, worst-case and worst-case+time-delay models respectively)
and K,.

The initial inputs and bounds to be provided to methods 1 and 2 are the same
as listed in section 4.3. The closed-loop eigenvalues of the base-case, worst-case and
worst-case+time-delay models connected to K(s), Kyopusi1(s) and K,opusio(s) have
been shown in figs. 4.13-4.15. The robustness of the controller is validated by showing
the response of the system to a disturbance for different values of real power on line
(52 — 42) (achieved by varying the load on bus 42 and output of generator 16) and
different time delays. A three-phase, ten-cycle fault has been applied on bus 52 and

the angle difference between generators 15 and 16 has been shown in figs. 4.16 - 4.19.

4.5. Discussion

In this chapter, a novel technique of making a WAC robust to operating point and
time delay uncertainties has been presented. The design of a robust WAC in a power
system can be considered as a two stage process with the algorithm presented in chap-
ter 3 being the first stage (can be some other technique also) and the two algorithms
(method 1 and 2) presented in this chapter being the second stage. The robustness
has been achieved by setting up a multi-model optimization problem. The aim of

the multi-model optimization problem is to tune the initial controller such that all
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the critical eigenvalues move towards the left of the minimum damping line. Two
different approaches, namely approach I and approach II, have been presented in
this chapter that differ in the way the models to be incorporated in the optimization
problem are selected. Approach I involves selecting a few, stressed operating points
of the system based on the system information whereas approach II presents a tech-
nique of selecting models such that the designed controller is robust to uncertainty
in a specific parameter of the system. The impact of time delay is also addressed
using approach II. Each of the approaches uses two different methods to formulate
the optimization problem. Method 1 is based on the eigenstructure assignment tech-
nique and exploits the degrees of freedom for closed-loop right eigenvector assignment
provided by MIMO systems. This method uses an unconstrained, derivative-free op-
timization algorithm known as MADS to solve the optimization problem. Whereas

method 2 uses an iterative scheme where a quadratic optimization problem is solved
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in each iteration. The method uses first order eigenvalue sensitivity to move the

critical inter-area modes to the left of the minimum damping line.
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5.Conclusions and Future Work

5.1. Conclusions

This dissertation presents a methodology of designing a WAC in an interconnected
power system using modal control techniques. The work exploits the development
in phasor measurement technology to make use of remote measurements for control.

The core contributions of this thesis can be subdivided into two main categories:

e Chapter 3 describes the design of a WAC using partial right eigenstructure
assignment technique. The extra degrees of freedom provided by MIMO sys-
tems for assigning the closed-loop right eigenvectors has been exploited. A
dynamic compensator based controller has been designed in order to limit the
number of 1/0O signals used by the controller. The controller design problem
has been formulated as a quadratic optimization problem with the numerator
coefficients being the optimizing variables. This formulation is made possible
by pre-assigning the compensator poles and the closed-loop right eigenvectors.
Two projection techniques have been presented to determine the closed-loop
right eigenvectors a priori. The closed-loop right eigenvector is dependent on
the location of the assigned closed-loop eigenvalue that is selected by the user.
The inputs required for the algorithm are the closed-loop eigenvalue locations,
structure of the compensator matrix with the compensator poles known, bounds
on the numerator coefficients. The algorithm yields a controller that is capable
of assigning the critical eigenvalues associated with the base-case model to the
user-selected locations with minimal control effort. 1/0O signal selection plays

an important role in ensuring that the critical inter-area modes are control-
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lable /observable. Later part of chapter 3 demonstrates the formulation of a
multi-model optimization problem in order to address the issue of time-delay of

feedback signals.

e Chapter 4 presents a novel methodology of making a WAC robust to operating
point and time delay uncertainties. When a WAC designed for an operating
point is connected to system models corresponding to more stressed operating
conditions (in terms of critical inter-area mode damping), there will be certain
critical inter-area modes associated with some system models that violate the
minimum damping criterion. The main contribution of this chapter is to present
multi-model optimization techniques that move critical eigenvalues associated
with each of the selected models to the left of the minimum damping line. Two
different approaches for selecting the models to be incorporated in the optimiza-
tion problem has been presented. Approach I involves selecting models that
are known, stressed operating points of the system whereas approach II details
a procedure to select models such that a controller becomes robust to variation
in an uncertain parameter in the system. Approach II also accounts for the
uncertainty in time delay of feedback signals. Two different methods, methods
1 and 2 based on eigenstructure assignment and first order eigenvalue sensi-
tivity respectively, have been used to formulate the multi-model optimization

problem.

5.2. Future Work

The work presented in this dissertation can be extended to various other applications:

1. Sensitivity of an eigenvalue with respect to a system parameter can be modi-
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fied by using eigenstructure assignment technique. Eigenvalue sensitivity is a
function of both the eigenvalue location as well as left and right eigenvectors.
A number of times, it is required to reduce the sensitivity of a particular mode
such as an inter-area mode to a specific system parameter such as a load in the

system.

. The controller tuning techniques explained in chapter 4 are not capable of ob-
taining structured controllers. A structured controller has some elements con-
strained to be a constant or a zero. It would be a challenging task to incorporate

structural constraints in the tuning procedure.

. Another interesting idea would be to combine frequency domain constraints with
the modal optimization techniques presented in this dissertation. An example
would be to incorporate a constraint where the controller has zero gain at w =

20rad/s. This would add more flexibility in design.

. All the algorithms presented in this dissertation require computation of the
eigenvalues of system. Moreover, tuning procedures require computation of
closed-loop eigenvalues of multiple models in each iteration. For a large size
power system, this would be a computationally intensive activity. Therefore,
model order reduction techniques need to be explored in conjunction with modal

control techniques presented in this dissertation.
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A.IEEE 68 bus base-case system

data
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Bus no. || Initial Initial Py |l Qg || Poad || Qioad Bus type
bus bus
voltage angle
1 1.0634 [ 7.1886 [0 [[0 [ 2.527 | 1.1856 | 3
[ 2 [ 10612 [[85706 [0 [Jo [[o JO |3 |
E [ 1.0479 [ 6.4222 [0 [0 [[322 [J0.02 [3 |
4 1034 [[75027 [0 [Jo [[5 [0.736 [3 |
IE 110338 [[83774 [0 [Jo J[o o |3 |
| 6 [ 1.0342 [8.9999 [0 [Jo [J[o o |3 |
7 [ 1.0291 [ 69114 [0 [0 [[234 [[0.84 |3 |
E [ 1.0311 [6.4639 [0 [Jo [[522 [[1.77 |3 |
IE [ 1.0441 [ 37966 [0 [0 [[1.04 [[1.25 [3 |
| 10 [ 10375 [[11.182 o [Jo [Jo O |3 |
|11 [1.0353 [10.431 o [Jo [Jo o 3 |
| 12 109603 [ 10378 [0 [0 [0.09 [[0.88 |3 |
|13 [ 1.0355 [ 10.451 [0 [Jo [Jo o |3 |
| 14 [ 1.0345 [[87404 [0 [0 [0 JoO |3 |
| 15 [ 1.0285 [ 71708 [0 [Jo [[32 [1.53 |3 |
| 16 [ 10412 [81345 [0 [[Oo [[329 [[032 [3 |
|17 [ 10452 [ 6.9648 [0 [Jo [J[o O |3 |
| 18 [ 1.0448 [ 63019 [0 [Jo [[1.58 0.3 [3 |
| 19 [1.054 12789 JJo JJo [Jo o 3 |
| 20 109937 [ 11.588 [0 [0 [[6.8 [1.03 [3 |
| 21 [ 1.0375 [ 10516 [0 [Jo [[2.74 [[1.15 [3 |
[ 22 [1.0532 [[15.086 [0 [Jo [[o [0 3 |
| 23 | 1.0477 [ 14744 ][0 [JO [[248 [0.85 |3 |
| 24 [ 1.0461 [ 81757 [Jo [Jo [3.09 [-092 |3 |
| 25 [1.0639 [9.6436 [0 [[0 [[224 [047 |3 |
| 26 [ 1.0602 [ 7.6868 [0 [0 [[1.39 [0.17 [3 |
| 27 1049 [ 61244 [0 [Jo [[2.81 [[0.76 [3 |
| 28 [ 1.0534 [10.106 [[0 [0 [[2.06 [[0.28 |3 |
[ 29 [ 1.052 [[12.688 [0 [0 [ 284 [027 [3 |
| 30 [ 1.0577 [ 6.8518 [Jo o [Jo [O |3 |

Figure A.l.: Bus data
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131]]1.06 [ 9.2447 [ 0 |0 |0 |0 3]
132 1.052 [ 11.494 [ 0 |0 |0 |0 3]
133 ] 1.057 ]| 7.9358 [/ 0 |0 (112 ][O | 3]
| 34 ]| 1.0657 [| 2.9585 [/ 0 |0 |0 [0 3]
135 ]| 1.014 [ 2.9166 [ 0 [0 [0 [0 [3]
136 || 1.0434 || -0.3978 || 0 |0 [ 1.02 [[-0.1946 | 3 |
| 37 ]| 1.0294 || -6.6793 || 0 |0 60 |3 3]
138 ]| 1.0574 ]| 9.2134 [| 0 |0 |0 |0 | 3]
139 || 1.0048 ]| -8.3421 [| 0 |0 1267 [0126 [ 3]
1 40 || 1.0657 [| 14.947 ]| 0 [0 [ 0.6563 || 0.2353 | 3 |
1411 0.9993 || 44.84 [/ 0 |0 (10  [[25 [ 3]
| 42 1] 0.9991 [ 39.616 [ 0 |0 115 [[25 [ 3]
| 43 ]| 1.0142 [| -7.5187 [| 0 |0 |0 [0 3]
| 44 ]| 1.0136 || -7.5503 || 0 |0 | 2.6755 || 0.0484 [ 3]
| 45 ]| 1.0168 [| 2.7999 [/ 0 |0 208 [021 [3]
| 46 || 1.0322 || 10.077 [/ 0 [0 [ 1.507 [[0.285 | 3]
| 47 ]| 1.0752 || 7.2969 [ 0 |0 | 2.0312 [[ 0.3259 | 3]
| 48 || 1.0763 || 8.9727 [/ 0 |0 | 2412 [[0.022 [ 3]
1 49 || 1.0105 [| 13.357 [| 0 |0 164 [029 ]3]
[ 50 ]| 1.0097 ][ 19.902 || 0 [0 |1 -1.47 |3 ]
| 51 ]| 1.0207 || 6.8256 [ 0 [0 337 [-122 [ 3]
| 52 ] 0.9931 [| 39.555 [/ 0 |0 247 [[123 [ 3]
53] 1.045 [ 10852 [[2.5 ] 0.6383 ][ 0 |0 2]
154098 [16.217 [[ 545 ] 0.9506 | 0 |0 | 2]
1550983 [[18.023 [[65 [ 11464 [0 |0 | 2]
156 ] 0.997 [ 17.335 [ 6.32 ] 0.9037 ][ 0 |0 | 2]
|57 ] 1.011 [ 16.66 [ 5.052 [ 1.4688 | 0 [0 [ 2]
158 [ 1.05 [ 20152 [ 7 | 2.0445 ][ 0 |0 2]
159 ]| 1.063 [/ 22582 [[5.6 ] 0.8783 ][0 |0 | 2]
160 ] 1.03 [ 16.054 | 54 -0.2074 ][ 0 [0 2]
61 ]1.025 [[19.173 |8 -0.0461 [ 0 [0 2]
162 ] 1.01 [ 15949 [ 5 [0.0941 ]| 0 [0 [2]
1631 | 18.317 [ 10 -0.3645 || 0 |0 2]
| 64 ]| 1.0156 || 4.8734 [ 135 [ 2.4363 || 0 |0 | 2]
165 1.011 [0 | 36.365 || 9.2781 || 0 |0 [ 1]
166 || 1 | 46.375 [ 17.85 [ 0.6926 | 0 |0 | 2]
1671 [ 40.476 |10 [ 0.6617 [/ 0 [0 [2]
1681 [ 46.496 [[30  [[4.739 [0 |0 | 2]
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Figure A.2.: Bus data continued



| From bus || To bus [| R | X | B

|
| 36 | 37 | 0.0005 [ 0.0045 || 0.32 |
| 49 | 52 [ 0.0076 | 0.1141 | 1.16 |
| 16 | 19 | 0.0016 [ 0.0195 || 0.304 |
| 16 [ 21 [ 0.0008 | 0.0135 || 0.2548 |
| 21 | 22 | 0.0008 || 0.014 [ 0.2565 |
| 22 | 23 | 0.0006 [ 0.0096 || 0.1846 |
| 23 | 24 | 0.0022 || 0.035 | 0.361 |
| 16 | 24 | 0.0003 [ 0.0059 || 0.068 |
E [ 25 [ 0.007 | 0.0086 || 0.146 |
| 25 26 ] 0.0032 ][ 0.0323 [| 0.531 |
|17 | 27 | 0.0013 [ 0.0173 || 0.3216 |
| 26 127 ] 0.0014 ][ 0.0147 [| 0.2396 |
| 26 | 28 | 0.0043 || 0.0474 | 0.7802 |
| 26 | 29 | 0.0057 [ 0.0625 || 1.029 |
| 28 [ 29 [ 0.0014 || 0.0151 [| 0.249 |
|1 | 30 | 0.0008 [ 0.0074 || 0.48 |
E | 30 | 0.0019 || 0.0183 ]| 0.29 |
E | 30 | 0.0019 [ 0.0183 ]| 0.29 |
| 30 | 31 | 0.0013 [ 0.0187 || 0.333 |
1 [ 31 [ 0.0016 [| 0.0163 | 0.25 |
| 30 | 32 | 0.0024 [ 0.0288 || 0.488 |
| 32 | 33 | 0.0008 [ 0.0099 || 0.168 |
33 134 ] 0.0011 [ 0.0157 [| 0.202 |
| 34 | 36 | 0.0033 || 0.0111 || 1.45 |
E | 36 | 0.0022 [ 0.0196 || 0.34 |
E | 36 [ 0.0022 || 0.0196 || 0.34 |
| 16 % | 0.0007 [ 0.0089 [ 0.1342 |
| 31 | 38 | 0.0011 [ 0.0147 || 0.247 |
|33 | 38 | 0.0036 || 0.0444 || 0.693 |
|41 [40  Jo.006 [[0.084 [[1.5 |
|48 [ 40 [0.002 [J0.022 [[1.28 |
| 42 | 41 [0.004 [J0.06 [225 |
| 52 | 42 [0.004 [J0.06 [225 |
| 37 | 43 | 0.0005 || 0.0276 || 0 |

Figure A.3.: Line data
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139440 [ 0.0411 | 0

| 43 ][ 44 ]| 0.0001 [| 0.0011 || O

1 35 ] 45 | 0.0007 || 0.0175 [| 1.39

139450 | 0.0839 ][ 0

[ 44 ][ 45 ]] 0.0025 [] 0.073 ][ 0

1 38 ] 46 || 0.0022 || 0.0284 [| 0.43

|1 |47 0.0013 ]| 0.0188 || 1.31

| 47 || 48 ]| 0.0025 || 0.0268 || 0.4

| 47 || 48 ]| 0.0025 || 0.0268 || 0.4

| 46 ]| 49 [ 0.0018 [ 0.0274 || 0.27

| 45 | 51 || 0.0004 || 0.0105 || 0.72

| 50 || 51 ]| 0.0009 || 0.0221 [| 1.62

|
|
|
|
|
|
|
|
|
|
|
|

| 17 ][ 18 ]| 0.0007 ]| 0.0082 || 0.1319 |

|3 | 18] 0.0011 [| 0.0133 || 0.2138 |

|1 [[2 [0.0035 ]| 0.0411 || 0.6987 |

|2 |3 ]0.0013 [] 0.0151 || 0.2572 |

13 [[4 [ 0.0013 ]| 0.0213 || 0.2214 |

|4 |5 ] 0.0008 [| 0.0128 || 0.1342 |

|5 |6 [ 0.0002 [ 0.0026 || 0.0434 |

16 || 7 [ 0.0006 [| 0.0092 || 0.113 |

|5 |8 ] 0.0008 || 0.0112 || 0.1476 |

|7 |8 ] 0.0004 [| 0.0046 || 0.078 |

18 |9 ] 0.0023 ]| 0.0363 || 0.3804 |

|6 | 11 ] 0.0007 [| 0.0082 || 0.1389 |

| 10 [[ 11 [] 0.0004 [| 0.0043 || 0.0729 |

| 10 [[ 13 ]| 0.0004 [| 0.0043 || 0.0729 |

|4 | 14 ]| 0.0008 || 0.0129 || 0.1382 |

| 13 ][ 14 [ 0.0009 [| 0.0101 || 0.1723 |

| 14 ][ 15 [] 0.0018 [ 0.0217 || 0.366

| 15 | 16 || 0.0009 || 0.0094 || 0.171

|1 [[27]0.032 032 o041

| 50 || 52 ]| 0.0012 [| 0.0288 || 2.06

12 [[53]0 [0.0181 | 0
16 [[54]0 10025 ][0
(10550 002 [0

| 19 || 56 || 0.0007 [| 0.0142 || 0

120 || 57 ][ 0.0009 [| 0.018 ]| 0

122 ] 58]0 [0.0143 | 0

|
|
|
|
|
|
|
|
|
|
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Figure A.4.: Line data continued



| 23 ]| 59 [ 0.0005 || 0.0272 [ 0 |

| 25 || 60 || 0.0006 [| 0.0232 || 0 |

129 || 61 || 0.0008 [| 0.0156 || O |

131]62]0 10.026 0]
132630 [ 0.013 [[0]
136 ] 64]0 [ 0.0075 [ 0 ]
137650 | 0.0033 ][ 0]
(41 ][66] 0 1 0.0015 | 0 |
(42670 1 0.0015 ] 0 |
152680 | 0.003 ][ 0]

| 19 || 20 || 0.0007 [| 0.0138 || 0 |

| 35 ]| 34 ]| 0.0001 || 0.0074 [| 0 |

| 12 ][ 11 [[ 0.0016 [| 0.0435 || 0 |

| 12 ][ 13 ][ 0.0016 [| 0.0435 || 0 |

Figure A.5.: Line data continued

’ Exciter type H Machine no. H Tr H KA H TA H Tb H Te H Vrmax H

Vrmin ‘
0 [ [0 J1ooffoorflo JJo 5 5
0 [ 2 [0 J[1oofoorflo JJo 5 5
0 |3 [0 Jwofoorflo JJo 5 5
0 | 4 [0 [[toofoorflo JJo 5 5
0 |5 [0 J[toojoorflo JJo 5 S5
0 [ 6 10 [1oofoorffo fJo 5 [-5 |
0 L7 [0 J[wofoorflo JJo 5 5
0 [8 [0 Jwofoorflo JJo 5 5
0 [9 [0 [toofoorflo JJo 5 5
0 [ 10 [0 Jtoofootrflo JJo 5 S5
0 |11 L0 [[1o0footfo [[o 5 ][5 |
0 [ 12 [0 J1ofoorflo JJo [[5 5
0 [ 13 [0 Jwofoorflo JJo 5 5
0 | 14 [0 J[tooffoorflo JJo 5 5
0 [ 15 [0 [[toojootflo JJo 5 S5
0 16 Lo [[1o0footfo ffo 5 ][5 |

Figure A.6.: Exciter data
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‘ type H machine no. H Kpss H Tw H Tn1l H Td1 H Tn2 H Td2 H ymax H ymin ‘

R 80 10 [[0.1 [J0.02 ] 0.08]0.02[02 [-0.05]
NE [80 [[10 [[0.08]0.02]0.08]0.02[]02 [-0.05]
1 [3 80 [10 [[0.08 ] 0.02 ] 0.08 ] 0.02[ 02 [ -0.05]
K 80 10 [[0.08]0.02]0.08]0.02]02 [-0.05]
NRE 80 10 [[0.08 ] 0.02 ] 0.08 ] 0.02[02 [ -0.05]
1 |6 [50 J10 JJox Jo.o2]0.1 JJo.o2]o0.2 [-0.05]
1 ]7 80 10 [[0.08 | 0.02 ]| 0.08 ] 0.02] 0.2 [ -0.05 |
FE [80 [[10 [[0.08]0.02 ] 0.08]0.02[]02 [-0.05]
N [ 100 [ 10 [ 0.08 | 0.03 | 0.05 ] 0.01 [ 0.2 [ -0.05 |
1 J10 80 10 JJo.xr Jo.o2] 0.1 JJo.o2]0.2 [-0.05]
R [50 J[10 [[0.08 ] 0.03]0.05]0.01]02 [-0.05]
1 12 80 J10 JJox Jo.o2]o0.1 Jo.o2]o02 [-0.05]

Figure A.7.: PSS data

turbine | machine | speed 1/R || Tmax || Ts || Tc || T3 || T4 || T5
model no. set-
point
E I |1 j20 11 Jo2folfo [[25]8 |
E | 2 |1 120 11 Jo2folfo [[25]8 |
E |3 |1 120 11 Jo2fol1fo [[25]8 |
E 14 |1 120 11 Jo2fol1fo [[25]8 |
E 15 E [20 [[11 Jlo2]o1]o [[25[8 |
E |6 |1 j20 11 Jo2folfo [[25]8 |
E L7 |1 120 11 Jo2folfo [[25]8 |
E E |1 120 11 Jo2fol1fo [[25]8 |
E E |1 120 11 Jo2fo1fo [[25]8 |
|1 | 10 [ 1 [20 [[11 Jo2f]o1]o0 [[25]8 |
1 [ 11 |1 20 11 Jo2]o1]o [[25]8 |
1 [ 12 |1 20 1.1 Jo2fo1]o [[25]8 |
Figure A.8.: turbine-governor data
] SVC no. H bus no. H sve base MVA H Bevmax H Bevmin H Kr H Tr H Tb H Te ‘
1 [0 2w B T [0 ]002]0 o |
2 [0 ]2 [1 T [W0]002]0 [0

Figure A.9.: Static Var compensator data
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B.Implementing controller design

in PST
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)

Provide the |IEEE 68 bus
base-case system power
flow and dynamic data as
input to “svm_mgen.m”

N

Obtain the A, B, C, D matrices and identify the
critical eigenvalues to be used in the optimization.

Solve the quadratic optimization problem presented in
section 3.2 and 3.4 (robustness against time delay
uncertainty) to obtain K(s) and K, p,.:(5)

A 4
Convert K(s) and K,,p,:(5) into state space form and
integrate it as a new dynamic component in PST.

\ 4
Again run “svm_mgen.m” to get the closed-loop
eigenvalues and “s_simu.m” to get the time domain results

i)
)

Figure B.1.: Flowchart representing the steps to be followed to obtain the controller
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)

Generate three different
data files for three different
values of a specific
parameter (e.g pg. 87)

N

Obtain the A, B, C, D matrices corresponding to the
three operating points

Provide the A matrices obtained for the three models as
input for determining the LFT of the uncertain system.
Determine matrices 4,, 4, ,4,, L andR given on pg. 84.

W
Use the function “mu_lb_with_freq.m” in the skew-mu
toolbox to obtain the de-stabilizing perturbation.

A 4

Use the value of uncertain parameter that destabilizes the
system to determine the worst-case system model in PST.

i)
)

Figure B.2.: Steps to be followed to determine the worst-case model
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Start ]

Form a new function consisting
flag = O (initialization), flag =1
(network interface) and flag =2
(dynamic equations)

A4

Add new variables that are the controller states to
pst_var.m

For the eigen-analysis code (“svm_mgen.m”), modify files
"ns_file.m”, “p_m_file.m”, “

r

p_cont.m”, “
the controller states.

p_file.m” to include

N

For the dynamic simulation code “s_simu.m”, insert the
controller function call at appr

1 and fl

N

opriate locations under flag =
ag=2..

y

Run the files svm_mgen.m and s_simu.m to analyze the
effect of the controller.

[

!
end ]

Figure B.3.: Adding the controller to PST
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