
Clemson University
TigerPrints

All Dissertations Dissertations

12-2016

Radiative Transfer Using Path Integrals for Multiple
Scattering in Participating Media
Paul Michael Kilgo
Clemson University, paulkilgo@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Kilgo, Paul Michael, "Radiative Transfer Using Path Integrals for Multiple Scattering in Participating Media" (2016). All Dissertations.
2301.
https://tigerprints.clemson.edu/all_dissertations/2301

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2301&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2301?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2301&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


Radiative Transfer Using Path Integrals for Multiple
Scattering in Participating Media

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Science

by

Paul M. Kilgo

December 2016

Accepted by:

Dr. Jerry Tessendorf, Committee Chair

Dr. Joshua Levine

Dr. Brian Dean

Dr. Amy Apon



Abstract

The theory of light transport forms the basis by which many computer graphic

renderers are implemented. The more general theory of radiative transfer has applications

in the wider scientific community, including ocean and atmospheric science, medicine, and

even geophysics. Accurately capturing multiple scattering physics of light transport is an

issue of great concern. Multiple scattering is responsible for indirect lighting, which is

desired for images where high realism is the goal. Additionally, multiple scattering is quite

important for scientific applications as it is a routine phenomenon. Computationally, it is a

difficult process to model. Many have developed solutions for hard surface scenes where it is

assumed that light travels in straight paths, for example, scenes without participating media.

However, multiple scattering for participating media is still an open question, especially in

developing robust and general techniques for particularly difficult scenes.

Radiative transfer can be expressed mathematically as a Feynman path integral

(FPI), and we give background on how the transport kernel of the volume rendering equation

can be written in terms of a FPI. To move this model into a numerical setting, we need

numerical methods to solve the model. We start by focusing on the spatial and angular

integrals of the volume rendering equation, and show a way to generate seed paths without

regard as to if they are cast from the emitter or the sensor. Seed paths are converted into

a discretized form, and we use an existing numerical method to tackle the FPI. A modified

version of this technique shows how to reduce the running time from a quadratic to a linear

expression. We then perform experimental analysis of the path integral calculation. The

entire numerical method is put to full scale test on a distributed computing platform to
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calculate beam spread functions and compare the results to experimental data.

The dissertation is laid out as follows. In Chapter 1, we introduce the basic con-

cepts of light propagation for computer graphics, multiple scattering, and volume rendering.

Chapter 2 offers background on the subject of FPIs and some mathematical techniques used

in their numerical integration for this work. Chapter 3 is a survey of radiative transfer and

multiple scattering as it is studied in computer graphics and elsewhere. Chapter 4 is a full

description of the current methodology. In Section 4.1 we describe sensor and emitter ge-

ometries used for our experiments. We propose a new algorithm for creating seed paths to

use in the numerical integration of the FPI in Section 4.2. Section 4.3 introduces past work

in the numerical integration, formalizes it, and improves upon its running time. Section 4.4

presents some analysis of the path weighting. In Chapters 5 and 6 we run experiments using

the numerical methods. The first characterizes the calculation of the path integral itself

using arbitrary spatial parameters, and shows repeatability and unbiased calculation given

enough samples. In the second, we calculate beam spread functions, a basic property of

scattering media, and compare the calculations to experimentally acquired data. Chapter 7

presents a summary of contributions, a summary of conclusions, and future directions for

the research.
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Chapter 1

Introduction

The propagation of visible light and other near-visible electromagnetic radiation

has been studied for several centuries. For computer graphics purposes, the predominant

theory for describing light propagation is known as radiative transfer. It dictates that

radiant energy can be redistributed by three fundamental mechanisms: absorption, where

the electromagnetic energy is converted into other forms of energy; scattering, where the

energy is redistributed into many different directions; and emission, where energy is gained

from the optical properties of the material. We experience absorption and emission every

day. A car in the sun absorbs its radiant energy. A candle emits light due to a chemical

reaction. Scattering is an everyday phenomenon as well, though its effects are often subtle:

the blueness of the sky, the appearance of clouds.

Another characteristic of scattering is that it is complicated to compute. When a

scattering event occurs, it is not often as simple as a single beam being redirected in another

direction. A beam may scatter in several different directions, its energy being redistributed

in each child beam. If we allow arbitrary numbers of scattering events, we can readily see an

exponential growth in the hierarchy of paths we must trace. Moreover, the distribution of

the beams that scatter may not be simple. In computer graphics, light can interact in two

primary ways with a scene: either at a surface or through a region of participating media.

On a surface which does not allow transmitted rays, light can only scatter in a hemisphere
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defined by the surface normal. In this case, the distribution of the scattering is known as

the bidirectional reflectivity distribution function (BRDF).

With participating media, light propagates through a density of material with spa-

tially varying optical properties. In this case, the material alters the course light takes–it

participates in its transport. The macroscopic behavior of the light is affected by a series of

scattering events causing it to not travel in straight paths. Each of these scattering events

behaves similarly to surface scattering, except the scattering distribution function is defined

over a sphere rather than a hemisphere. In this case, the distribution function is known

as the phase function. Phase functions often are discussed by the kinds of scattering they

support. Forward-peaked phase functions support more scattering in the forward direc-

tion and likewise backward-peaked phase function support more scattering in the backward

direction, also known as backscattering.

The phase function and the scattering coefficient define the scattering behavior of

participating media. The scattering coefficient has units of inverse length and measures the

likelihood the media will scatter the light per unit length. A higher scattering coefficient

implies a higher likelihood of scattering. We write the scattering coefficient as b. An

important distance measure is the scattering length which is the inverse of the scattering

coefficient, 1/b. For a distance L it is often useful for establishing relative behavior to

express that distance in number of scattering lengths, written Lb. A similar quantity to

the scattering coefficient exists called the absorption coefficient, written a, which describes

the likelihood of the media to absorb the light per unit length. The two form the total

extinction term, c = a+ b.

Because of the complexity scattering offers, designers often limit the number of scat-

tering events in their rendering algorithm – either as a controllable parameter, assuming

a fixed number, or by a process which is Monte Carlo in nature. We call the special case

where only one scattering event is allowed single scattering. Allowing more scattering events

is called multiple scattering. Using a single scattering approach is often a useful approxi-

mation because generally single-scattered light beams contribute the most intensity to the
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final image. However, multiply-scattered light is more physically correct, but either compu-

tationally costly or difficult to implement. Computing multiple scattering is a problem of

great interest to the computer graphics community as it is a piece of the solution to global

illumination.

Generally to render participating media, we use one of a class of techniques known

as volume rendering. One of the most common volume rendering approaches is ray casting.

Similar to ray tracing, rays are traced originating from the camera position. Along the

ray, samples of the density and color functions are taken. At each of these locations, a

scattering event redirects light from the source based on the phase function and the optical

parameters. The color and transmission are accumulated along the ray to obtain the final

pixel color. This is a single scatter approximation.

Within computer graphics, the multiple scattering problem is often addressed trying

to solve global illumination. One of the earliest solutions was path tracing [27] and the

later extension bidirectional path tracing [36, 37]. There was interest in improving the

running time, giving rise to methods like photon mapping [25] and instant radiosity [32].

Often the physical accuracy of the model is abandoned in the interest in finding a solution

faster. Physical accuracy is the main motivation of the path integral formulation of radiative

transfer, and we hypothesize that it can be implemented numerically to agree with optical

experiments.

The path integral formulation of radiative transfer was introduced in 1987 [58], in-

tended as a way of describing propagation of light through participating media. It differs

from traditional tracing techniques mainly in its mathematical basis in Feynman path in-

tegrals (FPI). The image is constructed from a sum over all possible paths that a given

beam of light could have travelled from source to camera. To compute the sum, we sample

over the entire space of possible paths, compute a weight for each path, and accumulate

the path weights. There is no assumption regarding the number of scattering events, so

there can be arbitrarily many. While the applications for the FPI approach in computer

graphics are limited to rendering, new computational techniques for radiative transfer which
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are physically accurate can have broader application. These applications span a number

of disciplines including ocean and atmospheric science, medicine, nuclear engineering, and

geophysics.

In previous work the FPI approach to radiative transfer had been developed mathe-

matically [58, 59], its behavior in a numerical setting studied [60], and some approximations

for it explored [61]. This dissertation focuses on using FPI approach in a computational

setting. This includes establishing some of the first numerical techniques used for Monte

Carlo evaluation of the FPI and surrounding spatial integrals (Chapter 4), evaluating the

statistical behavior of the FPI quantity itself (Chapter 5), and replicating a result of an

optics experiment (Chapter 6).
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Chapter 2

Background

This chapter presents a brief overview of some of the concepts used extensively

throughout the remaining parts of the dissertation. In Section 2.1 we briefly overview

Feynman path integrals and their use in a numerical setting. Section 2.2 overviews the

basic properties of the Frenet-Serret frame, and details a discretized space curve specification

which is very integral to the rest of the dissertation. We introduce Monte Carlo integration

in Section 2.3 including its basics, and some discussion about how it is used to evaluate a

path integral. Finally, Section 2.4 describes the mathematics behind the FPI approach to

radiative transfer.

2.1 Feynman path integrals

The Feynman path integral was introduced [10] as an unconventional alternative to

compute the probability amplitude of a quantum mechanical particle instead of solving a

wave equation. Roughly speaking, the probability amplitude is related to the probability

density function of the states a quantum particle (like a photon) can assume. The path

integral formulates this probability amplitude as a sum of the contributions of all paths a

quantum mechanical particle could have taken. Feynman and Hibbs offer an introduction

to path integrals in [11].

5



Path integrals have wide application and are useful for solving problems in physics,

engineering, and chemistry. In a numerical setting, the use of Monte Carlo methods with

path integrals is popular and has general application in physics. For instance, Miller and

Clary [43] use a path integral Monte Carlo (PIMC) method to calculate internal energies

for four carbon chain molecules. Herrero and Ramı́rez [17] use a PIMC method to study

the structural and thermodynamic properties of diamonds, which they found agreement in

some of the thermodynamic properties between the PIMC and experimental results. PIMC

methods involve selecting random variates over a distribution of paths. Similar path-based

techniques may generate random paths from previous paths through a kind of perturbation

or mutation process [63] as a way of saving computer time. Often, this is not enough

to achieve convergence in a reasonable amount of time, so many involve the use of the

Metropolis algorithm [42].

Using the Metropolis algorithm phrases the problem of path generation as a Markov

process where the next path drawn from the distribution is a function of the previously

accepted path. In many cases for paths, this is a less expensive operation compared to

selecting a totally random path. Kalos and Whitlock wrote a book [28] which overviews

Monte Carlo methods from a more general perspective, though generally with applications

to simulating physical systems. Khandekar et al. [33] elaborate on Monte Carlo methods

and the Metropolis algorithm as it relates to path integrals.

2.2 Frenet-Serret curves

The Frenet-Serret frame is a definition of an orthonormal frame for continuous space

curves, and it is usually an introductory topic in differential geometry textbooks [57]. The

Frenet-Serret properties are defined for non-degenerate, arc length parameterized space

curves r(s). From this, a Frenet-Serret frame of orthonormal vectors can be constructed:
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T = dr/ds (2.1)

N = (dT/ds)/ ‖dT/ds‖ (2.2)

B = T×N. (2.3)

T is the tangent vector, N is the principal normal (or less formally the normal), and B is

the binormal vector. It can be shown that these three orthonormal vectors have the relation

over all s


T′

N′

B′

 =


0 κ 0

−κ 0 τ

0 −τ 0




T

N

B

 (2.4)

with κ and τ being the curvature and torsion of the curve. We use prime notation to signify

a derivative.

We work primarily with a discrete space curve for which these properties hold, which

we refer to as a Frenet-Serret curve in this dissertation. The space curve is explained in

depth in [60], reproduced here. In the discrete form, we are given a step size ∆s, starting

position ~x0 and a starting orthonormal basis F0 = [T0,N0,B0]. We can then define a

recurrence equation for the position sequence of the curve, ~xi, which follows directly from

the step-wise integration of the space curve:

~xi = Ti−1∆s+ ~xi−1. (2.5)

Defining the sequence of orthonormal frames of the space curve, Fi, is a little more involved.

We again define a recurrence equation

Fi = UiFi−1 (2.6)
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and define Ui as a partial rotation matrix between Fi−1 and Fi, based on the local curvature

and torsion at that point:

Ui =


1− κ2i

`2
(1− cos(`∆s)) κi

` sin(`∆s) κiτi
`2

(1− cos(`∆s))

−κi
` sin(`∆s) cos(`∆s) τi

` sin(`∆s)

κiτi
`2

(1− cos(`∆s)) − τi
` sin(`∆s) 1− τ2i

`2
(1− cos(`∆s))

 (2.7)

with ` =
√
κ2i + τ2i . Throughout the dissertation we will assume a curve has M segments.

The usefulness of the discrete Frenet-Serret formulation comes into play during the

Monte Carlo integration over path configurations (Section 4.3). Our formulation gives

us very good control over x0, T0, M , and ∆s since each are given. This is important

for numerical reasons when we discuss the perturbation algorithm, as then it only has to

preserve ~xM and TM , the end point and end tangent.

2.3 Monte Carlo integration

The types of numerical integration of definite integrals normally discussed in a stan-

dard calculus course are informally referred to as quadrature methods. It includes such

methods as the trapezoidal rule or Romberg’s method. This type of integration typically

involves sampling the target function at either fixed or dynamic intervals, computing the

area of the small shape formed by these bounds. A simple visualization is provided by

Figure 2.1.

A drawback to quadrature methods is the time complexity in higher dimensions, or

the curse of dimensionality. Accurate quadrature methods sample the function at least at all

boundaries of the integration bounds. For a single area of interest, this means a quadrature

method would sample a one-dimensional integral twice, a two-dimensional integral four

times, and so on. To formally understand the simple case where we always sample at the

boundaries of the quadrature shape, suppose we estimate the value of an M -dimensional
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x
1.0

0.5

0.0

0.5

1.0

f(
x
)

Figure 2.1: A quadrature of the function f(x) = sin(x). In this example, the value of the
function at the quadrature shape’s midpoint is taken as the sampled value of the function.
The value of the integral is estimated by summing the area of the quadrature shapes.

integral by forming N quadrature shapes. Suppose we use hypercubes as our quadrature

shape. Then, for each of the N hypercubes, we must sample the target function O(2M )

times. The time complexity required is then O(N2M ). We can disregard information and

take a fixed number of random samples around each region, but this is a trade-off between

time and error. Typically, integral problems of very high dimensionality are not well suited

to quadrature methods, and the Monte Carlo solutions outperform them [33, Section 11.2].

For a very thorough look at the curse of dimensionality with quadrature methods, see [45,

Chapter 1].

As we are integrating over paths, our integration bounds are related to the param-

eters which describe the path. In the case of Frenet-Serret curves, these are the curvatures

and torsions at the segments of the path. We can then expect dimensionality of our prob-

lem to be inversely proportional to ∆s, the length of a path segment. For accuracy, we

should require that ∆s is very small. Thus, integrating over paths is a problem of very high

dimensionality.
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Monte Carlo integration is the preferred strategy for integrating high dimensional

functions. It is helpful to understand from a lower-dimensional standpoint and extend

to higher dimensions later. Kalos and Whitlock [28, Section 2.6] give an introduction to

the basic idea of Monte Carlo integration. We apply this to a specific case here. Let

x1, x2, ..., xN be a sequence of independent and identically distributed random variables

from a distribution p(x). We can then form an estimator based on these samples and the

target function f(x),

GN =
1

N

N∑
1

f(xi), (2.8)

and the expected value of GN is related to our target function and the distribution we

choose our samples from,

E(GN ) =

∫
f(x)p(x) dx. (2.9)

In the case where x ∈ [a, b] and p(x) is uniform over [a, b], then we have p(x) = 1/(b − a),

and therefore

(b− a)E(GN ) =

∫ b

a
f(x) dx. (2.10)

In the limit of N →∞, then the variance of GN decreases and approximates the expected

value. The Monte Carlo integration of f(x) then has the form

∫ b

a
f(x) dx = (b− a) lim

N→∞

1

N

N∑
1

f(xi). (2.11)

In the single-dimensional case, we can see clearly that this scheme is O(N). Scaling up

dimensionality only slightly affects the complexity. If we take the dimensionality to be M ,

then xi is an M -dimensional vector and takes O(M) time per sample to generate. The time

complexity for Monte Carlo integration is then O(MN), which is preferable to the O(N2M )

of quadrature integration. To compute the integral, we need to show convergence in the
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limit.

In the case of integrals over paths, N is the interesting number since the dimen-

sionality of a path is given, but it is suspected that N needs to be quite large to show

convergence in the limit. As well, the p(x) term is of interest, as it is the distribution our

random variates follow. However, the bulk of this research assumes p(x) is uniform and

only the relative behavior is analyzed. The summation term

lim
N→∞

1

N

N∑
i

f(xi) (2.12)

is of primary interest since the character of its convergence determines a practical value for

N to experimentally calculate a weight for a given curve.

Extending the Monte Carlo scheme of integration to curves is straightforward. We

can represent a Frenet-Serret curve as a parameter set including an initial position (~x0),

initial orthonormal frame (F0), a 2M -dimensional vector of curvatures and torsions (K), and

a path length (s or M∆s). Let these parameters be represented by C, and let C1, C2, ..., CN

be a distribution of these path samples from a distribution p(C). Let f(C) be a weight

function over path parameter sets. We can construct an estimator as before,

QN =
1

N

N∑
1

f(Ci) (2.13)

E(QN ) =

∫
f(C ′)p(C ′) dC ′, (2.14)

and in a Monte Carlo integration scheme, assuming a uniform p(C), this may look like

∫
f(C ′) dC ′ = D lim

N→∞

1

N

N∑
i

f(Ci) (2.15)

where D is a product of the distribution analogous to (b − a), which for the scope of the

dissertation we ignore.
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2.4 Path integrals for radiative transfer

Using Feynman path integrals for radiative transfer was first introduced by Tessendorf

in 1987 [58] and the numerical behavior was first studied in 2009 [60]. This report gives

a derivation of the mathematical model of volume rendering which is derived from the

radiative transfer equation,

L(~x1, n̂1) =

∫ ∞
0

ds

∫
d3~x0

∫
4π
dΩ0G(s, ~x1, n̂1, ~x0, n̂0)S(~x0, n̂0), (2.16)

where G is the transport kernel and S is a source function. The parameters are s, an

arbitrary time variable with units of length; ~x0 and ~x1, the start and end (source and sink)

position; and n̂0 and n̂1, the start and end (source and sink) direction. We shall refer to

these as the boundary constraints as they are fixed when calculating the path integral. For

the purposes of the FPI approach, we will assume s is the arc length of a path of interest.

This equation for the radiance at ~x1 in direction n̂1 tells us we must integrate G over all

space, over all directions, and over all arc lengths to compute an answer.

Even if the boundary constraints are fixed, there are several possible paths that

satisfy these constraints. Therefore, calculating G, the transport kernel, is still a matter to

discuss. The FPI approach says the transport kernel has a representation in the form of a

Feynman path integral. We can define a path as a space curve x(s′), 0 ≤ s′ ≤ s, having

unit tangent vectors

β̂(s′) =
dx(s′)

ds′
. (2.17)

The path integral portion only will accept space curves satisfying the boundary constraints

set by the outermost integrals in Equation (2.16). Therefore, the constraints for the space

curve are
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β̂(0) = n̂0 (2.18)

β̂(s) = n̂1 (2.19)

~x1 − ~x0 =

∫ s

0
ds′β̂(s′). (2.20)

We also define scalar field functions to represent the optical properties of the media. They

are a(~x), the absorption coefficient; b(~x), the scattering coefficient; and c(~x) = a(~x) + b(~x),

the total extinction. Though, in this dissertation we consider the case where these are not

spatially varying. We simplify the notation by writing a, b, and c respectively in this case.

The path integral form of G [60] is

G(s, ~x0, n̂0, ~x1, n̂1) =

∫
[dΩ][dp]

× δ
(
β̂(0)− n̂0

)
δ
(
β̂(s)− n̂1

)
δ

(
~x1 − ~x0 −

∫ s

0
ds′ β̂(s′)

)
× exp

(
−
∫ s

0
ds′ c(x(s′))

)
exp

(
i

∫ s

0
ds′ p(s′) · dβ̂(s′)

ds′

)

× exp

(∫ s

0
ds′ b(x(s′))Z̃(|p(s′)|)

)
.

(2.21)

We adopt the notation [dΩ] and [dp] to represent an integration over all the β̂(s) and p(s)

functions. The delta functions limit the integration to those which satisfy Equations (2.18)

to (2.20). The term Z̃ is the phase function of the media, transformed into a Fourier-

like form and p is also introduced from this transformation. This dissertation only uses a

forward-peaked Gaussian phase function for Z̃. The first exponential term captures the total

extinction behavior (written c(~x)) in part due to absorption. The latter two exponential

terms model scattering behavior as mediated by the phase function.
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Chapter 3

Radiative transfer

In this chapter we review the different applications of radiative transfer in several

disciplines. For computer graphics, we will focus on techniques which seek to compute

multiple scattering effects, most of them being global illumination solutions. We will also

overview some of the software packages which use Monte Carlo and radiative transfer for

particle physics in nuclear engineering. We review some of the work done studying multiple

scattering in both medical imaging and ocean and atmospheric science. A seminal textbook

on radiative transfer is available by Chandrasekhar [6].

3.1 Computer graphics

Multiple scattering techniques in computer graphics are typically Monte Carlo meth-

ods. Often, they have in common that paths are randomly traced from the scene lights to

find interactions with the scene elements. Where these interactions are found, some lighting

information is computed which is used in the rendering step to simulate multiple scattering

effects. Often these techniques intend to solve the problem of global illumination, and we

focus on these methods in this section. A thorough survey on rendering techniques for

participating media is available from Cerezo et al. [5].

One of the earlier forms of global illumination solutions is path tracing first in-
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troduced by Kajiya in 1986 [27]. It is a Monte Carlo alternative to traditional sampling

procedures of ray tracing. Typically in ray tracing, when an interaction with an active

ray is found the illumination is computed at this point and the ray is terminated. Special

extensions can account for transmitted or reflected rays, but generally this is done for a

handful of materials. In a path tracing renderer, at each ray-object intersection a Monte

Carlo procedure determines if the ray scatters. If it scatters, paths are chosen randomly

out of a solid angle distribution called the bidirectional reflectivity distribution function

(BRDF). This process continues until all rays terminate, or some other stopping criteria

halts execution. Image noise is a commonly cited problem in path tracing methods, but it

also results in many ray-object intersection tests. Lafortune and Willems improved upon

path tracing with bidirectional path tracing [36], where the ray-object intersection points

and illumination information are reused for other path samples. With bidirectional path

tracing, a path is traced from light sources, and scattering events with scene objects are

computed as before. These light paths are reused when tracing paths from the camera. For

each scattering event along a camera path, the path can be “joined” with each leg of the

light path to create ensembles of valid paths. The technique was later extended to work for

participating media [37].

Other global illumination solutions are two-pass in nature. One such solution is

volumetric photon mapping, first posed by Jensen and Christensen [25]. Photon mapping

was the subject of Jensen’s PhD dissertation [23] and had been published earlier as a

means to compute caustics [24]. The basic operation of photon maps is to cast particles

(“photons”) from the scene light and compute intersections with scene geometry. At each

of these interaction, a Monte Carlo process referred to as “Russian roulette” is executed

which determines if a scattering or absorption event occurs at the interaction point. The

photon map is then computed as a result of tracing the paths taken by the photons. It is

then used in the rendering step as supplementary lighting information. More recent work

in photon mapping involves a change to the photon map where the radiance is estimated

along a beam, as opposed to a point [22].
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Instant radiosity [32] is another means of approximating multiple scattering. In brief,

rays are drawn from the primary light source to find the point of first reflection, where a

virtual point light (VPL) is placed. The scene is then rendered with the contributions of

every light added together to produce a final image. This technique is similar to another

method often used in production where lights are placed on the interior of participating

media to produce a glow characteristic of multiple scattering methods, while still only using

a single scatter renderer. Instant radiosity has a bidirectional extension [55], Metropolis

extension [56], and is frequently a basis of GPU algorithms for global illumination [38]. The

idea of VPLs was extended to participating media [9], and the related idea of virtual ray

lights was born [46].

An alternative, path-based method called Metropolis Light Transport was intro-

duced by Eric Veach [63] and was the subject of his PhD dissertation [62]. The technique

was developed under the assumption of hard surfaces, so there is not support for partic-

ipating media. However, there are many shared ideas in the formulation and this one,

such as the application of the Metropolis algorithm and local exploration of the path space

by perturbation. Wenzel Jakob also builds on the idea of path-space exploration focusing

particularly on specular surfaces [21, 20], and his techniques are implemented as a part

of his open-source Mitsuba renderer [19]. Premože et al. [53, 52] show a path integral

based computer graphics renderer which handle materials commonly associated with mul-

tiple scattering phenomena, such as clouds and milk. The technique was later implemented

as a part of an OpenGL rendering pipeline [16].

The work of Bouthors et al. [3, 4], also the subject of Bouthors’s PhD dissertation [2],

focuses on real time Monte Carlo rendering of slab-shaped cloud structures. The technique

works by analyzing the results of Monte Carlo simulations to elicit the macroscopic behavior

of light traveling through various slab structures. A fit function is computed for these

simulations so that the model can be extended to non-slab-shaped volumes and executed

on a GPU.

The path integral formulation of radiative transfer was first published in 1987 [58].

16



The original lacked time dependence and was formed as an approximation for small angles.

Time dependence was added in [59]. An effort to implement the path integral formulation

in a numerical setting was begun in [60]. An approximation with intended application in a

wide variety of scenarios is outlined in [61], and this work presents a full derivation in the

appendix. This dissertation largely builds on the previously developed numerical framework

in [60].

3.2 Medical imaging

Perelman et al. [48] developed a path integral framework for photon transport in

turbid media, showing good agreement between their model and a Monte Carlo simulation,

with later extensions [49, 47], and also noted the technique’s promise as a theoretical model

for understanding optical tomography [66].

3.3 Nuclear engineering

The field of nuclear engineering devotes a large effort toward the understanding of

propagation of general purpose particles through various kinds of media. There are many

Monte Carlo particle transport suites. Two of the more popular suites include MCNP6

[12], developed primarily at Los Alamos National Laboratory, and Geant4 [1], developed

primarily at the European Organization for Nuclear Research. While nuclide transport

tends to be a large focus, several of these suites do support electromagnetic radiation,

including visible light. The methods used in these suites are understandably very particle-

oriented like the traditional multiple scattering techniques employed by computer graphics.

As well, they have a much larger scope than multiple scattering for photons so the concerns

of the field are not often in line with those of computer graphics. Generally Monte Carlo

techniques are the driving force, so there is a shared interest.
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3.4 Ocean and atmospheric science

Scientists studying the ocean and atmosphere have long been interested in the be-

havior of light in the water and air. Especially over the long distances considered in some

problems, multiple scattering becomes an obstacle to be understood and dealt with by de-

veloping models to describe it. Experimental and computational work are both common.

Seibert Duntley [8] performed some early experimental measurement of the propagation of

lasers underwater, including measuring both the beam spread function and point spread

functions in a simulated tank with highly scattering media. He gives a regression for the

data he collected. Later, others would follow in the validation of models for point spread

functions [18], including Duntley’s regression, and the measurement of beam spread func-

tions for sea ice [40]. Monte Carlo techniques are also common. Kattawar et al. used Monte

Carlo methods to simulate atmospheric emission [31] and scattering at the atmosphere-ocean

interface [30]. Kattawar also was the editor for a book of methods for multiple scattering

in ocean and atmospheric science [29]. Mobley et al. provide comparative work for under-

water scattering numerical models and suggest a set of benchmark problems for solutions

of similar type [44].

3.5 Geophysics

Radiative transfer is used within geophysics to model the propagation of seismic

waves through the Earth. One of the earliest descriptions for a geophysics application was

by Wu [67]. As simulations became more commonplace software packages like Radiative3D

came to be. A technical report for Radiative3D [7] gives more detailed background on the

use of radiative transfer algorithms for geophysics.
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Chapter 4

Methodology

This chapter presents a numerical plan for implementing the path integral radia-

tive transfer method. It is sufficient to integrate the spatial, angular, and path integrals,

Equations (2.16) and (2.21), via Monte Carlo integration. In Section 4.1 we shall discuss

geometries which we will use to model sensors and emitters. We need a way to generate

seed paths based upon the geometry of the scene (Section 4.2). Creating seed paths can

be expensive, so we use a perturbation method to create supplementary paths from a seed

path (Section 4.3). Each path is then weighted and accumulated (Section 4.4) to produce

the final image. An overview of the entire computational process is given in Figure 4.1.

4.1 Specifying geometry

In the world of Monte Carlo particle transport, emitters and sensors can be described

by a geometry, a term we will borrow for this dissertation. The geometries we develop in this

section will aid us in the integration over the d~x0 and dΩ0 integrals of Equation (2.16). A

geometry describes the set of points and directions an element of radiation can be emitted or

sensed from, and the distribution they take on. Mathematically, we can think of a geometry

as a joint probability density function (pdf), G(~x, n̂), which gives the probability density

over the entire possible set of positions and directions. G is defined over R3 and over the
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pick
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Figure 4.1: An overview of the computational process.
The experimenter specifies the desired emitter and sensor geometries via an input descrip-
tion file. Any desired number of compute jobs J can be attempted in parallel. Each sample
will randomly pick boundary constraints from the geometry description, generate a seed
path from the boundary constraints, and repeatedly perturb the seed path to calculate a
single path integral sample. A job may repeat the process a configurable number of times.
The jobs emits small sets of data which are concatenated. Each data item is the result of a
single path integral calculation and accompanying metadata. The resulting data set is large,
so it is reduced into a summary form suitable for analysis and plotting. Reduction depends
on the type of analysis conducted but typically involves transforming and accumulating the
data in terms of an alternate parameter, such as an (x, y) coordinate for 2D images or θ for
beam spread functions.
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solid angle sphere Ω. Note that G can be the product of two independent distributions.

Conceptual examples of a geometry from computer graphics include point lights, which have

fixed position and unconstrained direction and directional lights which have fixed direction

but unconstrained position. Since G is a probability distribution we must have the condition

∫
dΩ

∫
d~x G(~x, n̂) = 1. (4.1)

We move on to formally specify some of the geometries used in this dissertation. The

first geometry we will discuss is the simplest, which is the ray geometry. The ray geometry

is conceptually similar to a laser: an emitter at a fixed position with a fixed direction. Its

probability distribution is

Gray(~x, n̂) = δ(~x− ~xr) δ(n̂− n̂r) (4.2)

where ~xr and n̂r are parameters set by the experimenter. The ray is mostly useful as an

emitter since it represents an ideal laser. It is also important from a numerical perspective

as since it has only one defined value and can help reduce variance for simple experiments.

Implementing the ray in a numerical setting is straightforward as it unconditionally returns

~xr and n̂r.

A sphere geometry is also useful for recreating beam spread functions from optics

(see Chapter 6). Conceptually we can think of the sphere as a radiometer tied by a taut

string of length R from an anchor point ~xs. If we rotate our radiometer about the anchor

point randomly, it forms the shape of the sphere. The radiometer is only sensitive in the

direction of the string, and it spends an equal amount of time at all points of the sphere

(i.e. it is spherically uniform). The pdf of the sphere geometry is

Gsphere(~x, n̂) =
1

4πR2
δ(‖~x− ~xs‖ −R) δ

(
~x− ~xs
‖~x− ~xs‖

− n̂
)
. (4.3)
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To generate this distribution numerically, we use the traditional spherical uniform sampling

algorithm,

n̂ = x̂ η1 + ŷ cos (2πξ1)
√

1− η21 + ẑ sin (2πξ1)
√

1− η21 (4.4)

~x = ~xs +Rn̂, (4.5)

where η1 is uniform on [−1, 1] and ξ1 is uniform on [0, 1].

There is one other alteration we can try with the sphere geometry. Suppose we

assign a polar vector of interest on the sphere p̂. The radiometer at any point of time is

offset by an angle of θ = arccos (n̂ · p̂). Now suppose the radiometer spends an equal amount

of time on the sphere for any given θ. We can simulate this numerically as well. Pick any

vector perpendicular to p̂ and call it p̂⊥. We can then calculate n̂,

n̂ = R(p̂, 2πξ1) ·R(p̂⊥, πη1) · p̂, (4.6)

where again η1 is uniform on [−1, 1], ξ1 is uniform on [0, 1], and R(â, φ) gives the axis-angle

rotation matrix for the axis â and angle φ. We calculate ~x as in Equation (4.5). This scheme

is useful when you would like enforce uniform sampling with respect to θ, which can reduce

variance for calculating beam spread functions in Chapter 6. However, this changes the

pdf for the geometry to a non-uniform distribution. The effect of this is that the resulting

calculation contains non-uniform bias and cannot be scaled uniformly for comparison.

Geometries are a useful convenience for concisely and precisely specifying how to

generate the boundary constraints of our Monte Carlo sample. They are a reusable ab-

straction which can describe the pieces of a larger scenario. Similar, much more complete

concepts exist in other particle transport packages [1, 12]. We impose the probability distri-

bution function in our geometries to lay the framework for the incorporation of importance

sampling, where it is important to be able to state the exact probability of a given sample

being drawn.
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4.2 Creating seed paths

We develop a strategy for creating seed paths. At this point, we will assume two

pairs of directions and angles have been chosen using one of the geometries in Section 4.1.

The emitter and sensor locations are at (~x0, n̂0) and (~x1, n̂1) respectively. The remaining arc

length, s, is a free variable, but it is useful to control its distribution. Therefore we enforce

that s is uniform on the interval [‖~x1 − ~x0‖ , smax] where smax is left free. Ensuring s is

adequately distributed will aid us in the integration over the ds integral of Equation (2.16).

We seek to find a path having these end points, end directions, and arc length.

More formally, r(t) is a space curve defined on t ∈ [0, 1] having the boundary

conditions:

r(0) = ~x0 (4.7)

r(1) = ~x1 (4.8)

∂

∂t
r(0) = n̂0 (4.9)

∂

∂t
r(1) = n̂1. (4.10)

We impose the additional constraint that there is an arc length parameterization of the

space curve r′(s′) and it is defined on s′ ∈ [0, s]. To be discretized properly we must have

that

~x1 = ~x0 + ∆s
M−1∑
i=0

∂

∂s′
r′(i∆s) (4.11)

where ∆s = s/M , M being path subdivision count.

There are a number of different ways such a curve can be computed. We find using

Bézier curves is an attractive option due to their ability to control both the position and

tangent vector at the control vertices. The arc length may be varied by placing additional

control vertices at different positions. We use a form for n-degree Bézier curves. B(t) is
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defined on t ∈ [0, 1],

B(t) =
n∑
i=0

(
n

i

)
(1− t)n−iti~pi, (4.12)

where ~pi is one of n + 1 control vertices. We can satisfy the constraints by constructing a

Bézier curve with the following control vertices:

~p0 = ~x0 (4.13)

~p1 = ~x0 + `0n̂0 (4.14)

~p2 = ~x1 − `1n̂1 (4.15)

~p3 = ~x1. (4.16)

Here, `0 and `1 are both independent uniform random variables, each distributed over the

interval [0, 0.5× ‖~x1 − ~x0‖]. This properly constrains both the position and tangent vector

at the space curve’s endpoints. The multiplication of the random scalars adds some measure

of arc length variation.

There is one last consideration. Let us consider the case where there exists some d

such that ~x0 + dn̂0 = ~x1, or less formally, where ~x1 lies along the ray based at ~x0 traveling

in the direction of n̂0. This presents a problem when n̂0 ≈ n̂1. It is difficult to generate

anything but a straight path just with these four control vertices. Therefore, we should

add a fifth control vertex as a handle for increasing the arc length. A reasonable choice is

(~x0+~x1)/2+`2n̂2, where n̂2 is a spherically-uniform random unit vector and `2 is computed.

The list of control vertices is then
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~p0 = ~x0

~p4 = ~x1

(x0 + x1)/2
~p1

~p2

~p3
n̂0

n̂1

n̂2

Figure 4.2: Diagram of Bézier curve control points. Here, ~x0 and ~x1 are chosen directly
from the light and sensor geometry and serve as control points. We compute ~p1 and ~p3 as
a function of these two points. ~p2 is chosen randomly by starting at the midpoint of ~x0 and
~x1 and tracing a random distance out from a spherically uniform vector n̂2.

~p0 = ~x0 (4.17)

~p1 = ~x0 + `0n̂0 (4.18)

~p2 = (~x0 + ~x1)/2 + `2n̂2 (4.19)

~p3 = ~x1 − `1n̂1 (4.20)

~p4 = ~x1. (4.21)

Figure 4.2 offers a diagram showing the relationship between the terms.

The `2 parameter is used to constrain the arc length of B to s. Form a bracketing

interval on s by allowing `2 to be any value in the range [0, `max]. Once this bracketing

interval is established, use any root finding mechanism to find an `2 such that the arc

length of B is s. Brent’s method is suitable for this step, and `max can be any sufficiently

large static number. Alternatively, `max could be dynamically computed via a doubling

procedure.

Now, we have selected a space curve r(t) which satisfies our constraints. This is

sufficient information to define some of the initial parameters of the equivalent discrete
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Frenet-Serret curve. The first parameter is the initial position:

x0 = r(0). (4.22)

Similarly, we must find the initial tangent vector:

T0 = n̂0 = r′(0). (4.23)

On calculating the derivative of the space curve, it is sufficient to resort to numerical

methods via finite difference, as the precision of analytic methods is not necessary in this

case. The remainder of the orthonormal frame is the Frenet-Serret frame:

N0 = r′′(0) (4.24)

B0 = T0 ×N0. (4.25)

Finally, it is left to define the step size, ∆s. We define this with respect to the number of

desired path subdivisions, M , which remains a free parameter:

∆s = s/M. (4.26)

We continue to find an arc length parameterization of the space curve. The arc

length parameterization is necessary due to the path integral formulation requiring constant

step sizes of ∆s. Calculating arc length parameterizations is not trivial because the arc

length function is not invertible. The arc length function a(t) of our space curve is defined

a(t) =

∫ t

0
dt′
∥∥r′(t′)∥∥ (4.27)

and given our space curve is defined by Equation (4.12) it is not invertible analytically. We

have to rely on numerical methods.
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Finding arc length parameterizations of Bézier curves and parametric curves in

general is an area of much interest. Many approaches seek to find approximate solutions for

a speed trade-off [39, 65]. Guenter and Parent [15] numerically calculate a−1(s) in a table

to find bracketing intervals. The bracketing intervals aid a Newton solver in computing a

more exact solution.

Our solution, which is similar to Guenter and Parent’s, follows. Choose a positive

integer k which becomes the size of the inverse arc length table. Ideally k should be a number

much less than M , as the idea is to reduce the number of inverse arc length calculations

from M down to k. For example, we use k = M/20. Choose a sequence of arc lengths to

calculate aj = j× s/k. Form a table of the matching parameter-space values by solving the

inverse arc length function numerically with Brent’s method:

t1 = a−1(a1)

t2 = a−1(a2)

...

tk−1 = a−1(ak−1)

tk = a−1(ak).

Brent’s method can solve the inverse arc length function by optimizing a(t) − s = 0 for

t. Once the table is calculated, form a second sequence of arc lengths si = i × s/M . For

each si there exists a aj and a aj+1 such that aj < si ≤ aj+1. The corresponding curve

parameter can be approximated with linear interpolation. Let q = (si − aj)/(aj+1 − aj):

ti = qtj + (1− q)tj+1. (4.28)

At this point, our technique differs from Guenter and Parent. They use the interpolated

value to serve as an estimate for a root solver, and find a precise value by root finding over
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the subinterval. In practice, root-finding on this subinterval is quite slow for our purposes.

Instead, we correct for the error after the curve is discretized. We sample the curvature

function κ(t) and the torsion function τ(t) along the sequence ti. This generates the curve

parameters

κi = κ(ti) (4.29)

τi = τ(ti). (4.30)

These form the last remaining discrete Frenet-Serret parameters. Once the space curve is

discretized we can correct for the error introduced by the interpolation, particularly, the end

point ~xM and end direction TM . The perturbation algorithm in Section 4.3 is an excellent

way to correct for this kind of error as it is highly tailored to this purpose.

4.3 Perturbing paths

We turn our attention to integrating over the path integral itself, Equation (2.21).

At this point all the boundary constraints are fixed. For s > ‖~x1 − ~x0‖, there are an infinite

number of path configurations which can satisfy the constraints. We can describe a path con-

figuration as a vector of parameters which governs the path’s trajectory, K. For a discrete

Frenet-Serret curve (Section 2.2), this is a 2M -dimensional vector consisting of the sequence

of its segment curvatures and torsions, K = {(κ0, τ0), (κ1, τ1), ..., (κM−2, τM−2), (κM−1, τM−1)}.

To perform Monte Carlo integration over the path integral, we must find enough path con-

figurations satisfying Equations (2.18) to (2.20) such that the variance of the estimate is

below a reasonable tolerance value. To state the problem more precisely, we are given K0

from Section 4.2. This chapter describes a method of efficiently generating a sequence Ki

based on K0 such that Equations (2.18) to (2.20) are preserved.

Previous work [60] proposes an algorithm for accomplishing this. A formal descrip-

tion of this work follows. We start by defining the points along the Frenet-Serret curve,
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Equation (4.31), and the orthonormal frames at each of those points, Equation (4.32):

~xi = ∆sTi + ~xi−1 (4.31)

Fi = UiFi−1. (4.32)

We take Fi to be a matrix consisting of the tangent (written as Ti), normal (Ni), and

binormal (Bi) vectors written as the rows of the matrix, Fi = [Ti,Ni,Bi]. F0 and ~x0 are

given parameters of the curve, using the method described in Section 4.2. We take M to

be the number of points defined along the curve. κi and τi are respectively the curvature

and torsion at the ith path segment. Recall that the Ui matrices describe an incremental

transformation between orthonormal bases along the curve according to Equation (2.7).

The algorithm is given as

1. Choose three random indices 0 ≤ i0 < i1 < i2 < M .

2. Let κi1 ∈ [a, b] such that 0 ≤ a < b.

3. Solve a five-dimensional equation

G(Y ) = 0 (4.33)

where

Y =



κi0

κi2

τi0

τi1

τi2


G(Y ) =



xM − x′M

yM − y′M

zM − z′M

‖TM −T′M‖1

‖TM −T′M‖22


. (4.34)

In this case, xM , yM , and zM are the original, unperturbed components of the endpoint

29



coordinate of the curve; x′M , y′M , and z′M are the perturbed components; and TM
′ is

the perturbed end tangent vector. We use ‖·‖i as notation for the ith norm. G is a

R5 7→ R5 function optimized when the curve is valid.

4. If the optimization failed to converge, restore the curve to its original state.

A failure to converge can occur for many reasons, but often it is simply that the choice

of indices or κi1 made it difficult for the root solver to resolve a solution.

5. Optionally reject the curve according to a Metropolis sampling algorithm.

4.3.1 Accelerated path generation

A typical root solver might look something like Algorithm 1. The endpoint() and

endtangent() routines calculate ~xM and TM respectively. The perturb() routine creates a

random perturbation of the curve’s parameters. The select() routine chooses the i0 and i2

to use during optimization and iterate() is the root solver’s specific method to update the

optimized parameters. Then, update() actually applies the parameter update.

Algorithm 1 A typical root solver routine.

Require: C = (~x0, F0,K, s)
Ensure: endpoint(C) = ~xgoal ∧ endtangent(C) = Tgoal

K ′ ← perturb(K)
C ′ ← (~x0, F0,K

′, s)
Y ← select(K ′)
while ¬solve(C ′, Y ) do
Y ← iterate(Y )
update(C ′, Y )

end while
if converged() then
update(C, Y )

end if

The solve() routine needs to calculate the end point and end tangent of the input

curve, in order to satisfy the ensure clause. A first instinct might be to use Equation (4.31)

and Equation (4.32) explicitly, which takes O(M) matrix multiplications and vector addi-

tions. Let us assume that our root solver needs to evaluate the endpoint and tangent a
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combined total of O(P ) times, therefore our current algorithm runs in O(MP ) time. In

order to speed this up, we must make endpoint() and endtangent() faster. Let us consider

the case of finding the end tangent with only one point of perturbation, index i0. Expanding

Equation (4.32), we get a chain of matrix multiplications,

FM = UMUM−1...︸ ︷︷ ︸
A1

Ui0 ...U1U0︸ ︷︷ ︸
A2

F0. (4.35)

Given that matrix multiplication is associative, we can precompute the annotated terms

into A1 and A2 to save time. The idea easily extends to multiple points of perturbation:

FM = UMUM−1...︸ ︷︷ ︸
A1

Ui2 ...︸︷︷︸
A2

Ui1 ...︸︷︷︸
A3

Ui0 ...U1U0︸ ︷︷ ︸
A4

F0. (4.36)

For only an O(M) penalty, we can precompute all of these matrices to make endtangent()

run in O(1) within a loop iteration. However, endpoint() still takes O(M) time.

To speed up endpoint() is only slightly more difficult. At a desired point of pertur-

bation i0, there is a basis Fi0 . When this basis changes, the points ~xi0+1, ~xi0+2, ..., ~xM−1, ~xM

undergo a rigid rotation according to the change in the underlying basis. Also, notice one

can find a straight line vector, or summary vector, of the path by taking the difference

~xi1 − ~xi0 , calling it ~v. Then, by taking the sum of ~xi0 + ~v, we find the next point of

perturbation.

Since the curves undergo a rigid rotation, we can simply find a summary vector

between the points of perturbation. It then appears that we could rotate these summary

vectors with their respective bases to find the next point of perturbation. Mathematically,

this means we project ~v into Fi0 , ~vp = Fi0 · ~v, and we remember these projections between

iterations of the root solver. We allow the basis to become perturbed, written F ′i0 . This

allows us to project the vector out of the modified basis to find the updated position of

the next point of perturbation: ~v′ = inv(F ′i0) · ~vp. In summary, we find the following O(1)

means of calculating the perturbed end basis and tangent:
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~x0

Fi

~xM

~x′M

~v2

~v′2

~v1

Figure 4.3: A diagram of the accelerated path perturbation algorithm, with a single point of
perturbation i. Two vectors are drawn: ~v1 from ~x0 to ~xi and ~v2 from ~xi to ~xM . Imagining
~v2’s tail is attached to ~xM , then only ~v2 is affected by perturbation of the orthonormal basis
Fi. By tracking the effect of the perturbation on the summary vectors ~vi we avoid the need
to trace along the potentially many path segments.

F ′M = A4Ui2A3Ui1A2Ui0A1F0 (4.37)

~x′M = ~x0 + ~v1 + inv(F ′i0) · ~v2p + inv(F ′i1) · ~v3p + inv(F ′i2) · ~v4p. (4.38)

Algorithm 2 shows the revised root solver routine. The relevant additions are the

O(M) operations of premultiplyBases() and presumV ectors(), which are implementations

of the optimization discussed previously. Given that there are O(P ) function evaluations

in the root solver, we have reduced the algorithm to being O(M + P ) overall.

4.3.2 Root finder performance benchmark

An implementation of the described path generation algorithm was created using

Python and SciPy [26]. The implementation includes the revised root solving algorithm

and caches the computation of the Ui matrices where possible. A large portion of the com-

putation is devoted to a root solving algorithm, and SciPy offers MINPACK’s Powell hy-

brid method (hybr), MINPACK’s Levenberg-Marquardt (lm), and several Newton methods.

Among those, there are multiple methods to calculate the Jacobian, including Broyden’s

good method (broyden1 ), Broyden’s bad method (broyden2 ), Anderson mixing (anderson),
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Algorithm 2 Revised root solver routine.

Require: C = (~x0, F0,K, s)
Ensure: endpoint(C) = ~xgoal ∧ endtangent(C) = Tgoal

K ′ ← perturb(K)
C ′ ← (~x0, F0,K

′, s)
A1, A2, A3, A4 ← premultiplyBases(C ′)
~v1, ~v2, ~v3, ~v4 ← presumV ectors(C ′)
Y ← select(K ′)
while ¬solve(C ′, Y ) do
Y ← iterate(Y )
update(C ′, Y )

end while
if converged() then
update(C, Y )

end if

Method Time (s) Perturbations CPCH Evaluations

Broyden’s good method 541.92 338.30 2250.93 ± 4.81 -
excitingmixing 1297.75 0.11 0.32 ± 0.37 -
Powell’s hybrid method 66.79 667.34 36108.04 ± 877.22 197476.51
Newton-Krylov 840.93 662.57 2855.83 ± 98.04 -
linearmixing 1202.42 0.17 0.51 ± 0.38 -
Levenberg-Marquardt 121.22 828.17 24662.43 ± 511.32 382549.86

Table 4.1: Results of the root solver performance benchmark. A confidence interval for
CPCH is shown for α = 0.025.

Krylov approximation (krylov), Diagonal Broyden approximation (diagbroyden), and others

(linearmixing and excitingmixing).

An experiment was designed to test the efficacy of each of these methods for this

particular algorithm. For each method, 35 single core jobs were launched on a supercom-

puter perturbing a curve 1000 times. For these jobs, the time spent generating paths, the

number of successful perturbations, and the number of function evaluations (if available)

were recorded. Table 4.1 shows the acquired results. The means of the job time and number

of curves generated are shown. Curves generated per core-hour (CPCH) is derived by mea-

suring a simple rate (curves generated per unit hour) over each individual job and finding

the mean.
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Of the methods available, many of them would diverge, suggesting that they are not

a good fit for this situation; they are not included in the table. In terms of CPCH, Powell’s

hybrid method is a clear winner. Levenberg-Marquardt lags Powell’s hybrid method in

performance, but interestingly seems to converge more often.

4.4 Weighting paths

Once a path is generated we must be able to assign a weight to the path efficiently.

In the derivation presented in [60], a weighting function is derived for a single node of a

Frenet-Serret curve,

ωn = exp(−cn∆s)

∫
d3p

(2π)3
exp(ip · N̂nκn∆s+ bn∆sZ̃(|p|)), (4.39)

where the weight of the entire path is just the product over the nodes. In fact, an error was

discovered in the original paper and several of the derived equations after being written in

spherical coordinates are incorrect. Rewriting in spherical coordinates and taking p · N̂n =

p cos θ will yield

ωn = exp(−cn∆s)

∫ ∞
0

p

2π2
exp(bn∆sZ̃(p))

sin(pκn∆s)

κn∆s
dp. (4.40)

For a complete derivation, see Appendix A. We focus only on the regularized form,

ωn = exp(−cn∆s)

∫ ∞
0

p

2π2
exp(bn∆sZ̃(p)− ε2

2
p2)

sin(pκn∆s)

κn∆s
dp. (4.41)

It is desirable to normalize ωn. Its value can be greater than 1 and cause overflow during

multiplication to compute the path weight. For the case where bn is a constant, ωn peaks at

k∆s = 0, which is used for normalization here. Many of the terms are discussed in greater

length in Chapter 2. They are:

• ∆s and κn which are the step size and the curvature of the Frenet-Serret curve;

34



• an, bn and cn, which are respectively absorption coefficient, scattering coefficient, and

total extinction (an + bn) at position n;

• Z̃(p), the Fourier transform of the phase function;

• ε, a tunable parameter to make the integral more numerically feasible.

While an and bn can be any scalar field, here we focus on the case where they

are constants. Smaller values of ε approach the theoretical value of the integral, but are

also more sensitive to numerical noise. For Z̃(p), we use the transformed Gaussian phase

function presented in [61],

Z̃(p) = Np exp

(
−µp2

2

)
, (4.42)

which is derived from the phase function,

P (n̂, n̂′) =
2Np

(2πµ)3/2
exp

(
n̂ · n̂′ − 1

µ

)
, (4.43)

with the normalization constant

Np =

√
πµ/2

1− exp(−2/µ)
. (4.44)

Cutting the integration bounds off at 10/ε is sufficient for capturing the important parts

of the integrand while avoiding numerical noise in the result. The bulk of the contribution

is well within those bounds of integration, and anything beyond will likely only contribute

numerical noise.

It is also helpful to understand how modifying the parameters affects the overall

character of the weight function. Figure 4.4 shows increasing µ widens the Gaussian phase

function and therefore the weight function tails off over a longer period of time. However,

the difference between values of µ is quite small. Figure 4.5 shows that ε corresponds to

the width of the peak of the delta function and increases the maximum of the function.
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Figure 4.6 shows increasing b∆s causes the weight in general to decrease at a slower rate,

though we are not typically interested in large values of b∆s. This plot also shows that the

smoothness of the weight curve does tend to break down at a particular shelf.

It is expensive to calculate ωn numerically. However, we can observe that the inte-

grand of Equation (4.41) is dependent on the terms κ∆s and b∆s, evidenced by Figure 4.7.

The phase function and other terms are not spatially varying. Inspection of Figures 4.6

and 4.7 shows ωn is quite smooth for most reasonable values. Therefore we can bilinearly

interpolate over κ∆s and b∆s to avoid repeated calculation of the integral portion of ωn.

This results in a fairly significant gain in performance.

The weight of a single path is a product of its segment weights:

Ω =

M∏
i

ωi. (4.45)

Here, ωi is the ith path segment’s weight, as determined by the regularized path segment

weight formula, Equation (4.41). Assuming a uniform distribution in the perturbation

scheme, Monte Carlo integration over N paths satisfying the boundary constraints yields

D
1

N

N∑
i=1

Ωi (4.46)

where D is a normalizing factor. This quantity, in the limit of N , approaches the value of

the transport kernel:

G(s, ~x1, n̂1, ~x0, n̂0) = lim
N→∞

D
1

N

N∑
i=1

Ωi (4.47)

This forms the numerical basis by which we evaluate the path integral. First we choose the

boundary constraints to hold constant, which are the function parameters of the transport

kernel G. We choose a seed path which satisfies the boundary constraints. From the seed

path, we use the perturbation algorithm to create other paths which satisfy the boundary

constraints, yielding a sequence of path weights Ωi. These path weights may be integrated
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Figure 4.4: Path segment weight function with varying phase function µ. Here, we have
the regularization value ε = 0.5 and b∆s = 0.08. We observe that increasing the width of
the Gaussian phase function causes the weight to fall off more slowly with increasing κ∆s,
though the difference is very slight even for drastic changes in µ. Larger Gaussian widths
correspond to more large angle scattering events, so we should expect higher curvature
values to be penalized less.
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Figure 4.5: Path segment weight function with varying regularization value ε. Here, we
have the Gaussian phase function parameter µ = 0.1 and b∆s = 0.08. We can see as ε→ 0,
a delta function is more prominent at k∆s = 0, and higher values of k∆s are weighted less.
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Figure 4.6: Path segment weight function varying the product of the scattering value and
step size, b∆s. Here, the Gaussian phase function parameter µ = 0.1, and the regularization
value ε = 0.5. As higher scattering values are reached, paths of higher curvature are
weighted higher, but the peak decreases. Also shown here are some ranges where the path
segment weight function breaks down numerically in higher areas of κ∆s.
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Figure 4.7: Plot of path segment weight function where the product b∆s is the same. In
the case where b∆s is equal the data are colored the same. Notice that the functions are
equivalent for equal b∆s. This implies it is possible to cache calculations of the integral in
Equation (4.41) for some significant performance gains.
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via Monte Carlo integration as in Equation (4.47) to approximate the value of the transport

kernel.
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Chapter 5

Experiment: Statistics of path

integral

Before conducting full scale experiments, the statistical behavior path integral should

be known. The numerical integration of the path integral should be repeatable for a given

set of boundary constraints. Equation (4.47) gives a plan for integration, however leaves

the normalizing factor D undefined. For this and other experiments we ignore D as we are

interested in the relative behavior. As we are working interested in the statistics of the

numerical methods themselves, we are free to choose any boundary constraints we choose.

For this experiment we (1) set ~x0, n̂0, s, κi and τi arbitrarily to generate a seed path and

(2) repeatedly perturb the seed path k times. For a given job j we can form a sum of the

path weights to represent them in a more compact form:

Pj =

kj∑
i=1

Ωi. (5.1)

Then between the j jobs there is a total number of perturbations

Kj =

j∑
i=1

ki (5.2)
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Parameter Value

Absorption coefficient (a) 0.0
Scattering coefficient (b) 1.0
Initial curvature (κi) 0.1
Initial torsion (τi) 0.1
Path segments (M) 200
Arc length (s) 16.0
Gaussian width (µ) 0.1
Regularization constant (ε) 0.5

Table 5.1: Experimental parameters used to study the statistics of the path integral calcu-
lation.

and considering the results of j jobs we define an estimator for the path weight to be

Qj =

(
j∑

d=1

Pd

)
/Kj . (5.3)

A summary of experimental parameters are available in Table 5.1. The process can be

repeated many times to generate independent perturbation sequences.

Monte Carlo integration of the path weights produces a running plot like Figure 5.1.

Visually, the variance appears to decrease as the sample count increases. However, this is

only one large sample set, and the estimate of the intensity could be biased. Therefore,

we are left with a question if the particular sequence of samples biases the result of the

calculation. To explore this question further, we can divide our large sample set into smaller

slices, integrate the slices, and analyze the results.

Figure 5.2 illustrates the character of convergence if we sum over slices of varying

size across the whole data set and create a histogram of the result. What we find is that

the means of the histograms line up with the convergence predicted by Figure 5.1. A fit of

the data places the mean of the log-normal distribution roughly in the same place. This

suggests that if we choose any set of randomly generated curves and sum their weights,

then they should roughly converge to the same mean.

The width of the distribution is also of interest since it will gauge how close to

convergence the calculation is. Figure 5.3 shows the trend of the σ parameter for the
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Figure 5.1: A running estimate of a path weight for a very large sample count. The relative
intensity is Qj and sample count is Kj . The estimated mean seems to reduce in noise after
several million perturbation samples.
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Figure 5.2: Log-normal fits for three different slice sizes: 1000, 2000, and 3000. The fit mean
µ is consistent regardless of which sequence of paths, so there is not bias in this regard.
Each of the means agrees with Figure 5.1. The width parameter σ decreases as we increase
the number of sample runs. This decrease suggests we decrease the uncertainty of the mean
estimate as we take more samples.

resulting log-normal fits against increasing slice size. We see a decreasing trend as expected,

but this offers insight to the accuracy of the prediction of the mean as a function of the

slice size. For instance, there is an obvious difference in the fit width between a slice size of

500 and 1000, but the difference is subtle between slices of 2000 and 3000.

This log-normal fit is useful for the Metropolis algorithm, as it provides a method of

determining the acceptance probability of a given path weight. Let Ci be a given curve in

the sampling sequence and Ωi its weight; likewise Cc is a candidate curve and Ωc its weight.

Using the fit data we obtain a log-normal probability density function p(x), and compute

an acceptance probability α = min(1, p(Ωc)/p(Ωi)). We let Ci+1 be Cc with probability

α, or Ci otherwise. Figure 5.4 shows a running integration using the Metropolis algorithm

alongside the original approach. While the Metropolis approach does seem to stabilize a

little earlier than the standard approach, the two converge to different values. It is possible

there is some bias in one of the approaches. However, all other experiments do not use

Metropolis acceleration with the motivation of finding a brute force answer to which future

approaches can be compared.

In conclusion, this experiment studies the statistical behavior of the path integral

calculation (Equation (2.21)) for an arbitrary set of boundary constraints. Analyzing the
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Figure 5.3: Log-normal width parameter σ for increasing slice size. This reaffirms what is
shown in Figure 5.2, but plots the σ parameter with higher resolution with respect to the
number of sample runs. We do see the expected trend in the decrease of σ.
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(a) Standard sampling algorithm
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(b) Metropolis acceleration scheme

Figure 5.4: Comparison of the standard sampling to Metropolis-accelerated scheme. The
two approaches appear to converge upon different values almost an order of magnitude
apart. However, the Metropolis-assisted scheme seems to stabilize a little earlier.

data set piece-wise shows the integration follows a log-normal distribution whose variance

decreases as more samples are collected. This yields a possible basis for a Metropolis

acceleration scheme for the perturbation algorithm. The results of this experiment proves

that our path integral calculations are repeatable given enough samples. This information

informs that the approach is ready to be tested against integration over solid angle and

surface distributions, i.e., to calculate Equation (2.16). This allows comparison against real

phenomena such as beam spread functions.
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Chapter 6

Experiment: Beam spread

functions

A beam spread function (BSF) is an experimentally measurable property of scatter-

ing media. Imagine a laser suspended at the origin in cloudy water, and a sphere located

at the origin having radius R. The laser is illuminated, and the radiation travels through

the cloudy water and eventually reaches the sphere’s surface. If absolutely no scattering

occurred, we should expect the sphere to be illuminated at a single point, ~p. Scattering,

however, directs the radiation such that the illumination pattern is a small spot which has

a peak at ~p and gradually falls off as we move away from ~p on the sphere’s surface.

Generally a BSF is measured by immersing a laser (or any collimated light source)

and a radiometer within the scattering media and sweeping the laser across a range of angles

to measure the irradiance with respect to angle θ. BSFs are an attractive experimental

property for a few reasons. They are reasonably simple to specify geometrically. There is

experimental data for simple optical cases which can be approximated by infinite media of

uniform optical properties. Since only one angular variable, θ, is randomized there is far

less variance to contend with in Monte Carlo applications such as the FPI approach. All the

while, multiple scattering effects are visible in the larger values of θ where the expectation

is that there is gradually decreasing intensity as θ increases.
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Point spread functions (PSFs) are equivalent to BSFs [13] and are often measured

experimentally as well. The seminal paper on BSFs and PSFs and their applications in

optics is by Mertens and Replogle [41]. To summarize the scope of work completed in the

measurement of both BSFs and PSFs, each has been measured for various types of media

in both laboratory and field settings. This has yielded some results which computational

techniques can use for validation. Some of the earliest work was by Duntley [8] with labo-

ratory PSF measurements in highly scattering water tanks. Voss [64] measured the PSF of

the Sargasso Sea water. Schoonmaker et al. [54] measured the BSF of laboratory-grown sea

ice, and were able to fit a Gaussian model to their data. Maffione et al. [40] measured the

BSF of Alaskan sea ice and attempted a Gaussian fit but found a Lorentzian form function

which fit their data.

According to Mertens and Replogle [41], the BSF is the normalized irradiance dis-

tribution parameterized by the polar angles on the sphere’s surface and the sphere’s radius

R, written BSF (θ, φ,R). However, in the literature we find several different forms of the

BSF. Assuming spherical symmetry allows for dimensionality reduction, as Maffione et al.

[40] drop the φ to give BSF (R, θ). Schoonmaker et al. [54] show a different approach of

measuring the BSF with a Gaussian beam by transforming the irradiance patterns of the

Gaussian beam and the pattern on the sea ice surface. This defines the BSF as a function

of R and z, the radial distance from the spot center as measured on the sea ice interface,

BSF (R, z).

Our approach is most similar to Maffione et al. The original experiment places the

laser and radiometer in holes bored into the sea ice, and the laser is swept across an angle

θ. The radiometer measures intensity with respect to this angle. Our modified approach is

three-dimensional. A laser is placed at a fixed position and the radiometer is placed at any

point on a sphere a distance R away from the laser, fixing its direction to the surface normal

of the sphere. This is a geometrically equivalent description and has the benefit of checking

for spherical symmetry in the BSF. We take θ = cos−1(n̂0 · n̂1). This gives the BSF as a

function of R and θ, BSF (R, θ). Figure 6.1 provides an illustration of the experimental
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n̂0

~x1 n̂1

Figure 6.1: Illustration of beam spread function experimental setup. ~x0 and n̂0 are the
laser position and direction, which are both constants. ~x1 is the radiometer position, which
can be located on a sphere a distance R away from ~x0. n̂1 is the direction normal to the
sphere’s surface.

setup.

In analyzing BSFs, typically they are singly-peaked functions at 0 degrees and can

have varying shape. We refer to Maffione et al. for their analysis. They use both a Gaussian

and a Lorentzian function to fit their beam spread function data. The Gaussian has the

form

Gauss(θ) = A exp

(
− θ2

2σ2

)
(6.1)

where they found the fit was most appropriate when A is constrained to the peak of the

measured data. The Lorentzian function has the form

Lor(θ) =
A

(σ/θ)2 + 1
. (6.2)

Each of these are singly-peaked functions which can be used to fit the collected data, though

this work focuses on using a Gaussian. Before fitting, a calculated BSF is normalized such
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that its peak value is 0.025 and the θ domain is in degrees. These conventions are arbitrary,

but the intent is to be able to compare with the data collected by Maffione et al. as directly

as possible.

Specifically for our calculated data, there is the notion of efficiency, sample count,

and wall time. The efficiency is the ratio of successful samples to the total number of

samples. A sample in this case refers to a choice of boundary constraints, seed path, and

the 1000 perturbations of the seed path. The wall time is the total sum of time spent

calculating all of the samples (CPU + IO), but does not consider overhead incurred by the

scheduler.

6.1 Scattering, absorption, and path length

There is a relationship between the scattering coefficient (b) and the path length

value, written R in the BSF experimental setup. Both are related to distance values: b

has units of inverse distance and R has units of distance. Conceptually, the quantity (1/b)

corresponds to an expected distance between scattering events and this is known as the

scattering length. Therefore, the quantity Rb is related to the expected number of scattering

events for a path length R. In the absence of absorption (i.e. a = 0) and barring changes to

all other parameters, two BSFs should be equivalent when the quantity Rb is equal between

them. ‘

To see how the FPI approach behaves in cases of equivalent scattering lengths, an

experiment was designed. We vary the scattering coefficient b and path length R such that

there are several levels of the experiment where Rb is equal. To limit total extinction, the

absorption coefficient a is set to 0. The static parameters are available in Table 6.1 and

the experiment levels are given in Table 6.2. The hypothesis for the experiment is that

the FPI approach should produce identical BSFs when Rb is the same between the two, a

consequence which should arise because of the path segment weight ωn being dependent on

the product b∆s (see Figure 4.7 on page 40).

51



Parameter Value

Absorption coefficient (a) 0.0
Maximum arc length (smax) ≈ 1.5R
Gaussian width (µ) 0.1
Regularization constant (ε) 0.075

Table 6.1: The static set of parameters used for the scattering versus path length experi-
ment. This experiment was conducted when smax was relatively computed with respect to
‖~x1 − ~x0‖, and tended to produce arc lengths close to that value.

Label Scattering (b) Path length (R) Scattering lengths (Rb)

asl011 1 1 1
asl012 1 2 2
asl014 1 4 4
asl018 1 8 8
asl021 2 1 2
asl041 4 1 4
asl081 8 1 8

Table 6.2: Table of varied parameters for the scattering versus path length experiment.
These cases are constructed such that there are cases where the path lengths are equivalent
multiples of scattering lengths.

Efficiency Gaussian width Sample count Wall time

asl011 64.69% 22.09 3.47e+05 0.95 years
asl012 64.31% 18.49 3.99e+05 1.18 years
asl014 63.62% 20.30 2.80e+05 0.83 years
asl018 62.92% 16.56 2.94e+05 0.87 years
asl021 64.77% 21.27 3.98e+05 1.16 years
asl041 64.83% 22.57 3.97e+05 1.17 years
asl081 64.52% 20.50 3.99e+05 1.16 years

Table 6.3: A summary of the collected data for the scattering versus path length experiment.
There appears to be an inverse relationship between Gaussian width σ and path length R.
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(a) Rb = 2 relative comparison
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(b) Rb = 4 relative comparison
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(c) Rb = 8 relative comparison

Figure 6.2: Three plots of BSFs whose path lengths are identical multiples of the scattering
length. Each of these plots has the longer path length’s peak intensity normalized to 1 and
the other BSF is plotted with respect to that normalization factor. In each case, the BSF
with the longer path length appears squashed by a factor on the order of 2R− 2.

BSFs with equivalent Rb are plotted in Figure 6.2. However, it appears that the

hypothesis is not valid. Instead, the BSFs with longer path length are squashed by a factor

related to the path length. This factor disagrees with the factor of difference if we only vary

path length or scattering coefficient (Figure 6.3).

This experiment exposed a flaw in the methodology. An earlier form of seed path

generation was used to collect the data. It specified how to vary arc length completely in

terms of the curve’s parameter space, and did not control the arc length distribution. This

led to the distribution clustering around R, having a maximum of about 1.5R (Figure 6.4),

biasing the data set towards paths having arc length R. This means arc lengths in this

data set are limited to 0 to 10 scattering lengths, and they are vastly undersampled at the

higher scattering lengths. Having appropriate sampling at these larger scattering lengths is

important for observing multiple scattering, and the trend present in Figure 6.2 could be

only present in these paths of just a few scattering lengths.

6.1.1 Retrial

Because of the flaw discovered, a retrial of the Rb = 2 data set was conducted

with two modifications. We finely control the arc length’s distribution by forcing a uniform
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(b) BSFs with varying scattering coefficient

Figure 6.3: Beam spread functions with varying path length and scattering coefficient. The
8 scattering lengths data set is normalized, and each BSF is plotted using this normalization
factor. There is a far greater decay in the intensity with respect to path length than the
scattering coefficient, and it is suggests the trend seen in Figure 6.2 is not the same trend
for path length seen here.
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(c) R = 8 arc length distribution

Figure 6.4: Distribution of arc lengths generated for various path lengths. A flaw in an
earlier form of the seed path generation method causes the arc lengths to cluster around R
and to be limited in the maximum arc length.
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Label Scattering (b) Path length (R) Rb smax

asl012-uniform-theta 1 2 2 10
asl021-uniform-theta 2 1 2 5

Table 6.4: Parameters for scattering vs. path length retrial.

Efficiency Gaussian width Sample count Wall time

asl012-uniform-theta 62.11% 27.94 1.02e+07 27.18 years
asl021-uniform-theta 62.43% 28.36 1.03e+07 26.25 years

Table 6.5: A summary of collected retrial data. Roughly the same trends in efficiency are
seen. Likely the increase in smax has raised the Gaussian fit’s width, but the possibility for
bias introduced by the altered sample pattern casts doubt on that conclusion.

distribution on the interval [0, smax]. Also, we sample uniformly over θ to combat variance

with fewer samples. Each trial’s smax was set to exactly ten scattering lengths, so for the

b = 2 trial we have smax = 5 and for the b = 1 trial we have smax = 10. A table of

parameters is given in Table 6.4.

A summary of the data collected is available in Table 6.5. One interesting observa-

tion about this data set is that the fitted Gaussian width has increased fairly substantially

as it is in Table 6.3. This is very likely due to the increase in smax, as broadness in the

BSF would be an effect of multiply scattered radiation. Multiply scattered radiation tends

to have longer flight paths. However, because we also modified the sampling distribution in

this trial, this observation can serve as a hypothesis for a later experiment.

The hypothesis that the BSFs should be identical is not viable in this case either,

as seen in Figure 6.5a. The R = 2 data set continues to have a peak value different from

the R = 1 data set. The relative behavior of the peaks of these two data sets are roughly

the same as in the original experiment (see Figure 6.2a). Normalizing the two BSFs such

the peaks are at unity shows that they are the same shape (Figure 6.5b).

We compare the repeated experiments to the original calculations in Figure 6.6. We

observe a great difference in the peak values between the repeated and original experiments

as evident in Figures 6.6a and 6.6c. The difference is likely due to the sample bias from
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(b) Rb = 2 with peaks normalized to unity

Figure 6.5: Varying Rb experiment retried with Rb = 2 under the revised methodology.
The error bars shown are standard error of the mean. A difference in the peak value of
the two BSFs is evident in (a). Comparing Figures 6.2a and 6.5a we see roughly the same
relative behavior in the peaks of the BSFs. Normalizing the BSFs to unity (b) shows they
are nearly the same width. This is also evidenced by the nearly identical Gaussian fit width
parameters in Table 6.5.
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the original experiment, which tended to select shorter arc lengths. These shorter arc

lengths tends to contribute more than longer paths due to less total extinction. However,

when normalizing the two BSFs (Figures 6.6b and 6.6d) we see that the repeated experiment

calculated a wider BSF. This is likely due to a tendency to include longer arc lengths, which

are more likely to contribute in the larger angles of the BSF due to multiple scattering. We

also see this same behavior in the different Gaussian width values shown in Tables 6.3

and 6.5.

We next examine the effect of uniform sampling over θ in Figure 6.7. The most

notable observation is that uniform sampling is not actually achieved in this case. The

distribution sinks significantly at the extreme large and small angles (Figure 6.7b). Likely

this is due to a tendency for samples to be aborted in these regions as it is difficult to generate

seed paths in these cases. It is not expected that the non-uniform distribution causes

problems in our case, as changing the sample distribution was only done as a convenience

to deal with variance. However, a distribution closer to uniform might be achieved by

retrying seed path generation several times before aborting.

6.1.2 Conclusion

The hypothesis for this experiment was that for identical values of Rb the calculated

BSF should be equivalent, a direct consequence which extends from the path segment weight

function (see Figure 4.7 on page 40). All trials suggested that this hypothesis was false.

Instead, we found that for BSFs with identical Rb, the BSF with the larger R tends to have

a smaller peak value. Other observations from this experiment showed a bias in how the

methodology as originally proposed selected path arc lengths. Originally, it was biased to

produce paths with arc lengths roughly in the interval [R, 1.5R] with a bias towards arc

lengths of R. This observation led to a revision in the methodology which allows arc lengths

to be arbitrarily distributed, provided s > R. A retrial of the experiment was conducted

with the modification and the arc lengths distributed over the interval [0, smax] where smax

is ten scattering lengths. The retrial yielded conclusive results for the Rb = 2 case, and
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Figure 6.6: Repeated and original scattering versus path length experiments compared. The
peaks in the original experiments are much higher than in the repeated experiment, likely
due to a bias towards shorter arc lengths. When normalized, we see repeated experiments
calculate a broader BSF, but both still show Gaussian behavior with respect to θ.
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(b) Sample pattern over θ

Figure 6.7: A view of the effect of uniform sampling over θ on the error of the calculated
BSF. Error is reasonably kept under control especially within the small angles. However we
quickly see true uniform sampling is not actually achieved, as there are far fewer samples
at the smaller angles.

also suggested that smax has an effect on the width of the BSF. This could be a useful

relationship to understand in future work. Future work may also study the peak value of

the BSF with respect to R, as this may suggest why the hypothesis was violated.

6.2 Comparison with experimental data

Showing equivalence of a calculation by the FPI approach to an experimental re-

sult would be a milestone for the validation of the numerical techniques used by the FPI

approach. It marks the first time the numerical technique has been used to simulate a

real phenomenon. There are inherent difficulties matching to experimental results. Optical

parameters such as the absorption (a) and scattering (b) values are not known. As well

the phase function is not known. To estimate the absorption and scattering coefficients the

assumption is that the media is infinite and spatially uniform, so a and b are both con-

stants. This is not true for sea ice as there are often anisotropies such as crystal alignments
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Parameter Value

Absorption coefficient (a) 0.004 cm−1

Scattering coefficient (b) 0.1 cm−1

Path length (R) 30 cm
Maximum arc length (smax) 100 cm
Gaussian width (µ) 0.5
Regularization constant (ε) 0.075

Table 6.6: Table of experiment parameters used to reconstruct Maffione beam spread func-
tion measurements. Note that smax is set to about ten scattering lengths in this case. This
follows from the product b× smax.

and fractures in the media. Such anisotropies do not have drastic effect on the measured

BSF and can be remediated by measuring the BSF in the positive and negative directions

and checking for symmetry [40]. The isotropic simplification allows us to estimate values

for a and b more easily, but for the phase function there is far less information. Precise

experimental measurement of phase functions is difficult [50]. A true measurement should

isolate only a single scattering event, but for a highly scattering substance like sea ice this

is very challenging. Nonetheless there have been attempts to measure the phase function

and scattering coefficient of sea ice [14] which yielded a very forward-peaked phase function

and scattering coefficients in the range of 0.089 cm−1 to 0.196 cm−1 dependent on the age

and conditions of the ice. Since there is not general agreement on the phase function we

choose a forward-peaked Gaussian phase function having width µ as an approximation.

This is a reasonable approximation, but it penalizes backscattering which would be present

to some degree in a real substance. A table of parameters used in the experiment is avail-

able in Table 6.6. Tabulated forms of the data collected in this experiment are available

in Appendix B, and some additional analysis of the error present in each data set is in

Appendix C along with Gaussian fits and fit residuals.

Using these parameters, we calculate BSFs using the FPI approach to compare

to the experimental BSFs measured by Maffione et al. [40] (see Figure 6.8). There are

shared characteristics between the calculated and experimental BSFs: the peak at 0 degrees

and gradual decrease in the relative intensity in the mid-range angles. The gradual falloff
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suggests some of the multiple scattering behavior is being captured. The calculated BSF

falls off to about 0 by the 90 degree mark, whereas the experimental results still measure

some amount of intensity at the extremes. There are several possible explanations for

this. For example, the extreme high angles correspond to higher amounts of backscattering,

and the phase function has a strong forward peak. It is also possible field experimental

conditions led to external factors contributing to the data set. In the calculated BSF there

is a large amount of variance at the smaller angles, likely due to undersampling evident in

Figure 6.8c.

Maffione et al. [40] notes that the laboratory BSF measured by Schoonmaker et

al. [54] regressed more easily to a Gaussian than their data set. We use least squares to

determine parameters for both a Gaussian and a Lorentzian fit in Figure 6.9. It appears that

the calculated BSFs follow a Gaussian much more closely. This means the numerical FPI

approach disagrees with field measurements not just at angle extremes but in general shape

as well. This may suggest our assumption of infinite, uniformly scattering media follows

laboratory conditions more closely than field conditions if the data are to be trusted.

One parameter of interest is M , the number of path segments. Higher values of

M correspond to a smaller ∆s and therefore smaller minimum distance between scattering

events. For highly scattering media like sea ice, there are many scattering events so it is

beneficial to decrease ∆s to capture this high number of scattering events. More scattering

events corresponds to a broader BSF. Therefore, increasingM should broaden the calculated

BSF. A larger M leads to more floating point multiplications during the calculation of the

path weight. Currently this leads to floating point underflow. A small value of M leads to

higher numbers of aborted samples, decreasing the efficiency. Facing these difficulties, we

calculate BSFs for M = 80, M = 120, M = 160, and M = 200 using the parameters in

Table 6.6 to observe the effect on the BSF. Each of the BSFs is plotted in Figure 6.10. A

summary of the data collected is available in Table 6.7.

By visually inspecting the plots in Figure 6.10 we can immediately see there is some

broadening in the calculated data, especially in the less noisy larger angles. As a metric
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(a) Calculated BSF for M = 200. (b) Experimental BSFs (Figure 5 from [40].)
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(c) Sample pattern for (a).
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(d) Arc length distribution for (a).

Figure 6.8: A calculated BSF (a) using the numerical FPI approach, normalized such the
peak value is 0.025. The sample pattern shown in (c) is the reason for the increased standard
error of the mean in (a) at the smaller angles. In (b) we see similar trends as in (a) but
especially at the 50 degree mark there is disagreement in the shape. The calculated BSF
does not have the same gradual falloff of the experimental BSFs. In (d) we see a roughly
uniform arc length distribution, except for perfectly straight paths. This could be due to
continued numerical difficulty in constructing perfectly straight paths.
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(a) Gaussian fit for M = 200 data set.
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(b) Lorentzian fit for M = 200 data set.

Figure 6.9: Gaussian and Lorentzian fits for the M = 200 data set. Maffione et al. [40] found
a Lorentzian was a better fit for their data, however the calculated BSF follows a Gaussian fit
much more closely. They also note Schoonmaker et al. [54] fit a Gaussian to their laboratory
BSF data. This may mean the calculated BSFs follow laboratory conditions more closely
than field conditions, possibly due to assumptions of infinite, uniformly scattering media.

Efficiency Gaussian width Sample count Wall time

m80 53.92% 10.08 2.08e+07 76.72 years
m120 56.54% 14.64 2.16e+07 68.36 years
m160 58.97% 22.57 1.48e+07 48.58 years
m200 60.74% 22.92 1.50e+07 48.56 years

Table 6.7: Summary of collected BSF data. Note the drastic increase in computation time
compared to the data in Section 6.1, which is to lessen the variance added by sampling paths
of many more scattering lengths. The Gaussian width shows an increase with respect to M ,
and interestingly so does the efficiency. The efficiency increases because the perturbation
algorithm is less likely to fail when there are more path segments to select.
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Figure 6.10: A plot of several BSFs with varying path segments (M). The static parameters
used here are as in Table 6.6. There is a clear trend in the broadening of the BSF as M
increases. This suggests a larger value of M can more accurately account for multiple
scattering effects.

64



for the broadening, we can use the fitted Gaussian width σ which is available in Table 6.7.

The Gaussian width also increases with M , and also seems to be approaching a value. We

can use a step function such as

σ = A(Mp/(B +Mp)) (6.3)

to predict what value σ converges to in the limit of M . This is the fit parameter A. We

find p = 4 is a fairly decent step function to use for our calculated data. Fitting by least

squares yields a value of A = 23.76, suggesting that the M = 200 data set is already a close

approximation in the limit of M (Figure 6.11). The projection may not be reliable with a

small data set like this one, or the step function could be inappropriate. In any case, more

data is needed, particularly for large values of M , make accurate conclusions about decent

values of M for this experiment.

In conclusion, we compare the FPI approach’s calculated beam spread functions

to experimental beam spread functions measured from sea ice [40] shows that the FPI

approach’s calculated beam spread function and the measured beam spread functions differ

fundamentally in shape: the FPI approach follows a Gaussian shape while the experimental

data follows a Lorentzian shape. However, [40] is a field measurement, and lab measurements

of Gaussian shape have been reported which follow a Gaussian shape [54]. Beam spread

functions for varying path segment counts show that the Gaussian width parameter σ

appears to be approaching a shelf value in the limit of M . However, attempts to project

that shelf value are currently inconclusive due to the amount of computer time required to

calculate a single beam spread function, limiting the amount of data that can be collected

with current approaches. The validity of the projection equation is not known either. Future

extensions to this experiment might explore the use of larger M values than those used here.
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Figure 6.11: Projection of the Gaussian fit parameter σ for calculated BSFs with respect
to the number of path segments M with a least squares fit of Equation (6.3), and a manual
constraint of p = 4. The fit suggests there is not much broadening beyond what is calculated
for the M = 200 data set.
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6.3 Spherical symmetry

An advantage to computing a BSF in three dimensions is that we can check for

spherical symmetry within the calculation. To aid in analysis we use a simple 2D projection

for the data. We define two unit vectors ĉup and ĉright, somewhat alike a camera facing the

laser. We can define an x− and y−coordinate like so:

x = n̂1 · ĉright (6.4)

y = n̂1 · ĉup (6.5)

Using these coordinates, we can divide samples into bins and integrate as done for θ in

previous analysis. In the case of the “varying-M” data sets from Section 6.2, we choose

ĉup = ŷ and ĉright = −ẑ, producing four 2D plots (Figure 6.12).

In producing such images we use a fairly fine bin count compared to analysis of

just θ so variance is amplified. The plots show sufficient spherical symmetry which is the

expectation, especially for M = 200 and M = 160. The other data sets produce a much

more finely peaked BSF with generally higher variance. The variance dominates in these

plots and spherical symmetry is not clear. However, earlier experiments suggest larger

values of M are desirable for better accuracy, so spherical symmetry is not as important for

these small values of M .

In conclusion, spherical symmetry is apparent at least for higher values of M . The

effect of this conclusion is we can be reasonably certain the approach is robust in three

dimensions and can possibly be used for other sensor geometries.
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(a) 2D intensity plot of M = 80 (b) 2D intensity plot of M = 120

(c) 2D intensity plot of M = 160 (d) 2D intensity plot of M = 200

Figure 6.12: Normalized 2D intensity plots for each of the varying M data sets. The plots
suggest spherical symmetry is present in the data, especially with M = 160 and M = 200.
It is difficult to claim spherical symmetry for the smaller values of M , but generally smaller
values of M should not be of much concern for accurate calculations.
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Chapter 7

Conclusions

This chapter summarizes the main findings of the dissertation, and gives a more

detailed summary of the dissertation contents. The guiding hypothesis for this research is

that there exist numerical methods for solving the FPI approach to radiative transfer, and

these methods can faithfully model multiple scattering effects in participating media. To

summarize the entire dissertation, numerical methods were developed and tested in exper-

imental setups meant to parallel experiments where beam spread functions are measured.

The results disagreed with the chosen data set, however similar experiments where beam

spread functions are measured have also disagreed.

7.1 Summary of contributions

The contributions of this dissertation lie in both methodology in experiment. In

methodology, this dissertation presents a method for asymptotic speedup of a path per-

turbation algorithm originally introduced in 2009 [60] which is necessary for numerically

integrating path integrals in the FPI method of radiative transfer. This adjustment in the

methodology allows for larger scale experiments to be conducted with FPI radiative trans-

fer. Also, the dissertation introduces new methods for integrating over the spatial integrals

of Equation (2.16) to create paths which are eventually used for numerically computing
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the path integral. This enables construction of experiments meant to reproduce real world

phenomena like beam spread functions. The experimental contributions of this dissertation

are a thorough analysis of the path integral calculation which proves repeatability and lack

of bias with enough samples. The knowledge that the calculations are repeatable enables

larger scale experiments involving the path integral calculation like beam spread functions.

Finally, the last experimental contribution is a calculation of several different beam spread

functions to explore the effect of certain parameters on these beam spread functions, com-

pare against experimental measurements, and to check for robustness in three dimensions.

Initial parameter studies showed a flaw in the proposed methodology and led to more care-

ful control of the arc length of seed paths. A retrial with revised methodology yielded

similar results, but also showed significant differences in the width of the calculated beam

spread function with the change in smax. Later calculations showed fundamental differ-

ences in shape between the measured and calculated beam spread functions, but the shape

difference could be the difference of Schoonmaker et al.’s lab-measured beam spread func-

tions [54], which fit the Gaussian shape like that calculated by FPI radiative transfer, and

field-measured beam spread functions [40], which instead fit a Lorentzian function. It is

important to note that Schoonmaker et al’s experimental setup measures intensity across

the sea ice interface, and not with respect to angle like Maffione et al. The difference in

these two conditions could be due to a lack of backscattering, which the forward-peaked

Gaussian phase function does not support, and Maffione et al. may have measured more

backscattering than the young sea ice grown by Schoonmaker et al. Since the calculated

beam spread function fits one of the suggested models of [40] there is promise that other

experimental data sets could be reproduced. The experiment also revealed a tendency in M ,

the number of path segments, to affect the width of the calculated beam spread function.

The fit saw diminishing returns for values of M close to 200. This discovery may inform

future best practices for choosing an M which has the desired accuracy without uselessly

slowing down the calculation. Finally, calculated beam spread functions showed spherical

symmetry in several data sets when projected onto a plane. This improves confidence in
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the FPI approach’s robustness in three dimensions, however high variance continues to be a

larger problem because higher resolution is generally required to make meaningful judgment

of the results.

The contained contributions support the thesis that Feynman path integrals as a

basis for radiative transfer shows promise in a numerical setting to model multiple scattering

in participating media realistically. Though fundamental differences in shape were found

in the calculated beam spread functions, other researchers have measured Gaussian-shaped

beam spread functions [54] across the sea ice interface. It is numerically well-behaved,

evidenced by repeatability of the calculation and spherical symmetry, and ready for further

study. The current challenges are chiefly dealing with the enormous computation time, a

lack of parameter studies, and a lack of reference data to compare with.

7.2 Summary of dissertation

In Chapter 1 we discuss the introduce the basic concepts of radiative transfer, par-

ticularly scattering, and discuss briefly the history of the FPI approach to radiative transfer.

Chapter 2 gives background needed to understand the FPI approach, including the intro-

duction of Feynman path integrals and their applications, the Frenet-Serret frame and a

discretized curve used by the FPI approach, the basics of Monte Carlo integration in single

and higher dimensions, and the mathematics behind the FPI approach itself. In Chap-

ter 3 we introduce relevant related work including several approaches to solving global

illumination in computer graphics, and the scientific applications of radiative transfer in

medicine, nuclear engineering, ocean and atmospheric science, and geophysics. Chapter 4

gives a precise explanation of the currently best known methods for solving the FPI ap-

proach to radiative transfer, including creating seed paths, the perturbation of paths and

its accelerated form, and calculating path weights. Chapter 5 outlines the methods and

discoveries of some early work of numerically computing the path integral without the spa-

tial and angular integrals, which finds that the perturbation numerical method is generally
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well-behaved and reproducible. We continue on to integrate over the spatial and angular

integrals as well in Chapter 6, where beam spread functions are calculated, compared to

experimentally-measured beam spread functions, found to be Gaussian-shaped, and depen-

dent on the number of path segments used. In addition, beam spread functions calculated

for path lengths of identical scattering lengths were shown to differ, and exposed an error

in the methodology as originally proposed. Beam spread functions are also shown to be

spherically symmetric for higher numbers of path segments.

7.3 Future directions

Currently using the FPI approach to compute very simple cases like beam spread

functions takes a significant amount of compute time. Left unchecked, it will be infeasible

to test the approach in cases where the participating media is spatially varying or with

more complex emission geometries, like area lights or volume lights. Therefore, methods to

reduce the computation time should be a primary future direction.

Approximations are a possible strategy. This can take form as an assumption within

the mathematics that makes computation easier, or adjusting an existing parameter. For

example, the smax parameter controls the maximum arc length for a seed path, and decreas-

ing this parameter also decreases variance. A large smax is necessary to allow for multiple

scattering, but eventually there is a diminishing return. Identifying this limit in a specific

case like beam spread functions is useful, and may inform the general case too. As well,

approximations can target the path integral itself, as it is done via stationary phase and

steepest descents in [61].

Importance sampling can reduce variance for the general Monte Carlo application.

Applying it to FPI radiative transfer has not been studied in depth. Importance sam-

pling conceptually recommends sampling values which are more likely to contribute to the

approximation of a mean by selecting probability distributions which encourage these “im-

portant” values. An example of how this could apply is the selection of arc length s. An
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assumption in the current methodology is that the distribution of s should be uniform on

the interval [‖~x1 − ~x0‖ , smax]. However, paths of length close to smax will not contribute as

much as the shorter paths, so it may yield less variance to use a distribution other than the

uniform distribution – for example, the exponential distribution. Of course, this introduces

bias which eventually must be accounted for in the calculation. Other strategies should be

explored to prevent undersampling. For example, the effect of sampling uniformly in θ could

be investigated for beam spread functions, which would help contend with the variance in

some of the otherwise undersampled area.

In a similar vein, use of the Metropolis algorithm could be investigated for variance

reduction purposes. This is explored partially in Chapter 5 and preliminary methodology

is proposed. However, it is not explored on larger scale experiments such as beam spread

function computation. The Metropolis algorithm’s effect on bias in the solution could be

compared with the data collected in this dissertation.

A number of other modifications to the methodology could be tested. For instance,

part of the methodology requires an arc length parameterization once a seed path is gen-

erated. However, the solution is error-prone and expensive. Other arc length parameteri-

zation algorithms could be investigated and evaluated, or the elimination of the arc length

parameterization step altogether could be tested, as the error from finding an approxi-

mate arc length parameterization is eventually corrected for by the perturbation algorithm.

Root-finding makes up a large portion of the work done during a job, and there is not

much investigation in how many of its parameters related to accuracy affect error and per-

formance. For instance, most root finding methods have controllable tolerance values or

iteration counts. Relaxing the tolerance and lowering iteration count can result in perfor-

mance benefits sacrificing some accuracy of the solution – but how much error is acceptable

to justify the performance benefits?

Monte Carlo solutions such as these are quite amenable to parallel architectures.

Because of the low cost and minimal effort to adopt, the bulk of the work contained in this

dissertation was either conducted on local campus computing resources or the Open Science
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Grid [51]. Both of these resources are shared and are primarily oriented to computation

on the CPU. Shared resources have the natural problem of policy preventing total use of

the resources. Given the large scale computational resources required for this solution,

CPU computation is not practical or cost-effective in the long term. GPGPU architectures

have increased in prevalence and popularity, and their cost per unit of throughput makes

them an attractive option. A well-written GPU implementation could drastically reduce

the turnaround time for experiments, which is about two weeks for a CPU solution on Open

Science Grid. This would in turn allow experiments to be iterated upon faster.

Moving away from performance-related concerns, there are many other possible

parameter studies we could choose to conduct. For example, the effect on path segment

count M on beam spread function calculation was studied in Chapter 6. Using smax as a

means to eliminate classes of paths was mentioned earlier, but its effect on beam spread

function calculation could be studied. Chapter 6 attempts a projection for large values of

M , but there are current precision issues which should be resolved so beam spread functions

can be calculated for larger values of M . The results of the experiment in Section 6.1 were

not according to expectation, and the results also suggested a relation between the smax

parameter and the width of the beam spread function. Either of these two topics could be

investigated further. The effect of smax on the peak of the beam spread function could be

investigated. For example, there appeared to be an inverse relationship between smax and

the peak of the beam spread function, which could explain why the results of the experiment

were not to expectation.

A central concern of radiative transfer with FPIs is physical correctness. At this

point, all analysis conducted with collected data has not been using physical quantities.

Instead, the values are scaled. This is out of necessity since experimental data is only

available in relative units [40], and there are very few beam spread function data sets

available which are not scaled. Currently, there are a few assumptions which could affect

physical correctness. In Section 2.3 we reference a term D that arises from Monte Carlo

integration of the path integral in Equation (2.15) under the assumption the perturbation
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algorithm produces uniformly-distributed paths. However, very little investigation into the

actual distribution in path space or path parameter space has been conducted, and given

that the perturbation algorithm only produces related paths we should not expect that this

distribution is uniform in most senses. The distribution of generated paths for both the seed

path generation algorithm (Section 4.2) and perturbation algorithm (Section 4.3) should

be investigated and characterized. In Section 4.4 we discuss a normalization procedure for

ωn, the path segment weight, that is for numerical ease, and the effect of this on physical

quantities is not known.
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Appendix A

Derivation of a path segment’s

weight

The following presents the derivation of Equation (4.40) from Equation (4.39), which

is rewritten here for convenience:

ωn = exp(−cn∆s)

∫
d3p

(2π)3
exp(ip · N̂nκn∆s+ bn∆sZ̃(|p|)).

We transform the equation into spherical coordinates. We replace the differential as usual,

ωn = exp(−cn∆s)

∫ 2π

0
dφ

∫ ∞
0

∫ π

0

p2 sin θ

(2π)3
exp(ip · N̂nκn∆s+ bn∆sZ̃(p)) dθ dp, (A.1)

and integrate the dφ integral:

ωn = exp(−cn∆s)

∫ ∞
0

∫ π

0

p2 sin θ

(2π)2
exp(ip · N̂nκn∆s+ bn∆sZ̃(p)) dθ dp. (A.2)

Next we take p · N̂n = p cos θ, split the exponential into a product, and rearrange terms to
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get

ωn = exp(−cn∆s)

∫ ∞
0

p2

(2π)2
exp(bn∆sZ̃(p))

∫ π

0
sin θ exp(ip cos θκn∆s) dθ dp. (A.3)

Now the dθ integral may be calculated,

ωn = exp(−cn∆s)

∫ ∞
0

p2

(2π)2
exp(bn∆sZ̃(p))

2 sin(pκn∆s)

pκn∆s
dp, (A.4)

and the final terms cancelled to yield

ωn = exp(−cn∆s)

∫ ∞
0

p

2π2
exp(bn∆sZ̃(p))

sin(pκn∆s)

κn∆s
dp

which is Equation (4.40).
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Appendix B

Tabulated beam spread function

data

This appendix contains the raw tabulated data collected for the Maffione beam

spread function replication experiment, for path segment counts M = {80, 120, 160, 200}.

Each table is presented as a function of angle (written θ in Chapter 6). We present the

mean intensity and standard deviation (written “s.d.” in the table) which is the raw value

of the transport kernel after Monte Carlo integration. The mean wall time of computation

for each θ value is also given in seconds. The path count given is the number of paths

generated for the θ value. Note that each sample generates 1000 paths, and therefore the

number of successful samples is path count divided by 1000.
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Angle (degrees) Mean intensity Intensity s.d. Mean time (s) Time s.d. Path count

-176.4 2.18e-131 1.97e-126 116.97 114.79 21668000
-169.2 1.44e-130 1.88e-125 116.84 115.26 64666000
-162.0 6.51e-129 1.51e-123 117.46 114.81 107760000
-154.8 3.11e-127 6.26e-122 118.48 114.32 149282000
-147.6 5.87e-127 1.33e-121 119.94 113.97 191417000
-140.4 6.08e-125 1.33e-119 121.02 113.41 230435000
-133.2 1.07e-124 1.99e-119 122.43 113.06 267803000
-126.0 8.42e-124 1.37e-118 123.28 112.59 300448000
-118.8 7.15e-123 1.09e-117 124.03 112.47 328342000
-111.6 3.65e-121 9.66e-116 124.51 112.34 350548000
-104.4 2.23e-120 2.88e-115 123.97 112.48 364802000
-97.2 1.87e-119 2.31e-114 122.44 111.75 369427000
-90.0 1.30e-118 1.61e-113 120.62 112.88 366565000
-82.8 1.51e-117 1.46e-112 118.39 112.07 357377000
-75.6 8.40e-117 6.91e-112 116.19 112.56 341153000
-68.4 4.70e-116 3.84e-111 113.78 112.57 319344000
-61.2 2.65e-115 2.11e-110 111.61 112.69 294909000
-54.0 7.61e-115 5.27e-110 109.18 112.54 265841000
-46.8 2.40e-114 1.30e-109 107.59 112.53 235413000
-39.6 1.20e-113 6.54e-109 105.56 112.39 202458000
-32.4 3.89e-113 1.95e-108 104.07 112.28 166809000
-25.2 8.40e-113 3.86e-108 102.44 112.20 130381000
-18.0 1.90e-112 9.81e-108 101.00 111.86 93349000
-10.8 2.99e-112 1.12e-107 100.42 112.56 56011000
-3.6 7.64e-112 3.36e-107 99.85 112.42 18651000
3.6 4.75e-112 3.21e-107 100.35 112.03 18858000

10.8 4.35e-112 1.77e-107 99.66 112.06 55586000
18.0 2.32e-112 8.59e-108 101.02 111.81 93652000
25.2 8.97e-113 4.36e-108 102.42 111.92 130932000
32.4 3.88e-113 2.36e-108 104.26 111.78 167956000
39.6 1.61e-113 8.94e-109 105.95 111.54 204878000
46.8 4.21e-114 2.44e-109 107.60 111.70 237664000
54.0 6.52e-115 3.89e-110 109.66 111.39 269911000
61.2 2.21e-115 1.70e-110 111.85 111.70 297718000
68.4 2.97e-116 3.92e-111 114.01 111.88 321550000
75.6 8.66e-117 5.97e-112 115.96 111.64 342945000
82.8 9.42e-118 8.04e-113 118.54 111.92 357846000
90.0 1.62e-118 1.78e-113 120.81 111.77 368180000
97.2 1.40e-119 1.50e-114 122.72 112.03 370114000

104.4 1.02e-120 1.03e-115 123.72 112.69 361212000
111.6 3.50e-121 8.03e-116 123.85 113.14 347108000
118.8 1.15e-122 1.62e-117 123.82 113.75 324454000
126.0 2.28e-123 4.41e-118 123.07 113.83 297678000
133.2 1.16e-124 3.87e-119 122.47 114.31 265132000
140.4 1.63e-125 4.24e-120 121.13 114.33 229036000
147.6 6.35e-126 2.01e-120 120.25 114.56 190466000
154.8 4.27e-128 8.22e-123 119.05 114.96 149476000
162.0 3.13e-129 5.50e-124 117.90 115.05 107377000
169.2 1.15e-130 1.91e-125 116.75 115.11 64317000
176.4 1.09e-135 1.58e-127 116.35 115.09 21257000

Table B.1: Computed beam spread function data for M = 80.



Angle (degrees) Mean intensity Intensity s.d. Mean time (s) Time s.d. Path count

-176.4 2.02e-177 1.54e-172 101.74 90.88 24472000
-169.2 1.19e-175 2.35e-170 102.23 97.53 72850000
-162.0 1.41e-175 1.51e-170 103.05 96.57 121162000
-154.8 1.37e-174 1.65e-169 104.28 94.33 169231000
-147.6 9.16e-174 1.20e-168 105.24 94.77 215383000
-140.4 3.48e-173 4.65e-168 106.09 93.80 260251000
-133.2 3.91e-172 5.71e-167 107.21 92.61 301604000
-126.0 2.02e-171 2.94e-166 107.46 92.20 337632000
-118.8 8.71e-171 7.73e-166 107.91 93.36 366339000
-111.6 5.39e-170 8.21e-165 107.70 91.14 388809000
-104.4 2.42e-169 1.76e-164 106.85 92.68 402293000
-97.2 1.04e-168 7.02e-164 105.66 91.91 407688000
-90.0 5.26e-168 3.04e-163 103.71 92.19 403581000
-82.8 2.48e-167 1.23e-162 101.00 92.61 388173000
-75.6 8.46e-167 5.15e-162 98.28 93.11 368776000
-68.4 2.05e-166 9.18e-162 95.95 92.09 344177000
-61.2 6.39e-166 2.27e-161 93.78 95.02 315525000
-54.0 1.83e-165 6.66e-161 90.90 92.81 281849000
-46.8 6.02e-165 2.08e-160 89.20 93.75 249149000
-39.6 1.47e-164 5.04e-160 87.23 92.19 213244000
-32.4 2.56e-164 8.18e-160 85.90 95.45 175073000
-25.2 4.69e-164 1.53e-159 84.48 94.27 137094000
-18.0 7.44e-164 2.53e-159 83.62 96.54 97426000
-10.8 1.52e-163 4.69e-159 82.05 90.23 58116000
-3.6 1.32e-163 4.62e-159 82.86 98.82 19774000
3.6 1.82e-163 4.34e-159 81.91 90.13 19602000

10.8 9.94e-164 2.85e-159 82.24 91.67 58416000
18.0 7.33e-164 2.23e-159 83.08 94.47 97676000
25.2 6.03e-164 1.79e-159 84.32 92.58 136776000
32.4 2.66e-164 9.92e-160 85.52 92.57 175687000
39.6 1.57e-164 5.68e-160 87.37 93.03 214646000
46.8 6.01e-165 2.07e-160 89.29 92.98 251683000
54.0 2.70e-165 1.05e-160 91.25 92.07 287277000
61.2 9.46e-166 4.11e-161 93.80 91.43 318289000
68.4 2.67e-166 1.10e-161 96.02 90.96 347607000
75.6 8.61e-167 4.29e-162 98.19 91.89 370690000
82.8 2.39e-167 1.54e-162 100.98 93.10 390694000
90.0 5.75e-168 3.04e-163 103.69 94.24 403967000
97.2 1.09e-168 7.62e-164 105.25 91.21 406363000

104.4 2.10e-169 2.03e-164 106.71 90.56 400695000
111.6 5.10e-170 5.15e-165 107.79 94.44 385845000
118.8 6.98e-171 6.80e-166 107.87 93.04 362100000
126.0 1.09e-171 1.12e-166 106.99 94.40 331721000
133.2 1.01e-172 1.11e-167 107.11 93.17 297899000
140.4 2.28e-173 2.61e-168 106.04 93.07 257731000
147.6 1.08e-173 2.11e-168 105.65 95.54 214801000
154.8 6.47e-175 1.05e-169 104.81 95.72 168383000
162.0 2.98e-175 4.26e-170 103.34 95.39 120678000
169.2 1.06e-176 1.03e-171 102.79 95.81 72868000
176.4 1.32e-176 1.35e-171 102.13 91.82 24546000

Table B.2: Computed beam spread function data for M = 120.



Angle (degrees) Mean intensity Intensity s.d. Mean time (s) Time s.d. Path count

-176.4 5.79e-226 2.90e-221 107.49 90.92 17828000
-169.2 1.24e-224 1.67e-219 107.89 90.75 52682000
-162.0 1.17e-224 8.27e-220 108.56 92.87 88050000
-154.8 6.55e-224 5.08e-219 109.46 92.16 122718000
-147.6 3.99e-223 5.22e-218 110.59 90.91 156795000
-140.4 1.67e-222 1.33e-217 110.80 90.02 187077000
-133.2 6.88e-222 5.99e-217 111.97 88.64 217716000
-126.0 2.60e-221 2.29e-216 112.08 88.53 243914000
-118.8 9.91e-221 7.32e-216 112.33 89.09 263035000
-111.6 3.11e-220 1.42e-215 112.21 88.80 279603000
-104.4 1.54e-219 7.32e-215 111.13 88.43 289448000
-97.2 4.16e-219 1.77e-214 109.82 90.00 292936000
-90.0 1.81e-218 7.25e-214 107.71 89.95 289492000
-82.8 4.53e-218 1.50e-213 104.69 89.40 277747000
-75.6 1.18e-217 3.82e-213 101.76 90.35 262297000
-68.4 3.42e-217 1.04e-212 99.01 90.68 244605000
-61.2 7.50e-217 2.01e-212 96.49 91.84 222949000
-54.0 1.66e-216 4.21e-212 93.45 90.70 199805000
-46.8 3.44e-216 8.96e-212 91.46 91.80 175479000
-39.6 6.91e-216 1.71e-211 89.32 90.30 148779000
-32.4 1.34e-215 3.16e-211 87.59 90.80 122851000
-25.2 1.92e-215 4.32e-211 86.57 91.05 96267000
-18.0 3.26e-215 7.34e-211 84.82 91.15 67956000
-10.8 3.62e-215 8.13e-211 83.69 91.66 40561000
-3.6 3.02e-215 6.65e-211 82.76 91.02 13488000
3.6 3.02e-215 5.94e-211 83.39 90.71 13415000

10.8 3.69e-215 9.76e-211 83.77 90.25 40914000
18.0 2.73e-215 5.89e-211 85.04 90.20 68685000
25.2 1.99e-215 4.55e-211 86.20 91.06 95820000
32.4 1.17e-215 2.42e-211 87.54 90.43 123242000
39.6 6.47e-216 1.66e-211 89.05 90.07 150651000
46.8 3.55e-216 8.16e-212 91.16 89.71 177414000
54.0 1.81e-216 5.25e-212 93.39 89.15 202499000
61.2 7.22e-217 1.88e-212 96.41 90.28 225022000
68.4 3.28e-217 9.53e-213 98.97 90.25 246302000
75.6 1.36e-217 4.22e-213 101.48 89.85 264211000
82.8 5.10e-218 1.66e-213 104.39 89.54 278519000
90.0 1.62e-218 6.34e-214 107.49 90.62 287927000
97.2 4.16e-219 1.77e-214 109.88 89.65 291975000

104.4 1.07e-219 4.94e-215 111.23 89.20 288125000
111.6 2.70e-220 1.35e-215 112.31 91.45 277406000
118.8 8.20e-221 5.93e-216 112.53 89.85 261332000
126.0 2.08e-221 1.91e-216 111.97 90.11 240511000
133.2 3.41e-222 2.43e-217 111.95 90.42 215911000
140.4 2.32e-222 2.21e-217 111.56 91.46 186929000
147.6 4.00e-223 5.89e-218 110.72 91.99 155333000
154.8 2.18e-224 2.59e-219 109.56 90.74 122157000
162.0 2.37e-224 1.89e-219 108.55 91.10 87648000
169.2 6.74e-225 4.24e-220 107.62 90.66 52775000
176.4 7.07e-226 6.13e-221 106.20 90.59 17651000

Table B.3: Computed beam spread function data for M = 160.



Angle (degrees) Mean intensity Intensity s.d. Mean time (s) Time s.d. Path count

-176.4 3.92e-275 2.48e-270 107.55 83.95 18631000
-169.2 8.88e-275 5.18e-270 107.38 83.85 55816000
-162.0 3.29e-274 2.83e-269 107.68 83.84 92737000
-154.8 6.41e-274 3.74e-269 109.25 83.50 130324000
-147.6 1.47e-273 9.43e-269 109.50 82.88 164555000
-140.4 5.36e-273 2.64e-268 110.46 82.84 198825000
-133.2 1.64e-272 1.18e-267 110.74 81.73 228454000
-126.0 6.15e-272 2.64e-267 110.78 81.15 255655000
-118.8 2.01e-271 7.77e-267 111.34 81.77 276743000
-111.6 7.31e-271 3.03e-266 110.87 81.81 293640000
-104.4 1.99e-270 5.76e-266 109.59 82.27 302293000
-97.2 6.79e-270 1.98e-265 108.24 81.86 306578000
-90.0 1.71e-269 5.24e-265 106.08 83.11 302069000
-82.8 3.87e-269 8.98e-265 103.23 83.15 292286000
-75.6 1.02e-268 2.49e-264 100.13 83.92 274705000
-68.4 1.90e-268 4.10e-264 97.47 84.52 254224000
-61.2 4.13e-268 8.69e-264 94.68 85.00 231678000
-54.0 6.97e-268 1.34e-263 91.36 84.42 206580000
-46.8 1.38e-267 2.67e-263 89.37 84.91 181418000
-39.6 2.02e-267 3.64e-263 87.18 84.47 153987000
-32.4 3.52e-267 5.89e-263 85.60 85.23 126278000
-25.2 5.04e-267 1.04e-262 84.15 84.82 97834000
-18.0 8.19e-267 1.45e-262 82.79 84.90 69988000
-10.8 8.63e-267 1.40e-262 82.16 84.74 41875000
-3.6 1.05e-266 2.22e-262 80.88 84.27 13912000
3.6 8.80e-267 1.43e-262 81.26 85.19 13920000

10.8 9.20e-267 1.31e-262 81.68 84.79 41865000
18.0 8.58e-267 1.50e-262 82.80 84.32 70175000
25.2 5.99e-267 1.04e-262 83.95 85.04 98451000
32.4 3.83e-267 6.29e-263 85.56 84.93 127192000
39.6 2.48e-267 4.29e-263 87.02 83.73 155872000
46.8 1.57e-267 2.85e-263 89.18 83.40 183242000
54.0 7.36e-268 1.43e-263 91.62 83.34 209357000
61.2 4.27e-268 8.75e-264 94.45 83.64 234305000
68.4 1.91e-268 4.34e-264 97.11 83.58 255567000
75.6 9.06e-269 2.08e-264 99.72 83.15 275322000
82.8 4.28e-269 1.01e-264 102.96 83.47 291766000
90.0 1.51e-269 3.60e-265 106.06 82.35 302749000
97.2 5.91e-270 1.60e-265 108.07 82.34 305156000

104.4 2.35e-270 8.38e-266 109.82 82.22 302511000
111.6 6.95e-271 3.00e-266 110.63 82.79 289730000
118.8 2.11e-271 7.93e-267 111.44 83.06 274625000
126.0 6.22e-272 2.89e-267 110.89 82.72 253000000
133.2 1.74e-272 1.27e-267 110.80 84.11 226861000
140.4 3.91e-273 2.05e-268 110.66 83.53 196713000
147.6 1.86e-273 1.87e-268 110.09 83.33 163766000
154.8 6.57e-274 4.66e-269 109.10 84.60 128758000
162.0 1.01e-274 7.18e-270 108.32 84.12 92875000
169.2 4.56e-275 3.23e-270 106.88 85.62 55059000
176.4 3.47e-275 2.58e-270 106.04 83.21 18463000

Table B.4: Computed beam spread function data for M = 200.



Appendix C

Beam spread function data analysis

This appendix contains supplementary analysis of the data in Appendix B, speaking

toward the error contained in each data set along with error present in the fit models.

Figure C.1 contains each of the four “varying-M” data sets plotted as a function of angle

with standard error of the mean error bars. Figures C.2 and C.3 plot the same data with

Gaussian fits and the fit residuals.

84



180 120 60 0 60 120 180
Angle (degrees)

0.00

0.01

0.02

0.03

0.04

0.05

R
e
la

ti
ve

 i
n

te
n

si
ty

(a) M = 80

180 120 60 0 60 120 180
Angle (degrees)

0.00

0.01

0.02

0.03

0.04

0.05

R
e
la

ti
ve

 i
n

te
n

si
ty

(b) M = 120
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(c) M = 160
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(d) M = 200

Figure C.1: Calculated beam spread functions with varying M and standard error of the
mean used for error bars.
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(a) M = 80
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(b) M = 120

Figure C.2: Gaussian fit and residuals for M = 80 and M = 120 beam spread functions.
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Figure C.3: Gaussian fit and residuals for M = 160 and M = 200 beam spread functions.
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ization for Bézier curves. International Journal of Applied Mathematics and Computer
Science, 14(1):33–42, 2004.

[40] Robert A. Maffione, Jeff M. Voss, and Curtis D. Mobley. Theory and measurements of
the complete beam spread function of sea ice. Limnology and Oceanography, 43(1):34–
43, 1998.

[41] LE Mertens and FS Replogle Jr. Use of point spread and beam spread functions for
analysis of imaging systems in water. JOSA, 67(8):1105–1117, 1977.

[42] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[43] Thomas F. Miller and David C. Clary. Torsional path integral Monte Carlo method
for calculating the absolute quantum free energy of large molecules. The Journal of
Chemical Physics, 119(1):68–76, 2003.

[44] Curtis D Mobley, Bernard Gentili, Howard R Gordon, Zhonghai Jin, George W Kat-
tawar, Andre Morel, Phillip Reinersman, Knut Stamnes, and Robert H Stavn. Com-
parison of numerical models for computing underwater light fields. Applied Optics,
32(36):7484–7504, 1993.

[45] Harald Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods,
volume 63 of CBMS-NSF Regional Conference Series in Applied Mathematics. Capital
City Press, Montpelier, Vermont, 1992.

91



[46] Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. Vir-
tual ray lights for rendering scenes with participating media. ACM Transactions on
Graphics, 31(4):60:1–60:11, July 2012.

[47] Lev T Perelman, Joshua Winn, Jun Wu, Ramachandra R Dasari, and Michael S Feld.
Photon migration of near-diffusive photons in turbid media: a Lagrangian-based ap-
proach. JOSA A, 14(1):224–229, 1997.

[48] Lev T Perelman, Jun Wu, Irving Itzkan, and Michael S Feld. Photon migration in
turbid media using path integrals. Physical Review Letters, 72(9):1341, 1994.

[49] Lev T Perelman, Jun Wu, Yang Wang, Irving Itzkan, Ramachandra R Dasari, and
Michael S Feld. Time-dependent photon migration using path integrals. Physical
Review E, 51(6):6134, 1995.

[50] Donald K Perovich. The optical properties of sea ice. Technical report, DTIC Docu-
ment, 1996.

[51] Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy, Paul
Avery, Kent Blackburn, Torre Wenaus, Frank Würthwein, Ian Foster, Rob Gardner,
Mike Wilde, Alan Blatecky, John McGee, and Rob Quick. The Open Science Grid.
Journal of Physics: Conference Series, 78(1):012057, 2007.

[52] Simon Premože, Michael Ashikhmin, Ravi Ramamoorthi, and Shree Nayar. Practical
rendering of multiple scattering effects in participating media. In Proceedings of the
Fifteenth Eurographics conference on Rendering Techniques, pages 363–374, 2004.

[53] Simon Premože, Michael Ashikhmin, and Peter Shirley. Path integration for light
transport in volumes. In Proceedings of the 14th Eurographics workshop on Rendering,
pages 25–27. Citeseer, 2003.

[54] JS Schoonmaker, KJ Voss, and GD Gilbert. Laboratory measurements of optical beams
in young sea ice. Limnology and oceanography, 34(8):1606–1613, 1989.

[55] Benjamin Segovia, Jean Claude Iehl, Richard Mitanchey, and Bernard Péroche. Bidi-
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